Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * A small micro-assembler. It is intentionally kept simple, does only
  7 * support a subset of instructions, and does not try to hide pipeline
  8 * effects like branch delay slots.
  9 *
 10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
 11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
 12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
 13 * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18
 19#include <asm/inst.h>
 20#include <asm/elf.h>
 21#include <asm/bugs.h>
 
 22#include <asm/uasm.h>
 23
 24#define RS_MASK		0x1f
 25#define RS_SH		21
 26#define RT_MASK		0x1f
 27#define RT_SH		16
 28#define SCIMM_MASK	0xfffff
 29#define SCIMM_SH	6
 30
 31/* This macro sets the non-variable bits of an instruction. */
 32#define M(a, b, c, d, e, f)					\
 33	((a) << OP_SH						\
 34	 | (b) << RS_SH						\
 35	 | (c) << RT_SH						\
 36	 | (d) << RD_SH						\
 37	 | (e) << RE_SH						\
 38	 | (f) << FUNC_SH)
 39
 40/* This macro sets the non-variable bits of an R6 instruction. */
 41#define M6(a, b, c, d, e)					\
 42	((a) << OP_SH						\
 43	 | (b) << RS_SH						\
 44	 | (c) << RT_SH						\
 45	 | (d) << SIMM9_SH					\
 46	 | (e) << FUNC_SH)
 47
 48#include "uasm.c"
 49
 50static const struct insn insn_table[insn_invalid] = {
 51	[insn_addiu]	= {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 52	[insn_addu]	= {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
 53	[insn_and]	= {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
 54	[insn_andi]	= {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
 55	[insn_bbit0]	= {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
 56	[insn_bbit1]	= {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
 57	[insn_beq]	= {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
 58	[insn_beql]	= {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
 59	[insn_bgez]	= {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
 60	[insn_bgezl]	= {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
 61	[insn_bgtz]	= {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
 62	[insn_blez]	= {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
 63	[insn_bltz]	= {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
 64	[insn_bltzl]	= {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
 65	[insn_bne]	= {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
 66	[insn_break]	= {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
 67#ifndef CONFIG_CPU_MIPSR6
 68	[insn_cache]	= {M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 69#else
 70	[insn_cache]	= {M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9},
 71#endif
 72	[insn_cfc1]	= {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
 73	[insn_cfcmsa]	= {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
 74	[insn_ctc1]	= {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
 75	[insn_ctcmsa]	= {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
 76	[insn_daddiu]	= {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 77	[insn_daddu]	= {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
 78	[insn_ddivu]	= {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
 79	[insn_ddivu_r6]	= {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op),
 80				RS | RT | RD},
 81	[insn_di]	= {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
 82	[insn_dins]	= {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
 83	[insn_dinsm]	= {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
 84	[insn_dinsu]	= {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
 85	[insn_divu]	= {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
 86	[insn_divu_r6]	= {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op),
 87				RS | RT | RD},
 88	[insn_dmfc0]	= {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
 89	[insn_dmodu]	= {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op),
 90				RS | RT | RD},
 91	[insn_dmtc0]	= {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
 92	[insn_dmultu]	= {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
 93	[insn_dmulu]	= {M(spec_op, 0, 0, 0, dmultu_dmulu_op, dmultu_op),
 94				RS | RT | RD},
 95	[insn_drotr]	= {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
 96	[insn_drotr32]	= {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
 97	[insn_dsbh]	= {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
 98	[insn_dshd]	= {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
 99	[insn_dsll]	= {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
100	[insn_dsll32]	= {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
101	[insn_dsllv]	= {M(spec_op, 0, 0, 0, 0, dsllv_op),  RS | RT | RD},
102	[insn_dsra]	= {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
103	[insn_dsra32]	= {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
104	[insn_dsrav]	= {M(spec_op, 0, 0, 0, 0, dsrav_op),  RS | RT | RD},
105	[insn_dsrl]	= {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
106	[insn_dsrl32]	= {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
107	[insn_dsrlv]	= {M(spec_op, 0, 0, 0, 0, dsrlv_op),  RS | RT | RD},
108	[insn_dsubu]	= {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
109	[insn_eret]	= {M(cop0_op, cop_op, 0, 0, 0, eret_op),  0},
110	[insn_ext]	= {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
111	[insn_ins]	= {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
112	[insn_j]	= {M(j_op, 0, 0, 0, 0, 0),  JIMM},
113	[insn_jal]	= {M(jal_op, 0, 0, 0, 0, 0),	JIMM},
114	[insn_jalr]	= {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
115#ifndef CONFIG_CPU_MIPSR6
116	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jr_op),  RS},
117#else
118	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jalr_op),  RS},
119#endif
120	[insn_lb]	= {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
121	[insn_lbu]	= {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
122	[insn_ld]	= {M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
123	[insn_lddir]	= {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
124	[insn_ldpte]	= {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
125	[insn_ldx]	= {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
126	[insn_lh]	= {M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
127	[insn_lhu]	= {M(lhu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
128#ifndef CONFIG_CPU_MIPSR6
129	[insn_ll]	= {M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
130	[insn_lld]	= {M(lld_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
131#else
132	[insn_ll]	= {M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9},
133	[insn_lld]	= {M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9},
134#endif
135	[insn_lui]	= {M(lui_op, 0, 0, 0, 0, 0),	RT | SIMM},
136	[insn_lw]	= {M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
137	[insn_lwu]	= {M(lwu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
138	[insn_lwx]	= {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
139	[insn_mfc0]	= {M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
140	[insn_mfhc0]	= {M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
141	[insn_mfhi]	= {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
142	[insn_mflo]	= {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
143	[insn_modu]	= {M(spec_op, 0, 0, 0, divu_modu_op, divu_op),
144				RS | RT | RD},
145	[insn_movn]	= {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
146	[insn_movz]	= {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
147	[insn_mtc0]	= {M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
148	[insn_mthc0]	= {M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
149	[insn_mthi]	= {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
150	[insn_mtlo]	= {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
151	[insn_mulu]	= {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op),
152				RS | RT | RD},
153	[insn_muhu]	= {M(spec_op, 0, 0, 0, multu_muhu_op, multu_op),
154				RS | RT | RD},
155#ifndef CONFIG_CPU_MIPSR6
156	[insn_mul]	= {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
157#else
158	[insn_mul]	= {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
159#endif
160	[insn_multu]	= {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
161	[insn_nor]	= {M(spec_op, 0, 0, 0, 0, nor_op),  RS | RT | RD},
162	[insn_or]	= {M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD},
163	[insn_ori]	= {M(ori_op, 0, 0, 0, 0, 0),	RS | RT | UIMM},
164#ifndef CONFIG_CPU_MIPSR6
165	[insn_pref]	= {M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
166#else
167	[insn_pref]	= {M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9},
168#endif
169	[insn_rfe]	= {M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0},
170	[insn_rotr]	= {M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE},
171	[insn_sb]	= {M(sb_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
172#ifndef CONFIG_CPU_MIPSR6
173	[insn_sc]	= {M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
174	[insn_scd]	= {M(scd_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
175#else
176	[insn_sc]	= {M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9},
177	[insn_scd]	= {M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9},
178#endif
179	[insn_sd]	= {M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
180	[insn_seleqz]	= {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD},
181	[insn_selnez]	= {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD},
182	[insn_sh]	= {M(sh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
183	[insn_sll]	= {M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE},
184	[insn_sllv]	= {M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD},
185	[insn_slt]	= {M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD},
186	[insn_slti]	= {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
187	[insn_sltiu]	= {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
188	[insn_sltu]	= {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
189	[insn_sra]	= {M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE},
190	[insn_srav]	= {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
191	[insn_srl]	= {M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE},
192	[insn_srlv]	= {M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD},
193	[insn_subu]	= {M(spec_op, 0, 0, 0, 0, subu_op),	RS | RT | RD},
194	[insn_sw]	= {M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
195	[insn_sync]	= {M(spec_op, 0, 0, 0, 0, sync_op), RE},
196	[insn_syscall]	= {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
197	[insn_tlbp]	= {M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0},
198	[insn_tlbr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0},
199	[insn_tlbwi]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0},
200	[insn_tlbwr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0},
201	[insn_wait]	= {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
202	[insn_wsbh]	= {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
203	[insn_xor]	= {M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD},
204	[insn_xori]	= {M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM},
205	[insn_yield]	= {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
206};
207
208#undef M
209
210static inline u32 build_bimm(s32 arg)
211{
212	WARN(arg > 0x1ffff || arg < -0x20000,
213	     KERN_WARNING "Micro-assembler field overflow\n");
214
215	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
216
217	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
218}
219
220static inline u32 build_jimm(u32 arg)
221{
222	WARN(arg & ~(JIMM_MASK << 2),
223	     KERN_WARNING "Micro-assembler field overflow\n");
224
225	return (arg >> 2) & JIMM_MASK;
226}
227
228/*
229 * The order of opcode arguments is implicitly left to right,
230 * starting with RS and ending with FUNC or IMM.
231 */
232static void build_insn(u32 **buf, enum opcode opc, ...)
233{
234	const struct insn *ip;
 
235	va_list ap;
236	u32 op;
237
238	if (opc < 0 || opc >= insn_invalid ||
239	    (opc == insn_daddiu && r4k_daddiu_bug()) ||
240	    (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
241		panic("Unsupported Micro-assembler instruction %d", opc);
 
242
243	ip = &insn_table[opc];
 
244
245	op = ip->match;
246	va_start(ap, opc);
247	if (ip->fields & RS)
248		op |= build_rs(va_arg(ap, u32));
249	if (ip->fields & RT)
250		op |= build_rt(va_arg(ap, u32));
251	if (ip->fields & RD)
252		op |= build_rd(va_arg(ap, u32));
253	if (ip->fields & RE)
254		op |= build_re(va_arg(ap, u32));
255	if (ip->fields & SIMM)
256		op |= build_simm(va_arg(ap, s32));
257	if (ip->fields & UIMM)
258		op |= build_uimm(va_arg(ap, u32));
259	if (ip->fields & BIMM)
260		op |= build_bimm(va_arg(ap, s32));
261	if (ip->fields & JIMM)
262		op |= build_jimm(va_arg(ap, u32));
263	if (ip->fields & FUNC)
264		op |= build_func(va_arg(ap, u32));
265	if (ip->fields & SET)
266		op |= build_set(va_arg(ap, u32));
267	if (ip->fields & SCIMM)
268		op |= build_scimm(va_arg(ap, u32));
269	if (ip->fields & SIMM9)
270		op |= build_scimm9(va_arg(ap, u32));
271	va_end(ap);
272
273	**buf = op;
274	(*buf)++;
275}
276
277static inline void
278__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
279{
280	long laddr = (long)lab->addr;
281	long raddr = (long)rel->addr;
282
283	switch (rel->type) {
284	case R_MIPS_PC16:
285		*rel->addr |= build_bimm(laddr - (raddr + 4));
286		break;
287
288	default:
289		panic("Unsupported Micro-assembler relocation %d",
290		      rel->type);
291	}
292}
v4.10.11
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * A small micro-assembler. It is intentionally kept simple, does only
  7 * support a subset of instructions, and does not try to hide pipeline
  8 * effects like branch delay slots.
  9 *
 10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
 11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
 12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
 13 * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18
 19#include <asm/inst.h>
 20#include <asm/elf.h>
 21#include <asm/bugs.h>
 22#define UASM_ISA	_UASM_ISA_CLASSIC
 23#include <asm/uasm.h>
 24
 25#define RS_MASK		0x1f
 26#define RS_SH		21
 27#define RT_MASK		0x1f
 28#define RT_SH		16
 29#define SCIMM_MASK	0xfffff
 30#define SCIMM_SH	6
 31
 32/* This macro sets the non-variable bits of an instruction. */
 33#define M(a, b, c, d, e, f)					\
 34	((a) << OP_SH						\
 35	 | (b) << RS_SH						\
 36	 | (c) << RT_SH						\
 37	 | (d) << RD_SH						\
 38	 | (e) << RE_SH						\
 39	 | (f) << FUNC_SH)
 40
 41/* This macro sets the non-variable bits of an R6 instruction. */
 42#define M6(a, b, c, d, e)					\
 43	((a) << OP_SH						\
 44	 | (b) << RS_SH						\
 45	 | (c) << RT_SH						\
 46	 | (d) << SIMM9_SH					\
 47	 | (e) << FUNC_SH)
 48
 49#include "uasm.c"
 50
 51static struct insn insn_table[] = {
 52	{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
 53	{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
 54	{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
 55	{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
 56	{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 57	{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 58	{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 59	{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 60	{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
 61	{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
 62	{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
 63	{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
 64	{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 65#ifndef CONFIG_CPU_MIPSR6
 66	{ insn_cache,  M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 67#else
 68	{ insn_cache,  M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9 },
 69#endif
 70	{ insn_cfc1, M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD },
 71	{ insn_cfcmsa, M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE },
 72	{ insn_ctc1, M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD },
 73	{ insn_ctcmsa, M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE },
 74	{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
 75	{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
 76	{ insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
 77	{ insn_di, M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT },
 78	{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
 79	{ insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT },
 80	{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
 81	{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
 82	{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
 83	{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
 84	{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
 85	{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
 86	{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
 87	{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
 88	{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
 89	{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
 90	{ insn_eret,  M(cop0_op, cop_op, 0, 0, 0, eret_op),  0 },
 91	{ insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
 92	{ insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
 93	{ insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
 94	{ insn_jal,  M(jal_op, 0, 0, 0, 0, 0),	JIMM },
 95	{ insn_jalr,  M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD },
 96	{ insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
 97#ifndef CONFIG_CPU_MIPSR6
 98	{ insn_jr,  M(spec_op, 0, 0, 0, 0, jr_op),  RS },
 99#else
100	{ insn_jr,  M(spec_op, 0, 0, 0, 0, jalr_op),  RS },
101#endif
102	{ insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
103	{ insn_ld,  M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
104	{ insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
105	{ insn_lh,  M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
106#ifndef CONFIG_CPU_MIPSR6
107	{ insn_lld,  M(lld_op, 0, 0, 0, 0, 0),	RS | RT | SIMM },
108	{ insn_ll,  M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
109#else
110	{ insn_lld,  M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9 },
111	{ insn_ll,  M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9 },
112#endif
113	{ insn_lui,  M(lui_op, 0, 0, 0, 0, 0),	RT | SIMM },
114	{ insn_lw,  M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
115	{ insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
116	{ insn_mfc0,  M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
117	{ insn_mfhc0,  M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
118	{ insn_mfhi,  M(spec_op, 0, 0, 0, 0, mfhi_op), RD },
119	{ insn_mflo,  M(spec_op, 0, 0, 0, 0, mflo_op), RD },
120	{ insn_mtc0,  M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
121	{ insn_mthc0,  M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
122	{ insn_mthi,  M(spec_op, 0, 0, 0, 0, mthi_op), RS },
123	{ insn_mtlo,  M(spec_op, 0, 0, 0, 0, mtlo_op), RS },
124#ifndef CONFIG_CPU_MIPSR6
125	{ insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
126#else
127	{ insn_mul, M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
128#endif
129	{ insn_ori,  M(ori_op, 0, 0, 0, 0, 0),	RS | RT | UIMM },
130	{ insn_or,  M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD },
131#ifndef CONFIG_CPU_MIPSR6
132	{ insn_pref,  M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
133#else
134	{ insn_pref,  M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9 },
135#endif
136	{ insn_rfe,  M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0 },
137	{ insn_rotr,  M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE },
138#ifndef CONFIG_CPU_MIPSR6
139	{ insn_scd,  M(scd_op, 0, 0, 0, 0, 0),	RS | RT | SIMM },
140	{ insn_sc,  M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
141#else
142	{ insn_scd,  M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9 },
143	{ insn_sc,  M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9 },
144#endif
145	{ insn_sd,  M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
146	{ insn_sll,  M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE },
147	{ insn_sllv,  M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD },
148	{ insn_slt,  M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD },
149	{ insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
150	{ insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD },
151	{ insn_sra,  M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE },
152	{ insn_srl,  M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE },
153	{ insn_srlv,  M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD },
154	{ insn_subu,  M(spec_op, 0, 0, 0, 0, subu_op),	RS | RT | RD },
155	{ insn_sw,  M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
156	{ insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE },
157	{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
158	{ insn_tlbp,  M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0 },
159	{ insn_tlbr,  M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0 },
160	{ insn_tlbwi,  M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0 },
161	{ insn_tlbwr,  M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0 },
162	{ insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM },
163	{ insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD },
164	{ insn_xori,  M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
165	{ insn_xor,  M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD },
166	{ insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD },
167	{ insn_ldpte, M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD },
168	{ insn_lddir, M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD },
169	{ insn_invalid, 0, 0 }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170};
171
172#undef M
173
174static inline u32 build_bimm(s32 arg)
175{
176	WARN(arg > 0x1ffff || arg < -0x20000,
177	     KERN_WARNING "Micro-assembler field overflow\n");
178
179	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
180
181	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
182}
183
184static inline u32 build_jimm(u32 arg)
185{
186	WARN(arg & ~(JIMM_MASK << 2),
187	     KERN_WARNING "Micro-assembler field overflow\n");
188
189	return (arg >> 2) & JIMM_MASK;
190}
191
192/*
193 * The order of opcode arguments is implicitly left to right,
194 * starting with RS and ending with FUNC or IMM.
195 */
196static void build_insn(u32 **buf, enum opcode opc, ...)
197{
198	struct insn *ip = NULL;
199	unsigned int i;
200	va_list ap;
201	u32 op;
202
203	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
204		if (insn_table[i].opcode == opc) {
205			ip = &insn_table[i];
206			break;
207		}
208
209	if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
210		panic("Unsupported Micro-assembler instruction %d", opc);
211
212	op = ip->match;
213	va_start(ap, opc);
214	if (ip->fields & RS)
215		op |= build_rs(va_arg(ap, u32));
216	if (ip->fields & RT)
217		op |= build_rt(va_arg(ap, u32));
218	if (ip->fields & RD)
219		op |= build_rd(va_arg(ap, u32));
220	if (ip->fields & RE)
221		op |= build_re(va_arg(ap, u32));
222	if (ip->fields & SIMM)
223		op |= build_simm(va_arg(ap, s32));
224	if (ip->fields & UIMM)
225		op |= build_uimm(va_arg(ap, u32));
226	if (ip->fields & BIMM)
227		op |= build_bimm(va_arg(ap, s32));
228	if (ip->fields & JIMM)
229		op |= build_jimm(va_arg(ap, u32));
230	if (ip->fields & FUNC)
231		op |= build_func(va_arg(ap, u32));
232	if (ip->fields & SET)
233		op |= build_set(va_arg(ap, u32));
234	if (ip->fields & SCIMM)
235		op |= build_scimm(va_arg(ap, u32));
236	if (ip->fields & SIMM9)
237		op |= build_scimm9(va_arg(ap, u32));
238	va_end(ap);
239
240	**buf = op;
241	(*buf)++;
242}
243
244static inline void
245__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
246{
247	long laddr = (long)lab->addr;
248	long raddr = (long)rel->addr;
249
250	switch (rel->type) {
251	case R_MIPS_PC16:
252		*rel->addr |= build_bimm(laddr - (raddr + 4));
253		break;
254
255	default:
256		panic("Unsupported Micro-assembler relocation %d",
257		      rel->type);
258	}
259}