Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 * 	http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45#include <linux/cpu.h>
  46
  47#include <asm/errno.h>
  48#include <asm/intrinsics.h>
  49#include <asm/page.h>
  50#include <asm/perfmon.h>
  51#include <asm/processor.h>
  52#include <asm/signal.h>
  53#include <linux/uaccess.h>
  54#include <asm/delay.h>
  55
  56#ifdef CONFIG_PERFMON
  57/*
  58 * perfmon context state
  59 */
  60#define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
  61#define PFM_CTX_LOADED		2	/* context is loaded onto a task */
  62#define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
  63#define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
  64
  65#define PFM_INVALID_ACTIVATION	(~0UL)
  66
  67#define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
  68#define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
  69
  70/*
  71 * depth of message queue
  72 */
  73#define PFM_MAX_MSGS		32
  74#define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  75
  76/*
  77 * type of a PMU register (bitmask).
  78 * bitmask structure:
  79 * 	bit0   : register implemented
  80 * 	bit1   : end marker
  81 * 	bit2-3 : reserved
  82 * 	bit4   : pmc has pmc.pm
  83 * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  84 * 	bit6-7 : register type
  85 * 	bit8-31: reserved
  86 */
  87#define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
  88#define PFM_REG_IMPL		0x1 /* register implemented */
  89#define PFM_REG_END		0x2 /* end marker */
  90#define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  91#define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  92#define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
  93#define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
  94#define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  95
  96#define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
  97#define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
  98
  99#define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 100
 101/* i assumed unsigned */
 102#define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 103#define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 104
 105/* XXX: these assume that register i is implemented */
 106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 110
 111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 113#define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
 114#define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
 115
 116#define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
 117#define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
 118
 119#define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
 120#define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
 121#define PFM_CTX_TASK(h)		(h)->ctx_task
 122
 123#define PMU_PMC_OI		5 /* position of pmc.oi bit */
 124
 125/* XXX: does not support more than 64 PMDs */
 126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 128
 129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 130
 131#define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 133#define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 134#define PFM_CODE_RR	0	/* requesting code range restriction */
 135#define PFM_DATA_RR	1	/* requestion data range restriction */
 136
 137#define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 138#define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
 139#define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
 140
 141#define RDEP(x)	(1UL<<(x))
 142
 143/*
 144 * context protection macros
 145 * in SMP:
 146 * 	- we need to protect against CPU concurrency (spin_lock)
 147 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
 148 * in UP:
 149 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
 150 *
 151 * spin_lock_irqsave()/spin_unlock_irqrestore():
 152 * 	in SMP: local_irq_disable + spin_lock
 153 * 	in UP : local_irq_disable
 154 *
 155 * spin_lock()/spin_lock():
 156 * 	in UP : removed automatically
 157 * 	in SMP: protect against context accesses from other CPU. interrupts
 158 * 	        are not masked. This is useful for the PMU interrupt handler
 159 * 	        because we know we will not get PMU concurrency in that code.
 160 */
 161#define PROTECT_CTX(c, f) \
 162	do {  \
 163		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 164		spin_lock_irqsave(&(c)->ctx_lock, f); \
 165		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 166	} while(0)
 167
 168#define UNPROTECT_CTX(c, f) \
 169	do { \
 170		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 171		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 172	} while(0)
 173
 174#define PROTECT_CTX_NOPRINT(c, f) \
 175	do {  \
 176		spin_lock_irqsave(&(c)->ctx_lock, f); \
 177	} while(0)
 178
 179
 180#define UNPROTECT_CTX_NOPRINT(c, f) \
 181	do { \
 182		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 183	} while(0)
 184
 185
 186#define PROTECT_CTX_NOIRQ(c) \
 187	do {  \
 188		spin_lock(&(c)->ctx_lock); \
 189	} while(0)
 190
 191#define UNPROTECT_CTX_NOIRQ(c) \
 192	do { \
 193		spin_unlock(&(c)->ctx_lock); \
 194	} while(0)
 195
 196
 197#ifdef CONFIG_SMP
 198
 199#define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
 200#define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
 201#define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
 202
 203#else /* !CONFIG_SMP */
 204#define SET_ACTIVATION(t) 	do {} while(0)
 205#define GET_ACTIVATION(t) 	do {} while(0)
 206#define INC_ACTIVATION(t) 	do {} while(0)
 207#endif /* CONFIG_SMP */
 208
 209#define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 210#define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
 211#define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
 212
 213#define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 214#define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 215
 216#define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 217
 218/*
 219 * cmp0 must be the value of pmc0
 220 */
 221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 222
 223#define PFMFS_MAGIC 0xa0b4d889
 224
 225/*
 226 * debugging
 227 */
 228#define PFM_DEBUGGING 1
 229#ifdef PFM_DEBUGGING
 230#define DPRINT(a) \
 231	do { \
 232		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 233	} while (0)
 234
 235#define DPRINT_ovfl(a) \
 236	do { \
 237		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 238	} while (0)
 239#endif
 240
 241/*
 242 * 64-bit software counter structure
 243 *
 244 * the next_reset_type is applied to the next call to pfm_reset_regs()
 245 */
 246typedef struct {
 247	unsigned long	val;		/* virtual 64bit counter value */
 248	unsigned long	lval;		/* last reset value */
 249	unsigned long	long_reset;	/* reset value on sampling overflow */
 250	unsigned long	short_reset;    /* reset value on overflow */
 251	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 252	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 253	unsigned long	seed;		/* seed for random-number generator */
 254	unsigned long	mask;		/* mask for random-number generator */
 255	unsigned int 	flags;		/* notify/do not notify */
 256	unsigned long	eventid;	/* overflow event identifier */
 257} pfm_counter_t;
 258
 259/*
 260 * context flags
 261 */
 262typedef struct {
 263	unsigned int block:1;		/* when 1, task will blocked on user notifications */
 264	unsigned int system:1;		/* do system wide monitoring */
 265	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
 266	unsigned int is_sampling:1;	/* true if using a custom format */
 267	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
 268	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
 269	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
 270	unsigned int no_msg:1;		/* no message sent on overflow */
 271	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
 272	unsigned int reserved:22;
 273} pfm_context_flags_t;
 274
 275#define PFM_TRAP_REASON_NONE		0x0	/* default value */
 276#define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
 277#define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
 278
 279
 280/*
 281 * perfmon context: encapsulates all the state of a monitoring session
 282 */
 283
 284typedef struct pfm_context {
 285	spinlock_t		ctx_lock;		/* context protection */
 286
 287	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
 288	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
 289
 290	struct task_struct 	*ctx_task;		/* task to which context is attached */
 291
 292	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
 293
 294	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
 295
 296	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
 297	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
 298	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
 299
 300	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
 301	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
 302	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
 303
 304	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
 305
 306	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
 307	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
 308	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
 309	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
 310
 311	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 312
 313	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
 314	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
 315
 316	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
 317
 318	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
 319	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
 320	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
 321
 322	int			ctx_fd;			/* file descriptor used my this context */
 323	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
 324
 325	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
 326	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
 327	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
 328	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
 329
 330	wait_queue_head_t 	ctx_msgq_wait;
 331	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
 332	int			ctx_msgq_head;
 333	int			ctx_msgq_tail;
 334	struct fasync_struct	*ctx_async_queue;
 335
 336	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
 337} pfm_context_t;
 338
 339/*
 340 * magic number used to verify that structure is really
 341 * a perfmon context
 342 */
 343#define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
 344
 345#define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
 346
 347#ifdef CONFIG_SMP
 348#define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
 349#define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
 350#else
 351#define SET_LAST_CPU(ctx, v)	do {} while(0)
 352#define GET_LAST_CPU(ctx)	do {} while(0)
 353#endif
 354
 355
 356#define ctx_fl_block		ctx_flags.block
 357#define ctx_fl_system		ctx_flags.system
 358#define ctx_fl_using_dbreg	ctx_flags.using_dbreg
 359#define ctx_fl_is_sampling	ctx_flags.is_sampling
 360#define ctx_fl_excl_idle	ctx_flags.excl_idle
 361#define ctx_fl_going_zombie	ctx_flags.going_zombie
 362#define ctx_fl_trap_reason	ctx_flags.trap_reason
 363#define ctx_fl_no_msg		ctx_flags.no_msg
 364#define ctx_fl_can_restart	ctx_flags.can_restart
 365
 366#define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
 367#define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
 368
 369/*
 370 * global information about all sessions
 371 * mostly used to synchronize between system wide and per-process
 372 */
 373typedef struct {
 374	spinlock_t		pfs_lock;		   /* lock the structure */
 375
 376	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
 377	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
 378	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
 379	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
 380	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 381} pfm_session_t;
 382
 383/*
 384 * information about a PMC or PMD.
 385 * dep_pmd[]: a bitmask of dependent PMD registers
 386 * dep_pmc[]: a bitmask of dependent PMC registers
 387 */
 388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 389typedef struct {
 390	unsigned int		type;
 391	int			pm_pos;
 392	unsigned long		default_value;	/* power-on default value */
 393	unsigned long		reserved_mask;	/* bitmask of reserved bits */
 394	pfm_reg_check_t		read_check;
 395	pfm_reg_check_t		write_check;
 396	unsigned long		dep_pmd[4];
 397	unsigned long		dep_pmc[4];
 398} pfm_reg_desc_t;
 399
 400/* assume cnum is a valid monitor */
 401#define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 402
 403/*
 404 * This structure is initialized at boot time and contains
 405 * a description of the PMU main characteristics.
 406 *
 407 * If the probe function is defined, detection is based
 408 * on its return value: 
 409 * 	- 0 means recognized PMU
 410 * 	- anything else means not supported
 411 * When the probe function is not defined, then the pmu_family field
 412 * is used and it must match the host CPU family such that:
 413 * 	- cpu->family & config->pmu_family != 0
 414 */
 415typedef struct {
 416	unsigned long  ovfl_val;	/* overflow value for counters */
 417
 418	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
 419	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
 420
 421	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
 422	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
 423	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
 424	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
 425
 426	char	      *pmu_name;	/* PMU family name */
 427	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
 428	unsigned int  flags;		/* pmu specific flags */
 429	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
 430	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
 431	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
 432	int           (*probe)(void);   /* customized probe routine */
 433	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
 434} pmu_config_t;
 435/*
 436 * PMU specific flags
 437 */
 438#define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
 439
 440/*
 441 * debug register related type definitions
 442 */
 443typedef struct {
 444	unsigned long ibr_mask:56;
 445	unsigned long ibr_plm:4;
 446	unsigned long ibr_ig:3;
 447	unsigned long ibr_x:1;
 448} ibr_mask_reg_t;
 449
 450typedef struct {
 451	unsigned long dbr_mask:56;
 452	unsigned long dbr_plm:4;
 453	unsigned long dbr_ig:2;
 454	unsigned long dbr_w:1;
 455	unsigned long dbr_r:1;
 456} dbr_mask_reg_t;
 457
 458typedef union {
 459	unsigned long  val;
 460	ibr_mask_reg_t ibr;
 461	dbr_mask_reg_t dbr;
 462} dbreg_t;
 463
 464
 465/*
 466 * perfmon command descriptions
 467 */
 468typedef struct {
 469	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 470	char		*cmd_name;
 471	int		cmd_flags;
 472	unsigned int	cmd_narg;
 473	size_t		cmd_argsize;
 474	int		(*cmd_getsize)(void *arg, size_t *sz);
 475} pfm_cmd_desc_t;
 476
 477#define PFM_CMD_FD		0x01	/* command requires a file descriptor */
 478#define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
 479#define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
 480#define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
 481
 482
 483#define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
 484#define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 485#define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 486#define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 487#define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 488
 489#define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
 490
 491typedef struct {
 492	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
 493	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
 494	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
 495	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
 496	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
 497	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
 498	unsigned long pfm_smpl_handler_calls;
 499	unsigned long pfm_smpl_handler_cycles;
 500	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 501} pfm_stats_t;
 502
 503/*
 504 * perfmon internal variables
 505 */
 506static pfm_stats_t		pfm_stats[NR_CPUS];
 507static pfm_session_t		pfm_sessions;	/* global sessions information */
 508
 509static DEFINE_SPINLOCK(pfm_alt_install_check);
 510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 511
 512static struct proc_dir_entry 	*perfmon_dir;
 513static pfm_uuid_t		pfm_null_uuid = {0,};
 514
 515static spinlock_t		pfm_buffer_fmt_lock;
 516static LIST_HEAD(pfm_buffer_fmt_list);
 517
 518static pmu_config_t		*pmu_conf;
 519
 520/* sysctl() controls */
 521pfm_sysctl_t pfm_sysctl;
 522EXPORT_SYMBOL(pfm_sysctl);
 523
 524static struct ctl_table pfm_ctl_table[] = {
 525	{
 526		.procname	= "debug",
 527		.data		= &pfm_sysctl.debug,
 528		.maxlen		= sizeof(int),
 529		.mode		= 0666,
 530		.proc_handler	= proc_dointvec,
 531	},
 532	{
 533		.procname	= "debug_ovfl",
 534		.data		= &pfm_sysctl.debug_ovfl,
 535		.maxlen		= sizeof(int),
 536		.mode		= 0666,
 537		.proc_handler	= proc_dointvec,
 538	},
 539	{
 540		.procname	= "fastctxsw",
 541		.data		= &pfm_sysctl.fastctxsw,
 542		.maxlen		= sizeof(int),
 543		.mode		= 0600,
 544		.proc_handler	= proc_dointvec,
 545	},
 546	{
 547		.procname	= "expert_mode",
 548		.data		= &pfm_sysctl.expert_mode,
 549		.maxlen		= sizeof(int),
 550		.mode		= 0600,
 551		.proc_handler	= proc_dointvec,
 552	},
 553	{}
 554};
 555static struct ctl_table pfm_sysctl_dir[] = {
 556	{
 557		.procname	= "perfmon",
 558		.mode		= 0555,
 559		.child		= pfm_ctl_table,
 560	},
 561 	{}
 562};
 563static struct ctl_table pfm_sysctl_root[] = {
 564	{
 565		.procname	= "kernel",
 566		.mode		= 0555,
 567		.child		= pfm_sysctl_dir,
 568	},
 569 	{}
 570};
 571static struct ctl_table_header *pfm_sysctl_header;
 572
 573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 574
 575#define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
 576#define pfm_get_cpu_data(a,b)		per_cpu(a, b)
 577
 578static inline void
 579pfm_put_task(struct task_struct *task)
 580{
 581	if (task != current) put_task_struct(task);
 582}
 583
 584static inline void
 585pfm_reserve_page(unsigned long a)
 586{
 587	SetPageReserved(vmalloc_to_page((void *)a));
 588}
 589static inline void
 590pfm_unreserve_page(unsigned long a)
 591{
 592	ClearPageReserved(vmalloc_to_page((void*)a));
 593}
 594
 595static inline unsigned long
 596pfm_protect_ctx_ctxsw(pfm_context_t *x)
 597{
 598	spin_lock(&(x)->ctx_lock);
 599	return 0UL;
 600}
 601
 602static inline void
 603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 604{
 605	spin_unlock(&(x)->ctx_lock);
 606}
 607
 608/* forward declaration */
 609static const struct dentry_operations pfmfs_dentry_operations;
 610
 611static struct dentry *
 612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 613{
 614	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 615			PFMFS_MAGIC);
 616}
 617
 618static struct file_system_type pfm_fs_type = {
 619	.name     = "pfmfs",
 620	.mount    = pfmfs_mount,
 621	.kill_sb  = kill_anon_super,
 622};
 623MODULE_ALIAS_FS("pfmfs");
 624
 625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 627DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 630
 631
 632/* forward declaration */
 633static const struct file_operations pfm_file_ops;
 634
 635/*
 636 * forward declarations
 637 */
 638#ifndef CONFIG_SMP
 639static void pfm_lazy_save_regs (struct task_struct *ta);
 640#endif
 641
 642void dump_pmu_state(const char *);
 643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 644
 645#include "perfmon_itanium.h"
 646#include "perfmon_mckinley.h"
 647#include "perfmon_montecito.h"
 648#include "perfmon_generic.h"
 649
 650static pmu_config_t *pmu_confs[]={
 651	&pmu_conf_mont,
 652	&pmu_conf_mck,
 653	&pmu_conf_ita,
 654	&pmu_conf_gen, /* must be last */
 655	NULL
 656};
 657
 658
 659static int pfm_end_notify_user(pfm_context_t *ctx);
 660
 661static inline void
 662pfm_clear_psr_pp(void)
 663{
 664	ia64_rsm(IA64_PSR_PP);
 665	ia64_srlz_i();
 666}
 667
 668static inline void
 669pfm_set_psr_pp(void)
 670{
 671	ia64_ssm(IA64_PSR_PP);
 672	ia64_srlz_i();
 673}
 674
 675static inline void
 676pfm_clear_psr_up(void)
 677{
 678	ia64_rsm(IA64_PSR_UP);
 679	ia64_srlz_i();
 680}
 681
 682static inline void
 683pfm_set_psr_up(void)
 684{
 685	ia64_ssm(IA64_PSR_UP);
 686	ia64_srlz_i();
 687}
 688
 689static inline unsigned long
 690pfm_get_psr(void)
 691{
 692	unsigned long tmp;
 693	tmp = ia64_getreg(_IA64_REG_PSR);
 694	ia64_srlz_i();
 695	return tmp;
 696}
 697
 698static inline void
 699pfm_set_psr_l(unsigned long val)
 700{
 701	ia64_setreg(_IA64_REG_PSR_L, val);
 702	ia64_srlz_i();
 703}
 704
 705static inline void
 706pfm_freeze_pmu(void)
 707{
 708	ia64_set_pmc(0,1UL);
 709	ia64_srlz_d();
 710}
 711
 712static inline void
 713pfm_unfreeze_pmu(void)
 714{
 715	ia64_set_pmc(0,0UL);
 716	ia64_srlz_d();
 717}
 718
 719static inline void
 720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 721{
 722	int i;
 723
 724	for (i=0; i < nibrs; i++) {
 725		ia64_set_ibr(i, ibrs[i]);
 726		ia64_dv_serialize_instruction();
 727	}
 728	ia64_srlz_i();
 729}
 730
 731static inline void
 732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 733{
 734	int i;
 735
 736	for (i=0; i < ndbrs; i++) {
 737		ia64_set_dbr(i, dbrs[i]);
 738		ia64_dv_serialize_data();
 739	}
 740	ia64_srlz_d();
 741}
 742
 743/*
 744 * PMD[i] must be a counter. no check is made
 745 */
 746static inline unsigned long
 747pfm_read_soft_counter(pfm_context_t *ctx, int i)
 748{
 749	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 750}
 751
 752/*
 753 * PMD[i] must be a counter. no check is made
 754 */
 755static inline void
 756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 757{
 758	unsigned long ovfl_val = pmu_conf->ovfl_val;
 759
 760	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 761	/*
 762	 * writing to unimplemented part is ignore, so we do not need to
 763	 * mask off top part
 764	 */
 765	ia64_set_pmd(i, val & ovfl_val);
 766}
 767
 768static pfm_msg_t *
 769pfm_get_new_msg(pfm_context_t *ctx)
 770{
 771	int idx, next;
 772
 773	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 774
 775	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 776	if (next == ctx->ctx_msgq_head) return NULL;
 777
 778 	idx = 	ctx->ctx_msgq_tail;
 779	ctx->ctx_msgq_tail = next;
 780
 781	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 782
 783	return ctx->ctx_msgq+idx;
 784}
 785
 786static pfm_msg_t *
 787pfm_get_next_msg(pfm_context_t *ctx)
 788{
 789	pfm_msg_t *msg;
 790
 791	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 792
 793	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 794
 795	/*
 796	 * get oldest message
 797	 */
 798	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 799
 800	/*
 801	 * and move forward
 802	 */
 803	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 804
 805	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 806
 807	return msg;
 808}
 809
 810static void
 811pfm_reset_msgq(pfm_context_t *ctx)
 812{
 813	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 814	DPRINT(("ctx=%p msgq reset\n", ctx));
 815}
 816
 817static void *
 818pfm_rvmalloc(unsigned long size)
 819{
 820	void *mem;
 821	unsigned long addr;
 822
 823	size = PAGE_ALIGN(size);
 824	mem  = vzalloc(size);
 825	if (mem) {
 826		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 827		addr = (unsigned long)mem;
 828		while (size > 0) {
 829			pfm_reserve_page(addr);
 830			addr+=PAGE_SIZE;
 831			size-=PAGE_SIZE;
 832		}
 833	}
 834	return mem;
 835}
 836
 837static void
 838pfm_rvfree(void *mem, unsigned long size)
 839{
 840	unsigned long addr;
 841
 842	if (mem) {
 843		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 844		addr = (unsigned long) mem;
 845		while ((long) size > 0) {
 846			pfm_unreserve_page(addr);
 847			addr+=PAGE_SIZE;
 848			size-=PAGE_SIZE;
 849		}
 850		vfree(mem);
 851	}
 852	return;
 853}
 854
 855static pfm_context_t *
 856pfm_context_alloc(int ctx_flags)
 857{
 858	pfm_context_t *ctx;
 859
 860	/* 
 861	 * allocate context descriptor 
 862	 * must be able to free with interrupts disabled
 863	 */
 864	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 865	if (ctx) {
 866		DPRINT(("alloc ctx @%p\n", ctx));
 867
 868		/*
 869		 * init context protection lock
 870		 */
 871		spin_lock_init(&ctx->ctx_lock);
 872
 873		/*
 874		 * context is unloaded
 875		 */
 876		ctx->ctx_state = PFM_CTX_UNLOADED;
 877
 878		/*
 879		 * initialization of context's flags
 880		 */
 881		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 882		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 883		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 884		/*
 885		 * will move to set properties
 886		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 887		 */
 888
 889		/*
 890		 * init restart semaphore to locked
 891		 */
 892		init_completion(&ctx->ctx_restart_done);
 893
 894		/*
 895		 * activation is used in SMP only
 896		 */
 897		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 898		SET_LAST_CPU(ctx, -1);
 899
 900		/*
 901		 * initialize notification message queue
 902		 */
 903		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 904		init_waitqueue_head(&ctx->ctx_msgq_wait);
 905		init_waitqueue_head(&ctx->ctx_zombieq);
 906
 907	}
 908	return ctx;
 909}
 910
 911static void
 912pfm_context_free(pfm_context_t *ctx)
 913{
 914	if (ctx) {
 915		DPRINT(("free ctx @%p\n", ctx));
 916		kfree(ctx);
 917	}
 918}
 919
 920static void
 921pfm_mask_monitoring(struct task_struct *task)
 922{
 923	pfm_context_t *ctx = PFM_GET_CTX(task);
 924	unsigned long mask, val, ovfl_mask;
 925	int i;
 926
 927	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 928
 929	ovfl_mask = pmu_conf->ovfl_val;
 930	/*
 931	 * monitoring can only be masked as a result of a valid
 932	 * counter overflow. In UP, it means that the PMU still
 933	 * has an owner. Note that the owner can be different
 934	 * from the current task. However the PMU state belongs
 935	 * to the owner.
 936	 * In SMP, a valid overflow only happens when task is
 937	 * current. Therefore if we come here, we know that
 938	 * the PMU state belongs to the current task, therefore
 939	 * we can access the live registers.
 940	 *
 941	 * So in both cases, the live register contains the owner's
 942	 * state. We can ONLY touch the PMU registers and NOT the PSR.
 943	 *
 944	 * As a consequence to this call, the ctx->th_pmds[] array
 945	 * contains stale information which must be ignored
 946	 * when context is reloaded AND monitoring is active (see
 947	 * pfm_restart).
 948	 */
 949	mask = ctx->ctx_used_pmds[0];
 950	for (i = 0; mask; i++, mask>>=1) {
 951		/* skip non used pmds */
 952		if ((mask & 0x1) == 0) continue;
 953		val = ia64_get_pmd(i);
 954
 955		if (PMD_IS_COUNTING(i)) {
 956			/*
 957		 	 * we rebuild the full 64 bit value of the counter
 958		 	 */
 959			ctx->ctx_pmds[i].val += (val & ovfl_mask);
 960		} else {
 961			ctx->ctx_pmds[i].val = val;
 962		}
 963		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 964			i,
 965			ctx->ctx_pmds[i].val,
 966			val & ovfl_mask));
 967	}
 968	/*
 969	 * mask monitoring by setting the privilege level to 0
 970	 * we cannot use psr.pp/psr.up for this, it is controlled by
 971	 * the user
 972	 *
 973	 * if task is current, modify actual registers, otherwise modify
 974	 * thread save state, i.e., what will be restored in pfm_load_regs()
 975	 */
 976	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 977	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 978		if ((mask & 0x1) == 0UL) continue;
 979		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 980		ctx->th_pmcs[i] &= ~0xfUL;
 981		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 982	}
 983	/*
 984	 * make all of this visible
 985	 */
 986	ia64_srlz_d();
 987}
 988
 989/*
 990 * must always be done with task == current
 991 *
 992 * context must be in MASKED state when calling
 993 */
 994static void
 995pfm_restore_monitoring(struct task_struct *task)
 996{
 997	pfm_context_t *ctx = PFM_GET_CTX(task);
 998	unsigned long mask, ovfl_mask;
 999	unsigned long psr, val;
1000	int i, is_system;
1001
1002	is_system = ctx->ctx_fl_system;
1003	ovfl_mask = pmu_conf->ovfl_val;
1004
1005	if (task != current) {
1006		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007		return;
1008	}
1009	if (ctx->ctx_state != PFM_CTX_MASKED) {
1010		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012		return;
1013	}
1014	psr = pfm_get_psr();
1015	/*
1016	 * monitoring is masked via the PMC.
1017	 * As we restore their value, we do not want each counter to
1018	 * restart right away. We stop monitoring using the PSR,
1019	 * restore the PMC (and PMD) and then re-establish the psr
1020	 * as it was. Note that there can be no pending overflow at
1021	 * this point, because monitoring was MASKED.
1022	 *
1023	 * system-wide session are pinned and self-monitoring
1024	 */
1025	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026		/* disable dcr pp */
1027		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028		pfm_clear_psr_pp();
1029	} else {
1030		pfm_clear_psr_up();
1031	}
1032	/*
1033	 * first, we restore the PMD
1034	 */
1035	mask = ctx->ctx_used_pmds[0];
1036	for (i = 0; mask; i++, mask>>=1) {
1037		/* skip non used pmds */
1038		if ((mask & 0x1) == 0) continue;
1039
1040		if (PMD_IS_COUNTING(i)) {
1041			/*
1042			 * we split the 64bit value according to
1043			 * counter width
1044			 */
1045			val = ctx->ctx_pmds[i].val & ovfl_mask;
1046			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047		} else {
1048			val = ctx->ctx_pmds[i].val;
1049		}
1050		ia64_set_pmd(i, val);
1051
1052		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053			i,
1054			ctx->ctx_pmds[i].val,
1055			val));
1056	}
1057	/*
1058	 * restore the PMCs
1059	 */
1060	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062		if ((mask & 0x1) == 0UL) continue;
1063		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064		ia64_set_pmc(i, ctx->th_pmcs[i]);
1065		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066					task_pid_nr(task), i, ctx->th_pmcs[i]));
1067	}
1068	ia64_srlz_d();
1069
1070	/*
1071	 * must restore DBR/IBR because could be modified while masked
1072	 * XXX: need to optimize 
1073	 */
1074	if (ctx->ctx_fl_using_dbreg) {
1075		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077	}
1078
1079	/*
1080	 * now restore PSR
1081	 */
1082	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083		/* enable dcr pp */
1084		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085		ia64_srlz_i();
1086	}
1087	pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093	int i;
1094
1095	ia64_srlz_d();
1096
1097	for (i=0; mask; i++, mask>>=1) {
1098		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099	}
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108	int i;
1109	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111	for (i=0; mask; i++, mask>>=1) {
1112		if ((mask & 0x1) == 0) continue;
1113		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114		ia64_set_pmd(i, val);
1115	}
1116	ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125	unsigned long ovfl_val = pmu_conf->ovfl_val;
1126	unsigned long mask = ctx->ctx_all_pmds[0];
1127	unsigned long val;
1128	int i;
1129
1130	DPRINT(("mask=0x%lx\n", mask));
1131
1132	for (i=0; mask; i++, mask>>=1) {
1133
1134		val = ctx->ctx_pmds[i].val;
1135
1136		/*
1137		 * We break up the 64 bit value into 2 pieces
1138		 * the lower bits go to the machine state in the
1139		 * thread (will be reloaded on ctxsw in).
1140		 * The upper part stays in the soft-counter.
1141		 */
1142		if (PMD_IS_COUNTING(i)) {
1143			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144			 val &= ovfl_val;
1145		}
1146		ctx->th_pmds[i] = val;
1147
1148		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149			i,
1150			ctx->th_pmds[i],
1151			ctx->ctx_pmds[i].val));
1152	}
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161	unsigned long mask = ctx->ctx_all_pmcs[0];
1162	int i;
1163
1164	DPRINT(("mask=0x%lx\n", mask));
1165
1166	for (i=0; mask; i++, mask>>=1) {
1167		/* masking 0 with ovfl_val yields 0 */
1168		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170	}
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178	int i;
1179
1180	for (i=0; mask; i++, mask>>=1) {
1181		if ((mask & 0x1) == 0) continue;
1182		ia64_set_pmc(i, pmcs[i]);
1183	}
1184	ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190	return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196	int ret = 0;
1197	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198	return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204	int ret = 0;
1205	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206	return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212		     int cpu, void *arg)
1213{
1214	int ret = 0;
1215	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216	return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221		     int cpu, void *arg)
1222{
1223	int ret = 0;
1224	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225	return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231	int ret = 0;
1232	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233	return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239	int ret = 0;
1240	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241	return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247	struct list_head * pos;
1248	pfm_buffer_fmt_t * entry;
1249
1250	list_for_each(pos, &pfm_buffer_fmt_list) {
1251		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253			return entry;
1254	}
1255	return NULL;
1256}
1257 
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264	pfm_buffer_fmt_t * fmt;
1265	spin_lock(&pfm_buffer_fmt_lock);
1266	fmt = __pfm_find_buffer_fmt(uuid);
1267	spin_unlock(&pfm_buffer_fmt_lock);
1268	return fmt;
1269}
1270 
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274	int ret = 0;
1275
1276	/* some sanity checks */
1277	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279	/* we need at least a handler */
1280	if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282	/*
1283	 * XXX: need check validity of fmt_arg_size
1284	 */
1285
1286	spin_lock(&pfm_buffer_fmt_lock);
1287
1288	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290		ret = -EBUSY;
1291		goto out;
1292	} 
1293	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297	spin_unlock(&pfm_buffer_fmt_lock);
1298 	return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305	pfm_buffer_fmt_t *fmt;
1306	int ret = 0;
1307
1308	spin_lock(&pfm_buffer_fmt_lock);
1309
1310	fmt = __pfm_find_buffer_fmt(uuid);
1311	if (!fmt) {
1312		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313		ret = -EINVAL;
1314		goto out;
1315	}
1316	list_del_init(&fmt->fmt_list);
1317	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320	spin_unlock(&pfm_buffer_fmt_lock);
1321	return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329	unsigned long flags;
1330	/*
1331	 * validity checks on cpu_mask have been done upstream
1332	 */
1333	LOCK_PFS(flags);
1334
1335	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336		pfm_sessions.pfs_sys_sessions,
1337		pfm_sessions.pfs_task_sessions,
1338		pfm_sessions.pfs_sys_use_dbregs,
1339		is_syswide,
1340		cpu));
1341
1342	if (is_syswide) {
1343		/*
1344		 * cannot mix system wide and per-task sessions
1345		 */
1346		if (pfm_sessions.pfs_task_sessions > 0UL) {
1347			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348			  	pfm_sessions.pfs_task_sessions));
1349			goto abort;
1350		}
1351
1352		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356		pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358		pfm_sessions.pfs_sys_sessions++ ;
1359
1360	} else {
1361		if (pfm_sessions.pfs_sys_sessions) goto abort;
1362		pfm_sessions.pfs_task_sessions++;
1363	}
1364
1365	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366		pfm_sessions.pfs_sys_sessions,
1367		pfm_sessions.pfs_task_sessions,
1368		pfm_sessions.pfs_sys_use_dbregs,
1369		is_syswide,
1370		cpu));
1371
1372	/*
1373	 * Force idle() into poll mode
1374	 */
1375	cpu_idle_poll_ctrl(true);
1376
1377	UNLOCK_PFS(flags);
1378
1379	return 0;
1380
1381error_conflict:
1382	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383  		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384		cpu));
1385abort:
1386	UNLOCK_PFS(flags);
1387
1388	return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395	unsigned long flags;
1396	/*
1397	 * validity checks on cpu_mask have been done upstream
1398	 */
1399	LOCK_PFS(flags);
1400
1401	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402		pfm_sessions.pfs_sys_sessions,
1403		pfm_sessions.pfs_task_sessions,
1404		pfm_sessions.pfs_sys_use_dbregs,
1405		is_syswide,
1406		cpu));
1407
1408
1409	if (is_syswide) {
1410		pfm_sessions.pfs_sys_session[cpu] = NULL;
1411		/*
1412		 * would not work with perfmon+more than one bit in cpu_mask
1413		 */
1414		if (ctx && ctx->ctx_fl_using_dbreg) {
1415			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417			} else {
1418				pfm_sessions.pfs_sys_use_dbregs--;
1419			}
1420		}
1421		pfm_sessions.pfs_sys_sessions--;
1422	} else {
1423		pfm_sessions.pfs_task_sessions--;
1424	}
1425	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426		pfm_sessions.pfs_sys_sessions,
1427		pfm_sessions.pfs_task_sessions,
1428		pfm_sessions.pfs_sys_use_dbregs,
1429		is_syswide,
1430		cpu));
1431
1432	/* Undo forced polling. Last session reenables pal_halt */
1433	cpu_idle_poll_ctrl(false);
1434
1435	UNLOCK_PFS(flags);
1436
1437	return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448	struct task_struct *task = current;
1449	int r;
1450
1451	/* sanity checks */
1452	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454		return -EINVAL;
1455	}
1456
1457	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459	/*
1460	 * does the actual unmapping
1461	 */
1462	r = vm_munmap((unsigned long)vaddr, size);
1463
1464	if (r !=0) {
1465		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466	}
1467
1468	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470	return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480	pfm_buffer_fmt_t *fmt;
1481
1482	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484	/*
1485	 * we won't use the buffer format anymore
1486	 */
1487	fmt = ctx->ctx_buf_fmt;
1488
1489	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490		ctx->ctx_smpl_hdr,
1491		ctx->ctx_smpl_size,
1492		ctx->ctx_smpl_vaddr));
1493
1494	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496	/*
1497	 * free the buffer
1498	 */
1499	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501	ctx->ctx_smpl_hdr  = NULL;
1502	ctx->ctx_smpl_size = 0UL;
1503
1504	return 0;
1505
1506invalid_free:
1507	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508	return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515	if (fmt == NULL) return;
1516
1517	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532	int err = register_filesystem(&pfm_fs_type);
1533	if (!err) {
1534		pfmfs_mnt = kern_mount(&pfm_fs_type);
1535		err = PTR_ERR(pfmfs_mnt);
1536		if (IS_ERR(pfmfs_mnt))
1537			unregister_filesystem(&pfm_fs_type);
1538		else
1539			err = 0;
1540	}
1541	return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547	pfm_context_t *ctx;
1548	pfm_msg_t *msg;
1549	ssize_t ret;
1550	unsigned long flags;
1551  	DECLARE_WAITQUEUE(wait, current);
1552	if (PFM_IS_FILE(filp) == 0) {
1553		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554		return -EINVAL;
1555	}
1556
1557	ctx = filp->private_data;
1558	if (ctx == NULL) {
1559		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560		return -EINVAL;
1561	}
1562
1563	/*
1564	 * check even when there is no message
1565	 */
1566	if (size < sizeof(pfm_msg_t)) {
1567		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568		return -EINVAL;
1569	}
1570
1571	PROTECT_CTX(ctx, flags);
1572
1573  	/*
1574	 * put ourselves on the wait queue
1575	 */
1576  	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579  	for(;;) {
1580		/*
1581		 * check wait queue
1582		 */
1583
1584  		set_current_state(TASK_INTERRUPTIBLE);
1585
1586		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588		ret = 0;
1589		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591		UNPROTECT_CTX(ctx, flags);
1592
1593		/*
1594		 * check non-blocking read
1595		 */
1596      		ret = -EAGAIN;
1597		if(filp->f_flags & O_NONBLOCK) break;
1598
1599		/*
1600		 * check pending signals
1601		 */
1602		if(signal_pending(current)) {
1603			ret = -EINTR;
1604			break;
1605		}
1606      		/*
1607		 * no message, so wait
1608		 */
1609      		schedule();
1610
1611		PROTECT_CTX(ctx, flags);
1612	}
1613	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614  	set_current_state(TASK_RUNNING);
1615	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617	if (ret < 0) goto abort;
1618
1619	ret = -EINVAL;
1620	msg = pfm_get_next_msg(ctx);
1621	if (msg == NULL) {
1622		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623		goto abort_locked;
1624	}
1625
1626	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628	ret = -EFAULT;
1629  	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632	UNPROTECT_CTX(ctx, flags);
1633abort:
1634	return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639			  size_t size, loff_t *ppos)
1640{
1641	DPRINT(("pfm_write called\n"));
1642	return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648	pfm_context_t *ctx;
1649	unsigned long flags;
1650	unsigned int mask = 0;
1651
1652	if (PFM_IS_FILE(filp) == 0) {
1653		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654		return 0;
1655	}
1656
1657	ctx = filp->private_data;
1658	if (ctx == NULL) {
1659		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660		return 0;
1661	}
1662
1663
1664	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668	PROTECT_CTX(ctx, flags);
1669
1670	if (PFM_CTXQ_EMPTY(ctx) == 0)
1671		mask =  POLLIN | POLLRDNORM;
1672
1673	UNPROTECT_CTX(ctx, flags);
1674
1675	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677	return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683	DPRINT(("pfm_ioctl called\n"));
1684	return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693	int ret;
1694
1695	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698		task_pid_nr(current),
1699		fd,
1700		on,
1701		ctx->ctx_async_queue, ret));
1702
1703	return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709	pfm_context_t *ctx;
1710	int ret;
1711
1712	if (PFM_IS_FILE(filp) == 0) {
1713		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714		return -EBADF;
1715	}
1716
1717	ctx = filp->private_data;
1718	if (ctx == NULL) {
1719		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720		return -EBADF;
1721	}
1722	/*
1723	 * we cannot mask interrupts during this call because this may
1724	 * may go to sleep if memory is not readily avalaible.
1725	 *
1726	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727	 * done in caller. Serialization of this function is ensured by caller.
1728	 */
1729	ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733		fd,
1734		on,
1735		ctx->ctx_async_queue, ret));
1736
1737	return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749	pfm_context_t   *ctx = (pfm_context_t *)info;
1750	struct pt_regs *regs = task_pt_regs(current);
1751	struct task_struct *owner;
1752	unsigned long flags;
1753	int ret;
1754
1755	if (ctx->ctx_cpu != smp_processor_id()) {
1756		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757			ctx->ctx_cpu,
1758			smp_processor_id());
1759		return;
1760	}
1761	owner = GET_PMU_OWNER();
1762	if (owner != ctx->ctx_task) {
1763		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764			smp_processor_id(),
1765			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766		return;
1767	}
1768	if (GET_PMU_CTX() != ctx) {
1769		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770			smp_processor_id(),
1771			GET_PMU_CTX(), ctx);
1772		return;
1773	}
1774
1775	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776	/*
1777	 * the context is already protected in pfm_close(), we simply
1778	 * need to mask interrupts to avoid a PMU interrupt race on
1779	 * this CPU
1780	 */
1781	local_irq_save(flags);
1782
1783	ret = pfm_context_unload(ctx, NULL, 0, regs);
1784	if (ret) {
1785		DPRINT(("context_unload returned %d\n", ret));
1786	}
1787
1788	/*
1789	 * unmask interrupts, PMU interrupts are now spurious here
1790	 */
1791	local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797	int ret;
1798
1799	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812	pfm_context_t *ctx;
1813	struct task_struct *task;
1814	struct pt_regs *regs;
1815	unsigned long flags;
1816	unsigned long smpl_buf_size = 0UL;
1817	void *smpl_buf_vaddr = NULL;
1818	int state, is_system;
1819
1820	if (PFM_IS_FILE(filp) == 0) {
1821		DPRINT(("bad magic for\n"));
1822		return -EBADF;
1823	}
1824
1825	ctx = filp->private_data;
1826	if (ctx == NULL) {
1827		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828		return -EBADF;
1829	}
1830
1831	/*
1832	 * remove our file from the async queue, if we use this mode.
1833	 * This can be done without the context being protected. We come
1834	 * here when the context has become unreachable by other tasks.
1835	 *
1836	 * We may still have active monitoring at this point and we may
1837	 * end up in pfm_overflow_handler(). However, fasync_helper()
1838	 * operates with interrupts disabled and it cleans up the
1839	 * queue. If the PMU handler is called prior to entering
1840	 * fasync_helper() then it will send a signal. If it is
1841	 * invoked after, it will find an empty queue and no
1842	 * signal will be sent. In both case, we are safe
1843	 */
1844	PROTECT_CTX(ctx, flags);
1845
1846	state     = ctx->ctx_state;
1847	is_system = ctx->ctx_fl_system;
1848
1849	task = PFM_CTX_TASK(ctx);
1850	regs = task_pt_regs(task);
1851
1852	DPRINT(("ctx_state=%d is_current=%d\n",
1853		state,
1854		task == current ? 1 : 0));
1855
1856	/*
1857	 * if state == UNLOADED, then task is NULL
1858	 */
1859
1860	/*
1861	 * we must stop and unload because we are losing access to the context.
1862	 */
1863	if (task == current) {
1864#ifdef CONFIG_SMP
1865		/*
1866		 * the task IS the owner but it migrated to another CPU: that's bad
1867		 * but we must handle this cleanly. Unfortunately, the kernel does
1868		 * not provide a mechanism to block migration (while the context is loaded).
1869		 *
1870		 * We need to release the resource on the ORIGINAL cpu.
1871		 */
1872		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875			/*
1876			 * keep context protected but unmask interrupt for IPI
1877			 */
1878			local_irq_restore(flags);
1879
1880			pfm_syswide_cleanup_other_cpu(ctx);
1881
1882			/*
1883			 * restore interrupt masking
1884			 */
1885			local_irq_save(flags);
1886
1887			/*
1888			 * context is unloaded at this point
1889			 */
1890		} else
1891#endif /* CONFIG_SMP */
1892		{
1893
1894			DPRINT(("forcing unload\n"));
1895			/*
1896		 	* stop and unload, returning with state UNLOADED
1897		 	* and session unreserved.
1898		 	*/
1899			pfm_context_unload(ctx, NULL, 0, regs);
1900
1901			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902		}
1903	}
1904
1905	/*
1906	 * remove virtual mapping, if any, for the calling task.
1907	 * cannot reset ctx field until last user is calling close().
1908	 *
1909	 * ctx_smpl_vaddr must never be cleared because it is needed
1910	 * by every task with access to the context
1911	 *
1912	 * When called from do_exit(), the mm context is gone already, therefore
1913	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914	 * do anything here
1915	 */
1916	if (ctx->ctx_smpl_vaddr && current->mm) {
1917		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918		smpl_buf_size  = ctx->ctx_smpl_size;
1919	}
1920
1921	UNPROTECT_CTX(ctx, flags);
1922
1923	/*
1924	 * if there was a mapping, then we systematically remove it
1925	 * at this point. Cannot be done inside critical section
1926	 * because some VM function reenables interrupts.
1927	 *
1928	 */
1929	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931	return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files(). 
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1939 * (fput()),i.e, last task to access the file. Nobody else can access the 
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context. 
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951	pfm_context_t *ctx;
1952	struct task_struct *task;
1953	struct pt_regs *regs;
1954  	DECLARE_WAITQUEUE(wait, current);
1955	unsigned long flags;
1956	unsigned long smpl_buf_size = 0UL;
1957	void *smpl_buf_addr = NULL;
1958	int free_possible = 1;
1959	int state, is_system;
1960
1961	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963	if (PFM_IS_FILE(filp) == 0) {
1964		DPRINT(("bad magic\n"));
1965		return -EBADF;
1966	}
1967	
1968	ctx = filp->private_data;
1969	if (ctx == NULL) {
1970		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971		return -EBADF;
1972	}
1973
1974	PROTECT_CTX(ctx, flags);
1975
1976	state     = ctx->ctx_state;
1977	is_system = ctx->ctx_fl_system;
1978
1979	task = PFM_CTX_TASK(ctx);
1980	regs = task_pt_regs(task);
1981
1982	DPRINT(("ctx_state=%d is_current=%d\n", 
1983		state,
1984		task == current ? 1 : 0));
1985
1986	/*
1987	 * if task == current, then pfm_flush() unloaded the context
1988	 */
1989	if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991	/*
1992	 * context is loaded/masked and task != current, we need to
1993	 * either force an unload or go zombie
1994	 */
1995
1996	/*
1997	 * The task is currently blocked or will block after an overflow.
1998	 * we must force it to wakeup to get out of the
1999	 * MASKED state and transition to the unloaded state by itself.
2000	 *
2001	 * This situation is only possible for per-task mode
2002	 */
2003	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005		/*
2006		 * set a "partial" zombie state to be checked
2007		 * upon return from down() in pfm_handle_work().
2008		 *
2009		 * We cannot use the ZOMBIE state, because it is checked
2010		 * by pfm_load_regs() which is called upon wakeup from down().
2011		 * In such case, it would free the context and then we would
2012		 * return to pfm_handle_work() which would access the
2013		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014		 * but visible to pfm_handle_work().
2015		 *
2016		 * For some window of time, we have a zombie context with
2017		 * ctx_state = MASKED  and not ZOMBIE
2018		 */
2019		ctx->ctx_fl_going_zombie = 1;
2020
2021		/*
2022		 * force task to wake up from MASKED state
2023		 */
2024		complete(&ctx->ctx_restart_done);
2025
2026		DPRINT(("waking up ctx_state=%d\n", state));
2027
2028		/*
2029		 * put ourself to sleep waiting for the other
2030		 * task to report completion
2031		 *
2032		 * the context is protected by mutex, therefore there
2033		 * is no risk of being notified of completion before
2034		 * begin actually on the waitq.
2035		 */
2036  		set_current_state(TASK_INTERRUPTIBLE);
2037  		add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039		UNPROTECT_CTX(ctx, flags);
2040
2041		/*
2042		 * XXX: check for signals :
2043		 * 	- ok for explicit close
2044		 * 	- not ok when coming from exit_files()
2045		 */
2046      		schedule();
2047
2048
2049		PROTECT_CTX(ctx, flags);
2050
2051
2052		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053  		set_current_state(TASK_RUNNING);
2054
2055		/*
2056		 * context is unloaded at this point
2057		 */
2058		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059	}
2060	else if (task != current) {
2061#ifdef CONFIG_SMP
2062		/*
2063	 	 * switch context to zombie state
2064	 	 */
2065		ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068		/*
2069		 * cannot free the context on the spot. deferred until
2070		 * the task notices the ZOMBIE state
2071		 */
2072		free_possible = 0;
2073#else
2074		pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076	}
2077
2078doit:
2079	/* reload state, may have changed during  opening of critical section */
2080	state = ctx->ctx_state;
2081
2082	/*
2083	 * the context is still attached to a task (possibly current)
2084	 * we cannot destroy it right now
2085	 */
2086
2087	/*
2088	 * we must free the sampling buffer right here because
2089	 * we cannot rely on it being cleaned up later by the
2090	 * monitored task. It is not possible to free vmalloc'ed
2091	 * memory in pfm_load_regs(). Instead, we remove the buffer
2092	 * now. should there be subsequent PMU overflow originally
2093	 * meant for sampling, the will be converted to spurious
2094	 * and that's fine because the monitoring tools is gone anyway.
2095	 */
2096	if (ctx->ctx_smpl_hdr) {
2097		smpl_buf_addr = ctx->ctx_smpl_hdr;
2098		smpl_buf_size = ctx->ctx_smpl_size;
2099		/* no more sampling */
2100		ctx->ctx_smpl_hdr = NULL;
2101		ctx->ctx_fl_is_sampling = 0;
2102	}
2103
2104	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105		state,
2106		free_possible,
2107		smpl_buf_addr,
2108		smpl_buf_size));
2109
2110	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112	/*
2113	 * UNLOADED that the session has already been unreserved.
2114	 */
2115	if (state == PFM_CTX_ZOMBIE) {
2116		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117	}
2118
2119	/*
2120	 * disconnect file descriptor from context must be done
2121	 * before we unlock.
2122	 */
2123	filp->private_data = NULL;
2124
2125	/*
2126	 * if we free on the spot, the context is now completely unreachable
2127	 * from the callers side. The monitored task side is also cut, so we
2128	 * can freely cut.
2129	 *
2130	 * If we have a deferred free, only the caller side is disconnected.
2131	 */
2132	UNPROTECT_CTX(ctx, flags);
2133
2134	/*
2135	 * All memory free operations (especially for vmalloc'ed memory)
2136	 * MUST be done with interrupts ENABLED.
2137	 */
2138	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140	/*
2141	 * return the memory used by the context
2142	 */
2143	if (free_possible) pfm_context_free(ctx);
2144
2145	return 0;
2146}
2147
2148static const struct file_operations pfm_file_ops = {
2149	.llseek		= no_llseek,
2150	.read		= pfm_read,
2151	.write		= pfm_write,
2152	.poll		= pfm_poll,
2153	.unlocked_ioctl = pfm_ioctl,
2154	.fasync		= pfm_fasync,
2155	.release	= pfm_close,
2156	.flush		= pfm_flush
2157};
2158
2159static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2160{
2161	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2162			     d_inode(dentry)->i_ino);
2163}
2164
2165static const struct dentry_operations pfmfs_dentry_operations = {
2166	.d_delete = always_delete_dentry,
2167	.d_dname = pfmfs_dname,
2168};
2169
2170
2171static struct file *
2172pfm_alloc_file(pfm_context_t *ctx)
2173{
2174	struct file *file;
2175	struct inode *inode;
2176	struct path path;
2177	struct qstr this = { .name = "" };
2178
2179	/*
2180	 * allocate a new inode
2181	 */
2182	inode = new_inode(pfmfs_mnt->mnt_sb);
2183	if (!inode)
2184		return ERR_PTR(-ENOMEM);
2185
2186	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2187
2188	inode->i_mode = S_IFCHR|S_IRUGO;
2189	inode->i_uid  = current_fsuid();
2190	inode->i_gid  = current_fsgid();
2191
2192	/*
2193	 * allocate a new dcache entry
2194	 */
2195	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2196	if (!path.dentry) {
2197		iput(inode);
2198		return ERR_PTR(-ENOMEM);
2199	}
2200	path.mnt = mntget(pfmfs_mnt);
2201
2202	d_add(path.dentry, inode);
2203
2204	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2205	if (IS_ERR(file)) {
2206		path_put(&path);
2207		return file;
2208	}
2209
2210	file->f_flags = O_RDONLY;
2211	file->private_data = ctx;
2212
2213	return file;
2214}
2215
2216static int
2217pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2218{
2219	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2220
2221	while (size > 0) {
2222		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2223
2224
2225		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2226			return -ENOMEM;
2227
2228		addr  += PAGE_SIZE;
2229		buf   += PAGE_SIZE;
2230		size  -= PAGE_SIZE;
2231	}
2232	return 0;
2233}
2234
2235/*
2236 * allocate a sampling buffer and remaps it into the user address space of the task
2237 */
2238static int
2239pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2240{
2241	struct mm_struct *mm = task->mm;
2242	struct vm_area_struct *vma = NULL;
2243	unsigned long size;
2244	void *smpl_buf;
2245
2246
2247	/*
2248	 * the fixed header + requested size and align to page boundary
2249	 */
2250	size = PAGE_ALIGN(rsize);
2251
2252	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2253
2254	/*
2255	 * check requested size to avoid Denial-of-service attacks
2256	 * XXX: may have to refine this test
2257	 * Check against address space limit.
2258	 *
2259	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2260	 * 	return -ENOMEM;
2261	 */
2262	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2263		return -ENOMEM;
2264
2265	/*
2266	 * We do the easy to undo allocations first.
2267 	 *
2268	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2269	 */
2270	smpl_buf = pfm_rvmalloc(size);
2271	if (smpl_buf == NULL) {
2272		DPRINT(("Can't allocate sampling buffer\n"));
2273		return -ENOMEM;
2274	}
2275
2276	DPRINT(("smpl_buf @%p\n", smpl_buf));
2277
2278	/* allocate vma */
2279	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2280	if (!vma) {
2281		DPRINT(("Cannot allocate vma\n"));
2282		goto error_kmem;
2283	}
2284	INIT_LIST_HEAD(&vma->anon_vma_chain);
2285
2286	/*
2287	 * partially initialize the vma for the sampling buffer
2288	 */
2289	vma->vm_mm	     = mm;
2290	vma->vm_file	     = get_file(filp);
2291	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2293
2294	/*
2295	 * Now we have everything we need and we can initialize
2296	 * and connect all the data structures
2297	 */
2298
2299	ctx->ctx_smpl_hdr   = smpl_buf;
2300	ctx->ctx_smpl_size  = size; /* aligned size */
2301
2302	/*
2303	 * Let's do the difficult operations next.
2304	 *
2305	 * now we atomically find some area in the address space and
2306	 * remap the buffer in it.
2307	 */
2308	down_write(&task->mm->mmap_sem);
2309
2310	/* find some free area in address space, must have mmap sem held */
2311	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312	if (IS_ERR_VALUE(vma->vm_start)) {
2313		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314		up_write(&task->mm->mmap_sem);
2315		goto error;
2316	}
2317	vma->vm_end = vma->vm_start + size;
2318	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319
2320	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321
2322	/* can only be applied to current task, need to have the mm semaphore held when called */
2323	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324		DPRINT(("Can't remap buffer\n"));
2325		up_write(&task->mm->mmap_sem);
2326		goto error;
2327	}
2328
2329	/*
2330	 * now insert the vma in the vm list for the process, must be
2331	 * done with mmap lock held
2332	 */
2333	insert_vm_struct(mm, vma);
2334
2335	vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2336	up_write(&task->mm->mmap_sem);
2337
2338	/*
2339	 * keep track of user level virtual address
2340	 */
2341	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2342	*(unsigned long *)user_vaddr = vma->vm_start;
2343
2344	return 0;
2345
2346error:
2347	kmem_cache_free(vm_area_cachep, vma);
2348error_kmem:
2349	pfm_rvfree(smpl_buf, size);
2350
2351	return -ENOMEM;
2352}
2353
2354/*
2355 * XXX: do something better here
2356 */
2357static int
2358pfm_bad_permissions(struct task_struct *task)
2359{
2360	const struct cred *tcred;
2361	kuid_t uid = current_uid();
2362	kgid_t gid = current_gid();
2363	int ret;
2364
2365	rcu_read_lock();
2366	tcred = __task_cred(task);
2367
2368	/* inspired by ptrace_attach() */
2369	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2370		from_kuid(&init_user_ns, uid),
2371		from_kgid(&init_user_ns, gid),
2372		from_kuid(&init_user_ns, tcred->euid),
2373		from_kuid(&init_user_ns, tcred->suid),
2374		from_kuid(&init_user_ns, tcred->uid),
2375		from_kgid(&init_user_ns, tcred->egid),
2376		from_kgid(&init_user_ns, tcred->sgid)));
2377
2378	ret = ((!uid_eq(uid, tcred->euid))
2379	       || (!uid_eq(uid, tcred->suid))
2380	       || (!uid_eq(uid, tcred->uid))
2381	       || (!gid_eq(gid, tcred->egid))
2382	       || (!gid_eq(gid, tcred->sgid))
2383	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2384
2385	rcu_read_unlock();
2386	return ret;
2387}
2388
2389static int
2390pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2391{
2392	int ctx_flags;
2393
2394	/* valid signal */
2395
2396	ctx_flags = pfx->ctx_flags;
2397
2398	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2399
2400		/*
2401		 * cannot block in this mode
2402		 */
2403		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2404			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2405			return -EINVAL;
2406		}
2407	} else {
2408	}
2409	/* probably more to add here */
2410
2411	return 0;
2412}
2413
2414static int
2415pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2416		     unsigned int cpu, pfarg_context_t *arg)
2417{
2418	pfm_buffer_fmt_t *fmt = NULL;
2419	unsigned long size = 0UL;
2420	void *uaddr = NULL;
2421	void *fmt_arg = NULL;
2422	int ret = 0;
2423#define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2424
2425	/* invoke and lock buffer format, if found */
2426	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2427	if (fmt == NULL) {
2428		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2429		return -EINVAL;
2430	}
2431
2432	/*
2433	 * buffer argument MUST be contiguous to pfarg_context_t
2434	 */
2435	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2436
2437	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2438
2439	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2440
2441	if (ret) goto error;
2442
2443	/* link buffer format and context */
2444	ctx->ctx_buf_fmt = fmt;
2445	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2446
2447	/*
2448	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2449	 */
2450	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2451	if (ret) goto error;
2452
2453	if (size) {
2454		/*
2455		 * buffer is always remapped into the caller's address space
2456		 */
2457		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2458		if (ret) goto error;
2459
2460		/* keep track of user address of buffer */
2461		arg->ctx_smpl_vaddr = uaddr;
2462	}
2463	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2464
2465error:
2466	return ret;
2467}
2468
2469static void
2470pfm_reset_pmu_state(pfm_context_t *ctx)
2471{
2472	int i;
2473
2474	/*
2475	 * install reset values for PMC.
2476	 */
2477	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2478		if (PMC_IS_IMPL(i) == 0) continue;
2479		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2480		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2481	}
2482	/*
2483	 * PMD registers are set to 0UL when the context in memset()
2484	 */
2485
2486	/*
2487	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2488	 * when they are not actively used by the task. In UP, the incoming process
2489	 * may otherwise pick up left over PMC, PMD state from the previous process.
2490	 * As opposed to PMD, stale PMC can cause harm to the incoming
2491	 * process because they may change what is being measured.
2492	 * Therefore, we must systematically reinstall the entire
2493	 * PMC state. In SMP, the same thing is possible on the
2494	 * same CPU but also on between 2 CPUs.
2495	 *
2496	 * The problem with PMD is information leaking especially
2497	 * to user level when psr.sp=0
2498	 *
2499	 * There is unfortunately no easy way to avoid this problem
2500	 * on either UP or SMP. This definitively slows down the
2501	 * pfm_load_regs() function.
2502	 */
2503
2504	 /*
2505	  * bitmask of all PMCs accessible to this context
2506	  *
2507	  * PMC0 is treated differently.
2508	  */
2509	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2510
2511	/*
2512	 * bitmask of all PMDs that are accessible to this context
2513	 */
2514	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2515
2516	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2517
2518	/*
2519	 * useful in case of re-enable after disable
2520	 */
2521	ctx->ctx_used_ibrs[0] = 0UL;
2522	ctx->ctx_used_dbrs[0] = 0UL;
2523}
2524
2525static int
2526pfm_ctx_getsize(void *arg, size_t *sz)
2527{
2528	pfarg_context_t *req = (pfarg_context_t *)arg;
2529	pfm_buffer_fmt_t *fmt;
2530
2531	*sz = 0;
2532
2533	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2534
2535	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2536	if (fmt == NULL) {
2537		DPRINT(("cannot find buffer format\n"));
2538		return -EINVAL;
2539	}
2540	/* get just enough to copy in user parameters */
2541	*sz = fmt->fmt_arg_size;
2542	DPRINT(("arg_size=%lu\n", *sz));
2543
2544	return 0;
2545}
2546
2547
2548
2549/*
2550 * cannot attach if :
2551 * 	- kernel task
2552 * 	- task not owned by caller
2553 * 	- task incompatible with context mode
2554 */
2555static int
2556pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2557{
2558	/*
2559	 * no kernel task or task not owner by caller
2560	 */
2561	if (task->mm == NULL) {
2562		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2563		return -EPERM;
2564	}
2565	if (pfm_bad_permissions(task)) {
2566		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2567		return -EPERM;
2568	}
2569	/*
2570	 * cannot block in self-monitoring mode
2571	 */
2572	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2573		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2574		return -EINVAL;
2575	}
2576
2577	if (task->exit_state == EXIT_ZOMBIE) {
2578		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2579		return -EBUSY;
2580	}
2581
2582	/*
2583	 * always ok for self
2584	 */
2585	if (task == current) return 0;
2586
2587	if (!task_is_stopped_or_traced(task)) {
2588		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2589		return -EBUSY;
2590	}
2591	/*
2592	 * make sure the task is off any CPU
2593	 */
2594	wait_task_inactive(task, 0);
2595
2596	/* more to come... */
2597
2598	return 0;
2599}
2600
2601static int
2602pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2603{
2604	struct task_struct *p = current;
2605	int ret;
2606
2607	/* XXX: need to add more checks here */
2608	if (pid < 2) return -EPERM;
2609
2610	if (pid != task_pid_vnr(current)) {
2611
2612		read_lock(&tasklist_lock);
2613
2614		p = find_task_by_vpid(pid);
2615
2616		/* make sure task cannot go away while we operate on it */
2617		if (p) get_task_struct(p);
2618
2619		read_unlock(&tasklist_lock);
2620
2621		if (p == NULL) return -ESRCH;
2622	}
2623
2624	ret = pfm_task_incompatible(ctx, p);
2625	if (ret == 0) {
2626		*task = p;
2627	} else if (p != current) {
2628		pfm_put_task(p);
2629	}
2630	return ret;
2631}
2632
2633
2634
2635static int
2636pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2637{
2638	pfarg_context_t *req = (pfarg_context_t *)arg;
2639	struct file *filp;
2640	struct path path;
2641	int ctx_flags;
2642	int fd;
2643	int ret;
2644
2645	/* let's check the arguments first */
2646	ret = pfarg_is_sane(current, req);
2647	if (ret < 0)
2648		return ret;
2649
2650	ctx_flags = req->ctx_flags;
2651
2652	ret = -ENOMEM;
2653
2654	fd = get_unused_fd_flags(0);
2655	if (fd < 0)
2656		return fd;
2657
2658	ctx = pfm_context_alloc(ctx_flags);
2659	if (!ctx)
2660		goto error;
2661
2662	filp = pfm_alloc_file(ctx);
2663	if (IS_ERR(filp)) {
2664		ret = PTR_ERR(filp);
2665		goto error_file;
2666	}
2667
2668	req->ctx_fd = ctx->ctx_fd = fd;
2669
2670	/*
2671	 * does the user want to sample?
2672	 */
2673	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2674		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2675		if (ret)
2676			goto buffer_error;
2677	}
2678
2679	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2680		ctx,
2681		ctx_flags,
2682		ctx->ctx_fl_system,
2683		ctx->ctx_fl_block,
2684		ctx->ctx_fl_excl_idle,
2685		ctx->ctx_fl_no_msg,
2686		ctx->ctx_fd));
2687
2688	/*
2689	 * initialize soft PMU state
2690	 */
2691	pfm_reset_pmu_state(ctx);
2692
2693	fd_install(fd, filp);
2694
2695	return 0;
2696
2697buffer_error:
2698	path = filp->f_path;
2699	put_filp(filp);
2700	path_put(&path);
2701
2702	if (ctx->ctx_buf_fmt) {
2703		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2704	}
2705error_file:
2706	pfm_context_free(ctx);
2707
2708error:
2709	put_unused_fd(fd);
2710	return ret;
2711}
2712
2713static inline unsigned long
2714pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2715{
2716	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2717	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2718	extern unsigned long carta_random32 (unsigned long seed);
2719
2720	if (reg->flags & PFM_REGFL_RANDOM) {
2721		new_seed = carta_random32(old_seed);
2722		val -= (old_seed & mask);	/* counter values are negative numbers! */
2723		if ((mask >> 32) != 0)
2724			/* construct a full 64-bit random value: */
2725			new_seed |= carta_random32(old_seed >> 32) << 32;
2726		reg->seed = new_seed;
2727	}
2728	reg->lval = val;
2729	return val;
2730}
2731
2732static void
2733pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2734{
2735	unsigned long mask = ovfl_regs[0];
2736	unsigned long reset_others = 0UL;
2737	unsigned long val;
2738	int i;
2739
2740	/*
2741	 * now restore reset value on sampling overflowed counters
2742	 */
2743	mask >>= PMU_FIRST_COUNTER;
2744	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2745
2746		if ((mask & 0x1UL) == 0UL) continue;
2747
2748		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2749		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2750
2751		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2752	}
2753
2754	/*
2755	 * Now take care of resetting the other registers
2756	 */
2757	for(i = 0; reset_others; i++, reset_others >>= 1) {
2758
2759		if ((reset_others & 0x1) == 0) continue;
2760
2761		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2762
2763		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2764			  is_long_reset ? "long" : "short", i, val));
2765	}
2766}
2767
2768static void
2769pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2770{
2771	unsigned long mask = ovfl_regs[0];
2772	unsigned long reset_others = 0UL;
2773	unsigned long val;
2774	int i;
2775
2776	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2777
2778	if (ctx->ctx_state == PFM_CTX_MASKED) {
2779		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2780		return;
2781	}
2782
2783	/*
2784	 * now restore reset value on sampling overflowed counters
2785	 */
2786	mask >>= PMU_FIRST_COUNTER;
2787	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2788
2789		if ((mask & 0x1UL) == 0UL) continue;
2790
2791		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2792		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2793
2794		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2795
2796		pfm_write_soft_counter(ctx, i, val);
2797	}
2798
2799	/*
2800	 * Now take care of resetting the other registers
2801	 */
2802	for(i = 0; reset_others; i++, reset_others >>= 1) {
2803
2804		if ((reset_others & 0x1) == 0) continue;
2805
2806		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2807
2808		if (PMD_IS_COUNTING(i)) {
2809			pfm_write_soft_counter(ctx, i, val);
2810		} else {
2811			ia64_set_pmd(i, val);
2812		}
2813		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2814			  is_long_reset ? "long" : "short", i, val));
2815	}
2816	ia64_srlz_d();
2817}
2818
2819static int
2820pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2821{
2822	struct task_struct *task;
2823	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2824	unsigned long value, pmc_pm;
2825	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2826	unsigned int cnum, reg_flags, flags, pmc_type;
2827	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2828	int is_monitor, is_counting, state;
2829	int ret = -EINVAL;
2830	pfm_reg_check_t	wr_func;
2831#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2832
2833	state     = ctx->ctx_state;
2834	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2835	is_system = ctx->ctx_fl_system;
2836	task      = ctx->ctx_task;
2837	impl_pmds = pmu_conf->impl_pmds[0];
2838
2839	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2840
2841	if (is_loaded) {
2842		/*
2843		 * In system wide and when the context is loaded, access can only happen
2844		 * when the caller is running on the CPU being monitored by the session.
2845		 * It does not have to be the owner (ctx_task) of the context per se.
2846		 */
2847		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2848			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2849			return -EBUSY;
2850		}
2851		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2852	}
2853	expert_mode = pfm_sysctl.expert_mode; 
2854
2855	for (i = 0; i < count; i++, req++) {
2856
2857		cnum       = req->reg_num;
2858		reg_flags  = req->reg_flags;
2859		value      = req->reg_value;
2860		smpl_pmds  = req->reg_smpl_pmds[0];
2861		reset_pmds = req->reg_reset_pmds[0];
2862		flags      = 0;
2863
2864
2865		if (cnum >= PMU_MAX_PMCS) {
2866			DPRINT(("pmc%u is invalid\n", cnum));
2867			goto error;
2868		}
2869
2870		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2871		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2872		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2873		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2874
2875		/*
2876		 * we reject all non implemented PMC as well
2877		 * as attempts to modify PMC[0-3] which are used
2878		 * as status registers by the PMU
2879		 */
2880		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2881			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2882			goto error;
2883		}
2884		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2885		/*
2886		 * If the PMC is a monitor, then if the value is not the default:
2887		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2888		 * 	- per-task           : PMCx.pm=0 (user monitor)
2889		 */
2890		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2891			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2892				cnum,
2893				pmc_pm,
2894				is_system));
2895			goto error;
2896		}
2897
2898		if (is_counting) {
2899			/*
2900		 	 * enforce generation of overflow interrupt. Necessary on all
2901		 	 * CPUs.
2902		 	 */
2903			value |= 1 << PMU_PMC_OI;
2904
2905			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2906				flags |= PFM_REGFL_OVFL_NOTIFY;
2907			}
2908
2909			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2910
2911			/* verify validity of smpl_pmds */
2912			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2913				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2914				goto error;
2915			}
2916
2917			/* verify validity of reset_pmds */
2918			if ((reset_pmds & impl_pmds) != reset_pmds) {
2919				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2920				goto error;
2921			}
2922		} else {
2923			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2924				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2925				goto error;
2926			}
2927			/* eventid on non-counting monitors are ignored */
2928		}
2929
2930		/*
2931		 * execute write checker, if any
2932		 */
2933		if (likely(expert_mode == 0 && wr_func)) {
2934			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2935			if (ret) goto error;
2936			ret = -EINVAL;
2937		}
2938
2939		/*
2940		 * no error on this register
2941		 */
2942		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2943
2944		/*
2945		 * Now we commit the changes to the software state
2946		 */
2947
2948		/*
2949		 * update overflow information
2950		 */
2951		if (is_counting) {
2952			/*
2953		 	 * full flag update each time a register is programmed
2954		 	 */
2955			ctx->ctx_pmds[cnum].flags = flags;
2956
2957			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2958			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2959			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2960
2961			/*
2962			 * Mark all PMDS to be accessed as used.
2963			 *
2964			 * We do not keep track of PMC because we have to
2965			 * systematically restore ALL of them.
2966			 *
2967			 * We do not update the used_monitors mask, because
2968			 * if we have not programmed them, then will be in
2969			 * a quiescent state, therefore we will not need to
2970			 * mask/restore then when context is MASKED.
2971			 */
2972			CTX_USED_PMD(ctx, reset_pmds);
2973			CTX_USED_PMD(ctx, smpl_pmds);
2974			/*
2975		 	 * make sure we do not try to reset on
2976		 	 * restart because we have established new values
2977		 	 */
2978			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2979		}
2980		/*
2981		 * Needed in case the user does not initialize the equivalent
2982		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2983		 * possible leak here.
2984		 */
2985		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2986
2987		/*
2988		 * keep track of the monitor PMC that we are using.
2989		 * we save the value of the pmc in ctx_pmcs[] and if
2990		 * the monitoring is not stopped for the context we also
2991		 * place it in the saved state area so that it will be
2992		 * picked up later by the context switch code.
2993		 *
2994		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2995		 *
2996		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2997		 * monitoring needs to be stopped.
2998		 */
2999		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3000
3001		/*
3002		 * update context state
3003		 */
3004		ctx->ctx_pmcs[cnum] = value;
3005
3006		if (is_loaded) {
3007			/*
3008			 * write thread state
3009			 */
3010			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3011
3012			/*
3013			 * write hardware register if we can
3014			 */
3015			if (can_access_pmu) {
3016				ia64_set_pmc(cnum, value);
3017			}
3018#ifdef CONFIG_SMP
3019			else {
3020				/*
3021				 * per-task SMP only here
3022				 *
3023			 	 * we are guaranteed that the task is not running on the other CPU,
3024			 	 * we indicate that this PMD will need to be reloaded if the task
3025			 	 * is rescheduled on the CPU it ran last on.
3026			 	 */
3027				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3028			}
3029#endif
3030		}
3031
3032		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3033			  cnum,
3034			  value,
3035			  is_loaded,
3036			  can_access_pmu,
3037			  flags,
3038			  ctx->ctx_all_pmcs[0],
3039			  ctx->ctx_used_pmds[0],
3040			  ctx->ctx_pmds[cnum].eventid,
3041			  smpl_pmds,
3042			  reset_pmds,
3043			  ctx->ctx_reload_pmcs[0],
3044			  ctx->ctx_used_monitors[0],
3045			  ctx->ctx_ovfl_regs[0]));
3046	}
3047
3048	/*
3049	 * make sure the changes are visible
3050	 */
3051	if (can_access_pmu) ia64_srlz_d();
3052
3053	return 0;
3054error:
3055	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3056	return ret;
3057}
3058
3059static int
3060pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3061{
3062	struct task_struct *task;
3063	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3064	unsigned long value, hw_value, ovfl_mask;
3065	unsigned int cnum;
3066	int i, can_access_pmu = 0, state;
3067	int is_counting, is_loaded, is_system, expert_mode;
3068	int ret = -EINVAL;
3069	pfm_reg_check_t wr_func;
3070
3071
3072	state     = ctx->ctx_state;
3073	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3074	is_system = ctx->ctx_fl_system;
3075	ovfl_mask = pmu_conf->ovfl_val;
3076	task      = ctx->ctx_task;
3077
3078	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3079
3080	/*
3081	 * on both UP and SMP, we can only write to the PMC when the task is
3082	 * the owner of the local PMU.
3083	 */
3084	if (likely(is_loaded)) {
3085		/*
3086		 * In system wide and when the context is loaded, access can only happen
3087		 * when the caller is running on the CPU being monitored by the session.
3088		 * It does not have to be the owner (ctx_task) of the context per se.
3089		 */
3090		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3091			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3092			return -EBUSY;
3093		}
3094		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3095	}
3096	expert_mode = pfm_sysctl.expert_mode; 
3097
3098	for (i = 0; i < count; i++, req++) {
3099
3100		cnum  = req->reg_num;
3101		value = req->reg_value;
3102
3103		if (!PMD_IS_IMPL(cnum)) {
3104			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3105			goto abort_mission;
3106		}
3107		is_counting = PMD_IS_COUNTING(cnum);
3108		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3109
3110		/*
3111		 * execute write checker, if any
3112		 */
3113		if (unlikely(expert_mode == 0 && wr_func)) {
3114			unsigned long v = value;
3115
3116			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3117			if (ret) goto abort_mission;
3118
3119			value = v;
3120			ret   = -EINVAL;
3121		}
3122
3123		/*
3124		 * no error on this register
3125		 */
3126		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3127
3128		/*
3129		 * now commit changes to software state
3130		 */
3131		hw_value = value;
3132
3133		/*
3134		 * update virtualized (64bits) counter
3135		 */
3136		if (is_counting) {
3137			/*
3138			 * write context state
3139			 */
3140			ctx->ctx_pmds[cnum].lval = value;
3141
3142			/*
3143			 * when context is load we use the split value
3144			 */
3145			if (is_loaded) {
3146				hw_value = value &  ovfl_mask;
3147				value    = value & ~ovfl_mask;
3148			}
3149		}
3150		/*
3151		 * update reset values (not just for counters)
3152		 */
3153		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3154		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3155
3156		/*
3157		 * update randomization parameters (not just for counters)
3158		 */
3159		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3160		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3161
3162		/*
3163		 * update context value
3164		 */
3165		ctx->ctx_pmds[cnum].val  = value;
3166
3167		/*
3168		 * Keep track of what we use
3169		 *
3170		 * We do not keep track of PMC because we have to
3171		 * systematically restore ALL of them.
3172		 */
3173		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3174
3175		/*
3176		 * mark this PMD register used as well
3177		 */
3178		CTX_USED_PMD(ctx, RDEP(cnum));
3179
3180		/*
3181		 * make sure we do not try to reset on
3182		 * restart because we have established new values
3183		 */
3184		if (is_counting && state == PFM_CTX_MASKED) {
3185			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3186		}
3187
3188		if (is_loaded) {
3189			/*
3190		 	 * write thread state
3191		 	 */
3192			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3193
3194			/*
3195			 * write hardware register if we can
3196			 */
3197			if (can_access_pmu) {
3198				ia64_set_pmd(cnum, hw_value);
3199			} else {
3200#ifdef CONFIG_SMP
3201				/*
3202			 	 * we are guaranteed that the task is not running on the other CPU,
3203			 	 * we indicate that this PMD will need to be reloaded if the task
3204			 	 * is rescheduled on the CPU it ran last on.
3205			 	 */
3206				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3207#endif
3208			}
3209		}
3210
3211		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3212			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3213			cnum,
3214			value,
3215			is_loaded,
3216			can_access_pmu,
3217			hw_value,
3218			ctx->ctx_pmds[cnum].val,
3219			ctx->ctx_pmds[cnum].short_reset,
3220			ctx->ctx_pmds[cnum].long_reset,
3221			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3222			ctx->ctx_pmds[cnum].seed,
3223			ctx->ctx_pmds[cnum].mask,
3224			ctx->ctx_used_pmds[0],
3225			ctx->ctx_pmds[cnum].reset_pmds[0],
3226			ctx->ctx_reload_pmds[0],
3227			ctx->ctx_all_pmds[0],
3228			ctx->ctx_ovfl_regs[0]));
3229	}
3230
3231	/*
3232	 * make changes visible
3233	 */
3234	if (can_access_pmu) ia64_srlz_d();
3235
3236	return 0;
3237
3238abort_mission:
3239	/*
3240	 * for now, we have only one possibility for error
3241	 */
3242	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3243	return ret;
3244}
3245
3246/*
3247 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3248 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3249 * interrupt is delivered during the call, it will be kept pending until we leave, making
3250 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3251 * guaranteed to return consistent data to the user, it may simply be old. It is not
3252 * trivial to treat the overflow while inside the call because you may end up in
3253 * some module sampling buffer code causing deadlocks.
3254 */
3255static int
3256pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3257{
3258	struct task_struct *task;
3259	unsigned long val = 0UL, lval, ovfl_mask, sval;
3260	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3261	unsigned int cnum, reg_flags = 0;
3262	int i, can_access_pmu = 0, state;
3263	int is_loaded, is_system, is_counting, expert_mode;
3264	int ret = -EINVAL;
3265	pfm_reg_check_t rd_func;
3266
3267	/*
3268	 * access is possible when loaded only for
3269	 * self-monitoring tasks or in UP mode
3270	 */
3271
3272	state     = ctx->ctx_state;
3273	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3274	is_system = ctx->ctx_fl_system;
3275	ovfl_mask = pmu_conf->ovfl_val;
3276	task      = ctx->ctx_task;
3277
3278	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3279
3280	if (likely(is_loaded)) {
3281		/*
3282		 * In system wide and when the context is loaded, access can only happen
3283		 * when the caller is running on the CPU being monitored by the session.
3284		 * It does not have to be the owner (ctx_task) of the context per se.
3285		 */
3286		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3287			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3288			return -EBUSY;
3289		}
3290		/*
3291		 * this can be true when not self-monitoring only in UP
3292		 */
3293		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3294
3295		if (can_access_pmu) ia64_srlz_d();
3296	}
3297	expert_mode = pfm_sysctl.expert_mode; 
3298
3299	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3300		is_loaded,
3301		can_access_pmu,
3302		state));
3303
3304	/*
3305	 * on both UP and SMP, we can only read the PMD from the hardware register when
3306	 * the task is the owner of the local PMU.
3307	 */
3308
3309	for (i = 0; i < count; i++, req++) {
3310
3311		cnum        = req->reg_num;
3312		reg_flags   = req->reg_flags;
3313
3314		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3315		/*
3316		 * we can only read the register that we use. That includes
3317		 * the one we explicitly initialize AND the one we want included
3318		 * in the sampling buffer (smpl_regs).
3319		 *
3320		 * Having this restriction allows optimization in the ctxsw routine
3321		 * without compromising security (leaks)
3322		 */
3323		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3324
3325		sval        = ctx->ctx_pmds[cnum].val;
3326		lval        = ctx->ctx_pmds[cnum].lval;
3327		is_counting = PMD_IS_COUNTING(cnum);
3328
3329		/*
3330		 * If the task is not the current one, then we check if the
3331		 * PMU state is still in the local live register due to lazy ctxsw.
3332		 * If true, then we read directly from the registers.
3333		 */
3334		if (can_access_pmu){
3335			val = ia64_get_pmd(cnum);
3336		} else {
3337			/*
3338			 * context has been saved
3339			 * if context is zombie, then task does not exist anymore.
3340			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3341			 */
3342			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3343		}
3344		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3345
3346		if (is_counting) {
3347			/*
3348			 * XXX: need to check for overflow when loaded
3349			 */
3350			val &= ovfl_mask;
3351			val += sval;
3352		}
3353
3354		/*
3355		 * execute read checker, if any
3356		 */
3357		if (unlikely(expert_mode == 0 && rd_func)) {
3358			unsigned long v = val;
3359			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3360			if (ret) goto error;
3361			val = v;
3362			ret = -EINVAL;
3363		}
3364
3365		PFM_REG_RETFLAG_SET(reg_flags, 0);
3366
3367		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3368
3369		/*
3370		 * update register return value, abort all if problem during copy.
3371		 * we only modify the reg_flags field. no check mode is fine because
3372		 * access has been verified upfront in sys_perfmonctl().
3373		 */
3374		req->reg_value            = val;
3375		req->reg_flags            = reg_flags;
3376		req->reg_last_reset_val   = lval;
3377	}
3378
3379	return 0;
3380
3381error:
3382	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3383	return ret;
3384}
3385
3386int
3387pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3388{
3389	pfm_context_t *ctx;
3390
3391	if (req == NULL) return -EINVAL;
3392
3393 	ctx = GET_PMU_CTX();
3394
3395	if (ctx == NULL) return -EINVAL;
3396
3397	/*
3398	 * for now limit to current task, which is enough when calling
3399	 * from overflow handler
3400	 */
3401	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3402
3403	return pfm_write_pmcs(ctx, req, nreq, regs);
3404}
3405EXPORT_SYMBOL(pfm_mod_write_pmcs);
3406
3407int
3408pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3409{
3410	pfm_context_t *ctx;
3411
3412	if (req == NULL) return -EINVAL;
3413
3414 	ctx = GET_PMU_CTX();
3415
3416	if (ctx == NULL) return -EINVAL;
3417
3418	/*
3419	 * for now limit to current task, which is enough when calling
3420	 * from overflow handler
3421	 */
3422	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3423
3424	return pfm_read_pmds(ctx, req, nreq, regs);
3425}
3426EXPORT_SYMBOL(pfm_mod_read_pmds);
3427
3428/*
3429 * Only call this function when a process it trying to
3430 * write the debug registers (reading is always allowed)
3431 */
3432int
3433pfm_use_debug_registers(struct task_struct *task)
3434{
3435	pfm_context_t *ctx = task->thread.pfm_context;
3436	unsigned long flags;
3437	int ret = 0;
3438
3439	if (pmu_conf->use_rr_dbregs == 0) return 0;
3440
3441	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3442
3443	/*
3444	 * do it only once
3445	 */
3446	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3447
3448	/*
3449	 * Even on SMP, we do not need to use an atomic here because
3450	 * the only way in is via ptrace() and this is possible only when the
3451	 * process is stopped. Even in the case where the ctxsw out is not totally
3452	 * completed by the time we come here, there is no way the 'stopped' process
3453	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3454	 * So this is always safe.
3455	 */
3456	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3457
3458	LOCK_PFS(flags);
3459
3460	/*
3461	 * We cannot allow setting breakpoints when system wide monitoring
3462	 * sessions are using the debug registers.
3463	 */
3464	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3465		ret = -1;
3466	else
3467		pfm_sessions.pfs_ptrace_use_dbregs++;
3468
3469	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3470		  pfm_sessions.pfs_ptrace_use_dbregs,
3471		  pfm_sessions.pfs_sys_use_dbregs,
3472		  task_pid_nr(task), ret));
3473
3474	UNLOCK_PFS(flags);
3475
3476	return ret;
3477}
3478
3479/*
3480 * This function is called for every task that exits with the
3481 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3482 * able to use the debug registers for debugging purposes via
3483 * ptrace(). Therefore we know it was not using them for
3484 * performance monitoring, so we only decrement the number
3485 * of "ptraced" debug register users to keep the count up to date
3486 */
3487int
3488pfm_release_debug_registers(struct task_struct *task)
3489{
3490	unsigned long flags;
3491	int ret;
3492
3493	if (pmu_conf->use_rr_dbregs == 0) return 0;
3494
3495	LOCK_PFS(flags);
3496	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3497		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3498		ret = -1;
3499	}  else {
3500		pfm_sessions.pfs_ptrace_use_dbregs--;
3501		ret = 0;
3502	}
3503	UNLOCK_PFS(flags);
3504
3505	return ret;
3506}
3507
3508static int
3509pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3510{
3511	struct task_struct *task;
3512	pfm_buffer_fmt_t *fmt;
3513	pfm_ovfl_ctrl_t rst_ctrl;
3514	int state, is_system;
3515	int ret = 0;
3516
3517	state     = ctx->ctx_state;
3518	fmt       = ctx->ctx_buf_fmt;
3519	is_system = ctx->ctx_fl_system;
3520	task      = PFM_CTX_TASK(ctx);
3521
3522	switch(state) {
3523		case PFM_CTX_MASKED:
3524			break;
3525		case PFM_CTX_LOADED: 
3526			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3527			/* fall through */
3528		case PFM_CTX_UNLOADED:
3529		case PFM_CTX_ZOMBIE:
3530			DPRINT(("invalid state=%d\n", state));
3531			return -EBUSY;
3532		default:
3533			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3534			return -EINVAL;
3535	}
3536
3537	/*
3538 	 * In system wide and when the context is loaded, access can only happen
3539 	 * when the caller is running on the CPU being monitored by the session.
3540 	 * It does not have to be the owner (ctx_task) of the context per se.
3541 	 */
3542	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3543		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3544		return -EBUSY;
3545	}
3546
3547	/* sanity check */
3548	if (unlikely(task == NULL)) {
3549		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3550		return -EINVAL;
3551	}
3552
3553	if (task == current || is_system) {
3554
3555		fmt = ctx->ctx_buf_fmt;
3556
3557		DPRINT(("restarting self %d ovfl=0x%lx\n",
3558			task_pid_nr(task),
3559			ctx->ctx_ovfl_regs[0]));
3560
3561		if (CTX_HAS_SMPL(ctx)) {
3562
3563			prefetch(ctx->ctx_smpl_hdr);
3564
3565			rst_ctrl.bits.mask_monitoring = 0;
3566			rst_ctrl.bits.reset_ovfl_pmds = 0;
3567
3568			if (state == PFM_CTX_LOADED)
3569				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3570			else
3571				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3572		} else {
3573			rst_ctrl.bits.mask_monitoring = 0;
3574			rst_ctrl.bits.reset_ovfl_pmds = 1;
3575		}
3576
3577		if (ret == 0) {
3578			if (rst_ctrl.bits.reset_ovfl_pmds)
3579				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3580
3581			if (rst_ctrl.bits.mask_monitoring == 0) {
3582				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3583
3584				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3585			} else {
3586				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3587
3588				// cannot use pfm_stop_monitoring(task, regs);
3589			}
3590		}
3591		/*
3592		 * clear overflowed PMD mask to remove any stale information
3593		 */
3594		ctx->ctx_ovfl_regs[0] = 0UL;
3595
3596		/*
3597		 * back to LOADED state
3598		 */
3599		ctx->ctx_state = PFM_CTX_LOADED;
3600
3601		/*
3602		 * XXX: not really useful for self monitoring
3603		 */
3604		ctx->ctx_fl_can_restart = 0;
3605
3606		return 0;
3607	}
3608
3609	/* 
3610	 * restart another task
3611	 */
3612
3613	/*
3614	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3615	 * one is seen by the task.
3616	 */
3617	if (state == PFM_CTX_MASKED) {
3618		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3619		/*
3620		 * will prevent subsequent restart before this one is
3621		 * seen by other task
3622		 */
3623		ctx->ctx_fl_can_restart = 0;
3624	}
3625
3626	/*
3627	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3628	 * the task is blocked or on its way to block. That's the normal
3629	 * restart path. If the monitoring is not masked, then the task
3630	 * can be actively monitoring and we cannot directly intervene.
3631	 * Therefore we use the trap mechanism to catch the task and
3632	 * force it to reset the buffer/reset PMDs.
3633	 *
3634	 * if non-blocking, then we ensure that the task will go into
3635	 * pfm_handle_work() before returning to user mode.
3636	 *
3637	 * We cannot explicitly reset another task, it MUST always
3638	 * be done by the task itself. This works for system wide because
3639	 * the tool that is controlling the session is logically doing 
3640	 * "self-monitoring".
3641	 */
3642	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3643		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3644		complete(&ctx->ctx_restart_done);
3645	} else {
3646		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3647
3648		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3649
3650		PFM_SET_WORK_PENDING(task, 1);
3651
3652		set_notify_resume(task);
3653
3654		/*
3655		 * XXX: send reschedule if task runs on another CPU
3656		 */
3657	}
3658	return 0;
3659}
3660
3661static int
3662pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3663{
3664	unsigned int m = *(unsigned int *)arg;
3665
3666	pfm_sysctl.debug = m == 0 ? 0 : 1;
3667
3668	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3669
3670	if (m == 0) {
3671		memset(pfm_stats, 0, sizeof(pfm_stats));
3672		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3673	}
3674	return 0;
3675}
3676
3677/*
3678 * arg can be NULL and count can be zero for this function
3679 */
3680static int
3681pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3682{
3683	struct thread_struct *thread = NULL;
3684	struct task_struct *task;
3685	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3686	unsigned long flags;
3687	dbreg_t dbreg;
3688	unsigned int rnum;
3689	int first_time;
3690	int ret = 0, state;
3691	int i, can_access_pmu = 0;
3692	int is_system, is_loaded;
3693
3694	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3695
3696	state     = ctx->ctx_state;
3697	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3698	is_system = ctx->ctx_fl_system;
3699	task      = ctx->ctx_task;
3700
3701	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3702
3703	/*
3704	 * on both UP and SMP, we can only write to the PMC when the task is
3705	 * the owner of the local PMU.
3706	 */
3707	if (is_loaded) {
3708		thread = &task->thread;
3709		/*
3710		 * In system wide and when the context is loaded, access can only happen
3711		 * when the caller is running on the CPU being monitored by the session.
3712		 * It does not have to be the owner (ctx_task) of the context per se.
3713		 */
3714		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3715			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3716			return -EBUSY;
3717		}
3718		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3719	}
3720
3721	/*
3722	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3723	 * ensuring that no real breakpoint can be installed via this call.
3724	 *
3725	 * IMPORTANT: regs can be NULL in this function
3726	 */
3727
3728	first_time = ctx->ctx_fl_using_dbreg == 0;
3729
3730	/*
3731	 * don't bother if we are loaded and task is being debugged
3732	 */
3733	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3734		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3735		return -EBUSY;
3736	}
3737
3738	/*
3739	 * check for debug registers in system wide mode
3740	 *
3741	 * If though a check is done in pfm_context_load(),
3742	 * we must repeat it here, in case the registers are
3743	 * written after the context is loaded
3744	 */
3745	if (is_loaded) {
3746		LOCK_PFS(flags);
3747
3748		if (first_time && is_system) {
3749			if (pfm_sessions.pfs_ptrace_use_dbregs)
3750				ret = -EBUSY;
3751			else
3752				pfm_sessions.pfs_sys_use_dbregs++;
3753		}
3754		UNLOCK_PFS(flags);
3755	}
3756
3757	if (ret != 0) return ret;
3758
3759	/*
3760	 * mark ourself as user of the debug registers for
3761	 * perfmon purposes.
3762	 */
3763	ctx->ctx_fl_using_dbreg = 1;
3764
3765	/*
3766 	 * clear hardware registers to make sure we don't
3767 	 * pick up stale state.
3768	 *
3769	 * for a system wide session, we do not use
3770	 * thread.dbr, thread.ibr because this process
3771	 * never leaves the current CPU and the state
3772	 * is shared by all processes running on it
3773 	 */
3774	if (first_time && can_access_pmu) {
3775		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3776		for (i=0; i < pmu_conf->num_ibrs; i++) {
3777			ia64_set_ibr(i, 0UL);
3778			ia64_dv_serialize_instruction();
3779		}
3780		ia64_srlz_i();
3781		for (i=0; i < pmu_conf->num_dbrs; i++) {
3782			ia64_set_dbr(i, 0UL);
3783			ia64_dv_serialize_data();
3784		}
3785		ia64_srlz_d();
3786	}
3787
3788	/*
3789	 * Now install the values into the registers
3790	 */
3791	for (i = 0; i < count; i++, req++) {
3792
3793		rnum      = req->dbreg_num;
3794		dbreg.val = req->dbreg_value;
3795
3796		ret = -EINVAL;
3797
3798		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3799			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3800				  rnum, dbreg.val, mode, i, count));
3801
3802			goto abort_mission;
3803		}
3804
3805		/*
3806		 * make sure we do not install enabled breakpoint
3807		 */
3808		if (rnum & 0x1) {
3809			if (mode == PFM_CODE_RR)
3810				dbreg.ibr.ibr_x = 0;
3811			else
3812				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3813		}
3814
3815		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3816
3817		/*
3818		 * Debug registers, just like PMC, can only be modified
3819		 * by a kernel call. Moreover, perfmon() access to those
3820		 * registers are centralized in this routine. The hardware
3821		 * does not modify the value of these registers, therefore,
3822		 * if we save them as they are written, we can avoid having
3823		 * to save them on context switch out. This is made possible
3824		 * by the fact that when perfmon uses debug registers, ptrace()
3825		 * won't be able to modify them concurrently.
3826		 */
3827		if (mode == PFM_CODE_RR) {
3828			CTX_USED_IBR(ctx, rnum);
3829
3830			if (can_access_pmu) {
3831				ia64_set_ibr(rnum, dbreg.val);
3832				ia64_dv_serialize_instruction();
3833			}
3834
3835			ctx->ctx_ibrs[rnum] = dbreg.val;
3836
3837			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3838				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3839		} else {
3840			CTX_USED_DBR(ctx, rnum);
3841
3842			if (can_access_pmu) {
3843				ia64_set_dbr(rnum, dbreg.val);
3844				ia64_dv_serialize_data();
3845			}
3846			ctx->ctx_dbrs[rnum] = dbreg.val;
3847
3848			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3849				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3850		}
3851	}
3852
3853	return 0;
3854
3855abort_mission:
3856	/*
3857	 * in case it was our first attempt, we undo the global modifications
3858	 */
3859	if (first_time) {
3860		LOCK_PFS(flags);
3861		if (ctx->ctx_fl_system) {
3862			pfm_sessions.pfs_sys_use_dbregs--;
3863		}
3864		UNLOCK_PFS(flags);
3865		ctx->ctx_fl_using_dbreg = 0;
3866	}
3867	/*
3868	 * install error return flag
3869	 */
3870	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3871
3872	return ret;
3873}
3874
3875static int
3876pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3877{
3878	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3879}
3880
3881static int
3882pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3883{
3884	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3885}
3886
3887int
3888pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3889{
3890	pfm_context_t *ctx;
3891
3892	if (req == NULL) return -EINVAL;
3893
3894 	ctx = GET_PMU_CTX();
3895
3896	if (ctx == NULL) return -EINVAL;
3897
3898	/*
3899	 * for now limit to current task, which is enough when calling
3900	 * from overflow handler
3901	 */
3902	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3903
3904	return pfm_write_ibrs(ctx, req, nreq, regs);
3905}
3906EXPORT_SYMBOL(pfm_mod_write_ibrs);
3907
3908int
3909pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3910{
3911	pfm_context_t *ctx;
3912
3913	if (req == NULL) return -EINVAL;
3914
3915 	ctx = GET_PMU_CTX();
3916
3917	if (ctx == NULL) return -EINVAL;
3918
3919	/*
3920	 * for now limit to current task, which is enough when calling
3921	 * from overflow handler
3922	 */
3923	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3924
3925	return pfm_write_dbrs(ctx, req, nreq, regs);
3926}
3927EXPORT_SYMBOL(pfm_mod_write_dbrs);
3928
3929
3930static int
3931pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3932{
3933	pfarg_features_t *req = (pfarg_features_t *)arg;
3934
3935	req->ft_version = PFM_VERSION;
3936	return 0;
3937}
3938
3939static int
3940pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3941{
3942	struct pt_regs *tregs;
3943	struct task_struct *task = PFM_CTX_TASK(ctx);
3944	int state, is_system;
3945
3946	state     = ctx->ctx_state;
3947	is_system = ctx->ctx_fl_system;
3948
3949	/*
3950	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3951	 */
3952	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3953
3954	/*
3955 	 * In system wide and when the context is loaded, access can only happen
3956 	 * when the caller is running on the CPU being monitored by the session.
3957 	 * It does not have to be the owner (ctx_task) of the context per se.
3958 	 */
3959	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3960		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3961		return -EBUSY;
3962	}
3963	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3964		task_pid_nr(PFM_CTX_TASK(ctx)),
3965		state,
3966		is_system));
3967	/*
3968	 * in system mode, we need to update the PMU directly
3969	 * and the user level state of the caller, which may not
3970	 * necessarily be the creator of the context.
3971	 */
3972	if (is_system) {
3973		/*
3974		 * Update local PMU first
3975		 *
3976		 * disable dcr pp
3977		 */
3978		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3979		ia64_srlz_i();
3980
3981		/*
3982		 * update local cpuinfo
3983		 */
3984		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3985
3986		/*
3987		 * stop monitoring, does srlz.i
3988		 */
3989		pfm_clear_psr_pp();
3990
3991		/*
3992		 * stop monitoring in the caller
3993		 */
3994		ia64_psr(regs)->pp = 0;
3995
3996		return 0;
3997	}
3998	/*
3999	 * per-task mode
4000	 */
4001
4002	if (task == current) {
4003		/* stop monitoring  at kernel level */
4004		pfm_clear_psr_up();
4005
4006		/*
4007	 	 * stop monitoring at the user level
4008	 	 */
4009		ia64_psr(regs)->up = 0;
4010	} else {
4011		tregs = task_pt_regs(task);
4012
4013		/*
4014	 	 * stop monitoring at the user level
4015	 	 */
4016		ia64_psr(tregs)->up = 0;
4017
4018		/*
4019		 * monitoring disabled in kernel at next reschedule
4020		 */
4021		ctx->ctx_saved_psr_up = 0;
4022		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4023	}
4024	return 0;
4025}
4026
4027
4028static int
4029pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4030{
4031	struct pt_regs *tregs;
4032	int state, is_system;
4033
4034	state     = ctx->ctx_state;
4035	is_system = ctx->ctx_fl_system;
4036
4037	if (state != PFM_CTX_LOADED) return -EINVAL;
4038
4039	/*
4040 	 * In system wide and when the context is loaded, access can only happen
4041 	 * when the caller is running on the CPU being monitored by the session.
4042 	 * It does not have to be the owner (ctx_task) of the context per se.
4043 	 */
4044	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4045		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4046		return -EBUSY;
4047	}
4048
4049	/*
4050	 * in system mode, we need to update the PMU directly
4051	 * and the user level state of the caller, which may not
4052	 * necessarily be the creator of the context.
4053	 */
4054	if (is_system) {
4055
4056		/*
4057		 * set user level psr.pp for the caller
4058		 */
4059		ia64_psr(regs)->pp = 1;
4060
4061		/*
4062		 * now update the local PMU and cpuinfo
4063		 */
4064		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4065
4066		/*
4067		 * start monitoring at kernel level
4068		 */
4069		pfm_set_psr_pp();
4070
4071		/* enable dcr pp */
4072		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4073		ia64_srlz_i();
4074
4075		return 0;
4076	}
4077
4078	/*
4079	 * per-process mode
4080	 */
4081
4082	if (ctx->ctx_task == current) {
4083
4084		/* start monitoring at kernel level */
4085		pfm_set_psr_up();
4086
4087		/*
4088		 * activate monitoring at user level
4089		 */
4090		ia64_psr(regs)->up = 1;
4091
4092	} else {
4093		tregs = task_pt_regs(ctx->ctx_task);
4094
4095		/*
4096		 * start monitoring at the kernel level the next
4097		 * time the task is scheduled
4098		 */
4099		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4100
4101		/*
4102		 * activate monitoring at user level
4103		 */
4104		ia64_psr(tregs)->up = 1;
4105	}
4106	return 0;
4107}
4108
4109static int
4110pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4111{
4112	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4113	unsigned int cnum;
4114	int i;
4115	int ret = -EINVAL;
4116
4117	for (i = 0; i < count; i++, req++) {
4118
4119		cnum = req->reg_num;
4120
4121		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4122
4123		req->reg_value = PMC_DFL_VAL(cnum);
4124
4125		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4126
4127		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4128	}
4129	return 0;
4130
4131abort_mission:
4132	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4133	return ret;
4134}
4135
4136static int
4137pfm_check_task_exist(pfm_context_t *ctx)
4138{
4139	struct task_struct *g, *t;
4140	int ret = -ESRCH;
4141
4142	read_lock(&tasklist_lock);
4143
4144	do_each_thread (g, t) {
4145		if (t->thread.pfm_context == ctx) {
4146			ret = 0;
4147			goto out;
4148		}
4149	} while_each_thread (g, t);
4150out:
4151	read_unlock(&tasklist_lock);
4152
4153	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4154
4155	return ret;
4156}
4157
4158static int
4159pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4160{
4161	struct task_struct *task;
4162	struct thread_struct *thread;
4163	struct pfm_context_t *old;
4164	unsigned long flags;
4165#ifndef CONFIG_SMP
4166	struct task_struct *owner_task = NULL;
4167#endif
4168	pfarg_load_t *req = (pfarg_load_t *)arg;
4169	unsigned long *pmcs_source, *pmds_source;
4170	int the_cpu;
4171	int ret = 0;
4172	int state, is_system, set_dbregs = 0;
4173
4174	state     = ctx->ctx_state;
4175	is_system = ctx->ctx_fl_system;
4176	/*
4177	 * can only load from unloaded or terminated state
4178	 */
4179	if (state != PFM_CTX_UNLOADED) {
4180		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4181			req->load_pid,
4182			ctx->ctx_state));
4183		return -EBUSY;
4184	}
4185
4186	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4187
4188	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4189		DPRINT(("cannot use blocking mode on self\n"));
4190		return -EINVAL;
4191	}
4192
4193	ret = pfm_get_task(ctx, req->load_pid, &task);
4194	if (ret) {
4195		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4196		return ret;
4197	}
4198
4199	ret = -EINVAL;
4200
4201	/*
4202	 * system wide is self monitoring only
4203	 */
4204	if (is_system && task != current) {
4205		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4206			req->load_pid));
4207		goto error;
4208	}
4209
4210	thread = &task->thread;
4211
4212	ret = 0;
4213	/*
4214	 * cannot load a context which is using range restrictions,
4215	 * into a task that is being debugged.
4216	 */
4217	if (ctx->ctx_fl_using_dbreg) {
4218		if (thread->flags & IA64_THREAD_DBG_VALID) {
4219			ret = -EBUSY;
4220			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4221			goto error;
4222		}
4223		LOCK_PFS(flags);
4224
4225		if (is_system) {
4226			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4227				DPRINT(("cannot load [%d] dbregs in use\n",
4228							task_pid_nr(task)));
4229				ret = -EBUSY;
4230			} else {
4231				pfm_sessions.pfs_sys_use_dbregs++;
4232				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4233				set_dbregs = 1;
4234			}
4235		}
4236
4237		UNLOCK_PFS(flags);
4238
4239		if (ret) goto error;
4240	}
4241
4242	/*
4243	 * SMP system-wide monitoring implies self-monitoring.
4244	 *
4245	 * The programming model expects the task to
4246	 * be pinned on a CPU throughout the session.
4247	 * Here we take note of the current CPU at the
4248	 * time the context is loaded. No call from
4249	 * another CPU will be allowed.
4250	 *
4251	 * The pinning via shed_setaffinity()
4252	 * must be done by the calling task prior
4253	 * to this call.
4254	 *
4255	 * systemwide: keep track of CPU this session is supposed to run on
4256	 */
4257	the_cpu = ctx->ctx_cpu = smp_processor_id();
4258
4259	ret = -EBUSY;
4260	/*
4261	 * now reserve the session
4262	 */
4263	ret = pfm_reserve_session(current, is_system, the_cpu);
4264	if (ret) goto error;
4265
4266	/*
4267	 * task is necessarily stopped at this point.
4268	 *
4269	 * If the previous context was zombie, then it got removed in
4270	 * pfm_save_regs(). Therefore we should not see it here.
4271	 * If we see a context, then this is an active context
4272	 *
4273	 * XXX: needs to be atomic
4274	 */
4275	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4276		thread->pfm_context, ctx));
4277
4278	ret = -EBUSY;
4279	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4280	if (old != NULL) {
4281		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4282		goto error_unres;
4283	}
4284
4285	pfm_reset_msgq(ctx);
4286
4287	ctx->ctx_state = PFM_CTX_LOADED;
4288
4289	/*
4290	 * link context to task
4291	 */
4292	ctx->ctx_task = task;
4293
4294	if (is_system) {
4295		/*
4296		 * we load as stopped
4297		 */
4298		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4299		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4300
4301		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4302	} else {
4303		thread->flags |= IA64_THREAD_PM_VALID;
4304	}
4305
4306	/*
4307	 * propagate into thread-state
4308	 */
4309	pfm_copy_pmds(task, ctx);
4310	pfm_copy_pmcs(task, ctx);
4311
4312	pmcs_source = ctx->th_pmcs;
4313	pmds_source = ctx->th_pmds;
4314
4315	/*
4316	 * always the case for system-wide
4317	 */
4318	if (task == current) {
4319
4320		if (is_system == 0) {
4321
4322			/* allow user level control */
4323			ia64_psr(regs)->sp = 0;
4324			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4325
4326			SET_LAST_CPU(ctx, smp_processor_id());
4327			INC_ACTIVATION();
4328			SET_ACTIVATION(ctx);
4329#ifndef CONFIG_SMP
4330			/*
4331			 * push the other task out, if any
4332			 */
4333			owner_task = GET_PMU_OWNER();
4334			if (owner_task) pfm_lazy_save_regs(owner_task);
4335#endif
4336		}
4337		/*
4338		 * load all PMD from ctx to PMU (as opposed to thread state)
4339		 * restore all PMC from ctx to PMU
4340		 */
4341		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4342		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4343
4344		ctx->ctx_reload_pmcs[0] = 0UL;
4345		ctx->ctx_reload_pmds[0] = 0UL;
4346
4347		/*
4348		 * guaranteed safe by earlier check against DBG_VALID
4349		 */
4350		if (ctx->ctx_fl_using_dbreg) {
4351			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4352			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4353		}
4354		/*
4355		 * set new ownership
4356		 */
4357		SET_PMU_OWNER(task, ctx);
4358
4359		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4360	} else {
4361		/*
4362		 * when not current, task MUST be stopped, so this is safe
4363		 */
4364		regs = task_pt_regs(task);
4365
4366		/* force a full reload */
4367		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4368		SET_LAST_CPU(ctx, -1);
4369
4370		/* initial saved psr (stopped) */
4371		ctx->ctx_saved_psr_up = 0UL;
4372		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4373	}
4374
4375	ret = 0;
4376
4377error_unres:
4378	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4379error:
4380	/*
4381	 * we must undo the dbregs setting (for system-wide)
4382	 */
4383	if (ret && set_dbregs) {
4384		LOCK_PFS(flags);
4385		pfm_sessions.pfs_sys_use_dbregs--;
4386		UNLOCK_PFS(flags);
4387	}
4388	/*
4389	 * release task, there is now a link with the context
4390	 */
4391	if (is_system == 0 && task != current) {
4392		pfm_put_task(task);
4393
4394		if (ret == 0) {
4395			ret = pfm_check_task_exist(ctx);
4396			if (ret) {
4397				ctx->ctx_state = PFM_CTX_UNLOADED;
4398				ctx->ctx_task  = NULL;
4399			}
4400		}
4401	}
4402	return ret;
4403}
4404
4405/*
4406 * in this function, we do not need to increase the use count
4407 * for the task via get_task_struct(), because we hold the
4408 * context lock. If the task were to disappear while having
4409 * a context attached, it would go through pfm_exit_thread()
4410 * which also grabs the context lock  and would therefore be blocked
4411 * until we are here.
4412 */
4413static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4414
4415static int
4416pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4417{
4418	struct task_struct *task = PFM_CTX_TASK(ctx);
4419	struct pt_regs *tregs;
4420	int prev_state, is_system;
4421	int ret;
4422
4423	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4424
4425	prev_state = ctx->ctx_state;
4426	is_system  = ctx->ctx_fl_system;
4427
4428	/*
4429	 * unload only when necessary
4430	 */
4431	if (prev_state == PFM_CTX_UNLOADED) {
4432		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4433		return 0;
4434	}
4435
4436	/*
4437	 * clear psr and dcr bits
4438	 */
4439	ret = pfm_stop(ctx, NULL, 0, regs);
4440	if (ret) return ret;
4441
4442	ctx->ctx_state = PFM_CTX_UNLOADED;
4443
4444	/*
4445	 * in system mode, we need to update the PMU directly
4446	 * and the user level state of the caller, which may not
4447	 * necessarily be the creator of the context.
4448	 */
4449	if (is_system) {
4450
4451		/*
4452		 * Update cpuinfo
4453		 *
4454		 * local PMU is taken care of in pfm_stop()
4455		 */
4456		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4457		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4458
4459		/*
4460		 * save PMDs in context
4461		 * release ownership
4462		 */
4463		pfm_flush_pmds(current, ctx);
4464
4465		/*
4466		 * at this point we are done with the PMU
4467		 * so we can unreserve the resource.
4468		 */
4469		if (prev_state != PFM_CTX_ZOMBIE) 
4470			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4471
4472		/*
4473		 * disconnect context from task
4474		 */
4475		task->thread.pfm_context = NULL;
4476		/*
4477		 * disconnect task from context
4478		 */
4479		ctx->ctx_task = NULL;
4480
4481		/*
4482		 * There is nothing more to cleanup here.
4483		 */
4484		return 0;
4485	}
4486
4487	/*
4488	 * per-task mode
4489	 */
4490	tregs = task == current ? regs : task_pt_regs(task);
4491
4492	if (task == current) {
4493		/*
4494		 * cancel user level control
4495		 */
4496		ia64_psr(regs)->sp = 1;
4497
4498		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4499	}
4500	/*
4501	 * save PMDs to context
4502	 * release ownership
4503	 */
4504	pfm_flush_pmds(task, ctx);
4505
4506	/*
4507	 * at this point we are done with the PMU
4508	 * so we can unreserve the resource.
4509	 *
4510	 * when state was ZOMBIE, we have already unreserved.
4511	 */
4512	if (prev_state != PFM_CTX_ZOMBIE) 
4513		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4514
4515	/*
4516	 * reset activation counter and psr
4517	 */
4518	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4519	SET_LAST_CPU(ctx, -1);
4520
4521	/*
4522	 * PMU state will not be restored
4523	 */
4524	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4525
4526	/*
4527	 * break links between context and task
4528	 */
4529	task->thread.pfm_context  = NULL;
4530	ctx->ctx_task             = NULL;
4531
4532	PFM_SET_WORK_PENDING(task, 0);
4533
4534	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4535	ctx->ctx_fl_can_restart  = 0;
4536	ctx->ctx_fl_going_zombie = 0;
4537
4538	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4539
4540	return 0;
4541}
4542
4543
4544/*
4545 * called only from exit_thread()
4546 * we come here only if the task has a context attached (loaded or masked)
4547 */
4548void
4549pfm_exit_thread(struct task_struct *task)
4550{
4551	pfm_context_t *ctx;
4552	unsigned long flags;
4553	struct pt_regs *regs = task_pt_regs(task);
4554	int ret, state;
4555	int free_ok = 0;
4556
4557	ctx = PFM_GET_CTX(task);
4558
4559	PROTECT_CTX(ctx, flags);
4560
4561	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4562
4563	state = ctx->ctx_state;
4564	switch(state) {
4565		case PFM_CTX_UNLOADED:
4566			/*
4567	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4568			 * be in unloaded state
4569	 		 */
4570			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4571			break;
4572		case PFM_CTX_LOADED:
4573		case PFM_CTX_MASKED:
4574			ret = pfm_context_unload(ctx, NULL, 0, regs);
4575			if (ret) {
4576				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4577			}
4578			DPRINT(("ctx unloaded for current state was %d\n", state));
4579
4580			pfm_end_notify_user(ctx);
4581			break;
4582		case PFM_CTX_ZOMBIE:
4583			ret = pfm_context_unload(ctx, NULL, 0, regs);
4584			if (ret) {
4585				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4586			}
4587			free_ok = 1;
4588			break;
4589		default:
4590			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4591			break;
4592	}
4593	UNPROTECT_CTX(ctx, flags);
4594
4595	{ u64 psr = pfm_get_psr();
4596	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4597	  BUG_ON(GET_PMU_OWNER());
4598	  BUG_ON(ia64_psr(regs)->up);
4599	  BUG_ON(ia64_psr(regs)->pp);
4600	}
4601
4602	/*
4603	 * All memory free operations (especially for vmalloc'ed memory)
4604	 * MUST be done with interrupts ENABLED.
4605	 */
4606	if (free_ok) pfm_context_free(ctx);
4607}
4608
4609/*
4610 * functions MUST be listed in the increasing order of their index (see permfon.h)
4611 */
4612#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4613#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4614#define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4615#define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4616#define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4617
4618static pfm_cmd_desc_t pfm_cmd_tab[]={
4619/* 0  */PFM_CMD_NONE,
4620/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4621/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4622/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4624/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4625/* 6  */PFM_CMD_NONE,
4626/* 7  */PFM_CMD_NONE,
4627/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4628/* 9  */PFM_CMD_NONE,
4629/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4630/* 11 */PFM_CMD_NONE,
4631/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4632/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4633/* 14 */PFM_CMD_NONE,
4634/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4635/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4636/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4637/* 18 */PFM_CMD_NONE,
4638/* 19 */PFM_CMD_NONE,
4639/* 20 */PFM_CMD_NONE,
4640/* 21 */PFM_CMD_NONE,
4641/* 22 */PFM_CMD_NONE,
4642/* 23 */PFM_CMD_NONE,
4643/* 24 */PFM_CMD_NONE,
4644/* 25 */PFM_CMD_NONE,
4645/* 26 */PFM_CMD_NONE,
4646/* 27 */PFM_CMD_NONE,
4647/* 28 */PFM_CMD_NONE,
4648/* 29 */PFM_CMD_NONE,
4649/* 30 */PFM_CMD_NONE,
4650/* 31 */PFM_CMD_NONE,
4651/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4652/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4653};
4654#define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4655
4656static int
4657pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4658{
4659	struct task_struct *task;
4660	int state, old_state;
4661
4662recheck:
4663	state = ctx->ctx_state;
4664	task  = ctx->ctx_task;
4665
4666	if (task == NULL) {
4667		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4668		return 0;
4669	}
4670
4671	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4672		ctx->ctx_fd,
4673		state,
4674		task_pid_nr(task),
4675		task->state, PFM_CMD_STOPPED(cmd)));
4676
4677	/*
4678	 * self-monitoring always ok.
4679	 *
4680	 * for system-wide the caller can either be the creator of the
4681	 * context (to one to which the context is attached to) OR
4682	 * a task running on the same CPU as the session.
4683	 */
4684	if (task == current || ctx->ctx_fl_system) return 0;
4685
4686	/*
4687	 * we are monitoring another thread
4688	 */
4689	switch(state) {
4690		case PFM_CTX_UNLOADED:
4691			/*
4692			 * if context is UNLOADED we are safe to go
4693			 */
4694			return 0;
4695		case PFM_CTX_ZOMBIE:
4696			/*
4697			 * no command can operate on a zombie context
4698			 */
4699			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4700			return -EINVAL;
4701		case PFM_CTX_MASKED:
4702			/*
4703			 * PMU state has been saved to software even though
4704			 * the thread may still be running.
4705			 */
4706			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4707	}
4708
4709	/*
4710	 * context is LOADED or MASKED. Some commands may need to have 
4711	 * the task stopped.
4712	 *
4713	 * We could lift this restriction for UP but it would mean that
4714	 * the user has no guarantee the task would not run between
4715	 * two successive calls to perfmonctl(). That's probably OK.
4716	 * If this user wants to ensure the task does not run, then
4717	 * the task must be stopped.
4718	 */
4719	if (PFM_CMD_STOPPED(cmd)) {
4720		if (!task_is_stopped_or_traced(task)) {
4721			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4722			return -EBUSY;
4723		}
4724		/*
4725		 * task is now stopped, wait for ctxsw out
4726		 *
4727		 * This is an interesting point in the code.
4728		 * We need to unprotect the context because
4729		 * the pfm_save_regs() routines needs to grab
4730		 * the same lock. There are danger in doing
4731		 * this because it leaves a window open for
4732		 * another task to get access to the context
4733		 * and possibly change its state. The one thing
4734		 * that is not possible is for the context to disappear
4735		 * because we are protected by the VFS layer, i.e.,
4736		 * get_fd()/put_fd().
4737		 */
4738		old_state = state;
4739
4740		UNPROTECT_CTX(ctx, flags);
4741
4742		wait_task_inactive(task, 0);
4743
4744		PROTECT_CTX(ctx, flags);
4745
4746		/*
4747		 * we must recheck to verify if state has changed
4748		 */
4749		if (ctx->ctx_state != old_state) {
4750			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4751			goto recheck;
4752		}
4753	}
4754	return 0;
4755}
4756
4757/*
4758 * system-call entry point (must return long)
4759 */
4760asmlinkage long
4761sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4762{
4763	struct fd f = {NULL, 0};
4764	pfm_context_t *ctx = NULL;
4765	unsigned long flags = 0UL;
4766	void *args_k = NULL;
4767	long ret; /* will expand int return types */
4768	size_t base_sz, sz, xtra_sz = 0;
4769	int narg, completed_args = 0, call_made = 0, cmd_flags;
4770	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4771	int (*getsize)(void *arg, size_t *sz);
4772#define PFM_MAX_ARGSIZE	4096
4773
4774	/*
4775	 * reject any call if perfmon was disabled at initialization
4776	 */
4777	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4778
4779	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4780		DPRINT(("invalid cmd=%d\n", cmd));
4781		return -EINVAL;
4782	}
4783
4784	func      = pfm_cmd_tab[cmd].cmd_func;
4785	narg      = pfm_cmd_tab[cmd].cmd_narg;
4786	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4787	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4788	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4789
4790	if (unlikely(func == NULL)) {
4791		DPRINT(("invalid cmd=%d\n", cmd));
4792		return -EINVAL;
4793	}
4794
4795	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4796		PFM_CMD_NAME(cmd),
4797		cmd,
4798		narg,
4799		base_sz,
4800		count));
4801
4802	/*
4803	 * check if number of arguments matches what the command expects
4804	 */
4805	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4806		return -EINVAL;
4807
4808restart_args:
4809	sz = xtra_sz + base_sz*count;
4810	/*
4811	 * limit abuse to min page size
4812	 */
4813	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4814		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4815		return -E2BIG;
4816	}
4817
4818	/*
4819	 * allocate default-sized argument buffer
4820	 */
4821	if (likely(count && args_k == NULL)) {
4822		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4823		if (args_k == NULL) return -ENOMEM;
4824	}
4825
4826	ret = -EFAULT;
4827
4828	/*
4829	 * copy arguments
4830	 *
4831	 * assume sz = 0 for command without parameters
4832	 */
4833	if (sz && copy_from_user(args_k, arg, sz)) {
4834		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4835		goto error_args;
4836	}
4837
4838	/*
4839	 * check if command supports extra parameters
4840	 */
4841	if (completed_args == 0 && getsize) {
4842		/*
4843		 * get extra parameters size (based on main argument)
4844		 */
4845		ret = (*getsize)(args_k, &xtra_sz);
4846		if (ret) goto error_args;
4847
4848		completed_args = 1;
4849
4850		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4851
4852		/* retry if necessary */
4853		if (likely(xtra_sz)) goto restart_args;
4854	}
4855
4856	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4857
4858	ret = -EBADF;
4859
4860	f = fdget(fd);
4861	if (unlikely(f.file == NULL)) {
4862		DPRINT(("invalid fd %d\n", fd));
4863		goto error_args;
4864	}
4865	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4866		DPRINT(("fd %d not related to perfmon\n", fd));
4867		goto error_args;
4868	}
4869
4870	ctx = f.file->private_data;
4871	if (unlikely(ctx == NULL)) {
4872		DPRINT(("no context for fd %d\n", fd));
4873		goto error_args;
4874	}
4875	prefetch(&ctx->ctx_state);
4876
4877	PROTECT_CTX(ctx, flags);
4878
4879	/*
4880	 * check task is stopped
4881	 */
4882	ret = pfm_check_task_state(ctx, cmd, flags);
4883	if (unlikely(ret)) goto abort_locked;
4884
4885skip_fd:
4886	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4887
4888	call_made = 1;
4889
4890abort_locked:
4891	if (likely(ctx)) {
4892		DPRINT(("context unlocked\n"));
4893		UNPROTECT_CTX(ctx, flags);
4894	}
4895
4896	/* copy argument back to user, if needed */
4897	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4898
4899error_args:
4900	if (f.file)
4901		fdput(f);
4902
4903	kfree(args_k);
4904
4905	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4906
4907	return ret;
4908}
4909
4910static void
4911pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4912{
4913	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4914	pfm_ovfl_ctrl_t rst_ctrl;
4915	int state;
4916	int ret = 0;
4917
4918	state = ctx->ctx_state;
4919	/*
4920	 * Unlock sampling buffer and reset index atomically
4921	 * XXX: not really needed when blocking
4922	 */
4923	if (CTX_HAS_SMPL(ctx)) {
4924
4925		rst_ctrl.bits.mask_monitoring = 0;
4926		rst_ctrl.bits.reset_ovfl_pmds = 0;
4927
4928		if (state == PFM_CTX_LOADED)
4929			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4930		else
4931			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4932	} else {
4933		rst_ctrl.bits.mask_monitoring = 0;
4934		rst_ctrl.bits.reset_ovfl_pmds = 1;
4935	}
4936
4937	if (ret == 0) {
4938		if (rst_ctrl.bits.reset_ovfl_pmds) {
4939			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4940		}
4941		if (rst_ctrl.bits.mask_monitoring == 0) {
4942			DPRINT(("resuming monitoring\n"));
4943			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4944		} else {
4945			DPRINT(("stopping monitoring\n"));
4946			//pfm_stop_monitoring(current, regs);
4947		}
4948		ctx->ctx_state = PFM_CTX_LOADED;
4949	}
4950}
4951
4952/*
4953 * context MUST BE LOCKED when calling
4954 * can only be called for current
4955 */
4956static void
4957pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4958{
4959	int ret;
4960
4961	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4962
4963	ret = pfm_context_unload(ctx, NULL, 0, regs);
4964	if (ret) {
4965		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4966	}
4967
4968	/*
4969	 * and wakeup controlling task, indicating we are now disconnected
4970	 */
4971	wake_up_interruptible(&ctx->ctx_zombieq);
4972
4973	/*
4974	 * given that context is still locked, the controlling
4975	 * task will only get access when we return from
4976	 * pfm_handle_work().
4977	 */
4978}
4979
4980static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4981
4982 /*
4983  * pfm_handle_work() can be called with interrupts enabled
4984  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4985  * call may sleep, therefore we must re-enable interrupts
4986  * to avoid deadlocks. It is safe to do so because this function
4987  * is called ONLY when returning to user level (pUStk=1), in which case
4988  * there is no risk of kernel stack overflow due to deep
4989  * interrupt nesting.
4990  */
4991void
4992pfm_handle_work(void)
4993{
4994	pfm_context_t *ctx;
4995	struct pt_regs *regs;
4996	unsigned long flags, dummy_flags;
4997	unsigned long ovfl_regs;
4998	unsigned int reason;
4999	int ret;
5000
5001	ctx = PFM_GET_CTX(current);
5002	if (ctx == NULL) {
5003		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5004			task_pid_nr(current));
5005		return;
5006	}
5007
5008	PROTECT_CTX(ctx, flags);
5009
5010	PFM_SET_WORK_PENDING(current, 0);
5011
5012	regs = task_pt_regs(current);
5013
5014	/*
5015	 * extract reason for being here and clear
5016	 */
5017	reason = ctx->ctx_fl_trap_reason;
5018	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5019	ovfl_regs = ctx->ctx_ovfl_regs[0];
5020
5021	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5022
5023	/*
5024	 * must be done before we check for simple-reset mode
5025	 */
5026	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5027		goto do_zombie;
5028
5029	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5030	if (reason == PFM_TRAP_REASON_RESET)
5031		goto skip_blocking;
5032
5033	/*
5034	 * restore interrupt mask to what it was on entry.
5035	 * Could be enabled/diasbled.
5036	 */
5037	UNPROTECT_CTX(ctx, flags);
5038
5039	/*
5040	 * force interrupt enable because of down_interruptible()
5041	 */
5042	local_irq_enable();
5043
5044	DPRINT(("before block sleeping\n"));
5045
5046	/*
5047	 * may go through without blocking on SMP systems
5048	 * if restart has been received already by the time we call down()
5049	 */
5050	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5051
5052	DPRINT(("after block sleeping ret=%d\n", ret));
5053
5054	/*
5055	 * lock context and mask interrupts again
5056	 * We save flags into a dummy because we may have
5057	 * altered interrupts mask compared to entry in this
5058	 * function.
5059	 */
5060	PROTECT_CTX(ctx, dummy_flags);
5061
5062	/*
5063	 * we need to read the ovfl_regs only after wake-up
5064	 * because we may have had pfm_write_pmds() in between
5065	 * and that can changed PMD values and therefore 
5066	 * ovfl_regs is reset for these new PMD values.
5067	 */
5068	ovfl_regs = ctx->ctx_ovfl_regs[0];
5069
5070	if (ctx->ctx_fl_going_zombie) {
5071do_zombie:
5072		DPRINT(("context is zombie, bailing out\n"));
5073		pfm_context_force_terminate(ctx, regs);
5074		goto nothing_to_do;
5075	}
5076	/*
5077	 * in case of interruption of down() we don't restart anything
5078	 */
5079	if (ret < 0)
5080		goto nothing_to_do;
5081
5082skip_blocking:
5083	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5084	ctx->ctx_ovfl_regs[0] = 0UL;
5085
5086nothing_to_do:
5087	/*
5088	 * restore flags as they were upon entry
5089	 */
5090	UNPROTECT_CTX(ctx, flags);
5091}
5092
5093static int
5094pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5095{
5096	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5097		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5098		return 0;
5099	}
5100
5101	DPRINT(("waking up somebody\n"));
5102
5103	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5104
5105	/*
5106	 * safe, we are not in intr handler, nor in ctxsw when
5107	 * we come here
5108	 */
5109	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5110
5111	return 0;
5112}
5113
5114static int
5115pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5116{
5117	pfm_msg_t *msg = NULL;
5118
5119	if (ctx->ctx_fl_no_msg == 0) {
5120		msg = pfm_get_new_msg(ctx);
5121		if (msg == NULL) {
5122			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5123			return -1;
5124		}
5125
5126		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5127		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5128		msg->pfm_ovfl_msg.msg_active_set   = 0;
5129		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5130		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5131		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5132		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5133		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5134	}
5135
5136	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5137		msg,
5138		ctx->ctx_fl_no_msg,
5139		ctx->ctx_fd,
5140		ovfl_pmds));
5141
5142	return pfm_notify_user(ctx, msg);
5143}
5144
5145static int
5146pfm_end_notify_user(pfm_context_t *ctx)
5147{
5148	pfm_msg_t *msg;
5149
5150	msg = pfm_get_new_msg(ctx);
5151	if (msg == NULL) {
5152		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5153		return -1;
5154	}
5155	/* no leak */
5156	memset(msg, 0, sizeof(*msg));
5157
5158	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5159	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5160	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5161
5162	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5163		msg,
5164		ctx->ctx_fl_no_msg,
5165		ctx->ctx_fd));
5166
5167	return pfm_notify_user(ctx, msg);
5168}
5169
5170/*
5171 * main overflow processing routine.
5172 * it can be called from the interrupt path or explicitly during the context switch code
5173 */
5174static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5175				unsigned long pmc0, struct pt_regs *regs)
5176{
5177	pfm_ovfl_arg_t *ovfl_arg;
5178	unsigned long mask;
5179	unsigned long old_val, ovfl_val, new_val;
5180	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5181	unsigned long tstamp;
5182	pfm_ovfl_ctrl_t	ovfl_ctrl;
5183	unsigned int i, has_smpl;
5184	int must_notify = 0;
5185
5186	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5187
5188	/*
5189	 * sanity test. Should never happen
5190	 */
5191	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5192
5193	tstamp   = ia64_get_itc();
5194	mask     = pmc0 >> PMU_FIRST_COUNTER;
5195	ovfl_val = pmu_conf->ovfl_val;
5196	has_smpl = CTX_HAS_SMPL(ctx);
5197
5198	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5199		     "used_pmds=0x%lx\n",
5200			pmc0,
5201			task ? task_pid_nr(task): -1,
5202			(regs ? regs->cr_iip : 0),
5203			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5204			ctx->ctx_used_pmds[0]));
5205
5206
5207	/*
5208	 * first we update the virtual counters
5209	 * assume there was a prior ia64_srlz_d() issued
5210	 */
5211	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5212
5213		/* skip pmd which did not overflow */
5214		if ((mask & 0x1) == 0) continue;
5215
5216		/*
5217		 * Note that the pmd is not necessarily 0 at this point as qualified events
5218		 * may have happened before the PMU was frozen. The residual count is not
5219		 * taken into consideration here but will be with any read of the pmd via
5220		 * pfm_read_pmds().
5221		 */
5222		old_val              = new_val = ctx->ctx_pmds[i].val;
5223		new_val             += 1 + ovfl_val;
5224		ctx->ctx_pmds[i].val = new_val;
5225
5226		/*
5227		 * check for overflow condition
5228		 */
5229		if (likely(old_val > new_val)) {
5230			ovfl_pmds |= 1UL << i;
5231			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5232		}
5233
5234		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5235			i,
5236			new_val,
5237			old_val,
5238			ia64_get_pmd(i) & ovfl_val,
5239			ovfl_pmds,
5240			ovfl_notify));
5241	}
5242
5243	/*
5244	 * there was no 64-bit overflow, nothing else to do
5245	 */
5246	if (ovfl_pmds == 0UL) return;
5247
5248	/* 
5249	 * reset all control bits
5250	 */
5251	ovfl_ctrl.val = 0;
5252	reset_pmds    = 0UL;
5253
5254	/*
5255	 * if a sampling format module exists, then we "cache" the overflow by 
5256	 * calling the module's handler() routine.
5257	 */
5258	if (has_smpl) {
5259		unsigned long start_cycles, end_cycles;
5260		unsigned long pmd_mask;
5261		int j, k, ret = 0;
5262		int this_cpu = smp_processor_id();
5263
5264		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5265		ovfl_arg = &ctx->ctx_ovfl_arg;
5266
5267		prefetch(ctx->ctx_smpl_hdr);
5268
5269		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5270
5271			mask = 1UL << i;
5272
5273			if ((pmd_mask & 0x1) == 0) continue;
5274
5275			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5276			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5277			ovfl_arg->active_set    = 0;
5278			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5279			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5280
5281			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5282			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5283			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5284
5285			/*
5286		 	 * copy values of pmds of interest. Sampling format may copy them
5287		 	 * into sampling buffer.
5288		 	 */
5289			if (smpl_pmds) {
5290				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5291					if ((smpl_pmds & 0x1) == 0) continue;
5292					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5293					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5294				}
5295			}
5296
5297			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5298
5299			start_cycles = ia64_get_itc();
5300
5301			/*
5302		 	 * call custom buffer format record (handler) routine
5303		 	 */
5304			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5305
5306			end_cycles = ia64_get_itc();
5307
5308			/*
5309			 * For those controls, we take the union because they have
5310			 * an all or nothing behavior.
5311			 */
5312			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5313			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5314			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5315			/*
5316			 * build the bitmask of pmds to reset now
5317			 */
5318			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5319
5320			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5321		}
5322		/*
5323		 * when the module cannot handle the rest of the overflows, we abort right here
5324		 */
5325		if (ret && pmd_mask) {
5326			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5327				pmd_mask<<PMU_FIRST_COUNTER));
5328		}
5329		/*
5330		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5331		 */
5332		ovfl_pmds &= ~reset_pmds;
5333	} else {
5334		/*
5335		 * when no sampling module is used, then the default
5336		 * is to notify on overflow if requested by user
5337		 */
5338		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5339		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5340		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5341		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5342		/*
5343		 * if needed, we reset all overflowed pmds
5344		 */
5345		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5346	}
5347
5348	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5349
5350	/*
5351	 * reset the requested PMD registers using the short reset values
5352	 */
5353	if (reset_pmds) {
5354		unsigned long bm = reset_pmds;
5355		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5356	}
5357
5358	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5359		/*
5360		 * keep track of what to reset when unblocking
5361		 */
5362		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5363
5364		/*
5365		 * check for blocking context 
5366		 */
5367		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5368
5369			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5370
5371			/*
5372			 * set the perfmon specific checking pending work for the task
5373			 */
5374			PFM_SET_WORK_PENDING(task, 1);
5375
5376			/*
5377			 * when coming from ctxsw, current still points to the
5378			 * previous task, therefore we must work with task and not current.
5379			 */
5380			set_notify_resume(task);
5381		}
5382		/*
5383		 * defer until state is changed (shorten spin window). the context is locked
5384		 * anyway, so the signal receiver would come spin for nothing.
5385		 */
5386		must_notify = 1;
5387	}
5388
5389	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5390			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5391			PFM_GET_WORK_PENDING(task),
5392			ctx->ctx_fl_trap_reason,
5393			ovfl_pmds,
5394			ovfl_notify,
5395			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5396	/*
5397	 * in case monitoring must be stopped, we toggle the psr bits
5398	 */
5399	if (ovfl_ctrl.bits.mask_monitoring) {
5400		pfm_mask_monitoring(task);
5401		ctx->ctx_state = PFM_CTX_MASKED;
5402		ctx->ctx_fl_can_restart = 1;
5403	}
5404
5405	/*
5406	 * send notification now
5407	 */
5408	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5409
5410	return;
5411
5412sanity_check:
5413	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5414			smp_processor_id(),
5415			task ? task_pid_nr(task) : -1,
5416			pmc0);
5417	return;
5418
5419stop_monitoring:
5420	/*
5421	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5422	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5423	 * come here as zombie only if the task is the current task. In which case, we
5424	 * can access the PMU  hardware directly.
5425	 *
5426	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5427	 *
5428	 * In case the context was zombified it could not be reclaimed at the time
5429	 * the monitoring program exited. At this point, the PMU reservation has been
5430	 * returned, the sampiing buffer has been freed. We must convert this call
5431	 * into a spurious interrupt. However, we must also avoid infinite overflows
5432	 * by stopping monitoring for this task. We can only come here for a per-task
5433	 * context. All we need to do is to stop monitoring using the psr bits which
5434	 * are always task private. By re-enabling secure montioring, we ensure that
5435	 * the monitored task will not be able to re-activate monitoring.
5436	 * The task will eventually be context switched out, at which point the context
5437	 * will be reclaimed (that includes releasing ownership of the PMU).
5438	 *
5439	 * So there might be a window of time where the number of per-task session is zero
5440	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5441	 * context. This is safe because if a per-task session comes in, it will push this one
5442	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5443	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5444	 * also push our zombie context out.
5445	 *
5446	 * Overall pretty hairy stuff....
5447	 */
5448	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5449	pfm_clear_psr_up();
5450	ia64_psr(regs)->up = 0;
5451	ia64_psr(regs)->sp = 1;
5452	return;
5453}
5454
5455static int
5456pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5457{
5458	struct task_struct *task;
5459	pfm_context_t *ctx;
5460	unsigned long flags;
5461	u64 pmc0;
5462	int this_cpu = smp_processor_id();
5463	int retval = 0;
5464
5465	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5466
5467	/*
5468	 * srlz.d done before arriving here
5469	 */
5470	pmc0 = ia64_get_pmc(0);
5471
5472	task = GET_PMU_OWNER();
5473	ctx  = GET_PMU_CTX();
5474
5475	/*
5476	 * if we have some pending bits set
5477	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5478	 */
5479	if (PMC0_HAS_OVFL(pmc0) && task) {
5480		/*
5481		 * we assume that pmc0.fr is always set here
5482		 */
5483
5484		/* sanity check */
5485		if (!ctx) goto report_spurious1;
5486
5487		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5488			goto report_spurious2;
5489
5490		PROTECT_CTX_NOPRINT(ctx, flags);
5491
5492		pfm_overflow_handler(task, ctx, pmc0, regs);
5493
5494		UNPROTECT_CTX_NOPRINT(ctx, flags);
5495
5496	} else {
5497		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5498		retval = -1;
5499	}
5500	/*
5501	 * keep it unfrozen at all times
5502	 */
5503	pfm_unfreeze_pmu();
5504
5505	return retval;
5506
5507report_spurious1:
5508	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5509		this_cpu, task_pid_nr(task));
5510	pfm_unfreeze_pmu();
5511	return -1;
5512report_spurious2:
5513	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5514		this_cpu, 
5515		task_pid_nr(task));
5516	pfm_unfreeze_pmu();
5517	return -1;
5518}
5519
5520static irqreturn_t
5521pfm_interrupt_handler(int irq, void *arg)
5522{
5523	unsigned long start_cycles, total_cycles;
5524	unsigned long min, max;
5525	int this_cpu;
5526	int ret;
5527	struct pt_regs *regs = get_irq_regs();
5528
5529	this_cpu = get_cpu();
5530	if (likely(!pfm_alt_intr_handler)) {
5531		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5532		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5533
5534		start_cycles = ia64_get_itc();
5535
5536		ret = pfm_do_interrupt_handler(arg, regs);
5537
5538		total_cycles = ia64_get_itc();
5539
5540		/*
5541		 * don't measure spurious interrupts
5542		 */
5543		if (likely(ret == 0)) {
5544			total_cycles -= start_cycles;
5545
5546			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5547			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5548
5549			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5550		}
5551	}
5552	else {
5553		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5554	}
5555
5556	put_cpu();
5557	return IRQ_HANDLED;
5558}
5559
5560/*
5561 * /proc/perfmon interface, for debug only
5562 */
5563
5564#define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5565
5566static void *
5567pfm_proc_start(struct seq_file *m, loff_t *pos)
5568{
5569	if (*pos == 0) {
5570		return PFM_PROC_SHOW_HEADER;
5571	}
5572
5573	while (*pos <= nr_cpu_ids) {
5574		if (cpu_online(*pos - 1)) {
5575			return (void *)*pos;
5576		}
5577		++*pos;
5578	}
5579	return NULL;
5580}
5581
5582static void *
5583pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5584{
5585	++*pos;
5586	return pfm_proc_start(m, pos);
5587}
5588
5589static void
5590pfm_proc_stop(struct seq_file *m, void *v)
5591{
5592}
5593
5594static void
5595pfm_proc_show_header(struct seq_file *m)
5596{
5597	struct list_head * pos;
5598	pfm_buffer_fmt_t * entry;
5599	unsigned long flags;
5600
5601 	seq_printf(m,
5602		"perfmon version           : %u.%u\n"
5603		"model                     : %s\n"
5604		"fastctxsw                 : %s\n"
5605		"expert mode               : %s\n"
5606		"ovfl_mask                 : 0x%lx\n"
5607		"PMU flags                 : 0x%x\n",
5608		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5609		pmu_conf->pmu_name,
5610		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5611		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5612		pmu_conf->ovfl_val,
5613		pmu_conf->flags);
5614
5615  	LOCK_PFS(flags);
5616
5617 	seq_printf(m,
5618 		"proc_sessions             : %u\n"
5619 		"sys_sessions              : %u\n"
5620 		"sys_use_dbregs            : %u\n"
5621 		"ptrace_use_dbregs         : %u\n",
5622 		pfm_sessions.pfs_task_sessions,
5623 		pfm_sessions.pfs_sys_sessions,
5624 		pfm_sessions.pfs_sys_use_dbregs,
5625 		pfm_sessions.pfs_ptrace_use_dbregs);
5626
5627  	UNLOCK_PFS(flags);
5628
5629	spin_lock(&pfm_buffer_fmt_lock);
5630
5631	list_for_each(pos, &pfm_buffer_fmt_list) {
5632		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5633		seq_printf(m, "format                    : %16phD %s\n",
5634			   entry->fmt_uuid, entry->fmt_name);
5635	}
5636	spin_unlock(&pfm_buffer_fmt_lock);
5637
5638}
5639
5640static int
5641pfm_proc_show(struct seq_file *m, void *v)
5642{
5643	unsigned long psr;
5644	unsigned int i;
5645	int cpu;
5646
5647	if (v == PFM_PROC_SHOW_HEADER) {
5648		pfm_proc_show_header(m);
5649		return 0;
5650	}
5651
5652	/* show info for CPU (v - 1) */
5653
5654	cpu = (long)v - 1;
5655	seq_printf(m,
5656		"CPU%-2d overflow intrs      : %lu\n"
5657		"CPU%-2d overflow cycles     : %lu\n"
5658		"CPU%-2d overflow min        : %lu\n"
5659		"CPU%-2d overflow max        : %lu\n"
5660		"CPU%-2d smpl handler calls  : %lu\n"
5661		"CPU%-2d smpl handler cycles : %lu\n"
5662		"CPU%-2d spurious intrs      : %lu\n"
5663		"CPU%-2d replay   intrs      : %lu\n"
5664		"CPU%-2d syst_wide           : %d\n"
5665		"CPU%-2d dcr_pp              : %d\n"
5666		"CPU%-2d exclude idle        : %d\n"
5667		"CPU%-2d owner               : %d\n"
5668		"CPU%-2d context             : %p\n"
5669		"CPU%-2d activations         : %lu\n",
5670		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5671		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5672		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5673		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5674		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5675		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5676		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5677		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5678		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5679		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5680		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5681		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5682		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5683		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5684
5685	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5686
5687		psr = pfm_get_psr();
5688
5689		ia64_srlz_d();
5690
5691		seq_printf(m, 
5692			"CPU%-2d psr                 : 0x%lx\n"
5693			"CPU%-2d pmc0                : 0x%lx\n", 
5694			cpu, psr,
5695			cpu, ia64_get_pmc(0));
5696
5697		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5698			if (PMC_IS_COUNTING(i) == 0) continue;
5699   			seq_printf(m, 
5700				"CPU%-2d pmc%u                : 0x%lx\n"
5701   				"CPU%-2d pmd%u                : 0x%lx\n", 
5702				cpu, i, ia64_get_pmc(i),
5703				cpu, i, ia64_get_pmd(i));
5704  		}
5705	}
5706	return 0;
5707}
5708
5709const struct seq_operations pfm_seq_ops = {
5710	.start =	pfm_proc_start,
5711 	.next =		pfm_proc_next,
5712 	.stop =		pfm_proc_stop,
5713 	.show =		pfm_proc_show
5714};
5715
5716static int
5717pfm_proc_open(struct inode *inode, struct file *file)
5718{
5719	return seq_open(file, &pfm_seq_ops);
5720}
5721
5722
5723/*
5724 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5725 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5726 * is active or inactive based on mode. We must rely on the value in
5727 * local_cpu_data->pfm_syst_info
5728 */
5729void
5730pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5731{
5732	struct pt_regs *regs;
5733	unsigned long dcr;
5734	unsigned long dcr_pp;
5735
5736	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5737
5738	/*
5739	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5740	 * on every CPU, so we can rely on the pid to identify the idle task.
5741	 */
5742	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5743		regs = task_pt_regs(task);
5744		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5745		return;
5746	}
5747	/*
5748	 * if monitoring has started
5749	 */
5750	if (dcr_pp) {
5751		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5752		/*
5753		 * context switching in?
5754		 */
5755		if (is_ctxswin) {
5756			/* mask monitoring for the idle task */
5757			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5758			pfm_clear_psr_pp();
5759			ia64_srlz_i();
5760			return;
5761		}
5762		/*
5763		 * context switching out
5764		 * restore monitoring for next task
5765		 *
5766		 * Due to inlining this odd if-then-else construction generates
5767		 * better code.
5768		 */
5769		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5770		pfm_set_psr_pp();
5771		ia64_srlz_i();
5772	}
5773}
5774
5775#ifdef CONFIG_SMP
5776
5777static void
5778pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5779{
5780	struct task_struct *task = ctx->ctx_task;
5781
5782	ia64_psr(regs)->up = 0;
5783	ia64_psr(regs)->sp = 1;
5784
5785	if (GET_PMU_OWNER() == task) {
5786		DPRINT(("cleared ownership for [%d]\n",
5787					task_pid_nr(ctx->ctx_task)));
5788		SET_PMU_OWNER(NULL, NULL);
5789	}
5790
5791	/*
5792	 * disconnect the task from the context and vice-versa
5793	 */
5794	PFM_SET_WORK_PENDING(task, 0);
5795
5796	task->thread.pfm_context  = NULL;
5797	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5798
5799	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5800}
5801
5802
5803/*
5804 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5805 */
5806void
5807pfm_save_regs(struct task_struct *task)
5808{
5809	pfm_context_t *ctx;
5810	unsigned long flags;
5811	u64 psr;
5812
5813
5814	ctx = PFM_GET_CTX(task);
5815	if (ctx == NULL) return;
5816
5817	/*
5818 	 * we always come here with interrupts ALREADY disabled by
5819 	 * the scheduler. So we simply need to protect against concurrent
5820	 * access, not CPU concurrency.
5821	 */
5822	flags = pfm_protect_ctx_ctxsw(ctx);
5823
5824	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5825		struct pt_regs *regs = task_pt_regs(task);
5826
5827		pfm_clear_psr_up();
5828
5829		pfm_force_cleanup(ctx, regs);
5830
5831		BUG_ON(ctx->ctx_smpl_hdr);
5832
5833		pfm_unprotect_ctx_ctxsw(ctx, flags);
5834
5835		pfm_context_free(ctx);
5836		return;
5837	}
5838
5839	/*
5840	 * save current PSR: needed because we modify it
5841	 */
5842	ia64_srlz_d();
5843	psr = pfm_get_psr();
5844
5845	BUG_ON(psr & (IA64_PSR_I));
5846
5847	/*
5848	 * stop monitoring:
5849	 * This is the last instruction which may generate an overflow
5850	 *
5851	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5852	 * It will be restored from ipsr when going back to user level
5853	 */
5854	pfm_clear_psr_up();
5855
5856	/*
5857	 * keep a copy of psr.up (for reload)
5858	 */
5859	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5860
5861	/*
5862	 * release ownership of this PMU.
5863	 * PM interrupts are masked, so nothing
5864	 * can happen.
5865	 */
5866	SET_PMU_OWNER(NULL, NULL);
5867
5868	/*
5869	 * we systematically save the PMD as we have no
5870	 * guarantee we will be schedule at that same
5871	 * CPU again.
5872	 */
5873	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5874
5875	/*
5876	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5877	 * we will need it on the restore path to check
5878	 * for pending overflow.
5879	 */
5880	ctx->th_pmcs[0] = ia64_get_pmc(0);
5881
5882	/*
5883	 * unfreeze PMU if had pending overflows
5884	 */
5885	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5886
5887	/*
5888	 * finally, allow context access.
5889	 * interrupts will still be masked after this call.
5890	 */
5891	pfm_unprotect_ctx_ctxsw(ctx, flags);
5892}
5893
5894#else /* !CONFIG_SMP */
5895void
5896pfm_save_regs(struct task_struct *task)
5897{
5898	pfm_context_t *ctx;
5899	u64 psr;
5900
5901	ctx = PFM_GET_CTX(task);
5902	if (ctx == NULL) return;
5903
5904	/*
5905	 * save current PSR: needed because we modify it
5906	 */
5907	psr = pfm_get_psr();
5908
5909	BUG_ON(psr & (IA64_PSR_I));
5910
5911	/*
5912	 * stop monitoring:
5913	 * This is the last instruction which may generate an overflow
5914	 *
5915	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5916	 * It will be restored from ipsr when going back to user level
5917	 */
5918	pfm_clear_psr_up();
5919
5920	/*
5921	 * keep a copy of psr.up (for reload)
5922	 */
5923	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5924}
5925
5926static void
5927pfm_lazy_save_regs (struct task_struct *task)
5928{
5929	pfm_context_t *ctx;
5930	unsigned long flags;
5931
5932	{ u64 psr  = pfm_get_psr();
5933	  BUG_ON(psr & IA64_PSR_UP);
5934	}
5935
5936	ctx = PFM_GET_CTX(task);
5937
5938	/*
5939	 * we need to mask PMU overflow here to
5940	 * make sure that we maintain pmc0 until
5941	 * we save it. overflow interrupts are
5942	 * treated as spurious if there is no
5943	 * owner.
5944	 *
5945	 * XXX: I don't think this is necessary
5946	 */
5947	PROTECT_CTX(ctx,flags);
5948
5949	/*
5950	 * release ownership of this PMU.
5951	 * must be done before we save the registers.
5952	 *
5953	 * after this call any PMU interrupt is treated
5954	 * as spurious.
5955	 */
5956	SET_PMU_OWNER(NULL, NULL);
5957
5958	/*
5959	 * save all the pmds we use
5960	 */
5961	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5962
5963	/*
5964	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5965	 * it is needed to check for pended overflow
5966	 * on the restore path
5967	 */
5968	ctx->th_pmcs[0] = ia64_get_pmc(0);
5969
5970	/*
5971	 * unfreeze PMU if had pending overflows
5972	 */
5973	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5974
5975	/*
5976	 * now get can unmask PMU interrupts, they will
5977	 * be treated as purely spurious and we will not
5978	 * lose any information
5979	 */
5980	UNPROTECT_CTX(ctx,flags);
5981}
5982#endif /* CONFIG_SMP */
5983
5984#ifdef CONFIG_SMP
5985/*
5986 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5987 */
5988void
5989pfm_load_regs (struct task_struct *task)
5990{
5991	pfm_context_t *ctx;
5992	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5993	unsigned long flags;
5994	u64 psr, psr_up;
5995	int need_irq_resend;
5996
5997	ctx = PFM_GET_CTX(task);
5998	if (unlikely(ctx == NULL)) return;
5999
6000	BUG_ON(GET_PMU_OWNER());
6001
6002	/*
6003	 * possible on unload
6004	 */
6005	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6006
6007	/*
6008 	 * we always come here with interrupts ALREADY disabled by
6009 	 * the scheduler. So we simply need to protect against concurrent
6010	 * access, not CPU concurrency.
6011	 */
6012	flags = pfm_protect_ctx_ctxsw(ctx);
6013	psr   = pfm_get_psr();
6014
6015	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6016
6017	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6018	BUG_ON(psr & IA64_PSR_I);
6019
6020	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6021		struct pt_regs *regs = task_pt_regs(task);
6022
6023		BUG_ON(ctx->ctx_smpl_hdr);
6024
6025		pfm_force_cleanup(ctx, regs);
6026
6027		pfm_unprotect_ctx_ctxsw(ctx, flags);
6028
6029		/*
6030		 * this one (kmalloc'ed) is fine with interrupts disabled
6031		 */
6032		pfm_context_free(ctx);
6033
6034		return;
6035	}
6036
6037	/*
6038	 * we restore ALL the debug registers to avoid picking up
6039	 * stale state.
6040	 */
6041	if (ctx->ctx_fl_using_dbreg) {
6042		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6043		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6044	}
6045	/*
6046	 * retrieve saved psr.up
6047	 */
6048	psr_up = ctx->ctx_saved_psr_up;
6049
6050	/*
6051	 * if we were the last user of the PMU on that CPU,
6052	 * then nothing to do except restore psr
6053	 */
6054	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6055
6056		/*
6057		 * retrieve partial reload masks (due to user modifications)
6058		 */
6059		pmc_mask = ctx->ctx_reload_pmcs[0];
6060		pmd_mask = ctx->ctx_reload_pmds[0];
6061
6062	} else {
6063		/*
6064	 	 * To avoid leaking information to the user level when psr.sp=0,
6065	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6066	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6067	 	 * we initialized or requested (sampling) so there is no risk there.
6068	 	 */
6069		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6070
6071		/*
6072	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6073	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6074	 	 * up stale configuration.
6075	 	 *
6076	 	 * PMC0 is never in the mask. It is always restored separately.
6077	 	 */
6078		pmc_mask = ctx->ctx_all_pmcs[0];
6079	}
6080	/*
6081	 * when context is MASKED, we will restore PMC with plm=0
6082	 * and PMD with stale information, but that's ok, nothing
6083	 * will be captured.
6084	 *
6085	 * XXX: optimize here
6086	 */
6087	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6088	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6089
6090	/*
6091	 * check for pending overflow at the time the state
6092	 * was saved.
6093	 */
6094	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6095		/*
6096		 * reload pmc0 with the overflow information
6097		 * On McKinley PMU, this will trigger a PMU interrupt
6098		 */
6099		ia64_set_pmc(0, ctx->th_pmcs[0]);
6100		ia64_srlz_d();
6101		ctx->th_pmcs[0] = 0UL;
6102
6103		/*
6104		 * will replay the PMU interrupt
6105		 */
6106		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6107
6108		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6109	}
6110
6111	/*
6112	 * we just did a reload, so we reset the partial reload fields
6113	 */
6114	ctx->ctx_reload_pmcs[0] = 0UL;
6115	ctx->ctx_reload_pmds[0] = 0UL;
6116
6117	SET_LAST_CPU(ctx, smp_processor_id());
6118
6119	/*
6120	 * dump activation value for this PMU
6121	 */
6122	INC_ACTIVATION();
6123	/*
6124	 * record current activation for this context
6125	 */
6126	SET_ACTIVATION(ctx);
6127
6128	/*
6129	 * establish new ownership. 
6130	 */
6131	SET_PMU_OWNER(task, ctx);
6132
6133	/*
6134	 * restore the psr.up bit. measurement
6135	 * is active again.
6136	 * no PMU interrupt can happen at this point
6137	 * because we still have interrupts disabled.
6138	 */
6139	if (likely(psr_up)) pfm_set_psr_up();
6140
6141	/*
6142	 * allow concurrent access to context
6143	 */
6144	pfm_unprotect_ctx_ctxsw(ctx, flags);
6145}
6146#else /*  !CONFIG_SMP */
6147/*
6148 * reload PMU state for UP kernels
6149 * in 2.5 we come here with interrupts disabled
6150 */
6151void
6152pfm_load_regs (struct task_struct *task)
6153{
6154	pfm_context_t *ctx;
6155	struct task_struct *owner;
6156	unsigned long pmd_mask, pmc_mask;
6157	u64 psr, psr_up;
6158	int need_irq_resend;
6159
6160	owner = GET_PMU_OWNER();
6161	ctx   = PFM_GET_CTX(task);
6162	psr   = pfm_get_psr();
6163
6164	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6165	BUG_ON(psr & IA64_PSR_I);
6166
6167	/*
6168	 * we restore ALL the debug registers to avoid picking up
6169	 * stale state.
6170	 *
6171	 * This must be done even when the task is still the owner
6172	 * as the registers may have been modified via ptrace()
6173	 * (not perfmon) by the previous task.
6174	 */
6175	if (ctx->ctx_fl_using_dbreg) {
6176		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6177		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6178	}
6179
6180	/*
6181	 * retrieved saved psr.up
6182	 */
6183	psr_up = ctx->ctx_saved_psr_up;
6184	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6185
6186	/*
6187	 * short path, our state is still there, just
6188	 * need to restore psr and we go
6189	 *
6190	 * we do not touch either PMC nor PMD. the psr is not touched
6191	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6192	 * concurrency even without interrupt masking.
6193	 */
6194	if (likely(owner == task)) {
6195		if (likely(psr_up)) pfm_set_psr_up();
6196		return;
6197	}
6198
6199	/*
6200	 * someone else is still using the PMU, first push it out and
6201	 * then we'll be able to install our stuff !
6202	 *
6203	 * Upon return, there will be no owner for the current PMU
6204	 */
6205	if (owner) pfm_lazy_save_regs(owner);
6206
6207	/*
6208	 * To avoid leaking information to the user level when psr.sp=0,
6209	 * we must reload ALL implemented pmds (even the ones we don't use).
6210	 * In the kernel we only allow PFM_READ_PMDS on registers which
6211	 * we initialized or requested (sampling) so there is no risk there.
6212	 */
6213	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6214
6215	/*
6216	 * ALL accessible PMCs are systematically reloaded, unused registers
6217	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6218	 * up stale configuration.
6219	 *
6220	 * PMC0 is never in the mask. It is always restored separately
6221	 */
6222	pmc_mask = ctx->ctx_all_pmcs[0];
6223
6224	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6225	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6226
6227	/*
6228	 * check for pending overflow at the time the state
6229	 * was saved.
6230	 */
6231	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6232		/*
6233		 * reload pmc0 with the overflow information
6234		 * On McKinley PMU, this will trigger a PMU interrupt
6235		 */
6236		ia64_set_pmc(0, ctx->th_pmcs[0]);
6237		ia64_srlz_d();
6238
6239		ctx->th_pmcs[0] = 0UL;
6240
6241		/*
6242		 * will replay the PMU interrupt
6243		 */
6244		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6245
6246		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6247	}
6248
6249	/*
6250	 * establish new ownership. 
6251	 */
6252	SET_PMU_OWNER(task, ctx);
6253
6254	/*
6255	 * restore the psr.up bit. measurement
6256	 * is active again.
6257	 * no PMU interrupt can happen at this point
6258	 * because we still have interrupts disabled.
6259	 */
6260	if (likely(psr_up)) pfm_set_psr_up();
6261}
6262#endif /* CONFIG_SMP */
6263
6264/*
6265 * this function assumes monitoring is stopped
6266 */
6267static void
6268pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6269{
6270	u64 pmc0;
6271	unsigned long mask2, val, pmd_val, ovfl_val;
6272	int i, can_access_pmu = 0;
6273	int is_self;
6274
6275	/*
6276	 * is the caller the task being monitored (or which initiated the
6277	 * session for system wide measurements)
6278	 */
6279	is_self = ctx->ctx_task == task ? 1 : 0;
6280
6281	/*
6282	 * can access PMU is task is the owner of the PMU state on the current CPU
6283	 * or if we are running on the CPU bound to the context in system-wide mode
6284	 * (that is not necessarily the task the context is attached to in this mode).
6285	 * In system-wide we always have can_access_pmu true because a task running on an
6286	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6287	 */
6288	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6289	if (can_access_pmu) {
6290		/*
6291		 * Mark the PMU as not owned
6292		 * This will cause the interrupt handler to do nothing in case an overflow
6293		 * interrupt was in-flight
6294		 * This also guarantees that pmc0 will contain the final state
6295		 * It virtually gives us full control on overflow processing from that point
6296		 * on.
6297		 */
6298		SET_PMU_OWNER(NULL, NULL);
6299		DPRINT(("releasing ownership\n"));
6300
6301		/*
6302		 * read current overflow status:
6303		 *
6304		 * we are guaranteed to read the final stable state
6305		 */
6306		ia64_srlz_d();
6307		pmc0 = ia64_get_pmc(0); /* slow */
6308
6309		/*
6310		 * reset freeze bit, overflow status information destroyed
6311		 */
6312		pfm_unfreeze_pmu();
6313	} else {
6314		pmc0 = ctx->th_pmcs[0];
6315		/*
6316		 * clear whatever overflow status bits there were
6317		 */
6318		ctx->th_pmcs[0] = 0;
6319	}
6320	ovfl_val = pmu_conf->ovfl_val;
6321	/*
6322	 * we save all the used pmds
6323	 * we take care of overflows for counting PMDs
6324	 *
6325	 * XXX: sampling situation is not taken into account here
6326	 */
6327	mask2 = ctx->ctx_used_pmds[0];
6328
6329	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6330
6331	for (i = 0; mask2; i++, mask2>>=1) {
6332
6333		/* skip non used pmds */
6334		if ((mask2 & 0x1) == 0) continue;
6335
6336		/*
6337		 * can access PMU always true in system wide mode
6338		 */
6339		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6340
6341		if (PMD_IS_COUNTING(i)) {
6342			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6343				task_pid_nr(task),
6344				i,
6345				ctx->ctx_pmds[i].val,
6346				val & ovfl_val));
6347
6348			/*
6349			 * we rebuild the full 64 bit value of the counter
6350			 */
6351			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6352
6353			/*
6354			 * now everything is in ctx_pmds[] and we need
6355			 * to clear the saved context from save_regs() such that
6356			 * pfm_read_pmds() gets the correct value
6357			 */
6358			pmd_val = 0UL;
6359
6360			/*
6361			 * take care of overflow inline
6362			 */
6363			if (pmc0 & (1UL << i)) {
6364				val += 1 + ovfl_val;
6365				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6366			}
6367		}
6368
6369		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6370
6371		if (is_self) ctx->th_pmds[i] = pmd_val;
6372
6373		ctx->ctx_pmds[i].val = val;
6374	}
6375}
6376
6377static struct irqaction perfmon_irqaction = {
6378	.handler = pfm_interrupt_handler,
6379	.name    = "perfmon"
6380};
6381
6382static void
6383pfm_alt_save_pmu_state(void *data)
6384{
6385	struct pt_regs *regs;
6386
6387	regs = task_pt_regs(current);
6388
6389	DPRINT(("called\n"));
6390
6391	/*
6392	 * should not be necessary but
6393	 * let's take not risk
6394	 */
6395	pfm_clear_psr_up();
6396	pfm_clear_psr_pp();
6397	ia64_psr(regs)->pp = 0;
6398
6399	/*
6400	 * This call is required
6401	 * May cause a spurious interrupt on some processors
6402	 */
6403	pfm_freeze_pmu();
6404
6405	ia64_srlz_d();
6406}
6407
6408void
6409pfm_alt_restore_pmu_state(void *data)
6410{
6411	struct pt_regs *regs;
6412
6413	regs = task_pt_regs(current);
6414
6415	DPRINT(("called\n"));
6416
6417	/*
6418	 * put PMU back in state expected
6419	 * by perfmon
6420	 */
6421	pfm_clear_psr_up();
6422	pfm_clear_psr_pp();
6423	ia64_psr(regs)->pp = 0;
6424
6425	/*
6426	 * perfmon runs with PMU unfrozen at all times
6427	 */
6428	pfm_unfreeze_pmu();
6429
6430	ia64_srlz_d();
6431}
6432
6433int
6434pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6435{
6436	int ret, i;
6437	int reserve_cpu;
6438
6439	/* some sanity checks */
6440	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6441
6442	/* do the easy test first */
6443	if (pfm_alt_intr_handler) return -EBUSY;
6444
6445	/* one at a time in the install or remove, just fail the others */
6446	if (!spin_trylock(&pfm_alt_install_check)) {
6447		return -EBUSY;
6448	}
6449
6450	/* reserve our session */
6451	for_each_online_cpu(reserve_cpu) {
6452		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6453		if (ret) goto cleanup_reserve;
6454	}
6455
6456	/* save the current system wide pmu states */
6457	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6458	if (ret) {
6459		DPRINT(("on_each_cpu() failed: %d\n", ret));
6460		goto cleanup_reserve;
6461	}
6462
6463	/* officially change to the alternate interrupt handler */
6464	pfm_alt_intr_handler = hdl;
6465
6466	spin_unlock(&pfm_alt_install_check);
6467
6468	return 0;
6469
6470cleanup_reserve:
6471	for_each_online_cpu(i) {
6472		/* don't unreserve more than we reserved */
6473		if (i >= reserve_cpu) break;
6474
6475		pfm_unreserve_session(NULL, 1, i);
6476	}
6477
6478	spin_unlock(&pfm_alt_install_check);
6479
6480	return ret;
6481}
6482EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6483
6484int
6485pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6486{
6487	int i;
6488	int ret;
6489
6490	if (hdl == NULL) return -EINVAL;
6491
6492	/* cannot remove someone else's handler! */
6493	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6494
6495	/* one at a time in the install or remove, just fail the others */
6496	if (!spin_trylock(&pfm_alt_install_check)) {
6497		return -EBUSY;
6498	}
6499
6500	pfm_alt_intr_handler = NULL;
6501
6502	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6503	if (ret) {
6504		DPRINT(("on_each_cpu() failed: %d\n", ret));
6505	}
6506
6507	for_each_online_cpu(i) {
6508		pfm_unreserve_session(NULL, 1, i);
6509	}
6510
6511	spin_unlock(&pfm_alt_install_check);
6512
6513	return 0;
6514}
6515EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6516
6517/*
6518 * perfmon initialization routine, called from the initcall() table
6519 */
6520static int init_pfm_fs(void);
6521
6522static int __init
6523pfm_probe_pmu(void)
6524{
6525	pmu_config_t **p;
6526	int family;
6527
6528	family = local_cpu_data->family;
6529	p      = pmu_confs;
6530
6531	while(*p) {
6532		if ((*p)->probe) {
6533			if ((*p)->probe() == 0) goto found;
6534		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6535			goto found;
6536		}
6537		p++;
6538	}
6539	return -1;
6540found:
6541	pmu_conf = *p;
6542	return 0;
6543}
6544
6545static const struct file_operations pfm_proc_fops = {
6546	.open		= pfm_proc_open,
6547	.read		= seq_read,
6548	.llseek		= seq_lseek,
6549	.release	= seq_release,
6550};
6551
6552int __init
6553pfm_init(void)
6554{
6555	unsigned int n, n_counters, i;
6556
6557	printk("perfmon: version %u.%u IRQ %u\n",
6558		PFM_VERSION_MAJ,
6559		PFM_VERSION_MIN,
6560		IA64_PERFMON_VECTOR);
6561
6562	if (pfm_probe_pmu()) {
6563		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6564				local_cpu_data->family);
6565		return -ENODEV;
6566	}
6567
6568	/*
6569	 * compute the number of implemented PMD/PMC from the
6570	 * description tables
6571	 */
6572	n = 0;
6573	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6574		if (PMC_IS_IMPL(i) == 0) continue;
6575		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6576		n++;
6577	}
6578	pmu_conf->num_pmcs = n;
6579
6580	n = 0; n_counters = 0;
6581	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6582		if (PMD_IS_IMPL(i) == 0) continue;
6583		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6584		n++;
6585		if (PMD_IS_COUNTING(i)) n_counters++;
6586	}
6587	pmu_conf->num_pmds      = n;
6588	pmu_conf->num_counters  = n_counters;
6589
6590	/*
6591	 * sanity checks on the number of debug registers
6592	 */
6593	if (pmu_conf->use_rr_dbregs) {
6594		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6595			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6596			pmu_conf = NULL;
6597			return -1;
6598		}
6599		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6600			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6601			pmu_conf = NULL;
6602			return -1;
6603		}
6604	}
6605
6606	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6607	       pmu_conf->pmu_name,
6608	       pmu_conf->num_pmcs,
6609	       pmu_conf->num_pmds,
6610	       pmu_conf->num_counters,
6611	       ffz(pmu_conf->ovfl_val));
6612
6613	/* sanity check */
6614	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6615		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6616		pmu_conf = NULL;
6617		return -1;
6618	}
6619
6620	/*
6621	 * create /proc/perfmon (mostly for debugging purposes)
6622	 */
6623	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6624	if (perfmon_dir == NULL) {
6625		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6626		pmu_conf = NULL;
6627		return -1;
6628	}
6629
6630	/*
6631	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6632	 */
6633	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6634
6635	/*
6636	 * initialize all our spinlocks
6637	 */
6638	spin_lock_init(&pfm_sessions.pfs_lock);
6639	spin_lock_init(&pfm_buffer_fmt_lock);
6640
6641	init_pfm_fs();
6642
6643	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6644
6645	return 0;
6646}
6647
6648__initcall(pfm_init);
6649
6650/*
6651 * this function is called before pfm_init()
6652 */
6653void
6654pfm_init_percpu (void)
6655{
6656	static int first_time=1;
6657	/*
6658	 * make sure no measurement is active
6659	 * (may inherit programmed PMCs from EFI).
6660	 */
6661	pfm_clear_psr_pp();
6662	pfm_clear_psr_up();
6663
6664	/*
6665	 * we run with the PMU not frozen at all times
6666	 */
6667	pfm_unfreeze_pmu();
6668
6669	if (first_time) {
6670		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6671		first_time=0;
6672	}
6673
6674	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6675	ia64_srlz_d();
6676}
6677
6678/*
6679 * used for debug purposes only
6680 */
6681void
6682dump_pmu_state(const char *from)
6683{
6684	struct task_struct *task;
6685	struct pt_regs *regs;
6686	pfm_context_t *ctx;
6687	unsigned long psr, dcr, info, flags;
6688	int i, this_cpu;
6689
6690	local_irq_save(flags);
6691
6692	this_cpu = smp_processor_id();
6693	regs     = task_pt_regs(current);
6694	info     = PFM_CPUINFO_GET();
6695	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6696
6697	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6698		local_irq_restore(flags);
6699		return;
6700	}
6701
6702	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6703		this_cpu, 
6704		from, 
6705		task_pid_nr(current),
6706		regs->cr_iip,
6707		current->comm);
6708
6709	task = GET_PMU_OWNER();
6710	ctx  = GET_PMU_CTX();
6711
6712	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6713
6714	psr = pfm_get_psr();
6715
6716	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6717		this_cpu,
6718		ia64_get_pmc(0),
6719		psr & IA64_PSR_PP ? 1 : 0,
6720		psr & IA64_PSR_UP ? 1 : 0,
6721		dcr & IA64_DCR_PP ? 1 : 0,
6722		info,
6723		ia64_psr(regs)->up,
6724		ia64_psr(regs)->pp);
6725
6726	ia64_psr(regs)->up = 0;
6727	ia64_psr(regs)->pp = 0;
6728
6729	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6730		if (PMC_IS_IMPL(i) == 0) continue;
6731		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6732	}
6733
6734	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6735		if (PMD_IS_IMPL(i) == 0) continue;
6736		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6737	}
6738
6739	if (ctx) {
6740		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6741				this_cpu,
6742				ctx->ctx_state,
6743				ctx->ctx_smpl_vaddr,
6744				ctx->ctx_smpl_hdr,
6745				ctx->ctx_msgq_head,
6746				ctx->ctx_msgq_tail,
6747				ctx->ctx_saved_psr_up);
6748	}
6749	local_irq_restore(flags);
6750}
6751
6752/*
6753 * called from process.c:copy_thread(). task is new child.
6754 */
6755void
6756pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6757{
6758	struct thread_struct *thread;
6759
6760	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6761
6762	thread = &task->thread;
6763
6764	/*
6765	 * cut links inherited from parent (current)
6766	 */
6767	thread->pfm_context = NULL;
6768
6769	PFM_SET_WORK_PENDING(task, 0);
6770
6771	/*
6772	 * the psr bits are already set properly in copy_threads()
6773	 */
6774}
6775#else  /* !CONFIG_PERFMON */
6776asmlinkage long
6777sys_perfmonctl (int fd, int cmd, void *arg, int count)
6778{
6779	return -ENOSYS;
6780}
6781#endif /* CONFIG_PERFMON */