Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
   3 *
   4 * This implementation does not provide ISO-TP specific return values to the
   5 * userspace.
   6 *
   7 * - RX path timeout of data reception leads to -ETIMEDOUT
   8 * - RX path SN mismatch leads to -EILSEQ
   9 * - RX path data reception with wrong padding leads to -EBADMSG
  10 * - TX path flowcontrol reception timeout leads to -ECOMM
  11 * - TX path flowcontrol reception overflow leads to -EMSGSIZE
  12 * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
  13 * - when a transfer (tx) is on the run the next write() blocks until it's done
  14 * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
  15 * - as we have static buffers the check whether the PDU fits into the buffer
  16 *   is done at FF reception time (no support for sending 'wait frames')
  17 *
  18 * Copyright (c) 2020 Volkswagen Group Electronic Research
  19 * All rights reserved.
  20 *
  21 * Redistribution and use in source and binary forms, with or without
  22 * modification, are permitted provided that the following conditions
  23 * are met:
  24 * 1. Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 * 2. Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in the
  28 *    documentation and/or other materials provided with the distribution.
  29 * 3. Neither the name of Volkswagen nor the names of its contributors
  30 *    may be used to endorse or promote products derived from this software
  31 *    without specific prior written permission.
  32 *
  33 * Alternatively, provided that this notice is retained in full, this
  34 * software may be distributed under the terms of the GNU General
  35 * Public License ("GPL") version 2, in which case the provisions of the
  36 * GPL apply INSTEAD OF those given above.
  37 *
  38 * The provided data structures and external interfaces from this code
  39 * are not restricted to be used by modules with a GPL compatible license.
  40 *
  41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  52 * DAMAGE.
  53 */
  54
  55#include <linux/module.h>
  56#include <linux/init.h>
  57#include <linux/interrupt.h>
  58#include <linux/spinlock.h>
  59#include <linux/hrtimer.h>
  60#include <linux/wait.h>
  61#include <linux/uio.h>
  62#include <linux/net.h>
  63#include <linux/netdevice.h>
  64#include <linux/socket.h>
  65#include <linux/if_arp.h>
  66#include <linux/skbuff.h>
  67#include <linux/can.h>
  68#include <linux/can/core.h>
  69#include <linux/can/skb.h>
  70#include <linux/can/isotp.h>
  71#include <linux/slab.h>
  72#include <net/sock.h>
  73#include <net/net_namespace.h>
  74
  75MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
  76MODULE_LICENSE("Dual BSD/GPL");
  77MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
  78MODULE_ALIAS("can-proto-6");
  79
  80#define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
  81
  82#define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
  83			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
  84			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
  85
  86/* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
  87 * take full 32 bit values (4 Gbyte). We would need some good concept to handle
  88 * this between user space and kernel space. For now increase the static buffer
  89 * to something about 64 kbyte to be able to test this new functionality.
  90 */
  91#define MAX_MSG_LENGTH 66000
  92
  93/* N_PCI type values in bits 7-4 of N_PCI bytes */
  94#define N_PCI_SF 0x00	/* single frame */
  95#define N_PCI_FF 0x10	/* first frame */
  96#define N_PCI_CF 0x20	/* consecutive frame */
  97#define N_PCI_FC 0x30	/* flow control */
  98
  99#define N_PCI_SZ 1	/* size of the PCI byte #1 */
 100#define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
 101#define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
 102#define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
 103#define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
 104#define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
 105
 106#define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
 107#define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
 108
 109/* Flow Status given in FC frame */
 110#define ISOTP_FC_CTS 0		/* clear to send */
 111#define ISOTP_FC_WT 1		/* wait */
 112#define ISOTP_FC_OVFLW 2	/* overflow */
 113
 114#define ISOTP_FC_TIMEOUT 1	/* 1 sec */
 115#define ISOTP_ECHO_TIMEOUT 2	/* 2 secs */
 116
 117enum {
 118	ISOTP_IDLE = 0,
 119	ISOTP_WAIT_FIRST_FC,
 120	ISOTP_WAIT_FC,
 121	ISOTP_WAIT_DATA,
 122	ISOTP_SENDING
 123};
 124
 125struct tpcon {
 126	unsigned int idx;
 127	unsigned int len;
 128	u32 state;
 129	u8 bs;
 130	u8 sn;
 131	u8 ll_dl;
 132	u8 buf[MAX_MSG_LENGTH + 1];
 133};
 134
 135struct isotp_sock {
 136	struct sock sk;
 137	int bound;
 138	int ifindex;
 139	canid_t txid;
 140	canid_t rxid;
 141	ktime_t tx_gap;
 142	ktime_t lastrxcf_tstamp;
 143	struct hrtimer rxtimer, txtimer, txfrtimer;
 144	struct can_isotp_options opt;
 145	struct can_isotp_fc_options rxfc, txfc;
 146	struct can_isotp_ll_options ll;
 147	u32 frame_txtime;
 148	u32 force_tx_stmin;
 149	u32 force_rx_stmin;
 150	u32 cfecho; /* consecutive frame echo tag */
 151	struct tpcon rx, tx;
 152	struct list_head notifier;
 153	wait_queue_head_t wait;
 154	spinlock_t rx_lock; /* protect single thread state machine */
 155};
 156
 157static LIST_HEAD(isotp_notifier_list);
 158static DEFINE_SPINLOCK(isotp_notifier_lock);
 159static struct isotp_sock *isotp_busy_notifier;
 160
 161static inline struct isotp_sock *isotp_sk(const struct sock *sk)
 162{
 163	return (struct isotp_sock *)sk;
 164}
 165
 166static u32 isotp_bc_flags(struct isotp_sock *so)
 167{
 168	return so->opt.flags & ISOTP_ALL_BC_FLAGS;
 169}
 170
 171static bool isotp_register_rxid(struct isotp_sock *so)
 172{
 173	/* no broadcast modes => register rx_id for FC frame reception */
 174	return (isotp_bc_flags(so) == 0);
 175}
 176
 177static bool isotp_register_txecho(struct isotp_sock *so)
 178{
 179	/* all modes but SF_BROADCAST register for tx echo skbs */
 180	return (isotp_bc_flags(so) != CAN_ISOTP_SF_BROADCAST);
 181}
 182
 183static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
 184{
 185	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
 186					     rxtimer);
 187	struct sock *sk = &so->sk;
 188
 189	if (so->rx.state == ISOTP_WAIT_DATA) {
 190		/* we did not get new data frames in time */
 191
 192		/* report 'connection timed out' */
 193		sk->sk_err = ETIMEDOUT;
 194		if (!sock_flag(sk, SOCK_DEAD))
 195			sk_error_report(sk);
 196
 197		/* reset rx state */
 198		so->rx.state = ISOTP_IDLE;
 199	}
 200
 201	return HRTIMER_NORESTART;
 202}
 203
 204static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
 205{
 206	struct net_device *dev;
 207	struct sk_buff *nskb;
 208	struct canfd_frame *ncf;
 209	struct isotp_sock *so = isotp_sk(sk);
 210	int can_send_ret;
 211
 212	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
 213	if (!nskb)
 214		return 1;
 215
 216	dev = dev_get_by_index(sock_net(sk), so->ifindex);
 217	if (!dev) {
 218		kfree_skb(nskb);
 219		return 1;
 220	}
 221
 222	can_skb_reserve(nskb);
 223	can_skb_prv(nskb)->ifindex = dev->ifindex;
 224	can_skb_prv(nskb)->skbcnt = 0;
 225
 226	nskb->dev = dev;
 227	can_skb_set_owner(nskb, sk);
 228	ncf = (struct canfd_frame *)nskb->data;
 229	skb_put_zero(nskb, so->ll.mtu);
 230
 231	/* create & send flow control reply */
 232	ncf->can_id = so->txid;
 233
 234	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
 235		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
 236		ncf->len = CAN_MAX_DLEN;
 237	} else {
 238		ncf->len = ae + FC_CONTENT_SZ;
 239	}
 240
 241	ncf->data[ae] = N_PCI_FC | flowstatus;
 242	ncf->data[ae + 1] = so->rxfc.bs;
 243	ncf->data[ae + 2] = so->rxfc.stmin;
 244
 245	if (ae)
 246		ncf->data[0] = so->opt.ext_address;
 247
 248	ncf->flags = so->ll.tx_flags;
 249
 250	can_send_ret = can_send(nskb, 1);
 251	if (can_send_ret)
 252		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
 253			       __func__, ERR_PTR(can_send_ret));
 254
 255	dev_put(dev);
 256
 257	/* reset blocksize counter */
 258	so->rx.bs = 0;
 259
 260	/* reset last CF frame rx timestamp for rx stmin enforcement */
 261	so->lastrxcf_tstamp = ktime_set(0, 0);
 262
 263	/* start rx timeout watchdog */
 264	hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
 265		      HRTIMER_MODE_REL_SOFT);
 266	return 0;
 267}
 268
 269static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
 270{
 271	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
 272
 273	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
 274
 275	memset(addr, 0, sizeof(*addr));
 276	addr->can_family = AF_CAN;
 277	addr->can_ifindex = skb->dev->ifindex;
 278
 279	if (sock_queue_rcv_skb(sk, skb) < 0)
 280		kfree_skb(skb);
 281}
 282
 283static u8 padlen(u8 datalen)
 284{
 285	static const u8 plen[] = {
 286		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
 287		12, 12, 12, 12,			/* 9 - 12 */
 288		16, 16, 16, 16,			/* 13 - 16 */
 289		20, 20, 20, 20,			/* 17 - 20 */
 290		24, 24, 24, 24,			/* 21 - 24 */
 291		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
 292		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
 293		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
 294	};
 295
 296	if (datalen > 48)
 297		return 64;
 298
 299	return plen[datalen];
 300}
 301
 302/* check for length optimization and return 1/true when the check fails */
 303static int check_optimized(struct canfd_frame *cf, int start_index)
 304{
 305	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
 306	 * padding would start at this point. E.g. if the padding would
 307	 * start at cf.data[7] cf->len has to be 7 to be optimal.
 308	 * Note: The data[] index starts with zero.
 309	 */
 310	if (cf->len <= CAN_MAX_DLEN)
 311		return (cf->len != start_index);
 312
 313	/* This relation is also valid in the non-linear DLC range, where
 314	 * we need to take care of the minimal next possible CAN_DL.
 315	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
 316	 * But as cf->len can only take discrete values from 12, .., 64 at this
 317	 * point the padlen(cf->len) is always equal to cf->len.
 318	 */
 319	return (cf->len != padlen(start_index));
 320}
 321
 322/* check padding and return 1/true when the check fails */
 323static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
 324		     int start_index, u8 content)
 325{
 326	int i;
 327
 328	/* no RX_PADDING value => check length of optimized frame length */
 329	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
 330		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
 331			return check_optimized(cf, start_index);
 332
 333		/* no valid test against empty value => ignore frame */
 334		return 1;
 335	}
 336
 337	/* check datalength of correctly padded CAN frame */
 338	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
 339	    cf->len != padlen(cf->len))
 340		return 1;
 341
 342	/* check padding content */
 343	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
 344		for (i = start_index; i < cf->len; i++)
 345			if (cf->data[i] != content)
 346				return 1;
 347	}
 348	return 0;
 349}
 350
 351static void isotp_send_cframe(struct isotp_sock *so);
 352
 353static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
 354{
 355	struct sock *sk = &so->sk;
 356
 357	if (so->tx.state != ISOTP_WAIT_FC &&
 358	    so->tx.state != ISOTP_WAIT_FIRST_FC)
 359		return 0;
 360
 361	hrtimer_cancel(&so->txtimer);
 362
 363	if ((cf->len < ae + FC_CONTENT_SZ) ||
 364	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
 365	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
 366		/* malformed PDU - report 'not a data message' */
 367		sk->sk_err = EBADMSG;
 368		if (!sock_flag(sk, SOCK_DEAD))
 369			sk_error_report(sk);
 370
 371		so->tx.state = ISOTP_IDLE;
 372		wake_up_interruptible(&so->wait);
 373		return 1;
 374	}
 375
 376	/* get communication parameters only from the first FC frame */
 377	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
 378		so->txfc.bs = cf->data[ae + 1];
 379		so->txfc.stmin = cf->data[ae + 2];
 380
 381		/* fix wrong STmin values according spec */
 382		if (so->txfc.stmin > 0x7F &&
 383		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
 384			so->txfc.stmin = 0x7F;
 385
 386		so->tx_gap = ktime_set(0, 0);
 387		/* add transmission time for CAN frame N_As */
 388		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
 389		/* add waiting time for consecutive frames N_Cs */
 390		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
 391			so->tx_gap = ktime_add_ns(so->tx_gap,
 392						  so->force_tx_stmin);
 393		else if (so->txfc.stmin < 0x80)
 394			so->tx_gap = ktime_add_ns(so->tx_gap,
 395						  so->txfc.stmin * 1000000);
 396		else
 397			so->tx_gap = ktime_add_ns(so->tx_gap,
 398						  (so->txfc.stmin - 0xF0)
 399						  * 100000);
 400		so->tx.state = ISOTP_WAIT_FC;
 401	}
 402
 403	switch (cf->data[ae] & 0x0F) {
 404	case ISOTP_FC_CTS:
 405		so->tx.bs = 0;
 406		so->tx.state = ISOTP_SENDING;
 407		/* send CF frame and enable echo timeout handling */
 408		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
 409			      HRTIMER_MODE_REL_SOFT);
 410		isotp_send_cframe(so);
 411		break;
 412
 413	case ISOTP_FC_WT:
 414		/* start timer to wait for next FC frame */
 415		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
 416			      HRTIMER_MODE_REL_SOFT);
 417		break;
 418
 419	case ISOTP_FC_OVFLW:
 420		/* overflow on receiver side - report 'message too long' */
 421		sk->sk_err = EMSGSIZE;
 422		if (!sock_flag(sk, SOCK_DEAD))
 423			sk_error_report(sk);
 424		fallthrough;
 425
 426	default:
 427		/* stop this tx job */
 428		so->tx.state = ISOTP_IDLE;
 429		wake_up_interruptible(&so->wait);
 430	}
 431	return 0;
 432}
 433
 434static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
 435			struct sk_buff *skb, int len)
 436{
 437	struct isotp_sock *so = isotp_sk(sk);
 438	struct sk_buff *nskb;
 439
 440	hrtimer_cancel(&so->rxtimer);
 441	so->rx.state = ISOTP_IDLE;
 442
 443	if (!len || len > cf->len - pcilen)
 444		return 1;
 445
 446	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
 447	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
 448		/* malformed PDU - report 'not a data message' */
 449		sk->sk_err = EBADMSG;
 450		if (!sock_flag(sk, SOCK_DEAD))
 451			sk_error_report(sk);
 452		return 1;
 453	}
 454
 455	nskb = alloc_skb(len, gfp_any());
 456	if (!nskb)
 457		return 1;
 458
 459	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
 460
 461	nskb->tstamp = skb->tstamp;
 462	nskb->dev = skb->dev;
 463	isotp_rcv_skb(nskb, sk);
 464	return 0;
 465}
 466
 467static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
 468{
 469	struct isotp_sock *so = isotp_sk(sk);
 470	int i;
 471	int off;
 472	int ff_pci_sz;
 473
 474	hrtimer_cancel(&so->rxtimer);
 475	so->rx.state = ISOTP_IDLE;
 476
 477	/* get the used sender LL_DL from the (first) CAN frame data length */
 478	so->rx.ll_dl = padlen(cf->len);
 479
 480	/* the first frame has to use the entire frame up to LL_DL length */
 481	if (cf->len != so->rx.ll_dl)
 482		return 1;
 483
 484	/* get the FF_DL */
 485	so->rx.len = (cf->data[ae] & 0x0F) << 8;
 486	so->rx.len += cf->data[ae + 1];
 487
 488	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
 489	if (so->rx.len) {
 490		ff_pci_sz = FF_PCI_SZ12;
 491	} else {
 492		/* FF_DL = 0 => get real length from next 4 bytes */
 493		so->rx.len = cf->data[ae + 2] << 24;
 494		so->rx.len += cf->data[ae + 3] << 16;
 495		so->rx.len += cf->data[ae + 4] << 8;
 496		so->rx.len += cf->data[ae + 5];
 497		ff_pci_sz = FF_PCI_SZ32;
 498	}
 499
 500	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
 501	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
 502
 503	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
 504		return 1;
 505
 506	if (so->rx.len > MAX_MSG_LENGTH) {
 507		/* send FC frame with overflow status */
 508		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
 509		return 1;
 510	}
 511
 512	/* copy the first received data bytes */
 513	so->rx.idx = 0;
 514	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
 515		so->rx.buf[so->rx.idx++] = cf->data[i];
 516
 517	/* initial setup for this pdu reception */
 518	so->rx.sn = 1;
 519	so->rx.state = ISOTP_WAIT_DATA;
 520
 521	/* no creation of flow control frames */
 522	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
 523		return 0;
 524
 525	/* send our first FC frame */
 526	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
 527	return 0;
 528}
 529
 530static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
 531			struct sk_buff *skb)
 532{
 533	struct isotp_sock *so = isotp_sk(sk);
 534	struct sk_buff *nskb;
 535	int i;
 536
 537	if (so->rx.state != ISOTP_WAIT_DATA)
 538		return 0;
 539
 540	/* drop if timestamp gap is less than force_rx_stmin nano secs */
 541	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
 542		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
 543		    so->force_rx_stmin)
 544			return 0;
 545
 546		so->lastrxcf_tstamp = skb->tstamp;
 547	}
 548
 549	hrtimer_cancel(&so->rxtimer);
 550
 551	/* CFs are never longer than the FF */
 552	if (cf->len > so->rx.ll_dl)
 553		return 1;
 554
 555	/* CFs have usually the LL_DL length */
 556	if (cf->len < so->rx.ll_dl) {
 557		/* this is only allowed for the last CF */
 558		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
 559			return 1;
 560	}
 561
 562	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
 563		/* wrong sn detected - report 'illegal byte sequence' */
 564		sk->sk_err = EILSEQ;
 565		if (!sock_flag(sk, SOCK_DEAD))
 566			sk_error_report(sk);
 567
 568		/* reset rx state */
 569		so->rx.state = ISOTP_IDLE;
 570		return 1;
 571	}
 572	so->rx.sn++;
 573	so->rx.sn %= 16;
 574
 575	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
 576		so->rx.buf[so->rx.idx++] = cf->data[i];
 577		if (so->rx.idx >= so->rx.len)
 578			break;
 579	}
 580
 581	if (so->rx.idx >= so->rx.len) {
 582		/* we are done */
 583		so->rx.state = ISOTP_IDLE;
 584
 585		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
 586		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
 587			/* malformed PDU - report 'not a data message' */
 588			sk->sk_err = EBADMSG;
 589			if (!sock_flag(sk, SOCK_DEAD))
 590				sk_error_report(sk);
 591			return 1;
 592		}
 593
 594		nskb = alloc_skb(so->rx.len, gfp_any());
 595		if (!nskb)
 596			return 1;
 597
 598		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
 599		       so->rx.len);
 600
 601		nskb->tstamp = skb->tstamp;
 602		nskb->dev = skb->dev;
 603		isotp_rcv_skb(nskb, sk);
 604		return 0;
 605	}
 606
 607	/* perform blocksize handling, if enabled */
 608	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
 609		/* start rx timeout watchdog */
 610		hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
 611			      HRTIMER_MODE_REL_SOFT);
 612		return 0;
 613	}
 614
 615	/* no creation of flow control frames */
 616	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
 617		return 0;
 618
 619	/* we reached the specified blocksize so->rxfc.bs */
 620	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
 621	return 0;
 622}
 623
 624static void isotp_rcv(struct sk_buff *skb, void *data)
 625{
 626	struct sock *sk = (struct sock *)data;
 627	struct isotp_sock *so = isotp_sk(sk);
 628	struct canfd_frame *cf;
 629	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
 630	u8 n_pci_type, sf_dl;
 631
 632	/* Strictly receive only frames with the configured MTU size
 633	 * => clear separation of CAN2.0 / CAN FD transport channels
 634	 */
 635	if (skb->len != so->ll.mtu)
 636		return;
 637
 638	cf = (struct canfd_frame *)skb->data;
 639
 640	/* if enabled: check reception of my configured extended address */
 641	if (ae && cf->data[0] != so->opt.rx_ext_address)
 642		return;
 643
 644	n_pci_type = cf->data[ae] & 0xF0;
 645
 646	/* Make sure the state changes and data structures stay consistent at
 647	 * CAN frame reception time. This locking is not needed in real world
 648	 * use cases but the inconsistency can be triggered with syzkaller.
 649	 */
 650	spin_lock(&so->rx_lock);
 651
 652	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
 653		/* check rx/tx path half duplex expectations */
 654		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
 655		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
 656			goto out_unlock;
 657	}
 658
 659	switch (n_pci_type) {
 660	case N_PCI_FC:
 661		/* tx path: flow control frame containing the FC parameters */
 662		isotp_rcv_fc(so, cf, ae);
 663		break;
 664
 665	case N_PCI_SF:
 666		/* rx path: single frame
 667		 *
 668		 * As we do not have a rx.ll_dl configuration, we can only test
 669		 * if the CAN frames payload length matches the LL_DL == 8
 670		 * requirements - no matter if it's CAN 2.0 or CAN FD
 671		 */
 672
 673		/* get the SF_DL from the N_PCI byte */
 674		sf_dl = cf->data[ae] & 0x0F;
 675
 676		if (cf->len <= CAN_MAX_DLEN) {
 677			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
 678		} else {
 679			if (can_is_canfd_skb(skb)) {
 680				/* We have a CAN FD frame and CAN_DL is greater than 8:
 681				 * Only frames with the SF_DL == 0 ESC value are valid.
 682				 *
 683				 * If so take care of the increased SF PCI size
 684				 * (SF_PCI_SZ8) to point to the message content behind
 685				 * the extended SF PCI info and get the real SF_DL
 686				 * length value from the formerly first data byte.
 687				 */
 688				if (sf_dl == 0)
 689					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
 690						     cf->data[SF_PCI_SZ4 + ae]);
 691			}
 692		}
 693		break;
 694
 695	case N_PCI_FF:
 696		/* rx path: first frame */
 697		isotp_rcv_ff(sk, cf, ae);
 698		break;
 699
 700	case N_PCI_CF:
 701		/* rx path: consecutive frame */
 702		isotp_rcv_cf(sk, cf, ae, skb);
 703		break;
 704	}
 705
 706out_unlock:
 707	spin_unlock(&so->rx_lock);
 708}
 709
 710static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
 711				 int ae, int off)
 712{
 713	int pcilen = N_PCI_SZ + ae + off;
 714	int space = so->tx.ll_dl - pcilen;
 715	int num = min_t(int, so->tx.len - so->tx.idx, space);
 716	int i;
 717
 718	cf->can_id = so->txid;
 719	cf->len = num + pcilen;
 720
 721	if (num < space) {
 722		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
 723			/* user requested padding */
 724			cf->len = padlen(cf->len);
 725			memset(cf->data, so->opt.txpad_content, cf->len);
 726		} else if (cf->len > CAN_MAX_DLEN) {
 727			/* mandatory padding for CAN FD frames */
 728			cf->len = padlen(cf->len);
 729			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
 730			       cf->len);
 731		}
 732	}
 733
 734	for (i = 0; i < num; i++)
 735		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
 736
 737	if (ae)
 738		cf->data[0] = so->opt.ext_address;
 739}
 740
 741static void isotp_send_cframe(struct isotp_sock *so)
 742{
 743	struct sock *sk = &so->sk;
 744	struct sk_buff *skb;
 745	struct net_device *dev;
 746	struct canfd_frame *cf;
 747	int can_send_ret;
 748	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
 749
 750	dev = dev_get_by_index(sock_net(sk), so->ifindex);
 751	if (!dev)
 752		return;
 753
 754	skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
 755	if (!skb) {
 756		dev_put(dev);
 757		return;
 758	}
 759
 760	can_skb_reserve(skb);
 761	can_skb_prv(skb)->ifindex = dev->ifindex;
 762	can_skb_prv(skb)->skbcnt = 0;
 763
 764	cf = (struct canfd_frame *)skb->data;
 765	skb_put_zero(skb, so->ll.mtu);
 766
 767	/* create consecutive frame */
 768	isotp_fill_dataframe(cf, so, ae, 0);
 769
 770	/* place consecutive frame N_PCI in appropriate index */
 771	cf->data[ae] = N_PCI_CF | so->tx.sn++;
 772	so->tx.sn %= 16;
 773	so->tx.bs++;
 774
 775	cf->flags = so->ll.tx_flags;
 776
 777	skb->dev = dev;
 778	can_skb_set_owner(skb, sk);
 779
 780	/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
 781	if (so->cfecho)
 782		pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
 783
 784	/* set consecutive frame echo tag */
 785	so->cfecho = *(u32 *)cf->data;
 786
 787	/* send frame with local echo enabled */
 788	can_send_ret = can_send(skb, 1);
 789	if (can_send_ret) {
 790		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
 791			       __func__, ERR_PTR(can_send_ret));
 792		if (can_send_ret == -ENOBUFS)
 793			pr_notice_once("can-isotp: tx queue is full\n");
 794	}
 795	dev_put(dev);
 796}
 797
 798static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
 799				int ae)
 800{
 801	int i;
 802	int ff_pci_sz;
 803
 804	cf->can_id = so->txid;
 805	cf->len = so->tx.ll_dl;
 806	if (ae)
 807		cf->data[0] = so->opt.ext_address;
 808
 809	/* create N_PCI bytes with 12/32 bit FF_DL data length */
 810	if (so->tx.len > 4095) {
 811		/* use 32 bit FF_DL notation */
 812		cf->data[ae] = N_PCI_FF;
 813		cf->data[ae + 1] = 0;
 814		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
 815		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
 816		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
 817		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
 818		ff_pci_sz = FF_PCI_SZ32;
 819	} else {
 820		/* use 12 bit FF_DL notation */
 821		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
 822		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
 823		ff_pci_sz = FF_PCI_SZ12;
 824	}
 825
 826	/* add first data bytes depending on ae */
 827	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
 828		cf->data[i] = so->tx.buf[so->tx.idx++];
 829
 830	so->tx.sn = 1;
 831}
 832
 833static void isotp_rcv_echo(struct sk_buff *skb, void *data)
 834{
 835	struct sock *sk = (struct sock *)data;
 836	struct isotp_sock *so = isotp_sk(sk);
 837	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 838
 839	/* only handle my own local echo CF/SF skb's (no FF!) */
 840	if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
 841		return;
 842
 843	/* cancel local echo timeout */
 844	hrtimer_cancel(&so->txtimer);
 845
 846	/* local echo skb with consecutive frame has been consumed */
 847	so->cfecho = 0;
 848
 849	if (so->tx.idx >= so->tx.len) {
 850		/* we are done */
 851		so->tx.state = ISOTP_IDLE;
 852		wake_up_interruptible(&so->wait);
 853		return;
 854	}
 855
 856	if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
 857		/* stop and wait for FC with timeout */
 858		so->tx.state = ISOTP_WAIT_FC;
 859		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
 860			      HRTIMER_MODE_REL_SOFT);
 861		return;
 862	}
 863
 864	/* no gap between data frames needed => use burst mode */
 865	if (!so->tx_gap) {
 866		/* enable echo timeout handling */
 867		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
 868			      HRTIMER_MODE_REL_SOFT);
 869		isotp_send_cframe(so);
 870		return;
 871	}
 872
 873	/* start timer to send next consecutive frame with correct delay */
 874	hrtimer_start(&so->txfrtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
 875}
 876
 877static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
 878{
 879	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
 880					     txtimer);
 881	struct sock *sk = &so->sk;
 882
 883	/* don't handle timeouts in IDLE state */
 884	if (so->tx.state == ISOTP_IDLE)
 885		return HRTIMER_NORESTART;
 886
 887	/* we did not get any flow control or echo frame in time */
 888
 889	/* report 'communication error on send' */
 890	sk->sk_err = ECOMM;
 891	if (!sock_flag(sk, SOCK_DEAD))
 892		sk_error_report(sk);
 893
 894	/* reset tx state */
 895	so->tx.state = ISOTP_IDLE;
 896	wake_up_interruptible(&so->wait);
 897
 898	return HRTIMER_NORESTART;
 899}
 900
 901static enum hrtimer_restart isotp_txfr_timer_handler(struct hrtimer *hrtimer)
 902{
 903	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
 904					     txfrtimer);
 905
 906	/* start echo timeout handling and cover below protocol error */
 907	hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
 908		      HRTIMER_MODE_REL_SOFT);
 909
 910	/* cfecho should be consumed by isotp_rcv_echo() here */
 911	if (so->tx.state == ISOTP_SENDING && !so->cfecho)
 912		isotp_send_cframe(so);
 913
 914	return HRTIMER_NORESTART;
 915}
 916
 917static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 918{
 919	struct sock *sk = sock->sk;
 920	struct isotp_sock *so = isotp_sk(sk);
 921	u32 old_state = so->tx.state;
 922	struct sk_buff *skb;
 923	struct net_device *dev;
 924	struct canfd_frame *cf;
 925	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
 926	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
 927	s64 hrtimer_sec = ISOTP_ECHO_TIMEOUT;
 928	int off;
 929	int err;
 930
 931	if (!so->bound)
 932		return -EADDRNOTAVAIL;
 933
 934	/* we do not support multiple buffers - for now */
 935	if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
 936	    wq_has_sleeper(&so->wait)) {
 937		if (msg->msg_flags & MSG_DONTWAIT) {
 938			err = -EAGAIN;
 939			goto err_out;
 940		}
 941
 942		/* wait for complete transmission of current pdu */
 943		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
 944		if (err)
 945			goto err_out;
 946
 947		so->tx.state = ISOTP_SENDING;
 948	}
 949
 950	if (!size || size > MAX_MSG_LENGTH) {
 951		err = -EINVAL;
 952		goto err_out_drop;
 953	}
 954
 955	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
 956	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
 957
 958	/* does the given data fit into a single frame for SF_BROADCAST? */
 959	if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
 960	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
 961		err = -EINVAL;
 962		goto err_out_drop;
 963	}
 964
 965	err = memcpy_from_msg(so->tx.buf, msg, size);
 966	if (err < 0)
 967		goto err_out_drop;
 968
 969	dev = dev_get_by_index(sock_net(sk), so->ifindex);
 970	if (!dev) {
 971		err = -ENXIO;
 972		goto err_out_drop;
 973	}
 974
 975	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
 976				  msg->msg_flags & MSG_DONTWAIT, &err);
 977	if (!skb) {
 978		dev_put(dev);
 979		goto err_out_drop;
 980	}
 981
 982	can_skb_reserve(skb);
 983	can_skb_prv(skb)->ifindex = dev->ifindex;
 984	can_skb_prv(skb)->skbcnt = 0;
 985
 986	so->tx.len = size;
 987	so->tx.idx = 0;
 988
 989	cf = (struct canfd_frame *)skb->data;
 990	skb_put_zero(skb, so->ll.mtu);
 991
 992	/* cfecho should have been zero'ed by init / former isotp_rcv_echo() */
 993	if (so->cfecho)
 994		pr_notice_once("can-isotp: uninit cfecho %08X\n", so->cfecho);
 995
 996	/* check for single frame transmission depending on TX_DL */
 997	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
 998		/* The message size generally fits into a SingleFrame - good.
 999		 *
1000		 * SF_DL ESC offset optimization:
1001		 *
1002		 * When TX_DL is greater 8 but the message would still fit
1003		 * into a 8 byte CAN frame, we can omit the offset.
1004		 * This prevents a protocol caused length extension from
1005		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
1006		 */
1007		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1008			off = 0;
1009
1010		isotp_fill_dataframe(cf, so, ae, off);
1011
1012		/* place single frame N_PCI w/o length in appropriate index */
1013		cf->data[ae] = N_PCI_SF;
1014
1015		/* place SF_DL size value depending on the SF_DL ESC offset */
1016		if (off)
1017			cf->data[SF_PCI_SZ4 + ae] = size;
1018		else
1019			cf->data[ae] |= size;
1020
1021		/* set CF echo tag for isotp_rcv_echo() (SF-mode) */
1022		so->cfecho = *(u32 *)cf->data;
1023	} else {
1024		/* send first frame */
1025
1026		isotp_create_fframe(cf, so, ae);
1027
1028		if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1029			/* set timer for FC-less operation (STmin = 0) */
1030			if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1031				so->tx_gap = ktime_set(0, so->force_tx_stmin);
1032			else
1033				so->tx_gap = ktime_set(0, so->frame_txtime);
1034
1035			/* disable wait for FCs due to activated block size */
1036			so->txfc.bs = 0;
1037
1038			/* set CF echo tag for isotp_rcv_echo() (CF-mode) */
1039			so->cfecho = *(u32 *)cf->data;
1040		} else {
1041			/* standard flow control check */
1042			so->tx.state = ISOTP_WAIT_FIRST_FC;
1043
1044			/* start timeout for FC */
1045			hrtimer_sec = ISOTP_FC_TIMEOUT;
1046
1047			/* no CF echo tag for isotp_rcv_echo() (FF-mode) */
1048			so->cfecho = 0;
1049		}
1050	}
1051
1052	hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1053		      HRTIMER_MODE_REL_SOFT);
1054
1055	/* send the first or only CAN frame */
1056	cf->flags = so->ll.tx_flags;
1057
1058	skb->dev = dev;
1059	skb->sk = sk;
1060	err = can_send(skb, 1);
1061	dev_put(dev);
1062	if (err) {
1063		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1064			       __func__, ERR_PTR(err));
1065
1066		/* no transmission -> no timeout monitoring */
1067		hrtimer_cancel(&so->txtimer);
1068
1069		/* reset consecutive frame echo tag */
1070		so->cfecho = 0;
1071
1072		goto err_out_drop;
1073	}
1074
1075	if (wait_tx_done) {
1076		/* wait for complete transmission of current pdu */
1077		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1078
1079		if (sk->sk_err)
1080			return -sk->sk_err;
1081	}
1082
1083	return size;
1084
1085err_out_drop:
1086	/* drop this PDU and unlock a potential wait queue */
1087	old_state = ISOTP_IDLE;
1088err_out:
1089	so->tx.state = old_state;
1090	if (so->tx.state == ISOTP_IDLE)
1091		wake_up_interruptible(&so->wait);
1092
1093	return err;
1094}
1095
1096static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1097			 int flags)
1098{
1099	struct sock *sk = sock->sk;
1100	struct sk_buff *skb;
1101	struct isotp_sock *so = isotp_sk(sk);
1102	int ret = 0;
1103
1104	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1105		return -EINVAL;
1106
1107	if (!so->bound)
1108		return -EADDRNOTAVAIL;
1109
1110	skb = skb_recv_datagram(sk, flags, &ret);
1111	if (!skb)
1112		return ret;
1113
1114	if (size < skb->len)
1115		msg->msg_flags |= MSG_TRUNC;
1116	else
1117		size = skb->len;
1118
1119	ret = memcpy_to_msg(msg, skb->data, size);
1120	if (ret < 0)
1121		goto out_err;
1122
1123	sock_recv_timestamp(msg, sk, skb);
1124
1125	if (msg->msg_name) {
1126		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1127		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1128		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1129	}
1130
1131	/* set length of return value */
1132	ret = (flags & MSG_TRUNC) ? skb->len : size;
1133
1134out_err:
1135	skb_free_datagram(sk, skb);
1136
1137	return ret;
1138}
1139
1140static int isotp_release(struct socket *sock)
1141{
1142	struct sock *sk = sock->sk;
1143	struct isotp_sock *so;
1144	struct net *net;
1145
1146	if (!sk)
1147		return 0;
1148
1149	so = isotp_sk(sk);
1150	net = sock_net(sk);
1151
1152	/* wait for complete transmission of current pdu */
1153	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1154
1155	/* force state machines to be idle also when a signal occurred */
1156	so->tx.state = ISOTP_IDLE;
1157	so->rx.state = ISOTP_IDLE;
1158
1159	spin_lock(&isotp_notifier_lock);
1160	while (isotp_busy_notifier == so) {
1161		spin_unlock(&isotp_notifier_lock);
1162		schedule_timeout_uninterruptible(1);
1163		spin_lock(&isotp_notifier_lock);
1164	}
1165	list_del(&so->notifier);
1166	spin_unlock(&isotp_notifier_lock);
1167
1168	lock_sock(sk);
1169
1170	/* remove current filters & unregister */
1171	if (so->bound && isotp_register_txecho(so)) {
1172		if (so->ifindex) {
1173			struct net_device *dev;
1174
1175			dev = dev_get_by_index(net, so->ifindex);
1176			if (dev) {
1177				if (isotp_register_rxid(so))
1178					can_rx_unregister(net, dev, so->rxid,
1179							  SINGLE_MASK(so->rxid),
1180							  isotp_rcv, sk);
1181
1182				can_rx_unregister(net, dev, so->txid,
1183						  SINGLE_MASK(so->txid),
1184						  isotp_rcv_echo, sk);
1185				dev_put(dev);
1186				synchronize_rcu();
1187			}
1188		}
1189	}
1190
1191	hrtimer_cancel(&so->txfrtimer);
1192	hrtimer_cancel(&so->txtimer);
1193	hrtimer_cancel(&so->rxtimer);
1194
1195	so->ifindex = 0;
1196	so->bound = 0;
1197
1198	sock_orphan(sk);
1199	sock->sk = NULL;
1200
1201	release_sock(sk);
1202	sock_put(sk);
1203
1204	return 0;
1205}
1206
1207static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1208{
1209	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1210	struct sock *sk = sock->sk;
1211	struct isotp_sock *so = isotp_sk(sk);
1212	struct net *net = sock_net(sk);
1213	int ifindex;
1214	struct net_device *dev;
1215	canid_t tx_id = addr->can_addr.tp.tx_id;
1216	canid_t rx_id = addr->can_addr.tp.rx_id;
1217	int err = 0;
1218	int notify_enetdown = 0;
1219
1220	if (len < ISOTP_MIN_NAMELEN)
1221		return -EINVAL;
1222
1223	/* sanitize tx CAN identifier */
1224	if (tx_id & CAN_EFF_FLAG)
1225		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1226	else
1227		tx_id &= CAN_SFF_MASK;
1228
1229	/* give feedback on wrong CAN-ID value */
1230	if (tx_id != addr->can_addr.tp.tx_id)
1231		return -EINVAL;
1232
1233	/* sanitize rx CAN identifier (if needed) */
1234	if (isotp_register_rxid(so)) {
1235		if (rx_id & CAN_EFF_FLAG)
1236			rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1237		else
1238			rx_id &= CAN_SFF_MASK;
1239
1240		/* give feedback on wrong CAN-ID value */
1241		if (rx_id != addr->can_addr.tp.rx_id)
1242			return -EINVAL;
1243	}
1244
1245	if (!addr->can_ifindex)
1246		return -ENODEV;
1247
1248	lock_sock(sk);
1249
1250	if (so->bound) {
1251		err = -EINVAL;
1252		goto out;
1253	}
1254
1255	/* ensure different CAN IDs when the rx_id is to be registered */
1256	if (isotp_register_rxid(so) && rx_id == tx_id) {
1257		err = -EADDRNOTAVAIL;
1258		goto out;
1259	}
1260
1261	dev = dev_get_by_index(net, addr->can_ifindex);
1262	if (!dev) {
1263		err = -ENODEV;
1264		goto out;
1265	}
1266	if (dev->type != ARPHRD_CAN) {
1267		dev_put(dev);
1268		err = -ENODEV;
1269		goto out;
1270	}
1271	if (dev->mtu < so->ll.mtu) {
1272		dev_put(dev);
1273		err = -EINVAL;
1274		goto out;
1275	}
1276	if (!(dev->flags & IFF_UP))
1277		notify_enetdown = 1;
1278
1279	ifindex = dev->ifindex;
1280
1281	if (isotp_register_rxid(so))
1282		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1283				isotp_rcv, sk, "isotp", sk);
1284
1285	if (isotp_register_txecho(so)) {
1286		/* no consecutive frame echo skb in flight */
1287		so->cfecho = 0;
1288
1289		/* register for echo skb's */
1290		can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1291				isotp_rcv_echo, sk, "isotpe", sk);
1292	}
1293
1294	dev_put(dev);
1295
1296	/* switch to new settings */
1297	so->ifindex = ifindex;
1298	so->rxid = rx_id;
1299	so->txid = tx_id;
1300	so->bound = 1;
1301
1302out:
1303	release_sock(sk);
1304
1305	if (notify_enetdown) {
1306		sk->sk_err = ENETDOWN;
1307		if (!sock_flag(sk, SOCK_DEAD))
1308			sk_error_report(sk);
1309	}
1310
1311	return err;
1312}
1313
1314static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1315{
1316	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1317	struct sock *sk = sock->sk;
1318	struct isotp_sock *so = isotp_sk(sk);
1319
1320	if (peer)
1321		return -EOPNOTSUPP;
1322
1323	memset(addr, 0, ISOTP_MIN_NAMELEN);
1324	addr->can_family = AF_CAN;
1325	addr->can_ifindex = so->ifindex;
1326	addr->can_addr.tp.rx_id = so->rxid;
1327	addr->can_addr.tp.tx_id = so->txid;
1328
1329	return ISOTP_MIN_NAMELEN;
1330}
1331
1332static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1333			    sockptr_t optval, unsigned int optlen)
1334{
1335	struct sock *sk = sock->sk;
1336	struct isotp_sock *so = isotp_sk(sk);
1337	int ret = 0;
1338
1339	if (so->bound)
1340		return -EISCONN;
1341
1342	switch (optname) {
1343	case CAN_ISOTP_OPTS:
1344		if (optlen != sizeof(struct can_isotp_options))
1345			return -EINVAL;
1346
1347		if (copy_from_sockptr(&so->opt, optval, optlen))
1348			return -EFAULT;
1349
1350		/* no separate rx_ext_address is given => use ext_address */
1351		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1352			so->opt.rx_ext_address = so->opt.ext_address;
1353
1354		/* these broadcast flags are not allowed together */
1355		if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1356			/* CAN_ISOTP_SF_BROADCAST is prioritized */
1357			so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1358
1359			/* give user feedback on wrong config attempt */
1360			ret = -EINVAL;
1361		}
1362
1363		/* check for frame_txtime changes (0 => no changes) */
1364		if (so->opt.frame_txtime) {
1365			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1366				so->frame_txtime = 0;
1367			else
1368				so->frame_txtime = so->opt.frame_txtime;
1369		}
1370		break;
1371
1372	case CAN_ISOTP_RECV_FC:
1373		if (optlen != sizeof(struct can_isotp_fc_options))
1374			return -EINVAL;
1375
1376		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1377			return -EFAULT;
1378		break;
1379
1380	case CAN_ISOTP_TX_STMIN:
1381		if (optlen != sizeof(u32))
1382			return -EINVAL;
1383
1384		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1385			return -EFAULT;
1386		break;
1387
1388	case CAN_ISOTP_RX_STMIN:
1389		if (optlen != sizeof(u32))
1390			return -EINVAL;
1391
1392		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1393			return -EFAULT;
1394		break;
1395
1396	case CAN_ISOTP_LL_OPTS:
1397		if (optlen == sizeof(struct can_isotp_ll_options)) {
1398			struct can_isotp_ll_options ll;
1399
1400			if (copy_from_sockptr(&ll, optval, optlen))
1401				return -EFAULT;
1402
1403			/* check for correct ISO 11898-1 DLC data length */
1404			if (ll.tx_dl != padlen(ll.tx_dl))
1405				return -EINVAL;
1406
1407			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1408				return -EINVAL;
1409
1410			if (ll.mtu == CAN_MTU &&
1411			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1412				return -EINVAL;
1413
1414			memcpy(&so->ll, &ll, sizeof(ll));
1415
1416			/* set ll_dl for tx path to similar place as for rx */
1417			so->tx.ll_dl = ll.tx_dl;
1418		} else {
1419			return -EINVAL;
1420		}
1421		break;
1422
1423	default:
1424		ret = -ENOPROTOOPT;
1425	}
1426
1427	return ret;
1428}
1429
1430static int isotp_setsockopt(struct socket *sock, int level, int optname,
1431			    sockptr_t optval, unsigned int optlen)
1432
1433{
1434	struct sock *sk = sock->sk;
1435	int ret;
1436
1437	if (level != SOL_CAN_ISOTP)
1438		return -EINVAL;
1439
1440	lock_sock(sk);
1441	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1442	release_sock(sk);
1443	return ret;
1444}
1445
1446static int isotp_getsockopt(struct socket *sock, int level, int optname,
1447			    char __user *optval, int __user *optlen)
1448{
1449	struct sock *sk = sock->sk;
1450	struct isotp_sock *so = isotp_sk(sk);
1451	int len;
1452	void *val;
1453
1454	if (level != SOL_CAN_ISOTP)
1455		return -EINVAL;
1456	if (get_user(len, optlen))
1457		return -EFAULT;
1458	if (len < 0)
1459		return -EINVAL;
1460
1461	switch (optname) {
1462	case CAN_ISOTP_OPTS:
1463		len = min_t(int, len, sizeof(struct can_isotp_options));
1464		val = &so->opt;
1465		break;
1466
1467	case CAN_ISOTP_RECV_FC:
1468		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1469		val = &so->rxfc;
1470		break;
1471
1472	case CAN_ISOTP_TX_STMIN:
1473		len = min_t(int, len, sizeof(u32));
1474		val = &so->force_tx_stmin;
1475		break;
1476
1477	case CAN_ISOTP_RX_STMIN:
1478		len = min_t(int, len, sizeof(u32));
1479		val = &so->force_rx_stmin;
1480		break;
1481
1482	case CAN_ISOTP_LL_OPTS:
1483		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1484		val = &so->ll;
1485		break;
1486
1487	default:
1488		return -ENOPROTOOPT;
1489	}
1490
1491	if (put_user(len, optlen))
1492		return -EFAULT;
1493	if (copy_to_user(optval, val, len))
1494		return -EFAULT;
1495	return 0;
1496}
1497
1498static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1499			 struct net_device *dev)
1500{
1501	struct sock *sk = &so->sk;
1502
1503	if (!net_eq(dev_net(dev), sock_net(sk)))
1504		return;
1505
1506	if (so->ifindex != dev->ifindex)
1507		return;
1508
1509	switch (msg) {
1510	case NETDEV_UNREGISTER:
1511		lock_sock(sk);
1512		/* remove current filters & unregister */
1513		if (so->bound && isotp_register_txecho(so)) {
1514			if (isotp_register_rxid(so))
1515				can_rx_unregister(dev_net(dev), dev, so->rxid,
1516						  SINGLE_MASK(so->rxid),
1517						  isotp_rcv, sk);
1518
1519			can_rx_unregister(dev_net(dev), dev, so->txid,
1520					  SINGLE_MASK(so->txid),
1521					  isotp_rcv_echo, sk);
1522		}
1523
1524		so->ifindex = 0;
1525		so->bound  = 0;
1526		release_sock(sk);
1527
1528		sk->sk_err = ENODEV;
1529		if (!sock_flag(sk, SOCK_DEAD))
1530			sk_error_report(sk);
1531		break;
1532
1533	case NETDEV_DOWN:
1534		sk->sk_err = ENETDOWN;
1535		if (!sock_flag(sk, SOCK_DEAD))
1536			sk_error_report(sk);
1537		break;
1538	}
1539}
1540
1541static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1542			  void *ptr)
1543{
1544	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1545
1546	if (dev->type != ARPHRD_CAN)
1547		return NOTIFY_DONE;
1548	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1549		return NOTIFY_DONE;
1550	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1551		return NOTIFY_DONE;
1552
1553	spin_lock(&isotp_notifier_lock);
1554	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1555		spin_unlock(&isotp_notifier_lock);
1556		isotp_notify(isotp_busy_notifier, msg, dev);
1557		spin_lock(&isotp_notifier_lock);
1558	}
1559	isotp_busy_notifier = NULL;
1560	spin_unlock(&isotp_notifier_lock);
1561	return NOTIFY_DONE;
1562}
1563
1564static int isotp_init(struct sock *sk)
1565{
1566	struct isotp_sock *so = isotp_sk(sk);
1567
1568	so->ifindex = 0;
1569	so->bound = 0;
1570
1571	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1572	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1573	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1574	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1575	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1576	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1577	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1578	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1579	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1580	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1581	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1582	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1583	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1584
1585	/* set ll_dl for tx path to similar place as for rx */
1586	so->tx.ll_dl = so->ll.tx_dl;
1587
1588	so->rx.state = ISOTP_IDLE;
1589	so->tx.state = ISOTP_IDLE;
1590
1591	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1592	so->rxtimer.function = isotp_rx_timer_handler;
1593	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1594	so->txtimer.function = isotp_tx_timer_handler;
1595	hrtimer_init(&so->txfrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1596	so->txfrtimer.function = isotp_txfr_timer_handler;
1597
1598	init_waitqueue_head(&so->wait);
1599	spin_lock_init(&so->rx_lock);
1600
1601	spin_lock(&isotp_notifier_lock);
1602	list_add_tail(&so->notifier, &isotp_notifier_list);
1603	spin_unlock(&isotp_notifier_lock);
1604
1605	return 0;
1606}
1607
1608static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1609				  unsigned long arg)
1610{
1611	/* no ioctls for socket layer -> hand it down to NIC layer */
1612	return -ENOIOCTLCMD;
1613}
1614
1615static const struct proto_ops isotp_ops = {
1616	.family = PF_CAN,
1617	.release = isotp_release,
1618	.bind = isotp_bind,
1619	.connect = sock_no_connect,
1620	.socketpair = sock_no_socketpair,
1621	.accept = sock_no_accept,
1622	.getname = isotp_getname,
1623	.poll = datagram_poll,
1624	.ioctl = isotp_sock_no_ioctlcmd,
1625	.gettstamp = sock_gettstamp,
1626	.listen = sock_no_listen,
1627	.shutdown = sock_no_shutdown,
1628	.setsockopt = isotp_setsockopt,
1629	.getsockopt = isotp_getsockopt,
1630	.sendmsg = isotp_sendmsg,
1631	.recvmsg = isotp_recvmsg,
1632	.mmap = sock_no_mmap,
1633	.sendpage = sock_no_sendpage,
1634};
1635
1636static struct proto isotp_proto __read_mostly = {
1637	.name = "CAN_ISOTP",
1638	.owner = THIS_MODULE,
1639	.obj_size = sizeof(struct isotp_sock),
1640	.init = isotp_init,
1641};
1642
1643static const struct can_proto isotp_can_proto = {
1644	.type = SOCK_DGRAM,
1645	.protocol = CAN_ISOTP,
1646	.ops = &isotp_ops,
1647	.prot = &isotp_proto,
1648};
1649
1650static struct notifier_block canisotp_notifier = {
1651	.notifier_call = isotp_notifier
1652};
1653
1654static __init int isotp_module_init(void)
1655{
1656	int err;
1657
1658	pr_info("can: isotp protocol\n");
1659
1660	err = can_proto_register(&isotp_can_proto);
1661	if (err < 0)
1662		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1663	else
1664		register_netdevice_notifier(&canisotp_notifier);
1665
1666	return err;
1667}
1668
1669static __exit void isotp_module_exit(void)
1670{
1671	can_proto_unregister(&isotp_can_proto);
1672	unregister_netdevice_notifier(&canisotp_notifier);
1673}
1674
1675module_init(isotp_module_init);
1676module_exit(isotp_module_exit);