Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/dir.c - kernfs directory implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 
 
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/fs.h>
  12#include <linux/namei.h>
  13#include <linux/idr.h>
  14#include <linux/slab.h>
  15#include <linux/security.h>
  16#include <linux/hash.h>
  17
  18#include "kernfs-internal.h"
  19
 
  20static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
  21/*
  22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
  23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
  24 * will perform wakeups when releasing console_sem. Holding rename_lock
  25 * will introduce deadlock if the scheduler reads the kernfs_name in the
  26 * wakeup path.
  27 */
  28static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
  29static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
  30static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
  31
  32#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
  33
  34static bool __kernfs_active(struct kernfs_node *kn)
  35{
  36	return atomic_read(&kn->active) >= 0;
  37}
  38
  39static bool kernfs_active(struct kernfs_node *kn)
  40{
  41	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
  42	return __kernfs_active(kn);
  43}
  44
  45static bool kernfs_lockdep(struct kernfs_node *kn)
  46{
  47#ifdef CONFIG_DEBUG_LOCK_ALLOC
  48	return kn->flags & KERNFS_LOCKDEP;
  49#else
  50	return false;
  51#endif
  52}
  53
  54static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
  55{
  56	if (!kn)
  57		return strlcpy(buf, "(null)", buflen);
  58
  59	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
  60}
  61
  62/* kernfs_node_depth - compute depth from @from to @to */
  63static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
  64{
  65	size_t depth = 0;
  66
  67	while (to->parent && to != from) {
  68		depth++;
  69		to = to->parent;
  70	}
  71	return depth;
  72}
  73
  74static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
  75						  struct kernfs_node *b)
  76{
  77	size_t da, db;
  78	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
  79
  80	if (ra != rb)
  81		return NULL;
  82
  83	da = kernfs_depth(ra->kn, a);
  84	db = kernfs_depth(rb->kn, b);
  85
  86	while (da > db) {
  87		a = a->parent;
  88		da--;
  89	}
  90	while (db > da) {
  91		b = b->parent;
  92		db--;
  93	}
  94
  95	/* worst case b and a will be the same at root */
  96	while (b != a) {
  97		b = b->parent;
  98		a = a->parent;
  99	}
 100
 101	return a;
 102}
 103
 104/**
 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
 106 * where kn_from is treated as root of the path.
 107 * @kn_from: kernfs node which should be treated as root for the path
 108 * @kn_to: kernfs node to which path is needed
 109 * @buf: buffer to copy the path into
 110 * @buflen: size of @buf
 111 *
 112 * We need to handle couple of scenarios here:
 113 * [1] when @kn_from is an ancestor of @kn_to at some level
 114 * kn_from: /n1/n2/n3
 115 * kn_to:   /n1/n2/n3/n4/n5
 116 * result:  /n4/n5
 117 *
 118 * [2] when @kn_from is on a different hierarchy and we need to find common
 119 * ancestor between @kn_from and @kn_to.
 120 * kn_from: /n1/n2/n3/n4
 121 * kn_to:   /n1/n2/n5
 122 * result:  /../../n5
 123 * OR
 124 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 125 * kn_to:   /n1/n2/n3         [depth=3]
 126 * result:  /../..
 127 *
 128 * [3] when @kn_to is %NULL result will be "(null)"
 129 *
 130 * Return: the length of the full path.  If the full length is equal to or
 131 * greater than @buflen, @buf contains the truncated path with the trailing
 132 * '\0'.  On error, -errno is returned.
 133 */
 134static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
 135					struct kernfs_node *kn_from,
 136					char *buf, size_t buflen)
 137{
 138	struct kernfs_node *kn, *common;
 139	const char parent_str[] = "/..";
 140	size_t depth_from, depth_to, len = 0;
 141	int i, j;
 142
 143	if (!kn_to)
 144		return strlcpy(buf, "(null)", buflen);
 145
 146	if (!kn_from)
 147		kn_from = kernfs_root(kn_to)->kn;
 148
 149	if (kn_from == kn_to)
 150		return strlcpy(buf, "/", buflen);
 151
 152	if (!buf)
 153		return -EINVAL;
 154
 155	common = kernfs_common_ancestor(kn_from, kn_to);
 156	if (WARN_ON(!common))
 157		return -EINVAL;
 158
 159	depth_to = kernfs_depth(common, kn_to);
 160	depth_from = kernfs_depth(common, kn_from);
 161
 162	buf[0] = '\0';
 
 163
 164	for (i = 0; i < depth_from; i++)
 165		len += strlcpy(buf + len, parent_str,
 166			       len < buflen ? buflen - len : 0);
 167
 168	/* Calculate how many bytes we need for the rest */
 169	for (i = depth_to - 1; i >= 0; i--) {
 170		for (kn = kn_to, j = 0; j < i; j++)
 171			kn = kn->parent;
 172		len += strlcpy(buf + len, "/",
 173			       len < buflen ? buflen - len : 0);
 174		len += strlcpy(buf + len, kn->name,
 175			       len < buflen ? buflen - len : 0);
 176	}
 177
 178	return len;
 179}
 180
 181/**
 182 * kernfs_name - obtain the name of a given node
 183 * @kn: kernfs_node of interest
 184 * @buf: buffer to copy @kn's name into
 185 * @buflen: size of @buf
 186 *
 187 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 188 * similar to strlcpy().
 189 *
 190 * Fills buffer with "(null)" if @kn is %NULL.
 191 *
 192 * Return: the length of @kn's name and if @buf isn't long enough,
 193 * it's filled up to @buflen-1 and nul terminated.
 194 *
 195 * This function can be called from any context.
 196 */
 197int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
 198{
 199	unsigned long flags;
 200	int ret;
 201
 202	spin_lock_irqsave(&kernfs_rename_lock, flags);
 203	ret = kernfs_name_locked(kn, buf, buflen);
 204	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 205	return ret;
 206}
 207
 208/**
 209 * kernfs_path_from_node - build path of node @to relative to @from.
 210 * @from: parent kernfs_node relative to which we need to build the path
 211 * @to: kernfs_node of interest
 212 * @buf: buffer to copy @to's path into
 213 * @buflen: size of @buf
 214 *
 215 * Builds @to's path relative to @from in @buf. @from and @to must
 216 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 217 * path (which includes '..'s) as needed to reach from @from to @to is
 218 * returned.
 219 *
 220 * Return: the length of the full path.  If the full length is equal to or
 221 * greater than @buflen, @buf contains the truncated path with the trailing
 222 * '\0'.  On error, -errno is returned.
 223 */
 224int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
 225			  char *buf, size_t buflen)
 226{
 227	unsigned long flags;
 228	int ret;
 229
 230	spin_lock_irqsave(&kernfs_rename_lock, flags);
 231	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
 232	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 233	return ret;
 234}
 235EXPORT_SYMBOL_GPL(kernfs_path_from_node);
 236
 237/**
 238 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 239 * @kn: kernfs_node of interest
 240 *
 241 * This function can be called from any context.
 242 */
 243void pr_cont_kernfs_name(struct kernfs_node *kn)
 244{
 245	unsigned long flags;
 246
 247	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
 248
 249	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
 250	pr_cont("%s", kernfs_pr_cont_buf);
 251
 252	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
 253}
 254
 255/**
 256 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 257 * @kn: kernfs_node of interest
 258 *
 259 * This function can be called from any context.
 260 */
 261void pr_cont_kernfs_path(struct kernfs_node *kn)
 262{
 263	unsigned long flags;
 264	int sz;
 265
 266	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
 267
 268	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
 269				   sizeof(kernfs_pr_cont_buf));
 270	if (sz < 0) {
 271		pr_cont("(error)");
 272		goto out;
 273	}
 274
 275	if (sz >= sizeof(kernfs_pr_cont_buf)) {
 276		pr_cont("(name too long)");
 277		goto out;
 278	}
 279
 280	pr_cont("%s", kernfs_pr_cont_buf);
 281
 282out:
 283	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
 284}
 285
 286/**
 287 * kernfs_get_parent - determine the parent node and pin it
 288 * @kn: kernfs_node of interest
 289 *
 290 * Determines @kn's parent, pins and returns it.  This function can be
 291 * called from any context.
 292 *
 293 * Return: parent node of @kn
 294 */
 295struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
 296{
 297	struct kernfs_node *parent;
 298	unsigned long flags;
 299
 300	spin_lock_irqsave(&kernfs_rename_lock, flags);
 301	parent = kn->parent;
 302	kernfs_get(parent);
 303	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 304
 305	return parent;
 306}
 307
 308/**
 309 *	kernfs_name_hash - calculate hash of @ns + @name
 310 *	@name: Null terminated string to hash
 311 *	@ns:   Namespace tag to hash
 312 *
 313 *	Return: 31-bit hash of ns + name (so it fits in an off_t)
 314 */
 315static unsigned int kernfs_name_hash(const char *name, const void *ns)
 316{
 317	unsigned long hash = init_name_hash(ns);
 318	unsigned int len = strlen(name);
 319	while (len--)
 320		hash = partial_name_hash(*name++, hash);
 321	hash = end_name_hash(hash);
 322	hash &= 0x7fffffffU;
 323	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
 324	if (hash < 2)
 325		hash += 2;
 326	if (hash >= INT_MAX)
 327		hash = INT_MAX - 1;
 328	return hash;
 329}
 330
 331static int kernfs_name_compare(unsigned int hash, const char *name,
 332			       const void *ns, const struct kernfs_node *kn)
 333{
 334	if (hash < kn->hash)
 335		return -1;
 336	if (hash > kn->hash)
 337		return 1;
 338	if (ns < kn->ns)
 339		return -1;
 340	if (ns > kn->ns)
 341		return 1;
 342	return strcmp(name, kn->name);
 343}
 344
 345static int kernfs_sd_compare(const struct kernfs_node *left,
 346			     const struct kernfs_node *right)
 347{
 348	return kernfs_name_compare(left->hash, left->name, left->ns, right);
 349}
 350
 351/**
 352 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
 353 *	@kn: kernfs_node of interest
 354 *
 355 *	Link @kn into its sibling rbtree which starts from
 356 *	@kn->parent->dir.children.
 357 *
 358 *	Locking:
 359 *	kernfs_rwsem held exclusive
 360 *
 361 *	Return:
 362 *	%0 on success, -EEXIST on failure.
 363 */
 364static int kernfs_link_sibling(struct kernfs_node *kn)
 365{
 366	struct rb_node **node = &kn->parent->dir.children.rb_node;
 367	struct rb_node *parent = NULL;
 368
 369	while (*node) {
 370		struct kernfs_node *pos;
 371		int result;
 372
 373		pos = rb_to_kn(*node);
 374		parent = *node;
 375		result = kernfs_sd_compare(kn, pos);
 376		if (result < 0)
 377			node = &pos->rb.rb_left;
 378		else if (result > 0)
 379			node = &pos->rb.rb_right;
 380		else
 381			return -EEXIST;
 382	}
 383
 384	/* add new node and rebalance the tree */
 385	rb_link_node(&kn->rb, parent, node);
 386	rb_insert_color(&kn->rb, &kn->parent->dir.children);
 387
 388	/* successfully added, account subdir number */
 389	if (kernfs_type(kn) == KERNFS_DIR)
 390		kn->parent->dir.subdirs++;
 391	kernfs_inc_rev(kn->parent);
 392
 393	return 0;
 394}
 395
 396/**
 397 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
 398 *	@kn: kernfs_node of interest
 399 *
 400 *	Try to unlink @kn from its sibling rbtree which starts from
 401 *	kn->parent->dir.children.
 402 *
 403 *	Return: %true if @kn was actually removed,
 404 *	%false if @kn wasn't on the rbtree.
 405 *
 406 *	Locking:
 407 *	kernfs_rwsem held exclusive
 408 */
 409static bool kernfs_unlink_sibling(struct kernfs_node *kn)
 410{
 411	if (RB_EMPTY_NODE(&kn->rb))
 412		return false;
 413
 414	if (kernfs_type(kn) == KERNFS_DIR)
 415		kn->parent->dir.subdirs--;
 416	kernfs_inc_rev(kn->parent);
 417
 418	rb_erase(&kn->rb, &kn->parent->dir.children);
 419	RB_CLEAR_NODE(&kn->rb);
 420	return true;
 421}
 422
 423/**
 424 *	kernfs_get_active - get an active reference to kernfs_node
 425 *	@kn: kernfs_node to get an active reference to
 426 *
 427 *	Get an active reference of @kn.  This function is noop if @kn
 428 *	is %NULL.
 429 *
 430 *	Return:
 431 *	Pointer to @kn on success, %NULL on failure.
 432 */
 433struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
 434{
 435	if (unlikely(!kn))
 436		return NULL;
 437
 438	if (!atomic_inc_unless_negative(&kn->active))
 439		return NULL;
 440
 441	if (kernfs_lockdep(kn))
 442		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
 443	return kn;
 444}
 445
 446/**
 447 *	kernfs_put_active - put an active reference to kernfs_node
 448 *	@kn: kernfs_node to put an active reference to
 449 *
 450 *	Put an active reference to @kn.  This function is noop if @kn
 451 *	is %NULL.
 452 */
 453void kernfs_put_active(struct kernfs_node *kn)
 454{
 
 455	int v;
 456
 457	if (unlikely(!kn))
 458		return;
 459
 460	if (kernfs_lockdep(kn))
 461		rwsem_release(&kn->dep_map, _RET_IP_);
 462	v = atomic_dec_return(&kn->active);
 463	if (likely(v != KN_DEACTIVATED_BIAS))
 464		return;
 465
 466	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
 467}
 468
 469/**
 470 * kernfs_drain - drain kernfs_node
 471 * @kn: kernfs_node to drain
 472 *
 473 * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
 474 * removers may invoke this function concurrently on @kn and all will
 475 * return after draining is complete.
 476 */
 477static void kernfs_drain(struct kernfs_node *kn)
 478	__releases(&kernfs_root(kn)->kernfs_rwsem)
 479	__acquires(&kernfs_root(kn)->kernfs_rwsem)
 480{
 481	struct kernfs_root *root = kernfs_root(kn);
 482
 483	lockdep_assert_held_write(&root->kernfs_rwsem);
 484	WARN_ON_ONCE(kernfs_active(kn));
 485
 486	/*
 487	 * Skip draining if already fully drained. This avoids draining and its
 488	 * lockdep annotations for nodes which have never been activated
 489	 * allowing embedding kernfs_remove() in create error paths without
 490	 * worrying about draining.
 491	 */
 492	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
 493	    !kernfs_should_drain_open_files(kn))
 494		return;
 495
 496	up_write(&root->kernfs_rwsem);
 497
 498	if (kernfs_lockdep(kn)) {
 499		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
 500		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
 501			lock_contended(&kn->dep_map, _RET_IP_);
 502	}
 503
 
 504	wait_event(root->deactivate_waitq,
 505		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
 506
 507	if (kernfs_lockdep(kn)) {
 508		lock_acquired(&kn->dep_map, _RET_IP_);
 509		rwsem_release(&kn->dep_map, _RET_IP_);
 510	}
 511
 512	if (kernfs_should_drain_open_files(kn))
 513		kernfs_drain_open_files(kn);
 514
 515	down_write(&root->kernfs_rwsem);
 516}
 517
 518/**
 519 * kernfs_get - get a reference count on a kernfs_node
 520 * @kn: the target kernfs_node
 521 */
 522void kernfs_get(struct kernfs_node *kn)
 523{
 524	if (kn) {
 525		WARN_ON(!atomic_read(&kn->count));
 526		atomic_inc(&kn->count);
 527	}
 528}
 529EXPORT_SYMBOL_GPL(kernfs_get);
 530
 531/**
 532 * kernfs_put - put a reference count on a kernfs_node
 533 * @kn: the target kernfs_node
 534 *
 535 * Put a reference count of @kn and destroy it if it reached zero.
 536 */
 537void kernfs_put(struct kernfs_node *kn)
 538{
 539	struct kernfs_node *parent;
 540	struct kernfs_root *root;
 541
 542	if (!kn || !atomic_dec_and_test(&kn->count))
 543		return;
 544	root = kernfs_root(kn);
 545 repeat:
 546	/*
 547	 * Moving/renaming is always done while holding reference.
 548	 * kn->parent won't change beneath us.
 549	 */
 550	parent = kn->parent;
 551
 552	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
 553		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
 554		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
 555
 556	if (kernfs_type(kn) == KERNFS_LINK)
 557		kernfs_put(kn->symlink.target_kn);
 558
 559	kfree_const(kn->name);
 560
 561	if (kn->iattr) {
 
 
 
 562		simple_xattrs_free(&kn->iattr->xattrs);
 563		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
 564	}
 565	spin_lock(&kernfs_idr_lock);
 566	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
 567	spin_unlock(&kernfs_idr_lock);
 568	kmem_cache_free(kernfs_node_cache, kn);
 569
 570	kn = parent;
 571	if (kn) {
 572		if (atomic_dec_and_test(&kn->count))
 573			goto repeat;
 574	} else {
 575		/* just released the root kn, free @root too */
 576		idr_destroy(&root->ino_idr);
 577		kfree(root);
 578	}
 579}
 580EXPORT_SYMBOL_GPL(kernfs_put);
 581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582/**
 583 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 584 * @dentry: the dentry in question
 585 *
 586 * Return: the kernfs_node associated with @dentry.  If @dentry is not a
 587 * kernfs one, %NULL is returned.
 588 *
 589 * While the returned kernfs_node will stay accessible as long as @dentry
 590 * is accessible, the returned node can be in any state and the caller is
 591 * fully responsible for determining what's accessible.
 592 */
 593struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
 594{
 595	if (dentry->d_sb->s_op == &kernfs_sops)
 596		return kernfs_dentry_node(dentry);
 597	return NULL;
 598}
 599
 600static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
 601					     struct kernfs_node *parent,
 602					     const char *name, umode_t mode,
 603					     kuid_t uid, kgid_t gid,
 604					     unsigned flags)
 605{
 606	struct kernfs_node *kn;
 607	u32 id_highbits;
 608	int ret;
 609
 610	name = kstrdup_const(name, GFP_KERNEL);
 611	if (!name)
 612		return NULL;
 613
 614	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
 615	if (!kn)
 616		goto err_out1;
 617
 618	idr_preload(GFP_KERNEL);
 619	spin_lock(&kernfs_idr_lock);
 620	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
 621	if (ret >= 0 && ret < root->last_id_lowbits)
 622		root->id_highbits++;
 623	id_highbits = root->id_highbits;
 624	root->last_id_lowbits = ret;
 625	spin_unlock(&kernfs_idr_lock);
 626	idr_preload_end();
 627	if (ret < 0)
 628		goto err_out2;
 629
 630	kn->id = (u64)id_highbits << 32 | ret;
 631
 632	atomic_set(&kn->count, 1);
 633	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
 634	RB_CLEAR_NODE(&kn->rb);
 635
 636	kn->name = name;
 637	kn->mode = mode;
 638	kn->flags = flags;
 639
 640	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
 641		struct iattr iattr = {
 642			.ia_valid = ATTR_UID | ATTR_GID,
 643			.ia_uid = uid,
 644			.ia_gid = gid,
 645		};
 646
 647		ret = __kernfs_setattr(kn, &iattr);
 648		if (ret < 0)
 649			goto err_out3;
 650	}
 651
 652	if (parent) {
 653		ret = security_kernfs_init_security(parent, kn);
 654		if (ret)
 655			goto err_out3;
 656	}
 657
 658	return kn;
 659
 660 err_out3:
 661	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
 662 err_out2:
 663	kmem_cache_free(kernfs_node_cache, kn);
 664 err_out1:
 665	kfree_const(name);
 666	return NULL;
 667}
 668
 669struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
 670				    const char *name, umode_t mode,
 671				    kuid_t uid, kgid_t gid,
 672				    unsigned flags)
 673{
 674	struct kernfs_node *kn;
 675
 676	kn = __kernfs_new_node(kernfs_root(parent), parent,
 677			       name, mode, uid, gid, flags);
 678	if (kn) {
 679		kernfs_get(parent);
 680		kn->parent = parent;
 681	}
 682	return kn;
 683}
 684
 685/*
 686 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
 687 * @root: the kernfs root
 688 * @id: the target node id
 689 *
 690 * @id's lower 32bits encode ino and upper gen.  If the gen portion is
 691 * zero, all generations are matched.
 692 *
 693 * Return: %NULL on failure,
 694 * otherwise a kernfs node with reference counter incremented.
 695 */
 696struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
 697						   u64 id)
 698{
 699	struct kernfs_node *kn;
 700	ino_t ino = kernfs_id_ino(id);
 701	u32 gen = kernfs_id_gen(id);
 702
 703	spin_lock(&kernfs_idr_lock);
 704
 705	kn = idr_find(&root->ino_idr, (u32)ino);
 706	if (!kn)
 707		goto err_unlock;
 708
 709	if (sizeof(ino_t) >= sizeof(u64)) {
 710		/* we looked up with the low 32bits, compare the whole */
 711		if (kernfs_ino(kn) != ino)
 712			goto err_unlock;
 713	} else {
 714		/* 0 matches all generations */
 715		if (unlikely(gen && kernfs_gen(kn) != gen))
 716			goto err_unlock;
 717	}
 718
 719	/*
 720	 * We should fail if @kn has never been activated and guarantee success
 721	 * if the caller knows that @kn is active. Both can be achieved by
 722	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
 723	 */
 724	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
 725		goto err_unlock;
 726
 727	spin_unlock(&kernfs_idr_lock);
 728	return kn;
 729err_unlock:
 730	spin_unlock(&kernfs_idr_lock);
 731	return NULL;
 732}
 733
 734/**
 735 *	kernfs_add_one - add kernfs_node to parent without warning
 736 *	@kn: kernfs_node to be added
 737 *
 738 *	The caller must already have initialized @kn->parent.  This
 739 *	function increments nlink of the parent's inode if @kn is a
 740 *	directory and link into the children list of the parent.
 741 *
 742 *	Return:
 743 *	%0 on success, -EEXIST if entry with the given name already
 744 *	exists.
 745 */
 746int kernfs_add_one(struct kernfs_node *kn)
 747{
 748	struct kernfs_node *parent = kn->parent;
 749	struct kernfs_root *root = kernfs_root(parent);
 750	struct kernfs_iattrs *ps_iattr;
 751	bool has_ns;
 752	int ret;
 753
 754	down_write(&root->kernfs_rwsem);
 755
 756	ret = -EINVAL;
 757	has_ns = kernfs_ns_enabled(parent);
 758	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 759		 has_ns ? "required" : "invalid", parent->name, kn->name))
 760		goto out_unlock;
 761
 762	if (kernfs_type(parent) != KERNFS_DIR)
 763		goto out_unlock;
 764
 765	ret = -ENOENT;
 766	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
 
 
 
 767		goto out_unlock;
 768
 769	kn->hash = kernfs_name_hash(kn->name, kn->ns);
 770
 771	ret = kernfs_link_sibling(kn);
 772	if (ret)
 773		goto out_unlock;
 774
 775	/* Update timestamps on the parent */
 776	ps_iattr = parent->iattr;
 777	if (ps_iattr) {
 778		ktime_get_real_ts64(&ps_iattr->ia_ctime);
 779		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
 
 780	}
 781
 782	up_write(&root->kernfs_rwsem);
 783
 784	/*
 785	 * Activate the new node unless CREATE_DEACTIVATED is requested.
 786	 * If not activated here, the kernfs user is responsible for
 787	 * activating the node with kernfs_activate().  A node which hasn't
 788	 * been activated is not visible to userland and its removal won't
 789	 * trigger deactivation.
 790	 */
 791	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 792		kernfs_activate(kn);
 793	return 0;
 794
 795out_unlock:
 796	up_write(&root->kernfs_rwsem);
 797	return ret;
 798}
 799
 800/**
 801 * kernfs_find_ns - find kernfs_node with the given name
 802 * @parent: kernfs_node to search under
 803 * @name: name to look for
 804 * @ns: the namespace tag to use
 805 *
 806 * Look for kernfs_node with name @name under @parent.
 807 *
 808 * Return: pointer to the found kernfs_node on success, %NULL on failure.
 809 */
 810static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
 811					  const unsigned char *name,
 812					  const void *ns)
 813{
 814	struct rb_node *node = parent->dir.children.rb_node;
 815	bool has_ns = kernfs_ns_enabled(parent);
 816	unsigned int hash;
 817
 818	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
 819
 820	if (has_ns != (bool)ns) {
 821		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 822		     has_ns ? "required" : "invalid", parent->name, name);
 823		return NULL;
 824	}
 825
 826	hash = kernfs_name_hash(name, ns);
 827	while (node) {
 828		struct kernfs_node *kn;
 829		int result;
 830
 831		kn = rb_to_kn(node);
 832		result = kernfs_name_compare(hash, name, ns, kn);
 833		if (result < 0)
 834			node = node->rb_left;
 835		else if (result > 0)
 836			node = node->rb_right;
 837		else
 838			return kn;
 839	}
 840	return NULL;
 841}
 842
 843static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
 844					  const unsigned char *path,
 845					  const void *ns)
 846{
 847	size_t len;
 848	char *p, *name;
 849
 850	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
 851
 852	spin_lock_irq(&kernfs_pr_cont_lock);
 
 853
 854	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
 855
 856	if (len >= sizeof(kernfs_pr_cont_buf)) {
 857		spin_unlock_irq(&kernfs_pr_cont_lock);
 858		return NULL;
 859	}
 860
 861	p = kernfs_pr_cont_buf;
 862
 863	while ((name = strsep(&p, "/")) && parent) {
 864		if (*name == '\0')
 865			continue;
 866		parent = kernfs_find_ns(parent, name, ns);
 867	}
 868
 869	spin_unlock_irq(&kernfs_pr_cont_lock);
 870
 871	return parent;
 872}
 873
 874/**
 875 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 876 * @parent: kernfs_node to search under
 877 * @name: name to look for
 878 * @ns: the namespace tag to use
 879 *
 880 * Look for kernfs_node with name @name under @parent and get a reference
 881 * if found.  This function may sleep.
 882 *
 883 * Return: pointer to the found kernfs_node on success, %NULL on failure.
 884 */
 885struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
 886					   const char *name, const void *ns)
 887{
 888	struct kernfs_node *kn;
 889	struct kernfs_root *root = kernfs_root(parent);
 890
 891	down_read(&root->kernfs_rwsem);
 892	kn = kernfs_find_ns(parent, name, ns);
 893	kernfs_get(kn);
 894	up_read(&root->kernfs_rwsem);
 895
 896	return kn;
 897}
 898EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
 899
 900/**
 901 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 902 * @parent: kernfs_node to search under
 903 * @path: path to look for
 904 * @ns: the namespace tag to use
 905 *
 906 * Look for kernfs_node with path @path under @parent and get a reference
 907 * if found.  This function may sleep.
 908 *
 909 * Return: pointer to the found kernfs_node on success, %NULL on failure.
 910 */
 911struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
 912					   const char *path, const void *ns)
 913{
 914	struct kernfs_node *kn;
 915	struct kernfs_root *root = kernfs_root(parent);
 916
 917	down_read(&root->kernfs_rwsem);
 918	kn = kernfs_walk_ns(parent, path, ns);
 919	kernfs_get(kn);
 920	up_read(&root->kernfs_rwsem);
 921
 922	return kn;
 923}
 924
 925/**
 926 * kernfs_create_root - create a new kernfs hierarchy
 927 * @scops: optional syscall operations for the hierarchy
 928 * @flags: KERNFS_ROOT_* flags
 929 * @priv: opaque data associated with the new directory
 930 *
 931 * Return: the root of the new hierarchy on success, ERR_PTR() value on
 932 * failure.
 933 */
 934struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
 935				       unsigned int flags, void *priv)
 936{
 937	struct kernfs_root *root;
 938	struct kernfs_node *kn;
 939
 940	root = kzalloc(sizeof(*root), GFP_KERNEL);
 941	if (!root)
 942		return ERR_PTR(-ENOMEM);
 943
 944	idr_init(&root->ino_idr);
 945	init_rwsem(&root->kernfs_rwsem);
 946	INIT_LIST_HEAD(&root->supers);
 947
 948	/*
 949	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
 950	 * High bits generation.  The starting value for both ino and
 951	 * genenration is 1.  Initialize upper 32bit allocation
 952	 * accordingly.
 953	 */
 954	if (sizeof(ino_t) >= sizeof(u64))
 955		root->id_highbits = 0;
 956	else
 957		root->id_highbits = 1;
 958
 959	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
 960			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 961			       KERNFS_DIR);
 962	if (!kn) {
 963		idr_destroy(&root->ino_idr);
 964		kfree(root);
 965		return ERR_PTR(-ENOMEM);
 966	}
 967
 968	kn->priv = priv;
 969	kn->dir.root = root;
 970
 971	root->syscall_ops = scops;
 972	root->flags = flags;
 973	root->kn = kn;
 974	init_waitqueue_head(&root->deactivate_waitq);
 975
 976	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 977		kernfs_activate(kn);
 978
 979	return root;
 980}
 981
 982/**
 983 * kernfs_destroy_root - destroy a kernfs hierarchy
 984 * @root: root of the hierarchy to destroy
 985 *
 986 * Destroy the hierarchy anchored at @root by removing all existing
 987 * directories and destroying @root.
 988 */
 989void kernfs_destroy_root(struct kernfs_root *root)
 990{
 991	/*
 992	 *  kernfs_remove holds kernfs_rwsem from the root so the root
 993	 *  shouldn't be freed during the operation.
 994	 */
 995	kernfs_get(root->kn);
 996	kernfs_remove(root->kn);
 997	kernfs_put(root->kn); /* will also free @root */
 998}
 999
1000/**
1001 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1002 * @root: root to use to lookup
1003 *
1004 * Return: @root's kernfs_node
1005 */
1006struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1007{
1008	return root->kn;
1009}
1010
1011/**
1012 * kernfs_create_dir_ns - create a directory
1013 * @parent: parent in which to create a new directory
1014 * @name: name of the new directory
1015 * @mode: mode of the new directory
1016 * @uid: uid of the new directory
1017 * @gid: gid of the new directory
1018 * @priv: opaque data associated with the new directory
1019 * @ns: optional namespace tag of the directory
1020 *
1021 * Return: the created node on success, ERR_PTR() value on failure.
1022 */
1023struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1024					 const char *name, umode_t mode,
1025					 kuid_t uid, kgid_t gid,
1026					 void *priv, const void *ns)
1027{
1028	struct kernfs_node *kn;
1029	int rc;
1030
1031	/* allocate */
1032	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1033			     uid, gid, KERNFS_DIR);
1034	if (!kn)
1035		return ERR_PTR(-ENOMEM);
1036
1037	kn->dir.root = parent->dir.root;
1038	kn->ns = ns;
1039	kn->priv = priv;
1040
1041	/* link in */
1042	rc = kernfs_add_one(kn);
1043	if (!rc)
1044		return kn;
1045
1046	kernfs_put(kn);
1047	return ERR_PTR(rc);
1048}
1049
1050/**
1051 * kernfs_create_empty_dir - create an always empty directory
1052 * @parent: parent in which to create a new directory
1053 * @name: name of the new directory
1054 *
1055 * Return: the created node on success, ERR_PTR() value on failure.
1056 */
1057struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1058					    const char *name)
1059{
1060	struct kernfs_node *kn;
1061	int rc;
1062
1063	/* allocate */
1064	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1065			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1066	if (!kn)
1067		return ERR_PTR(-ENOMEM);
1068
1069	kn->flags |= KERNFS_EMPTY_DIR;
1070	kn->dir.root = parent->dir.root;
1071	kn->ns = NULL;
1072	kn->priv = NULL;
1073
1074	/* link in */
1075	rc = kernfs_add_one(kn);
1076	if (!rc)
1077		return kn;
1078
1079	kernfs_put(kn);
1080	return ERR_PTR(rc);
1081}
1082
1083static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1084{
1085	struct kernfs_node *kn;
1086	struct kernfs_root *root;
1087
1088	if (flags & LOOKUP_RCU)
1089		return -ECHILD;
1090
1091	/* Negative hashed dentry? */
1092	if (d_really_is_negative(dentry)) {
1093		struct kernfs_node *parent;
1094
1095		/* If the kernfs parent node has changed discard and
1096		 * proceed to ->lookup.
1097		 *
1098		 * There's nothing special needed here when getting the
1099		 * dentry parent, even if a concurrent rename is in
1100		 * progress. That's because the dentry is negative so
1101		 * it can only be the target of the rename and it will
1102		 * be doing a d_move() not a replace. Consequently the
1103		 * dentry d_parent won't change over the d_move().
1104		 *
1105		 * Also kernfs negative dentries transitioning from
1106		 * negative to positive during revalidate won't happen
1107		 * because they are invalidated on containing directory
1108		 * changes and the lookup re-done so that a new positive
1109		 * dentry can be properly created.
1110		 */
1111		root = kernfs_root_from_sb(dentry->d_sb);
1112		down_read(&root->kernfs_rwsem);
1113		parent = kernfs_dentry_node(dentry->d_parent);
1114		if (parent) {
1115			if (kernfs_dir_changed(parent, dentry)) {
1116				up_read(&root->kernfs_rwsem);
1117				return 0;
1118			}
1119		}
1120		up_read(&root->kernfs_rwsem);
1121
1122		/* The kernfs parent node hasn't changed, leave the
1123		 * dentry negative and return success.
1124		 */
1125		return 1;
1126	}
1127
1128	kn = kernfs_dentry_node(dentry);
1129	root = kernfs_root(kn);
1130	down_read(&root->kernfs_rwsem);
1131
1132	/* The kernfs node has been deactivated */
1133	if (!kernfs_active(kn))
1134		goto out_bad;
1135
1136	/* The kernfs node has been moved? */
1137	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1138		goto out_bad;
1139
1140	/* The kernfs node has been renamed */
1141	if (strcmp(dentry->d_name.name, kn->name) != 0)
1142		goto out_bad;
1143
1144	/* The kernfs node has been moved to a different namespace */
1145	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1146	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1147		goto out_bad;
1148
1149	up_read(&root->kernfs_rwsem);
1150	return 1;
1151out_bad:
1152	up_read(&root->kernfs_rwsem);
1153	return 0;
1154}
1155
1156const struct dentry_operations kernfs_dops = {
1157	.d_revalidate	= kernfs_dop_revalidate,
1158};
1159
1160static struct dentry *kernfs_iop_lookup(struct inode *dir,
1161					struct dentry *dentry,
1162					unsigned int flags)
1163{
1164	struct kernfs_node *parent = dir->i_private;
 
1165	struct kernfs_node *kn;
1166	struct kernfs_root *root;
1167	struct inode *inode = NULL;
1168	const void *ns = NULL;
1169
1170	root = kernfs_root(parent);
1171	down_read(&root->kernfs_rwsem);
1172	if (kernfs_ns_enabled(parent))
1173		ns = kernfs_info(dir->i_sb)->ns;
1174
1175	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
 
 
 
 
 
 
 
 
 
1176	/* attach dentry and inode */
1177	if (kn) {
1178		/* Inactive nodes are invisible to the VFS so don't
1179		 * create a negative.
1180		 */
1181		if (!kernfs_active(kn)) {
1182			up_read(&root->kernfs_rwsem);
1183			return NULL;
1184		}
1185		inode = kernfs_get_inode(dir->i_sb, kn);
1186		if (!inode)
1187			inode = ERR_PTR(-ENOMEM);
1188	}
1189	/*
1190	 * Needed for negative dentry validation.
1191	 * The negative dentry can be created in kernfs_iop_lookup()
1192	 * or transforms from positive dentry in dentry_unlink_inode()
1193	 * called from vfs_rmdir().
1194	 */
1195	if (!IS_ERR(inode))
1196		kernfs_set_rev(parent, dentry);
1197	up_read(&root->kernfs_rwsem);
1198
1199	/* instantiate and hash (possibly negative) dentry */
1200	return d_splice_alias(inode, dentry);
 
 
 
1201}
1202
1203static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1204			    struct inode *dir, struct dentry *dentry,
1205			    umode_t mode)
1206{
1207	struct kernfs_node *parent = dir->i_private;
1208	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1209	int ret;
1210
1211	if (!scops || !scops->mkdir)
1212		return -EPERM;
1213
1214	if (!kernfs_get_active(parent))
1215		return -ENODEV;
1216
1217	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1218
1219	kernfs_put_active(parent);
1220	return ret;
1221}
1222
1223static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1224{
1225	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1226	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1227	int ret;
1228
1229	if (!scops || !scops->rmdir)
1230		return -EPERM;
1231
1232	if (!kernfs_get_active(kn))
1233		return -ENODEV;
1234
1235	ret = scops->rmdir(kn);
1236
1237	kernfs_put_active(kn);
1238	return ret;
1239}
1240
1241static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1242			     struct inode *old_dir, struct dentry *old_dentry,
1243			     struct inode *new_dir, struct dentry *new_dentry,
1244			     unsigned int flags)
1245{
1246	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1247	struct kernfs_node *new_parent = new_dir->i_private;
1248	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1249	int ret;
1250
1251	if (flags)
1252		return -EINVAL;
1253
1254	if (!scops || !scops->rename)
1255		return -EPERM;
1256
1257	if (!kernfs_get_active(kn))
1258		return -ENODEV;
1259
1260	if (!kernfs_get_active(new_parent)) {
1261		kernfs_put_active(kn);
1262		return -ENODEV;
1263	}
1264
1265	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1266
1267	kernfs_put_active(new_parent);
1268	kernfs_put_active(kn);
1269	return ret;
1270}
1271
1272const struct inode_operations kernfs_dir_iops = {
1273	.lookup		= kernfs_iop_lookup,
1274	.permission	= kernfs_iop_permission,
1275	.setattr	= kernfs_iop_setattr,
1276	.getattr	= kernfs_iop_getattr,
1277	.listxattr	= kernfs_iop_listxattr,
1278
1279	.mkdir		= kernfs_iop_mkdir,
1280	.rmdir		= kernfs_iop_rmdir,
1281	.rename		= kernfs_iop_rename,
1282};
1283
1284static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1285{
1286	struct kernfs_node *last;
1287
1288	while (true) {
1289		struct rb_node *rbn;
1290
1291		last = pos;
1292
1293		if (kernfs_type(pos) != KERNFS_DIR)
1294			break;
1295
1296		rbn = rb_first(&pos->dir.children);
1297		if (!rbn)
1298			break;
1299
1300		pos = rb_to_kn(rbn);
1301	}
1302
1303	return last;
1304}
1305
1306/**
1307 * kernfs_next_descendant_post - find the next descendant for post-order walk
1308 * @pos: the current position (%NULL to initiate traversal)
1309 * @root: kernfs_node whose descendants to walk
1310 *
1311 * Find the next descendant to visit for post-order traversal of @root's
1312 * descendants.  @root is included in the iteration and the last node to be
1313 * visited.
1314 *
1315 * Return: the next descendant to visit or %NULL when done.
1316 */
1317static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1318						       struct kernfs_node *root)
1319{
1320	struct rb_node *rbn;
1321
1322	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1323
1324	/* if first iteration, visit leftmost descendant which may be root */
1325	if (!pos)
1326		return kernfs_leftmost_descendant(root);
1327
1328	/* if we visited @root, we're done */
1329	if (pos == root)
1330		return NULL;
1331
1332	/* if there's an unvisited sibling, visit its leftmost descendant */
1333	rbn = rb_next(&pos->rb);
1334	if (rbn)
1335		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1336
1337	/* no sibling left, visit parent */
1338	return pos->parent;
1339}
1340
1341static void kernfs_activate_one(struct kernfs_node *kn)
1342{
1343	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1344
1345	kn->flags |= KERNFS_ACTIVATED;
1346
1347	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1348		return;
1349
1350	WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1351	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1352
1353	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1354}
1355
1356/**
1357 * kernfs_activate - activate a node which started deactivated
1358 * @kn: kernfs_node whose subtree is to be activated
1359 *
1360 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1361 * needs to be explicitly activated.  A node which hasn't been activated
1362 * isn't visible to userland and deactivation is skipped during its
1363 * removal.  This is useful to construct atomic init sequences where
1364 * creation of multiple nodes should either succeed or fail atomically.
1365 *
1366 * The caller is responsible for ensuring that this function is not called
1367 * after kernfs_remove*() is invoked on @kn.
1368 */
1369void kernfs_activate(struct kernfs_node *kn)
1370{
1371	struct kernfs_node *pos;
1372	struct kernfs_root *root = kernfs_root(kn);
1373
1374	down_write(&root->kernfs_rwsem);
1375
1376	pos = NULL;
1377	while ((pos = kernfs_next_descendant_post(pos, kn)))
1378		kernfs_activate_one(pos);
1379
1380	up_write(&root->kernfs_rwsem);
1381}
1382
1383/**
1384 * kernfs_show - show or hide a node
1385 * @kn: kernfs_node to show or hide
1386 * @show: whether to show or hide
1387 *
1388 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1389 * ignored in future activaitons. If %true, the mark is removed and activation
1390 * state is restored. This function won't implicitly activate a new node in a
1391 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1392 *
1393 * To avoid recursion complexities, directories aren't supported for now.
1394 */
1395void kernfs_show(struct kernfs_node *kn, bool show)
1396{
1397	struct kernfs_root *root = kernfs_root(kn);
1398
1399	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1400		return;
1401
1402	down_write(&root->kernfs_rwsem);
 
1403
1404	if (show) {
1405		kn->flags &= ~KERNFS_HIDDEN;
1406		if (kn->flags & KERNFS_ACTIVATED)
1407			kernfs_activate_one(kn);
1408	} else {
1409		kn->flags |= KERNFS_HIDDEN;
1410		if (kernfs_active(kn))
1411			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1412		kernfs_drain(kn);
1413	}
1414
1415	up_write(&root->kernfs_rwsem);
1416}
1417
1418static void __kernfs_remove(struct kernfs_node *kn)
1419{
1420	struct kernfs_node *pos;
1421
1422	/* Short-circuit if non-root @kn has already finished removal. */
1423	if (!kn)
1424		return;
1425
1426	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1427
1428	/*
 
1429	 * This is for kernfs_remove_self() which plays with active ref
1430	 * after removal.
1431	 */
1432	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1433		return;
1434
1435	pr_debug("kernfs %s: removing\n", kn->name);
1436
1437	/* prevent new usage by marking all nodes removing and deactivating */
1438	pos = NULL;
1439	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1440		pos->flags |= KERNFS_REMOVING;
1441		if (kernfs_active(pos))
1442			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1443	}
1444
1445	/* deactivate and unlink the subtree node-by-node */
1446	do {
1447		pos = kernfs_leftmost_descendant(kn);
1448
1449		/*
1450		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1451		 * base ref could have been put by someone else by the time
1452		 * the function returns.  Make sure it doesn't go away
1453		 * underneath us.
1454		 */
1455		kernfs_get(pos);
1456
1457		kernfs_drain(pos);
 
 
 
 
 
 
 
 
 
1458
1459		/*
1460		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1461		 * to decide who's responsible for cleanups.
1462		 */
1463		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1464			struct kernfs_iattrs *ps_iattr =
1465				pos->parent ? pos->parent->iattr : NULL;
1466
1467			/* update timestamps on the parent */
1468			if (ps_iattr) {
1469				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1470				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
 
1471			}
1472
1473			kernfs_put(pos);
1474		}
1475
1476		kernfs_put(pos);
1477	} while (pos != kn);
1478}
1479
1480/**
1481 * kernfs_remove - remove a kernfs_node recursively
1482 * @kn: the kernfs_node to remove
1483 *
1484 * Remove @kn along with all its subdirectories and files.
1485 */
1486void kernfs_remove(struct kernfs_node *kn)
1487{
1488	struct kernfs_root *root;
1489
1490	if (!kn)
1491		return;
1492
1493	root = kernfs_root(kn);
1494
1495	down_write(&root->kernfs_rwsem);
1496	__kernfs_remove(kn);
1497	up_write(&root->kernfs_rwsem);
1498}
1499
1500/**
1501 * kernfs_break_active_protection - break out of active protection
1502 * @kn: the self kernfs_node
1503 *
1504 * The caller must be running off of a kernfs operation which is invoked
1505 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1506 * this function must also be matched with an invocation of
1507 * kernfs_unbreak_active_protection().
1508 *
1509 * This function releases the active reference of @kn the caller is
1510 * holding.  Once this function is called, @kn may be removed at any point
1511 * and the caller is solely responsible for ensuring that the objects it
1512 * dereferences are accessible.
1513 */
1514void kernfs_break_active_protection(struct kernfs_node *kn)
1515{
1516	/*
1517	 * Take out ourself out of the active ref dependency chain.  If
1518	 * we're called without an active ref, lockdep will complain.
1519	 */
1520	kernfs_put_active(kn);
1521}
1522
1523/**
1524 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1525 * @kn: the self kernfs_node
1526 *
1527 * If kernfs_break_active_protection() was called, this function must be
1528 * invoked before finishing the kernfs operation.  Note that while this
1529 * function restores the active reference, it doesn't and can't actually
1530 * restore the active protection - @kn may already or be in the process of
1531 * being removed.  Once kernfs_break_active_protection() is invoked, that
1532 * protection is irreversibly gone for the kernfs operation instance.
1533 *
1534 * While this function may be called at any point after
1535 * kernfs_break_active_protection() is invoked, its most useful location
1536 * would be right before the enclosing kernfs operation returns.
1537 */
1538void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1539{
1540	/*
1541	 * @kn->active could be in any state; however, the increment we do
1542	 * here will be undone as soon as the enclosing kernfs operation
1543	 * finishes and this temporary bump can't break anything.  If @kn
1544	 * is alive, nothing changes.  If @kn is being deactivated, the
1545	 * soon-to-follow put will either finish deactivation or restore
1546	 * deactivated state.  If @kn is already removed, the temporary
1547	 * bump is guaranteed to be gone before @kn is released.
1548	 */
1549	atomic_inc(&kn->active);
1550	if (kernfs_lockdep(kn))
1551		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1552}
1553
1554/**
1555 * kernfs_remove_self - remove a kernfs_node from its own method
1556 * @kn: the self kernfs_node to remove
1557 *
1558 * The caller must be running off of a kernfs operation which is invoked
1559 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1560 * implement a file operation which deletes itself.
1561 *
1562 * For example, the "delete" file for a sysfs device directory can be
1563 * implemented by invoking kernfs_remove_self() on the "delete" file
1564 * itself.  This function breaks the circular dependency of trying to
1565 * deactivate self while holding an active ref itself.  It isn't necessary
1566 * to modify the usual removal path to use kernfs_remove_self().  The
1567 * "delete" implementation can simply invoke kernfs_remove_self() on self
1568 * before proceeding with the usual removal path.  kernfs will ignore later
1569 * kernfs_remove() on self.
1570 *
1571 * kernfs_remove_self() can be called multiple times concurrently on the
1572 * same kernfs_node.  Only the first one actually performs removal and
1573 * returns %true.  All others will wait until the kernfs operation which
1574 * won self-removal finishes and return %false.  Note that the losers wait
1575 * for the completion of not only the winning kernfs_remove_self() but also
1576 * the whole kernfs_ops which won the arbitration.  This can be used to
1577 * guarantee, for example, all concurrent writes to a "delete" file to
1578 * finish only after the whole operation is complete.
1579 *
1580 * Return: %true if @kn is removed by this call, otherwise %false.
1581 */
1582bool kernfs_remove_self(struct kernfs_node *kn)
1583{
1584	bool ret;
1585	struct kernfs_root *root = kernfs_root(kn);
1586
1587	down_write(&root->kernfs_rwsem);
1588	kernfs_break_active_protection(kn);
1589
1590	/*
1591	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1592	 * the first one will actually perform removal.  When the removal
1593	 * is complete, SUICIDED is set and the active ref is restored
1594	 * while kernfs_rwsem for held exclusive.  The ones which lost
1595	 * arbitration waits for SUICIDED && drained which can happen only
1596	 * after the enclosing kernfs operation which executed the winning
1597	 * instance of kernfs_remove_self() finished.
1598	 */
1599	if (!(kn->flags & KERNFS_SUICIDAL)) {
1600		kn->flags |= KERNFS_SUICIDAL;
1601		__kernfs_remove(kn);
1602		kn->flags |= KERNFS_SUICIDED;
1603		ret = true;
1604	} else {
1605		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1606		DEFINE_WAIT(wait);
1607
1608		while (true) {
1609			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1610
1611			if ((kn->flags & KERNFS_SUICIDED) &&
1612			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1613				break;
1614
1615			up_write(&root->kernfs_rwsem);
1616			schedule();
1617			down_write(&root->kernfs_rwsem);
1618		}
1619		finish_wait(waitq, &wait);
1620		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1621		ret = false;
1622	}
1623
1624	/*
1625	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1626	 * waiting for SUICIDED && deactivated could finish prematurely.
1627	 */
1628	kernfs_unbreak_active_protection(kn);
1629
1630	up_write(&root->kernfs_rwsem);
1631	return ret;
1632}
1633
1634/**
1635 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1636 * @parent: parent of the target
1637 * @name: name of the kernfs_node to remove
1638 * @ns: namespace tag of the kernfs_node to remove
1639 *
1640 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1641 *
1642 * Return: %0 on success, -ENOENT if such entry doesn't exist.
1643 */
1644int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1645			     const void *ns)
1646{
1647	struct kernfs_node *kn;
1648	struct kernfs_root *root;
1649
1650	if (!parent) {
1651		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1652			name);
1653		return -ENOENT;
1654	}
1655
1656	root = kernfs_root(parent);
1657	down_write(&root->kernfs_rwsem);
1658
1659	kn = kernfs_find_ns(parent, name, ns);
1660	if (kn) {
1661		kernfs_get(kn);
1662		__kernfs_remove(kn);
1663		kernfs_put(kn);
1664	}
1665
1666	up_write(&root->kernfs_rwsem);
1667
1668	if (kn)
1669		return 0;
1670	else
1671		return -ENOENT;
1672}
1673
1674/**
1675 * kernfs_rename_ns - move and rename a kernfs_node
1676 * @kn: target node
1677 * @new_parent: new parent to put @sd under
1678 * @new_name: new name
1679 * @new_ns: new namespace tag
1680 *
1681 * Return: %0 on success, -errno on failure.
1682 */
1683int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1684		     const char *new_name, const void *new_ns)
1685{
1686	struct kernfs_node *old_parent;
1687	struct kernfs_root *root;
1688	const char *old_name = NULL;
1689	int error;
1690
1691	/* can't move or rename root */
1692	if (!kn->parent)
1693		return -EINVAL;
1694
1695	root = kernfs_root(kn);
1696	down_write(&root->kernfs_rwsem);
1697
1698	error = -ENOENT;
1699	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1700	    (new_parent->flags & KERNFS_EMPTY_DIR))
1701		goto out;
1702
1703	error = 0;
1704	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1705	    (strcmp(kn->name, new_name) == 0))
1706		goto out;	/* nothing to rename */
1707
1708	error = -EEXIST;
1709	if (kernfs_find_ns(new_parent, new_name, new_ns))
1710		goto out;
1711
1712	/* rename kernfs_node */
1713	if (strcmp(kn->name, new_name) != 0) {
1714		error = -ENOMEM;
1715		new_name = kstrdup_const(new_name, GFP_KERNEL);
1716		if (!new_name)
1717			goto out;
1718	} else {
1719		new_name = NULL;
1720	}
1721
1722	/*
1723	 * Move to the appropriate place in the appropriate directories rbtree.
1724	 */
1725	kernfs_unlink_sibling(kn);
1726	kernfs_get(new_parent);
1727
1728	/* rename_lock protects ->parent and ->name accessors */
1729	spin_lock_irq(&kernfs_rename_lock);
1730
1731	old_parent = kn->parent;
1732	kn->parent = new_parent;
1733
1734	kn->ns = new_ns;
1735	if (new_name) {
1736		old_name = kn->name;
1737		kn->name = new_name;
1738	}
1739
1740	spin_unlock_irq(&kernfs_rename_lock);
1741
1742	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1743	kernfs_link_sibling(kn);
1744
1745	kernfs_put(old_parent);
1746	kfree_const(old_name);
1747
1748	error = 0;
1749 out:
1750	up_write(&root->kernfs_rwsem);
1751	return error;
1752}
1753
1754/* Relationship between mode and the DT_xxx types */
1755static inline unsigned char dt_type(struct kernfs_node *kn)
1756{
1757	return (kn->mode >> 12) & 15;
1758}
1759
1760static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1761{
1762	kernfs_put(filp->private_data);
1763	return 0;
1764}
1765
1766static struct kernfs_node *kernfs_dir_pos(const void *ns,
1767	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1768{
1769	if (pos) {
1770		int valid = kernfs_active(pos) &&
1771			pos->parent == parent && hash == pos->hash;
1772		kernfs_put(pos);
1773		if (!valid)
1774			pos = NULL;
1775	}
1776	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1777		struct rb_node *node = parent->dir.children.rb_node;
1778		while (node) {
1779			pos = rb_to_kn(node);
1780
1781			if (hash < pos->hash)
1782				node = node->rb_left;
1783			else if (hash > pos->hash)
1784				node = node->rb_right;
1785			else
1786				break;
1787		}
1788	}
1789	/* Skip over entries which are dying/dead or in the wrong namespace */
1790	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1791		struct rb_node *node = rb_next(&pos->rb);
1792		if (!node)
1793			pos = NULL;
1794		else
1795			pos = rb_to_kn(node);
1796	}
1797	return pos;
1798}
1799
1800static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1801	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1802{
1803	pos = kernfs_dir_pos(ns, parent, ino, pos);
1804	if (pos) {
1805		do {
1806			struct rb_node *node = rb_next(&pos->rb);
1807			if (!node)
1808				pos = NULL;
1809			else
1810				pos = rb_to_kn(node);
1811		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1812	}
1813	return pos;
1814}
1815
1816static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1817{
1818	struct dentry *dentry = file->f_path.dentry;
1819	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1820	struct kernfs_node *pos = file->private_data;
1821	struct kernfs_root *root;
1822	const void *ns = NULL;
1823
1824	if (!dir_emit_dots(file, ctx))
1825		return 0;
1826
1827	root = kernfs_root(parent);
1828	down_read(&root->kernfs_rwsem);
1829
1830	if (kernfs_ns_enabled(parent))
1831		ns = kernfs_info(dentry->d_sb)->ns;
1832
1833	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1834	     pos;
1835	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1836		const char *name = pos->name;
1837		unsigned int type = dt_type(pos);
1838		int len = strlen(name);
1839		ino_t ino = kernfs_ino(pos);
1840
1841		ctx->pos = pos->hash;
1842		file->private_data = pos;
1843		kernfs_get(pos);
1844
1845		up_read(&root->kernfs_rwsem);
1846		if (!dir_emit(ctx, name, len, ino, type))
1847			return 0;
1848		down_read(&root->kernfs_rwsem);
1849	}
1850	up_read(&root->kernfs_rwsem);
1851	file->private_data = NULL;
1852	ctx->pos = INT_MAX;
1853	return 0;
1854}
1855
1856const struct file_operations kernfs_dir_fops = {
1857	.read		= generic_read_dir,
1858	.iterate_shared	= kernfs_fop_readdir,
1859	.release	= kernfs_dir_fop_release,
1860	.llseek		= generic_file_llseek,
1861};
v4.10.11
 
   1/*
   2 * fs/kernfs/dir.c - kernfs directory implementation
   3 *
   4 * Copyright (c) 2001-3 Patrick Mochel
   5 * Copyright (c) 2007 SUSE Linux Products GmbH
   6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   7 *
   8 * This file is released under the GPLv2.
   9 */
  10
  11#include <linux/sched.h>
  12#include <linux/fs.h>
  13#include <linux/namei.h>
  14#include <linux/idr.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/hash.h>
  18
  19#include "kernfs-internal.h"
  20
  21DEFINE_MUTEX(kernfs_mutex);
  22static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
  23static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
 
 
 
 
 
 
 
 
 
  24
  25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
  26
 
 
 
 
 
  27static bool kernfs_active(struct kernfs_node *kn)
  28{
  29	lockdep_assert_held(&kernfs_mutex);
  30	return atomic_read(&kn->active) >= 0;
  31}
  32
  33static bool kernfs_lockdep(struct kernfs_node *kn)
  34{
  35#ifdef CONFIG_DEBUG_LOCK_ALLOC
  36	return kn->flags & KERNFS_LOCKDEP;
  37#else
  38	return false;
  39#endif
  40}
  41
  42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
  43{
 
 
 
  44	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
  45}
  46
  47/* kernfs_node_depth - compute depth from @from to @to */
  48static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
  49{
  50	size_t depth = 0;
  51
  52	while (to->parent && to != from) {
  53		depth++;
  54		to = to->parent;
  55	}
  56	return depth;
  57}
  58
  59static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
  60						  struct kernfs_node *b)
  61{
  62	size_t da, db;
  63	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
  64
  65	if (ra != rb)
  66		return NULL;
  67
  68	da = kernfs_depth(ra->kn, a);
  69	db = kernfs_depth(rb->kn, b);
  70
  71	while (da > db) {
  72		a = a->parent;
  73		da--;
  74	}
  75	while (db > da) {
  76		b = b->parent;
  77		db--;
  78	}
  79
  80	/* worst case b and a will be the same at root */
  81	while (b != a) {
  82		b = b->parent;
  83		a = a->parent;
  84	}
  85
  86	return a;
  87}
  88
  89/**
  90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
  91 * where kn_from is treated as root of the path.
  92 * @kn_from: kernfs node which should be treated as root for the path
  93 * @kn_to: kernfs node to which path is needed
  94 * @buf: buffer to copy the path into
  95 * @buflen: size of @buf
  96 *
  97 * We need to handle couple of scenarios here:
  98 * [1] when @kn_from is an ancestor of @kn_to at some level
  99 * kn_from: /n1/n2/n3
 100 * kn_to:   /n1/n2/n3/n4/n5
 101 * result:  /n4/n5
 102 *
 103 * [2] when @kn_from is on a different hierarchy and we need to find common
 104 * ancestor between @kn_from and @kn_to.
 105 * kn_from: /n1/n2/n3/n4
 106 * kn_to:   /n1/n2/n5
 107 * result:  /../../n5
 108 * OR
 109 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 110 * kn_to:   /n1/n2/n3         [depth=3]
 111 * result:  /../..
 112 *
 113 * Returns the length of the full path.  If the full length is equal to or
 
 
 114 * greater than @buflen, @buf contains the truncated path with the trailing
 115 * '\0'.  On error, -errno is returned.
 116 */
 117static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
 118					struct kernfs_node *kn_from,
 119					char *buf, size_t buflen)
 120{
 121	struct kernfs_node *kn, *common;
 122	const char parent_str[] = "/..";
 123	size_t depth_from, depth_to, len = 0;
 124	int i, j;
 125
 
 
 
 126	if (!kn_from)
 127		kn_from = kernfs_root(kn_to)->kn;
 128
 129	if (kn_from == kn_to)
 130		return strlcpy(buf, "/", buflen);
 131
 
 
 
 132	common = kernfs_common_ancestor(kn_from, kn_to);
 133	if (WARN_ON(!common))
 134		return -EINVAL;
 135
 136	depth_to = kernfs_depth(common, kn_to);
 137	depth_from = kernfs_depth(common, kn_from);
 138
 139	if (buf)
 140		buf[0] = '\0';
 141
 142	for (i = 0; i < depth_from; i++)
 143		len += strlcpy(buf + len, parent_str,
 144			       len < buflen ? buflen - len : 0);
 145
 146	/* Calculate how many bytes we need for the rest */
 147	for (i = depth_to - 1; i >= 0; i--) {
 148		for (kn = kn_to, j = 0; j < i; j++)
 149			kn = kn->parent;
 150		len += strlcpy(buf + len, "/",
 151			       len < buflen ? buflen - len : 0);
 152		len += strlcpy(buf + len, kn->name,
 153			       len < buflen ? buflen - len : 0);
 154	}
 155
 156	return len;
 157}
 158
 159/**
 160 * kernfs_name - obtain the name of a given node
 161 * @kn: kernfs_node of interest
 162 * @buf: buffer to copy @kn's name into
 163 * @buflen: size of @buf
 164 *
 165 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 166 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 167 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 
 
 
 
 168 *
 169 * This function can be called from any context.
 170 */
 171int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
 172{
 173	unsigned long flags;
 174	int ret;
 175
 176	spin_lock_irqsave(&kernfs_rename_lock, flags);
 177	ret = kernfs_name_locked(kn, buf, buflen);
 178	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 179	return ret;
 180}
 181
 182/**
 183 * kernfs_path_from_node - build path of node @to relative to @from.
 184 * @from: parent kernfs_node relative to which we need to build the path
 185 * @to: kernfs_node of interest
 186 * @buf: buffer to copy @to's path into
 187 * @buflen: size of @buf
 188 *
 189 * Builds @to's path relative to @from in @buf. @from and @to must
 190 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 191 * path (which includes '..'s) as needed to reach from @from to @to is
 192 * returned.
 193 *
 194 * Returns the length of the full path.  If the full length is equal to or
 195 * greater than @buflen, @buf contains the truncated path with the trailing
 196 * '\0'.  On error, -errno is returned.
 197 */
 198int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
 199			  char *buf, size_t buflen)
 200{
 201	unsigned long flags;
 202	int ret;
 203
 204	spin_lock_irqsave(&kernfs_rename_lock, flags);
 205	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
 206	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 207	return ret;
 208}
 209EXPORT_SYMBOL_GPL(kernfs_path_from_node);
 210
 211/**
 212 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 213 * @kn: kernfs_node of interest
 214 *
 215 * This function can be called from any context.
 216 */
 217void pr_cont_kernfs_name(struct kernfs_node *kn)
 218{
 219	unsigned long flags;
 220
 221	spin_lock_irqsave(&kernfs_rename_lock, flags);
 222
 223	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
 224	pr_cont("%s", kernfs_pr_cont_buf);
 225
 226	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 227}
 228
 229/**
 230 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 231 * @kn: kernfs_node of interest
 232 *
 233 * This function can be called from any context.
 234 */
 235void pr_cont_kernfs_path(struct kernfs_node *kn)
 236{
 237	unsigned long flags;
 238	int sz;
 239
 240	spin_lock_irqsave(&kernfs_rename_lock, flags);
 241
 242	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
 243					  sizeof(kernfs_pr_cont_buf));
 244	if (sz < 0) {
 245		pr_cont("(error)");
 246		goto out;
 247	}
 248
 249	if (sz >= sizeof(kernfs_pr_cont_buf)) {
 250		pr_cont("(name too long)");
 251		goto out;
 252	}
 253
 254	pr_cont("%s", kernfs_pr_cont_buf);
 255
 256out:
 257	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 258}
 259
 260/**
 261 * kernfs_get_parent - determine the parent node and pin it
 262 * @kn: kernfs_node of interest
 263 *
 264 * Determines @kn's parent, pins and returns it.  This function can be
 265 * called from any context.
 
 
 266 */
 267struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
 268{
 269	struct kernfs_node *parent;
 270	unsigned long flags;
 271
 272	spin_lock_irqsave(&kernfs_rename_lock, flags);
 273	parent = kn->parent;
 274	kernfs_get(parent);
 275	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 276
 277	return parent;
 278}
 279
 280/**
 281 *	kernfs_name_hash
 282 *	@name: Null terminated string to hash
 283 *	@ns:   Namespace tag to hash
 284 *
 285 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
 286 */
 287static unsigned int kernfs_name_hash(const char *name, const void *ns)
 288{
 289	unsigned long hash = init_name_hash(ns);
 290	unsigned int len = strlen(name);
 291	while (len--)
 292		hash = partial_name_hash(*name++, hash);
 293	hash = end_name_hash(hash);
 294	hash &= 0x7fffffffU;
 295	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
 296	if (hash < 2)
 297		hash += 2;
 298	if (hash >= INT_MAX)
 299		hash = INT_MAX - 1;
 300	return hash;
 301}
 302
 303static int kernfs_name_compare(unsigned int hash, const char *name,
 304			       const void *ns, const struct kernfs_node *kn)
 305{
 306	if (hash < kn->hash)
 307		return -1;
 308	if (hash > kn->hash)
 309		return 1;
 310	if (ns < kn->ns)
 311		return -1;
 312	if (ns > kn->ns)
 313		return 1;
 314	return strcmp(name, kn->name);
 315}
 316
 317static int kernfs_sd_compare(const struct kernfs_node *left,
 318			     const struct kernfs_node *right)
 319{
 320	return kernfs_name_compare(left->hash, left->name, left->ns, right);
 321}
 322
 323/**
 324 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
 325 *	@kn: kernfs_node of interest
 326 *
 327 *	Link @kn into its sibling rbtree which starts from
 328 *	@kn->parent->dir.children.
 329 *
 330 *	Locking:
 331 *	mutex_lock(kernfs_mutex)
 332 *
 333 *	RETURNS:
 334 *	0 on susccess -EEXIST on failure.
 335 */
 336static int kernfs_link_sibling(struct kernfs_node *kn)
 337{
 338	struct rb_node **node = &kn->parent->dir.children.rb_node;
 339	struct rb_node *parent = NULL;
 340
 341	while (*node) {
 342		struct kernfs_node *pos;
 343		int result;
 344
 345		pos = rb_to_kn(*node);
 346		parent = *node;
 347		result = kernfs_sd_compare(kn, pos);
 348		if (result < 0)
 349			node = &pos->rb.rb_left;
 350		else if (result > 0)
 351			node = &pos->rb.rb_right;
 352		else
 353			return -EEXIST;
 354	}
 355
 356	/* add new node and rebalance the tree */
 357	rb_link_node(&kn->rb, parent, node);
 358	rb_insert_color(&kn->rb, &kn->parent->dir.children);
 359
 360	/* successfully added, account subdir number */
 361	if (kernfs_type(kn) == KERNFS_DIR)
 362		kn->parent->dir.subdirs++;
 
 363
 364	return 0;
 365}
 366
 367/**
 368 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
 369 *	@kn: kernfs_node of interest
 370 *
 371 *	Try to unlink @kn from its sibling rbtree which starts from
 372 *	kn->parent->dir.children.  Returns %true if @kn was actually
 373 *	removed, %false if @kn wasn't on the rbtree.
 
 
 374 *
 375 *	Locking:
 376 *	mutex_lock(kernfs_mutex)
 377 */
 378static bool kernfs_unlink_sibling(struct kernfs_node *kn)
 379{
 380	if (RB_EMPTY_NODE(&kn->rb))
 381		return false;
 382
 383	if (kernfs_type(kn) == KERNFS_DIR)
 384		kn->parent->dir.subdirs--;
 
 385
 386	rb_erase(&kn->rb, &kn->parent->dir.children);
 387	RB_CLEAR_NODE(&kn->rb);
 388	return true;
 389}
 390
 391/**
 392 *	kernfs_get_active - get an active reference to kernfs_node
 393 *	@kn: kernfs_node to get an active reference to
 394 *
 395 *	Get an active reference of @kn.  This function is noop if @kn
 396 *	is NULL.
 397 *
 398 *	RETURNS:
 399 *	Pointer to @kn on success, NULL on failure.
 400 */
 401struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
 402{
 403	if (unlikely(!kn))
 404		return NULL;
 405
 406	if (!atomic_inc_unless_negative(&kn->active))
 407		return NULL;
 408
 409	if (kernfs_lockdep(kn))
 410		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
 411	return kn;
 412}
 413
 414/**
 415 *	kernfs_put_active - put an active reference to kernfs_node
 416 *	@kn: kernfs_node to put an active reference to
 417 *
 418 *	Put an active reference to @kn.  This function is noop if @kn
 419 *	is NULL.
 420 */
 421void kernfs_put_active(struct kernfs_node *kn)
 422{
 423	struct kernfs_root *root = kernfs_root(kn);
 424	int v;
 425
 426	if (unlikely(!kn))
 427		return;
 428
 429	if (kernfs_lockdep(kn))
 430		rwsem_release(&kn->dep_map, 1, _RET_IP_);
 431	v = atomic_dec_return(&kn->active);
 432	if (likely(v != KN_DEACTIVATED_BIAS))
 433		return;
 434
 435	wake_up_all(&root->deactivate_waitq);
 436}
 437
 438/**
 439 * kernfs_drain - drain kernfs_node
 440 * @kn: kernfs_node to drain
 441 *
 442 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 443 * removers may invoke this function concurrently on @kn and all will
 444 * return after draining is complete.
 445 */
 446static void kernfs_drain(struct kernfs_node *kn)
 447	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
 
 448{
 449	struct kernfs_root *root = kernfs_root(kn);
 450
 451	lockdep_assert_held(&kernfs_mutex);
 452	WARN_ON_ONCE(kernfs_active(kn));
 453
 454	mutex_unlock(&kernfs_mutex);
 
 
 
 
 
 
 
 
 
 
 455
 456	if (kernfs_lockdep(kn)) {
 457		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
 458		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
 459			lock_contended(&kn->dep_map, _RET_IP_);
 460	}
 461
 462	/* but everyone should wait for draining */
 463	wait_event(root->deactivate_waitq,
 464		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
 465
 466	if (kernfs_lockdep(kn)) {
 467		lock_acquired(&kn->dep_map, _RET_IP_);
 468		rwsem_release(&kn->dep_map, 1, _RET_IP_);
 469	}
 470
 471	kernfs_unmap_bin_file(kn);
 
 472
 473	mutex_lock(&kernfs_mutex);
 474}
 475
 476/**
 477 * kernfs_get - get a reference count on a kernfs_node
 478 * @kn: the target kernfs_node
 479 */
 480void kernfs_get(struct kernfs_node *kn)
 481{
 482	if (kn) {
 483		WARN_ON(!atomic_read(&kn->count));
 484		atomic_inc(&kn->count);
 485	}
 486}
 487EXPORT_SYMBOL_GPL(kernfs_get);
 488
 489/**
 490 * kernfs_put - put a reference count on a kernfs_node
 491 * @kn: the target kernfs_node
 492 *
 493 * Put a reference count of @kn and destroy it if it reached zero.
 494 */
 495void kernfs_put(struct kernfs_node *kn)
 496{
 497	struct kernfs_node *parent;
 498	struct kernfs_root *root;
 499
 500	if (!kn || !atomic_dec_and_test(&kn->count))
 501		return;
 502	root = kernfs_root(kn);
 503 repeat:
 504	/*
 505	 * Moving/renaming is always done while holding reference.
 506	 * kn->parent won't change beneath us.
 507	 */
 508	parent = kn->parent;
 509
 510	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
 511		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
 512		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
 513
 514	if (kernfs_type(kn) == KERNFS_LINK)
 515		kernfs_put(kn->symlink.target_kn);
 516
 517	kfree_const(kn->name);
 518
 519	if (kn->iattr) {
 520		if (kn->iattr->ia_secdata)
 521			security_release_secctx(kn->iattr->ia_secdata,
 522						kn->iattr->ia_secdata_len);
 523		simple_xattrs_free(&kn->iattr->xattrs);
 
 524	}
 525	kfree(kn->iattr);
 526	ida_simple_remove(&root->ino_ida, kn->ino);
 
 527	kmem_cache_free(kernfs_node_cache, kn);
 528
 529	kn = parent;
 530	if (kn) {
 531		if (atomic_dec_and_test(&kn->count))
 532			goto repeat;
 533	} else {
 534		/* just released the root kn, free @root too */
 535		ida_destroy(&root->ino_ida);
 536		kfree(root);
 537	}
 538}
 539EXPORT_SYMBOL_GPL(kernfs_put);
 540
 541static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
 542{
 543	struct kernfs_node *kn;
 544
 545	if (flags & LOOKUP_RCU)
 546		return -ECHILD;
 547
 548	/* Always perform fresh lookup for negatives */
 549	if (d_really_is_negative(dentry))
 550		goto out_bad_unlocked;
 551
 552	kn = dentry->d_fsdata;
 553	mutex_lock(&kernfs_mutex);
 554
 555	/* The kernfs node has been deactivated */
 556	if (!kernfs_active(kn))
 557		goto out_bad;
 558
 559	/* The kernfs node has been moved? */
 560	if (dentry->d_parent->d_fsdata != kn->parent)
 561		goto out_bad;
 562
 563	/* The kernfs node has been renamed */
 564	if (strcmp(dentry->d_name.name, kn->name) != 0)
 565		goto out_bad;
 566
 567	/* The kernfs node has been moved to a different namespace */
 568	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
 569	    kernfs_info(dentry->d_sb)->ns != kn->ns)
 570		goto out_bad;
 571
 572	mutex_unlock(&kernfs_mutex);
 573	return 1;
 574out_bad:
 575	mutex_unlock(&kernfs_mutex);
 576out_bad_unlocked:
 577	return 0;
 578}
 579
 580static void kernfs_dop_release(struct dentry *dentry)
 581{
 582	kernfs_put(dentry->d_fsdata);
 583}
 584
 585const struct dentry_operations kernfs_dops = {
 586	.d_revalidate	= kernfs_dop_revalidate,
 587	.d_release	= kernfs_dop_release,
 588};
 589
 590/**
 591 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 592 * @dentry: the dentry in question
 593 *
 594 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 595 * kernfs one, %NULL is returned.
 596 *
 597 * While the returned kernfs_node will stay accessible as long as @dentry
 598 * is accessible, the returned node can be in any state and the caller is
 599 * fully responsible for determining what's accessible.
 600 */
 601struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
 602{
 603	if (dentry->d_sb->s_op == &kernfs_sops)
 604		return dentry->d_fsdata;
 605	return NULL;
 606}
 607
 608static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
 
 609					     const char *name, umode_t mode,
 
 610					     unsigned flags)
 611{
 612	struct kernfs_node *kn;
 
 613	int ret;
 614
 615	name = kstrdup_const(name, GFP_KERNEL);
 616	if (!name)
 617		return NULL;
 618
 619	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
 620	if (!kn)
 621		goto err_out1;
 622
 623	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
 
 
 
 
 
 
 
 
 624	if (ret < 0)
 625		goto err_out2;
 626	kn->ino = ret;
 
 627
 628	atomic_set(&kn->count, 1);
 629	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
 630	RB_CLEAR_NODE(&kn->rb);
 631
 632	kn->name = name;
 633	kn->mode = mode;
 634	kn->flags = flags;
 635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	return kn;
 637
 
 
 638 err_out2:
 639	kmem_cache_free(kernfs_node_cache, kn);
 640 err_out1:
 641	kfree_const(name);
 642	return NULL;
 643}
 644
 645struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
 646				    const char *name, umode_t mode,
 
 647				    unsigned flags)
 648{
 649	struct kernfs_node *kn;
 650
 651	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
 
 652	if (kn) {
 653		kernfs_get(parent);
 654		kn->parent = parent;
 655	}
 656	return kn;
 657}
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659/**
 660 *	kernfs_add_one - add kernfs_node to parent without warning
 661 *	@kn: kernfs_node to be added
 662 *
 663 *	The caller must already have initialized @kn->parent.  This
 664 *	function increments nlink of the parent's inode if @kn is a
 665 *	directory and link into the children list of the parent.
 666 *
 667 *	RETURNS:
 668 *	0 on success, -EEXIST if entry with the given name already
 669 *	exists.
 670 */
 671int kernfs_add_one(struct kernfs_node *kn)
 672{
 673	struct kernfs_node *parent = kn->parent;
 
 674	struct kernfs_iattrs *ps_iattr;
 675	bool has_ns;
 676	int ret;
 677
 678	mutex_lock(&kernfs_mutex);
 679
 680	ret = -EINVAL;
 681	has_ns = kernfs_ns_enabled(parent);
 682	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 683		 has_ns ? "required" : "invalid", parent->name, kn->name))
 684		goto out_unlock;
 685
 686	if (kernfs_type(parent) != KERNFS_DIR)
 687		goto out_unlock;
 688
 689	ret = -ENOENT;
 690	if (parent->flags & KERNFS_EMPTY_DIR)
 691		goto out_unlock;
 692
 693	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
 694		goto out_unlock;
 695
 696	kn->hash = kernfs_name_hash(kn->name, kn->ns);
 697
 698	ret = kernfs_link_sibling(kn);
 699	if (ret)
 700		goto out_unlock;
 701
 702	/* Update timestamps on the parent */
 703	ps_iattr = parent->iattr;
 704	if (ps_iattr) {
 705		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
 706		ktime_get_real_ts(&ps_iattrs->ia_ctime);
 707		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
 708	}
 709
 710	mutex_unlock(&kernfs_mutex);
 711
 712	/*
 713	 * Activate the new node unless CREATE_DEACTIVATED is requested.
 714	 * If not activated here, the kernfs user is responsible for
 715	 * activating the node with kernfs_activate().  A node which hasn't
 716	 * been activated is not visible to userland and its removal won't
 717	 * trigger deactivation.
 718	 */
 719	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 720		kernfs_activate(kn);
 721	return 0;
 722
 723out_unlock:
 724	mutex_unlock(&kernfs_mutex);
 725	return ret;
 726}
 727
 728/**
 729 * kernfs_find_ns - find kernfs_node with the given name
 730 * @parent: kernfs_node to search under
 731 * @name: name to look for
 732 * @ns: the namespace tag to use
 733 *
 734 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 735 * the found kernfs_node on success, %NULL on failure.
 
 736 */
 737static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
 738					  const unsigned char *name,
 739					  const void *ns)
 740{
 741	struct rb_node *node = parent->dir.children.rb_node;
 742	bool has_ns = kernfs_ns_enabled(parent);
 743	unsigned int hash;
 744
 745	lockdep_assert_held(&kernfs_mutex);
 746
 747	if (has_ns != (bool)ns) {
 748		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 749		     has_ns ? "required" : "invalid", parent->name, name);
 750		return NULL;
 751	}
 752
 753	hash = kernfs_name_hash(name, ns);
 754	while (node) {
 755		struct kernfs_node *kn;
 756		int result;
 757
 758		kn = rb_to_kn(node);
 759		result = kernfs_name_compare(hash, name, ns, kn);
 760		if (result < 0)
 761			node = node->rb_left;
 762		else if (result > 0)
 763			node = node->rb_right;
 764		else
 765			return kn;
 766	}
 767	return NULL;
 768}
 769
 770static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
 771					  const unsigned char *path,
 772					  const void *ns)
 773{
 774	size_t len;
 775	char *p, *name;
 776
 777	lockdep_assert_held(&kernfs_mutex);
 778
 779	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
 780	spin_lock_irq(&kernfs_rename_lock);
 781
 782	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
 783
 784	if (len >= sizeof(kernfs_pr_cont_buf)) {
 785		spin_unlock_irq(&kernfs_rename_lock);
 786		return NULL;
 787	}
 788
 789	p = kernfs_pr_cont_buf;
 790
 791	while ((name = strsep(&p, "/")) && parent) {
 792		if (*name == '\0')
 793			continue;
 794		parent = kernfs_find_ns(parent, name, ns);
 795	}
 796
 797	spin_unlock_irq(&kernfs_rename_lock);
 798
 799	return parent;
 800}
 801
 802/**
 803 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 804 * @parent: kernfs_node to search under
 805 * @name: name to look for
 806 * @ns: the namespace tag to use
 807 *
 808 * Look for kernfs_node with name @name under @parent and get a reference
 809 * if found.  This function may sleep and returns pointer to the found
 810 * kernfs_node on success, %NULL on failure.
 
 811 */
 812struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
 813					   const char *name, const void *ns)
 814{
 815	struct kernfs_node *kn;
 
 816
 817	mutex_lock(&kernfs_mutex);
 818	kn = kernfs_find_ns(parent, name, ns);
 819	kernfs_get(kn);
 820	mutex_unlock(&kernfs_mutex);
 821
 822	return kn;
 823}
 824EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
 825
 826/**
 827 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 828 * @parent: kernfs_node to search under
 829 * @path: path to look for
 830 * @ns: the namespace tag to use
 831 *
 832 * Look for kernfs_node with path @path under @parent and get a reference
 833 * if found.  This function may sleep and returns pointer to the found
 834 * kernfs_node on success, %NULL on failure.
 
 835 */
 836struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
 837					   const char *path, const void *ns)
 838{
 839	struct kernfs_node *kn;
 
 840
 841	mutex_lock(&kernfs_mutex);
 842	kn = kernfs_walk_ns(parent, path, ns);
 843	kernfs_get(kn);
 844	mutex_unlock(&kernfs_mutex);
 845
 846	return kn;
 847}
 848
 849/**
 850 * kernfs_create_root - create a new kernfs hierarchy
 851 * @scops: optional syscall operations for the hierarchy
 852 * @flags: KERNFS_ROOT_* flags
 853 * @priv: opaque data associated with the new directory
 854 *
 855 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 856 * failure.
 857 */
 858struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
 859				       unsigned int flags, void *priv)
 860{
 861	struct kernfs_root *root;
 862	struct kernfs_node *kn;
 863
 864	root = kzalloc(sizeof(*root), GFP_KERNEL);
 865	if (!root)
 866		return ERR_PTR(-ENOMEM);
 867
 868	ida_init(&root->ino_ida);
 
 869	INIT_LIST_HEAD(&root->supers);
 870
 871	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
 
 
 
 
 
 
 
 
 
 
 
 
 872			       KERNFS_DIR);
 873	if (!kn) {
 874		ida_destroy(&root->ino_ida);
 875		kfree(root);
 876		return ERR_PTR(-ENOMEM);
 877	}
 878
 879	kn->priv = priv;
 880	kn->dir.root = root;
 881
 882	root->syscall_ops = scops;
 883	root->flags = flags;
 884	root->kn = kn;
 885	init_waitqueue_head(&root->deactivate_waitq);
 886
 887	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 888		kernfs_activate(kn);
 889
 890	return root;
 891}
 892
 893/**
 894 * kernfs_destroy_root - destroy a kernfs hierarchy
 895 * @root: root of the hierarchy to destroy
 896 *
 897 * Destroy the hierarchy anchored at @root by removing all existing
 898 * directories and destroying @root.
 899 */
 900void kernfs_destroy_root(struct kernfs_root *root)
 901{
 902	kernfs_remove(root->kn);	/* will also free @root */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903}
 904
 905/**
 906 * kernfs_create_dir_ns - create a directory
 907 * @parent: parent in which to create a new directory
 908 * @name: name of the new directory
 909 * @mode: mode of the new directory
 
 
 910 * @priv: opaque data associated with the new directory
 911 * @ns: optional namespace tag of the directory
 912 *
 913 * Returns the created node on success, ERR_PTR() value on failure.
 914 */
 915struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
 916					 const char *name, umode_t mode,
 
 917					 void *priv, const void *ns)
 918{
 919	struct kernfs_node *kn;
 920	int rc;
 921
 922	/* allocate */
 923	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
 
 924	if (!kn)
 925		return ERR_PTR(-ENOMEM);
 926
 927	kn->dir.root = parent->dir.root;
 928	kn->ns = ns;
 929	kn->priv = priv;
 930
 931	/* link in */
 932	rc = kernfs_add_one(kn);
 933	if (!rc)
 934		return kn;
 935
 936	kernfs_put(kn);
 937	return ERR_PTR(rc);
 938}
 939
 940/**
 941 * kernfs_create_empty_dir - create an always empty directory
 942 * @parent: parent in which to create a new directory
 943 * @name: name of the new directory
 944 *
 945 * Returns the created node on success, ERR_PTR() value on failure.
 946 */
 947struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
 948					    const char *name)
 949{
 950	struct kernfs_node *kn;
 951	int rc;
 952
 953	/* allocate */
 954	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
 
 955	if (!kn)
 956		return ERR_PTR(-ENOMEM);
 957
 958	kn->flags |= KERNFS_EMPTY_DIR;
 959	kn->dir.root = parent->dir.root;
 960	kn->ns = NULL;
 961	kn->priv = NULL;
 962
 963	/* link in */
 964	rc = kernfs_add_one(kn);
 965	if (!rc)
 966		return kn;
 967
 968	kernfs_put(kn);
 969	return ERR_PTR(rc);
 970}
 971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972static struct dentry *kernfs_iop_lookup(struct inode *dir,
 973					struct dentry *dentry,
 974					unsigned int flags)
 975{
 976	struct dentry *ret;
 977	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
 978	struct kernfs_node *kn;
 979	struct inode *inode;
 
 980	const void *ns = NULL;
 981
 982	mutex_lock(&kernfs_mutex);
 983
 984	if (kernfs_ns_enabled(parent))
 985		ns = kernfs_info(dir->i_sb)->ns;
 986
 987	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
 988
 989	/* no such entry */
 990	if (!kn || !kernfs_active(kn)) {
 991		ret = NULL;
 992		goto out_unlock;
 993	}
 994	kernfs_get(kn);
 995	dentry->d_fsdata = kn;
 996
 997	/* attach dentry and inode */
 998	inode = kernfs_get_inode(dir->i_sb, kn);
 999	if (!inode) {
1000		ret = ERR_PTR(-ENOMEM);
1001		goto out_unlock;
 
 
 
 
 
 
 
1002	}
 
 
 
 
 
 
 
 
 
1003
1004	/* instantiate and hash dentry */
1005	ret = d_splice_alias(inode, dentry);
1006 out_unlock:
1007	mutex_unlock(&kernfs_mutex);
1008	return ret;
1009}
1010
1011static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
 
1012			    umode_t mode)
1013{
1014	struct kernfs_node *parent = dir->i_private;
1015	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1016	int ret;
1017
1018	if (!scops || !scops->mkdir)
1019		return -EPERM;
1020
1021	if (!kernfs_get_active(parent))
1022		return -ENODEV;
1023
1024	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1025
1026	kernfs_put_active(parent);
1027	return ret;
1028}
1029
1030static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1031{
1032	struct kernfs_node *kn  = dentry->d_fsdata;
1033	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1034	int ret;
1035
1036	if (!scops || !scops->rmdir)
1037		return -EPERM;
1038
1039	if (!kernfs_get_active(kn))
1040		return -ENODEV;
1041
1042	ret = scops->rmdir(kn);
1043
1044	kernfs_put_active(kn);
1045	return ret;
1046}
1047
1048static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
 
1049			     struct inode *new_dir, struct dentry *new_dentry,
1050			     unsigned int flags)
1051{
1052	struct kernfs_node *kn  = old_dentry->d_fsdata;
1053	struct kernfs_node *new_parent = new_dir->i_private;
1054	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1055	int ret;
1056
1057	if (flags)
1058		return -EINVAL;
1059
1060	if (!scops || !scops->rename)
1061		return -EPERM;
1062
1063	if (!kernfs_get_active(kn))
1064		return -ENODEV;
1065
1066	if (!kernfs_get_active(new_parent)) {
1067		kernfs_put_active(kn);
1068		return -ENODEV;
1069	}
1070
1071	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1072
1073	kernfs_put_active(new_parent);
1074	kernfs_put_active(kn);
1075	return ret;
1076}
1077
1078const struct inode_operations kernfs_dir_iops = {
1079	.lookup		= kernfs_iop_lookup,
1080	.permission	= kernfs_iop_permission,
1081	.setattr	= kernfs_iop_setattr,
1082	.getattr	= kernfs_iop_getattr,
1083	.listxattr	= kernfs_iop_listxattr,
1084
1085	.mkdir		= kernfs_iop_mkdir,
1086	.rmdir		= kernfs_iop_rmdir,
1087	.rename		= kernfs_iop_rename,
1088};
1089
1090static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1091{
1092	struct kernfs_node *last;
1093
1094	while (true) {
1095		struct rb_node *rbn;
1096
1097		last = pos;
1098
1099		if (kernfs_type(pos) != KERNFS_DIR)
1100			break;
1101
1102		rbn = rb_first(&pos->dir.children);
1103		if (!rbn)
1104			break;
1105
1106		pos = rb_to_kn(rbn);
1107	}
1108
1109	return last;
1110}
1111
1112/**
1113 * kernfs_next_descendant_post - find the next descendant for post-order walk
1114 * @pos: the current position (%NULL to initiate traversal)
1115 * @root: kernfs_node whose descendants to walk
1116 *
1117 * Find the next descendant to visit for post-order traversal of @root's
1118 * descendants.  @root is included in the iteration and the last node to be
1119 * visited.
 
 
1120 */
1121static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1122						       struct kernfs_node *root)
1123{
1124	struct rb_node *rbn;
1125
1126	lockdep_assert_held(&kernfs_mutex);
1127
1128	/* if first iteration, visit leftmost descendant which may be root */
1129	if (!pos)
1130		return kernfs_leftmost_descendant(root);
1131
1132	/* if we visited @root, we're done */
1133	if (pos == root)
1134		return NULL;
1135
1136	/* if there's an unvisited sibling, visit its leftmost descendant */
1137	rbn = rb_next(&pos->rb);
1138	if (rbn)
1139		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1140
1141	/* no sibling left, visit parent */
1142	return pos->parent;
1143}
1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145/**
1146 * kernfs_activate - activate a node which started deactivated
1147 * @kn: kernfs_node whose subtree is to be activated
1148 *
1149 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1150 * needs to be explicitly activated.  A node which hasn't been activated
1151 * isn't visible to userland and deactivation is skipped during its
1152 * removal.  This is useful to construct atomic init sequences where
1153 * creation of multiple nodes should either succeed or fail atomically.
1154 *
1155 * The caller is responsible for ensuring that this function is not called
1156 * after kernfs_remove*() is invoked on @kn.
1157 */
1158void kernfs_activate(struct kernfs_node *kn)
1159{
1160	struct kernfs_node *pos;
 
1161
1162	mutex_lock(&kernfs_mutex);
1163
1164	pos = NULL;
1165	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1166		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1167			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168
1169		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1170		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1171
1172		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1173		pos->flags |= KERNFS_ACTIVATED;
 
 
 
 
 
 
 
1174	}
1175
1176	mutex_unlock(&kernfs_mutex);
1177}
1178
1179static void __kernfs_remove(struct kernfs_node *kn)
1180{
1181	struct kernfs_node *pos;
1182
1183	lockdep_assert_held(&kernfs_mutex);
 
 
 
 
1184
1185	/*
1186	 * Short-circuit if non-root @kn has already finished removal.
1187	 * This is for kernfs_remove_self() which plays with active ref
1188	 * after removal.
1189	 */
1190	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1191		return;
1192
1193	pr_debug("kernfs %s: removing\n", kn->name);
1194
1195	/* prevent any new usage under @kn by deactivating all nodes */
1196	pos = NULL;
1197	while ((pos = kernfs_next_descendant_post(pos, kn)))
 
1198		if (kernfs_active(pos))
1199			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
 
1200
1201	/* deactivate and unlink the subtree node-by-node */
1202	do {
1203		pos = kernfs_leftmost_descendant(kn);
1204
1205		/*
1206		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1207		 * base ref could have been put by someone else by the time
1208		 * the function returns.  Make sure it doesn't go away
1209		 * underneath us.
1210		 */
1211		kernfs_get(pos);
1212
1213		/*
1214		 * Drain iff @kn was activated.  This avoids draining and
1215		 * its lockdep annotations for nodes which have never been
1216		 * activated and allows embedding kernfs_remove() in create
1217		 * error paths without worrying about draining.
1218		 */
1219		if (kn->flags & KERNFS_ACTIVATED)
1220			kernfs_drain(pos);
1221		else
1222			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1223
1224		/*
1225		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1226		 * to decide who's responsible for cleanups.
1227		 */
1228		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1229			struct kernfs_iattrs *ps_iattr =
1230				pos->parent ? pos->parent->iattr : NULL;
1231
1232			/* update timestamps on the parent */
1233			if (ps_iattr) {
1234				ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1235				ps_iattr->ia_iattr.ia_mtime =
1236					ps_iattr->ia_iattr.ia_ctime;
1237			}
1238
1239			kernfs_put(pos);
1240		}
1241
1242		kernfs_put(pos);
1243	} while (pos != kn);
1244}
1245
1246/**
1247 * kernfs_remove - remove a kernfs_node recursively
1248 * @kn: the kernfs_node to remove
1249 *
1250 * Remove @kn along with all its subdirectories and files.
1251 */
1252void kernfs_remove(struct kernfs_node *kn)
1253{
1254	mutex_lock(&kernfs_mutex);
 
 
 
 
 
 
 
1255	__kernfs_remove(kn);
1256	mutex_unlock(&kernfs_mutex);
1257}
1258
1259/**
1260 * kernfs_break_active_protection - break out of active protection
1261 * @kn: the self kernfs_node
1262 *
1263 * The caller must be running off of a kernfs operation which is invoked
1264 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1265 * this function must also be matched with an invocation of
1266 * kernfs_unbreak_active_protection().
1267 *
1268 * This function releases the active reference of @kn the caller is
1269 * holding.  Once this function is called, @kn may be removed at any point
1270 * and the caller is solely responsible for ensuring that the objects it
1271 * dereferences are accessible.
1272 */
1273void kernfs_break_active_protection(struct kernfs_node *kn)
1274{
1275	/*
1276	 * Take out ourself out of the active ref dependency chain.  If
1277	 * we're called without an active ref, lockdep will complain.
1278	 */
1279	kernfs_put_active(kn);
1280}
1281
1282/**
1283 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1284 * @kn: the self kernfs_node
1285 *
1286 * If kernfs_break_active_protection() was called, this function must be
1287 * invoked before finishing the kernfs operation.  Note that while this
1288 * function restores the active reference, it doesn't and can't actually
1289 * restore the active protection - @kn may already or be in the process of
1290 * being removed.  Once kernfs_break_active_protection() is invoked, that
1291 * protection is irreversibly gone for the kernfs operation instance.
1292 *
1293 * While this function may be called at any point after
1294 * kernfs_break_active_protection() is invoked, its most useful location
1295 * would be right before the enclosing kernfs operation returns.
1296 */
1297void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1298{
1299	/*
1300	 * @kn->active could be in any state; however, the increment we do
1301	 * here will be undone as soon as the enclosing kernfs operation
1302	 * finishes and this temporary bump can't break anything.  If @kn
1303	 * is alive, nothing changes.  If @kn is being deactivated, the
1304	 * soon-to-follow put will either finish deactivation or restore
1305	 * deactivated state.  If @kn is already removed, the temporary
1306	 * bump is guaranteed to be gone before @kn is released.
1307	 */
1308	atomic_inc(&kn->active);
1309	if (kernfs_lockdep(kn))
1310		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1311}
1312
1313/**
1314 * kernfs_remove_self - remove a kernfs_node from its own method
1315 * @kn: the self kernfs_node to remove
1316 *
1317 * The caller must be running off of a kernfs operation which is invoked
1318 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1319 * implement a file operation which deletes itself.
1320 *
1321 * For example, the "delete" file for a sysfs device directory can be
1322 * implemented by invoking kernfs_remove_self() on the "delete" file
1323 * itself.  This function breaks the circular dependency of trying to
1324 * deactivate self while holding an active ref itself.  It isn't necessary
1325 * to modify the usual removal path to use kernfs_remove_self().  The
1326 * "delete" implementation can simply invoke kernfs_remove_self() on self
1327 * before proceeding with the usual removal path.  kernfs will ignore later
1328 * kernfs_remove() on self.
1329 *
1330 * kernfs_remove_self() can be called multiple times concurrently on the
1331 * same kernfs_node.  Only the first one actually performs removal and
1332 * returns %true.  All others will wait until the kernfs operation which
1333 * won self-removal finishes and return %false.  Note that the losers wait
1334 * for the completion of not only the winning kernfs_remove_self() but also
1335 * the whole kernfs_ops which won the arbitration.  This can be used to
1336 * guarantee, for example, all concurrent writes to a "delete" file to
1337 * finish only after the whole operation is complete.
 
 
1338 */
1339bool kernfs_remove_self(struct kernfs_node *kn)
1340{
1341	bool ret;
 
1342
1343	mutex_lock(&kernfs_mutex);
1344	kernfs_break_active_protection(kn);
1345
1346	/*
1347	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1348	 * the first one will actually perform removal.  When the removal
1349	 * is complete, SUICIDED is set and the active ref is restored
1350	 * while holding kernfs_mutex.  The ones which lost arbitration
1351	 * waits for SUICDED && drained which can happen only after the
1352	 * enclosing kernfs operation which executed the winning instance
1353	 * of kernfs_remove_self() finished.
1354	 */
1355	if (!(kn->flags & KERNFS_SUICIDAL)) {
1356		kn->flags |= KERNFS_SUICIDAL;
1357		__kernfs_remove(kn);
1358		kn->flags |= KERNFS_SUICIDED;
1359		ret = true;
1360	} else {
1361		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1362		DEFINE_WAIT(wait);
1363
1364		while (true) {
1365			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1366
1367			if ((kn->flags & KERNFS_SUICIDED) &&
1368			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1369				break;
1370
1371			mutex_unlock(&kernfs_mutex);
1372			schedule();
1373			mutex_lock(&kernfs_mutex);
1374		}
1375		finish_wait(waitq, &wait);
1376		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1377		ret = false;
1378	}
1379
1380	/*
1381	 * This must be done while holding kernfs_mutex; otherwise, waiting
1382	 * for SUICIDED && deactivated could finish prematurely.
1383	 */
1384	kernfs_unbreak_active_protection(kn);
1385
1386	mutex_unlock(&kernfs_mutex);
1387	return ret;
1388}
1389
1390/**
1391 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1392 * @parent: parent of the target
1393 * @name: name of the kernfs_node to remove
1394 * @ns: namespace tag of the kernfs_node to remove
1395 *
1396 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1397 * Returns 0 on success, -ENOENT if such entry doesn't exist.
 
1398 */
1399int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1400			     const void *ns)
1401{
1402	struct kernfs_node *kn;
 
1403
1404	if (!parent) {
1405		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1406			name);
1407		return -ENOENT;
1408	}
1409
1410	mutex_lock(&kernfs_mutex);
 
1411
1412	kn = kernfs_find_ns(parent, name, ns);
1413	if (kn)
 
1414		__kernfs_remove(kn);
 
 
1415
1416	mutex_unlock(&kernfs_mutex);
1417
1418	if (kn)
1419		return 0;
1420	else
1421		return -ENOENT;
1422}
1423
1424/**
1425 * kernfs_rename_ns - move and rename a kernfs_node
1426 * @kn: target node
1427 * @new_parent: new parent to put @sd under
1428 * @new_name: new name
1429 * @new_ns: new namespace tag
 
 
1430 */
1431int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1432		     const char *new_name, const void *new_ns)
1433{
1434	struct kernfs_node *old_parent;
 
1435	const char *old_name = NULL;
1436	int error;
1437
1438	/* can't move or rename root */
1439	if (!kn->parent)
1440		return -EINVAL;
1441
1442	mutex_lock(&kernfs_mutex);
 
1443
1444	error = -ENOENT;
1445	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1446	    (new_parent->flags & KERNFS_EMPTY_DIR))
1447		goto out;
1448
1449	error = 0;
1450	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1451	    (strcmp(kn->name, new_name) == 0))
1452		goto out;	/* nothing to rename */
1453
1454	error = -EEXIST;
1455	if (kernfs_find_ns(new_parent, new_name, new_ns))
1456		goto out;
1457
1458	/* rename kernfs_node */
1459	if (strcmp(kn->name, new_name) != 0) {
1460		error = -ENOMEM;
1461		new_name = kstrdup_const(new_name, GFP_KERNEL);
1462		if (!new_name)
1463			goto out;
1464	} else {
1465		new_name = NULL;
1466	}
1467
1468	/*
1469	 * Move to the appropriate place in the appropriate directories rbtree.
1470	 */
1471	kernfs_unlink_sibling(kn);
1472	kernfs_get(new_parent);
1473
1474	/* rename_lock protects ->parent and ->name accessors */
1475	spin_lock_irq(&kernfs_rename_lock);
1476
1477	old_parent = kn->parent;
1478	kn->parent = new_parent;
1479
1480	kn->ns = new_ns;
1481	if (new_name) {
1482		old_name = kn->name;
1483		kn->name = new_name;
1484	}
1485
1486	spin_unlock_irq(&kernfs_rename_lock);
1487
1488	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1489	kernfs_link_sibling(kn);
1490
1491	kernfs_put(old_parent);
1492	kfree_const(old_name);
1493
1494	error = 0;
1495 out:
1496	mutex_unlock(&kernfs_mutex);
1497	return error;
1498}
1499
1500/* Relationship between s_mode and the DT_xxx types */
1501static inline unsigned char dt_type(struct kernfs_node *kn)
1502{
1503	return (kn->mode >> 12) & 15;
1504}
1505
1506static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1507{
1508	kernfs_put(filp->private_data);
1509	return 0;
1510}
1511
1512static struct kernfs_node *kernfs_dir_pos(const void *ns,
1513	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1514{
1515	if (pos) {
1516		int valid = kernfs_active(pos) &&
1517			pos->parent == parent && hash == pos->hash;
1518		kernfs_put(pos);
1519		if (!valid)
1520			pos = NULL;
1521	}
1522	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1523		struct rb_node *node = parent->dir.children.rb_node;
1524		while (node) {
1525			pos = rb_to_kn(node);
1526
1527			if (hash < pos->hash)
1528				node = node->rb_left;
1529			else if (hash > pos->hash)
1530				node = node->rb_right;
1531			else
1532				break;
1533		}
1534	}
1535	/* Skip over entries which are dying/dead or in the wrong namespace */
1536	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1537		struct rb_node *node = rb_next(&pos->rb);
1538		if (!node)
1539			pos = NULL;
1540		else
1541			pos = rb_to_kn(node);
1542	}
1543	return pos;
1544}
1545
1546static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1547	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1548{
1549	pos = kernfs_dir_pos(ns, parent, ino, pos);
1550	if (pos) {
1551		do {
1552			struct rb_node *node = rb_next(&pos->rb);
1553			if (!node)
1554				pos = NULL;
1555			else
1556				pos = rb_to_kn(node);
1557		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1558	}
1559	return pos;
1560}
1561
1562static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1563{
1564	struct dentry *dentry = file->f_path.dentry;
1565	struct kernfs_node *parent = dentry->d_fsdata;
1566	struct kernfs_node *pos = file->private_data;
 
1567	const void *ns = NULL;
1568
1569	if (!dir_emit_dots(file, ctx))
1570		return 0;
1571	mutex_lock(&kernfs_mutex);
 
 
1572
1573	if (kernfs_ns_enabled(parent))
1574		ns = kernfs_info(dentry->d_sb)->ns;
1575
1576	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1577	     pos;
1578	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1579		const char *name = pos->name;
1580		unsigned int type = dt_type(pos);
1581		int len = strlen(name);
1582		ino_t ino = pos->ino;
1583
1584		ctx->pos = pos->hash;
1585		file->private_data = pos;
1586		kernfs_get(pos);
1587
1588		mutex_unlock(&kernfs_mutex);
1589		if (!dir_emit(ctx, name, len, ino, type))
1590			return 0;
1591		mutex_lock(&kernfs_mutex);
1592	}
1593	mutex_unlock(&kernfs_mutex);
1594	file->private_data = NULL;
1595	ctx->pos = INT_MAX;
1596	return 0;
1597}
1598
1599const struct file_operations kernfs_dir_fops = {
1600	.read		= generic_read_dir,
1601	.iterate_shared	= kernfs_fop_readdir,
1602	.release	= kernfs_dir_fop_release,
1603	.llseek		= generic_file_llseek,
1604};