Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/sched.h>
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
20static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
21/*
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
26 * wakeup path.
27 */
28static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
30static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
31
32#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
34static bool __kernfs_active(struct kernfs_node *kn)
35{
36 return atomic_read(&kn->active) >= 0;
37}
38
39static bool kernfs_active(struct kernfs_node *kn)
40{
41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 return __kernfs_active(kn);
43}
44
45static bool kernfs_lockdep(struct kernfs_node *kn)
46{
47#ifdef CONFIG_DEBUG_LOCK_ALLOC
48 return kn->flags & KERNFS_LOCKDEP;
49#else
50 return false;
51#endif
52}
53
54static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55{
56 if (!kn)
57 return strlcpy(buf, "(null)", buflen);
58
59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60}
61
62/* kernfs_node_depth - compute depth from @from to @to */
63static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64{
65 size_t depth = 0;
66
67 while (to->parent && to != from) {
68 depth++;
69 to = to->parent;
70 }
71 return depth;
72}
73
74static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 struct kernfs_node *b)
76{
77 size_t da, db;
78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79
80 if (ra != rb)
81 return NULL;
82
83 da = kernfs_depth(ra->kn, a);
84 db = kernfs_depth(rb->kn, b);
85
86 while (da > db) {
87 a = a->parent;
88 da--;
89 }
90 while (db > da) {
91 b = b->parent;
92 db--;
93 }
94
95 /* worst case b and a will be the same at root */
96 while (b != a) {
97 b = b->parent;
98 a = a->parent;
99 }
100
101 return a;
102}
103
104/**
105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106 * where kn_from is treated as root of the path.
107 * @kn_from: kernfs node which should be treated as root for the path
108 * @kn_to: kernfs node to which path is needed
109 * @buf: buffer to copy the path into
110 * @buflen: size of @buf
111 *
112 * We need to handle couple of scenarios here:
113 * [1] when @kn_from is an ancestor of @kn_to at some level
114 * kn_from: /n1/n2/n3
115 * kn_to: /n1/n2/n3/n4/n5
116 * result: /n4/n5
117 *
118 * [2] when @kn_from is on a different hierarchy and we need to find common
119 * ancestor between @kn_from and @kn_to.
120 * kn_from: /n1/n2/n3/n4
121 * kn_to: /n1/n2/n5
122 * result: /../../n5
123 * OR
124 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
125 * kn_to: /n1/n2/n3 [depth=3]
126 * result: /../..
127 *
128 * [3] when @kn_to is %NULL result will be "(null)"
129 *
130 * Return: the length of the full path. If the full length is equal to or
131 * greater than @buflen, @buf contains the truncated path with the trailing
132 * '\0'. On error, -errno is returned.
133 */
134static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 struct kernfs_node *kn_from,
136 char *buf, size_t buflen)
137{
138 struct kernfs_node *kn, *common;
139 const char parent_str[] = "/..";
140 size_t depth_from, depth_to, len = 0;
141 int i, j;
142
143 if (!kn_to)
144 return strlcpy(buf, "(null)", buflen);
145
146 if (!kn_from)
147 kn_from = kernfs_root(kn_to)->kn;
148
149 if (kn_from == kn_to)
150 return strlcpy(buf, "/", buflen);
151
152 if (!buf)
153 return -EINVAL;
154
155 common = kernfs_common_ancestor(kn_from, kn_to);
156 if (WARN_ON(!common))
157 return -EINVAL;
158
159 depth_to = kernfs_depth(common, kn_to);
160 depth_from = kernfs_depth(common, kn_from);
161
162 buf[0] = '\0';
163
164 for (i = 0; i < depth_from; i++)
165 len += strlcpy(buf + len, parent_str,
166 len < buflen ? buflen - len : 0);
167
168 /* Calculate how many bytes we need for the rest */
169 for (i = depth_to - 1; i >= 0; i--) {
170 for (kn = kn_to, j = 0; j < i; j++)
171 kn = kn->parent;
172 len += strlcpy(buf + len, "/",
173 len < buflen ? buflen - len : 0);
174 len += strlcpy(buf + len, kn->name,
175 len < buflen ? buflen - len : 0);
176 }
177
178 return len;
179}
180
181/**
182 * kernfs_name - obtain the name of a given node
183 * @kn: kernfs_node of interest
184 * @buf: buffer to copy @kn's name into
185 * @buflen: size of @buf
186 *
187 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
188 * similar to strlcpy().
189 *
190 * Fills buffer with "(null)" if @kn is %NULL.
191 *
192 * Return: the length of @kn's name and if @buf isn't long enough,
193 * it's filled up to @buflen-1 and nul terminated.
194 *
195 * This function can be called from any context.
196 */
197int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
198{
199 unsigned long flags;
200 int ret;
201
202 spin_lock_irqsave(&kernfs_rename_lock, flags);
203 ret = kernfs_name_locked(kn, buf, buflen);
204 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
205 return ret;
206}
207
208/**
209 * kernfs_path_from_node - build path of node @to relative to @from.
210 * @from: parent kernfs_node relative to which we need to build the path
211 * @to: kernfs_node of interest
212 * @buf: buffer to copy @to's path into
213 * @buflen: size of @buf
214 *
215 * Builds @to's path relative to @from in @buf. @from and @to must
216 * be on the same kernfs-root. If @from is not parent of @to, then a relative
217 * path (which includes '..'s) as needed to reach from @from to @to is
218 * returned.
219 *
220 * Return: the length of the full path. If the full length is equal to or
221 * greater than @buflen, @buf contains the truncated path with the trailing
222 * '\0'. On error, -errno is returned.
223 */
224int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
225 char *buf, size_t buflen)
226{
227 unsigned long flags;
228 int ret;
229
230 spin_lock_irqsave(&kernfs_rename_lock, flags);
231 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
232 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
233 return ret;
234}
235EXPORT_SYMBOL_GPL(kernfs_path_from_node);
236
237/**
238 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
239 * @kn: kernfs_node of interest
240 *
241 * This function can be called from any context.
242 */
243void pr_cont_kernfs_name(struct kernfs_node *kn)
244{
245 unsigned long flags;
246
247 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
248
249 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
250 pr_cont("%s", kernfs_pr_cont_buf);
251
252 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
253}
254
255/**
256 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
257 * @kn: kernfs_node of interest
258 *
259 * This function can be called from any context.
260 */
261void pr_cont_kernfs_path(struct kernfs_node *kn)
262{
263 unsigned long flags;
264 int sz;
265
266 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
267
268 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
269 sizeof(kernfs_pr_cont_buf));
270 if (sz < 0) {
271 pr_cont("(error)");
272 goto out;
273 }
274
275 if (sz >= sizeof(kernfs_pr_cont_buf)) {
276 pr_cont("(name too long)");
277 goto out;
278 }
279
280 pr_cont("%s", kernfs_pr_cont_buf);
281
282out:
283 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
284}
285
286/**
287 * kernfs_get_parent - determine the parent node and pin it
288 * @kn: kernfs_node of interest
289 *
290 * Determines @kn's parent, pins and returns it. This function can be
291 * called from any context.
292 *
293 * Return: parent node of @kn
294 */
295struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
296{
297 struct kernfs_node *parent;
298 unsigned long flags;
299
300 spin_lock_irqsave(&kernfs_rename_lock, flags);
301 parent = kn->parent;
302 kernfs_get(parent);
303 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
304
305 return parent;
306}
307
308/**
309 * kernfs_name_hash - calculate hash of @ns + @name
310 * @name: Null terminated string to hash
311 * @ns: Namespace tag to hash
312 *
313 * Return: 31-bit hash of ns + name (so it fits in an off_t)
314 */
315static unsigned int kernfs_name_hash(const char *name, const void *ns)
316{
317 unsigned long hash = init_name_hash(ns);
318 unsigned int len = strlen(name);
319 while (len--)
320 hash = partial_name_hash(*name++, hash);
321 hash = end_name_hash(hash);
322 hash &= 0x7fffffffU;
323 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
324 if (hash < 2)
325 hash += 2;
326 if (hash >= INT_MAX)
327 hash = INT_MAX - 1;
328 return hash;
329}
330
331static int kernfs_name_compare(unsigned int hash, const char *name,
332 const void *ns, const struct kernfs_node *kn)
333{
334 if (hash < kn->hash)
335 return -1;
336 if (hash > kn->hash)
337 return 1;
338 if (ns < kn->ns)
339 return -1;
340 if (ns > kn->ns)
341 return 1;
342 return strcmp(name, kn->name);
343}
344
345static int kernfs_sd_compare(const struct kernfs_node *left,
346 const struct kernfs_node *right)
347{
348 return kernfs_name_compare(left->hash, left->name, left->ns, right);
349}
350
351/**
352 * kernfs_link_sibling - link kernfs_node into sibling rbtree
353 * @kn: kernfs_node of interest
354 *
355 * Link @kn into its sibling rbtree which starts from
356 * @kn->parent->dir.children.
357 *
358 * Locking:
359 * kernfs_rwsem held exclusive
360 *
361 * Return:
362 * %0 on success, -EEXIST on failure.
363 */
364static int kernfs_link_sibling(struct kernfs_node *kn)
365{
366 struct rb_node **node = &kn->parent->dir.children.rb_node;
367 struct rb_node *parent = NULL;
368
369 while (*node) {
370 struct kernfs_node *pos;
371 int result;
372
373 pos = rb_to_kn(*node);
374 parent = *node;
375 result = kernfs_sd_compare(kn, pos);
376 if (result < 0)
377 node = &pos->rb.rb_left;
378 else if (result > 0)
379 node = &pos->rb.rb_right;
380 else
381 return -EEXIST;
382 }
383
384 /* add new node and rebalance the tree */
385 rb_link_node(&kn->rb, parent, node);
386 rb_insert_color(&kn->rb, &kn->parent->dir.children);
387
388 /* successfully added, account subdir number */
389 if (kernfs_type(kn) == KERNFS_DIR)
390 kn->parent->dir.subdirs++;
391 kernfs_inc_rev(kn->parent);
392
393 return 0;
394}
395
396/**
397 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
398 * @kn: kernfs_node of interest
399 *
400 * Try to unlink @kn from its sibling rbtree which starts from
401 * kn->parent->dir.children.
402 *
403 * Return: %true if @kn was actually removed,
404 * %false if @kn wasn't on the rbtree.
405 *
406 * Locking:
407 * kernfs_rwsem held exclusive
408 */
409static bool kernfs_unlink_sibling(struct kernfs_node *kn)
410{
411 if (RB_EMPTY_NODE(&kn->rb))
412 return false;
413
414 if (kernfs_type(kn) == KERNFS_DIR)
415 kn->parent->dir.subdirs--;
416 kernfs_inc_rev(kn->parent);
417
418 rb_erase(&kn->rb, &kn->parent->dir.children);
419 RB_CLEAR_NODE(&kn->rb);
420 return true;
421}
422
423/**
424 * kernfs_get_active - get an active reference to kernfs_node
425 * @kn: kernfs_node to get an active reference to
426 *
427 * Get an active reference of @kn. This function is noop if @kn
428 * is %NULL.
429 *
430 * Return:
431 * Pointer to @kn on success, %NULL on failure.
432 */
433struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
434{
435 if (unlikely(!kn))
436 return NULL;
437
438 if (!atomic_inc_unless_negative(&kn->active))
439 return NULL;
440
441 if (kernfs_lockdep(kn))
442 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
443 return kn;
444}
445
446/**
447 * kernfs_put_active - put an active reference to kernfs_node
448 * @kn: kernfs_node to put an active reference to
449 *
450 * Put an active reference to @kn. This function is noop if @kn
451 * is %NULL.
452 */
453void kernfs_put_active(struct kernfs_node *kn)
454{
455 int v;
456
457 if (unlikely(!kn))
458 return;
459
460 if (kernfs_lockdep(kn))
461 rwsem_release(&kn->dep_map, _RET_IP_);
462 v = atomic_dec_return(&kn->active);
463 if (likely(v != KN_DEACTIVATED_BIAS))
464 return;
465
466 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
467}
468
469/**
470 * kernfs_drain - drain kernfs_node
471 * @kn: kernfs_node to drain
472 *
473 * Drain existing usages and nuke all existing mmaps of @kn. Multiple
474 * removers may invoke this function concurrently on @kn and all will
475 * return after draining is complete.
476 */
477static void kernfs_drain(struct kernfs_node *kn)
478 __releases(&kernfs_root(kn)->kernfs_rwsem)
479 __acquires(&kernfs_root(kn)->kernfs_rwsem)
480{
481 struct kernfs_root *root = kernfs_root(kn);
482
483 lockdep_assert_held_write(&root->kernfs_rwsem);
484 WARN_ON_ONCE(kernfs_active(kn));
485
486 /*
487 * Skip draining if already fully drained. This avoids draining and its
488 * lockdep annotations for nodes which have never been activated
489 * allowing embedding kernfs_remove() in create error paths without
490 * worrying about draining.
491 */
492 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
493 !kernfs_should_drain_open_files(kn))
494 return;
495
496 up_write(&root->kernfs_rwsem);
497
498 if (kernfs_lockdep(kn)) {
499 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
500 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
501 lock_contended(&kn->dep_map, _RET_IP_);
502 }
503
504 wait_event(root->deactivate_waitq,
505 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
506
507 if (kernfs_lockdep(kn)) {
508 lock_acquired(&kn->dep_map, _RET_IP_);
509 rwsem_release(&kn->dep_map, _RET_IP_);
510 }
511
512 if (kernfs_should_drain_open_files(kn))
513 kernfs_drain_open_files(kn);
514
515 down_write(&root->kernfs_rwsem);
516}
517
518/**
519 * kernfs_get - get a reference count on a kernfs_node
520 * @kn: the target kernfs_node
521 */
522void kernfs_get(struct kernfs_node *kn)
523{
524 if (kn) {
525 WARN_ON(!atomic_read(&kn->count));
526 atomic_inc(&kn->count);
527 }
528}
529EXPORT_SYMBOL_GPL(kernfs_get);
530
531/**
532 * kernfs_put - put a reference count on a kernfs_node
533 * @kn: the target kernfs_node
534 *
535 * Put a reference count of @kn and destroy it if it reached zero.
536 */
537void kernfs_put(struct kernfs_node *kn)
538{
539 struct kernfs_node *parent;
540 struct kernfs_root *root;
541
542 if (!kn || !atomic_dec_and_test(&kn->count))
543 return;
544 root = kernfs_root(kn);
545 repeat:
546 /*
547 * Moving/renaming is always done while holding reference.
548 * kn->parent won't change beneath us.
549 */
550 parent = kn->parent;
551
552 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
553 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
554 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
555
556 if (kernfs_type(kn) == KERNFS_LINK)
557 kernfs_put(kn->symlink.target_kn);
558
559 kfree_const(kn->name);
560
561 if (kn->iattr) {
562 simple_xattrs_free(&kn->iattr->xattrs);
563 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
564 }
565 spin_lock(&kernfs_idr_lock);
566 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
567 spin_unlock(&kernfs_idr_lock);
568 kmem_cache_free(kernfs_node_cache, kn);
569
570 kn = parent;
571 if (kn) {
572 if (atomic_dec_and_test(&kn->count))
573 goto repeat;
574 } else {
575 /* just released the root kn, free @root too */
576 idr_destroy(&root->ino_idr);
577 kfree(root);
578 }
579}
580EXPORT_SYMBOL_GPL(kernfs_put);
581
582/**
583 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
584 * @dentry: the dentry in question
585 *
586 * Return: the kernfs_node associated with @dentry. If @dentry is not a
587 * kernfs one, %NULL is returned.
588 *
589 * While the returned kernfs_node will stay accessible as long as @dentry
590 * is accessible, the returned node can be in any state and the caller is
591 * fully responsible for determining what's accessible.
592 */
593struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
594{
595 if (dentry->d_sb->s_op == &kernfs_sops)
596 return kernfs_dentry_node(dentry);
597 return NULL;
598}
599
600static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
601 struct kernfs_node *parent,
602 const char *name, umode_t mode,
603 kuid_t uid, kgid_t gid,
604 unsigned flags)
605{
606 struct kernfs_node *kn;
607 u32 id_highbits;
608 int ret;
609
610 name = kstrdup_const(name, GFP_KERNEL);
611 if (!name)
612 return NULL;
613
614 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
615 if (!kn)
616 goto err_out1;
617
618 idr_preload(GFP_KERNEL);
619 spin_lock(&kernfs_idr_lock);
620 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
621 if (ret >= 0 && ret < root->last_id_lowbits)
622 root->id_highbits++;
623 id_highbits = root->id_highbits;
624 root->last_id_lowbits = ret;
625 spin_unlock(&kernfs_idr_lock);
626 idr_preload_end();
627 if (ret < 0)
628 goto err_out2;
629
630 kn->id = (u64)id_highbits << 32 | ret;
631
632 atomic_set(&kn->count, 1);
633 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
634 RB_CLEAR_NODE(&kn->rb);
635
636 kn->name = name;
637 kn->mode = mode;
638 kn->flags = flags;
639
640 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
641 struct iattr iattr = {
642 .ia_valid = ATTR_UID | ATTR_GID,
643 .ia_uid = uid,
644 .ia_gid = gid,
645 };
646
647 ret = __kernfs_setattr(kn, &iattr);
648 if (ret < 0)
649 goto err_out3;
650 }
651
652 if (parent) {
653 ret = security_kernfs_init_security(parent, kn);
654 if (ret)
655 goto err_out3;
656 }
657
658 return kn;
659
660 err_out3:
661 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
662 err_out2:
663 kmem_cache_free(kernfs_node_cache, kn);
664 err_out1:
665 kfree_const(name);
666 return NULL;
667}
668
669struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
670 const char *name, umode_t mode,
671 kuid_t uid, kgid_t gid,
672 unsigned flags)
673{
674 struct kernfs_node *kn;
675
676 kn = __kernfs_new_node(kernfs_root(parent), parent,
677 name, mode, uid, gid, flags);
678 if (kn) {
679 kernfs_get(parent);
680 kn->parent = parent;
681 }
682 return kn;
683}
684
685/*
686 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
687 * @root: the kernfs root
688 * @id: the target node id
689 *
690 * @id's lower 32bits encode ino and upper gen. If the gen portion is
691 * zero, all generations are matched.
692 *
693 * Return: %NULL on failure,
694 * otherwise a kernfs node with reference counter incremented.
695 */
696struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
697 u64 id)
698{
699 struct kernfs_node *kn;
700 ino_t ino = kernfs_id_ino(id);
701 u32 gen = kernfs_id_gen(id);
702
703 spin_lock(&kernfs_idr_lock);
704
705 kn = idr_find(&root->ino_idr, (u32)ino);
706 if (!kn)
707 goto err_unlock;
708
709 if (sizeof(ino_t) >= sizeof(u64)) {
710 /* we looked up with the low 32bits, compare the whole */
711 if (kernfs_ino(kn) != ino)
712 goto err_unlock;
713 } else {
714 /* 0 matches all generations */
715 if (unlikely(gen && kernfs_gen(kn) != gen))
716 goto err_unlock;
717 }
718
719 /*
720 * We should fail if @kn has never been activated and guarantee success
721 * if the caller knows that @kn is active. Both can be achieved by
722 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
723 */
724 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
725 goto err_unlock;
726
727 spin_unlock(&kernfs_idr_lock);
728 return kn;
729err_unlock:
730 spin_unlock(&kernfs_idr_lock);
731 return NULL;
732}
733
734/**
735 * kernfs_add_one - add kernfs_node to parent without warning
736 * @kn: kernfs_node to be added
737 *
738 * The caller must already have initialized @kn->parent. This
739 * function increments nlink of the parent's inode if @kn is a
740 * directory and link into the children list of the parent.
741 *
742 * Return:
743 * %0 on success, -EEXIST if entry with the given name already
744 * exists.
745 */
746int kernfs_add_one(struct kernfs_node *kn)
747{
748 struct kernfs_node *parent = kn->parent;
749 struct kernfs_root *root = kernfs_root(parent);
750 struct kernfs_iattrs *ps_iattr;
751 bool has_ns;
752 int ret;
753
754 down_write(&root->kernfs_rwsem);
755
756 ret = -EINVAL;
757 has_ns = kernfs_ns_enabled(parent);
758 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
759 has_ns ? "required" : "invalid", parent->name, kn->name))
760 goto out_unlock;
761
762 if (kernfs_type(parent) != KERNFS_DIR)
763 goto out_unlock;
764
765 ret = -ENOENT;
766 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
767 goto out_unlock;
768
769 kn->hash = kernfs_name_hash(kn->name, kn->ns);
770
771 ret = kernfs_link_sibling(kn);
772 if (ret)
773 goto out_unlock;
774
775 /* Update timestamps on the parent */
776 ps_iattr = parent->iattr;
777 if (ps_iattr) {
778 ktime_get_real_ts64(&ps_iattr->ia_ctime);
779 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
780 }
781
782 up_write(&root->kernfs_rwsem);
783
784 /*
785 * Activate the new node unless CREATE_DEACTIVATED is requested.
786 * If not activated here, the kernfs user is responsible for
787 * activating the node with kernfs_activate(). A node which hasn't
788 * been activated is not visible to userland and its removal won't
789 * trigger deactivation.
790 */
791 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
792 kernfs_activate(kn);
793 return 0;
794
795out_unlock:
796 up_write(&root->kernfs_rwsem);
797 return ret;
798}
799
800/**
801 * kernfs_find_ns - find kernfs_node with the given name
802 * @parent: kernfs_node to search under
803 * @name: name to look for
804 * @ns: the namespace tag to use
805 *
806 * Look for kernfs_node with name @name under @parent.
807 *
808 * Return: pointer to the found kernfs_node on success, %NULL on failure.
809 */
810static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
811 const unsigned char *name,
812 const void *ns)
813{
814 struct rb_node *node = parent->dir.children.rb_node;
815 bool has_ns = kernfs_ns_enabled(parent);
816 unsigned int hash;
817
818 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
819
820 if (has_ns != (bool)ns) {
821 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
822 has_ns ? "required" : "invalid", parent->name, name);
823 return NULL;
824 }
825
826 hash = kernfs_name_hash(name, ns);
827 while (node) {
828 struct kernfs_node *kn;
829 int result;
830
831 kn = rb_to_kn(node);
832 result = kernfs_name_compare(hash, name, ns, kn);
833 if (result < 0)
834 node = node->rb_left;
835 else if (result > 0)
836 node = node->rb_right;
837 else
838 return kn;
839 }
840 return NULL;
841}
842
843static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
844 const unsigned char *path,
845 const void *ns)
846{
847 size_t len;
848 char *p, *name;
849
850 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
851
852 spin_lock_irq(&kernfs_pr_cont_lock);
853
854 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
855
856 if (len >= sizeof(kernfs_pr_cont_buf)) {
857 spin_unlock_irq(&kernfs_pr_cont_lock);
858 return NULL;
859 }
860
861 p = kernfs_pr_cont_buf;
862
863 while ((name = strsep(&p, "/")) && parent) {
864 if (*name == '\0')
865 continue;
866 parent = kernfs_find_ns(parent, name, ns);
867 }
868
869 spin_unlock_irq(&kernfs_pr_cont_lock);
870
871 return parent;
872}
873
874/**
875 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
876 * @parent: kernfs_node to search under
877 * @name: name to look for
878 * @ns: the namespace tag to use
879 *
880 * Look for kernfs_node with name @name under @parent and get a reference
881 * if found. This function may sleep.
882 *
883 * Return: pointer to the found kernfs_node on success, %NULL on failure.
884 */
885struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
886 const char *name, const void *ns)
887{
888 struct kernfs_node *kn;
889 struct kernfs_root *root = kernfs_root(parent);
890
891 down_read(&root->kernfs_rwsem);
892 kn = kernfs_find_ns(parent, name, ns);
893 kernfs_get(kn);
894 up_read(&root->kernfs_rwsem);
895
896 return kn;
897}
898EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
899
900/**
901 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
902 * @parent: kernfs_node to search under
903 * @path: path to look for
904 * @ns: the namespace tag to use
905 *
906 * Look for kernfs_node with path @path under @parent and get a reference
907 * if found. This function may sleep.
908 *
909 * Return: pointer to the found kernfs_node on success, %NULL on failure.
910 */
911struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
912 const char *path, const void *ns)
913{
914 struct kernfs_node *kn;
915 struct kernfs_root *root = kernfs_root(parent);
916
917 down_read(&root->kernfs_rwsem);
918 kn = kernfs_walk_ns(parent, path, ns);
919 kernfs_get(kn);
920 up_read(&root->kernfs_rwsem);
921
922 return kn;
923}
924
925/**
926 * kernfs_create_root - create a new kernfs hierarchy
927 * @scops: optional syscall operations for the hierarchy
928 * @flags: KERNFS_ROOT_* flags
929 * @priv: opaque data associated with the new directory
930 *
931 * Return: the root of the new hierarchy on success, ERR_PTR() value on
932 * failure.
933 */
934struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
935 unsigned int flags, void *priv)
936{
937 struct kernfs_root *root;
938 struct kernfs_node *kn;
939
940 root = kzalloc(sizeof(*root), GFP_KERNEL);
941 if (!root)
942 return ERR_PTR(-ENOMEM);
943
944 idr_init(&root->ino_idr);
945 init_rwsem(&root->kernfs_rwsem);
946 INIT_LIST_HEAD(&root->supers);
947
948 /*
949 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
950 * High bits generation. The starting value for both ino and
951 * genenration is 1. Initialize upper 32bit allocation
952 * accordingly.
953 */
954 if (sizeof(ino_t) >= sizeof(u64))
955 root->id_highbits = 0;
956 else
957 root->id_highbits = 1;
958
959 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
960 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
961 KERNFS_DIR);
962 if (!kn) {
963 idr_destroy(&root->ino_idr);
964 kfree(root);
965 return ERR_PTR(-ENOMEM);
966 }
967
968 kn->priv = priv;
969 kn->dir.root = root;
970
971 root->syscall_ops = scops;
972 root->flags = flags;
973 root->kn = kn;
974 init_waitqueue_head(&root->deactivate_waitq);
975
976 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
977 kernfs_activate(kn);
978
979 return root;
980}
981
982/**
983 * kernfs_destroy_root - destroy a kernfs hierarchy
984 * @root: root of the hierarchy to destroy
985 *
986 * Destroy the hierarchy anchored at @root by removing all existing
987 * directories and destroying @root.
988 */
989void kernfs_destroy_root(struct kernfs_root *root)
990{
991 /*
992 * kernfs_remove holds kernfs_rwsem from the root so the root
993 * shouldn't be freed during the operation.
994 */
995 kernfs_get(root->kn);
996 kernfs_remove(root->kn);
997 kernfs_put(root->kn); /* will also free @root */
998}
999
1000/**
1001 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1002 * @root: root to use to lookup
1003 *
1004 * Return: @root's kernfs_node
1005 */
1006struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1007{
1008 return root->kn;
1009}
1010
1011/**
1012 * kernfs_create_dir_ns - create a directory
1013 * @parent: parent in which to create a new directory
1014 * @name: name of the new directory
1015 * @mode: mode of the new directory
1016 * @uid: uid of the new directory
1017 * @gid: gid of the new directory
1018 * @priv: opaque data associated with the new directory
1019 * @ns: optional namespace tag of the directory
1020 *
1021 * Return: the created node on success, ERR_PTR() value on failure.
1022 */
1023struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1024 const char *name, umode_t mode,
1025 kuid_t uid, kgid_t gid,
1026 void *priv, const void *ns)
1027{
1028 struct kernfs_node *kn;
1029 int rc;
1030
1031 /* allocate */
1032 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1033 uid, gid, KERNFS_DIR);
1034 if (!kn)
1035 return ERR_PTR(-ENOMEM);
1036
1037 kn->dir.root = parent->dir.root;
1038 kn->ns = ns;
1039 kn->priv = priv;
1040
1041 /* link in */
1042 rc = kernfs_add_one(kn);
1043 if (!rc)
1044 return kn;
1045
1046 kernfs_put(kn);
1047 return ERR_PTR(rc);
1048}
1049
1050/**
1051 * kernfs_create_empty_dir - create an always empty directory
1052 * @parent: parent in which to create a new directory
1053 * @name: name of the new directory
1054 *
1055 * Return: the created node on success, ERR_PTR() value on failure.
1056 */
1057struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1058 const char *name)
1059{
1060 struct kernfs_node *kn;
1061 int rc;
1062
1063 /* allocate */
1064 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1065 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1066 if (!kn)
1067 return ERR_PTR(-ENOMEM);
1068
1069 kn->flags |= KERNFS_EMPTY_DIR;
1070 kn->dir.root = parent->dir.root;
1071 kn->ns = NULL;
1072 kn->priv = NULL;
1073
1074 /* link in */
1075 rc = kernfs_add_one(kn);
1076 if (!rc)
1077 return kn;
1078
1079 kernfs_put(kn);
1080 return ERR_PTR(rc);
1081}
1082
1083static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1084{
1085 struct kernfs_node *kn;
1086 struct kernfs_root *root;
1087
1088 if (flags & LOOKUP_RCU)
1089 return -ECHILD;
1090
1091 /* Negative hashed dentry? */
1092 if (d_really_is_negative(dentry)) {
1093 struct kernfs_node *parent;
1094
1095 /* If the kernfs parent node has changed discard and
1096 * proceed to ->lookup.
1097 *
1098 * There's nothing special needed here when getting the
1099 * dentry parent, even if a concurrent rename is in
1100 * progress. That's because the dentry is negative so
1101 * it can only be the target of the rename and it will
1102 * be doing a d_move() not a replace. Consequently the
1103 * dentry d_parent won't change over the d_move().
1104 *
1105 * Also kernfs negative dentries transitioning from
1106 * negative to positive during revalidate won't happen
1107 * because they are invalidated on containing directory
1108 * changes and the lookup re-done so that a new positive
1109 * dentry can be properly created.
1110 */
1111 root = kernfs_root_from_sb(dentry->d_sb);
1112 down_read(&root->kernfs_rwsem);
1113 parent = kernfs_dentry_node(dentry->d_parent);
1114 if (parent) {
1115 if (kernfs_dir_changed(parent, dentry)) {
1116 up_read(&root->kernfs_rwsem);
1117 return 0;
1118 }
1119 }
1120 up_read(&root->kernfs_rwsem);
1121
1122 /* The kernfs parent node hasn't changed, leave the
1123 * dentry negative and return success.
1124 */
1125 return 1;
1126 }
1127
1128 kn = kernfs_dentry_node(dentry);
1129 root = kernfs_root(kn);
1130 down_read(&root->kernfs_rwsem);
1131
1132 /* The kernfs node has been deactivated */
1133 if (!kernfs_active(kn))
1134 goto out_bad;
1135
1136 /* The kernfs node has been moved? */
1137 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1138 goto out_bad;
1139
1140 /* The kernfs node has been renamed */
1141 if (strcmp(dentry->d_name.name, kn->name) != 0)
1142 goto out_bad;
1143
1144 /* The kernfs node has been moved to a different namespace */
1145 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1146 kernfs_info(dentry->d_sb)->ns != kn->ns)
1147 goto out_bad;
1148
1149 up_read(&root->kernfs_rwsem);
1150 return 1;
1151out_bad:
1152 up_read(&root->kernfs_rwsem);
1153 return 0;
1154}
1155
1156const struct dentry_operations kernfs_dops = {
1157 .d_revalidate = kernfs_dop_revalidate,
1158};
1159
1160static struct dentry *kernfs_iop_lookup(struct inode *dir,
1161 struct dentry *dentry,
1162 unsigned int flags)
1163{
1164 struct kernfs_node *parent = dir->i_private;
1165 struct kernfs_node *kn;
1166 struct kernfs_root *root;
1167 struct inode *inode = NULL;
1168 const void *ns = NULL;
1169
1170 root = kernfs_root(parent);
1171 down_read(&root->kernfs_rwsem);
1172 if (kernfs_ns_enabled(parent))
1173 ns = kernfs_info(dir->i_sb)->ns;
1174
1175 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1176 /* attach dentry and inode */
1177 if (kn) {
1178 /* Inactive nodes are invisible to the VFS so don't
1179 * create a negative.
1180 */
1181 if (!kernfs_active(kn)) {
1182 up_read(&root->kernfs_rwsem);
1183 return NULL;
1184 }
1185 inode = kernfs_get_inode(dir->i_sb, kn);
1186 if (!inode)
1187 inode = ERR_PTR(-ENOMEM);
1188 }
1189 /*
1190 * Needed for negative dentry validation.
1191 * The negative dentry can be created in kernfs_iop_lookup()
1192 * or transforms from positive dentry in dentry_unlink_inode()
1193 * called from vfs_rmdir().
1194 */
1195 if (!IS_ERR(inode))
1196 kernfs_set_rev(parent, dentry);
1197 up_read(&root->kernfs_rwsem);
1198
1199 /* instantiate and hash (possibly negative) dentry */
1200 return d_splice_alias(inode, dentry);
1201}
1202
1203static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1204 struct inode *dir, struct dentry *dentry,
1205 umode_t mode)
1206{
1207 struct kernfs_node *parent = dir->i_private;
1208 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1209 int ret;
1210
1211 if (!scops || !scops->mkdir)
1212 return -EPERM;
1213
1214 if (!kernfs_get_active(parent))
1215 return -ENODEV;
1216
1217 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1218
1219 kernfs_put_active(parent);
1220 return ret;
1221}
1222
1223static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1224{
1225 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1226 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1227 int ret;
1228
1229 if (!scops || !scops->rmdir)
1230 return -EPERM;
1231
1232 if (!kernfs_get_active(kn))
1233 return -ENODEV;
1234
1235 ret = scops->rmdir(kn);
1236
1237 kernfs_put_active(kn);
1238 return ret;
1239}
1240
1241static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1242 struct inode *old_dir, struct dentry *old_dentry,
1243 struct inode *new_dir, struct dentry *new_dentry,
1244 unsigned int flags)
1245{
1246 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1247 struct kernfs_node *new_parent = new_dir->i_private;
1248 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1249 int ret;
1250
1251 if (flags)
1252 return -EINVAL;
1253
1254 if (!scops || !scops->rename)
1255 return -EPERM;
1256
1257 if (!kernfs_get_active(kn))
1258 return -ENODEV;
1259
1260 if (!kernfs_get_active(new_parent)) {
1261 kernfs_put_active(kn);
1262 return -ENODEV;
1263 }
1264
1265 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1266
1267 kernfs_put_active(new_parent);
1268 kernfs_put_active(kn);
1269 return ret;
1270}
1271
1272const struct inode_operations kernfs_dir_iops = {
1273 .lookup = kernfs_iop_lookup,
1274 .permission = kernfs_iop_permission,
1275 .setattr = kernfs_iop_setattr,
1276 .getattr = kernfs_iop_getattr,
1277 .listxattr = kernfs_iop_listxattr,
1278
1279 .mkdir = kernfs_iop_mkdir,
1280 .rmdir = kernfs_iop_rmdir,
1281 .rename = kernfs_iop_rename,
1282};
1283
1284static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1285{
1286 struct kernfs_node *last;
1287
1288 while (true) {
1289 struct rb_node *rbn;
1290
1291 last = pos;
1292
1293 if (kernfs_type(pos) != KERNFS_DIR)
1294 break;
1295
1296 rbn = rb_first(&pos->dir.children);
1297 if (!rbn)
1298 break;
1299
1300 pos = rb_to_kn(rbn);
1301 }
1302
1303 return last;
1304}
1305
1306/**
1307 * kernfs_next_descendant_post - find the next descendant for post-order walk
1308 * @pos: the current position (%NULL to initiate traversal)
1309 * @root: kernfs_node whose descendants to walk
1310 *
1311 * Find the next descendant to visit for post-order traversal of @root's
1312 * descendants. @root is included in the iteration and the last node to be
1313 * visited.
1314 *
1315 * Return: the next descendant to visit or %NULL when done.
1316 */
1317static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1318 struct kernfs_node *root)
1319{
1320 struct rb_node *rbn;
1321
1322 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1323
1324 /* if first iteration, visit leftmost descendant which may be root */
1325 if (!pos)
1326 return kernfs_leftmost_descendant(root);
1327
1328 /* if we visited @root, we're done */
1329 if (pos == root)
1330 return NULL;
1331
1332 /* if there's an unvisited sibling, visit its leftmost descendant */
1333 rbn = rb_next(&pos->rb);
1334 if (rbn)
1335 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1336
1337 /* no sibling left, visit parent */
1338 return pos->parent;
1339}
1340
1341static void kernfs_activate_one(struct kernfs_node *kn)
1342{
1343 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1344
1345 kn->flags |= KERNFS_ACTIVATED;
1346
1347 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1348 return;
1349
1350 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1351 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1352
1353 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1354}
1355
1356/**
1357 * kernfs_activate - activate a node which started deactivated
1358 * @kn: kernfs_node whose subtree is to be activated
1359 *
1360 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1361 * needs to be explicitly activated. A node which hasn't been activated
1362 * isn't visible to userland and deactivation is skipped during its
1363 * removal. This is useful to construct atomic init sequences where
1364 * creation of multiple nodes should either succeed or fail atomically.
1365 *
1366 * The caller is responsible for ensuring that this function is not called
1367 * after kernfs_remove*() is invoked on @kn.
1368 */
1369void kernfs_activate(struct kernfs_node *kn)
1370{
1371 struct kernfs_node *pos;
1372 struct kernfs_root *root = kernfs_root(kn);
1373
1374 down_write(&root->kernfs_rwsem);
1375
1376 pos = NULL;
1377 while ((pos = kernfs_next_descendant_post(pos, kn)))
1378 kernfs_activate_one(pos);
1379
1380 up_write(&root->kernfs_rwsem);
1381}
1382
1383/**
1384 * kernfs_show - show or hide a node
1385 * @kn: kernfs_node to show or hide
1386 * @show: whether to show or hide
1387 *
1388 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1389 * ignored in future activaitons. If %true, the mark is removed and activation
1390 * state is restored. This function won't implicitly activate a new node in a
1391 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1392 *
1393 * To avoid recursion complexities, directories aren't supported for now.
1394 */
1395void kernfs_show(struct kernfs_node *kn, bool show)
1396{
1397 struct kernfs_root *root = kernfs_root(kn);
1398
1399 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1400 return;
1401
1402 down_write(&root->kernfs_rwsem);
1403
1404 if (show) {
1405 kn->flags &= ~KERNFS_HIDDEN;
1406 if (kn->flags & KERNFS_ACTIVATED)
1407 kernfs_activate_one(kn);
1408 } else {
1409 kn->flags |= KERNFS_HIDDEN;
1410 if (kernfs_active(kn))
1411 atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1412 kernfs_drain(kn);
1413 }
1414
1415 up_write(&root->kernfs_rwsem);
1416}
1417
1418static void __kernfs_remove(struct kernfs_node *kn)
1419{
1420 struct kernfs_node *pos;
1421
1422 /* Short-circuit if non-root @kn has already finished removal. */
1423 if (!kn)
1424 return;
1425
1426 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1427
1428 /*
1429 * This is for kernfs_remove_self() which plays with active ref
1430 * after removal.
1431 */
1432 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1433 return;
1434
1435 pr_debug("kernfs %s: removing\n", kn->name);
1436
1437 /* prevent new usage by marking all nodes removing and deactivating */
1438 pos = NULL;
1439 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1440 pos->flags |= KERNFS_REMOVING;
1441 if (kernfs_active(pos))
1442 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1443 }
1444
1445 /* deactivate and unlink the subtree node-by-node */
1446 do {
1447 pos = kernfs_leftmost_descendant(kn);
1448
1449 /*
1450 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1451 * base ref could have been put by someone else by the time
1452 * the function returns. Make sure it doesn't go away
1453 * underneath us.
1454 */
1455 kernfs_get(pos);
1456
1457 kernfs_drain(pos);
1458
1459 /*
1460 * kernfs_unlink_sibling() succeeds once per node. Use it
1461 * to decide who's responsible for cleanups.
1462 */
1463 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1464 struct kernfs_iattrs *ps_iattr =
1465 pos->parent ? pos->parent->iattr : NULL;
1466
1467 /* update timestamps on the parent */
1468 if (ps_iattr) {
1469 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1470 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1471 }
1472
1473 kernfs_put(pos);
1474 }
1475
1476 kernfs_put(pos);
1477 } while (pos != kn);
1478}
1479
1480/**
1481 * kernfs_remove - remove a kernfs_node recursively
1482 * @kn: the kernfs_node to remove
1483 *
1484 * Remove @kn along with all its subdirectories and files.
1485 */
1486void kernfs_remove(struct kernfs_node *kn)
1487{
1488 struct kernfs_root *root;
1489
1490 if (!kn)
1491 return;
1492
1493 root = kernfs_root(kn);
1494
1495 down_write(&root->kernfs_rwsem);
1496 __kernfs_remove(kn);
1497 up_write(&root->kernfs_rwsem);
1498}
1499
1500/**
1501 * kernfs_break_active_protection - break out of active protection
1502 * @kn: the self kernfs_node
1503 *
1504 * The caller must be running off of a kernfs operation which is invoked
1505 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1506 * this function must also be matched with an invocation of
1507 * kernfs_unbreak_active_protection().
1508 *
1509 * This function releases the active reference of @kn the caller is
1510 * holding. Once this function is called, @kn may be removed at any point
1511 * and the caller is solely responsible for ensuring that the objects it
1512 * dereferences are accessible.
1513 */
1514void kernfs_break_active_protection(struct kernfs_node *kn)
1515{
1516 /*
1517 * Take out ourself out of the active ref dependency chain. If
1518 * we're called without an active ref, lockdep will complain.
1519 */
1520 kernfs_put_active(kn);
1521}
1522
1523/**
1524 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1525 * @kn: the self kernfs_node
1526 *
1527 * If kernfs_break_active_protection() was called, this function must be
1528 * invoked before finishing the kernfs operation. Note that while this
1529 * function restores the active reference, it doesn't and can't actually
1530 * restore the active protection - @kn may already or be in the process of
1531 * being removed. Once kernfs_break_active_protection() is invoked, that
1532 * protection is irreversibly gone for the kernfs operation instance.
1533 *
1534 * While this function may be called at any point after
1535 * kernfs_break_active_protection() is invoked, its most useful location
1536 * would be right before the enclosing kernfs operation returns.
1537 */
1538void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1539{
1540 /*
1541 * @kn->active could be in any state; however, the increment we do
1542 * here will be undone as soon as the enclosing kernfs operation
1543 * finishes and this temporary bump can't break anything. If @kn
1544 * is alive, nothing changes. If @kn is being deactivated, the
1545 * soon-to-follow put will either finish deactivation or restore
1546 * deactivated state. If @kn is already removed, the temporary
1547 * bump is guaranteed to be gone before @kn is released.
1548 */
1549 atomic_inc(&kn->active);
1550 if (kernfs_lockdep(kn))
1551 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1552}
1553
1554/**
1555 * kernfs_remove_self - remove a kernfs_node from its own method
1556 * @kn: the self kernfs_node to remove
1557 *
1558 * The caller must be running off of a kernfs operation which is invoked
1559 * with an active reference - e.g. one of kernfs_ops. This can be used to
1560 * implement a file operation which deletes itself.
1561 *
1562 * For example, the "delete" file for a sysfs device directory can be
1563 * implemented by invoking kernfs_remove_self() on the "delete" file
1564 * itself. This function breaks the circular dependency of trying to
1565 * deactivate self while holding an active ref itself. It isn't necessary
1566 * to modify the usual removal path to use kernfs_remove_self(). The
1567 * "delete" implementation can simply invoke kernfs_remove_self() on self
1568 * before proceeding with the usual removal path. kernfs will ignore later
1569 * kernfs_remove() on self.
1570 *
1571 * kernfs_remove_self() can be called multiple times concurrently on the
1572 * same kernfs_node. Only the first one actually performs removal and
1573 * returns %true. All others will wait until the kernfs operation which
1574 * won self-removal finishes and return %false. Note that the losers wait
1575 * for the completion of not only the winning kernfs_remove_self() but also
1576 * the whole kernfs_ops which won the arbitration. This can be used to
1577 * guarantee, for example, all concurrent writes to a "delete" file to
1578 * finish only after the whole operation is complete.
1579 *
1580 * Return: %true if @kn is removed by this call, otherwise %false.
1581 */
1582bool kernfs_remove_self(struct kernfs_node *kn)
1583{
1584 bool ret;
1585 struct kernfs_root *root = kernfs_root(kn);
1586
1587 down_write(&root->kernfs_rwsem);
1588 kernfs_break_active_protection(kn);
1589
1590 /*
1591 * SUICIDAL is used to arbitrate among competing invocations. Only
1592 * the first one will actually perform removal. When the removal
1593 * is complete, SUICIDED is set and the active ref is restored
1594 * while kernfs_rwsem for held exclusive. The ones which lost
1595 * arbitration waits for SUICIDED && drained which can happen only
1596 * after the enclosing kernfs operation which executed the winning
1597 * instance of kernfs_remove_self() finished.
1598 */
1599 if (!(kn->flags & KERNFS_SUICIDAL)) {
1600 kn->flags |= KERNFS_SUICIDAL;
1601 __kernfs_remove(kn);
1602 kn->flags |= KERNFS_SUICIDED;
1603 ret = true;
1604 } else {
1605 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1606 DEFINE_WAIT(wait);
1607
1608 while (true) {
1609 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1610
1611 if ((kn->flags & KERNFS_SUICIDED) &&
1612 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1613 break;
1614
1615 up_write(&root->kernfs_rwsem);
1616 schedule();
1617 down_write(&root->kernfs_rwsem);
1618 }
1619 finish_wait(waitq, &wait);
1620 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1621 ret = false;
1622 }
1623
1624 /*
1625 * This must be done while kernfs_rwsem held exclusive; otherwise,
1626 * waiting for SUICIDED && deactivated could finish prematurely.
1627 */
1628 kernfs_unbreak_active_protection(kn);
1629
1630 up_write(&root->kernfs_rwsem);
1631 return ret;
1632}
1633
1634/**
1635 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1636 * @parent: parent of the target
1637 * @name: name of the kernfs_node to remove
1638 * @ns: namespace tag of the kernfs_node to remove
1639 *
1640 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1641 *
1642 * Return: %0 on success, -ENOENT if such entry doesn't exist.
1643 */
1644int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1645 const void *ns)
1646{
1647 struct kernfs_node *kn;
1648 struct kernfs_root *root;
1649
1650 if (!parent) {
1651 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1652 name);
1653 return -ENOENT;
1654 }
1655
1656 root = kernfs_root(parent);
1657 down_write(&root->kernfs_rwsem);
1658
1659 kn = kernfs_find_ns(parent, name, ns);
1660 if (kn) {
1661 kernfs_get(kn);
1662 __kernfs_remove(kn);
1663 kernfs_put(kn);
1664 }
1665
1666 up_write(&root->kernfs_rwsem);
1667
1668 if (kn)
1669 return 0;
1670 else
1671 return -ENOENT;
1672}
1673
1674/**
1675 * kernfs_rename_ns - move and rename a kernfs_node
1676 * @kn: target node
1677 * @new_parent: new parent to put @sd under
1678 * @new_name: new name
1679 * @new_ns: new namespace tag
1680 *
1681 * Return: %0 on success, -errno on failure.
1682 */
1683int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1684 const char *new_name, const void *new_ns)
1685{
1686 struct kernfs_node *old_parent;
1687 struct kernfs_root *root;
1688 const char *old_name = NULL;
1689 int error;
1690
1691 /* can't move or rename root */
1692 if (!kn->parent)
1693 return -EINVAL;
1694
1695 root = kernfs_root(kn);
1696 down_write(&root->kernfs_rwsem);
1697
1698 error = -ENOENT;
1699 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1700 (new_parent->flags & KERNFS_EMPTY_DIR))
1701 goto out;
1702
1703 error = 0;
1704 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1705 (strcmp(kn->name, new_name) == 0))
1706 goto out; /* nothing to rename */
1707
1708 error = -EEXIST;
1709 if (kernfs_find_ns(new_parent, new_name, new_ns))
1710 goto out;
1711
1712 /* rename kernfs_node */
1713 if (strcmp(kn->name, new_name) != 0) {
1714 error = -ENOMEM;
1715 new_name = kstrdup_const(new_name, GFP_KERNEL);
1716 if (!new_name)
1717 goto out;
1718 } else {
1719 new_name = NULL;
1720 }
1721
1722 /*
1723 * Move to the appropriate place in the appropriate directories rbtree.
1724 */
1725 kernfs_unlink_sibling(kn);
1726 kernfs_get(new_parent);
1727
1728 /* rename_lock protects ->parent and ->name accessors */
1729 spin_lock_irq(&kernfs_rename_lock);
1730
1731 old_parent = kn->parent;
1732 kn->parent = new_parent;
1733
1734 kn->ns = new_ns;
1735 if (new_name) {
1736 old_name = kn->name;
1737 kn->name = new_name;
1738 }
1739
1740 spin_unlock_irq(&kernfs_rename_lock);
1741
1742 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1743 kernfs_link_sibling(kn);
1744
1745 kernfs_put(old_parent);
1746 kfree_const(old_name);
1747
1748 error = 0;
1749 out:
1750 up_write(&root->kernfs_rwsem);
1751 return error;
1752}
1753
1754/* Relationship between mode and the DT_xxx types */
1755static inline unsigned char dt_type(struct kernfs_node *kn)
1756{
1757 return (kn->mode >> 12) & 15;
1758}
1759
1760static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1761{
1762 kernfs_put(filp->private_data);
1763 return 0;
1764}
1765
1766static struct kernfs_node *kernfs_dir_pos(const void *ns,
1767 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1768{
1769 if (pos) {
1770 int valid = kernfs_active(pos) &&
1771 pos->parent == parent && hash == pos->hash;
1772 kernfs_put(pos);
1773 if (!valid)
1774 pos = NULL;
1775 }
1776 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1777 struct rb_node *node = parent->dir.children.rb_node;
1778 while (node) {
1779 pos = rb_to_kn(node);
1780
1781 if (hash < pos->hash)
1782 node = node->rb_left;
1783 else if (hash > pos->hash)
1784 node = node->rb_right;
1785 else
1786 break;
1787 }
1788 }
1789 /* Skip over entries which are dying/dead or in the wrong namespace */
1790 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1791 struct rb_node *node = rb_next(&pos->rb);
1792 if (!node)
1793 pos = NULL;
1794 else
1795 pos = rb_to_kn(node);
1796 }
1797 return pos;
1798}
1799
1800static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1801 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1802{
1803 pos = kernfs_dir_pos(ns, parent, ino, pos);
1804 if (pos) {
1805 do {
1806 struct rb_node *node = rb_next(&pos->rb);
1807 if (!node)
1808 pos = NULL;
1809 else
1810 pos = rb_to_kn(node);
1811 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1812 }
1813 return pos;
1814}
1815
1816static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1817{
1818 struct dentry *dentry = file->f_path.dentry;
1819 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1820 struct kernfs_node *pos = file->private_data;
1821 struct kernfs_root *root;
1822 const void *ns = NULL;
1823
1824 if (!dir_emit_dots(file, ctx))
1825 return 0;
1826
1827 root = kernfs_root(parent);
1828 down_read(&root->kernfs_rwsem);
1829
1830 if (kernfs_ns_enabled(parent))
1831 ns = kernfs_info(dentry->d_sb)->ns;
1832
1833 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1834 pos;
1835 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1836 const char *name = pos->name;
1837 unsigned int type = dt_type(pos);
1838 int len = strlen(name);
1839 ino_t ino = kernfs_ino(pos);
1840
1841 ctx->pos = pos->hash;
1842 file->private_data = pos;
1843 kernfs_get(pos);
1844
1845 up_read(&root->kernfs_rwsem);
1846 if (!dir_emit(ctx, name, len, ino, type))
1847 return 0;
1848 down_read(&root->kernfs_rwsem);
1849 }
1850 up_read(&root->kernfs_rwsem);
1851 file->private_data = NULL;
1852 ctx->pos = INT_MAX;
1853 return 0;
1854}
1855
1856const struct file_operations kernfs_dir_fops = {
1857 .read = generic_read_dir,
1858 .iterate_shared = kernfs_fop_readdir,
1859 .release = kernfs_dir_fop_release,
1860 .llseek = generic_file_llseek,
1861};
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/sched.h>
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
21DEFINE_MUTEX(kernfs_mutex);
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47/* kernfs_node_depth - compute depth from @from to @to */
48static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
49{
50 size_t depth = 0;
51
52 while (to->parent && to != from) {
53 depth++;
54 to = to->parent;
55 }
56 return depth;
57}
58
59static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
60 struct kernfs_node *b)
61{
62 size_t da, db;
63 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
64
65 if (ra != rb)
66 return NULL;
67
68 da = kernfs_depth(ra->kn, a);
69 db = kernfs_depth(rb->kn, b);
70
71 while (da > db) {
72 a = a->parent;
73 da--;
74 }
75 while (db > da) {
76 b = b->parent;
77 db--;
78 }
79
80 /* worst case b and a will be the same at root */
81 while (b != a) {
82 b = b->parent;
83 a = a->parent;
84 }
85
86 return a;
87}
88
89/**
90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91 * where kn_from is treated as root of the path.
92 * @kn_from: kernfs node which should be treated as root for the path
93 * @kn_to: kernfs node to which path is needed
94 * @buf: buffer to copy the path into
95 * @buflen: size of @buf
96 *
97 * We need to handle couple of scenarios here:
98 * [1] when @kn_from is an ancestor of @kn_to at some level
99 * kn_from: /n1/n2/n3
100 * kn_to: /n1/n2/n3/n4/n5
101 * result: /n4/n5
102 *
103 * [2] when @kn_from is on a different hierarchy and we need to find common
104 * ancestor between @kn_from and @kn_to.
105 * kn_from: /n1/n2/n3/n4
106 * kn_to: /n1/n2/n5
107 * result: /../../n5
108 * OR
109 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
110 * kn_to: /n1/n2/n3 [depth=3]
111 * result: /../..
112 *
113 * Returns the length of the full path. If the full length is equal to or
114 * greater than @buflen, @buf contains the truncated path with the trailing
115 * '\0'. On error, -errno is returned.
116 */
117static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
118 struct kernfs_node *kn_from,
119 char *buf, size_t buflen)
120{
121 struct kernfs_node *kn, *common;
122 const char parent_str[] = "/..";
123 size_t depth_from, depth_to, len = 0;
124 int i, j;
125
126 if (!kn_from)
127 kn_from = kernfs_root(kn_to)->kn;
128
129 if (kn_from == kn_to)
130 return strlcpy(buf, "/", buflen);
131
132 common = kernfs_common_ancestor(kn_from, kn_to);
133 if (WARN_ON(!common))
134 return -EINVAL;
135
136 depth_to = kernfs_depth(common, kn_to);
137 depth_from = kernfs_depth(common, kn_from);
138
139 if (buf)
140 buf[0] = '\0';
141
142 for (i = 0; i < depth_from; i++)
143 len += strlcpy(buf + len, parent_str,
144 len < buflen ? buflen - len : 0);
145
146 /* Calculate how many bytes we need for the rest */
147 for (i = depth_to - 1; i >= 0; i--) {
148 for (kn = kn_to, j = 0; j < i; j++)
149 kn = kn->parent;
150 len += strlcpy(buf + len, "/",
151 len < buflen ? buflen - len : 0);
152 len += strlcpy(buf + len, kn->name,
153 len < buflen ? buflen - len : 0);
154 }
155
156 return len;
157}
158
159/**
160 * kernfs_name - obtain the name of a given node
161 * @kn: kernfs_node of interest
162 * @buf: buffer to copy @kn's name into
163 * @buflen: size of @buf
164 *
165 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
166 * similar to strlcpy(). It returns the length of @kn's name and if @buf
167 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
168 *
169 * This function can be called from any context.
170 */
171int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
172{
173 unsigned long flags;
174 int ret;
175
176 spin_lock_irqsave(&kernfs_rename_lock, flags);
177 ret = kernfs_name_locked(kn, buf, buflen);
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 return ret;
180}
181
182/**
183 * kernfs_path_from_node - build path of node @to relative to @from.
184 * @from: parent kernfs_node relative to which we need to build the path
185 * @to: kernfs_node of interest
186 * @buf: buffer to copy @to's path into
187 * @buflen: size of @buf
188 *
189 * Builds @to's path relative to @from in @buf. @from and @to must
190 * be on the same kernfs-root. If @from is not parent of @to, then a relative
191 * path (which includes '..'s) as needed to reach from @from to @to is
192 * returned.
193 *
194 * Returns the length of the full path. If the full length is equal to or
195 * greater than @buflen, @buf contains the truncated path with the trailing
196 * '\0'. On error, -errno is returned.
197 */
198int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
199 char *buf, size_t buflen)
200{
201 unsigned long flags;
202 int ret;
203
204 spin_lock_irqsave(&kernfs_rename_lock, flags);
205 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
206 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
207 return ret;
208}
209EXPORT_SYMBOL_GPL(kernfs_path_from_node);
210
211/**
212 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
213 * @kn: kernfs_node of interest
214 *
215 * This function can be called from any context.
216 */
217void pr_cont_kernfs_name(struct kernfs_node *kn)
218{
219 unsigned long flags;
220
221 spin_lock_irqsave(&kernfs_rename_lock, flags);
222
223 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
224 pr_cont("%s", kernfs_pr_cont_buf);
225
226 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227}
228
229/**
230 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
231 * @kn: kernfs_node of interest
232 *
233 * This function can be called from any context.
234 */
235void pr_cont_kernfs_path(struct kernfs_node *kn)
236{
237 unsigned long flags;
238 int sz;
239
240 spin_lock_irqsave(&kernfs_rename_lock, flags);
241
242 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
243 sizeof(kernfs_pr_cont_buf));
244 if (sz < 0) {
245 pr_cont("(error)");
246 goto out;
247 }
248
249 if (sz >= sizeof(kernfs_pr_cont_buf)) {
250 pr_cont("(name too long)");
251 goto out;
252 }
253
254 pr_cont("%s", kernfs_pr_cont_buf);
255
256out:
257 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
258}
259
260/**
261 * kernfs_get_parent - determine the parent node and pin it
262 * @kn: kernfs_node of interest
263 *
264 * Determines @kn's parent, pins and returns it. This function can be
265 * called from any context.
266 */
267struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
268{
269 struct kernfs_node *parent;
270 unsigned long flags;
271
272 spin_lock_irqsave(&kernfs_rename_lock, flags);
273 parent = kn->parent;
274 kernfs_get(parent);
275 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
276
277 return parent;
278}
279
280/**
281 * kernfs_name_hash
282 * @name: Null terminated string to hash
283 * @ns: Namespace tag to hash
284 *
285 * Returns 31 bit hash of ns + name (so it fits in an off_t )
286 */
287static unsigned int kernfs_name_hash(const char *name, const void *ns)
288{
289 unsigned long hash = init_name_hash(ns);
290 unsigned int len = strlen(name);
291 while (len--)
292 hash = partial_name_hash(*name++, hash);
293 hash = end_name_hash(hash);
294 hash &= 0x7fffffffU;
295 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
296 if (hash < 2)
297 hash += 2;
298 if (hash >= INT_MAX)
299 hash = INT_MAX - 1;
300 return hash;
301}
302
303static int kernfs_name_compare(unsigned int hash, const char *name,
304 const void *ns, const struct kernfs_node *kn)
305{
306 if (hash < kn->hash)
307 return -1;
308 if (hash > kn->hash)
309 return 1;
310 if (ns < kn->ns)
311 return -1;
312 if (ns > kn->ns)
313 return 1;
314 return strcmp(name, kn->name);
315}
316
317static int kernfs_sd_compare(const struct kernfs_node *left,
318 const struct kernfs_node *right)
319{
320 return kernfs_name_compare(left->hash, left->name, left->ns, right);
321}
322
323/**
324 * kernfs_link_sibling - link kernfs_node into sibling rbtree
325 * @kn: kernfs_node of interest
326 *
327 * Link @kn into its sibling rbtree which starts from
328 * @kn->parent->dir.children.
329 *
330 * Locking:
331 * mutex_lock(kernfs_mutex)
332 *
333 * RETURNS:
334 * 0 on susccess -EEXIST on failure.
335 */
336static int kernfs_link_sibling(struct kernfs_node *kn)
337{
338 struct rb_node **node = &kn->parent->dir.children.rb_node;
339 struct rb_node *parent = NULL;
340
341 while (*node) {
342 struct kernfs_node *pos;
343 int result;
344
345 pos = rb_to_kn(*node);
346 parent = *node;
347 result = kernfs_sd_compare(kn, pos);
348 if (result < 0)
349 node = &pos->rb.rb_left;
350 else if (result > 0)
351 node = &pos->rb.rb_right;
352 else
353 return -EEXIST;
354 }
355
356 /* add new node and rebalance the tree */
357 rb_link_node(&kn->rb, parent, node);
358 rb_insert_color(&kn->rb, &kn->parent->dir.children);
359
360 /* successfully added, account subdir number */
361 if (kernfs_type(kn) == KERNFS_DIR)
362 kn->parent->dir.subdirs++;
363
364 return 0;
365}
366
367/**
368 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
369 * @kn: kernfs_node of interest
370 *
371 * Try to unlink @kn from its sibling rbtree which starts from
372 * kn->parent->dir.children. Returns %true if @kn was actually
373 * removed, %false if @kn wasn't on the rbtree.
374 *
375 * Locking:
376 * mutex_lock(kernfs_mutex)
377 */
378static bool kernfs_unlink_sibling(struct kernfs_node *kn)
379{
380 if (RB_EMPTY_NODE(&kn->rb))
381 return false;
382
383 if (kernfs_type(kn) == KERNFS_DIR)
384 kn->parent->dir.subdirs--;
385
386 rb_erase(&kn->rb, &kn->parent->dir.children);
387 RB_CLEAR_NODE(&kn->rb);
388 return true;
389}
390
391/**
392 * kernfs_get_active - get an active reference to kernfs_node
393 * @kn: kernfs_node to get an active reference to
394 *
395 * Get an active reference of @kn. This function is noop if @kn
396 * is NULL.
397 *
398 * RETURNS:
399 * Pointer to @kn on success, NULL on failure.
400 */
401struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
402{
403 if (unlikely(!kn))
404 return NULL;
405
406 if (!atomic_inc_unless_negative(&kn->active))
407 return NULL;
408
409 if (kernfs_lockdep(kn))
410 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
411 return kn;
412}
413
414/**
415 * kernfs_put_active - put an active reference to kernfs_node
416 * @kn: kernfs_node to put an active reference to
417 *
418 * Put an active reference to @kn. This function is noop if @kn
419 * is NULL.
420 */
421void kernfs_put_active(struct kernfs_node *kn)
422{
423 struct kernfs_root *root = kernfs_root(kn);
424 int v;
425
426 if (unlikely(!kn))
427 return;
428
429 if (kernfs_lockdep(kn))
430 rwsem_release(&kn->dep_map, 1, _RET_IP_);
431 v = atomic_dec_return(&kn->active);
432 if (likely(v != KN_DEACTIVATED_BIAS))
433 return;
434
435 wake_up_all(&root->deactivate_waitq);
436}
437
438/**
439 * kernfs_drain - drain kernfs_node
440 * @kn: kernfs_node to drain
441 *
442 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
443 * removers may invoke this function concurrently on @kn and all will
444 * return after draining is complete.
445 */
446static void kernfs_drain(struct kernfs_node *kn)
447 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
448{
449 struct kernfs_root *root = kernfs_root(kn);
450
451 lockdep_assert_held(&kernfs_mutex);
452 WARN_ON_ONCE(kernfs_active(kn));
453
454 mutex_unlock(&kernfs_mutex);
455
456 if (kernfs_lockdep(kn)) {
457 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
458 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
459 lock_contended(&kn->dep_map, _RET_IP_);
460 }
461
462 /* but everyone should wait for draining */
463 wait_event(root->deactivate_waitq,
464 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
465
466 if (kernfs_lockdep(kn)) {
467 lock_acquired(&kn->dep_map, _RET_IP_);
468 rwsem_release(&kn->dep_map, 1, _RET_IP_);
469 }
470
471 kernfs_unmap_bin_file(kn);
472
473 mutex_lock(&kernfs_mutex);
474}
475
476/**
477 * kernfs_get - get a reference count on a kernfs_node
478 * @kn: the target kernfs_node
479 */
480void kernfs_get(struct kernfs_node *kn)
481{
482 if (kn) {
483 WARN_ON(!atomic_read(&kn->count));
484 atomic_inc(&kn->count);
485 }
486}
487EXPORT_SYMBOL_GPL(kernfs_get);
488
489/**
490 * kernfs_put - put a reference count on a kernfs_node
491 * @kn: the target kernfs_node
492 *
493 * Put a reference count of @kn and destroy it if it reached zero.
494 */
495void kernfs_put(struct kernfs_node *kn)
496{
497 struct kernfs_node *parent;
498 struct kernfs_root *root;
499
500 if (!kn || !atomic_dec_and_test(&kn->count))
501 return;
502 root = kernfs_root(kn);
503 repeat:
504 /*
505 * Moving/renaming is always done while holding reference.
506 * kn->parent won't change beneath us.
507 */
508 parent = kn->parent;
509
510 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
511 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
512 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
513
514 if (kernfs_type(kn) == KERNFS_LINK)
515 kernfs_put(kn->symlink.target_kn);
516
517 kfree_const(kn->name);
518
519 if (kn->iattr) {
520 if (kn->iattr->ia_secdata)
521 security_release_secctx(kn->iattr->ia_secdata,
522 kn->iattr->ia_secdata_len);
523 simple_xattrs_free(&kn->iattr->xattrs);
524 }
525 kfree(kn->iattr);
526 ida_simple_remove(&root->ino_ida, kn->ino);
527 kmem_cache_free(kernfs_node_cache, kn);
528
529 kn = parent;
530 if (kn) {
531 if (atomic_dec_and_test(&kn->count))
532 goto repeat;
533 } else {
534 /* just released the root kn, free @root too */
535 ida_destroy(&root->ino_ida);
536 kfree(root);
537 }
538}
539EXPORT_SYMBOL_GPL(kernfs_put);
540
541static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
542{
543 struct kernfs_node *kn;
544
545 if (flags & LOOKUP_RCU)
546 return -ECHILD;
547
548 /* Always perform fresh lookup for negatives */
549 if (d_really_is_negative(dentry))
550 goto out_bad_unlocked;
551
552 kn = dentry->d_fsdata;
553 mutex_lock(&kernfs_mutex);
554
555 /* The kernfs node has been deactivated */
556 if (!kernfs_active(kn))
557 goto out_bad;
558
559 /* The kernfs node has been moved? */
560 if (dentry->d_parent->d_fsdata != kn->parent)
561 goto out_bad;
562
563 /* The kernfs node has been renamed */
564 if (strcmp(dentry->d_name.name, kn->name) != 0)
565 goto out_bad;
566
567 /* The kernfs node has been moved to a different namespace */
568 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
569 kernfs_info(dentry->d_sb)->ns != kn->ns)
570 goto out_bad;
571
572 mutex_unlock(&kernfs_mutex);
573 return 1;
574out_bad:
575 mutex_unlock(&kernfs_mutex);
576out_bad_unlocked:
577 return 0;
578}
579
580static void kernfs_dop_release(struct dentry *dentry)
581{
582 kernfs_put(dentry->d_fsdata);
583}
584
585const struct dentry_operations kernfs_dops = {
586 .d_revalidate = kernfs_dop_revalidate,
587 .d_release = kernfs_dop_release,
588};
589
590/**
591 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
592 * @dentry: the dentry in question
593 *
594 * Return the kernfs_node associated with @dentry. If @dentry is not a
595 * kernfs one, %NULL is returned.
596 *
597 * While the returned kernfs_node will stay accessible as long as @dentry
598 * is accessible, the returned node can be in any state and the caller is
599 * fully responsible for determining what's accessible.
600 */
601struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
602{
603 if (dentry->d_sb->s_op == &kernfs_sops)
604 return dentry->d_fsdata;
605 return NULL;
606}
607
608static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
609 const char *name, umode_t mode,
610 unsigned flags)
611{
612 struct kernfs_node *kn;
613 int ret;
614
615 name = kstrdup_const(name, GFP_KERNEL);
616 if (!name)
617 return NULL;
618
619 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
620 if (!kn)
621 goto err_out1;
622
623 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
624 if (ret < 0)
625 goto err_out2;
626 kn->ino = ret;
627
628 atomic_set(&kn->count, 1);
629 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
630 RB_CLEAR_NODE(&kn->rb);
631
632 kn->name = name;
633 kn->mode = mode;
634 kn->flags = flags;
635
636 return kn;
637
638 err_out2:
639 kmem_cache_free(kernfs_node_cache, kn);
640 err_out1:
641 kfree_const(name);
642 return NULL;
643}
644
645struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
646 const char *name, umode_t mode,
647 unsigned flags)
648{
649 struct kernfs_node *kn;
650
651 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
652 if (kn) {
653 kernfs_get(parent);
654 kn->parent = parent;
655 }
656 return kn;
657}
658
659/**
660 * kernfs_add_one - add kernfs_node to parent without warning
661 * @kn: kernfs_node to be added
662 *
663 * The caller must already have initialized @kn->parent. This
664 * function increments nlink of the parent's inode if @kn is a
665 * directory and link into the children list of the parent.
666 *
667 * RETURNS:
668 * 0 on success, -EEXIST if entry with the given name already
669 * exists.
670 */
671int kernfs_add_one(struct kernfs_node *kn)
672{
673 struct kernfs_node *parent = kn->parent;
674 struct kernfs_iattrs *ps_iattr;
675 bool has_ns;
676 int ret;
677
678 mutex_lock(&kernfs_mutex);
679
680 ret = -EINVAL;
681 has_ns = kernfs_ns_enabled(parent);
682 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
683 has_ns ? "required" : "invalid", parent->name, kn->name))
684 goto out_unlock;
685
686 if (kernfs_type(parent) != KERNFS_DIR)
687 goto out_unlock;
688
689 ret = -ENOENT;
690 if (parent->flags & KERNFS_EMPTY_DIR)
691 goto out_unlock;
692
693 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
694 goto out_unlock;
695
696 kn->hash = kernfs_name_hash(kn->name, kn->ns);
697
698 ret = kernfs_link_sibling(kn);
699 if (ret)
700 goto out_unlock;
701
702 /* Update timestamps on the parent */
703 ps_iattr = parent->iattr;
704 if (ps_iattr) {
705 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
706 ktime_get_real_ts(&ps_iattrs->ia_ctime);
707 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
708 }
709
710 mutex_unlock(&kernfs_mutex);
711
712 /*
713 * Activate the new node unless CREATE_DEACTIVATED is requested.
714 * If not activated here, the kernfs user is responsible for
715 * activating the node with kernfs_activate(). A node which hasn't
716 * been activated is not visible to userland and its removal won't
717 * trigger deactivation.
718 */
719 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
720 kernfs_activate(kn);
721 return 0;
722
723out_unlock:
724 mutex_unlock(&kernfs_mutex);
725 return ret;
726}
727
728/**
729 * kernfs_find_ns - find kernfs_node with the given name
730 * @parent: kernfs_node to search under
731 * @name: name to look for
732 * @ns: the namespace tag to use
733 *
734 * Look for kernfs_node with name @name under @parent. Returns pointer to
735 * the found kernfs_node on success, %NULL on failure.
736 */
737static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
738 const unsigned char *name,
739 const void *ns)
740{
741 struct rb_node *node = parent->dir.children.rb_node;
742 bool has_ns = kernfs_ns_enabled(parent);
743 unsigned int hash;
744
745 lockdep_assert_held(&kernfs_mutex);
746
747 if (has_ns != (bool)ns) {
748 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
749 has_ns ? "required" : "invalid", parent->name, name);
750 return NULL;
751 }
752
753 hash = kernfs_name_hash(name, ns);
754 while (node) {
755 struct kernfs_node *kn;
756 int result;
757
758 kn = rb_to_kn(node);
759 result = kernfs_name_compare(hash, name, ns, kn);
760 if (result < 0)
761 node = node->rb_left;
762 else if (result > 0)
763 node = node->rb_right;
764 else
765 return kn;
766 }
767 return NULL;
768}
769
770static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
771 const unsigned char *path,
772 const void *ns)
773{
774 size_t len;
775 char *p, *name;
776
777 lockdep_assert_held(&kernfs_mutex);
778
779 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
780 spin_lock_irq(&kernfs_rename_lock);
781
782 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
783
784 if (len >= sizeof(kernfs_pr_cont_buf)) {
785 spin_unlock_irq(&kernfs_rename_lock);
786 return NULL;
787 }
788
789 p = kernfs_pr_cont_buf;
790
791 while ((name = strsep(&p, "/")) && parent) {
792 if (*name == '\0')
793 continue;
794 parent = kernfs_find_ns(parent, name, ns);
795 }
796
797 spin_unlock_irq(&kernfs_rename_lock);
798
799 return parent;
800}
801
802/**
803 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
804 * @parent: kernfs_node to search under
805 * @name: name to look for
806 * @ns: the namespace tag to use
807 *
808 * Look for kernfs_node with name @name under @parent and get a reference
809 * if found. This function may sleep and returns pointer to the found
810 * kernfs_node on success, %NULL on failure.
811 */
812struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
813 const char *name, const void *ns)
814{
815 struct kernfs_node *kn;
816
817 mutex_lock(&kernfs_mutex);
818 kn = kernfs_find_ns(parent, name, ns);
819 kernfs_get(kn);
820 mutex_unlock(&kernfs_mutex);
821
822 return kn;
823}
824EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
825
826/**
827 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
828 * @parent: kernfs_node to search under
829 * @path: path to look for
830 * @ns: the namespace tag to use
831 *
832 * Look for kernfs_node with path @path under @parent and get a reference
833 * if found. This function may sleep and returns pointer to the found
834 * kernfs_node on success, %NULL on failure.
835 */
836struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
837 const char *path, const void *ns)
838{
839 struct kernfs_node *kn;
840
841 mutex_lock(&kernfs_mutex);
842 kn = kernfs_walk_ns(parent, path, ns);
843 kernfs_get(kn);
844 mutex_unlock(&kernfs_mutex);
845
846 return kn;
847}
848
849/**
850 * kernfs_create_root - create a new kernfs hierarchy
851 * @scops: optional syscall operations for the hierarchy
852 * @flags: KERNFS_ROOT_* flags
853 * @priv: opaque data associated with the new directory
854 *
855 * Returns the root of the new hierarchy on success, ERR_PTR() value on
856 * failure.
857 */
858struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
859 unsigned int flags, void *priv)
860{
861 struct kernfs_root *root;
862 struct kernfs_node *kn;
863
864 root = kzalloc(sizeof(*root), GFP_KERNEL);
865 if (!root)
866 return ERR_PTR(-ENOMEM);
867
868 ida_init(&root->ino_ida);
869 INIT_LIST_HEAD(&root->supers);
870
871 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
872 KERNFS_DIR);
873 if (!kn) {
874 ida_destroy(&root->ino_ida);
875 kfree(root);
876 return ERR_PTR(-ENOMEM);
877 }
878
879 kn->priv = priv;
880 kn->dir.root = root;
881
882 root->syscall_ops = scops;
883 root->flags = flags;
884 root->kn = kn;
885 init_waitqueue_head(&root->deactivate_waitq);
886
887 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
888 kernfs_activate(kn);
889
890 return root;
891}
892
893/**
894 * kernfs_destroy_root - destroy a kernfs hierarchy
895 * @root: root of the hierarchy to destroy
896 *
897 * Destroy the hierarchy anchored at @root by removing all existing
898 * directories and destroying @root.
899 */
900void kernfs_destroy_root(struct kernfs_root *root)
901{
902 kernfs_remove(root->kn); /* will also free @root */
903}
904
905/**
906 * kernfs_create_dir_ns - create a directory
907 * @parent: parent in which to create a new directory
908 * @name: name of the new directory
909 * @mode: mode of the new directory
910 * @priv: opaque data associated with the new directory
911 * @ns: optional namespace tag of the directory
912 *
913 * Returns the created node on success, ERR_PTR() value on failure.
914 */
915struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
916 const char *name, umode_t mode,
917 void *priv, const void *ns)
918{
919 struct kernfs_node *kn;
920 int rc;
921
922 /* allocate */
923 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
924 if (!kn)
925 return ERR_PTR(-ENOMEM);
926
927 kn->dir.root = parent->dir.root;
928 kn->ns = ns;
929 kn->priv = priv;
930
931 /* link in */
932 rc = kernfs_add_one(kn);
933 if (!rc)
934 return kn;
935
936 kernfs_put(kn);
937 return ERR_PTR(rc);
938}
939
940/**
941 * kernfs_create_empty_dir - create an always empty directory
942 * @parent: parent in which to create a new directory
943 * @name: name of the new directory
944 *
945 * Returns the created node on success, ERR_PTR() value on failure.
946 */
947struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
948 const char *name)
949{
950 struct kernfs_node *kn;
951 int rc;
952
953 /* allocate */
954 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
955 if (!kn)
956 return ERR_PTR(-ENOMEM);
957
958 kn->flags |= KERNFS_EMPTY_DIR;
959 kn->dir.root = parent->dir.root;
960 kn->ns = NULL;
961 kn->priv = NULL;
962
963 /* link in */
964 rc = kernfs_add_one(kn);
965 if (!rc)
966 return kn;
967
968 kernfs_put(kn);
969 return ERR_PTR(rc);
970}
971
972static struct dentry *kernfs_iop_lookup(struct inode *dir,
973 struct dentry *dentry,
974 unsigned int flags)
975{
976 struct dentry *ret;
977 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
978 struct kernfs_node *kn;
979 struct inode *inode;
980 const void *ns = NULL;
981
982 mutex_lock(&kernfs_mutex);
983
984 if (kernfs_ns_enabled(parent))
985 ns = kernfs_info(dir->i_sb)->ns;
986
987 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
988
989 /* no such entry */
990 if (!kn || !kernfs_active(kn)) {
991 ret = NULL;
992 goto out_unlock;
993 }
994 kernfs_get(kn);
995 dentry->d_fsdata = kn;
996
997 /* attach dentry and inode */
998 inode = kernfs_get_inode(dir->i_sb, kn);
999 if (!inode) {
1000 ret = ERR_PTR(-ENOMEM);
1001 goto out_unlock;
1002 }
1003
1004 /* instantiate and hash dentry */
1005 ret = d_splice_alias(inode, dentry);
1006 out_unlock:
1007 mutex_unlock(&kernfs_mutex);
1008 return ret;
1009}
1010
1011static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1012 umode_t mode)
1013{
1014 struct kernfs_node *parent = dir->i_private;
1015 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1016 int ret;
1017
1018 if (!scops || !scops->mkdir)
1019 return -EPERM;
1020
1021 if (!kernfs_get_active(parent))
1022 return -ENODEV;
1023
1024 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1025
1026 kernfs_put_active(parent);
1027 return ret;
1028}
1029
1030static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1031{
1032 struct kernfs_node *kn = dentry->d_fsdata;
1033 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1034 int ret;
1035
1036 if (!scops || !scops->rmdir)
1037 return -EPERM;
1038
1039 if (!kernfs_get_active(kn))
1040 return -ENODEV;
1041
1042 ret = scops->rmdir(kn);
1043
1044 kernfs_put_active(kn);
1045 return ret;
1046}
1047
1048static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1049 struct inode *new_dir, struct dentry *new_dentry,
1050 unsigned int flags)
1051{
1052 struct kernfs_node *kn = old_dentry->d_fsdata;
1053 struct kernfs_node *new_parent = new_dir->i_private;
1054 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1055 int ret;
1056
1057 if (flags)
1058 return -EINVAL;
1059
1060 if (!scops || !scops->rename)
1061 return -EPERM;
1062
1063 if (!kernfs_get_active(kn))
1064 return -ENODEV;
1065
1066 if (!kernfs_get_active(new_parent)) {
1067 kernfs_put_active(kn);
1068 return -ENODEV;
1069 }
1070
1071 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1072
1073 kernfs_put_active(new_parent);
1074 kernfs_put_active(kn);
1075 return ret;
1076}
1077
1078const struct inode_operations kernfs_dir_iops = {
1079 .lookup = kernfs_iop_lookup,
1080 .permission = kernfs_iop_permission,
1081 .setattr = kernfs_iop_setattr,
1082 .getattr = kernfs_iop_getattr,
1083 .listxattr = kernfs_iop_listxattr,
1084
1085 .mkdir = kernfs_iop_mkdir,
1086 .rmdir = kernfs_iop_rmdir,
1087 .rename = kernfs_iop_rename,
1088};
1089
1090static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1091{
1092 struct kernfs_node *last;
1093
1094 while (true) {
1095 struct rb_node *rbn;
1096
1097 last = pos;
1098
1099 if (kernfs_type(pos) != KERNFS_DIR)
1100 break;
1101
1102 rbn = rb_first(&pos->dir.children);
1103 if (!rbn)
1104 break;
1105
1106 pos = rb_to_kn(rbn);
1107 }
1108
1109 return last;
1110}
1111
1112/**
1113 * kernfs_next_descendant_post - find the next descendant for post-order walk
1114 * @pos: the current position (%NULL to initiate traversal)
1115 * @root: kernfs_node whose descendants to walk
1116 *
1117 * Find the next descendant to visit for post-order traversal of @root's
1118 * descendants. @root is included in the iteration and the last node to be
1119 * visited.
1120 */
1121static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1122 struct kernfs_node *root)
1123{
1124 struct rb_node *rbn;
1125
1126 lockdep_assert_held(&kernfs_mutex);
1127
1128 /* if first iteration, visit leftmost descendant which may be root */
1129 if (!pos)
1130 return kernfs_leftmost_descendant(root);
1131
1132 /* if we visited @root, we're done */
1133 if (pos == root)
1134 return NULL;
1135
1136 /* if there's an unvisited sibling, visit its leftmost descendant */
1137 rbn = rb_next(&pos->rb);
1138 if (rbn)
1139 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1140
1141 /* no sibling left, visit parent */
1142 return pos->parent;
1143}
1144
1145/**
1146 * kernfs_activate - activate a node which started deactivated
1147 * @kn: kernfs_node whose subtree is to be activated
1148 *
1149 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1150 * needs to be explicitly activated. A node which hasn't been activated
1151 * isn't visible to userland and deactivation is skipped during its
1152 * removal. This is useful to construct atomic init sequences where
1153 * creation of multiple nodes should either succeed or fail atomically.
1154 *
1155 * The caller is responsible for ensuring that this function is not called
1156 * after kernfs_remove*() is invoked on @kn.
1157 */
1158void kernfs_activate(struct kernfs_node *kn)
1159{
1160 struct kernfs_node *pos;
1161
1162 mutex_lock(&kernfs_mutex);
1163
1164 pos = NULL;
1165 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1166 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1167 continue;
1168
1169 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1170 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1171
1172 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1173 pos->flags |= KERNFS_ACTIVATED;
1174 }
1175
1176 mutex_unlock(&kernfs_mutex);
1177}
1178
1179static void __kernfs_remove(struct kernfs_node *kn)
1180{
1181 struct kernfs_node *pos;
1182
1183 lockdep_assert_held(&kernfs_mutex);
1184
1185 /*
1186 * Short-circuit if non-root @kn has already finished removal.
1187 * This is for kernfs_remove_self() which plays with active ref
1188 * after removal.
1189 */
1190 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1191 return;
1192
1193 pr_debug("kernfs %s: removing\n", kn->name);
1194
1195 /* prevent any new usage under @kn by deactivating all nodes */
1196 pos = NULL;
1197 while ((pos = kernfs_next_descendant_post(pos, kn)))
1198 if (kernfs_active(pos))
1199 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1200
1201 /* deactivate and unlink the subtree node-by-node */
1202 do {
1203 pos = kernfs_leftmost_descendant(kn);
1204
1205 /*
1206 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1207 * base ref could have been put by someone else by the time
1208 * the function returns. Make sure it doesn't go away
1209 * underneath us.
1210 */
1211 kernfs_get(pos);
1212
1213 /*
1214 * Drain iff @kn was activated. This avoids draining and
1215 * its lockdep annotations for nodes which have never been
1216 * activated and allows embedding kernfs_remove() in create
1217 * error paths without worrying about draining.
1218 */
1219 if (kn->flags & KERNFS_ACTIVATED)
1220 kernfs_drain(pos);
1221 else
1222 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1223
1224 /*
1225 * kernfs_unlink_sibling() succeeds once per node. Use it
1226 * to decide who's responsible for cleanups.
1227 */
1228 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1229 struct kernfs_iattrs *ps_iattr =
1230 pos->parent ? pos->parent->iattr : NULL;
1231
1232 /* update timestamps on the parent */
1233 if (ps_iattr) {
1234 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1235 ps_iattr->ia_iattr.ia_mtime =
1236 ps_iattr->ia_iattr.ia_ctime;
1237 }
1238
1239 kernfs_put(pos);
1240 }
1241
1242 kernfs_put(pos);
1243 } while (pos != kn);
1244}
1245
1246/**
1247 * kernfs_remove - remove a kernfs_node recursively
1248 * @kn: the kernfs_node to remove
1249 *
1250 * Remove @kn along with all its subdirectories and files.
1251 */
1252void kernfs_remove(struct kernfs_node *kn)
1253{
1254 mutex_lock(&kernfs_mutex);
1255 __kernfs_remove(kn);
1256 mutex_unlock(&kernfs_mutex);
1257}
1258
1259/**
1260 * kernfs_break_active_protection - break out of active protection
1261 * @kn: the self kernfs_node
1262 *
1263 * The caller must be running off of a kernfs operation which is invoked
1264 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1265 * this function must also be matched with an invocation of
1266 * kernfs_unbreak_active_protection().
1267 *
1268 * This function releases the active reference of @kn the caller is
1269 * holding. Once this function is called, @kn may be removed at any point
1270 * and the caller is solely responsible for ensuring that the objects it
1271 * dereferences are accessible.
1272 */
1273void kernfs_break_active_protection(struct kernfs_node *kn)
1274{
1275 /*
1276 * Take out ourself out of the active ref dependency chain. If
1277 * we're called without an active ref, lockdep will complain.
1278 */
1279 kernfs_put_active(kn);
1280}
1281
1282/**
1283 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1284 * @kn: the self kernfs_node
1285 *
1286 * If kernfs_break_active_protection() was called, this function must be
1287 * invoked before finishing the kernfs operation. Note that while this
1288 * function restores the active reference, it doesn't and can't actually
1289 * restore the active protection - @kn may already or be in the process of
1290 * being removed. Once kernfs_break_active_protection() is invoked, that
1291 * protection is irreversibly gone for the kernfs operation instance.
1292 *
1293 * While this function may be called at any point after
1294 * kernfs_break_active_protection() is invoked, its most useful location
1295 * would be right before the enclosing kernfs operation returns.
1296 */
1297void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1298{
1299 /*
1300 * @kn->active could be in any state; however, the increment we do
1301 * here will be undone as soon as the enclosing kernfs operation
1302 * finishes and this temporary bump can't break anything. If @kn
1303 * is alive, nothing changes. If @kn is being deactivated, the
1304 * soon-to-follow put will either finish deactivation or restore
1305 * deactivated state. If @kn is already removed, the temporary
1306 * bump is guaranteed to be gone before @kn is released.
1307 */
1308 atomic_inc(&kn->active);
1309 if (kernfs_lockdep(kn))
1310 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1311}
1312
1313/**
1314 * kernfs_remove_self - remove a kernfs_node from its own method
1315 * @kn: the self kernfs_node to remove
1316 *
1317 * The caller must be running off of a kernfs operation which is invoked
1318 * with an active reference - e.g. one of kernfs_ops. This can be used to
1319 * implement a file operation which deletes itself.
1320 *
1321 * For example, the "delete" file for a sysfs device directory can be
1322 * implemented by invoking kernfs_remove_self() on the "delete" file
1323 * itself. This function breaks the circular dependency of trying to
1324 * deactivate self while holding an active ref itself. It isn't necessary
1325 * to modify the usual removal path to use kernfs_remove_self(). The
1326 * "delete" implementation can simply invoke kernfs_remove_self() on self
1327 * before proceeding with the usual removal path. kernfs will ignore later
1328 * kernfs_remove() on self.
1329 *
1330 * kernfs_remove_self() can be called multiple times concurrently on the
1331 * same kernfs_node. Only the first one actually performs removal and
1332 * returns %true. All others will wait until the kernfs operation which
1333 * won self-removal finishes and return %false. Note that the losers wait
1334 * for the completion of not only the winning kernfs_remove_self() but also
1335 * the whole kernfs_ops which won the arbitration. This can be used to
1336 * guarantee, for example, all concurrent writes to a "delete" file to
1337 * finish only after the whole operation is complete.
1338 */
1339bool kernfs_remove_self(struct kernfs_node *kn)
1340{
1341 bool ret;
1342
1343 mutex_lock(&kernfs_mutex);
1344 kernfs_break_active_protection(kn);
1345
1346 /*
1347 * SUICIDAL is used to arbitrate among competing invocations. Only
1348 * the first one will actually perform removal. When the removal
1349 * is complete, SUICIDED is set and the active ref is restored
1350 * while holding kernfs_mutex. The ones which lost arbitration
1351 * waits for SUICDED && drained which can happen only after the
1352 * enclosing kernfs operation which executed the winning instance
1353 * of kernfs_remove_self() finished.
1354 */
1355 if (!(kn->flags & KERNFS_SUICIDAL)) {
1356 kn->flags |= KERNFS_SUICIDAL;
1357 __kernfs_remove(kn);
1358 kn->flags |= KERNFS_SUICIDED;
1359 ret = true;
1360 } else {
1361 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1362 DEFINE_WAIT(wait);
1363
1364 while (true) {
1365 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1366
1367 if ((kn->flags & KERNFS_SUICIDED) &&
1368 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1369 break;
1370
1371 mutex_unlock(&kernfs_mutex);
1372 schedule();
1373 mutex_lock(&kernfs_mutex);
1374 }
1375 finish_wait(waitq, &wait);
1376 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1377 ret = false;
1378 }
1379
1380 /*
1381 * This must be done while holding kernfs_mutex; otherwise, waiting
1382 * for SUICIDED && deactivated could finish prematurely.
1383 */
1384 kernfs_unbreak_active_protection(kn);
1385
1386 mutex_unlock(&kernfs_mutex);
1387 return ret;
1388}
1389
1390/**
1391 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1392 * @parent: parent of the target
1393 * @name: name of the kernfs_node to remove
1394 * @ns: namespace tag of the kernfs_node to remove
1395 *
1396 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1397 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1398 */
1399int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1400 const void *ns)
1401{
1402 struct kernfs_node *kn;
1403
1404 if (!parent) {
1405 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1406 name);
1407 return -ENOENT;
1408 }
1409
1410 mutex_lock(&kernfs_mutex);
1411
1412 kn = kernfs_find_ns(parent, name, ns);
1413 if (kn)
1414 __kernfs_remove(kn);
1415
1416 mutex_unlock(&kernfs_mutex);
1417
1418 if (kn)
1419 return 0;
1420 else
1421 return -ENOENT;
1422}
1423
1424/**
1425 * kernfs_rename_ns - move and rename a kernfs_node
1426 * @kn: target node
1427 * @new_parent: new parent to put @sd under
1428 * @new_name: new name
1429 * @new_ns: new namespace tag
1430 */
1431int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1432 const char *new_name, const void *new_ns)
1433{
1434 struct kernfs_node *old_parent;
1435 const char *old_name = NULL;
1436 int error;
1437
1438 /* can't move or rename root */
1439 if (!kn->parent)
1440 return -EINVAL;
1441
1442 mutex_lock(&kernfs_mutex);
1443
1444 error = -ENOENT;
1445 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1446 (new_parent->flags & KERNFS_EMPTY_DIR))
1447 goto out;
1448
1449 error = 0;
1450 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1451 (strcmp(kn->name, new_name) == 0))
1452 goto out; /* nothing to rename */
1453
1454 error = -EEXIST;
1455 if (kernfs_find_ns(new_parent, new_name, new_ns))
1456 goto out;
1457
1458 /* rename kernfs_node */
1459 if (strcmp(kn->name, new_name) != 0) {
1460 error = -ENOMEM;
1461 new_name = kstrdup_const(new_name, GFP_KERNEL);
1462 if (!new_name)
1463 goto out;
1464 } else {
1465 new_name = NULL;
1466 }
1467
1468 /*
1469 * Move to the appropriate place in the appropriate directories rbtree.
1470 */
1471 kernfs_unlink_sibling(kn);
1472 kernfs_get(new_parent);
1473
1474 /* rename_lock protects ->parent and ->name accessors */
1475 spin_lock_irq(&kernfs_rename_lock);
1476
1477 old_parent = kn->parent;
1478 kn->parent = new_parent;
1479
1480 kn->ns = new_ns;
1481 if (new_name) {
1482 old_name = kn->name;
1483 kn->name = new_name;
1484 }
1485
1486 spin_unlock_irq(&kernfs_rename_lock);
1487
1488 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1489 kernfs_link_sibling(kn);
1490
1491 kernfs_put(old_parent);
1492 kfree_const(old_name);
1493
1494 error = 0;
1495 out:
1496 mutex_unlock(&kernfs_mutex);
1497 return error;
1498}
1499
1500/* Relationship between s_mode and the DT_xxx types */
1501static inline unsigned char dt_type(struct kernfs_node *kn)
1502{
1503 return (kn->mode >> 12) & 15;
1504}
1505
1506static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1507{
1508 kernfs_put(filp->private_data);
1509 return 0;
1510}
1511
1512static struct kernfs_node *kernfs_dir_pos(const void *ns,
1513 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1514{
1515 if (pos) {
1516 int valid = kernfs_active(pos) &&
1517 pos->parent == parent && hash == pos->hash;
1518 kernfs_put(pos);
1519 if (!valid)
1520 pos = NULL;
1521 }
1522 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1523 struct rb_node *node = parent->dir.children.rb_node;
1524 while (node) {
1525 pos = rb_to_kn(node);
1526
1527 if (hash < pos->hash)
1528 node = node->rb_left;
1529 else if (hash > pos->hash)
1530 node = node->rb_right;
1531 else
1532 break;
1533 }
1534 }
1535 /* Skip over entries which are dying/dead or in the wrong namespace */
1536 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1537 struct rb_node *node = rb_next(&pos->rb);
1538 if (!node)
1539 pos = NULL;
1540 else
1541 pos = rb_to_kn(node);
1542 }
1543 return pos;
1544}
1545
1546static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1547 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1548{
1549 pos = kernfs_dir_pos(ns, parent, ino, pos);
1550 if (pos) {
1551 do {
1552 struct rb_node *node = rb_next(&pos->rb);
1553 if (!node)
1554 pos = NULL;
1555 else
1556 pos = rb_to_kn(node);
1557 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1558 }
1559 return pos;
1560}
1561
1562static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1563{
1564 struct dentry *dentry = file->f_path.dentry;
1565 struct kernfs_node *parent = dentry->d_fsdata;
1566 struct kernfs_node *pos = file->private_data;
1567 const void *ns = NULL;
1568
1569 if (!dir_emit_dots(file, ctx))
1570 return 0;
1571 mutex_lock(&kernfs_mutex);
1572
1573 if (kernfs_ns_enabled(parent))
1574 ns = kernfs_info(dentry->d_sb)->ns;
1575
1576 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1577 pos;
1578 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1579 const char *name = pos->name;
1580 unsigned int type = dt_type(pos);
1581 int len = strlen(name);
1582 ino_t ino = pos->ino;
1583
1584 ctx->pos = pos->hash;
1585 file->private_data = pos;
1586 kernfs_get(pos);
1587
1588 mutex_unlock(&kernfs_mutex);
1589 if (!dir_emit(ctx, name, len, ino, type))
1590 return 0;
1591 mutex_lock(&kernfs_mutex);
1592 }
1593 mutex_unlock(&kernfs_mutex);
1594 file->private_data = NULL;
1595 ctx->pos = INT_MAX;
1596 return 0;
1597}
1598
1599const struct file_operations kernfs_dir_fops = {
1600 .read = generic_read_dir,
1601 .iterate_shared = kernfs_fop_readdir,
1602 .release = kernfs_dir_fop_release,
1603 .llseek = generic_file_llseek,
1604};