Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/indirect.c
4 *
5 * from
6 *
7 * linux/fs/ext4/inode.c
8 *
9 * Copyright (C) 1992, 1993, 1994, 1995
10 * Remy Card (card@masi.ibp.fr)
11 * Laboratoire MASI - Institut Blaise Pascal
12 * Universite Pierre et Marie Curie (Paris VI)
13 *
14 * from
15 *
16 * linux/fs/minix/inode.c
17 *
18 * Copyright (C) 1991, 1992 Linus Torvalds
19 *
20 * Goal-directed block allocation by Stephen Tweedie
21 * (sct@redhat.com), 1993, 1998
22 */
23
24#include "ext4_jbd2.h"
25#include "truncate.h"
26#include <linux/dax.h>
27#include <linux/uio.h>
28
29#include <trace/events/ext4.h>
30
31typedef struct {
32 __le32 *p;
33 __le32 key;
34 struct buffer_head *bh;
35} Indirect;
36
37static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38{
39 p->key = *(p->p = v);
40 p->bh = bh;
41}
42
43/**
44 * ext4_block_to_path - parse the block number into array of offsets
45 * @inode: inode in question (we are only interested in its superblock)
46 * @i_block: block number to be parsed
47 * @offsets: array to store the offsets in
48 * @boundary: set this non-zero if the referred-to block is likely to be
49 * followed (on disk) by an indirect block.
50 *
51 * To store the locations of file's data ext4 uses a data structure common
52 * for UNIX filesystems - tree of pointers anchored in the inode, with
53 * data blocks at leaves and indirect blocks in intermediate nodes.
54 * This function translates the block number into path in that tree -
55 * return value is the path length and @offsets[n] is the offset of
56 * pointer to (n+1)th node in the nth one. If @block is out of range
57 * (negative or too large) warning is printed and zero returned.
58 *
59 * Note: function doesn't find node addresses, so no IO is needed. All
60 * we need to know is the capacity of indirect blocks (taken from the
61 * inode->i_sb).
62 */
63
64/*
65 * Portability note: the last comparison (check that we fit into triple
66 * indirect block) is spelled differently, because otherwise on an
67 * architecture with 32-bit longs and 8Kb pages we might get into trouble
68 * if our filesystem had 8Kb blocks. We might use long long, but that would
69 * kill us on x86. Oh, well, at least the sign propagation does not matter -
70 * i_block would have to be negative in the very beginning, so we would not
71 * get there at all.
72 */
73
74static int ext4_block_to_path(struct inode *inode,
75 ext4_lblk_t i_block,
76 ext4_lblk_t offsets[4], int *boundary)
77{
78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80 const long direct_blocks = EXT4_NDIR_BLOCKS,
81 indirect_blocks = ptrs,
82 double_blocks = (1 << (ptrs_bits * 2));
83 int n = 0;
84 int final = 0;
85
86 if (i_block < direct_blocks) {
87 offsets[n++] = i_block;
88 final = direct_blocks;
89 } else if ((i_block -= direct_blocks) < indirect_blocks) {
90 offsets[n++] = EXT4_IND_BLOCK;
91 offsets[n++] = i_block;
92 final = ptrs;
93 } else if ((i_block -= indirect_blocks) < double_blocks) {
94 offsets[n++] = EXT4_DIND_BLOCK;
95 offsets[n++] = i_block >> ptrs_bits;
96 offsets[n++] = i_block & (ptrs - 1);
97 final = ptrs;
98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99 offsets[n++] = EXT4_TIND_BLOCK;
100 offsets[n++] = i_block >> (ptrs_bits * 2);
101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102 offsets[n++] = i_block & (ptrs - 1);
103 final = ptrs;
104 } else {
105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106 i_block + direct_blocks +
107 indirect_blocks + double_blocks, inode->i_ino);
108 }
109 if (boundary)
110 *boundary = final - 1 - (i_block & (ptrs - 1));
111 return n;
112}
113
114/**
115 * ext4_get_branch - read the chain of indirect blocks leading to data
116 * @inode: inode in question
117 * @depth: depth of the chain (1 - direct pointer, etc.)
118 * @offsets: offsets of pointers in inode/indirect blocks
119 * @chain: place to store the result
120 * @err: here we store the error value
121 *
122 * Function fills the array of triples <key, p, bh> and returns %NULL
123 * if everything went OK or the pointer to the last filled triple
124 * (incomplete one) otherwise. Upon the return chain[i].key contains
125 * the number of (i+1)-th block in the chain (as it is stored in memory,
126 * i.e. little-endian 32-bit), chain[i].p contains the address of that
127 * number (it points into struct inode for i==0 and into the bh->b_data
128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129 * block for i>0 and NULL for i==0. In other words, it holds the block
130 * numbers of the chain, addresses they were taken from (and where we can
131 * verify that chain did not change) and buffer_heads hosting these
132 * numbers.
133 *
134 * Function stops when it stumbles upon zero pointer (absent block)
135 * (pointer to last triple returned, *@err == 0)
136 * or when it gets an IO error reading an indirect block
137 * (ditto, *@err == -EIO)
138 * or when it reads all @depth-1 indirect blocks successfully and finds
139 * the whole chain, all way to the data (returns %NULL, *err == 0).
140 *
141 * Need to be called with
142 * down_read(&EXT4_I(inode)->i_data_sem)
143 */
144static Indirect *ext4_get_branch(struct inode *inode, int depth,
145 ext4_lblk_t *offsets,
146 Indirect chain[4], int *err)
147{
148 struct super_block *sb = inode->i_sb;
149 Indirect *p = chain;
150 struct buffer_head *bh;
151 unsigned int key;
152 int ret = -EIO;
153
154 *err = 0;
155 /* i_data is not going away, no lock needed */
156 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
157 if (!p->key)
158 goto no_block;
159 while (--depth) {
160 key = le32_to_cpu(p->key);
161 if (key > ext4_blocks_count(EXT4_SB(sb)->s_es)) {
162 /* the block was out of range */
163 ret = -EFSCORRUPTED;
164 goto failure;
165 }
166 bh = sb_getblk(sb, key);
167 if (unlikely(!bh)) {
168 ret = -ENOMEM;
169 goto failure;
170 }
171
172 if (!bh_uptodate_or_lock(bh)) {
173 if (ext4_read_bh(bh, 0, NULL) < 0) {
174 put_bh(bh);
175 goto failure;
176 }
177 /* validate block references */
178 if (ext4_check_indirect_blockref(inode, bh)) {
179 put_bh(bh);
180 goto failure;
181 }
182 }
183
184 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
185 /* Reader: end */
186 if (!p->key)
187 goto no_block;
188 }
189 return NULL;
190
191failure:
192 *err = ret;
193no_block:
194 return p;
195}
196
197/**
198 * ext4_find_near - find a place for allocation with sufficient locality
199 * @inode: owner
200 * @ind: descriptor of indirect block.
201 *
202 * This function returns the preferred place for block allocation.
203 * It is used when heuristic for sequential allocation fails.
204 * Rules are:
205 * + if there is a block to the left of our position - allocate near it.
206 * + if pointer will live in indirect block - allocate near that block.
207 * + if pointer will live in inode - allocate in the same
208 * cylinder group.
209 *
210 * In the latter case we colour the starting block by the callers PID to
211 * prevent it from clashing with concurrent allocations for a different inode
212 * in the same block group. The PID is used here so that functionally related
213 * files will be close-by on-disk.
214 *
215 * Caller must make sure that @ind is valid and will stay that way.
216 */
217static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
218{
219 struct ext4_inode_info *ei = EXT4_I(inode);
220 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
221 __le32 *p;
222
223 /* Try to find previous block */
224 for (p = ind->p - 1; p >= start; p--) {
225 if (*p)
226 return le32_to_cpu(*p);
227 }
228
229 /* No such thing, so let's try location of indirect block */
230 if (ind->bh)
231 return ind->bh->b_blocknr;
232
233 /*
234 * It is going to be referred to from the inode itself? OK, just put it
235 * into the same cylinder group then.
236 */
237 return ext4_inode_to_goal_block(inode);
238}
239
240/**
241 * ext4_find_goal - find a preferred place for allocation.
242 * @inode: owner
243 * @block: block we want
244 * @partial: pointer to the last triple within a chain
245 *
246 * Normally this function find the preferred place for block allocation,
247 * returns it.
248 * Because this is only used for non-extent files, we limit the block nr
249 * to 32 bits.
250 */
251static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
252 Indirect *partial)
253{
254 ext4_fsblk_t goal;
255
256 /*
257 * XXX need to get goal block from mballoc's data structures
258 */
259
260 goal = ext4_find_near(inode, partial);
261 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
262 return goal;
263}
264
265/**
266 * ext4_blks_to_allocate - Look up the block map and count the number
267 * of direct blocks need to be allocated for the given branch.
268 *
269 * @branch: chain of indirect blocks
270 * @k: number of blocks need for indirect blocks
271 * @blks: number of data blocks to be mapped.
272 * @blocks_to_boundary: the offset in the indirect block
273 *
274 * return the total number of blocks to be allocate, including the
275 * direct and indirect blocks.
276 */
277static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
278 int blocks_to_boundary)
279{
280 unsigned int count = 0;
281
282 /*
283 * Simple case, [t,d]Indirect block(s) has not allocated yet
284 * then it's clear blocks on that path have not allocated
285 */
286 if (k > 0) {
287 /* right now we don't handle cross boundary allocation */
288 if (blks < blocks_to_boundary + 1)
289 count += blks;
290 else
291 count += blocks_to_boundary + 1;
292 return count;
293 }
294
295 count++;
296 while (count < blks && count <= blocks_to_boundary &&
297 le32_to_cpu(*(branch[0].p + count)) == 0) {
298 count++;
299 }
300 return count;
301}
302
303/**
304 * ext4_alloc_branch() - allocate and set up a chain of blocks
305 * @handle: handle for this transaction
306 * @ar: structure describing the allocation request
307 * @indirect_blks: number of allocated indirect blocks
308 * @offsets: offsets (in the blocks) to store the pointers to next.
309 * @branch: place to store the chain in.
310 *
311 * This function allocates blocks, zeroes out all but the last one,
312 * links them into chain and (if we are synchronous) writes them to disk.
313 * In other words, it prepares a branch that can be spliced onto the
314 * inode. It stores the information about that chain in the branch[], in
315 * the same format as ext4_get_branch() would do. We are calling it after
316 * we had read the existing part of chain and partial points to the last
317 * triple of that (one with zero ->key). Upon the exit we have the same
318 * picture as after the successful ext4_get_block(), except that in one
319 * place chain is disconnected - *branch->p is still zero (we did not
320 * set the last link), but branch->key contains the number that should
321 * be placed into *branch->p to fill that gap.
322 *
323 * If allocation fails we free all blocks we've allocated (and forget
324 * their buffer_heads) and return the error value the from failed
325 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
326 * as described above and return 0.
327 */
328static int ext4_alloc_branch(handle_t *handle,
329 struct ext4_allocation_request *ar,
330 int indirect_blks, ext4_lblk_t *offsets,
331 Indirect *branch)
332{
333 struct buffer_head * bh;
334 ext4_fsblk_t b, new_blocks[4];
335 __le32 *p;
336 int i, j, err, len = 1;
337
338 for (i = 0; i <= indirect_blks; i++) {
339 if (i == indirect_blks) {
340 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
341 } else {
342 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
343 ar->inode, ar->goal,
344 ar->flags & EXT4_MB_DELALLOC_RESERVED,
345 NULL, &err);
346 /* Simplify error cleanup... */
347 branch[i+1].bh = NULL;
348 }
349 if (err) {
350 i--;
351 goto failed;
352 }
353 branch[i].key = cpu_to_le32(new_blocks[i]);
354 if (i == 0)
355 continue;
356
357 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
358 if (unlikely(!bh)) {
359 err = -ENOMEM;
360 goto failed;
361 }
362 lock_buffer(bh);
363 BUFFER_TRACE(bh, "call get_create_access");
364 err = ext4_journal_get_create_access(handle, ar->inode->i_sb,
365 bh, EXT4_JTR_NONE);
366 if (err) {
367 unlock_buffer(bh);
368 goto failed;
369 }
370
371 memset(bh->b_data, 0, bh->b_size);
372 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373 b = new_blocks[i];
374
375 if (i == indirect_blks)
376 len = ar->len;
377 for (j = 0; j < len; j++)
378 *p++ = cpu_to_le32(b++);
379
380 BUFFER_TRACE(bh, "marking uptodate");
381 set_buffer_uptodate(bh);
382 unlock_buffer(bh);
383
384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
386 if (err)
387 goto failed;
388 }
389 return 0;
390failed:
391 if (i == indirect_blks) {
392 /* Free data blocks */
393 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
394 ar->len, 0);
395 i--;
396 }
397 for (; i >= 0; i--) {
398 /*
399 * We want to ext4_forget() only freshly allocated indirect
400 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
401 * (buffer at branch[0].bh is indirect block / inode already
402 * existing before ext4_alloc_branch() was called). Also
403 * because blocks are freshly allocated, we don't need to
404 * revoke them which is why we don't set
405 * EXT4_FREE_BLOCKS_METADATA.
406 */
407 ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
408 new_blocks[i], 1,
409 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
410 }
411 return err;
412}
413
414/**
415 * ext4_splice_branch() - splice the allocated branch onto inode.
416 * @handle: handle for this transaction
417 * @ar: structure describing the allocation request
418 * @where: location of missing link
419 * @num: number of indirect blocks we are adding
420 *
421 * This function fills the missing link and does all housekeeping needed in
422 * inode (->i_blocks, etc.). In case of success we end up with the full
423 * chain to new block and return 0.
424 */
425static int ext4_splice_branch(handle_t *handle,
426 struct ext4_allocation_request *ar,
427 Indirect *where, int num)
428{
429 int i;
430 int err = 0;
431 ext4_fsblk_t current_block;
432
433 /*
434 * If we're splicing into a [td]indirect block (as opposed to the
435 * inode) then we need to get write access to the [td]indirect block
436 * before the splice.
437 */
438 if (where->bh) {
439 BUFFER_TRACE(where->bh, "get_write_access");
440 err = ext4_journal_get_write_access(handle, ar->inode->i_sb,
441 where->bh, EXT4_JTR_NONE);
442 if (err)
443 goto err_out;
444 }
445 /* That's it */
446
447 *where->p = where->key;
448
449 /*
450 * Update the host buffer_head or inode to point to more just allocated
451 * direct blocks blocks
452 */
453 if (num == 0 && ar->len > 1) {
454 current_block = le32_to_cpu(where->key) + 1;
455 for (i = 1; i < ar->len; i++)
456 *(where->p + i) = cpu_to_le32(current_block++);
457 }
458
459 /* We are done with atomic stuff, now do the rest of housekeeping */
460 /* had we spliced it onto indirect block? */
461 if (where->bh) {
462 /*
463 * If we spliced it onto an indirect block, we haven't
464 * altered the inode. Note however that if it is being spliced
465 * onto an indirect block at the very end of the file (the
466 * file is growing) then we *will* alter the inode to reflect
467 * the new i_size. But that is not done here - it is done in
468 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
469 */
470 ext4_debug("splicing indirect only\n");
471 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
472 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
473 if (err)
474 goto err_out;
475 } else {
476 /*
477 * OK, we spliced it into the inode itself on a direct block.
478 */
479 err = ext4_mark_inode_dirty(handle, ar->inode);
480 if (unlikely(err))
481 goto err_out;
482 ext4_debug("splicing direct\n");
483 }
484 return err;
485
486err_out:
487 for (i = 1; i <= num; i++) {
488 /*
489 * branch[i].bh is newly allocated, so there is no
490 * need to revoke the block, which is why we don't
491 * need to set EXT4_FREE_BLOCKS_METADATA.
492 */
493 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
494 EXT4_FREE_BLOCKS_FORGET);
495 }
496 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
497 ar->len, 0);
498
499 return err;
500}
501
502/*
503 * The ext4_ind_map_blocks() function handles non-extents inodes
504 * (i.e., using the traditional indirect/double-indirect i_blocks
505 * scheme) for ext4_map_blocks().
506 *
507 * Allocation strategy is simple: if we have to allocate something, we will
508 * have to go the whole way to leaf. So let's do it before attaching anything
509 * to tree, set linkage between the newborn blocks, write them if sync is
510 * required, recheck the path, free and repeat if check fails, otherwise
511 * set the last missing link (that will protect us from any truncate-generated
512 * removals - all blocks on the path are immune now) and possibly force the
513 * write on the parent block.
514 * That has a nice additional property: no special recovery from the failed
515 * allocations is needed - we simply release blocks and do not touch anything
516 * reachable from inode.
517 *
518 * `handle' can be NULL if create == 0.
519 *
520 * return > 0, # of blocks mapped or allocated.
521 * return = 0, if plain lookup failed.
522 * return < 0, error case.
523 *
524 * The ext4_ind_get_blocks() function should be called with
525 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
526 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
527 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
528 * blocks.
529 */
530int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
531 struct ext4_map_blocks *map,
532 int flags)
533{
534 struct ext4_allocation_request ar;
535 int err = -EIO;
536 ext4_lblk_t offsets[4];
537 Indirect chain[4];
538 Indirect *partial;
539 int indirect_blks;
540 int blocks_to_boundary = 0;
541 int depth;
542 int count = 0;
543 ext4_fsblk_t first_block = 0;
544
545 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
546 ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
547 ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
548 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
549 &blocks_to_boundary);
550
551 if (depth == 0)
552 goto out;
553
554 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
555
556 /* Simplest case - block found, no allocation needed */
557 if (!partial) {
558 first_block = le32_to_cpu(chain[depth - 1].key);
559 count++;
560 /*map more blocks*/
561 while (count < map->m_len && count <= blocks_to_boundary) {
562 ext4_fsblk_t blk;
563
564 blk = le32_to_cpu(*(chain[depth-1].p + count));
565
566 if (blk == first_block + count)
567 count++;
568 else
569 break;
570 }
571 goto got_it;
572 }
573
574 /* Next simple case - plain lookup failed */
575 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
576 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
577 int i;
578
579 /*
580 * Count number blocks in a subtree under 'partial'. At each
581 * level we count number of complete empty subtrees beyond
582 * current offset and then descend into the subtree only
583 * partially beyond current offset.
584 */
585 count = 0;
586 for (i = partial - chain + 1; i < depth; i++)
587 count = count * epb + (epb - offsets[i] - 1);
588 count++;
589 /* Fill in size of a hole we found */
590 map->m_pblk = 0;
591 map->m_len = min_t(unsigned int, map->m_len, count);
592 goto cleanup;
593 }
594
595 /* Failed read of indirect block */
596 if (err == -EIO)
597 goto cleanup;
598
599 /*
600 * Okay, we need to do block allocation.
601 */
602 if (ext4_has_feature_bigalloc(inode->i_sb)) {
603 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
604 "non-extent mapped inodes with bigalloc");
605 err = -EFSCORRUPTED;
606 goto out;
607 }
608
609 /* Set up for the direct block allocation */
610 memset(&ar, 0, sizeof(ar));
611 ar.inode = inode;
612 ar.logical = map->m_lblk;
613 if (S_ISREG(inode->i_mode))
614 ar.flags = EXT4_MB_HINT_DATA;
615 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
616 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
617 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
618 ar.flags |= EXT4_MB_USE_RESERVED;
619
620 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
621
622 /* the number of blocks need to allocate for [d,t]indirect blocks */
623 indirect_blks = (chain + depth) - partial - 1;
624
625 /*
626 * Next look up the indirect map to count the totoal number of
627 * direct blocks to allocate for this branch.
628 */
629 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
630 map->m_len, blocks_to_boundary);
631
632 /*
633 * Block out ext4_truncate while we alter the tree
634 */
635 err = ext4_alloc_branch(handle, &ar, indirect_blks,
636 offsets + (partial - chain), partial);
637
638 /*
639 * The ext4_splice_branch call will free and forget any buffers
640 * on the new chain if there is a failure, but that risks using
641 * up transaction credits, especially for bitmaps where the
642 * credits cannot be returned. Can we handle this somehow? We
643 * may need to return -EAGAIN upwards in the worst case. --sct
644 */
645 if (!err)
646 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
647 if (err)
648 goto cleanup;
649
650 map->m_flags |= EXT4_MAP_NEW;
651
652 ext4_update_inode_fsync_trans(handle, inode, 1);
653 count = ar.len;
654got_it:
655 map->m_flags |= EXT4_MAP_MAPPED;
656 map->m_pblk = le32_to_cpu(chain[depth-1].key);
657 map->m_len = count;
658 if (count > blocks_to_boundary)
659 map->m_flags |= EXT4_MAP_BOUNDARY;
660 err = count;
661 /* Clean up and exit */
662 partial = chain + depth - 1; /* the whole chain */
663cleanup:
664 while (partial > chain) {
665 BUFFER_TRACE(partial->bh, "call brelse");
666 brelse(partial->bh);
667 partial--;
668 }
669out:
670 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
671 return err;
672}
673
674/*
675 * Calculate number of indirect blocks touched by mapping @nrblocks logically
676 * contiguous blocks
677 */
678int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
679{
680 /*
681 * With N contiguous data blocks, we need at most
682 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
683 * 2 dindirect blocks, and 1 tindirect block
684 */
685 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
686}
687
688static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
689 struct buffer_head *bh, int *dropped)
690{
691 int err;
692
693 if (bh) {
694 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
695 err = ext4_handle_dirty_metadata(handle, inode, bh);
696 if (unlikely(err))
697 return err;
698 }
699 err = ext4_mark_inode_dirty(handle, inode);
700 if (unlikely(err))
701 return err;
702 /*
703 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
704 * moment, get_block can be called only for blocks inside i_size since
705 * page cache has been already dropped and writes are blocked by
706 * i_rwsem. So we can safely drop the i_data_sem here.
707 */
708 BUG_ON(EXT4_JOURNAL(inode) == NULL);
709 ext4_discard_preallocations(inode, 0);
710 up_write(&EXT4_I(inode)->i_data_sem);
711 *dropped = 1;
712 return 0;
713}
714
715/*
716 * Truncate transactions can be complex and absolutely huge. So we need to
717 * be able to restart the transaction at a convenient checkpoint to make
718 * sure we don't overflow the journal.
719 *
720 * Try to extend this transaction for the purposes of truncation. If
721 * extend fails, we restart transaction.
722 */
723static int ext4_ind_truncate_ensure_credits(handle_t *handle,
724 struct inode *inode,
725 struct buffer_head *bh,
726 int revoke_creds)
727{
728 int ret;
729 int dropped = 0;
730
731 ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
732 ext4_blocks_for_truncate(inode), revoke_creds,
733 ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
734 if (dropped)
735 down_write(&EXT4_I(inode)->i_data_sem);
736 if (ret <= 0)
737 return ret;
738 if (bh) {
739 BUFFER_TRACE(bh, "retaking write access");
740 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
741 EXT4_JTR_NONE);
742 if (unlikely(ret))
743 return ret;
744 }
745 return 0;
746}
747
748/*
749 * Probably it should be a library function... search for first non-zero word
750 * or memcmp with zero_page, whatever is better for particular architecture.
751 * Linus?
752 */
753static inline int all_zeroes(__le32 *p, __le32 *q)
754{
755 while (p < q)
756 if (*p++)
757 return 0;
758 return 1;
759}
760
761/**
762 * ext4_find_shared - find the indirect blocks for partial truncation.
763 * @inode: inode in question
764 * @depth: depth of the affected branch
765 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
766 * @chain: place to store the pointers to partial indirect blocks
767 * @top: place to the (detached) top of branch
768 *
769 * This is a helper function used by ext4_truncate().
770 *
771 * When we do truncate() we may have to clean the ends of several
772 * indirect blocks but leave the blocks themselves alive. Block is
773 * partially truncated if some data below the new i_size is referred
774 * from it (and it is on the path to the first completely truncated
775 * data block, indeed). We have to free the top of that path along
776 * with everything to the right of the path. Since no allocation
777 * past the truncation point is possible until ext4_truncate()
778 * finishes, we may safely do the latter, but top of branch may
779 * require special attention - pageout below the truncation point
780 * might try to populate it.
781 *
782 * We atomically detach the top of branch from the tree, store the
783 * block number of its root in *@top, pointers to buffer_heads of
784 * partially truncated blocks - in @chain[].bh and pointers to
785 * their last elements that should not be removed - in
786 * @chain[].p. Return value is the pointer to last filled element
787 * of @chain.
788 *
789 * The work left to caller to do the actual freeing of subtrees:
790 * a) free the subtree starting from *@top
791 * b) free the subtrees whose roots are stored in
792 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
793 * c) free the subtrees growing from the inode past the @chain[0].
794 * (no partially truncated stuff there). */
795
796static Indirect *ext4_find_shared(struct inode *inode, int depth,
797 ext4_lblk_t offsets[4], Indirect chain[4],
798 __le32 *top)
799{
800 Indirect *partial, *p;
801 int k, err;
802
803 *top = 0;
804 /* Make k index the deepest non-null offset + 1 */
805 for (k = depth; k > 1 && !offsets[k-1]; k--)
806 ;
807 partial = ext4_get_branch(inode, k, offsets, chain, &err);
808 /* Writer: pointers */
809 if (!partial)
810 partial = chain + k-1;
811 /*
812 * If the branch acquired continuation since we've looked at it -
813 * fine, it should all survive and (new) top doesn't belong to us.
814 */
815 if (!partial->key && *partial->p)
816 /* Writer: end */
817 goto no_top;
818 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
819 ;
820 /*
821 * OK, we've found the last block that must survive. The rest of our
822 * branch should be detached before unlocking. However, if that rest
823 * of branch is all ours and does not grow immediately from the inode
824 * it's easier to cheat and just decrement partial->p.
825 */
826 if (p == chain + k - 1 && p > chain) {
827 p->p--;
828 } else {
829 *top = *p->p;
830 /* Nope, don't do this in ext4. Must leave the tree intact */
831#if 0
832 *p->p = 0;
833#endif
834 }
835 /* Writer: end */
836
837 while (partial > p) {
838 brelse(partial->bh);
839 partial--;
840 }
841no_top:
842 return partial;
843}
844
845/*
846 * Zero a number of block pointers in either an inode or an indirect block.
847 * If we restart the transaction we must again get write access to the
848 * indirect block for further modification.
849 *
850 * We release `count' blocks on disk, but (last - first) may be greater
851 * than `count' because there can be holes in there.
852 *
853 * Return 0 on success, 1 on invalid block range
854 * and < 0 on fatal error.
855 */
856static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
857 struct buffer_head *bh,
858 ext4_fsblk_t block_to_free,
859 unsigned long count, __le32 *first,
860 __le32 *last)
861{
862 __le32 *p;
863 int flags = EXT4_FREE_BLOCKS_VALIDATED;
864 int err;
865
866 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
867 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
868 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
869 else if (ext4_should_journal_data(inode))
870 flags |= EXT4_FREE_BLOCKS_FORGET;
871
872 if (!ext4_inode_block_valid(inode, block_to_free, count)) {
873 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
874 "blocks %llu len %lu",
875 (unsigned long long) block_to_free, count);
876 return 1;
877 }
878
879 err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
880 ext4_free_data_revoke_credits(inode, count));
881 if (err < 0)
882 goto out_err;
883
884 for (p = first; p < last; p++)
885 *p = 0;
886
887 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
888 return 0;
889out_err:
890 ext4_std_error(inode->i_sb, err);
891 return err;
892}
893
894/**
895 * ext4_free_data - free a list of data blocks
896 * @handle: handle for this transaction
897 * @inode: inode we are dealing with
898 * @this_bh: indirect buffer_head which contains *@first and *@last
899 * @first: array of block numbers
900 * @last: points immediately past the end of array
901 *
902 * We are freeing all blocks referred from that array (numbers are stored as
903 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
904 *
905 * We accumulate contiguous runs of blocks to free. Conveniently, if these
906 * blocks are contiguous then releasing them at one time will only affect one
907 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
908 * actually use a lot of journal space.
909 *
910 * @this_bh will be %NULL if @first and @last point into the inode's direct
911 * block pointers.
912 */
913static void ext4_free_data(handle_t *handle, struct inode *inode,
914 struct buffer_head *this_bh,
915 __le32 *first, __le32 *last)
916{
917 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
918 unsigned long count = 0; /* Number of blocks in the run */
919 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
920 corresponding to
921 block_to_free */
922 ext4_fsblk_t nr; /* Current block # */
923 __le32 *p; /* Pointer into inode/ind
924 for current block */
925 int err = 0;
926
927 if (this_bh) { /* For indirect block */
928 BUFFER_TRACE(this_bh, "get_write_access");
929 err = ext4_journal_get_write_access(handle, inode->i_sb,
930 this_bh, EXT4_JTR_NONE);
931 /* Important: if we can't update the indirect pointers
932 * to the blocks, we can't free them. */
933 if (err)
934 return;
935 }
936
937 for (p = first; p < last; p++) {
938 nr = le32_to_cpu(*p);
939 if (nr) {
940 /* accumulate blocks to free if they're contiguous */
941 if (count == 0) {
942 block_to_free = nr;
943 block_to_free_p = p;
944 count = 1;
945 } else if (nr == block_to_free + count) {
946 count++;
947 } else {
948 err = ext4_clear_blocks(handle, inode, this_bh,
949 block_to_free, count,
950 block_to_free_p, p);
951 if (err)
952 break;
953 block_to_free = nr;
954 block_to_free_p = p;
955 count = 1;
956 }
957 }
958 }
959
960 if (!err && count > 0)
961 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
962 count, block_to_free_p, p);
963 if (err < 0)
964 /* fatal error */
965 return;
966
967 if (this_bh) {
968 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
969
970 /*
971 * The buffer head should have an attached journal head at this
972 * point. However, if the data is corrupted and an indirect
973 * block pointed to itself, it would have been detached when
974 * the block was cleared. Check for this instead of OOPSing.
975 */
976 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
977 ext4_handle_dirty_metadata(handle, inode, this_bh);
978 else
979 EXT4_ERROR_INODE(inode,
980 "circular indirect block detected at "
981 "block %llu",
982 (unsigned long long) this_bh->b_blocknr);
983 }
984}
985
986/**
987 * ext4_free_branches - free an array of branches
988 * @handle: JBD handle for this transaction
989 * @inode: inode we are dealing with
990 * @parent_bh: the buffer_head which contains *@first and *@last
991 * @first: array of block numbers
992 * @last: pointer immediately past the end of array
993 * @depth: depth of the branches to free
994 *
995 * We are freeing all blocks referred from these branches (numbers are
996 * stored as little-endian 32-bit) and updating @inode->i_blocks
997 * appropriately.
998 */
999static void ext4_free_branches(handle_t *handle, struct inode *inode,
1000 struct buffer_head *parent_bh,
1001 __le32 *first, __le32 *last, int depth)
1002{
1003 ext4_fsblk_t nr;
1004 __le32 *p;
1005
1006 if (ext4_handle_is_aborted(handle))
1007 return;
1008
1009 if (depth--) {
1010 struct buffer_head *bh;
1011 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1012 p = last;
1013 while (--p >= first) {
1014 nr = le32_to_cpu(*p);
1015 if (!nr)
1016 continue; /* A hole */
1017
1018 if (!ext4_inode_block_valid(inode, nr, 1)) {
1019 EXT4_ERROR_INODE(inode,
1020 "invalid indirect mapped "
1021 "block %lu (level %d)",
1022 (unsigned long) nr, depth);
1023 break;
1024 }
1025
1026 /* Go read the buffer for the next level down */
1027 bh = ext4_sb_bread(inode->i_sb, nr, 0);
1028
1029 /*
1030 * A read failure? Report error and clear slot
1031 * (should be rare).
1032 */
1033 if (IS_ERR(bh)) {
1034 ext4_error_inode_block(inode, nr, -PTR_ERR(bh),
1035 "Read failure");
1036 continue;
1037 }
1038
1039 /* This zaps the entire block. Bottom up. */
1040 BUFFER_TRACE(bh, "free child branches");
1041 ext4_free_branches(handle, inode, bh,
1042 (__le32 *) bh->b_data,
1043 (__le32 *) bh->b_data + addr_per_block,
1044 depth);
1045 brelse(bh);
1046
1047 /*
1048 * Everything below this pointer has been
1049 * released. Now let this top-of-subtree go.
1050 *
1051 * We want the freeing of this indirect block to be
1052 * atomic in the journal with the updating of the
1053 * bitmap block which owns it. So make some room in
1054 * the journal.
1055 *
1056 * We zero the parent pointer *after* freeing its
1057 * pointee in the bitmaps, so if extend_transaction()
1058 * for some reason fails to put the bitmap changes and
1059 * the release into the same transaction, recovery
1060 * will merely complain about releasing a free block,
1061 * rather than leaking blocks.
1062 */
1063 if (ext4_handle_is_aborted(handle))
1064 return;
1065 if (ext4_ind_truncate_ensure_credits(handle, inode,
1066 NULL,
1067 ext4_free_metadata_revoke_credits(
1068 inode->i_sb, 1)) < 0)
1069 return;
1070
1071 /*
1072 * The forget flag here is critical because if
1073 * we are journaling (and not doing data
1074 * journaling), we have to make sure a revoke
1075 * record is written to prevent the journal
1076 * replay from overwriting the (former)
1077 * indirect block if it gets reallocated as a
1078 * data block. This must happen in the same
1079 * transaction where the data blocks are
1080 * actually freed.
1081 */
1082 ext4_free_blocks(handle, inode, NULL, nr, 1,
1083 EXT4_FREE_BLOCKS_METADATA|
1084 EXT4_FREE_BLOCKS_FORGET);
1085
1086 if (parent_bh) {
1087 /*
1088 * The block which we have just freed is
1089 * pointed to by an indirect block: journal it
1090 */
1091 BUFFER_TRACE(parent_bh, "get_write_access");
1092 if (!ext4_journal_get_write_access(handle,
1093 inode->i_sb, parent_bh,
1094 EXT4_JTR_NONE)) {
1095 *p = 0;
1096 BUFFER_TRACE(parent_bh,
1097 "call ext4_handle_dirty_metadata");
1098 ext4_handle_dirty_metadata(handle,
1099 inode,
1100 parent_bh);
1101 }
1102 }
1103 }
1104 } else {
1105 /* We have reached the bottom of the tree. */
1106 BUFFER_TRACE(parent_bh, "free data blocks");
1107 ext4_free_data(handle, inode, parent_bh, first, last);
1108 }
1109}
1110
1111void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1112{
1113 struct ext4_inode_info *ei = EXT4_I(inode);
1114 __le32 *i_data = ei->i_data;
1115 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1116 ext4_lblk_t offsets[4];
1117 Indirect chain[4];
1118 Indirect *partial;
1119 __le32 nr = 0;
1120 int n = 0;
1121 ext4_lblk_t last_block, max_block;
1122 unsigned blocksize = inode->i_sb->s_blocksize;
1123
1124 last_block = (inode->i_size + blocksize-1)
1125 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1126 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1127 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1128
1129 if (last_block != max_block) {
1130 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1131 if (n == 0)
1132 return;
1133 }
1134
1135 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1136
1137 /*
1138 * The orphan list entry will now protect us from any crash which
1139 * occurs before the truncate completes, so it is now safe to propagate
1140 * the new, shorter inode size (held for now in i_size) into the
1141 * on-disk inode. We do this via i_disksize, which is the value which
1142 * ext4 *really* writes onto the disk inode.
1143 */
1144 ei->i_disksize = inode->i_size;
1145
1146 if (last_block == max_block) {
1147 /*
1148 * It is unnecessary to free any data blocks if last_block is
1149 * equal to the indirect block limit.
1150 */
1151 return;
1152 } else if (n == 1) { /* direct blocks */
1153 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1154 i_data + EXT4_NDIR_BLOCKS);
1155 goto do_indirects;
1156 }
1157
1158 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1159 /* Kill the top of shared branch (not detached) */
1160 if (nr) {
1161 if (partial == chain) {
1162 /* Shared branch grows from the inode */
1163 ext4_free_branches(handle, inode, NULL,
1164 &nr, &nr+1, (chain+n-1) - partial);
1165 *partial->p = 0;
1166 /*
1167 * We mark the inode dirty prior to restart,
1168 * and prior to stop. No need for it here.
1169 */
1170 } else {
1171 /* Shared branch grows from an indirect block */
1172 BUFFER_TRACE(partial->bh, "get_write_access");
1173 ext4_free_branches(handle, inode, partial->bh,
1174 partial->p,
1175 partial->p+1, (chain+n-1) - partial);
1176 }
1177 }
1178 /* Clear the ends of indirect blocks on the shared branch */
1179 while (partial > chain) {
1180 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1181 (__le32*)partial->bh->b_data+addr_per_block,
1182 (chain+n-1) - partial);
1183 BUFFER_TRACE(partial->bh, "call brelse");
1184 brelse(partial->bh);
1185 partial--;
1186 }
1187do_indirects:
1188 /* Kill the remaining (whole) subtrees */
1189 switch (offsets[0]) {
1190 default:
1191 nr = i_data[EXT4_IND_BLOCK];
1192 if (nr) {
1193 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1194 i_data[EXT4_IND_BLOCK] = 0;
1195 }
1196 fallthrough;
1197 case EXT4_IND_BLOCK:
1198 nr = i_data[EXT4_DIND_BLOCK];
1199 if (nr) {
1200 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1201 i_data[EXT4_DIND_BLOCK] = 0;
1202 }
1203 fallthrough;
1204 case EXT4_DIND_BLOCK:
1205 nr = i_data[EXT4_TIND_BLOCK];
1206 if (nr) {
1207 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1208 i_data[EXT4_TIND_BLOCK] = 0;
1209 }
1210 fallthrough;
1211 case EXT4_TIND_BLOCK:
1212 ;
1213 }
1214}
1215
1216/**
1217 * ext4_ind_remove_space - remove space from the range
1218 * @handle: JBD handle for this transaction
1219 * @inode: inode we are dealing with
1220 * @start: First block to remove
1221 * @end: One block after the last block to remove (exclusive)
1222 *
1223 * Free the blocks in the defined range (end is exclusive endpoint of
1224 * range). This is used by ext4_punch_hole().
1225 */
1226int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1227 ext4_lblk_t start, ext4_lblk_t end)
1228{
1229 struct ext4_inode_info *ei = EXT4_I(inode);
1230 __le32 *i_data = ei->i_data;
1231 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1232 ext4_lblk_t offsets[4], offsets2[4];
1233 Indirect chain[4], chain2[4];
1234 Indirect *partial, *partial2;
1235 Indirect *p = NULL, *p2 = NULL;
1236 ext4_lblk_t max_block;
1237 __le32 nr = 0, nr2 = 0;
1238 int n = 0, n2 = 0;
1239 unsigned blocksize = inode->i_sb->s_blocksize;
1240
1241 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1242 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1243 if (end >= max_block)
1244 end = max_block;
1245 if ((start >= end) || (start > max_block))
1246 return 0;
1247
1248 n = ext4_block_to_path(inode, start, offsets, NULL);
1249 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1250
1251 BUG_ON(n > n2);
1252
1253 if ((n == 1) && (n == n2)) {
1254 /* We're punching only within direct block range */
1255 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1256 i_data + offsets2[0]);
1257 return 0;
1258 } else if (n2 > n) {
1259 /*
1260 * Start and end are on a different levels so we're going to
1261 * free partial block at start, and partial block at end of
1262 * the range. If there are some levels in between then
1263 * do_indirects label will take care of that.
1264 */
1265
1266 if (n == 1) {
1267 /*
1268 * Start is at the direct block level, free
1269 * everything to the end of the level.
1270 */
1271 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1272 i_data + EXT4_NDIR_BLOCKS);
1273 goto end_range;
1274 }
1275
1276
1277 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1278 if (nr) {
1279 if (partial == chain) {
1280 /* Shared branch grows from the inode */
1281 ext4_free_branches(handle, inode, NULL,
1282 &nr, &nr+1, (chain+n-1) - partial);
1283 *partial->p = 0;
1284 } else {
1285 /* Shared branch grows from an indirect block */
1286 BUFFER_TRACE(partial->bh, "get_write_access");
1287 ext4_free_branches(handle, inode, partial->bh,
1288 partial->p,
1289 partial->p+1, (chain+n-1) - partial);
1290 }
1291 }
1292
1293 /*
1294 * Clear the ends of indirect blocks on the shared branch
1295 * at the start of the range
1296 */
1297 while (partial > chain) {
1298 ext4_free_branches(handle, inode, partial->bh,
1299 partial->p + 1,
1300 (__le32 *)partial->bh->b_data+addr_per_block,
1301 (chain+n-1) - partial);
1302 partial--;
1303 }
1304
1305end_range:
1306 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1307 if (nr2) {
1308 if (partial2 == chain2) {
1309 /*
1310 * Remember, end is exclusive so here we're at
1311 * the start of the next level we're not going
1312 * to free. Everything was covered by the start
1313 * of the range.
1314 */
1315 goto do_indirects;
1316 }
1317 } else {
1318 /*
1319 * ext4_find_shared returns Indirect structure which
1320 * points to the last element which should not be
1321 * removed by truncate. But this is end of the range
1322 * in punch_hole so we need to point to the next element
1323 */
1324 partial2->p++;
1325 }
1326
1327 /*
1328 * Clear the ends of indirect blocks on the shared branch
1329 * at the end of the range
1330 */
1331 while (partial2 > chain2) {
1332 ext4_free_branches(handle, inode, partial2->bh,
1333 (__le32 *)partial2->bh->b_data,
1334 partial2->p,
1335 (chain2+n2-1) - partial2);
1336 partial2--;
1337 }
1338 goto do_indirects;
1339 }
1340
1341 /* Punch happened within the same level (n == n2) */
1342 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1343 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1344
1345 /* Free top, but only if partial2 isn't its subtree. */
1346 if (nr) {
1347 int level = min(partial - chain, partial2 - chain2);
1348 int i;
1349 int subtree = 1;
1350
1351 for (i = 0; i <= level; i++) {
1352 if (offsets[i] != offsets2[i]) {
1353 subtree = 0;
1354 break;
1355 }
1356 }
1357
1358 if (!subtree) {
1359 if (partial == chain) {
1360 /* Shared branch grows from the inode */
1361 ext4_free_branches(handle, inode, NULL,
1362 &nr, &nr+1,
1363 (chain+n-1) - partial);
1364 *partial->p = 0;
1365 } else {
1366 /* Shared branch grows from an indirect block */
1367 BUFFER_TRACE(partial->bh, "get_write_access");
1368 ext4_free_branches(handle, inode, partial->bh,
1369 partial->p,
1370 partial->p+1,
1371 (chain+n-1) - partial);
1372 }
1373 }
1374 }
1375
1376 if (!nr2) {
1377 /*
1378 * ext4_find_shared returns Indirect structure which
1379 * points to the last element which should not be
1380 * removed by truncate. But this is end of the range
1381 * in punch_hole so we need to point to the next element
1382 */
1383 partial2->p++;
1384 }
1385
1386 while (partial > chain || partial2 > chain2) {
1387 int depth = (chain+n-1) - partial;
1388 int depth2 = (chain2+n2-1) - partial2;
1389
1390 if (partial > chain && partial2 > chain2 &&
1391 partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1392 /*
1393 * We've converged on the same block. Clear the range,
1394 * then we're done.
1395 */
1396 ext4_free_branches(handle, inode, partial->bh,
1397 partial->p + 1,
1398 partial2->p,
1399 (chain+n-1) - partial);
1400 goto cleanup;
1401 }
1402
1403 /*
1404 * The start and end partial branches may not be at the same
1405 * level even though the punch happened within one level. So, we
1406 * give them a chance to arrive at the same level, then walk
1407 * them in step with each other until we converge on the same
1408 * block.
1409 */
1410 if (partial > chain && depth <= depth2) {
1411 ext4_free_branches(handle, inode, partial->bh,
1412 partial->p + 1,
1413 (__le32 *)partial->bh->b_data+addr_per_block,
1414 (chain+n-1) - partial);
1415 partial--;
1416 }
1417 if (partial2 > chain2 && depth2 <= depth) {
1418 ext4_free_branches(handle, inode, partial2->bh,
1419 (__le32 *)partial2->bh->b_data,
1420 partial2->p,
1421 (chain2+n2-1) - partial2);
1422 partial2--;
1423 }
1424 }
1425
1426cleanup:
1427 while (p && p > chain) {
1428 BUFFER_TRACE(p->bh, "call brelse");
1429 brelse(p->bh);
1430 p--;
1431 }
1432 while (p2 && p2 > chain2) {
1433 BUFFER_TRACE(p2->bh, "call brelse");
1434 brelse(p2->bh);
1435 p2--;
1436 }
1437 return 0;
1438
1439do_indirects:
1440 /* Kill the remaining (whole) subtrees */
1441 switch (offsets[0]) {
1442 default:
1443 if (++n >= n2)
1444 break;
1445 nr = i_data[EXT4_IND_BLOCK];
1446 if (nr) {
1447 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1448 i_data[EXT4_IND_BLOCK] = 0;
1449 }
1450 fallthrough;
1451 case EXT4_IND_BLOCK:
1452 if (++n >= n2)
1453 break;
1454 nr = i_data[EXT4_DIND_BLOCK];
1455 if (nr) {
1456 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1457 i_data[EXT4_DIND_BLOCK] = 0;
1458 }
1459 fallthrough;
1460 case EXT4_DIND_BLOCK:
1461 if (++n >= n2)
1462 break;
1463 nr = i_data[EXT4_TIND_BLOCK];
1464 if (nr) {
1465 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1466 i_data[EXT4_TIND_BLOCK] = 0;
1467 }
1468 fallthrough;
1469 case EXT4_TIND_BLOCK:
1470 ;
1471 }
1472 goto cleanup;
1473}
1/*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
23#include "ext4_jbd2.h"
24#include "truncate.h"
25#include <linux/dax.h>
26#include <linux/uio.h>
27
28#include <trace/events/ext4.h>
29
30typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34} Indirect;
35
36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37{
38 p->key = *(p->p = v);
39 p->bh = bh;
40}
41
42/**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
49 *
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
57 *
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
61 */
62
63/*
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
71 */
72
73static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
76{
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
84
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
107 }
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
111}
112
113/**
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
120 *
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
132 *
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
139 *
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
142 */
143static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
146{
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
150 int ret = -EIO;
151
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
161 goto failure;
162 }
163
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
168 }
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
173 }
174 }
175
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
180 }
181 return NULL;
182
183failure:
184 *err = ret;
185no_block:
186 return p;
187}
188
189/**
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
193 *
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
201 *
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
206 *
207 * Caller must make sure that @ind is valid and will stay that way.
208 */
209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210{
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
214
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
219 }
220
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
224
225 /*
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
228 */
229 return ext4_inode_to_goal_block(inode);
230}
231
232/**
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
237 *
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
242 */
243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
245{
246 ext4_fsblk_t goal;
247
248 /*
249 * XXX need to get goal block from mballoc's data structures
250 */
251
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
255}
256
257/**
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
260 *
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
265 *
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
268 */
269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
271{
272 unsigned int count = 0;
273
274 /*
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
277 */
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
285 }
286
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
291 }
292 return count;
293}
294
295/**
296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
304 *
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
316 *
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
321 */
322static int ext4_alloc_branch(handle_t *handle,
323 struct ext4_allocation_request *ar,
324 int indirect_blks, ext4_lblk_t *offsets,
325 Indirect *branch)
326{
327 struct buffer_head * bh;
328 ext4_fsblk_t b, new_blocks[4];
329 __le32 *p;
330 int i, j, err, len = 1;
331
332 for (i = 0; i <= indirect_blks; i++) {
333 if (i == indirect_blks) {
334 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
335 } else
336 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
337 ar->inode, ar->goal,
338 ar->flags & EXT4_MB_DELALLOC_RESERVED,
339 NULL, &err);
340 if (err) {
341 i--;
342 goto failed;
343 }
344 branch[i].key = cpu_to_le32(new_blocks[i]);
345 if (i == 0)
346 continue;
347
348 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
349 if (unlikely(!bh)) {
350 err = -ENOMEM;
351 goto failed;
352 }
353 lock_buffer(bh);
354 BUFFER_TRACE(bh, "call get_create_access");
355 err = ext4_journal_get_create_access(handle, bh);
356 if (err) {
357 unlock_buffer(bh);
358 goto failed;
359 }
360
361 memset(bh->b_data, 0, bh->b_size);
362 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
363 b = new_blocks[i];
364
365 if (i == indirect_blks)
366 len = ar->len;
367 for (j = 0; j < len; j++)
368 *p++ = cpu_to_le32(b++);
369
370 BUFFER_TRACE(bh, "marking uptodate");
371 set_buffer_uptodate(bh);
372 unlock_buffer(bh);
373
374 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
375 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
376 if (err)
377 goto failed;
378 }
379 return 0;
380failed:
381 for (; i >= 0; i--) {
382 /*
383 * We want to ext4_forget() only freshly allocated indirect
384 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and
385 * buffer at branch[0].bh is indirect block / inode already
386 * existing before ext4_alloc_branch() was called.
387 */
388 if (i > 0 && i != indirect_blks && branch[i].bh)
389 ext4_forget(handle, 1, ar->inode, branch[i].bh,
390 branch[i].bh->b_blocknr);
391 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
392 (i == indirect_blks) ? ar->len : 1, 0);
393 }
394 return err;
395}
396
397/**
398 * ext4_splice_branch - splice the allocated branch onto inode.
399 * @handle: handle for this transaction
400 * @inode: owner
401 * @block: (logical) number of block we are adding
402 * @chain: chain of indirect blocks (with a missing link - see
403 * ext4_alloc_branch)
404 * @where: location of missing link
405 * @num: number of indirect blocks we are adding
406 * @blks: number of direct blocks we are adding
407 *
408 * This function fills the missing link and does all housekeeping needed in
409 * inode (->i_blocks, etc.). In case of success we end up with the full
410 * chain to new block and return 0.
411 */
412static int ext4_splice_branch(handle_t *handle,
413 struct ext4_allocation_request *ar,
414 Indirect *where, int num)
415{
416 int i;
417 int err = 0;
418 ext4_fsblk_t current_block;
419
420 /*
421 * If we're splicing into a [td]indirect block (as opposed to the
422 * inode) then we need to get write access to the [td]indirect block
423 * before the splice.
424 */
425 if (where->bh) {
426 BUFFER_TRACE(where->bh, "get_write_access");
427 err = ext4_journal_get_write_access(handle, where->bh);
428 if (err)
429 goto err_out;
430 }
431 /* That's it */
432
433 *where->p = where->key;
434
435 /*
436 * Update the host buffer_head or inode to point to more just allocated
437 * direct blocks blocks
438 */
439 if (num == 0 && ar->len > 1) {
440 current_block = le32_to_cpu(where->key) + 1;
441 for (i = 1; i < ar->len; i++)
442 *(where->p + i) = cpu_to_le32(current_block++);
443 }
444
445 /* We are done with atomic stuff, now do the rest of housekeeping */
446 /* had we spliced it onto indirect block? */
447 if (where->bh) {
448 /*
449 * If we spliced it onto an indirect block, we haven't
450 * altered the inode. Note however that if it is being spliced
451 * onto an indirect block at the very end of the file (the
452 * file is growing) then we *will* alter the inode to reflect
453 * the new i_size. But that is not done here - it is done in
454 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
455 */
456 jbd_debug(5, "splicing indirect only\n");
457 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
458 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
459 if (err)
460 goto err_out;
461 } else {
462 /*
463 * OK, we spliced it into the inode itself on a direct block.
464 */
465 ext4_mark_inode_dirty(handle, ar->inode);
466 jbd_debug(5, "splicing direct\n");
467 }
468 return err;
469
470err_out:
471 for (i = 1; i <= num; i++) {
472 /*
473 * branch[i].bh is newly allocated, so there is no
474 * need to revoke the block, which is why we don't
475 * need to set EXT4_FREE_BLOCKS_METADATA.
476 */
477 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
478 EXT4_FREE_BLOCKS_FORGET);
479 }
480 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
481 ar->len, 0);
482
483 return err;
484}
485
486/*
487 * The ext4_ind_map_blocks() function handles non-extents inodes
488 * (i.e., using the traditional indirect/double-indirect i_blocks
489 * scheme) for ext4_map_blocks().
490 *
491 * Allocation strategy is simple: if we have to allocate something, we will
492 * have to go the whole way to leaf. So let's do it before attaching anything
493 * to tree, set linkage between the newborn blocks, write them if sync is
494 * required, recheck the path, free and repeat if check fails, otherwise
495 * set the last missing link (that will protect us from any truncate-generated
496 * removals - all blocks on the path are immune now) and possibly force the
497 * write on the parent block.
498 * That has a nice additional property: no special recovery from the failed
499 * allocations is needed - we simply release blocks and do not touch anything
500 * reachable from inode.
501 *
502 * `handle' can be NULL if create == 0.
503 *
504 * return > 0, # of blocks mapped or allocated.
505 * return = 0, if plain lookup failed.
506 * return < 0, error case.
507 *
508 * The ext4_ind_get_blocks() function should be called with
509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
512 * blocks.
513 */
514int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
515 struct ext4_map_blocks *map,
516 int flags)
517{
518 struct ext4_allocation_request ar;
519 int err = -EIO;
520 ext4_lblk_t offsets[4];
521 Indirect chain[4];
522 Indirect *partial;
523 int indirect_blks;
524 int blocks_to_boundary = 0;
525 int depth;
526 int count = 0;
527 ext4_fsblk_t first_block = 0;
528
529 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
530 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
531 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
532 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
533 &blocks_to_boundary);
534
535 if (depth == 0)
536 goto out;
537
538 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
539
540 /* Simplest case - block found, no allocation needed */
541 if (!partial) {
542 first_block = le32_to_cpu(chain[depth - 1].key);
543 count++;
544 /*map more blocks*/
545 while (count < map->m_len && count <= blocks_to_boundary) {
546 ext4_fsblk_t blk;
547
548 blk = le32_to_cpu(*(chain[depth-1].p + count));
549
550 if (blk == first_block + count)
551 count++;
552 else
553 break;
554 }
555 goto got_it;
556 }
557
558 /* Next simple case - plain lookup failed */
559 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
560 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
561 int i;
562
563 /* Count number blocks in a subtree under 'partial' */
564 count = 1;
565 for (i = 0; partial + i != chain + depth - 1; i++)
566 count *= epb;
567 /* Fill in size of a hole we found */
568 map->m_pblk = 0;
569 map->m_len = min_t(unsigned int, map->m_len, count);
570 goto cleanup;
571 }
572
573 /* Failed read of indirect block */
574 if (err == -EIO)
575 goto cleanup;
576
577 /*
578 * Okay, we need to do block allocation.
579 */
580 if (ext4_has_feature_bigalloc(inode->i_sb)) {
581 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
582 "non-extent mapped inodes with bigalloc");
583 return -EFSCORRUPTED;
584 }
585
586 /* Set up for the direct block allocation */
587 memset(&ar, 0, sizeof(ar));
588 ar.inode = inode;
589 ar.logical = map->m_lblk;
590 if (S_ISREG(inode->i_mode))
591 ar.flags = EXT4_MB_HINT_DATA;
592 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
593 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
594 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
595 ar.flags |= EXT4_MB_USE_RESERVED;
596
597 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
598
599 /* the number of blocks need to allocate for [d,t]indirect blocks */
600 indirect_blks = (chain + depth) - partial - 1;
601
602 /*
603 * Next look up the indirect map to count the totoal number of
604 * direct blocks to allocate for this branch.
605 */
606 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
607 map->m_len, blocks_to_boundary);
608
609 /*
610 * Block out ext4_truncate while we alter the tree
611 */
612 err = ext4_alloc_branch(handle, &ar, indirect_blks,
613 offsets + (partial - chain), partial);
614
615 /*
616 * The ext4_splice_branch call will free and forget any buffers
617 * on the new chain if there is a failure, but that risks using
618 * up transaction credits, especially for bitmaps where the
619 * credits cannot be returned. Can we handle this somehow? We
620 * may need to return -EAGAIN upwards in the worst case. --sct
621 */
622 if (!err)
623 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
624 if (err)
625 goto cleanup;
626
627 map->m_flags |= EXT4_MAP_NEW;
628
629 ext4_update_inode_fsync_trans(handle, inode, 1);
630 count = ar.len;
631got_it:
632 map->m_flags |= EXT4_MAP_MAPPED;
633 map->m_pblk = le32_to_cpu(chain[depth-1].key);
634 map->m_len = count;
635 if (count > blocks_to_boundary)
636 map->m_flags |= EXT4_MAP_BOUNDARY;
637 err = count;
638 /* Clean up and exit */
639 partial = chain + depth - 1; /* the whole chain */
640cleanup:
641 while (partial > chain) {
642 BUFFER_TRACE(partial->bh, "call brelse");
643 brelse(partial->bh);
644 partial--;
645 }
646out:
647 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
648 return err;
649}
650
651/*
652 * Calculate the number of metadata blocks need to reserve
653 * to allocate a new block at @lblocks for non extent file based file
654 */
655int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
656{
657 struct ext4_inode_info *ei = EXT4_I(inode);
658 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
659 int blk_bits;
660
661 if (lblock < EXT4_NDIR_BLOCKS)
662 return 0;
663
664 lblock -= EXT4_NDIR_BLOCKS;
665
666 if (ei->i_da_metadata_calc_len &&
667 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
668 ei->i_da_metadata_calc_len++;
669 return 0;
670 }
671 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
672 ei->i_da_metadata_calc_len = 1;
673 blk_bits = order_base_2(lblock);
674 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
675}
676
677/*
678 * Calculate number of indirect blocks touched by mapping @nrblocks logically
679 * contiguous blocks
680 */
681int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
682{
683 /*
684 * With N contiguous data blocks, we need at most
685 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
686 * 2 dindirect blocks, and 1 tindirect block
687 */
688 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
689}
690
691/*
692 * Truncate transactions can be complex and absolutely huge. So we need to
693 * be able to restart the transaction at a conventient checkpoint to make
694 * sure we don't overflow the journal.
695 *
696 * Try to extend this transaction for the purposes of truncation. If
697 * extend fails, we need to propagate the failure up and restart the
698 * transaction in the top-level truncate loop. --sct
699 *
700 * Returns 0 if we managed to create more room. If we can't create more
701 * room, and the transaction must be restarted we return 1.
702 */
703static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
704{
705 if (!ext4_handle_valid(handle))
706 return 0;
707 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
708 return 0;
709 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
710 return 0;
711 return 1;
712}
713
714/*
715 * Probably it should be a library function... search for first non-zero word
716 * or memcmp with zero_page, whatever is better for particular architecture.
717 * Linus?
718 */
719static inline int all_zeroes(__le32 *p, __le32 *q)
720{
721 while (p < q)
722 if (*p++)
723 return 0;
724 return 1;
725}
726
727/**
728 * ext4_find_shared - find the indirect blocks for partial truncation.
729 * @inode: inode in question
730 * @depth: depth of the affected branch
731 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
732 * @chain: place to store the pointers to partial indirect blocks
733 * @top: place to the (detached) top of branch
734 *
735 * This is a helper function used by ext4_truncate().
736 *
737 * When we do truncate() we may have to clean the ends of several
738 * indirect blocks but leave the blocks themselves alive. Block is
739 * partially truncated if some data below the new i_size is referred
740 * from it (and it is on the path to the first completely truncated
741 * data block, indeed). We have to free the top of that path along
742 * with everything to the right of the path. Since no allocation
743 * past the truncation point is possible until ext4_truncate()
744 * finishes, we may safely do the latter, but top of branch may
745 * require special attention - pageout below the truncation point
746 * might try to populate it.
747 *
748 * We atomically detach the top of branch from the tree, store the
749 * block number of its root in *@top, pointers to buffer_heads of
750 * partially truncated blocks - in @chain[].bh and pointers to
751 * their last elements that should not be removed - in
752 * @chain[].p. Return value is the pointer to last filled element
753 * of @chain.
754 *
755 * The work left to caller to do the actual freeing of subtrees:
756 * a) free the subtree starting from *@top
757 * b) free the subtrees whose roots are stored in
758 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
759 * c) free the subtrees growing from the inode past the @chain[0].
760 * (no partially truncated stuff there). */
761
762static Indirect *ext4_find_shared(struct inode *inode, int depth,
763 ext4_lblk_t offsets[4], Indirect chain[4],
764 __le32 *top)
765{
766 Indirect *partial, *p;
767 int k, err;
768
769 *top = 0;
770 /* Make k index the deepest non-null offset + 1 */
771 for (k = depth; k > 1 && !offsets[k-1]; k--)
772 ;
773 partial = ext4_get_branch(inode, k, offsets, chain, &err);
774 /* Writer: pointers */
775 if (!partial)
776 partial = chain + k-1;
777 /*
778 * If the branch acquired continuation since we've looked at it -
779 * fine, it should all survive and (new) top doesn't belong to us.
780 */
781 if (!partial->key && *partial->p)
782 /* Writer: end */
783 goto no_top;
784 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
785 ;
786 /*
787 * OK, we've found the last block that must survive. The rest of our
788 * branch should be detached before unlocking. However, if that rest
789 * of branch is all ours and does not grow immediately from the inode
790 * it's easier to cheat and just decrement partial->p.
791 */
792 if (p == chain + k - 1 && p > chain) {
793 p->p--;
794 } else {
795 *top = *p->p;
796 /* Nope, don't do this in ext4. Must leave the tree intact */
797#if 0
798 *p->p = 0;
799#endif
800 }
801 /* Writer: end */
802
803 while (partial > p) {
804 brelse(partial->bh);
805 partial--;
806 }
807no_top:
808 return partial;
809}
810
811/*
812 * Zero a number of block pointers in either an inode or an indirect block.
813 * If we restart the transaction we must again get write access to the
814 * indirect block for further modification.
815 *
816 * We release `count' blocks on disk, but (last - first) may be greater
817 * than `count' because there can be holes in there.
818 *
819 * Return 0 on success, 1 on invalid block range
820 * and < 0 on fatal error.
821 */
822static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
823 struct buffer_head *bh,
824 ext4_fsblk_t block_to_free,
825 unsigned long count, __le32 *first,
826 __le32 *last)
827{
828 __le32 *p;
829 int flags = EXT4_FREE_BLOCKS_VALIDATED;
830 int err;
831
832 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
833 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
834 else if (ext4_should_journal_data(inode))
835 flags |= EXT4_FREE_BLOCKS_FORGET;
836
837 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
838 count)) {
839 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
840 "blocks %llu len %lu",
841 (unsigned long long) block_to_free, count);
842 return 1;
843 }
844
845 if (try_to_extend_transaction(handle, inode)) {
846 if (bh) {
847 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
848 err = ext4_handle_dirty_metadata(handle, inode, bh);
849 if (unlikely(err))
850 goto out_err;
851 }
852 err = ext4_mark_inode_dirty(handle, inode);
853 if (unlikely(err))
854 goto out_err;
855 err = ext4_truncate_restart_trans(handle, inode,
856 ext4_blocks_for_truncate(inode));
857 if (unlikely(err))
858 goto out_err;
859 if (bh) {
860 BUFFER_TRACE(bh, "retaking write access");
861 err = ext4_journal_get_write_access(handle, bh);
862 if (unlikely(err))
863 goto out_err;
864 }
865 }
866
867 for (p = first; p < last; p++)
868 *p = 0;
869
870 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
871 return 0;
872out_err:
873 ext4_std_error(inode->i_sb, err);
874 return err;
875}
876
877/**
878 * ext4_free_data - free a list of data blocks
879 * @handle: handle for this transaction
880 * @inode: inode we are dealing with
881 * @this_bh: indirect buffer_head which contains *@first and *@last
882 * @first: array of block numbers
883 * @last: points immediately past the end of array
884 *
885 * We are freeing all blocks referred from that array (numbers are stored as
886 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
887 *
888 * We accumulate contiguous runs of blocks to free. Conveniently, if these
889 * blocks are contiguous then releasing them at one time will only affect one
890 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
891 * actually use a lot of journal space.
892 *
893 * @this_bh will be %NULL if @first and @last point into the inode's direct
894 * block pointers.
895 */
896static void ext4_free_data(handle_t *handle, struct inode *inode,
897 struct buffer_head *this_bh,
898 __le32 *first, __le32 *last)
899{
900 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
901 unsigned long count = 0; /* Number of blocks in the run */
902 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
903 corresponding to
904 block_to_free */
905 ext4_fsblk_t nr; /* Current block # */
906 __le32 *p; /* Pointer into inode/ind
907 for current block */
908 int err = 0;
909
910 if (this_bh) { /* For indirect block */
911 BUFFER_TRACE(this_bh, "get_write_access");
912 err = ext4_journal_get_write_access(handle, this_bh);
913 /* Important: if we can't update the indirect pointers
914 * to the blocks, we can't free them. */
915 if (err)
916 return;
917 }
918
919 for (p = first; p < last; p++) {
920 nr = le32_to_cpu(*p);
921 if (nr) {
922 /* accumulate blocks to free if they're contiguous */
923 if (count == 0) {
924 block_to_free = nr;
925 block_to_free_p = p;
926 count = 1;
927 } else if (nr == block_to_free + count) {
928 count++;
929 } else {
930 err = ext4_clear_blocks(handle, inode, this_bh,
931 block_to_free, count,
932 block_to_free_p, p);
933 if (err)
934 break;
935 block_to_free = nr;
936 block_to_free_p = p;
937 count = 1;
938 }
939 }
940 }
941
942 if (!err && count > 0)
943 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
944 count, block_to_free_p, p);
945 if (err < 0)
946 /* fatal error */
947 return;
948
949 if (this_bh) {
950 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
951
952 /*
953 * The buffer head should have an attached journal head at this
954 * point. However, if the data is corrupted and an indirect
955 * block pointed to itself, it would have been detached when
956 * the block was cleared. Check for this instead of OOPSing.
957 */
958 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
959 ext4_handle_dirty_metadata(handle, inode, this_bh);
960 else
961 EXT4_ERROR_INODE(inode,
962 "circular indirect block detected at "
963 "block %llu",
964 (unsigned long long) this_bh->b_blocknr);
965 }
966}
967
968/**
969 * ext4_free_branches - free an array of branches
970 * @handle: JBD handle for this transaction
971 * @inode: inode we are dealing with
972 * @parent_bh: the buffer_head which contains *@first and *@last
973 * @first: array of block numbers
974 * @last: pointer immediately past the end of array
975 * @depth: depth of the branches to free
976 *
977 * We are freeing all blocks referred from these branches (numbers are
978 * stored as little-endian 32-bit) and updating @inode->i_blocks
979 * appropriately.
980 */
981static void ext4_free_branches(handle_t *handle, struct inode *inode,
982 struct buffer_head *parent_bh,
983 __le32 *first, __le32 *last, int depth)
984{
985 ext4_fsblk_t nr;
986 __le32 *p;
987
988 if (ext4_handle_is_aborted(handle))
989 return;
990
991 if (depth--) {
992 struct buffer_head *bh;
993 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
994 p = last;
995 while (--p >= first) {
996 nr = le32_to_cpu(*p);
997 if (!nr)
998 continue; /* A hole */
999
1000 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1001 nr, 1)) {
1002 EXT4_ERROR_INODE(inode,
1003 "invalid indirect mapped "
1004 "block %lu (level %d)",
1005 (unsigned long) nr, depth);
1006 break;
1007 }
1008
1009 /* Go read the buffer for the next level down */
1010 bh = sb_bread(inode->i_sb, nr);
1011
1012 /*
1013 * A read failure? Report error and clear slot
1014 * (should be rare).
1015 */
1016 if (!bh) {
1017 EXT4_ERROR_INODE_BLOCK(inode, nr,
1018 "Read failure");
1019 continue;
1020 }
1021
1022 /* This zaps the entire block. Bottom up. */
1023 BUFFER_TRACE(bh, "free child branches");
1024 ext4_free_branches(handle, inode, bh,
1025 (__le32 *) bh->b_data,
1026 (__le32 *) bh->b_data + addr_per_block,
1027 depth);
1028 brelse(bh);
1029
1030 /*
1031 * Everything below this this pointer has been
1032 * released. Now let this top-of-subtree go.
1033 *
1034 * We want the freeing of this indirect block to be
1035 * atomic in the journal with the updating of the
1036 * bitmap block which owns it. So make some room in
1037 * the journal.
1038 *
1039 * We zero the parent pointer *after* freeing its
1040 * pointee in the bitmaps, so if extend_transaction()
1041 * for some reason fails to put the bitmap changes and
1042 * the release into the same transaction, recovery
1043 * will merely complain about releasing a free block,
1044 * rather than leaking blocks.
1045 */
1046 if (ext4_handle_is_aborted(handle))
1047 return;
1048 if (try_to_extend_transaction(handle, inode)) {
1049 ext4_mark_inode_dirty(handle, inode);
1050 ext4_truncate_restart_trans(handle, inode,
1051 ext4_blocks_for_truncate(inode));
1052 }
1053
1054 /*
1055 * The forget flag here is critical because if
1056 * we are journaling (and not doing data
1057 * journaling), we have to make sure a revoke
1058 * record is written to prevent the journal
1059 * replay from overwriting the (former)
1060 * indirect block if it gets reallocated as a
1061 * data block. This must happen in the same
1062 * transaction where the data blocks are
1063 * actually freed.
1064 */
1065 ext4_free_blocks(handle, inode, NULL, nr, 1,
1066 EXT4_FREE_BLOCKS_METADATA|
1067 EXT4_FREE_BLOCKS_FORGET);
1068
1069 if (parent_bh) {
1070 /*
1071 * The block which we have just freed is
1072 * pointed to by an indirect block: journal it
1073 */
1074 BUFFER_TRACE(parent_bh, "get_write_access");
1075 if (!ext4_journal_get_write_access(handle,
1076 parent_bh)){
1077 *p = 0;
1078 BUFFER_TRACE(parent_bh,
1079 "call ext4_handle_dirty_metadata");
1080 ext4_handle_dirty_metadata(handle,
1081 inode,
1082 parent_bh);
1083 }
1084 }
1085 }
1086 } else {
1087 /* We have reached the bottom of the tree. */
1088 BUFFER_TRACE(parent_bh, "free data blocks");
1089 ext4_free_data(handle, inode, parent_bh, first, last);
1090 }
1091}
1092
1093void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1094{
1095 struct ext4_inode_info *ei = EXT4_I(inode);
1096 __le32 *i_data = ei->i_data;
1097 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1098 ext4_lblk_t offsets[4];
1099 Indirect chain[4];
1100 Indirect *partial;
1101 __le32 nr = 0;
1102 int n = 0;
1103 ext4_lblk_t last_block, max_block;
1104 unsigned blocksize = inode->i_sb->s_blocksize;
1105
1106 last_block = (inode->i_size + blocksize-1)
1107 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1108 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1109 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1110
1111 if (last_block != max_block) {
1112 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1113 if (n == 0)
1114 return;
1115 }
1116
1117 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1118
1119 /*
1120 * The orphan list entry will now protect us from any crash which
1121 * occurs before the truncate completes, so it is now safe to propagate
1122 * the new, shorter inode size (held for now in i_size) into the
1123 * on-disk inode. We do this via i_disksize, which is the value which
1124 * ext4 *really* writes onto the disk inode.
1125 */
1126 ei->i_disksize = inode->i_size;
1127
1128 if (last_block == max_block) {
1129 /*
1130 * It is unnecessary to free any data blocks if last_block is
1131 * equal to the indirect block limit.
1132 */
1133 return;
1134 } else if (n == 1) { /* direct blocks */
1135 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1136 i_data + EXT4_NDIR_BLOCKS);
1137 goto do_indirects;
1138 }
1139
1140 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1141 /* Kill the top of shared branch (not detached) */
1142 if (nr) {
1143 if (partial == chain) {
1144 /* Shared branch grows from the inode */
1145 ext4_free_branches(handle, inode, NULL,
1146 &nr, &nr+1, (chain+n-1) - partial);
1147 *partial->p = 0;
1148 /*
1149 * We mark the inode dirty prior to restart,
1150 * and prior to stop. No need for it here.
1151 */
1152 } else {
1153 /* Shared branch grows from an indirect block */
1154 BUFFER_TRACE(partial->bh, "get_write_access");
1155 ext4_free_branches(handle, inode, partial->bh,
1156 partial->p,
1157 partial->p+1, (chain+n-1) - partial);
1158 }
1159 }
1160 /* Clear the ends of indirect blocks on the shared branch */
1161 while (partial > chain) {
1162 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1163 (__le32*)partial->bh->b_data+addr_per_block,
1164 (chain+n-1) - partial);
1165 BUFFER_TRACE(partial->bh, "call brelse");
1166 brelse(partial->bh);
1167 partial--;
1168 }
1169do_indirects:
1170 /* Kill the remaining (whole) subtrees */
1171 switch (offsets[0]) {
1172 default:
1173 nr = i_data[EXT4_IND_BLOCK];
1174 if (nr) {
1175 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1176 i_data[EXT4_IND_BLOCK] = 0;
1177 }
1178 case EXT4_IND_BLOCK:
1179 nr = i_data[EXT4_DIND_BLOCK];
1180 if (nr) {
1181 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1182 i_data[EXT4_DIND_BLOCK] = 0;
1183 }
1184 case EXT4_DIND_BLOCK:
1185 nr = i_data[EXT4_TIND_BLOCK];
1186 if (nr) {
1187 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1188 i_data[EXT4_TIND_BLOCK] = 0;
1189 }
1190 case EXT4_TIND_BLOCK:
1191 ;
1192 }
1193}
1194
1195/**
1196 * ext4_ind_remove_space - remove space from the range
1197 * @handle: JBD handle for this transaction
1198 * @inode: inode we are dealing with
1199 * @start: First block to remove
1200 * @end: One block after the last block to remove (exclusive)
1201 *
1202 * Free the blocks in the defined range (end is exclusive endpoint of
1203 * range). This is used by ext4_punch_hole().
1204 */
1205int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1206 ext4_lblk_t start, ext4_lblk_t end)
1207{
1208 struct ext4_inode_info *ei = EXT4_I(inode);
1209 __le32 *i_data = ei->i_data;
1210 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1211 ext4_lblk_t offsets[4], offsets2[4];
1212 Indirect chain[4], chain2[4];
1213 Indirect *partial, *partial2;
1214 ext4_lblk_t max_block;
1215 __le32 nr = 0, nr2 = 0;
1216 int n = 0, n2 = 0;
1217 unsigned blocksize = inode->i_sb->s_blocksize;
1218
1219 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1220 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1221 if (end >= max_block)
1222 end = max_block;
1223 if ((start >= end) || (start > max_block))
1224 return 0;
1225
1226 n = ext4_block_to_path(inode, start, offsets, NULL);
1227 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1228
1229 BUG_ON(n > n2);
1230
1231 if ((n == 1) && (n == n2)) {
1232 /* We're punching only within direct block range */
1233 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1234 i_data + offsets2[0]);
1235 return 0;
1236 } else if (n2 > n) {
1237 /*
1238 * Start and end are on a different levels so we're going to
1239 * free partial block at start, and partial block at end of
1240 * the range. If there are some levels in between then
1241 * do_indirects label will take care of that.
1242 */
1243
1244 if (n == 1) {
1245 /*
1246 * Start is at the direct block level, free
1247 * everything to the end of the level.
1248 */
1249 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1250 i_data + EXT4_NDIR_BLOCKS);
1251 goto end_range;
1252 }
1253
1254
1255 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1256 if (nr) {
1257 if (partial == chain) {
1258 /* Shared branch grows from the inode */
1259 ext4_free_branches(handle, inode, NULL,
1260 &nr, &nr+1, (chain+n-1) - partial);
1261 *partial->p = 0;
1262 } else {
1263 /* Shared branch grows from an indirect block */
1264 BUFFER_TRACE(partial->bh, "get_write_access");
1265 ext4_free_branches(handle, inode, partial->bh,
1266 partial->p,
1267 partial->p+1, (chain+n-1) - partial);
1268 }
1269 }
1270
1271 /*
1272 * Clear the ends of indirect blocks on the shared branch
1273 * at the start of the range
1274 */
1275 while (partial > chain) {
1276 ext4_free_branches(handle, inode, partial->bh,
1277 partial->p + 1,
1278 (__le32 *)partial->bh->b_data+addr_per_block,
1279 (chain+n-1) - partial);
1280 BUFFER_TRACE(partial->bh, "call brelse");
1281 brelse(partial->bh);
1282 partial--;
1283 }
1284
1285end_range:
1286 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1287 if (nr2) {
1288 if (partial2 == chain2) {
1289 /*
1290 * Remember, end is exclusive so here we're at
1291 * the start of the next level we're not going
1292 * to free. Everything was covered by the start
1293 * of the range.
1294 */
1295 goto do_indirects;
1296 }
1297 } else {
1298 /*
1299 * ext4_find_shared returns Indirect structure which
1300 * points to the last element which should not be
1301 * removed by truncate. But this is end of the range
1302 * in punch_hole so we need to point to the next element
1303 */
1304 partial2->p++;
1305 }
1306
1307 /*
1308 * Clear the ends of indirect blocks on the shared branch
1309 * at the end of the range
1310 */
1311 while (partial2 > chain2) {
1312 ext4_free_branches(handle, inode, partial2->bh,
1313 (__le32 *)partial2->bh->b_data,
1314 partial2->p,
1315 (chain2+n2-1) - partial2);
1316 BUFFER_TRACE(partial2->bh, "call brelse");
1317 brelse(partial2->bh);
1318 partial2--;
1319 }
1320 goto do_indirects;
1321 }
1322
1323 /* Punch happened within the same level (n == n2) */
1324 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1325 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1326
1327 /* Free top, but only if partial2 isn't its subtree. */
1328 if (nr) {
1329 int level = min(partial - chain, partial2 - chain2);
1330 int i;
1331 int subtree = 1;
1332
1333 for (i = 0; i <= level; i++) {
1334 if (offsets[i] != offsets2[i]) {
1335 subtree = 0;
1336 break;
1337 }
1338 }
1339
1340 if (!subtree) {
1341 if (partial == chain) {
1342 /* Shared branch grows from the inode */
1343 ext4_free_branches(handle, inode, NULL,
1344 &nr, &nr+1,
1345 (chain+n-1) - partial);
1346 *partial->p = 0;
1347 } else {
1348 /* Shared branch grows from an indirect block */
1349 BUFFER_TRACE(partial->bh, "get_write_access");
1350 ext4_free_branches(handle, inode, partial->bh,
1351 partial->p,
1352 partial->p+1,
1353 (chain+n-1) - partial);
1354 }
1355 }
1356 }
1357
1358 if (!nr2) {
1359 /*
1360 * ext4_find_shared returns Indirect structure which
1361 * points to the last element which should not be
1362 * removed by truncate. But this is end of the range
1363 * in punch_hole so we need to point to the next element
1364 */
1365 partial2->p++;
1366 }
1367
1368 while (partial > chain || partial2 > chain2) {
1369 int depth = (chain+n-1) - partial;
1370 int depth2 = (chain2+n2-1) - partial2;
1371
1372 if (partial > chain && partial2 > chain2 &&
1373 partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1374 /*
1375 * We've converged on the same block. Clear the range,
1376 * then we're done.
1377 */
1378 ext4_free_branches(handle, inode, partial->bh,
1379 partial->p + 1,
1380 partial2->p,
1381 (chain+n-1) - partial);
1382 BUFFER_TRACE(partial->bh, "call brelse");
1383 brelse(partial->bh);
1384 BUFFER_TRACE(partial2->bh, "call brelse");
1385 brelse(partial2->bh);
1386 return 0;
1387 }
1388
1389 /*
1390 * The start and end partial branches may not be at the same
1391 * level even though the punch happened within one level. So, we
1392 * give them a chance to arrive at the same level, then walk
1393 * them in step with each other until we converge on the same
1394 * block.
1395 */
1396 if (partial > chain && depth <= depth2) {
1397 ext4_free_branches(handle, inode, partial->bh,
1398 partial->p + 1,
1399 (__le32 *)partial->bh->b_data+addr_per_block,
1400 (chain+n-1) - partial);
1401 BUFFER_TRACE(partial->bh, "call brelse");
1402 brelse(partial->bh);
1403 partial--;
1404 }
1405 if (partial2 > chain2 && depth2 <= depth) {
1406 ext4_free_branches(handle, inode, partial2->bh,
1407 (__le32 *)partial2->bh->b_data,
1408 partial2->p,
1409 (chain2+n2-1) - partial2);
1410 BUFFER_TRACE(partial2->bh, "call brelse");
1411 brelse(partial2->bh);
1412 partial2--;
1413 }
1414 }
1415 return 0;
1416
1417do_indirects:
1418 /* Kill the remaining (whole) subtrees */
1419 switch (offsets[0]) {
1420 default:
1421 if (++n >= n2)
1422 return 0;
1423 nr = i_data[EXT4_IND_BLOCK];
1424 if (nr) {
1425 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1426 i_data[EXT4_IND_BLOCK] = 0;
1427 }
1428 case EXT4_IND_BLOCK:
1429 if (++n >= n2)
1430 return 0;
1431 nr = i_data[EXT4_DIND_BLOCK];
1432 if (nr) {
1433 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1434 i_data[EXT4_DIND_BLOCK] = 0;
1435 }
1436 case EXT4_DIND_BLOCK:
1437 if (++n >= n2)
1438 return 0;
1439 nr = i_data[EXT4_TIND_BLOCK];
1440 if (nr) {
1441 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1442 i_data[EXT4_TIND_BLOCK] = 0;
1443 }
1444 case EXT4_TIND_BLOCK:
1445 ;
1446 }
1447 return 0;
1448}