Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/ext4/file.c
  4 *
  5 * Copyright (C) 1992, 1993, 1994, 1995
  6 * Remy Card (card@masi.ibp.fr)
  7 * Laboratoire MASI - Institut Blaise Pascal
  8 * Universite Pierre et Marie Curie (Paris VI)
  9 *
 10 *  from
 11 *
 12 *  linux/fs/minix/file.c
 13 *
 14 *  Copyright (C) 1991, 1992  Linus Torvalds
 15 *
 16 *  ext4 fs regular file handling primitives
 17 *
 18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19 *	(jj@sunsite.ms.mff.cuni.cz)
 20 */
 21
 22#include <linux/time.h>
 23#include <linux/fs.h>
 24#include <linux/iomap.h>
 25#include <linux/mount.h>
 26#include <linux/path.h>
 27#include <linux/dax.h>
 28#include <linux/quotaops.h>
 29#include <linux/pagevec.h>
 30#include <linux/uio.h>
 31#include <linux/mman.h>
 32#include <linux/backing-dev.h>
 33#include "ext4.h"
 34#include "ext4_jbd2.h"
 35#include "xattr.h"
 36#include "acl.h"
 37#include "truncate.h"
 38
 39/*
 40 * Returns %true if the given DIO request should be attempted with DIO, or
 41 * %false if it should fall back to buffered I/O.
 42 *
 43 * DIO isn't well specified; when it's unsupported (either due to the request
 44 * being misaligned, or due to the file not supporting DIO at all), filesystems
 45 * either fall back to buffered I/O or return EINVAL.  For files that don't use
 46 * any special features like encryption or verity, ext4 has traditionally
 47 * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
 48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
 49 *
 50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
 51 * traditionally falls back to buffered I/O.
 52 *
 53 * This function implements the traditional ext4 behavior in all these cases.
 54 */
 55static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
 56{
 57	struct inode *inode = file_inode(iocb->ki_filp);
 58	u32 dio_align = ext4_dio_alignment(inode);
 59
 60	if (dio_align == 0)
 61		return false;
 62
 63	if (dio_align == 1)
 64		return true;
 65
 66	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
 67}
 68
 69static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
 70{
 71	ssize_t ret;
 72	struct inode *inode = file_inode(iocb->ki_filp);
 73
 74	if (iocb->ki_flags & IOCB_NOWAIT) {
 75		if (!inode_trylock_shared(inode))
 76			return -EAGAIN;
 77	} else {
 78		inode_lock_shared(inode);
 79	}
 80
 81	if (!ext4_should_use_dio(iocb, to)) {
 82		inode_unlock_shared(inode);
 83		/*
 84		 * Fallback to buffered I/O if the operation being performed on
 85		 * the inode is not supported by direct I/O. The IOCB_DIRECT
 86		 * flag needs to be cleared here in order to ensure that the
 87		 * direct I/O path within generic_file_read_iter() is not
 88		 * taken.
 89		 */
 90		iocb->ki_flags &= ~IOCB_DIRECT;
 91		return generic_file_read_iter(iocb, to);
 92	}
 93
 94	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
 95	inode_unlock_shared(inode);
 96
 97	file_accessed(iocb->ki_filp);
 98	return ret;
 99}
100
101#ifdef CONFIG_FS_DAX
102static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103{
104	struct inode *inode = file_inode(iocb->ki_filp);
105	ssize_t ret;
106
107	if (iocb->ki_flags & IOCB_NOWAIT) {
108		if (!inode_trylock_shared(inode))
109			return -EAGAIN;
110	} else {
111		inode_lock_shared(inode);
112	}
113	/*
114	 * Recheck under inode lock - at this point we are sure it cannot
115	 * change anymore
116	 */
117	if (!IS_DAX(inode)) {
118		inode_unlock_shared(inode);
119		/* Fallback to buffered IO in case we cannot support DAX */
120		return generic_file_read_iter(iocb, to);
121	}
122	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123	inode_unlock_shared(inode);
124
125	file_accessed(iocb->ki_filp);
126	return ret;
127}
128#endif
129
130static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131{
132	struct inode *inode = file_inode(iocb->ki_filp);
133
134	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135		return -EIO;
136
137	if (!iov_iter_count(to))
138		return 0; /* skip atime */
139
140#ifdef CONFIG_FS_DAX
141	if (IS_DAX(inode))
142		return ext4_dax_read_iter(iocb, to);
143#endif
144	if (iocb->ki_flags & IOCB_DIRECT)
145		return ext4_dio_read_iter(iocb, to);
146
147	return generic_file_read_iter(iocb, to);
148}
149
150/*
151 * Called when an inode is released. Note that this is different
152 * from ext4_file_open: open gets called at every open, but release
153 * gets called only when /all/ the files are closed.
154 */
155static int ext4_release_file(struct inode *inode, struct file *filp)
156{
157	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158		ext4_alloc_da_blocks(inode);
159		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160	}
161	/* if we are the last writer on the inode, drop the block reservation */
162	if ((filp->f_mode & FMODE_WRITE) &&
163			(atomic_read(&inode->i_writecount) == 1) &&
164			!EXT4_I(inode)->i_reserved_data_blocks) {
 
165		down_write(&EXT4_I(inode)->i_data_sem);
166		ext4_discard_preallocations(inode, 0);
167		up_write(&EXT4_I(inode)->i_data_sem);
168	}
169	if (is_dx(inode) && filp->private_data)
170		ext4_htree_free_dir_info(filp->private_data);
171
172	return 0;
173}
174
 
 
 
 
 
 
 
175/*
176 * This tests whether the IO in question is block-aligned or not.
177 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178 * are converted to written only after the IO is complete.  Until they are
179 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180 * it needs to zero out portions of the start and/or end block.  If 2 AIO
181 * threads are at work on the same unwritten block, they must be synchronized
182 * or one thread will zero the other's data, causing corruption.
183 */
184static bool
185ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186{
187	struct super_block *sb = inode->i_sb;
188	unsigned long blockmask = sb->s_blocksize - 1;
189
190	if ((pos | iov_iter_alignment(from)) & blockmask)
191		return true;
192
193	return false;
194}
195
196static bool
197ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198{
199	if (offset + len > i_size_read(inode) ||
200	    offset + len > EXT4_I(inode)->i_disksize)
201		return true;
202	return false;
203}
204
205/* Is IO overwriting allocated and initialized blocks? */
206static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
207{
208	struct ext4_map_blocks map;
209	unsigned int blkbits = inode->i_blkbits;
210	int err, blklen;
211
212	if (pos + len > i_size_read(inode))
213		return false;
214
215	map.m_lblk = pos >> blkbits;
216	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
217	blklen = map.m_len;
218
219	err = ext4_map_blocks(NULL, inode, &map, 0);
220	/*
221	 * 'err==len' means that all of the blocks have been preallocated,
222	 * regardless of whether they have been initialized or not. To exclude
223	 * unwritten extents, we need to check m_flags.
224	 */
225	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
226}
227
228static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
229					 struct iov_iter *from)
230{
231	struct inode *inode = file_inode(iocb->ki_filp);
232	ssize_t ret;
233
234	if (unlikely(IS_IMMUTABLE(inode)))
235		return -EPERM;
236
237	ret = generic_write_checks(iocb, from);
238	if (ret <= 0)
239		return ret;
240
241	/*
242	 * If we have encountered a bitmap-format file, the size limit
243	 * is smaller than s_maxbytes, which is for extent-mapped files.
244	 */
245	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
246		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
247
248		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
249			return -EFBIG;
250		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
251	}
252
253	return iov_iter_count(from);
254}
255
256static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
257{
258	ssize_t ret, count;
259
260	count = ext4_generic_write_checks(iocb, from);
261	if (count <= 0)
262		return count;
263
264	ret = file_modified(iocb->ki_filp);
265	if (ret)
266		return ret;
267	return count;
268}
269
270static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
271					struct iov_iter *from)
272{
273	ssize_t ret;
274	struct inode *inode = file_inode(iocb->ki_filp);
275
276	if (iocb->ki_flags & IOCB_NOWAIT)
277		return -EOPNOTSUPP;
278
279	inode_lock(inode);
280	ret = ext4_write_checks(iocb, from);
281	if (ret <= 0)
282		goto out;
283
284	current->backing_dev_info = inode_to_bdi(inode);
285	ret = generic_perform_write(iocb, from);
286	current->backing_dev_info = NULL;
287
288out:
289	inode_unlock(inode);
290	if (likely(ret > 0)) {
291		iocb->ki_pos += ret;
292		ret = generic_write_sync(iocb, ret);
293	}
294
295	return ret;
296}
297
298static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
299					   ssize_t written, size_t count)
300{
301	handle_t *handle;
302	bool truncate = false;
303	u8 blkbits = inode->i_blkbits;
304	ext4_lblk_t written_blk, end_blk;
305	int ret;
306
307	/*
308	 * Note that EXT4_I(inode)->i_disksize can get extended up to
309	 * inode->i_size while the I/O was running due to writeback of delalloc
310	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
311	 * zeroed/unwritten extents if this is possible; thus we won't leave
312	 * uninitialized blocks in a file even if we didn't succeed in writing
313	 * as much as we intended.
314	 */
315	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
316	if (offset + count <= EXT4_I(inode)->i_disksize) {
317		/*
318		 * We need to ensure that the inode is removed from the orphan
319		 * list if it has been added prematurely, due to writeback of
320		 * delalloc blocks.
321		 */
322		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
323			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
324
325			if (IS_ERR(handle)) {
326				ext4_orphan_del(NULL, inode);
327				return PTR_ERR(handle);
328			}
329
330			ext4_orphan_del(handle, inode);
331			ext4_journal_stop(handle);
332		}
333
334		return written;
335	}
336
337	if (written < 0)
338		goto truncate;
339
340	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
341	if (IS_ERR(handle)) {
342		written = PTR_ERR(handle);
343		goto truncate;
344	}
345
346	if (ext4_update_inode_size(inode, offset + written)) {
347		ret = ext4_mark_inode_dirty(handle, inode);
348		if (unlikely(ret)) {
349			written = ret;
350			ext4_journal_stop(handle);
351			goto truncate;
352		}
353	}
354
355	/*
356	 * We may need to truncate allocated but not written blocks beyond EOF.
357	 */
358	written_blk = ALIGN(offset + written, 1 << blkbits);
359	end_blk = ALIGN(offset + count, 1 << blkbits);
360	if (written_blk < end_blk && ext4_can_truncate(inode))
361		truncate = true;
362
363	/*
364	 * Remove the inode from the orphan list if it has been extended and
365	 * everything went OK.
366	 */
367	if (!truncate && inode->i_nlink)
368		ext4_orphan_del(handle, inode);
369	ext4_journal_stop(handle);
370
371	if (truncate) {
372truncate:
373		ext4_truncate_failed_write(inode);
374		/*
375		 * If the truncate operation failed early, then the inode may
376		 * still be on the orphan list. In that case, we need to try
377		 * remove the inode from the in-memory linked list.
378		 */
379		if (inode->i_nlink)
380			ext4_orphan_del(NULL, inode);
381	}
382
383	return written;
384}
385
386static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
387				 int error, unsigned int flags)
388{
389	loff_t pos = iocb->ki_pos;
390	struct inode *inode = file_inode(iocb->ki_filp);
391
392	if (error)
393		return error;
394
395	if (size && flags & IOMAP_DIO_UNWRITTEN) {
396		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
397		if (error < 0)
398			return error;
399	}
400	/*
401	 * If we are extending the file, we have to update i_size here before
402	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
403	 * buffered reads could zero out too much from page cache pages. Update
404	 * of on-disk size will happen later in ext4_dio_write_iter() where
405	 * we have enough information to also perform orphan list handling etc.
406	 * Note that we perform all extending writes synchronously under
407	 * i_rwsem held exclusively so i_size update is safe here in that case.
408	 * If the write was not extending, we cannot see pos > i_size here
409	 * because operations reducing i_size like truncate wait for all
410	 * outstanding DIO before updating i_size.
411	 */
412	pos += size;
413	if (pos > i_size_read(inode))
414		i_size_write(inode, pos);
415
416	return 0;
417}
418
419static const struct iomap_dio_ops ext4_dio_write_ops = {
420	.end_io = ext4_dio_write_end_io,
421};
422
423/*
424 * The intention here is to start with shared lock acquired then see if any
425 * condition requires an exclusive inode lock. If yes, then we restart the
426 * whole operation by releasing the shared lock and acquiring exclusive lock.
427 *
428 * - For unaligned_io we never take shared lock as it may cause data corruption
429 *   when two unaligned IO tries to modify the same block e.g. while zeroing.
430 *
431 * - For extending writes case we don't take the shared lock, since it requires
432 *   updating inode i_disksize and/or orphan handling with exclusive lock.
433 *
434 * - shared locking will only be true mostly with overwrites. Otherwise we will
435 *   switch to exclusive i_rwsem lock.
436 */
437static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
438				     bool *ilock_shared, bool *extend)
439{
440	struct file *file = iocb->ki_filp;
441	struct inode *inode = file_inode(file);
442	loff_t offset;
443	size_t count;
444	ssize_t ret;
445
446restart:
447	ret = ext4_generic_write_checks(iocb, from);
448	if (ret <= 0)
449		goto out;
450
451	offset = iocb->ki_pos;
452	count = ret;
453	if (ext4_extending_io(inode, offset, count))
454		*extend = true;
455	/*
456	 * Determine whether the IO operation will overwrite allocated
457	 * and initialized blocks.
458	 * We need exclusive i_rwsem for changing security info
459	 * in file_modified().
460	 */
461	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
462	     !ext4_overwrite_io(inode, offset, count))) {
463		if (iocb->ki_flags & IOCB_NOWAIT) {
464			ret = -EAGAIN;
465			goto out;
466		}
467		inode_unlock_shared(inode);
468		*ilock_shared = false;
469		inode_lock(inode);
470		goto restart;
471	}
472
473	ret = file_modified(file);
474	if (ret < 0)
475		goto out;
476
477	return count;
 
 
 
 
478out:
479	if (*ilock_shared)
480		inode_unlock_shared(inode);
481	else
482		inode_unlock(inode);
 
 
 
 
483	return ret;
484}
 
485
486static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
487{
488	ssize_t ret;
489	handle_t *handle;
490	struct inode *inode = file_inode(iocb->ki_filp);
491	loff_t offset = iocb->ki_pos;
492	size_t count = iov_iter_count(from);
493	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
494	bool extend = false, unaligned_io = false;
495	bool ilock_shared = true;
496
497	/*
498	 * We initially start with shared inode lock unless it is
499	 * unaligned IO which needs exclusive lock anyways.
500	 */
501	if (ext4_unaligned_io(inode, from, offset)) {
502		unaligned_io = true;
503		ilock_shared = false;
504	}
505	/*
506	 * Quick check here without any i_rwsem lock to see if it is extending
507	 * IO. A more reliable check is done in ext4_dio_write_checks() with
508	 * proper locking in place.
509	 */
510	if (offset + count > i_size_read(inode))
511		ilock_shared = false;
512
513	if (iocb->ki_flags & IOCB_NOWAIT) {
514		if (ilock_shared) {
515			if (!inode_trylock_shared(inode))
516				return -EAGAIN;
517		} else {
518			if (!inode_trylock(inode))
519				return -EAGAIN;
520		}
521	} else {
522		if (ilock_shared)
523			inode_lock_shared(inode);
524		else
525			inode_lock(inode);
526	}
527
528	/* Fallback to buffered I/O if the inode does not support direct I/O. */
529	if (!ext4_should_use_dio(iocb, from)) {
530		if (ilock_shared)
531			inode_unlock_shared(inode);
532		else
533			inode_unlock(inode);
534		return ext4_buffered_write_iter(iocb, from);
535	}
536
537	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
 
538	if (ret <= 0)
539		return ret;
540
541	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
542	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
543		ret = -EAGAIN;
544		goto out;
545	}
546	/*
547	 * Make sure inline data cannot be created anymore since we are going
548	 * to allocate blocks for DIO. We know the inode does not have any
549	 * inline data now because ext4_dio_supported() checked for that.
550	 */
551	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
552
553	offset = iocb->ki_pos;
554	count = ret;
555
556	/*
557	 * Unaligned direct IO must be serialized among each other as zeroing
558	 * of partial blocks of two competing unaligned IOs can result in data
559	 * corruption.
560	 *
561	 * So we make sure we don't allow any unaligned IO in flight.
562	 * For IOs where we need not wait (like unaligned non-AIO DIO),
563	 * below inode_dio_wait() may anyway become a no-op, since we start
564	 * with exclusive lock.
565	 */
566	if (unaligned_io)
567		inode_dio_wait(inode);
568
569	if (extend) {
570		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
571		if (IS_ERR(handle)) {
572			ret = PTR_ERR(handle);
573			goto out;
574		}
575
576		ret = ext4_orphan_add(handle, inode);
577		if (ret) {
578			ext4_journal_stop(handle);
579			goto out;
580		}
581
582		ext4_journal_stop(handle);
583	}
584
585	if (ilock_shared)
586		iomap_ops = &ext4_iomap_overwrite_ops;
587	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
588			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
589			   NULL, 0);
590	if (ret == -ENOTBLK)
591		ret = 0;
592
593	if (extend)
594		ret = ext4_handle_inode_extension(inode, offset, ret, count);
595
596out:
597	if (ilock_shared)
598		inode_unlock_shared(inode);
599	else
600		inode_unlock(inode);
601
602	if (ret >= 0 && iov_iter_count(from)) {
603		ssize_t err;
604		loff_t endbyte;
605
606		offset = iocb->ki_pos;
607		err = ext4_buffered_write_iter(iocb, from);
608		if (err < 0)
609			return err;
610
611		/*
612		 * We need to ensure that the pages within the page cache for
613		 * the range covered by this I/O are written to disk and
614		 * invalidated. This is in attempt to preserve the expected
615		 * direct I/O semantics in the case we fallback to buffered I/O
616		 * to complete off the I/O request.
617		 */
618		ret += err;
619		endbyte = offset + err - 1;
620		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
621						   offset, endbyte);
622		if (!err)
623			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
624						 offset >> PAGE_SHIFT,
625						 endbyte >> PAGE_SHIFT);
626	}
627
628	return ret;
629}
630
631#ifdef CONFIG_FS_DAX
632static ssize_t
633ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
634{
635	ssize_t ret;
636	size_t count;
637	loff_t offset;
638	handle_t *handle;
639	bool extend = false;
640	struct inode *inode = file_inode(iocb->ki_filp);
641
642	if (iocb->ki_flags & IOCB_NOWAIT) {
643		if (!inode_trylock(inode))
644			return -EAGAIN;
645	} else {
646		inode_lock(inode);
647	}
648
649	ret = ext4_write_checks(iocb, from);
650	if (ret <= 0)
651		goto out;
652
653	offset = iocb->ki_pos;
654	count = iov_iter_count(from);
655
656	if (offset + count > EXT4_I(inode)->i_disksize) {
657		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
658		if (IS_ERR(handle)) {
659			ret = PTR_ERR(handle);
660			goto out;
661		}
662
663		ret = ext4_orphan_add(handle, inode);
664		if (ret) {
665			ext4_journal_stop(handle);
666			goto out;
667		}
668
669		extend = true;
670		ext4_journal_stop(handle);
671	}
672
673	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
674
675	if (extend)
676		ret = ext4_handle_inode_extension(inode, offset, ret, count);
677out:
678	inode_unlock(inode);
679	if (ret > 0)
680		ret = generic_write_sync(iocb, ret);
681	return ret;
682}
683#endif
684
685static ssize_t
686ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
687{
688	struct inode *inode = file_inode(iocb->ki_filp);
 
 
 
689
690	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
691		return -EIO;
 
 
 
 
 
 
 
692
693#ifdef CONFIG_FS_DAX
694	if (IS_DAX(inode))
695		return ext4_dax_write_iter(iocb, from);
696#endif
697	if (iocb->ki_flags & IOCB_DIRECT)
698		return ext4_dio_write_iter(iocb, from);
699	else
700		return ext4_buffered_write_iter(iocb, from);
701}
702
703#ifdef CONFIG_FS_DAX
704static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
705		enum page_entry_size pe_size)
706{
707	int error = 0;
708	vm_fault_t result;
709	int retries = 0;
710	handle_t *handle = NULL;
711	struct inode *inode = file_inode(vmf->vma->vm_file);
712	struct super_block *sb = inode->i_sb;
713
714	/*
715	 * We have to distinguish real writes from writes which will result in a
716	 * COW page; COW writes should *not* poke the journal (the file will not
717	 * be changed). Doing so would cause unintended failures when mounted
718	 * read-only.
719	 *
720	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
721	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
722	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
723	 * we eventually come back with a COW page.
724	 */
725	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
726		(vmf->vma->vm_flags & VM_SHARED);
727	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
728	pfn_t pfn;
729
730	if (write) {
731		sb_start_pagefault(sb);
732		file_update_time(vmf->vma->vm_file);
733		filemap_invalidate_lock_shared(mapping);
734retry:
735		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
736					       EXT4_DATA_TRANS_BLOCKS(sb));
737		if (IS_ERR(handle)) {
738			filemap_invalidate_unlock_shared(mapping);
739			sb_end_pagefault(sb);
740			return VM_FAULT_SIGBUS;
741		}
742	} else {
743		filemap_invalidate_lock_shared(mapping);
744	}
745	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
746	if (write) {
747		ext4_journal_stop(handle);
748
749		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
750		    ext4_should_retry_alloc(sb, &retries))
751			goto retry;
752		/* Handling synchronous page fault? */
753		if (result & VM_FAULT_NEEDDSYNC)
754			result = dax_finish_sync_fault(vmf, pe_size, pfn);
755		filemap_invalidate_unlock_shared(mapping);
756		sb_end_pagefault(sb);
757	} else {
758		filemap_invalidate_unlock_shared(mapping);
759	}
760
761	return result;
762}
763
764static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
765{
766	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767}
768
769static const struct vm_operations_struct ext4_dax_vm_ops = {
770	.fault		= ext4_dax_fault,
771	.huge_fault	= ext4_dax_huge_fault,
772	.page_mkwrite	= ext4_dax_fault,
773	.pfn_mkwrite	= ext4_dax_fault,
774};
775#else
776#define ext4_dax_vm_ops	ext4_file_vm_ops
777#endif
778
779static const struct vm_operations_struct ext4_file_vm_ops = {
780	.fault		= filemap_fault,
781	.map_pages	= filemap_map_pages,
782	.page_mkwrite   = ext4_page_mkwrite,
783};
784
785static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
786{
787	struct inode *inode = file->f_mapping->host;
788	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
789	struct dax_device *dax_dev = sbi->s_daxdev;
790
791	if (unlikely(ext4_forced_shutdown(sbi)))
792		return -EIO;
793
794	/*
795	 * We don't support synchronous mappings for non-DAX files and
796	 * for DAX files if underneath dax_device is not synchronous.
797	 */
798	if (!daxdev_mapping_supported(vma, dax_dev))
799		return -EOPNOTSUPP;
800
 
 
 
 
 
 
 
801	file_accessed(file);
802	if (IS_DAX(file_inode(file))) {
803		vma->vm_ops = &ext4_dax_vm_ops;
804		vma->vm_flags |= VM_HUGEPAGE;
805	} else {
806		vma->vm_ops = &ext4_file_vm_ops;
807	}
808	return 0;
809}
810
811static int ext4_sample_last_mounted(struct super_block *sb,
812				    struct vfsmount *mnt)
813{
814	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
815	struct path path;
816	char buf[64], *cp;
817	handle_t *handle;
818	int err;
819
820	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
821		return 0;
822
823	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
824		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825
826	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
827	/*
828	 * Sample where the filesystem has been mounted and
829	 * store it in the superblock for sysadmin convenience
830	 * when trying to sort through large numbers of block
831	 * devices or filesystem images.
832	 */
833	memset(buf, 0, sizeof(buf));
834	path.mnt = mnt;
835	path.dentry = mnt->mnt_root;
836	cp = d_path(&path, buf, sizeof(buf));
837	err = 0;
838	if (IS_ERR(cp))
839		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840
841	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
842	err = PTR_ERR(handle);
843	if (IS_ERR(handle))
844		goto out;
845	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
846	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
847					    EXT4_JTR_NONE);
848	if (err)
849		goto out_journal;
850	lock_buffer(sbi->s_sbh);
851	strncpy(sbi->s_es->s_last_mounted, cp,
852		sizeof(sbi->s_es->s_last_mounted));
853	ext4_superblock_csum_set(sb);
854	unlock_buffer(sbi->s_sbh);
855	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
856out_journal:
857	ext4_journal_stop(handle);
858out:
859	sb_end_intwrite(sb);
860	return err;
861}
862
863static int ext4_file_open(struct inode *inode, struct file *filp)
 
 
 
864{
 
 
 
 
 
865	int ret;
866
867	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
868		return -EIO;
869
870	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
871	if (ret)
872		return ret;
 
 
873
874	ret = fscrypt_file_open(inode, filp);
875	if (ret)
876		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
877
878	ret = fsverity_file_open(inode, filp);
879	if (ret)
880		return ret;
 
 
881
882	/*
883	 * Set up the jbd2_inode if we are opening the inode for
884	 * writing and the journal is present
885	 */
886	if (filp->f_mode & FMODE_WRITE) {
887		ret = ext4_inode_attach_jinode(inode);
888		if (ret < 0)
889			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
890	}
891
892	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
893	return dquot_file_open(inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894}
895
896/*
897 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
898 * by calling generic_file_llseek_size() with the appropriate maxbytes
899 * value for each.
900 */
901loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
902{
903	struct inode *inode = file->f_mapping->host;
904	loff_t maxbytes;
905
906	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
907		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
908	else
909		maxbytes = inode->i_sb->s_maxbytes;
910
911	switch (whence) {
912	default:
 
 
913		return generic_file_llseek_size(file, offset, whence,
914						maxbytes, i_size_read(inode));
915	case SEEK_HOLE:
916		inode_lock_shared(inode);
917		offset = iomap_seek_hole(inode, offset,
918					 &ext4_iomap_report_ops);
919		inode_unlock_shared(inode);
920		break;
921	case SEEK_DATA:
922		inode_lock_shared(inode);
923		offset = iomap_seek_data(inode, offset,
924					 &ext4_iomap_report_ops);
925		inode_unlock_shared(inode);
926		break;
927	}
928
929	if (offset < 0)
930		return offset;
931	return vfs_setpos(file, offset, maxbytes);
932}
933
934const struct file_operations ext4_file_operations = {
935	.llseek		= ext4_llseek,
936	.read_iter	= ext4_file_read_iter,
937	.write_iter	= ext4_file_write_iter,
938	.iopoll		= iocb_bio_iopoll,
939	.unlocked_ioctl = ext4_ioctl,
940#ifdef CONFIG_COMPAT
941	.compat_ioctl	= ext4_compat_ioctl,
942#endif
943	.mmap		= ext4_file_mmap,
944	.mmap_supported_flags = MAP_SYNC,
945	.open		= ext4_file_open,
946	.release	= ext4_release_file,
947	.fsync		= ext4_sync_file,
948	.get_unmapped_area = thp_get_unmapped_area,
949	.splice_read	= generic_file_splice_read,
950	.splice_write	= iter_file_splice_write,
951	.fallocate	= ext4_fallocate,
952};
953
954const struct inode_operations ext4_file_inode_operations = {
955	.setattr	= ext4_setattr,
956	.getattr	= ext4_file_getattr,
957	.listxattr	= ext4_listxattr,
958	.get_inode_acl	= ext4_get_acl,
959	.set_acl	= ext4_set_acl,
960	.fiemap		= ext4_fiemap,
961	.fileattr_get	= ext4_fileattr_get,
962	.fileattr_set	= ext4_fileattr_set,
963};
964
v4.10.11
 
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 
 
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34#ifdef CONFIG_FS_DAX
 35static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 36{
 37	struct inode *inode = file_inode(iocb->ki_filp);
 38	ssize_t ret;
 39
 40	inode_lock_shared(inode);
 
 
 
 
 
 41	/*
 42	 * Recheck under inode lock - at this point we are sure it cannot
 43	 * change anymore
 44	 */
 45	if (!IS_DAX(inode)) {
 46		inode_unlock_shared(inode);
 47		/* Fallback to buffered IO in case we cannot support DAX */
 48		return generic_file_read_iter(iocb, to);
 49	}
 50	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 51	inode_unlock_shared(inode);
 52
 53	file_accessed(iocb->ki_filp);
 54	return ret;
 55}
 56#endif
 57
 58static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 59{
 
 
 
 
 
 60	if (!iov_iter_count(to))
 61		return 0; /* skip atime */
 62
 63#ifdef CONFIG_FS_DAX
 64	if (IS_DAX(file_inode(iocb->ki_filp)))
 65		return ext4_dax_read_iter(iocb, to);
 66#endif
 
 
 
 67	return generic_file_read_iter(iocb, to);
 68}
 69
 70/*
 71 * Called when an inode is released. Note that this is different
 72 * from ext4_file_open: open gets called at every open, but release
 73 * gets called only when /all/ the files are closed.
 74 */
 75static int ext4_release_file(struct inode *inode, struct file *filp)
 76{
 77	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 78		ext4_alloc_da_blocks(inode);
 79		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 80	}
 81	/* if we are the last writer on the inode, drop the block reservation */
 82	if ((filp->f_mode & FMODE_WRITE) &&
 83			(atomic_read(&inode->i_writecount) == 1) &&
 84		        !EXT4_I(inode)->i_reserved_data_blocks)
 85	{
 86		down_write(&EXT4_I(inode)->i_data_sem);
 87		ext4_discard_preallocations(inode);
 88		up_write(&EXT4_I(inode)->i_data_sem);
 89	}
 90	if (is_dx(inode) && filp->private_data)
 91		ext4_htree_free_dir_info(filp->private_data);
 92
 93	return 0;
 94}
 95
 96static void ext4_unwritten_wait(struct inode *inode)
 97{
 98	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 99
100	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
101}
102
103/*
104 * This tests whether the IO in question is block-aligned or not.
105 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
106 * are converted to written only after the IO is complete.  Until they are
107 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
108 * it needs to zero out portions of the start and/or end block.  If 2 AIO
109 * threads are at work on the same unwritten block, they must be synchronized
110 * or one thread will zero the other's data, causing corruption.
111 */
112static int
113ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
114{
115	struct super_block *sb = inode->i_sb;
116	int blockmask = sb->s_blocksize - 1;
117
118	if (pos >= i_size_read(inode))
119		return 0;
120
121	if ((pos | iov_iter_alignment(from)) & blockmask)
122		return 1;
123
124	return 0;
 
 
 
 
 
 
125}
126
127/* Is IO overwriting allocated and initialized blocks? */
128static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
129{
130	struct ext4_map_blocks map;
131	unsigned int blkbits = inode->i_blkbits;
132	int err, blklen;
133
134	if (pos + len > i_size_read(inode))
135		return false;
136
137	map.m_lblk = pos >> blkbits;
138	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
139	blklen = map.m_len;
140
141	err = ext4_map_blocks(NULL, inode, &map, 0);
142	/*
143	 * 'err==len' means that all of the blocks have been preallocated,
144	 * regardless of whether they have been initialized or not. To exclude
145	 * unwritten extents, we need to check m_flags.
146	 */
147	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
148}
149
150static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
 
151{
152	struct inode *inode = file_inode(iocb->ki_filp);
153	ssize_t ret;
154
 
 
 
155	ret = generic_write_checks(iocb, from);
156	if (ret <= 0)
157		return ret;
 
158	/*
159	 * If we have encountered a bitmap-format file, the size limit
160	 * is smaller than s_maxbytes, which is for extent-mapped files.
161	 */
162	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
163		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
164
165		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
166			return -EFBIG;
167		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
168	}
 
169	return iov_iter_count(from);
170}
171
172#ifdef CONFIG_FS_DAX
173static ssize_t
174ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
175{
 
176	struct inode *inode = file_inode(iocb->ki_filp);
177	ssize_t ret;
178	bool overwrite = false;
 
179
180	inode_lock(inode);
181	ret = ext4_write_checks(iocb, from);
182	if (ret <= 0)
183		goto out;
184	ret = file_remove_privs(iocb->ki_filp);
185	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186		goto out;
187	ret = file_update_time(iocb->ki_filp);
188	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189		goto out;
190
191	if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
192		overwrite = true;
193		downgrade_write(&inode->i_rwsem);
194	}
195	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
196out:
197	if (!overwrite)
 
 
198		inode_unlock(inode);
199	else
200		inode_unlock_shared(inode);
201	if (ret > 0)
202		ret = generic_write_sync(iocb, ret);
203	return ret;
204}
205#endif
206
207static ssize_t
208ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
209{
 
 
210	struct inode *inode = file_inode(iocb->ki_filp);
211	int o_direct = iocb->ki_flags & IOCB_DIRECT;
212	int unaligned_aio = 0;
213	int overwrite = 0;
214	ssize_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
216#ifdef CONFIG_FS_DAX
217	if (IS_DAX(inode))
218		return ext4_dax_write_iter(iocb, from);
219#endif
 
 
 
 
220
221	inode_lock(inode);
222	ret = ext4_write_checks(iocb, from);
223	if (ret <= 0)
 
 
 
 
 
224		goto out;
 
 
 
 
 
 
 
 
 
 
225
226	/*
227	 * Unaligned direct AIO must be serialized among each other as zeroing
228	 * of partial blocks of two competing unaligned AIOs can result in data
229	 * corruption.
 
 
 
 
 
230	 */
231	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
232	    !is_sync_kiocb(iocb) &&
233	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
234		unaligned_aio = 1;
235		ext4_unwritten_wait(inode);
 
 
 
 
 
 
 
 
 
 
 
 
236	}
237
238	iocb->private = &overwrite;
239	/* Check whether we do a DIO overwrite or not */
240	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
241	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242		overwrite = 1;
 
 
 
 
 
243
244	ret = __generic_file_write_iter(iocb, from);
245	inode_unlock(inode);
 
 
 
 
 
 
 
 
 
 
 
 
246
247	if (ret > 0)
248		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
250	return ret;
 
251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252out:
253	inode_unlock(inode);
 
 
254	return ret;
255}
 
256
257#ifdef CONFIG_FS_DAX
258static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
259{
260	int result;
261	struct inode *inode = file_inode(vma->vm_file);
262	struct super_block *sb = inode->i_sb;
263	bool write = vmf->flags & FAULT_FLAG_WRITE;
264
265	if (write) {
266		sb_start_pagefault(sb);
267		file_update_time(vma->vm_file);
268	}
269	down_read(&EXT4_I(inode)->i_mmap_sem);
270	result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
271	up_read(&EXT4_I(inode)->i_mmap_sem);
272	if (write)
273		sb_end_pagefault(sb);
274
275	return result;
 
 
 
 
 
 
 
276}
277
278static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
279						pmd_t *pmd, unsigned int flags)
 
280{
281	int result;
282	struct inode *inode = file_inode(vma->vm_file);
 
 
 
283	struct super_block *sb = inode->i_sb;
284	bool write = flags & FAULT_FLAG_WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286	if (write) {
287		sb_start_pagefault(sb);
288		file_update_time(vma->vm_file);
 
 
 
 
 
 
 
 
 
 
 
289	}
290	down_read(&EXT4_I(inode)->i_mmap_sem);
291	result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
292				     &ext4_iomap_ops);
293	up_read(&EXT4_I(inode)->i_mmap_sem);
294	if (write)
 
 
 
 
 
 
295		sb_end_pagefault(sb);
 
 
 
296
297	return result;
298}
299
300/*
301 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
302 * handler we check for races agaist truncate. Note that since we cycle through
303 * i_mmap_sem, we are sure that also any hole punching that began before we
304 * were called is finished by now and so if it included part of the file we
305 * are working on, our pte will get unmapped and the check for pte_same() in
306 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
307 * desired.
308 */
309static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
310				struct vm_fault *vmf)
311{
312	struct inode *inode = file_inode(vma->vm_file);
313	struct super_block *sb = inode->i_sb;
314	loff_t size;
315	int ret;
316
317	sb_start_pagefault(sb);
318	file_update_time(vma->vm_file);
319	down_read(&EXT4_I(inode)->i_mmap_sem);
320	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
321	if (vmf->pgoff >= size)
322		ret = VM_FAULT_SIGBUS;
323	else
324		ret = dax_pfn_mkwrite(vma, vmf);
325	up_read(&EXT4_I(inode)->i_mmap_sem);
326	sb_end_pagefault(sb);
327
328	return ret;
329}
330
331static const struct vm_operations_struct ext4_dax_vm_ops = {
332	.fault		= ext4_dax_fault,
333	.pmd_fault	= ext4_dax_pmd_fault,
334	.page_mkwrite	= ext4_dax_fault,
335	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
336};
337#else
338#define ext4_dax_vm_ops	ext4_file_vm_ops
339#endif
340
341static const struct vm_operations_struct ext4_file_vm_ops = {
342	.fault		= ext4_filemap_fault,
343	.map_pages	= filemap_map_pages,
344	.page_mkwrite   = ext4_page_mkwrite,
345};
346
347static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
348{
349	struct inode *inode = file->f_mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
350
351	if (ext4_encrypted_inode(inode)) {
352		int err = fscrypt_get_encryption_info(inode);
353		if (err)
354			return 0;
355		if (!fscrypt_has_encryption_key(inode))
356			return -ENOKEY;
357	}
358	file_accessed(file);
359	if (IS_DAX(file_inode(file))) {
360		vma->vm_ops = &ext4_dax_vm_ops;
361		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
362	} else {
363		vma->vm_ops = &ext4_file_vm_ops;
364	}
365	return 0;
366}
367
368static int ext4_file_open(struct inode * inode, struct file * filp)
 
369{
370	struct super_block *sb = inode->i_sb;
371	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
372	struct vfsmount *mnt = filp->f_path.mnt;
373	struct dentry *dir;
374	struct path path;
375	char buf[64], *cp;
376	int ret;
 
 
 
 
377
378	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
379		     !(sb->s_flags & MS_RDONLY))) {
380		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
381		/*
382		 * Sample where the filesystem has been mounted and
383		 * store it in the superblock for sysadmin convenience
384		 * when trying to sort through large numbers of block
385		 * devices or filesystem images.
386		 */
387		memset(buf, 0, sizeof(buf));
388		path.mnt = mnt;
389		path.dentry = mnt->mnt_root;
390		cp = d_path(&path, buf, sizeof(buf));
391		if (!IS_ERR(cp)) {
392			handle_t *handle;
393			int err;
394
395			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
396			if (IS_ERR(handle))
397				return PTR_ERR(handle);
398			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
399			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
400			if (err) {
401				ext4_journal_stop(handle);
402				return err;
403			}
404			strlcpy(sbi->s_es->s_last_mounted, cp,
405				sizeof(sbi->s_es->s_last_mounted));
406			ext4_handle_dirty_super(handle, sb);
407			ext4_journal_stop(handle);
408		}
409	}
410	if (ext4_encrypted_inode(inode)) {
411		ret = fscrypt_get_encryption_info(inode);
412		if (ret)
413			return -EACCES;
414		if (!fscrypt_has_encryption_key(inode))
415			return -ENOKEY;
416	}
417
418	dir = dget_parent(file_dentry(filp));
419	if (ext4_encrypted_inode(d_inode(dir)) &&
420			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
421		ext4_warning(inode->i_sb,
422			     "Inconsistent encryption contexts: %lu/%lu",
423			     (unsigned long) d_inode(dir)->i_ino,
424			     (unsigned long) inode->i_ino);
425		dput(dir);
426		return -EPERM;
427	}
428	dput(dir);
429	/*
430	 * Set up the jbd2_inode if we are opening the inode for
431	 * writing and the journal is present
 
 
432	 */
433	if (filp->f_mode & FMODE_WRITE) {
434		ret = ext4_inode_attach_jinode(inode);
435		if (ret < 0)
436			return ret;
437	}
438	return dquot_file_open(inode, filp);
439}
440
441/*
442 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
443 * file rather than ext4_ext_walk_space() because we can introduce
444 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
445 * function.  When extent status tree has been fully implemented, it will
446 * track all extent status for a file and we can directly use it to
447 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
448 */
449
450/*
451 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
452 * lookup page cache to check whether or not there has some data between
453 * [startoff, endoff] because, if this range contains an unwritten extent,
454 * we determine this extent as a data or a hole according to whether the
455 * page cache has data or not.
456 */
457static int ext4_find_unwritten_pgoff(struct inode *inode,
458				     int whence,
459				     ext4_lblk_t end_blk,
460				     loff_t *offset)
461{
462	struct pagevec pvec;
463	unsigned int blkbits;
464	pgoff_t index;
465	pgoff_t end;
466	loff_t endoff;
467	loff_t startoff;
468	loff_t lastoff;
469	int found = 0;
470
471	blkbits = inode->i_sb->s_blocksize_bits;
472	startoff = *offset;
473	lastoff = startoff;
474	endoff = (loff_t)end_blk << blkbits;
475
476	index = startoff >> PAGE_SHIFT;
477	end = endoff >> PAGE_SHIFT;
478
479	pagevec_init(&pvec, 0);
480	do {
481		int i, num;
482		unsigned long nr_pages;
483
484		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
485		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
486					  (pgoff_t)num);
487		if (nr_pages == 0) {
488			if (whence == SEEK_DATA)
489				break;
490
491			BUG_ON(whence != SEEK_HOLE);
492			/*
493			 * If this is the first time to go into the loop and
494			 * offset is not beyond the end offset, it will be a
495			 * hole at this offset
496			 */
497			if (lastoff == startoff || lastoff < endoff)
498				found = 1;
499			break;
500		}
501
502		/*
503		 * If this is the first time to go into the loop and
504		 * offset is smaller than the first page offset, it will be a
505		 * hole at this offset.
506		 */
507		if (lastoff == startoff && whence == SEEK_HOLE &&
508		    lastoff < page_offset(pvec.pages[0])) {
509			found = 1;
510			break;
511		}
512
513		for (i = 0; i < nr_pages; i++) {
514			struct page *page = pvec.pages[i];
515			struct buffer_head *bh, *head;
516
517			/*
518			 * If the current offset is not beyond the end of given
519			 * range, it will be a hole.
520			 */
521			if (lastoff < endoff && whence == SEEK_HOLE &&
522			    page->index > end) {
523				found = 1;
524				*offset = lastoff;
525				goto out;
526			}
527
528			lock_page(page);
529
530			if (unlikely(page->mapping != inode->i_mapping)) {
531				unlock_page(page);
532				continue;
533			}
534
535			if (!page_has_buffers(page)) {
536				unlock_page(page);
537				continue;
538			}
539
540			if (page_has_buffers(page)) {
541				lastoff = page_offset(page);
542				bh = head = page_buffers(page);
543				do {
544					if (buffer_uptodate(bh) ||
545					    buffer_unwritten(bh)) {
546						if (whence == SEEK_DATA)
547							found = 1;
548					} else {
549						if (whence == SEEK_HOLE)
550							found = 1;
551					}
552					if (found) {
553						*offset = max_t(loff_t,
554							startoff, lastoff);
555						unlock_page(page);
556						goto out;
557					}
558					lastoff += bh->b_size;
559					bh = bh->b_this_page;
560				} while (bh != head);
561			}
562
563			lastoff = page_offset(page) + PAGE_SIZE;
564			unlock_page(page);
565		}
566
567		/*
568		 * The no. of pages is less than our desired, that would be a
569		 * hole in there.
570		 */
571		if (nr_pages < num && whence == SEEK_HOLE) {
572			found = 1;
573			*offset = lastoff;
574			break;
575		}
576
577		index = pvec.pages[i - 1]->index + 1;
578		pagevec_release(&pvec);
579	} while (index <= end);
580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581out:
582	pagevec_release(&pvec);
583	return found;
584}
585
586/*
587 * ext4_seek_data() retrieves the offset for SEEK_DATA.
588 */
589static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
590{
591	struct inode *inode = file->f_mapping->host;
592	struct extent_status es;
593	ext4_lblk_t start, last, end;
594	loff_t dataoff, isize;
595	int blkbits;
596	int ret;
597
598	inode_lock(inode);
 
599
600	isize = i_size_read(inode);
601	if (offset >= isize) {
602		inode_unlock(inode);
603		return -ENXIO;
604	}
605
606	blkbits = inode->i_sb->s_blocksize_bits;
607	start = offset >> blkbits;
608	last = start;
609	end = isize >> blkbits;
610	dataoff = offset;
611
612	do {
613		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
614		if (ret <= 0) {
615			/* No extent found -> no data */
616			if (ret == 0)
617				ret = -ENXIO;
618			inode_unlock(inode);
619			return ret;
620		}
621
622		last = es.es_lblk;
623		if (last != start)
624			dataoff = (loff_t)last << blkbits;
625		if (!ext4_es_is_unwritten(&es))
626			break;
627
628		/*
629		 * If there is a unwritten extent at this offset,
630		 * it will be as a data or a hole according to page
631		 * cache that has data or not.
632		 */
633		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
634					      es.es_lblk + es.es_len, &dataoff))
635			break;
636		last += es.es_len;
637		dataoff = (loff_t)last << blkbits;
638		cond_resched();
639	} while (last <= end);
640
641	inode_unlock(inode);
642
643	if (dataoff > isize)
644		return -ENXIO;
645
646	return vfs_setpos(file, dataoff, maxsize);
647}
648
649/*
650 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
651 */
652static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
653{
654	struct inode *inode = file->f_mapping->host;
655	struct extent_status es;
656	ext4_lblk_t start, last, end;
657	loff_t holeoff, isize;
658	int blkbits;
659	int ret;
660
661	inode_lock(inode);
662
663	isize = i_size_read(inode);
664	if (offset >= isize) {
665		inode_unlock(inode);
666		return -ENXIO;
667	}
668
669	blkbits = inode->i_sb->s_blocksize_bits;
670	start = offset >> blkbits;
671	last = start;
672	end = isize >> blkbits;
673	holeoff = offset;
674
675	do {
676		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
677		if (ret < 0) {
678			inode_unlock(inode);
679			return ret;
680		}
681		/* Found a hole? */
682		if (ret == 0 || es.es_lblk > last) {
683			if (last != start)
684				holeoff = (loff_t)last << blkbits;
685			break;
686		}
687		/*
688		 * If there is a unwritten extent at this offset,
689		 * it will be as a data or a hole according to page
690		 * cache that has data or not.
691		 */
692		if (ext4_es_is_unwritten(&es) &&
693		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
694					      last + es.es_len, &holeoff))
695			break;
696
697		last += es.es_len;
698		holeoff = (loff_t)last << blkbits;
699		cond_resched();
700	} while (last <= end);
701
702	inode_unlock(inode);
703
704	if (holeoff > isize)
705		holeoff = isize;
706
707	return vfs_setpos(file, holeoff, maxsize);
708}
709
710/*
711 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
712 * by calling generic_file_llseek_size() with the appropriate maxbytes
713 * value for each.
714 */
715loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
716{
717	struct inode *inode = file->f_mapping->host;
718	loff_t maxbytes;
719
720	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
721		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
722	else
723		maxbytes = inode->i_sb->s_maxbytes;
724
725	switch (whence) {
726	case SEEK_SET:
727	case SEEK_CUR:
728	case SEEK_END:
729		return generic_file_llseek_size(file, offset, whence,
730						maxbytes, i_size_read(inode));
 
 
 
 
 
 
731	case SEEK_DATA:
732		return ext4_seek_data(file, offset, maxbytes);
733	case SEEK_HOLE:
734		return ext4_seek_hole(file, offset, maxbytes);
 
 
735	}
736
737	return -EINVAL;
 
 
738}
739
740const struct file_operations ext4_file_operations = {
741	.llseek		= ext4_llseek,
742	.read_iter	= ext4_file_read_iter,
743	.write_iter	= ext4_file_write_iter,
 
744	.unlocked_ioctl = ext4_ioctl,
745#ifdef CONFIG_COMPAT
746	.compat_ioctl	= ext4_compat_ioctl,
747#endif
748	.mmap		= ext4_file_mmap,
 
749	.open		= ext4_file_open,
750	.release	= ext4_release_file,
751	.fsync		= ext4_sync_file,
752	.get_unmapped_area = thp_get_unmapped_area,
753	.splice_read	= generic_file_splice_read,
754	.splice_write	= iter_file_splice_write,
755	.fallocate	= ext4_fallocate,
756};
757
758const struct inode_operations ext4_file_inode_operations = {
759	.setattr	= ext4_setattr,
760	.getattr	= ext4_getattr,
761	.listxattr	= ext4_listxattr,
762	.get_acl	= ext4_get_acl,
763	.set_acl	= ext4_set_acl,
764	.fiemap		= ext4_fiemap,
 
 
765};
766