Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *   Copyright (C) 2017, Microsoft Corporation.
   4 *
   5 *   Author(s): Long Li <longli@microsoft.com>
   6 */
   7#include <linux/module.h>
   8#include <linux/highmem.h>
   9#include "smbdirect.h"
  10#include "cifs_debug.h"
  11#include "cifsproto.h"
  12#include "smb2proto.h"
  13
  14static struct smbd_response *get_empty_queue_buffer(
  15		struct smbd_connection *info);
  16static struct smbd_response *get_receive_buffer(
  17		struct smbd_connection *info);
  18static void put_receive_buffer(
  19		struct smbd_connection *info,
  20		struct smbd_response *response);
  21static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
  22static void destroy_receive_buffers(struct smbd_connection *info);
  23
  24static void put_empty_packet(
  25		struct smbd_connection *info, struct smbd_response *response);
  26static void enqueue_reassembly(
  27		struct smbd_connection *info,
  28		struct smbd_response *response, int data_length);
  29static struct smbd_response *_get_first_reassembly(
  30		struct smbd_connection *info);
  31
  32static int smbd_post_recv(
  33		struct smbd_connection *info,
  34		struct smbd_response *response);
  35
  36static int smbd_post_send_empty(struct smbd_connection *info);
  37static int smbd_post_send_data(
  38		struct smbd_connection *info,
  39		struct kvec *iov, int n_vec, int remaining_data_length);
  40static int smbd_post_send_page(struct smbd_connection *info,
  41		struct page *page, unsigned long offset,
  42		size_t size, int remaining_data_length);
  43
  44static void destroy_mr_list(struct smbd_connection *info);
  45static int allocate_mr_list(struct smbd_connection *info);
  46
  47/* SMBD version number */
  48#define SMBD_V1	0x0100
  49
  50/* Port numbers for SMBD transport */
  51#define SMB_PORT	445
  52#define SMBD_PORT	5445
  53
  54/* Address lookup and resolve timeout in ms */
  55#define RDMA_RESOLVE_TIMEOUT	5000
  56
  57/* SMBD negotiation timeout in seconds */
  58#define SMBD_NEGOTIATE_TIMEOUT	120
  59
  60/* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
  61#define SMBD_MIN_RECEIVE_SIZE		128
  62#define SMBD_MIN_FRAGMENTED_SIZE	131072
  63
  64/*
  65 * Default maximum number of RDMA read/write outstanding on this connection
  66 * This value is possibly decreased during QP creation on hardware limit
  67 */
  68#define SMBD_CM_RESPONDER_RESOURCES	32
  69
  70/* Maximum number of retries on data transfer operations */
  71#define SMBD_CM_RETRY			6
  72/* No need to retry on Receiver Not Ready since SMBD manages credits */
  73#define SMBD_CM_RNR_RETRY		0
  74
  75/*
  76 * User configurable initial values per SMBD transport connection
  77 * as defined in [MS-SMBD] 3.1.1.1
  78 * Those may change after a SMBD negotiation
  79 */
  80/* The local peer's maximum number of credits to grant to the peer */
  81int smbd_receive_credit_max = 255;
  82
  83/* The remote peer's credit request of local peer */
  84int smbd_send_credit_target = 255;
  85
  86/* The maximum single message size can be sent to remote peer */
  87int smbd_max_send_size = 1364;
  88
  89/*  The maximum fragmented upper-layer payload receive size supported */
  90int smbd_max_fragmented_recv_size = 1024 * 1024;
  91
  92/*  The maximum single-message size which can be received */
  93int smbd_max_receive_size = 1364;
  94
  95/* The timeout to initiate send of a keepalive message on idle */
  96int smbd_keep_alive_interval = 120;
  97
  98/*
  99 * User configurable initial values for RDMA transport
 100 * The actual values used may be lower and are limited to hardware capabilities
 101 */
 102/* Default maximum number of pages in a single RDMA write/read */
 103int smbd_max_frmr_depth = 2048;
 104
 105/* If payload is less than this byte, use RDMA send/recv not read/write */
 106int rdma_readwrite_threshold = 4096;
 107
 108/* Transport logging functions
 109 * Logging are defined as classes. They can be OR'ed to define the actual
 110 * logging level via module parameter smbd_logging_class
 111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
 112 * log_rdma_event()
 113 */
 114#define LOG_OUTGOING			0x1
 115#define LOG_INCOMING			0x2
 116#define LOG_READ			0x4
 117#define LOG_WRITE			0x8
 118#define LOG_RDMA_SEND			0x10
 119#define LOG_RDMA_RECV			0x20
 120#define LOG_KEEP_ALIVE			0x40
 121#define LOG_RDMA_EVENT			0x80
 122#define LOG_RDMA_MR			0x100
 123static unsigned int smbd_logging_class;
 124module_param(smbd_logging_class, uint, 0644);
 125MODULE_PARM_DESC(smbd_logging_class,
 126	"Logging class for SMBD transport 0x0 to 0x100");
 127
 128#define ERR		0x0
 129#define INFO		0x1
 130static unsigned int smbd_logging_level = ERR;
 131module_param(smbd_logging_level, uint, 0644);
 132MODULE_PARM_DESC(smbd_logging_level,
 133	"Logging level for SMBD transport, 0 (default): error, 1: info");
 134
 135#define log_rdma(level, class, fmt, args...)				\
 136do {									\
 137	if (level <= smbd_logging_level || class & smbd_logging_class)	\
 138		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
 139} while (0)
 140
 141#define log_outgoing(level, fmt, args...) \
 142		log_rdma(level, LOG_OUTGOING, fmt, ##args)
 143#define log_incoming(level, fmt, args...) \
 144		log_rdma(level, LOG_INCOMING, fmt, ##args)
 145#define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
 146#define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
 147#define log_rdma_send(level, fmt, args...) \
 148		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
 149#define log_rdma_recv(level, fmt, args...) \
 150		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
 151#define log_keep_alive(level, fmt, args...) \
 152		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
 153#define log_rdma_event(level, fmt, args...) \
 154		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
 155#define log_rdma_mr(level, fmt, args...) \
 156		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
 157
 158static void smbd_disconnect_rdma_work(struct work_struct *work)
 159{
 160	struct smbd_connection *info =
 161		container_of(work, struct smbd_connection, disconnect_work);
 162
 163	if (info->transport_status == SMBD_CONNECTED) {
 164		info->transport_status = SMBD_DISCONNECTING;
 165		rdma_disconnect(info->id);
 166	}
 167}
 168
 169static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
 170{
 171	queue_work(info->workqueue, &info->disconnect_work);
 172}
 173
 174/* Upcall from RDMA CM */
 175static int smbd_conn_upcall(
 176		struct rdma_cm_id *id, struct rdma_cm_event *event)
 177{
 178	struct smbd_connection *info = id->context;
 179
 180	log_rdma_event(INFO, "event=%d status=%d\n",
 181		event->event, event->status);
 182
 183	switch (event->event) {
 184	case RDMA_CM_EVENT_ADDR_RESOLVED:
 185	case RDMA_CM_EVENT_ROUTE_RESOLVED:
 186		info->ri_rc = 0;
 187		complete(&info->ri_done);
 188		break;
 189
 190	case RDMA_CM_EVENT_ADDR_ERROR:
 191		info->ri_rc = -EHOSTUNREACH;
 192		complete(&info->ri_done);
 193		break;
 194
 195	case RDMA_CM_EVENT_ROUTE_ERROR:
 196		info->ri_rc = -ENETUNREACH;
 197		complete(&info->ri_done);
 198		break;
 199
 200	case RDMA_CM_EVENT_ESTABLISHED:
 201		log_rdma_event(INFO, "connected event=%d\n", event->event);
 202		info->transport_status = SMBD_CONNECTED;
 203		wake_up_interruptible(&info->conn_wait);
 204		break;
 205
 206	case RDMA_CM_EVENT_CONNECT_ERROR:
 207	case RDMA_CM_EVENT_UNREACHABLE:
 208	case RDMA_CM_EVENT_REJECTED:
 209		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
 210		info->transport_status = SMBD_DISCONNECTED;
 211		wake_up_interruptible(&info->conn_wait);
 212		break;
 213
 214	case RDMA_CM_EVENT_DEVICE_REMOVAL:
 215	case RDMA_CM_EVENT_DISCONNECTED:
 216		/* This happenes when we fail the negotiation */
 217		if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
 218			info->transport_status = SMBD_DISCONNECTED;
 219			wake_up(&info->conn_wait);
 220			break;
 221		}
 222
 223		info->transport_status = SMBD_DISCONNECTED;
 224		wake_up_interruptible(&info->disconn_wait);
 225		wake_up_interruptible(&info->wait_reassembly_queue);
 226		wake_up_interruptible_all(&info->wait_send_queue);
 227		break;
 228
 229	default:
 230		break;
 231	}
 232
 233	return 0;
 234}
 235
 236/* Upcall from RDMA QP */
 237static void
 238smbd_qp_async_error_upcall(struct ib_event *event, void *context)
 239{
 240	struct smbd_connection *info = context;
 241
 242	log_rdma_event(ERR, "%s on device %s info %p\n",
 243		ib_event_msg(event->event), event->device->name, info);
 244
 245	switch (event->event) {
 246	case IB_EVENT_CQ_ERR:
 247	case IB_EVENT_QP_FATAL:
 248		smbd_disconnect_rdma_connection(info);
 249		break;
 250
 251	default:
 252		break;
 253	}
 254}
 255
 256static inline void *smbd_request_payload(struct smbd_request *request)
 257{
 258	return (void *)request->packet;
 259}
 260
 261static inline void *smbd_response_payload(struct smbd_response *response)
 262{
 263	return (void *)response->packet;
 264}
 265
 266/* Called when a RDMA send is done */
 267static void send_done(struct ib_cq *cq, struct ib_wc *wc)
 268{
 269	int i;
 270	struct smbd_request *request =
 271		container_of(wc->wr_cqe, struct smbd_request, cqe);
 272
 273	log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
 274		request, wc->status);
 275
 276	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
 277		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
 278			wc->status, wc->opcode);
 279		smbd_disconnect_rdma_connection(request->info);
 280	}
 281
 282	for (i = 0; i < request->num_sge; i++)
 283		ib_dma_unmap_single(request->info->id->device,
 284			request->sge[i].addr,
 285			request->sge[i].length,
 286			DMA_TO_DEVICE);
 287
 288	if (atomic_dec_and_test(&request->info->send_pending))
 289		wake_up(&request->info->wait_send_pending);
 290
 291	wake_up(&request->info->wait_post_send);
 292
 293	mempool_free(request, request->info->request_mempool);
 294}
 295
 296static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
 297{
 298	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
 299		       resp->min_version, resp->max_version,
 300		       resp->negotiated_version, resp->credits_requested,
 301		       resp->credits_granted, resp->status,
 302		       resp->max_readwrite_size, resp->preferred_send_size,
 303		       resp->max_receive_size, resp->max_fragmented_size);
 304}
 305
 306/*
 307 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
 308 * response, packet_length: the negotiation response message
 309 * return value: true if negotiation is a success, false if failed
 310 */
 311static bool process_negotiation_response(
 312		struct smbd_response *response, int packet_length)
 313{
 314	struct smbd_connection *info = response->info;
 315	struct smbd_negotiate_resp *packet = smbd_response_payload(response);
 316
 317	if (packet_length < sizeof(struct smbd_negotiate_resp)) {
 318		log_rdma_event(ERR,
 319			"error: packet_length=%d\n", packet_length);
 320		return false;
 321	}
 322
 323	if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
 324		log_rdma_event(ERR, "error: negotiated_version=%x\n",
 325			le16_to_cpu(packet->negotiated_version));
 326		return false;
 327	}
 328	info->protocol = le16_to_cpu(packet->negotiated_version);
 329
 330	if (packet->credits_requested == 0) {
 331		log_rdma_event(ERR, "error: credits_requested==0\n");
 332		return false;
 333	}
 334	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
 335
 336	if (packet->credits_granted == 0) {
 337		log_rdma_event(ERR, "error: credits_granted==0\n");
 338		return false;
 339	}
 340	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
 341
 342	atomic_set(&info->receive_credits, 0);
 343
 344	if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
 345		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
 346			le32_to_cpu(packet->preferred_send_size));
 347		return false;
 348	}
 349	info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
 350
 351	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
 352		log_rdma_event(ERR, "error: max_receive_size=%d\n",
 353			le32_to_cpu(packet->max_receive_size));
 354		return false;
 355	}
 356	info->max_send_size = min_t(int, info->max_send_size,
 357					le32_to_cpu(packet->max_receive_size));
 358
 359	if (le32_to_cpu(packet->max_fragmented_size) <
 360			SMBD_MIN_FRAGMENTED_SIZE) {
 361		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
 362			le32_to_cpu(packet->max_fragmented_size));
 363		return false;
 364	}
 365	info->max_fragmented_send_size =
 366		le32_to_cpu(packet->max_fragmented_size);
 367	info->rdma_readwrite_threshold =
 368		rdma_readwrite_threshold > info->max_fragmented_send_size ?
 369		info->max_fragmented_send_size :
 370		rdma_readwrite_threshold;
 371
 372
 373	info->max_readwrite_size = min_t(u32,
 374			le32_to_cpu(packet->max_readwrite_size),
 375			info->max_frmr_depth * PAGE_SIZE);
 376	info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
 377
 378	return true;
 379}
 380
 381static void smbd_post_send_credits(struct work_struct *work)
 382{
 383	int ret = 0;
 384	int use_receive_queue = 1;
 385	int rc;
 386	struct smbd_response *response;
 387	struct smbd_connection *info =
 388		container_of(work, struct smbd_connection,
 389			post_send_credits_work);
 390
 391	if (info->transport_status != SMBD_CONNECTED) {
 392		wake_up(&info->wait_receive_queues);
 393		return;
 394	}
 395
 396	if (info->receive_credit_target >
 397		atomic_read(&info->receive_credits)) {
 398		while (true) {
 399			if (use_receive_queue)
 400				response = get_receive_buffer(info);
 401			else
 402				response = get_empty_queue_buffer(info);
 403			if (!response) {
 404				/* now switch to emtpy packet queue */
 405				if (use_receive_queue) {
 406					use_receive_queue = 0;
 407					continue;
 408				} else
 409					break;
 410			}
 411
 412			response->type = SMBD_TRANSFER_DATA;
 413			response->first_segment = false;
 414			rc = smbd_post_recv(info, response);
 415			if (rc) {
 416				log_rdma_recv(ERR,
 417					"post_recv failed rc=%d\n", rc);
 418				put_receive_buffer(info, response);
 419				break;
 420			}
 421
 422			ret++;
 423		}
 424	}
 425
 426	spin_lock(&info->lock_new_credits_offered);
 427	info->new_credits_offered += ret;
 428	spin_unlock(&info->lock_new_credits_offered);
 429
 430	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
 431	info->send_immediate = true;
 432	if (atomic_read(&info->receive_credits) <
 433		info->receive_credit_target - 1) {
 434		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
 435		    info->send_immediate) {
 436			log_keep_alive(INFO, "send an empty message\n");
 437			smbd_post_send_empty(info);
 438		}
 439	}
 440}
 441
 442/* Called from softirq, when recv is done */
 443static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
 444{
 445	struct smbd_data_transfer *data_transfer;
 446	struct smbd_response *response =
 447		container_of(wc->wr_cqe, struct smbd_response, cqe);
 448	struct smbd_connection *info = response->info;
 449	int data_length = 0;
 450
 451	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
 452		      response, response->type, wc->status, wc->opcode,
 453		      wc->byte_len, wc->pkey_index);
 454
 455	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
 456		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
 457			wc->status, wc->opcode);
 458		smbd_disconnect_rdma_connection(info);
 459		goto error;
 460	}
 461
 462	ib_dma_sync_single_for_cpu(
 463		wc->qp->device,
 464		response->sge.addr,
 465		response->sge.length,
 466		DMA_FROM_DEVICE);
 467
 468	switch (response->type) {
 469	/* SMBD negotiation response */
 470	case SMBD_NEGOTIATE_RESP:
 471		dump_smbd_negotiate_resp(smbd_response_payload(response));
 472		info->full_packet_received = true;
 473		info->negotiate_done =
 474			process_negotiation_response(response, wc->byte_len);
 475		complete(&info->negotiate_completion);
 476		break;
 477
 478	/* SMBD data transfer packet */
 479	case SMBD_TRANSFER_DATA:
 480		data_transfer = smbd_response_payload(response);
 481		data_length = le32_to_cpu(data_transfer->data_length);
 482
 483		/*
 484		 * If this is a packet with data playload place the data in
 485		 * reassembly queue and wake up the reading thread
 486		 */
 487		if (data_length) {
 488			if (info->full_packet_received)
 489				response->first_segment = true;
 490
 491			if (le32_to_cpu(data_transfer->remaining_data_length))
 492				info->full_packet_received = false;
 493			else
 494				info->full_packet_received = true;
 495
 496			enqueue_reassembly(
 497				info,
 498				response,
 499				data_length);
 500		} else
 501			put_empty_packet(info, response);
 502
 503		if (data_length)
 504			wake_up_interruptible(&info->wait_reassembly_queue);
 505
 506		atomic_dec(&info->receive_credits);
 507		info->receive_credit_target =
 508			le16_to_cpu(data_transfer->credits_requested);
 509		if (le16_to_cpu(data_transfer->credits_granted)) {
 510			atomic_add(le16_to_cpu(data_transfer->credits_granted),
 511				&info->send_credits);
 512			/*
 513			 * We have new send credits granted from remote peer
 514			 * If any sender is waiting for credits, unblock it
 515			 */
 516			wake_up_interruptible(&info->wait_send_queue);
 517		}
 518
 519		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
 520			     le16_to_cpu(data_transfer->flags),
 521			     le32_to_cpu(data_transfer->data_offset),
 522			     le32_to_cpu(data_transfer->data_length),
 523			     le32_to_cpu(data_transfer->remaining_data_length));
 524
 525		/* Send a KEEP_ALIVE response right away if requested */
 526		info->keep_alive_requested = KEEP_ALIVE_NONE;
 527		if (le16_to_cpu(data_transfer->flags) &
 528				SMB_DIRECT_RESPONSE_REQUESTED) {
 529			info->keep_alive_requested = KEEP_ALIVE_PENDING;
 530		}
 531
 532		return;
 533
 534	default:
 535		log_rdma_recv(ERR,
 536			"unexpected response type=%d\n", response->type);
 537	}
 538
 539error:
 540	put_receive_buffer(info, response);
 541}
 542
 543static struct rdma_cm_id *smbd_create_id(
 544		struct smbd_connection *info,
 545		struct sockaddr *dstaddr, int port)
 546{
 547	struct rdma_cm_id *id;
 548	int rc;
 549	__be16 *sport;
 550
 551	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
 552		RDMA_PS_TCP, IB_QPT_RC);
 553	if (IS_ERR(id)) {
 554		rc = PTR_ERR(id);
 555		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
 556		return id;
 557	}
 558
 559	if (dstaddr->sa_family == AF_INET6)
 560		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
 561	else
 562		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
 563
 564	*sport = htons(port);
 565
 566	init_completion(&info->ri_done);
 567	info->ri_rc = -ETIMEDOUT;
 568
 569	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
 570		RDMA_RESOLVE_TIMEOUT);
 571	if (rc) {
 572		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
 573		goto out;
 574	}
 575	rc = wait_for_completion_interruptible_timeout(
 576		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
 577	/* e.g. if interrupted returns -ERESTARTSYS */
 578	if (rc < 0) {
 579		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
 580		goto out;
 581	}
 582	rc = info->ri_rc;
 583	if (rc) {
 584		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
 585		goto out;
 586	}
 587
 588	info->ri_rc = -ETIMEDOUT;
 589	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
 590	if (rc) {
 591		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
 592		goto out;
 593	}
 594	rc = wait_for_completion_interruptible_timeout(
 595		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
 596	/* e.g. if interrupted returns -ERESTARTSYS */
 597	if (rc < 0)  {
 598		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
 599		goto out;
 600	}
 601	rc = info->ri_rc;
 602	if (rc) {
 603		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
 604		goto out;
 605	}
 606
 607	return id;
 608
 609out:
 610	rdma_destroy_id(id);
 611	return ERR_PTR(rc);
 612}
 613
 614/*
 615 * Test if FRWR (Fast Registration Work Requests) is supported on the device
 616 * This implementation requries FRWR on RDMA read/write
 617 * return value: true if it is supported
 618 */
 619static bool frwr_is_supported(struct ib_device_attr *attrs)
 620{
 621	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
 622		return false;
 623	if (attrs->max_fast_reg_page_list_len == 0)
 624		return false;
 625	return true;
 626}
 627
 628static int smbd_ia_open(
 629		struct smbd_connection *info,
 630		struct sockaddr *dstaddr, int port)
 631{
 632	int rc;
 633
 634	info->id = smbd_create_id(info, dstaddr, port);
 635	if (IS_ERR(info->id)) {
 636		rc = PTR_ERR(info->id);
 637		goto out1;
 638	}
 639
 640	if (!frwr_is_supported(&info->id->device->attrs)) {
 641		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
 642		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
 643			       info->id->device->attrs.device_cap_flags,
 644			       info->id->device->attrs.max_fast_reg_page_list_len);
 645		rc = -EPROTONOSUPPORT;
 646		goto out2;
 647	}
 648	info->max_frmr_depth = min_t(int,
 649		smbd_max_frmr_depth,
 650		info->id->device->attrs.max_fast_reg_page_list_len);
 651	info->mr_type = IB_MR_TYPE_MEM_REG;
 652	if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
 653		info->mr_type = IB_MR_TYPE_SG_GAPS;
 654
 655	info->pd = ib_alloc_pd(info->id->device, 0);
 656	if (IS_ERR(info->pd)) {
 657		rc = PTR_ERR(info->pd);
 658		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
 659		goto out2;
 660	}
 661
 662	return 0;
 663
 664out2:
 665	rdma_destroy_id(info->id);
 666	info->id = NULL;
 667
 668out1:
 669	return rc;
 670}
 671
 672/*
 673 * Send a negotiation request message to the peer
 674 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
 675 * After negotiation, the transport is connected and ready for
 676 * carrying upper layer SMB payload
 677 */
 678static int smbd_post_send_negotiate_req(struct smbd_connection *info)
 679{
 680	struct ib_send_wr send_wr;
 681	int rc = -ENOMEM;
 682	struct smbd_request *request;
 683	struct smbd_negotiate_req *packet;
 684
 685	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
 686	if (!request)
 687		return rc;
 688
 689	request->info = info;
 690
 691	packet = smbd_request_payload(request);
 692	packet->min_version = cpu_to_le16(SMBD_V1);
 693	packet->max_version = cpu_to_le16(SMBD_V1);
 694	packet->reserved = 0;
 695	packet->credits_requested = cpu_to_le16(info->send_credit_target);
 696	packet->preferred_send_size = cpu_to_le32(info->max_send_size);
 697	packet->max_receive_size = cpu_to_le32(info->max_receive_size);
 698	packet->max_fragmented_size =
 699		cpu_to_le32(info->max_fragmented_recv_size);
 700
 701	request->num_sge = 1;
 702	request->sge[0].addr = ib_dma_map_single(
 703				info->id->device, (void *)packet,
 704				sizeof(*packet), DMA_TO_DEVICE);
 705	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
 706		rc = -EIO;
 707		goto dma_mapping_failed;
 708	}
 709
 710	request->sge[0].length = sizeof(*packet);
 711	request->sge[0].lkey = info->pd->local_dma_lkey;
 712
 713	ib_dma_sync_single_for_device(
 714		info->id->device, request->sge[0].addr,
 715		request->sge[0].length, DMA_TO_DEVICE);
 716
 717	request->cqe.done = send_done;
 718
 719	send_wr.next = NULL;
 720	send_wr.wr_cqe = &request->cqe;
 721	send_wr.sg_list = request->sge;
 722	send_wr.num_sge = request->num_sge;
 723	send_wr.opcode = IB_WR_SEND;
 724	send_wr.send_flags = IB_SEND_SIGNALED;
 725
 726	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
 727		request->sge[0].addr,
 728		request->sge[0].length, request->sge[0].lkey);
 729
 730	atomic_inc(&info->send_pending);
 731	rc = ib_post_send(info->id->qp, &send_wr, NULL);
 732	if (!rc)
 733		return 0;
 734
 735	/* if we reach here, post send failed */
 736	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
 737	atomic_dec(&info->send_pending);
 738	ib_dma_unmap_single(info->id->device, request->sge[0].addr,
 739		request->sge[0].length, DMA_TO_DEVICE);
 740
 741	smbd_disconnect_rdma_connection(info);
 742
 743dma_mapping_failed:
 744	mempool_free(request, info->request_mempool);
 745	return rc;
 746}
 747
 748/*
 749 * Extend the credits to remote peer
 750 * This implements [MS-SMBD] 3.1.5.9
 751 * The idea is that we should extend credits to remote peer as quickly as
 752 * it's allowed, to maintain data flow. We allocate as much receive
 753 * buffer as possible, and extend the receive credits to remote peer
 754 * return value: the new credtis being granted.
 755 */
 756static int manage_credits_prior_sending(struct smbd_connection *info)
 757{
 758	int new_credits;
 759
 760	spin_lock(&info->lock_new_credits_offered);
 761	new_credits = info->new_credits_offered;
 762	info->new_credits_offered = 0;
 763	spin_unlock(&info->lock_new_credits_offered);
 764
 765	return new_credits;
 766}
 767
 768/*
 769 * Check if we need to send a KEEP_ALIVE message
 770 * The idle connection timer triggers a KEEP_ALIVE message when expires
 771 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
 772 * back a response.
 773 * return value:
 774 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
 775 * 0: otherwise
 776 */
 777static int manage_keep_alive_before_sending(struct smbd_connection *info)
 778{
 779	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
 780		info->keep_alive_requested = KEEP_ALIVE_SENT;
 781		return 1;
 782	}
 783	return 0;
 784}
 785
 786/* Post the send request */
 787static int smbd_post_send(struct smbd_connection *info,
 788		struct smbd_request *request)
 789{
 790	struct ib_send_wr send_wr;
 791	int rc, i;
 792
 793	for (i = 0; i < request->num_sge; i++) {
 794		log_rdma_send(INFO,
 795			"rdma_request sge[%d] addr=0x%llx length=%u\n",
 796			i, request->sge[i].addr, request->sge[i].length);
 797		ib_dma_sync_single_for_device(
 798			info->id->device,
 799			request->sge[i].addr,
 800			request->sge[i].length,
 801			DMA_TO_DEVICE);
 802	}
 803
 804	request->cqe.done = send_done;
 805
 806	send_wr.next = NULL;
 807	send_wr.wr_cqe = &request->cqe;
 808	send_wr.sg_list = request->sge;
 809	send_wr.num_sge = request->num_sge;
 810	send_wr.opcode = IB_WR_SEND;
 811	send_wr.send_flags = IB_SEND_SIGNALED;
 812
 813	rc = ib_post_send(info->id->qp, &send_wr, NULL);
 814	if (rc) {
 815		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
 816		smbd_disconnect_rdma_connection(info);
 817		rc = -EAGAIN;
 818	} else
 819		/* Reset timer for idle connection after packet is sent */
 820		mod_delayed_work(info->workqueue, &info->idle_timer_work,
 821			info->keep_alive_interval*HZ);
 822
 823	return rc;
 824}
 825
 826static int smbd_post_send_sgl(struct smbd_connection *info,
 827	struct scatterlist *sgl, int data_length, int remaining_data_length)
 828{
 829	int num_sgs;
 830	int i, rc;
 831	int header_length;
 832	struct smbd_request *request;
 833	struct smbd_data_transfer *packet;
 834	int new_credits;
 835	struct scatterlist *sg;
 836
 837wait_credit:
 838	/* Wait for send credits. A SMBD packet needs one credit */
 839	rc = wait_event_interruptible(info->wait_send_queue,
 840		atomic_read(&info->send_credits) > 0 ||
 841		info->transport_status != SMBD_CONNECTED);
 842	if (rc)
 843		goto err_wait_credit;
 844
 845	if (info->transport_status != SMBD_CONNECTED) {
 846		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
 847		rc = -EAGAIN;
 848		goto err_wait_credit;
 849	}
 850	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
 851		atomic_inc(&info->send_credits);
 852		goto wait_credit;
 853	}
 854
 855wait_send_queue:
 856	wait_event(info->wait_post_send,
 857		atomic_read(&info->send_pending) < info->send_credit_target ||
 858		info->transport_status != SMBD_CONNECTED);
 859
 860	if (info->transport_status != SMBD_CONNECTED) {
 861		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
 862		rc = -EAGAIN;
 863		goto err_wait_send_queue;
 864	}
 865
 866	if (unlikely(atomic_inc_return(&info->send_pending) >
 867				info->send_credit_target)) {
 868		atomic_dec(&info->send_pending);
 869		goto wait_send_queue;
 870	}
 871
 872	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
 873	if (!request) {
 874		rc = -ENOMEM;
 875		goto err_alloc;
 876	}
 877
 878	request->info = info;
 879
 880	/* Fill in the packet header */
 881	packet = smbd_request_payload(request);
 882	packet->credits_requested = cpu_to_le16(info->send_credit_target);
 883
 884	new_credits = manage_credits_prior_sending(info);
 885	atomic_add(new_credits, &info->receive_credits);
 886	packet->credits_granted = cpu_to_le16(new_credits);
 887
 888	info->send_immediate = false;
 889
 890	packet->flags = 0;
 891	if (manage_keep_alive_before_sending(info))
 892		packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
 893
 894	packet->reserved = 0;
 895	if (!data_length)
 896		packet->data_offset = 0;
 897	else
 898		packet->data_offset = cpu_to_le32(24);
 899	packet->data_length = cpu_to_le32(data_length);
 900	packet->remaining_data_length = cpu_to_le32(remaining_data_length);
 901	packet->padding = 0;
 902
 903	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
 904		     le16_to_cpu(packet->credits_requested),
 905		     le16_to_cpu(packet->credits_granted),
 906		     le32_to_cpu(packet->data_offset),
 907		     le32_to_cpu(packet->data_length),
 908		     le32_to_cpu(packet->remaining_data_length));
 909
 910	/* Map the packet to DMA */
 911	header_length = sizeof(struct smbd_data_transfer);
 912	/* If this is a packet without payload, don't send padding */
 913	if (!data_length)
 914		header_length = offsetof(struct smbd_data_transfer, padding);
 915
 916	request->num_sge = 1;
 917	request->sge[0].addr = ib_dma_map_single(info->id->device,
 918						 (void *)packet,
 919						 header_length,
 920						 DMA_TO_DEVICE);
 921	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
 922		rc = -EIO;
 923		request->sge[0].addr = 0;
 924		goto err_dma;
 925	}
 926
 927	request->sge[0].length = header_length;
 928	request->sge[0].lkey = info->pd->local_dma_lkey;
 929
 930	/* Fill in the packet data payload */
 931	num_sgs = sgl ? sg_nents(sgl) : 0;
 932	for_each_sg(sgl, sg, num_sgs, i) {
 933		request->sge[i+1].addr =
 934			ib_dma_map_page(info->id->device, sg_page(sg),
 935			       sg->offset, sg->length, DMA_TO_DEVICE);
 936		if (ib_dma_mapping_error(
 937				info->id->device, request->sge[i+1].addr)) {
 938			rc = -EIO;
 939			request->sge[i+1].addr = 0;
 940			goto err_dma;
 941		}
 942		request->sge[i+1].length = sg->length;
 943		request->sge[i+1].lkey = info->pd->local_dma_lkey;
 944		request->num_sge++;
 945	}
 946
 947	rc = smbd_post_send(info, request);
 948	if (!rc)
 949		return 0;
 950
 951err_dma:
 952	for (i = 0; i < request->num_sge; i++)
 953		if (request->sge[i].addr)
 954			ib_dma_unmap_single(info->id->device,
 955					    request->sge[i].addr,
 956					    request->sge[i].length,
 957					    DMA_TO_DEVICE);
 958	mempool_free(request, info->request_mempool);
 959
 960	/* roll back receive credits and credits to be offered */
 961	spin_lock(&info->lock_new_credits_offered);
 962	info->new_credits_offered += new_credits;
 963	spin_unlock(&info->lock_new_credits_offered);
 964	atomic_sub(new_credits, &info->receive_credits);
 965
 966err_alloc:
 967	if (atomic_dec_and_test(&info->send_pending))
 968		wake_up(&info->wait_send_pending);
 969
 970err_wait_send_queue:
 971	/* roll back send credits and pending */
 972	atomic_inc(&info->send_credits);
 973
 974err_wait_credit:
 975	return rc;
 976}
 977
 978/*
 979 * Send a page
 980 * page: the page to send
 981 * offset: offset in the page to send
 982 * size: length in the page to send
 983 * remaining_data_length: remaining data to send in this payload
 984 */
 985static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
 986		unsigned long offset, size_t size, int remaining_data_length)
 987{
 988	struct scatterlist sgl;
 989
 990	sg_init_table(&sgl, 1);
 991	sg_set_page(&sgl, page, size, offset);
 992
 993	return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
 994}
 995
 996/*
 997 * Send an empty message
 998 * Empty message is used to extend credits to peer to for keep live
 999 * while there is no upper layer payload to send at the time
1000 */
1001static int smbd_post_send_empty(struct smbd_connection *info)
1002{
1003	info->count_send_empty++;
1004	return smbd_post_send_sgl(info, NULL, 0, 0);
1005}
1006
1007/*
1008 * Send a data buffer
1009 * iov: the iov array describing the data buffers
1010 * n_vec: number of iov array
1011 * remaining_data_length: remaining data to send following this packet
1012 * in segmented SMBD packet
1013 */
1014static int smbd_post_send_data(
1015	struct smbd_connection *info, struct kvec *iov, int n_vec,
1016	int remaining_data_length)
1017{
1018	int i;
1019	u32 data_length = 0;
1020	struct scatterlist sgl[SMBDIRECT_MAX_SEND_SGE - 1];
1021
1022	if (n_vec > SMBDIRECT_MAX_SEND_SGE - 1) {
1023		cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1024		return -EINVAL;
1025	}
1026
1027	sg_init_table(sgl, n_vec);
1028	for (i = 0; i < n_vec; i++) {
1029		data_length += iov[i].iov_len;
1030		sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1031	}
1032
1033	return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1034}
1035
1036/*
1037 * Post a receive request to the transport
1038 * The remote peer can only send data when a receive request is posted
1039 * The interaction is controlled by send/receive credit system
1040 */
1041static int smbd_post_recv(
1042		struct smbd_connection *info, struct smbd_response *response)
1043{
1044	struct ib_recv_wr recv_wr;
1045	int rc = -EIO;
1046
1047	response->sge.addr = ib_dma_map_single(
1048				info->id->device, response->packet,
1049				info->max_receive_size, DMA_FROM_DEVICE);
1050	if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1051		return rc;
1052
1053	response->sge.length = info->max_receive_size;
1054	response->sge.lkey = info->pd->local_dma_lkey;
1055
1056	response->cqe.done = recv_done;
1057
1058	recv_wr.wr_cqe = &response->cqe;
1059	recv_wr.next = NULL;
1060	recv_wr.sg_list = &response->sge;
1061	recv_wr.num_sge = 1;
1062
1063	rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1064	if (rc) {
1065		ib_dma_unmap_single(info->id->device, response->sge.addr,
1066				    response->sge.length, DMA_FROM_DEVICE);
1067		smbd_disconnect_rdma_connection(info);
1068		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1069	}
1070
1071	return rc;
1072}
1073
1074/* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1075static int smbd_negotiate(struct smbd_connection *info)
1076{
1077	int rc;
1078	struct smbd_response *response = get_receive_buffer(info);
1079
1080	response->type = SMBD_NEGOTIATE_RESP;
1081	rc = smbd_post_recv(info, response);
1082	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1083		       rc, response->sge.addr,
1084		       response->sge.length, response->sge.lkey);
1085	if (rc)
1086		return rc;
1087
1088	init_completion(&info->negotiate_completion);
1089	info->negotiate_done = false;
1090	rc = smbd_post_send_negotiate_req(info);
1091	if (rc)
1092		return rc;
1093
1094	rc = wait_for_completion_interruptible_timeout(
1095		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1096	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1097
1098	if (info->negotiate_done)
1099		return 0;
1100
1101	if (rc == 0)
1102		rc = -ETIMEDOUT;
1103	else if (rc == -ERESTARTSYS)
1104		rc = -EINTR;
1105	else
1106		rc = -ENOTCONN;
1107
1108	return rc;
1109}
1110
1111static void put_empty_packet(
1112		struct smbd_connection *info, struct smbd_response *response)
1113{
1114	spin_lock(&info->empty_packet_queue_lock);
1115	list_add_tail(&response->list, &info->empty_packet_queue);
1116	info->count_empty_packet_queue++;
1117	spin_unlock(&info->empty_packet_queue_lock);
1118
1119	queue_work(info->workqueue, &info->post_send_credits_work);
1120}
1121
1122/*
1123 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1124 * This is a queue for reassembling upper layer payload and present to upper
1125 * layer. All the inncoming payload go to the reassembly queue, regardless of
1126 * if reassembly is required. The uuper layer code reads from the queue for all
1127 * incoming payloads.
1128 * Put a received packet to the reassembly queue
1129 * response: the packet received
1130 * data_length: the size of payload in this packet
1131 */
1132static void enqueue_reassembly(
1133	struct smbd_connection *info,
1134	struct smbd_response *response,
1135	int data_length)
1136{
1137	spin_lock(&info->reassembly_queue_lock);
1138	list_add_tail(&response->list, &info->reassembly_queue);
1139	info->reassembly_queue_length++;
1140	/*
1141	 * Make sure reassembly_data_length is updated after list and
1142	 * reassembly_queue_length are updated. On the dequeue side
1143	 * reassembly_data_length is checked without a lock to determine
1144	 * if reassembly_queue_length and list is up to date
1145	 */
1146	virt_wmb();
1147	info->reassembly_data_length += data_length;
1148	spin_unlock(&info->reassembly_queue_lock);
1149	info->count_reassembly_queue++;
1150	info->count_enqueue_reassembly_queue++;
1151}
1152
1153/*
1154 * Get the first entry at the front of reassembly queue
1155 * Caller is responsible for locking
1156 * return value: the first entry if any, NULL if queue is empty
1157 */
1158static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1159{
1160	struct smbd_response *ret = NULL;
1161
1162	if (!list_empty(&info->reassembly_queue)) {
1163		ret = list_first_entry(
1164			&info->reassembly_queue,
1165			struct smbd_response, list);
1166	}
1167	return ret;
1168}
1169
1170static struct smbd_response *get_empty_queue_buffer(
1171		struct smbd_connection *info)
1172{
1173	struct smbd_response *ret = NULL;
1174	unsigned long flags;
1175
1176	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1177	if (!list_empty(&info->empty_packet_queue)) {
1178		ret = list_first_entry(
1179			&info->empty_packet_queue,
1180			struct smbd_response, list);
1181		list_del(&ret->list);
1182		info->count_empty_packet_queue--;
1183	}
1184	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1185
1186	return ret;
1187}
1188
1189/*
1190 * Get a receive buffer
1191 * For each remote send, we need to post a receive. The receive buffers are
1192 * pre-allocated in advance.
1193 * return value: the receive buffer, NULL if none is available
1194 */
1195static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1196{
1197	struct smbd_response *ret = NULL;
1198	unsigned long flags;
1199
1200	spin_lock_irqsave(&info->receive_queue_lock, flags);
1201	if (!list_empty(&info->receive_queue)) {
1202		ret = list_first_entry(
1203			&info->receive_queue,
1204			struct smbd_response, list);
1205		list_del(&ret->list);
1206		info->count_receive_queue--;
1207		info->count_get_receive_buffer++;
1208	}
1209	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1210
1211	return ret;
1212}
1213
1214/*
1215 * Return a receive buffer
1216 * Upon returning of a receive buffer, we can post new receive and extend
1217 * more receive credits to remote peer. This is done immediately after a
1218 * receive buffer is returned.
1219 */
1220static void put_receive_buffer(
1221	struct smbd_connection *info, struct smbd_response *response)
1222{
1223	unsigned long flags;
1224
1225	ib_dma_unmap_single(info->id->device, response->sge.addr,
1226		response->sge.length, DMA_FROM_DEVICE);
1227
1228	spin_lock_irqsave(&info->receive_queue_lock, flags);
1229	list_add_tail(&response->list, &info->receive_queue);
1230	info->count_receive_queue++;
1231	info->count_put_receive_buffer++;
1232	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1233
1234	queue_work(info->workqueue, &info->post_send_credits_work);
1235}
1236
1237/* Preallocate all receive buffer on transport establishment */
1238static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1239{
1240	int i;
1241	struct smbd_response *response;
1242
1243	INIT_LIST_HEAD(&info->reassembly_queue);
1244	spin_lock_init(&info->reassembly_queue_lock);
1245	info->reassembly_data_length = 0;
1246	info->reassembly_queue_length = 0;
1247
1248	INIT_LIST_HEAD(&info->receive_queue);
1249	spin_lock_init(&info->receive_queue_lock);
1250	info->count_receive_queue = 0;
1251
1252	INIT_LIST_HEAD(&info->empty_packet_queue);
1253	spin_lock_init(&info->empty_packet_queue_lock);
1254	info->count_empty_packet_queue = 0;
1255
1256	init_waitqueue_head(&info->wait_receive_queues);
1257
1258	for (i = 0; i < num_buf; i++) {
1259		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1260		if (!response)
1261			goto allocate_failed;
1262
1263		response->info = info;
1264		list_add_tail(&response->list, &info->receive_queue);
1265		info->count_receive_queue++;
1266	}
1267
1268	return 0;
1269
1270allocate_failed:
1271	while (!list_empty(&info->receive_queue)) {
1272		response = list_first_entry(
1273				&info->receive_queue,
1274				struct smbd_response, list);
1275		list_del(&response->list);
1276		info->count_receive_queue--;
1277
1278		mempool_free(response, info->response_mempool);
1279	}
1280	return -ENOMEM;
1281}
1282
1283static void destroy_receive_buffers(struct smbd_connection *info)
1284{
1285	struct smbd_response *response;
1286
1287	while ((response = get_receive_buffer(info)))
1288		mempool_free(response, info->response_mempool);
1289
1290	while ((response = get_empty_queue_buffer(info)))
1291		mempool_free(response, info->response_mempool);
1292}
1293
1294/* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1295static void idle_connection_timer(struct work_struct *work)
1296{
1297	struct smbd_connection *info = container_of(
1298					work, struct smbd_connection,
1299					idle_timer_work.work);
1300
1301	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1302		log_keep_alive(ERR,
1303			"error status info->keep_alive_requested=%d\n",
1304			info->keep_alive_requested);
1305		smbd_disconnect_rdma_connection(info);
1306		return;
1307	}
1308
1309	log_keep_alive(INFO, "about to send an empty idle message\n");
1310	smbd_post_send_empty(info);
1311
1312	/* Setup the next idle timeout work */
1313	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1314			info->keep_alive_interval*HZ);
1315}
1316
1317/*
1318 * Destroy the transport and related RDMA and memory resources
1319 * Need to go through all the pending counters and make sure on one is using
1320 * the transport while it is destroyed
1321 */
1322void smbd_destroy(struct TCP_Server_Info *server)
1323{
1324	struct smbd_connection *info = server->smbd_conn;
1325	struct smbd_response *response;
1326	unsigned long flags;
1327
1328	if (!info) {
1329		log_rdma_event(INFO, "rdma session already destroyed\n");
1330		return;
1331	}
1332
1333	log_rdma_event(INFO, "destroying rdma session\n");
1334	if (info->transport_status != SMBD_DISCONNECTED) {
1335		rdma_disconnect(server->smbd_conn->id);
1336		log_rdma_event(INFO, "wait for transport being disconnected\n");
1337		wait_event_interruptible(
1338			info->disconn_wait,
1339			info->transport_status == SMBD_DISCONNECTED);
1340	}
1341
1342	log_rdma_event(INFO, "destroying qp\n");
1343	ib_drain_qp(info->id->qp);
1344	rdma_destroy_qp(info->id);
1345
1346	log_rdma_event(INFO, "cancelling idle timer\n");
1347	cancel_delayed_work_sync(&info->idle_timer_work);
1348
1349	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1350	wait_event(info->wait_send_pending,
1351		atomic_read(&info->send_pending) == 0);
1352
1353	/* It's not possible for upper layer to get to reassembly */
1354	log_rdma_event(INFO, "drain the reassembly queue\n");
1355	do {
1356		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1357		response = _get_first_reassembly(info);
1358		if (response) {
1359			list_del(&response->list);
1360			spin_unlock_irqrestore(
1361				&info->reassembly_queue_lock, flags);
1362			put_receive_buffer(info, response);
1363		} else
1364			spin_unlock_irqrestore(
1365				&info->reassembly_queue_lock, flags);
1366	} while (response);
1367	info->reassembly_data_length = 0;
1368
1369	log_rdma_event(INFO, "free receive buffers\n");
1370	wait_event(info->wait_receive_queues,
1371		info->count_receive_queue + info->count_empty_packet_queue
1372			== info->receive_credit_max);
1373	destroy_receive_buffers(info);
1374
1375	/*
1376	 * For performance reasons, memory registration and deregistration
1377	 * are not locked by srv_mutex. It is possible some processes are
1378	 * blocked on transport srv_mutex while holding memory registration.
1379	 * Release the transport srv_mutex to allow them to hit the failure
1380	 * path when sending data, and then release memory registartions.
1381	 */
1382	log_rdma_event(INFO, "freeing mr list\n");
1383	wake_up_interruptible_all(&info->wait_mr);
1384	while (atomic_read(&info->mr_used_count)) {
1385		cifs_server_unlock(server);
1386		msleep(1000);
1387		cifs_server_lock(server);
1388	}
1389	destroy_mr_list(info);
1390
1391	ib_free_cq(info->send_cq);
1392	ib_free_cq(info->recv_cq);
1393	ib_dealloc_pd(info->pd);
1394	rdma_destroy_id(info->id);
1395
1396	/* free mempools */
1397	mempool_destroy(info->request_mempool);
1398	kmem_cache_destroy(info->request_cache);
1399
1400	mempool_destroy(info->response_mempool);
1401	kmem_cache_destroy(info->response_cache);
1402
1403	info->transport_status = SMBD_DESTROYED;
1404
1405	destroy_workqueue(info->workqueue);
1406	log_rdma_event(INFO,  "rdma session destroyed\n");
1407	kfree(info);
1408	server->smbd_conn = NULL;
1409}
1410
1411/*
1412 * Reconnect this SMBD connection, called from upper layer
1413 * return value: 0 on success, or actual error code
1414 */
1415int smbd_reconnect(struct TCP_Server_Info *server)
1416{
1417	log_rdma_event(INFO, "reconnecting rdma session\n");
1418
1419	if (!server->smbd_conn) {
1420		log_rdma_event(INFO, "rdma session already destroyed\n");
1421		goto create_conn;
1422	}
1423
1424	/*
1425	 * This is possible if transport is disconnected and we haven't received
1426	 * notification from RDMA, but upper layer has detected timeout
1427	 */
1428	if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1429		log_rdma_event(INFO, "disconnecting transport\n");
1430		smbd_destroy(server);
1431	}
1432
1433create_conn:
1434	log_rdma_event(INFO, "creating rdma session\n");
1435	server->smbd_conn = smbd_get_connection(
1436		server, (struct sockaddr *) &server->dstaddr);
1437
1438	if (server->smbd_conn)
1439		cifs_dbg(VFS, "RDMA transport re-established\n");
1440
1441	return server->smbd_conn ? 0 : -ENOENT;
1442}
1443
1444static void destroy_caches_and_workqueue(struct smbd_connection *info)
1445{
1446	destroy_receive_buffers(info);
1447	destroy_workqueue(info->workqueue);
1448	mempool_destroy(info->response_mempool);
1449	kmem_cache_destroy(info->response_cache);
1450	mempool_destroy(info->request_mempool);
1451	kmem_cache_destroy(info->request_cache);
1452}
1453
1454#define MAX_NAME_LEN	80
1455static int allocate_caches_and_workqueue(struct smbd_connection *info)
1456{
1457	char name[MAX_NAME_LEN];
1458	int rc;
1459
1460	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1461	info->request_cache =
1462		kmem_cache_create(
1463			name,
1464			sizeof(struct smbd_request) +
1465				sizeof(struct smbd_data_transfer),
1466			0, SLAB_HWCACHE_ALIGN, NULL);
1467	if (!info->request_cache)
1468		return -ENOMEM;
1469
1470	info->request_mempool =
1471		mempool_create(info->send_credit_target, mempool_alloc_slab,
1472			mempool_free_slab, info->request_cache);
1473	if (!info->request_mempool)
1474		goto out1;
1475
1476	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1477	info->response_cache =
1478		kmem_cache_create(
1479			name,
1480			sizeof(struct smbd_response) +
1481				info->max_receive_size,
1482			0, SLAB_HWCACHE_ALIGN, NULL);
1483	if (!info->response_cache)
1484		goto out2;
1485
1486	info->response_mempool =
1487		mempool_create(info->receive_credit_max, mempool_alloc_slab,
1488		       mempool_free_slab, info->response_cache);
1489	if (!info->response_mempool)
1490		goto out3;
1491
1492	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1493	info->workqueue = create_workqueue(name);
1494	if (!info->workqueue)
1495		goto out4;
1496
1497	rc = allocate_receive_buffers(info, info->receive_credit_max);
1498	if (rc) {
1499		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1500		goto out5;
1501	}
1502
1503	return 0;
1504
1505out5:
1506	destroy_workqueue(info->workqueue);
1507out4:
1508	mempool_destroy(info->response_mempool);
1509out3:
1510	kmem_cache_destroy(info->response_cache);
1511out2:
1512	mempool_destroy(info->request_mempool);
1513out1:
1514	kmem_cache_destroy(info->request_cache);
1515	return -ENOMEM;
1516}
1517
1518/* Create a SMBD connection, called by upper layer */
1519static struct smbd_connection *_smbd_get_connection(
1520	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1521{
1522	int rc;
1523	struct smbd_connection *info;
1524	struct rdma_conn_param conn_param;
1525	struct ib_qp_init_attr qp_attr;
1526	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1527	struct ib_port_immutable port_immutable;
1528	u32 ird_ord_hdr[2];
1529
1530	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1531	if (!info)
1532		return NULL;
1533
1534	info->transport_status = SMBD_CONNECTING;
1535	rc = smbd_ia_open(info, dstaddr, port);
1536	if (rc) {
1537		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1538		goto create_id_failed;
1539	}
1540
1541	if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1542	    smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1543		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1544			       smbd_send_credit_target,
1545			       info->id->device->attrs.max_cqe,
1546			       info->id->device->attrs.max_qp_wr);
1547		goto config_failed;
1548	}
1549
1550	if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1551	    smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1552		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1553			       smbd_receive_credit_max,
1554			       info->id->device->attrs.max_cqe,
1555			       info->id->device->attrs.max_qp_wr);
1556		goto config_failed;
1557	}
1558
1559	info->receive_credit_max = smbd_receive_credit_max;
1560	info->send_credit_target = smbd_send_credit_target;
1561	info->max_send_size = smbd_max_send_size;
1562	info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1563	info->max_receive_size = smbd_max_receive_size;
1564	info->keep_alive_interval = smbd_keep_alive_interval;
1565
1566	if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1567	    info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1568		log_rdma_event(ERR,
1569			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1570			IB_DEVICE_NAME_MAX,
1571			info->id->device->name,
1572			info->id->device->attrs.max_send_sge,
1573			info->id->device->attrs.max_recv_sge);
1574		goto config_failed;
1575	}
1576
1577	info->send_cq = NULL;
1578	info->recv_cq = NULL;
1579	info->send_cq =
1580		ib_alloc_cq_any(info->id->device, info,
1581				info->send_credit_target, IB_POLL_SOFTIRQ);
1582	if (IS_ERR(info->send_cq)) {
1583		info->send_cq = NULL;
1584		goto alloc_cq_failed;
1585	}
1586
1587	info->recv_cq =
1588		ib_alloc_cq_any(info->id->device, info,
1589				info->receive_credit_max, IB_POLL_SOFTIRQ);
1590	if (IS_ERR(info->recv_cq)) {
1591		info->recv_cq = NULL;
1592		goto alloc_cq_failed;
1593	}
1594
1595	memset(&qp_attr, 0, sizeof(qp_attr));
1596	qp_attr.event_handler = smbd_qp_async_error_upcall;
1597	qp_attr.qp_context = info;
1598	qp_attr.cap.max_send_wr = info->send_credit_target;
1599	qp_attr.cap.max_recv_wr = info->receive_credit_max;
1600	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1601	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1602	qp_attr.cap.max_inline_data = 0;
1603	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1604	qp_attr.qp_type = IB_QPT_RC;
1605	qp_attr.send_cq = info->send_cq;
1606	qp_attr.recv_cq = info->recv_cq;
1607	qp_attr.port_num = ~0;
1608
1609	rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1610	if (rc) {
1611		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1612		goto create_qp_failed;
1613	}
1614
1615	memset(&conn_param, 0, sizeof(conn_param));
1616	conn_param.initiator_depth = 0;
1617
1618	conn_param.responder_resources =
1619		info->id->device->attrs.max_qp_rd_atom
1620			< SMBD_CM_RESPONDER_RESOURCES ?
1621		info->id->device->attrs.max_qp_rd_atom :
1622		SMBD_CM_RESPONDER_RESOURCES;
1623	info->responder_resources = conn_param.responder_resources;
1624	log_rdma_mr(INFO, "responder_resources=%d\n",
1625		info->responder_resources);
1626
1627	/* Need to send IRD/ORD in private data for iWARP */
1628	info->id->device->ops.get_port_immutable(
1629		info->id->device, info->id->port_num, &port_immutable);
1630	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1631		ird_ord_hdr[0] = info->responder_resources;
1632		ird_ord_hdr[1] = 1;
1633		conn_param.private_data = ird_ord_hdr;
1634		conn_param.private_data_len = sizeof(ird_ord_hdr);
1635	} else {
1636		conn_param.private_data = NULL;
1637		conn_param.private_data_len = 0;
1638	}
1639
1640	conn_param.retry_count = SMBD_CM_RETRY;
1641	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1642	conn_param.flow_control = 0;
1643
1644	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1645		&addr_in->sin_addr, port);
1646
1647	init_waitqueue_head(&info->conn_wait);
1648	init_waitqueue_head(&info->disconn_wait);
1649	init_waitqueue_head(&info->wait_reassembly_queue);
1650	rc = rdma_connect(info->id, &conn_param);
1651	if (rc) {
1652		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1653		goto rdma_connect_failed;
1654	}
1655
1656	wait_event_interruptible(
1657		info->conn_wait, info->transport_status != SMBD_CONNECTING);
1658
1659	if (info->transport_status != SMBD_CONNECTED) {
1660		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1661		goto rdma_connect_failed;
1662	}
1663
1664	log_rdma_event(INFO, "rdma_connect connected\n");
1665
1666	rc = allocate_caches_and_workqueue(info);
1667	if (rc) {
1668		log_rdma_event(ERR, "cache allocation failed\n");
1669		goto allocate_cache_failed;
1670	}
1671
1672	init_waitqueue_head(&info->wait_send_queue);
1673	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1674	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1675		info->keep_alive_interval*HZ);
1676
1677	init_waitqueue_head(&info->wait_send_pending);
1678	atomic_set(&info->send_pending, 0);
1679
1680	init_waitqueue_head(&info->wait_post_send);
1681
1682	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1683	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1684	info->new_credits_offered = 0;
1685	spin_lock_init(&info->lock_new_credits_offered);
1686
1687	rc = smbd_negotiate(info);
1688	if (rc) {
1689		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1690		goto negotiation_failed;
1691	}
1692
1693	rc = allocate_mr_list(info);
1694	if (rc) {
1695		log_rdma_mr(ERR, "memory registration allocation failed\n");
1696		goto allocate_mr_failed;
1697	}
1698
1699	return info;
1700
1701allocate_mr_failed:
1702	/* At this point, need to a full transport shutdown */
1703	smbd_destroy(server);
1704	return NULL;
1705
1706negotiation_failed:
1707	cancel_delayed_work_sync(&info->idle_timer_work);
1708	destroy_caches_and_workqueue(info);
1709	info->transport_status = SMBD_NEGOTIATE_FAILED;
1710	init_waitqueue_head(&info->conn_wait);
1711	rdma_disconnect(info->id);
1712	wait_event(info->conn_wait,
1713		info->transport_status == SMBD_DISCONNECTED);
1714
1715allocate_cache_failed:
1716rdma_connect_failed:
1717	rdma_destroy_qp(info->id);
1718
1719create_qp_failed:
1720alloc_cq_failed:
1721	if (info->send_cq)
1722		ib_free_cq(info->send_cq);
1723	if (info->recv_cq)
1724		ib_free_cq(info->recv_cq);
1725
1726config_failed:
1727	ib_dealloc_pd(info->pd);
1728	rdma_destroy_id(info->id);
1729
1730create_id_failed:
1731	kfree(info);
1732	return NULL;
1733}
1734
1735struct smbd_connection *smbd_get_connection(
1736	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1737{
1738	struct smbd_connection *ret;
1739	int port = SMBD_PORT;
1740
1741try_again:
1742	ret = _smbd_get_connection(server, dstaddr, port);
1743
1744	/* Try SMB_PORT if SMBD_PORT doesn't work */
1745	if (!ret && port == SMBD_PORT) {
1746		port = SMB_PORT;
1747		goto try_again;
1748	}
1749	return ret;
1750}
1751
1752/*
1753 * Receive data from receive reassembly queue
1754 * All the incoming data packets are placed in reassembly queue
1755 * buf: the buffer to read data into
1756 * size: the length of data to read
1757 * return value: actual data read
1758 * Note: this implementation copies the data from reassebmly queue to receive
1759 * buffers used by upper layer. This is not the optimal code path. A better way
1760 * to do it is to not have upper layer allocate its receive buffers but rather
1761 * borrow the buffer from reassembly queue, and return it after data is
1762 * consumed. But this will require more changes to upper layer code, and also
1763 * need to consider packet boundaries while they still being reassembled.
1764 */
1765static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1766		unsigned int size)
1767{
1768	struct smbd_response *response;
1769	struct smbd_data_transfer *data_transfer;
1770	int to_copy, to_read, data_read, offset;
1771	u32 data_length, remaining_data_length, data_offset;
1772	int rc;
1773
1774again:
1775	/*
1776	 * No need to hold the reassembly queue lock all the time as we are
1777	 * the only one reading from the front of the queue. The transport
1778	 * may add more entries to the back of the queue at the same time
1779	 */
1780	log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1781		info->reassembly_data_length);
1782	if (info->reassembly_data_length >= size) {
1783		int queue_length;
1784		int queue_removed = 0;
1785
1786		/*
1787		 * Need to make sure reassembly_data_length is read before
1788		 * reading reassembly_queue_length and calling
1789		 * _get_first_reassembly. This call is lock free
1790		 * as we never read at the end of the queue which are being
1791		 * updated in SOFTIRQ as more data is received
1792		 */
1793		virt_rmb();
1794		queue_length = info->reassembly_queue_length;
1795		data_read = 0;
1796		to_read = size;
1797		offset = info->first_entry_offset;
1798		while (data_read < size) {
1799			response = _get_first_reassembly(info);
1800			data_transfer = smbd_response_payload(response);
1801			data_length = le32_to_cpu(data_transfer->data_length);
1802			remaining_data_length =
1803				le32_to_cpu(
1804					data_transfer->remaining_data_length);
1805			data_offset = le32_to_cpu(data_transfer->data_offset);
1806
1807			/*
1808			 * The upper layer expects RFC1002 length at the
1809			 * beginning of the payload. Return it to indicate
1810			 * the total length of the packet. This minimize the
1811			 * change to upper layer packet processing logic. This
1812			 * will be eventually remove when an intermediate
1813			 * transport layer is added
1814			 */
1815			if (response->first_segment && size == 4) {
1816				unsigned int rfc1002_len =
1817					data_length + remaining_data_length;
1818				*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1819				data_read = 4;
1820				response->first_segment = false;
1821				log_read(INFO, "returning rfc1002 length %d\n",
1822					rfc1002_len);
1823				goto read_rfc1002_done;
1824			}
1825
1826			to_copy = min_t(int, data_length - offset, to_read);
1827			memcpy(
1828				buf + data_read,
1829				(char *)data_transfer + data_offset + offset,
1830				to_copy);
1831
1832			/* move on to the next buffer? */
1833			if (to_copy == data_length - offset) {
1834				queue_length--;
1835				/*
1836				 * No need to lock if we are not at the
1837				 * end of the queue
1838				 */
1839				if (queue_length)
1840					list_del(&response->list);
1841				else {
1842					spin_lock_irq(
1843						&info->reassembly_queue_lock);
1844					list_del(&response->list);
1845					spin_unlock_irq(
1846						&info->reassembly_queue_lock);
1847				}
1848				queue_removed++;
1849				info->count_reassembly_queue--;
1850				info->count_dequeue_reassembly_queue++;
1851				put_receive_buffer(info, response);
1852				offset = 0;
1853				log_read(INFO, "put_receive_buffer offset=0\n");
1854			} else
1855				offset += to_copy;
1856
1857			to_read -= to_copy;
1858			data_read += to_copy;
1859
1860			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1861				 to_copy, data_length - offset,
1862				 to_read, data_read, offset);
1863		}
1864
1865		spin_lock_irq(&info->reassembly_queue_lock);
1866		info->reassembly_data_length -= data_read;
1867		info->reassembly_queue_length -= queue_removed;
1868		spin_unlock_irq(&info->reassembly_queue_lock);
1869
1870		info->first_entry_offset = offset;
1871		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1872			 data_read, info->reassembly_data_length,
1873			 info->first_entry_offset);
1874read_rfc1002_done:
1875		return data_read;
1876	}
1877
1878	log_read(INFO, "wait_event on more data\n");
1879	rc = wait_event_interruptible(
1880		info->wait_reassembly_queue,
1881		info->reassembly_data_length >= size ||
1882			info->transport_status != SMBD_CONNECTED);
1883	/* Don't return any data if interrupted */
1884	if (rc)
1885		return rc;
1886
1887	if (info->transport_status != SMBD_CONNECTED) {
1888		log_read(ERR, "disconnected\n");
1889		return -ECONNABORTED;
1890	}
1891
1892	goto again;
1893}
1894
1895/*
1896 * Receive a page from receive reassembly queue
1897 * page: the page to read data into
1898 * to_read: the length of data to read
1899 * return value: actual data read
1900 */
1901static int smbd_recv_page(struct smbd_connection *info,
1902		struct page *page, unsigned int page_offset,
1903		unsigned int to_read)
1904{
1905	int ret;
1906	char *to_address;
1907	void *page_address;
1908
1909	/* make sure we have the page ready for read */
1910	ret = wait_event_interruptible(
1911		info->wait_reassembly_queue,
1912		info->reassembly_data_length >= to_read ||
1913			info->transport_status != SMBD_CONNECTED);
1914	if (ret)
1915		return ret;
1916
1917	/* now we can read from reassembly queue and not sleep */
1918	page_address = kmap_atomic(page);
1919	to_address = (char *) page_address + page_offset;
1920
1921	log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1922		page, to_address, to_read);
1923
1924	ret = smbd_recv_buf(info, to_address, to_read);
1925	kunmap_atomic(page_address);
1926
1927	return ret;
1928}
1929
1930/*
1931 * Receive data from transport
1932 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1933 * return: total bytes read, or 0. SMB Direct will not do partial read.
1934 */
1935int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1936{
1937	char *buf;
1938	struct page *page;
1939	unsigned int to_read, page_offset;
1940	int rc;
1941
1942	if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1943		/* It's a bug in upper layer to get there */
1944		cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1945			 iov_iter_rw(&msg->msg_iter));
1946		rc = -EINVAL;
1947		goto out;
1948	}
1949
1950	switch (iov_iter_type(&msg->msg_iter)) {
1951	case ITER_KVEC:
1952		buf = msg->msg_iter.kvec->iov_base;
1953		to_read = msg->msg_iter.kvec->iov_len;
1954		rc = smbd_recv_buf(info, buf, to_read);
1955		break;
1956
1957	case ITER_BVEC:
1958		page = msg->msg_iter.bvec->bv_page;
1959		page_offset = msg->msg_iter.bvec->bv_offset;
1960		to_read = msg->msg_iter.bvec->bv_len;
1961		rc = smbd_recv_page(info, page, page_offset, to_read);
1962		break;
1963
1964	default:
1965		/* It's a bug in upper layer to get there */
1966		cifs_dbg(VFS, "Invalid msg type %d\n",
1967			 iov_iter_type(&msg->msg_iter));
1968		rc = -EINVAL;
1969	}
1970
1971out:
1972	/* SMBDirect will read it all or nothing */
1973	if (rc > 0)
1974		msg->msg_iter.count = 0;
1975	return rc;
1976}
1977
1978/*
1979 * Send data to transport
1980 * Each rqst is transported as a SMBDirect payload
1981 * rqst: the data to write
1982 * return value: 0 if successfully write, otherwise error code
1983 */
1984int smbd_send(struct TCP_Server_Info *server,
1985	int num_rqst, struct smb_rqst *rqst_array)
1986{
1987	struct smbd_connection *info = server->smbd_conn;
1988	struct kvec vecs[SMBDIRECT_MAX_SEND_SGE - 1];
1989	int nvecs;
1990	int size;
1991	unsigned int buflen, remaining_data_length;
1992	unsigned int offset, remaining_vec_data_length;
1993	int start, i, j;
1994	int max_iov_size =
1995		info->max_send_size - sizeof(struct smbd_data_transfer);
1996	struct kvec *iov;
1997	int rc;
1998	struct smb_rqst *rqst;
1999	int rqst_idx;
2000
2001	if (info->transport_status != SMBD_CONNECTED)
2002		return -EAGAIN;
2003
2004	/*
2005	 * Add in the page array if there is one. The caller needs to set
2006	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2007	 * ends at page boundary
2008	 */
2009	remaining_data_length = 0;
2010	for (i = 0; i < num_rqst; i++)
2011		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2012
2013	if (unlikely(remaining_data_length > info->max_fragmented_send_size)) {
2014		/* assertion: payload never exceeds negotiated maximum */
2015		log_write(ERR, "payload size %d > max size %d\n",
2016			remaining_data_length, info->max_fragmented_send_size);
2017		return -EINVAL;
2018	}
2019
2020	log_write(INFO, "num_rqst=%d total length=%u\n",
2021			num_rqst, remaining_data_length);
2022
2023	rqst_idx = 0;
2024	do {
2025		rqst = &rqst_array[rqst_idx];
2026		iov = rqst->rq_iov;
2027
2028		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2029			rqst_idx, smb_rqst_len(server, rqst));
2030		remaining_vec_data_length = 0;
2031		for (i = 0; i < rqst->rq_nvec; i++) {
2032			remaining_vec_data_length += iov[i].iov_len;
2033			dump_smb(iov[i].iov_base, iov[i].iov_len);
2034		}
2035
2036		log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
2037			  rqst_idx, rqst->rq_nvec,
2038			  rqst->rq_npages, rqst->rq_pagesz,
2039			  rqst->rq_tailsz, smb_rqst_len(server, rqst));
2040
2041		start = 0;
2042		offset = 0;
2043		do {
2044			buflen = 0;
2045			i = start;
2046			j = 0;
2047			while (i < rqst->rq_nvec &&
2048				j < SMBDIRECT_MAX_SEND_SGE - 1 &&
2049				buflen < max_iov_size) {
2050
2051				vecs[j].iov_base = iov[i].iov_base + offset;
2052				if (buflen + iov[i].iov_len > max_iov_size) {
2053					vecs[j].iov_len =
2054						max_iov_size - iov[i].iov_len;
2055					buflen = max_iov_size;
2056					offset = vecs[j].iov_len;
2057				} else {
2058					vecs[j].iov_len =
2059						iov[i].iov_len - offset;
2060					buflen += vecs[j].iov_len;
2061					offset = 0;
2062					++i;
2063				}
2064				++j;
2065			}
2066
2067			remaining_vec_data_length -= buflen;
2068			remaining_data_length -= buflen;
2069			log_write(INFO, "sending %s iov[%d] from start=%d nvecs=%d remaining_data_length=%d\n",
2070					remaining_vec_data_length > 0 ?
2071						"partial" : "complete",
2072					rqst->rq_nvec, start, j,
2073					remaining_data_length);
2074
2075			start = i;
2076			rc = smbd_post_send_data(info, vecs, j, remaining_data_length);
2077			if (rc)
2078				goto done;
2079		} while (remaining_vec_data_length > 0);
2080
2081		/* now sending pages if there are any */
2082		for (i = 0; i < rqst->rq_npages; i++) {
2083			rqst_page_get_length(rqst, i, &buflen, &offset);
2084			nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2085			log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2086				buflen, nvecs);
2087			for (j = 0; j < nvecs; j++) {
2088				size = min_t(unsigned int, max_iov_size, remaining_data_length);
2089				remaining_data_length -= size;
2090				log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
2091					  i, j * max_iov_size + offset, size,
2092					  remaining_data_length);
2093				rc = smbd_post_send_page(
2094					info, rqst->rq_pages[i],
2095					j*max_iov_size + offset,
2096					size, remaining_data_length);
2097				if (rc)
2098					goto done;
2099			}
2100		}
2101	} while (++rqst_idx < num_rqst);
2102
2103done:
2104	/*
2105	 * As an optimization, we don't wait for individual I/O to finish
2106	 * before sending the next one.
2107	 * Send them all and wait for pending send count to get to 0
2108	 * that means all the I/Os have been out and we are good to return
2109	 */
2110
2111	wait_event(info->wait_send_pending,
2112		atomic_read(&info->send_pending) == 0);
2113
2114	return rc;
2115}
2116
2117static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2118{
2119	struct smbd_mr *mr;
2120	struct ib_cqe *cqe;
2121
2122	if (wc->status) {
2123		log_rdma_mr(ERR, "status=%d\n", wc->status);
2124		cqe = wc->wr_cqe;
2125		mr = container_of(cqe, struct smbd_mr, cqe);
2126		smbd_disconnect_rdma_connection(mr->conn);
2127	}
2128}
2129
2130/*
2131 * The work queue function that recovers MRs
2132 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2133 * again. Both calls are slow, so finish them in a workqueue. This will not
2134 * block I/O path.
2135 * There is one workqueue that recovers MRs, there is no need to lock as the
2136 * I/O requests calling smbd_register_mr will never update the links in the
2137 * mr_list.
2138 */
2139static void smbd_mr_recovery_work(struct work_struct *work)
2140{
2141	struct smbd_connection *info =
2142		container_of(work, struct smbd_connection, mr_recovery_work);
2143	struct smbd_mr *smbdirect_mr;
2144	int rc;
2145
2146	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2147		if (smbdirect_mr->state == MR_ERROR) {
2148
2149			/* recover this MR entry */
2150			rc = ib_dereg_mr(smbdirect_mr->mr);
2151			if (rc) {
2152				log_rdma_mr(ERR,
2153					"ib_dereg_mr failed rc=%x\n",
2154					rc);
2155				smbd_disconnect_rdma_connection(info);
2156				continue;
2157			}
2158
2159			smbdirect_mr->mr = ib_alloc_mr(
2160				info->pd, info->mr_type,
2161				info->max_frmr_depth);
2162			if (IS_ERR(smbdirect_mr->mr)) {
2163				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2164					    info->mr_type,
2165					    info->max_frmr_depth);
2166				smbd_disconnect_rdma_connection(info);
2167				continue;
2168			}
2169		} else
2170			/* This MR is being used, don't recover it */
2171			continue;
2172
2173		smbdirect_mr->state = MR_READY;
2174
2175		/* smbdirect_mr->state is updated by this function
2176		 * and is read and updated by I/O issuing CPUs trying
2177		 * to get a MR, the call to atomic_inc_return
2178		 * implicates a memory barrier and guarantees this
2179		 * value is updated before waking up any calls to
2180		 * get_mr() from the I/O issuing CPUs
2181		 */
2182		if (atomic_inc_return(&info->mr_ready_count) == 1)
2183			wake_up_interruptible(&info->wait_mr);
2184	}
2185}
2186
2187static void destroy_mr_list(struct smbd_connection *info)
2188{
2189	struct smbd_mr *mr, *tmp;
2190
2191	cancel_work_sync(&info->mr_recovery_work);
2192	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2193		if (mr->state == MR_INVALIDATED)
2194			ib_dma_unmap_sg(info->id->device, mr->sgl,
2195				mr->sgl_count, mr->dir);
2196		ib_dereg_mr(mr->mr);
2197		kfree(mr->sgl);
2198		kfree(mr);
2199	}
2200}
2201
2202/*
2203 * Allocate MRs used for RDMA read/write
2204 * The number of MRs will not exceed hardware capability in responder_resources
2205 * All MRs are kept in mr_list. The MR can be recovered after it's used
2206 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2207 * as MRs are used and recovered for I/O, but the list links will not change
2208 */
2209static int allocate_mr_list(struct smbd_connection *info)
2210{
2211	int i;
2212	struct smbd_mr *smbdirect_mr, *tmp;
2213
2214	INIT_LIST_HEAD(&info->mr_list);
2215	init_waitqueue_head(&info->wait_mr);
2216	spin_lock_init(&info->mr_list_lock);
2217	atomic_set(&info->mr_ready_count, 0);
2218	atomic_set(&info->mr_used_count, 0);
2219	init_waitqueue_head(&info->wait_for_mr_cleanup);
2220	/* Allocate more MRs (2x) than hardware responder_resources */
2221	for (i = 0; i < info->responder_resources * 2; i++) {
2222		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2223		if (!smbdirect_mr)
2224			goto out;
2225		smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2226					info->max_frmr_depth);
2227		if (IS_ERR(smbdirect_mr->mr)) {
2228			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2229				    info->mr_type, info->max_frmr_depth);
2230			goto out;
2231		}
2232		smbdirect_mr->sgl = kcalloc(
2233					info->max_frmr_depth,
2234					sizeof(struct scatterlist),
2235					GFP_KERNEL);
2236		if (!smbdirect_mr->sgl) {
2237			log_rdma_mr(ERR, "failed to allocate sgl\n");
2238			ib_dereg_mr(smbdirect_mr->mr);
2239			goto out;
2240		}
2241		smbdirect_mr->state = MR_READY;
2242		smbdirect_mr->conn = info;
2243
2244		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2245		atomic_inc(&info->mr_ready_count);
2246	}
2247	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2248	return 0;
2249
2250out:
2251	kfree(smbdirect_mr);
2252
2253	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2254		ib_dereg_mr(smbdirect_mr->mr);
2255		kfree(smbdirect_mr->sgl);
2256		kfree(smbdirect_mr);
2257	}
2258	return -ENOMEM;
2259}
2260
2261/*
2262 * Get a MR from mr_list. This function waits until there is at least one
2263 * MR available in the list. It may access the list while the
2264 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2265 * as they never modify the same places. However, there may be several CPUs
2266 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2267 * protect this situation.
2268 */
2269static struct smbd_mr *get_mr(struct smbd_connection *info)
2270{
2271	struct smbd_mr *ret;
2272	int rc;
2273again:
2274	rc = wait_event_interruptible(info->wait_mr,
2275		atomic_read(&info->mr_ready_count) ||
2276		info->transport_status != SMBD_CONNECTED);
2277	if (rc) {
2278		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2279		return NULL;
2280	}
2281
2282	if (info->transport_status != SMBD_CONNECTED) {
2283		log_rdma_mr(ERR, "info->transport_status=%x\n",
2284			info->transport_status);
2285		return NULL;
2286	}
2287
2288	spin_lock(&info->mr_list_lock);
2289	list_for_each_entry(ret, &info->mr_list, list) {
2290		if (ret->state == MR_READY) {
2291			ret->state = MR_REGISTERED;
2292			spin_unlock(&info->mr_list_lock);
2293			atomic_dec(&info->mr_ready_count);
2294			atomic_inc(&info->mr_used_count);
2295			return ret;
2296		}
2297	}
2298
2299	spin_unlock(&info->mr_list_lock);
2300	/*
2301	 * It is possible that we could fail to get MR because other processes may
2302	 * try to acquire a MR at the same time. If this is the case, retry it.
2303	 */
2304	goto again;
2305}
2306
2307/*
2308 * Register memory for RDMA read/write
2309 * pages[]: the list of pages to register memory with
2310 * num_pages: the number of pages to register
2311 * tailsz: if non-zero, the bytes to register in the last page
2312 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2313 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2314 * return value: the MR registered, NULL if failed.
2315 */
2316struct smbd_mr *smbd_register_mr(
2317	struct smbd_connection *info, struct page *pages[], int num_pages,
2318	int offset, int tailsz, bool writing, bool need_invalidate)
2319{
2320	struct smbd_mr *smbdirect_mr;
2321	int rc, i;
2322	enum dma_data_direction dir;
2323	struct ib_reg_wr *reg_wr;
2324
2325	if (num_pages > info->max_frmr_depth) {
2326		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2327			num_pages, info->max_frmr_depth);
2328		return NULL;
2329	}
2330
2331	smbdirect_mr = get_mr(info);
2332	if (!smbdirect_mr) {
2333		log_rdma_mr(ERR, "get_mr returning NULL\n");
2334		return NULL;
2335	}
2336	smbdirect_mr->need_invalidate = need_invalidate;
2337	smbdirect_mr->sgl_count = num_pages;
2338	sg_init_table(smbdirect_mr->sgl, num_pages);
2339
2340	log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2341			num_pages, offset, tailsz);
2342
2343	if (num_pages == 1) {
2344		sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2345		goto skip_multiple_pages;
2346	}
2347
2348	/* We have at least two pages to register */
2349	sg_set_page(
2350		&smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2351	i = 1;
2352	while (i < num_pages - 1) {
2353		sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2354		i++;
2355	}
2356	sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2357		tailsz ? tailsz : PAGE_SIZE, 0);
2358
2359skip_multiple_pages:
2360	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2361	smbdirect_mr->dir = dir;
2362	rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2363	if (!rc) {
2364		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2365			num_pages, dir, rc);
2366		goto dma_map_error;
2367	}
2368
2369	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2370		NULL, PAGE_SIZE);
2371	if (rc != num_pages) {
2372		log_rdma_mr(ERR,
2373			"ib_map_mr_sg failed rc = %d num_pages = %x\n",
2374			rc, num_pages);
2375		goto map_mr_error;
2376	}
2377
2378	ib_update_fast_reg_key(smbdirect_mr->mr,
2379		ib_inc_rkey(smbdirect_mr->mr->rkey));
2380	reg_wr = &smbdirect_mr->wr;
2381	reg_wr->wr.opcode = IB_WR_REG_MR;
2382	smbdirect_mr->cqe.done = register_mr_done;
2383	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2384	reg_wr->wr.num_sge = 0;
2385	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2386	reg_wr->mr = smbdirect_mr->mr;
2387	reg_wr->key = smbdirect_mr->mr->rkey;
2388	reg_wr->access = writing ?
2389			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2390			IB_ACCESS_REMOTE_READ;
2391
2392	/*
2393	 * There is no need for waiting for complemtion on ib_post_send
2394	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2395	 * on the next ib_post_send when we actaully send I/O to remote peer
2396	 */
2397	rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2398	if (!rc)
2399		return smbdirect_mr;
2400
2401	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2402		rc, reg_wr->key);
2403
2404	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2405map_mr_error:
2406	ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2407		smbdirect_mr->sgl_count, smbdirect_mr->dir);
2408
2409dma_map_error:
2410	smbdirect_mr->state = MR_ERROR;
2411	if (atomic_dec_and_test(&info->mr_used_count))
2412		wake_up(&info->wait_for_mr_cleanup);
2413
2414	smbd_disconnect_rdma_connection(info);
2415
2416	return NULL;
2417}
2418
2419static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2420{
2421	struct smbd_mr *smbdirect_mr;
2422	struct ib_cqe *cqe;
2423
2424	cqe = wc->wr_cqe;
2425	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2426	smbdirect_mr->state = MR_INVALIDATED;
2427	if (wc->status != IB_WC_SUCCESS) {
2428		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2429		smbdirect_mr->state = MR_ERROR;
2430	}
2431	complete(&smbdirect_mr->invalidate_done);
2432}
2433
2434/*
2435 * Deregister a MR after I/O is done
2436 * This function may wait if remote invalidation is not used
2437 * and we have to locally invalidate the buffer to prevent data is being
2438 * modified by remote peer after upper layer consumes it
2439 */
2440int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2441{
2442	struct ib_send_wr *wr;
2443	struct smbd_connection *info = smbdirect_mr->conn;
2444	int rc = 0;
2445
2446	if (smbdirect_mr->need_invalidate) {
2447		/* Need to finish local invalidation before returning */
2448		wr = &smbdirect_mr->inv_wr;
2449		wr->opcode = IB_WR_LOCAL_INV;
2450		smbdirect_mr->cqe.done = local_inv_done;
2451		wr->wr_cqe = &smbdirect_mr->cqe;
2452		wr->num_sge = 0;
2453		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2454		wr->send_flags = IB_SEND_SIGNALED;
2455
2456		init_completion(&smbdirect_mr->invalidate_done);
2457		rc = ib_post_send(info->id->qp, wr, NULL);
2458		if (rc) {
2459			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2460			smbd_disconnect_rdma_connection(info);
2461			goto done;
2462		}
2463		wait_for_completion(&smbdirect_mr->invalidate_done);
2464		smbdirect_mr->need_invalidate = false;
2465	} else
2466		/*
2467		 * For remote invalidation, just set it to MR_INVALIDATED
2468		 * and defer to mr_recovery_work to recover the MR for next use
2469		 */
2470		smbdirect_mr->state = MR_INVALIDATED;
2471
2472	if (smbdirect_mr->state == MR_INVALIDATED) {
2473		ib_dma_unmap_sg(
2474			info->id->device, smbdirect_mr->sgl,
2475			smbdirect_mr->sgl_count,
2476			smbdirect_mr->dir);
2477		smbdirect_mr->state = MR_READY;
2478		if (atomic_inc_return(&info->mr_ready_count) == 1)
2479			wake_up_interruptible(&info->wait_mr);
2480	} else
2481		/*
2482		 * Schedule the work to do MR recovery for future I/Os MR
2483		 * recovery is slow and don't want it to block current I/O
2484		 */
2485		queue_work(info->workqueue, &info->mr_recovery_work);
2486
2487done:
2488	if (atomic_dec_and_test(&info->mr_used_count))
2489		wake_up(&info->wait_for_mr_cleanup);
2490
2491	return rc;
2492}