Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
 
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
 
  12#include <linux/falloc.h>
 
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "transaction.h"
  23#include "btrfs_inode.h"
  24#include "print-tree.h"
  25#include "tree-log.h"
  26#include "locking.h"
  27#include "volumes.h"
  28#include "qgroup.h"
  29#include "compression.h"
  30#include "delalloc-space.h"
  31#include "reflink.h"
  32#include "subpage.h"
  33#include "fs.h"
  34#include "accessors.h"
  35#include "extent-tree.h"
  36#include "file-item.h"
  37#include "ioctl.h"
  38#include "file.h"
  39#include "super.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41/* simple helper to fault in pages and copy.  This should go away
  42 * and be replaced with calls into generic code.
  43 */
  44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  45					 struct page **prepared_pages,
  46					 struct iov_iter *i)
  47{
  48	size_t copied = 0;
  49	size_t total_copied = 0;
  50	int pg = 0;
  51	int offset = offset_in_page(pos);
  52
  53	while (write_bytes > 0) {
  54		size_t count = min_t(size_t,
  55				     PAGE_SIZE - offset, write_bytes);
  56		struct page *page = prepared_pages[pg];
  57		/*
  58		 * Copy data from userspace to the current page
  59		 */
  60		copied = copy_page_from_iter_atomic(page, offset, count, i);
  61
  62		/* Flush processor's dcache for this page */
  63		flush_dcache_page(page);
  64
  65		/*
  66		 * if we get a partial write, we can end up with
  67		 * partially up to date pages.  These add
  68		 * a lot of complexity, so make sure they don't
  69		 * happen by forcing this copy to be retried.
  70		 *
  71		 * The rest of the btrfs_file_write code will fall
  72		 * back to page at a time copies after we return 0.
  73		 */
  74		if (unlikely(copied < count)) {
  75			if (!PageUptodate(page)) {
  76				iov_iter_revert(i, copied);
  77				copied = 0;
  78			}
  79			if (!copied)
  80				break;
  81		}
  82
 
  83		write_bytes -= copied;
  84		total_copied += copied;
  85		offset += copied;
  86		if (offset == PAGE_SIZE) {
 
 
 
 
 
 
  87			pg++;
  88			offset = 0;
  89		}
  90	}
  91	return total_copied;
  92}
  93
  94/*
  95 * unlocks pages after btrfs_file_write is done with them
  96 */
  97static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
  98			     struct page **pages, size_t num_pages,
  99			     u64 pos, u64 copied)
 100{
 101	size_t i;
 102	u64 block_start = round_down(pos, fs_info->sectorsize);
 103	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
 104
 105	ASSERT(block_len <= U32_MAX);
 106	for (i = 0; i < num_pages; i++) {
 107		/* page checked is some magic around finding pages that
 108		 * have been modified without going through btrfs_set_page_dirty
 109		 * clear it here. There should be no need to mark the pages
 110		 * accessed as prepare_pages should have marked them accessed
 111		 * in prepare_pages via find_or_create_page()
 112		 */
 113		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
 114					       block_len);
 115		unlock_page(pages[i]);
 116		put_page(pages[i]);
 117	}
 118}
 119
 120/*
 121 * After btrfs_copy_from_user(), update the following things for delalloc:
 122 * - Mark newly dirtied pages as DELALLOC in the io tree.
 123 *   Used to advise which range is to be written back.
 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
 125 * - Update inode size for past EOF write
 
 126 */
 127int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 128		      size_t num_pages, loff_t pos, size_t write_bytes,
 129		      struct extent_state **cached, bool noreserve)
 130{
 131	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 132	int err = 0;
 133	int i;
 134	u64 num_bytes;
 135	u64 start_pos;
 136	u64 end_of_last_block;
 137	u64 end_pos = pos + write_bytes;
 138	loff_t isize = i_size_read(&inode->vfs_inode);
 139	unsigned int extra_bits = 0;
 140
 141	if (write_bytes == 0)
 142		return 0;
 143
 144	if (noreserve)
 145		extra_bits |= EXTENT_NORESERVE;
 146
 147	start_pos = round_down(pos, fs_info->sectorsize);
 148	num_bytes = round_up(write_bytes + pos - start_pos,
 149			     fs_info->sectorsize);
 150	ASSERT(num_bytes <= U32_MAX);
 151
 152	end_of_last_block = start_pos + num_bytes - 1;
 153
 154	/*
 155	 * The pages may have already been dirty, clear out old accounting so
 156	 * we can set things up properly
 157	 */
 158	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 159			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 160			 cached);
 161
 162	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 163					extra_bits, cached);
 164	if (err)
 165		return err;
 166
 167	for (i = 0; i < num_pages; i++) {
 168		struct page *p = pages[i];
 169
 170		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
 171		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
 172		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
 173	}
 174
 175	/*
 176	 * we've only changed i_size in ram, and we haven't updated
 177	 * the disk i_size.  There is no need to log the inode
 178	 * at this time.
 179	 */
 180	if (end_pos > isize)
 181		i_size_write(&inode->vfs_inode, end_pos);
 182	return 0;
 183}
 184
 185/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186 * this is very complex, but the basic idea is to drop all extents
 187 * in the range start - end.  hint_block is filled in with a block number
 188 * that would be a good hint to the block allocator for this file.
 189 *
 190 * If an extent intersects the range but is not entirely inside the range
 191 * it is either truncated or split.  Anything entirely inside the range
 192 * is deleted from the tree.
 193 *
 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 195 * to deal with that. We set the field 'bytes_found' of the arguments structure
 196 * with the number of allocated bytes found in the target range, so that the
 197 * caller can update the inode's number of bytes in an atomic way when
 198 * replacing extents in a range to avoid races with stat(2).
 199 */
 200int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 201		       struct btrfs_root *root, struct btrfs_inode *inode,
 202		       struct btrfs_drop_extents_args *args)
 
 
 
 
 203{
 204	struct btrfs_fs_info *fs_info = root->fs_info;
 205	struct extent_buffer *leaf;
 206	struct btrfs_file_extent_item *fi;
 207	struct btrfs_ref ref = { 0 };
 208	struct btrfs_key key;
 209	struct btrfs_key new_key;
 210	u64 ino = btrfs_ino(inode);
 211	u64 search_start = args->start;
 212	u64 disk_bytenr = 0;
 213	u64 num_bytes = 0;
 214	u64 extent_offset = 0;
 215	u64 extent_end = 0;
 216	u64 last_end = args->start;
 217	int del_nr = 0;
 218	int del_slot = 0;
 219	int extent_type;
 220	int recow;
 221	int ret;
 222	int modify_tree = -1;
 223	int update_refs;
 224	int found = 0;
 225	struct btrfs_path *path = args->path;
 226
 227	args->bytes_found = 0;
 228	args->extent_inserted = false;
 229
 230	/* Must always have a path if ->replace_extent is true */
 231	ASSERT(!(args->replace_extent && !args->path));
 232
 233	if (!path) {
 234		path = btrfs_alloc_path();
 235		if (!path) {
 236			ret = -ENOMEM;
 237			goto out;
 238		}
 239	}
 240
 241	if (args->drop_cache)
 242		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 243
 244	if (args->start >= inode->disk_i_size && !args->replace_extent)
 245		modify_tree = 0;
 246
 247	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 
 248	while (1) {
 249		recow = 0;
 250		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 251					       search_start, modify_tree);
 252		if (ret < 0)
 253			break;
 254		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 255			leaf = path->nodes[0];
 256			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 257			if (key.objectid == ino &&
 258			    key.type == BTRFS_EXTENT_DATA_KEY)
 259				path->slots[0]--;
 260		}
 261		ret = 0;
 
 262next_slot:
 263		leaf = path->nodes[0];
 264		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 265			BUG_ON(del_nr > 0);
 266			ret = btrfs_next_leaf(root, path);
 267			if (ret < 0)
 268				break;
 269			if (ret > 0) {
 270				ret = 0;
 271				break;
 272			}
 
 273			leaf = path->nodes[0];
 274			recow = 1;
 275		}
 276
 277		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 278
 279		if (key.objectid > ino)
 280			break;
 281		if (WARN_ON_ONCE(key.objectid < ino) ||
 282		    key.type < BTRFS_EXTENT_DATA_KEY) {
 283			ASSERT(del_nr == 0);
 284			path->slots[0]++;
 285			goto next_slot;
 286		}
 287		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 288			break;
 289
 290		fi = btrfs_item_ptr(leaf, path->slots[0],
 291				    struct btrfs_file_extent_item);
 292		extent_type = btrfs_file_extent_type(leaf, fi);
 293
 294		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 295		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 296			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 297			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 298			extent_offset = btrfs_file_extent_offset(leaf, fi);
 299			extent_end = key.offset +
 300				btrfs_file_extent_num_bytes(leaf, fi);
 301		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 302			extent_end = key.offset +
 303				btrfs_file_extent_ram_bytes(leaf, fi);
 
 304		} else {
 305			/* can't happen */
 306			BUG();
 307		}
 308
 309		/*
 310		 * Don't skip extent items representing 0 byte lengths. They
 311		 * used to be created (bug) if while punching holes we hit
 312		 * -ENOSPC condition. So if we find one here, just ensure we
 313		 * delete it, otherwise we would insert a new file extent item
 314		 * with the same key (offset) as that 0 bytes length file
 315		 * extent item in the call to setup_items_for_insert() later
 316		 * in this function.
 317		 */
 318		if (extent_end == key.offset && extent_end >= search_start) {
 319			last_end = extent_end;
 320			goto delete_extent_item;
 321		}
 322
 323		if (extent_end <= search_start) {
 324			path->slots[0]++;
 325			goto next_slot;
 326		}
 327
 328		found = 1;
 329		search_start = max(key.offset, args->start);
 330		if (recow || !modify_tree) {
 331			modify_tree = -1;
 332			btrfs_release_path(path);
 333			continue;
 334		}
 335
 336		/*
 337		 *     | - range to drop - |
 338		 *  | -------- extent -------- |
 339		 */
 340		if (args->start > key.offset && args->end < extent_end) {
 341			BUG_ON(del_nr > 0);
 342			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 343				ret = -EOPNOTSUPP;
 344				break;
 345			}
 346
 347			memcpy(&new_key, &key, sizeof(new_key));
 348			new_key.offset = args->start;
 349			ret = btrfs_duplicate_item(trans, root, path,
 350						   &new_key);
 351			if (ret == -EAGAIN) {
 352				btrfs_release_path(path);
 353				continue;
 354			}
 355			if (ret < 0)
 356				break;
 357
 358			leaf = path->nodes[0];
 359			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 360					    struct btrfs_file_extent_item);
 361			btrfs_set_file_extent_num_bytes(leaf, fi,
 362							args->start - key.offset);
 363
 364			fi = btrfs_item_ptr(leaf, path->slots[0],
 365					    struct btrfs_file_extent_item);
 366
 367			extent_offset += args->start - key.offset;
 368			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 369			btrfs_set_file_extent_num_bytes(leaf, fi,
 370							extent_end - args->start);
 371			btrfs_mark_buffer_dirty(leaf);
 372
 373			if (update_refs && disk_bytenr > 0) {
 374				btrfs_init_generic_ref(&ref,
 375						BTRFS_ADD_DELAYED_REF,
 376						disk_bytenr, num_bytes, 0);
 377				btrfs_init_data_ref(&ref,
 378						root->root_key.objectid,
 379						new_key.objectid,
 380						args->start - extent_offset,
 381						0, false);
 382				ret = btrfs_inc_extent_ref(trans, &ref);
 383				if (ret) {
 384					btrfs_abort_transaction(trans, ret);
 385					break;
 386				}
 387			}
 388			key.offset = args->start;
 389		}
 390		/*
 391		 * From here on out we will have actually dropped something, so
 392		 * last_end can be updated.
 393		 */
 394		last_end = extent_end;
 395
 396		/*
 397		 *  | ---- range to drop ----- |
 398		 *      | -------- extent -------- |
 399		 */
 400		if (args->start <= key.offset && args->end < extent_end) {
 401			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 402				ret = -EOPNOTSUPP;
 403				break;
 404			}
 405
 406			memcpy(&new_key, &key, sizeof(new_key));
 407			new_key.offset = args->end;
 408			btrfs_set_item_key_safe(fs_info, path, &new_key);
 409
 410			extent_offset += args->end - key.offset;
 411			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 412			btrfs_set_file_extent_num_bytes(leaf, fi,
 413							extent_end - args->end);
 414			btrfs_mark_buffer_dirty(leaf);
 415			if (update_refs && disk_bytenr > 0)
 416				args->bytes_found += args->end - key.offset;
 417			break;
 418		}
 419
 420		search_start = extent_end;
 421		/*
 422		 *       | ---- range to drop ----- |
 423		 *  | -------- extent -------- |
 424		 */
 425		if (args->start > key.offset && args->end >= extent_end) {
 426			BUG_ON(del_nr > 0);
 427			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 428				ret = -EOPNOTSUPP;
 429				break;
 430			}
 431
 432			btrfs_set_file_extent_num_bytes(leaf, fi,
 433							args->start - key.offset);
 434			btrfs_mark_buffer_dirty(leaf);
 435			if (update_refs && disk_bytenr > 0)
 436				args->bytes_found += extent_end - args->start;
 437			if (args->end == extent_end)
 438				break;
 439
 440			path->slots[0]++;
 441			goto next_slot;
 442		}
 443
 444		/*
 445		 *  | ---- range to drop ----- |
 446		 *    | ------ extent ------ |
 447		 */
 448		if (args->start <= key.offset && args->end >= extent_end) {
 449delete_extent_item:
 450			if (del_nr == 0) {
 451				del_slot = path->slots[0];
 452				del_nr = 1;
 453			} else {
 454				BUG_ON(del_slot + del_nr != path->slots[0]);
 455				del_nr++;
 456			}
 457
 458			if (update_refs &&
 459			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 460				args->bytes_found += extent_end - key.offset;
 
 461				extent_end = ALIGN(extent_end,
 462						   fs_info->sectorsize);
 463			} else if (update_refs && disk_bytenr > 0) {
 464				btrfs_init_generic_ref(&ref,
 465						BTRFS_DROP_DELAYED_REF,
 466						disk_bytenr, num_bytes, 0);
 467				btrfs_init_data_ref(&ref,
 468						root->root_key.objectid,
 469						key.objectid,
 470						key.offset - extent_offset, 0,
 471						false);
 472				ret = btrfs_free_extent(trans, &ref);
 473				if (ret) {
 474					btrfs_abort_transaction(trans, ret);
 475					break;
 476				}
 477				args->bytes_found += extent_end - key.offset;
 478			}
 479
 480			if (args->end == extent_end)
 481				break;
 482
 483			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 484				path->slots[0]++;
 485				goto next_slot;
 486			}
 487
 488			ret = btrfs_del_items(trans, root, path, del_slot,
 489					      del_nr);
 490			if (ret) {
 491				btrfs_abort_transaction(trans, ret);
 492				break;
 493			}
 494
 495			del_nr = 0;
 496			del_slot = 0;
 497
 498			btrfs_release_path(path);
 499			continue;
 500		}
 501
 502		BUG();
 503	}
 504
 505	if (!ret && del_nr > 0) {
 506		/*
 507		 * Set path->slots[0] to first slot, so that after the delete
 508		 * if items are move off from our leaf to its immediate left or
 509		 * right neighbor leafs, we end up with a correct and adjusted
 510		 * path->slots[0] for our insertion (if args->replace_extent).
 511		 */
 512		path->slots[0] = del_slot;
 513		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 514		if (ret)
 515			btrfs_abort_transaction(trans, ret);
 516	}
 517
 518	leaf = path->nodes[0];
 519	/*
 520	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 521	 * which case it unlocked our path, so check path->locks[0] matches a
 522	 * write lock.
 523	 */
 524	if (!ret && args->replace_extent &&
 525	    path->locks[0] == BTRFS_WRITE_LOCK &&
 526	    btrfs_leaf_free_space(leaf) >=
 527	    sizeof(struct btrfs_item) + args->extent_item_size) {
 
 528
 529		key.objectid = ino;
 530		key.type = BTRFS_EXTENT_DATA_KEY;
 531		key.offset = args->start;
 532		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 533			struct btrfs_key slot_key;
 534
 535			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 536			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 537				path->slots[0]++;
 538		}
 539		btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
 540		args->extent_inserted = true;
 
 
 
 
 541	}
 542
 543	if (!args->path)
 544		btrfs_free_path(path);
 545	else if (!args->extent_inserted)
 546		btrfs_release_path(path);
 547out:
 548	args->drop_end = found ? min(args->end, last_end) : args->end;
 
 
 549
 
 
 
 
 
 
 
 
 
 
 
 
 
 550	return ret;
 551}
 552
 553static int extent_mergeable(struct extent_buffer *leaf, int slot,
 554			    u64 objectid, u64 bytenr, u64 orig_offset,
 555			    u64 *start, u64 *end)
 556{
 557	struct btrfs_file_extent_item *fi;
 558	struct btrfs_key key;
 559	u64 extent_end;
 560
 561	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 562		return 0;
 563
 564	btrfs_item_key_to_cpu(leaf, &key, slot);
 565	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 566		return 0;
 567
 568	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 569	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 570	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 571	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 572	    btrfs_file_extent_compression(leaf, fi) ||
 573	    btrfs_file_extent_encryption(leaf, fi) ||
 574	    btrfs_file_extent_other_encoding(leaf, fi))
 575		return 0;
 576
 577	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 578	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 579		return 0;
 580
 581	*start = key.offset;
 582	*end = extent_end;
 583	return 1;
 584}
 585
 586/*
 587 * Mark extent in the range start - end as written.
 588 *
 589 * This changes extent type from 'pre-allocated' to 'regular'. If only
 590 * part of extent is marked as written, the extent will be split into
 591 * two or three.
 592 */
 593int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 594			      struct btrfs_inode *inode, u64 start, u64 end)
 595{
 596	struct btrfs_fs_info *fs_info = trans->fs_info;
 597	struct btrfs_root *root = inode->root;
 598	struct extent_buffer *leaf;
 599	struct btrfs_path *path;
 600	struct btrfs_file_extent_item *fi;
 601	struct btrfs_ref ref = { 0 };
 602	struct btrfs_key key;
 603	struct btrfs_key new_key;
 604	u64 bytenr;
 605	u64 num_bytes;
 606	u64 extent_end;
 607	u64 orig_offset;
 608	u64 other_start;
 609	u64 other_end;
 610	u64 split;
 611	int del_nr = 0;
 612	int del_slot = 0;
 613	int recow;
 614	int ret = 0;
 615	u64 ino = btrfs_ino(inode);
 616
 617	path = btrfs_alloc_path();
 618	if (!path)
 619		return -ENOMEM;
 620again:
 621	recow = 0;
 622	split = start;
 623	key.objectid = ino;
 624	key.type = BTRFS_EXTENT_DATA_KEY;
 625	key.offset = split;
 626
 627	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 628	if (ret < 0)
 629		goto out;
 630	if (ret > 0 && path->slots[0] > 0)
 631		path->slots[0]--;
 632
 633	leaf = path->nodes[0];
 634	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 635	if (key.objectid != ino ||
 636	    key.type != BTRFS_EXTENT_DATA_KEY) {
 637		ret = -EINVAL;
 638		btrfs_abort_transaction(trans, ret);
 639		goto out;
 640	}
 641	fi = btrfs_item_ptr(leaf, path->slots[0],
 642			    struct btrfs_file_extent_item);
 643	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 644		ret = -EINVAL;
 645		btrfs_abort_transaction(trans, ret);
 646		goto out;
 647	}
 648	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 649	if (key.offset > start || extent_end < end) {
 650		ret = -EINVAL;
 651		btrfs_abort_transaction(trans, ret);
 652		goto out;
 653	}
 654
 655	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 656	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 657	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 658	memcpy(&new_key, &key, sizeof(new_key));
 659
 660	if (start == key.offset && end < extent_end) {
 661		other_start = 0;
 662		other_end = start;
 663		if (extent_mergeable(leaf, path->slots[0] - 1,
 664				     ino, bytenr, orig_offset,
 665				     &other_start, &other_end)) {
 666			new_key.offset = end;
 667			btrfs_set_item_key_safe(fs_info, path, &new_key);
 668			fi = btrfs_item_ptr(leaf, path->slots[0],
 669					    struct btrfs_file_extent_item);
 670			btrfs_set_file_extent_generation(leaf, fi,
 671							 trans->transid);
 672			btrfs_set_file_extent_num_bytes(leaf, fi,
 673							extent_end - end);
 674			btrfs_set_file_extent_offset(leaf, fi,
 675						     end - orig_offset);
 676			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 677					    struct btrfs_file_extent_item);
 678			btrfs_set_file_extent_generation(leaf, fi,
 679							 trans->transid);
 680			btrfs_set_file_extent_num_bytes(leaf, fi,
 681							end - other_start);
 682			btrfs_mark_buffer_dirty(leaf);
 683			goto out;
 684		}
 685	}
 686
 687	if (start > key.offset && end == extent_end) {
 688		other_start = end;
 689		other_end = 0;
 690		if (extent_mergeable(leaf, path->slots[0] + 1,
 691				     ino, bytenr, orig_offset,
 692				     &other_start, &other_end)) {
 693			fi = btrfs_item_ptr(leaf, path->slots[0],
 694					    struct btrfs_file_extent_item);
 695			btrfs_set_file_extent_num_bytes(leaf, fi,
 696							start - key.offset);
 697			btrfs_set_file_extent_generation(leaf, fi,
 698							 trans->transid);
 699			path->slots[0]++;
 700			new_key.offset = start;
 701			btrfs_set_item_key_safe(fs_info, path, &new_key);
 702
 703			fi = btrfs_item_ptr(leaf, path->slots[0],
 704					    struct btrfs_file_extent_item);
 705			btrfs_set_file_extent_generation(leaf, fi,
 706							 trans->transid);
 707			btrfs_set_file_extent_num_bytes(leaf, fi,
 708							other_end - start);
 709			btrfs_set_file_extent_offset(leaf, fi,
 710						     start - orig_offset);
 711			btrfs_mark_buffer_dirty(leaf);
 712			goto out;
 713		}
 714	}
 715
 716	while (start > key.offset || end < extent_end) {
 717		if (key.offset == start)
 718			split = end;
 719
 720		new_key.offset = split;
 721		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 722		if (ret == -EAGAIN) {
 723			btrfs_release_path(path);
 724			goto again;
 725		}
 726		if (ret < 0) {
 727			btrfs_abort_transaction(trans, ret);
 728			goto out;
 729		}
 730
 731		leaf = path->nodes[0];
 732		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 733				    struct btrfs_file_extent_item);
 734		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 735		btrfs_set_file_extent_num_bytes(leaf, fi,
 736						split - key.offset);
 737
 738		fi = btrfs_item_ptr(leaf, path->slots[0],
 739				    struct btrfs_file_extent_item);
 740
 741		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 742		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 743		btrfs_set_file_extent_num_bytes(leaf, fi,
 744						extent_end - split);
 745		btrfs_mark_buffer_dirty(leaf);
 746
 747		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
 748				       num_bytes, 0);
 749		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
 750				    orig_offset, 0, false);
 751		ret = btrfs_inc_extent_ref(trans, &ref);
 752		if (ret) {
 753			btrfs_abort_transaction(trans, ret);
 754			goto out;
 755		}
 756
 757		if (split == start) {
 758			key.offset = start;
 759		} else {
 760			if (start != key.offset) {
 761				ret = -EINVAL;
 762				btrfs_abort_transaction(trans, ret);
 763				goto out;
 764			}
 765			path->slots[0]--;
 766			extent_end = end;
 767		}
 768		recow = 1;
 769	}
 770
 771	other_start = end;
 772	other_end = 0;
 773	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
 774			       num_bytes, 0);
 775	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
 776			    0, false);
 777	if (extent_mergeable(leaf, path->slots[0] + 1,
 778			     ino, bytenr, orig_offset,
 779			     &other_start, &other_end)) {
 780		if (recow) {
 781			btrfs_release_path(path);
 782			goto again;
 783		}
 784		extent_end = other_end;
 785		del_slot = path->slots[0] + 1;
 786		del_nr++;
 787		ret = btrfs_free_extent(trans, &ref);
 
 
 788		if (ret) {
 789			btrfs_abort_transaction(trans, ret);
 790			goto out;
 791		}
 792	}
 793	other_start = 0;
 794	other_end = start;
 795	if (extent_mergeable(leaf, path->slots[0] - 1,
 796			     ino, bytenr, orig_offset,
 797			     &other_start, &other_end)) {
 798		if (recow) {
 799			btrfs_release_path(path);
 800			goto again;
 801		}
 802		key.offset = other_start;
 803		del_slot = path->slots[0];
 804		del_nr++;
 805		ret = btrfs_free_extent(trans, &ref);
 
 
 806		if (ret) {
 807			btrfs_abort_transaction(trans, ret);
 808			goto out;
 809		}
 810	}
 811	if (del_nr == 0) {
 812		fi = btrfs_item_ptr(leaf, path->slots[0],
 813			   struct btrfs_file_extent_item);
 814		btrfs_set_file_extent_type(leaf, fi,
 815					   BTRFS_FILE_EXTENT_REG);
 816		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 817		btrfs_mark_buffer_dirty(leaf);
 818	} else {
 819		fi = btrfs_item_ptr(leaf, del_slot - 1,
 820			   struct btrfs_file_extent_item);
 821		btrfs_set_file_extent_type(leaf, fi,
 822					   BTRFS_FILE_EXTENT_REG);
 823		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 824		btrfs_set_file_extent_num_bytes(leaf, fi,
 825						extent_end - key.offset);
 826		btrfs_mark_buffer_dirty(leaf);
 827
 828		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 829		if (ret < 0) {
 830			btrfs_abort_transaction(trans, ret);
 831			goto out;
 832		}
 833	}
 834out:
 835	btrfs_free_path(path);
 836	return ret;
 837}
 838
 839/*
 840 * on error we return an unlocked page and the error value
 841 * on success we return a locked page and 0
 842 */
 843static int prepare_uptodate_page(struct inode *inode,
 844				 struct page *page, u64 pos,
 845				 bool force_uptodate)
 846{
 847	struct folio *folio = page_folio(page);
 848	int ret = 0;
 849
 850	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
 851	    !PageUptodate(page)) {
 852		ret = btrfs_read_folio(NULL, folio);
 853		if (ret)
 854			return ret;
 855		lock_page(page);
 856		if (!PageUptodate(page)) {
 857			unlock_page(page);
 858			return -EIO;
 859		}
 860
 861		/*
 862		 * Since btrfs_read_folio() will unlock the folio before it
 863		 * returns, there is a window where btrfs_release_folio() can be
 864		 * called to release the page.  Here we check both inode
 865		 * mapping and PagePrivate() to make sure the page was not
 866		 * released.
 867		 *
 868		 * The private flag check is essential for subpage as we need
 869		 * to store extra bitmap using page->private.
 870		 */
 871		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
 872			unlock_page(page);
 873			return -EAGAIN;
 874		}
 875	}
 876	return 0;
 877}
 878
 879static unsigned int get_prepare_fgp_flags(bool nowait)
 880{
 881	unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
 882
 883	if (nowait)
 884		fgp_flags |= FGP_NOWAIT;
 885
 886	return fgp_flags;
 887}
 888
 889static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 890{
 891	gfp_t gfp;
 892
 893	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 894	if (nowait) {
 895		gfp &= ~__GFP_DIRECT_RECLAIM;
 896		gfp |= GFP_NOWAIT;
 897	}
 898
 899	return gfp;
 900}
 901
 902/*
 903 * this just gets pages into the page cache and locks them down.
 904 */
 905static noinline int prepare_pages(struct inode *inode, struct page **pages,
 906				  size_t num_pages, loff_t pos,
 907				  size_t write_bytes, bool force_uptodate,
 908				  bool nowait)
 909{
 910	int i;
 911	unsigned long index = pos >> PAGE_SHIFT;
 912	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 913	unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
 914	int err = 0;
 915	int faili;
 916
 917	for (i = 0; i < num_pages; i++) {
 918again:
 919		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
 920					      fgp_flags, mask | __GFP_WRITE);
 921		if (!pages[i]) {
 922			faili = i - 1;
 923			if (nowait)
 924				err = -EAGAIN;
 925			else
 926				err = -ENOMEM;
 927			goto fail;
 928		}
 929
 930		err = set_page_extent_mapped(pages[i]);
 931		if (err < 0) {
 932			faili = i;
 933			goto fail;
 934		}
 935
 936		if (i == 0)
 937			err = prepare_uptodate_page(inode, pages[i], pos,
 938						    force_uptodate);
 939		if (!err && i == num_pages - 1)
 940			err = prepare_uptodate_page(inode, pages[i],
 941						    pos + write_bytes, false);
 942		if (err) {
 943			put_page(pages[i]);
 944			if (!nowait && err == -EAGAIN) {
 945				err = 0;
 946				goto again;
 947			}
 948			faili = i - 1;
 949			goto fail;
 950		}
 951		wait_on_page_writeback(pages[i]);
 952	}
 953
 954	return 0;
 955fail:
 956	while (faili >= 0) {
 957		unlock_page(pages[faili]);
 958		put_page(pages[faili]);
 959		faili--;
 960	}
 961	return err;
 962
 963}
 964
 965/*
 966 * This function locks the extent and properly waits for data=ordered extents
 967 * to finish before allowing the pages to be modified if need.
 968 *
 969 * The return value:
 970 * 1 - the extent is locked
 971 * 0 - the extent is not locked, and everything is OK
 972 * -EAGAIN - need re-prepare the pages
 973 * the other < 0 number - Something wrong happens
 974 */
 975static noinline int
 976lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
 977				size_t num_pages, loff_t pos,
 978				size_t write_bytes,
 979				u64 *lockstart, u64 *lockend, bool nowait,
 980				struct extent_state **cached_state)
 981{
 982	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 983	u64 start_pos;
 984	u64 last_pos;
 985	int i;
 986	int ret = 0;
 987
 988	start_pos = round_down(pos, fs_info->sectorsize);
 989	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 
 
 990
 991	if (start_pos < inode->vfs_inode.i_size) {
 992		struct btrfs_ordered_extent *ordered;
 993
 994		if (nowait) {
 995			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
 996					     cached_state)) {
 997				for (i = 0; i < num_pages; i++) {
 998					unlock_page(pages[i]);
 999					put_page(pages[i]);
1000					pages[i] = NULL;
1001				}
1002
1003				return -EAGAIN;
1004			}
1005		} else {
1006			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007		}
1008
1009		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010						     last_pos - start_pos + 1);
1011		if (ordered &&
1012		    ordered->file_offset + ordered->num_bytes > start_pos &&
1013		    ordered->file_offset <= last_pos) {
1014			unlock_extent(&inode->io_tree, start_pos, last_pos,
1015				      cached_state);
 
1016			for (i = 0; i < num_pages; i++) {
1017				unlock_page(pages[i]);
1018				put_page(pages[i]);
1019			}
1020			btrfs_start_ordered_extent(ordered, 1);
1021			btrfs_put_ordered_extent(ordered);
1022			return -EAGAIN;
1023		}
1024		if (ordered)
1025			btrfs_put_ordered_extent(ordered);
1026
 
 
 
 
1027		*lockstart = start_pos;
1028		*lockend = last_pos;
1029		ret = 1;
1030	}
1031
1032	/*
1033	 * We should be called after prepare_pages() which should have locked
1034	 * all pages in the range.
1035	 */
1036	for (i = 0; i < num_pages; i++)
1037		WARN_ON(!PageLocked(pages[i]));
 
1038
1039	return ret;
1040}
1041
1042/*
1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044 *
1045 * @pos:         File offset.
1046 * @write_bytes: The length to write, will be updated to the nocow writeable
1047 *               range.
1048 *
1049 * This function will flush ordered extents in the range to ensure proper
1050 * nocow checks.
1051 *
1052 * Return:
1053 * > 0          If we can nocow, and updates @write_bytes.
1054 *  0           If we can't do a nocow write.
1055 * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1056 *              root is in progress.
1057 * < 0          If an error happened.
1058 *
1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060 */
1061int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062			   size_t *write_bytes, bool nowait)
1063{
1064	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065	struct btrfs_root *root = inode->root;
1066	struct extent_state *cached_state = NULL;
1067	u64 lockstart, lockend;
1068	u64 num_bytes;
1069	int ret;
1070
1071	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072		return 0;
1073
1074	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075		return -EAGAIN;
1076
1077	lockstart = round_down(pos, fs_info->sectorsize);
1078	lockend = round_up(pos + *write_bytes,
1079			   fs_info->sectorsize) - 1;
1080	num_bytes = lockend - lockstart + 1;
1081
1082	if (nowait) {
1083		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084						  &cached_state)) {
1085			btrfs_drew_write_unlock(&root->snapshot_lock);
1086			return -EAGAIN;
 
1087		}
1088	} else {
1089		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090						   &cached_state);
1091	}
1092	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093			NULL, NULL, NULL, nowait, false);
1094	if (ret <= 0)
1095		btrfs_drew_write_unlock(&root->snapshot_lock);
1096	else
 
 
1097		*write_bytes = min_t(size_t, *write_bytes ,
1098				     num_bytes - pos + lockstart);
1099	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100
1101	return ret;
1102}
1103
1104void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105{
1106	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107}
1108
1109static void update_time_for_write(struct inode *inode)
1110{
1111	struct timespec64 now;
1112
1113	if (IS_NOCMTIME(inode))
1114		return;
1115
1116	now = current_time(inode);
1117	if (!timespec64_equal(&inode->i_mtime, &now))
1118		inode->i_mtime = now;
1119
1120	if (!timespec64_equal(&inode->i_ctime, &now))
1121		inode->i_ctime = now;
1122
1123	if (IS_I_VERSION(inode))
1124		inode_inc_iversion(inode);
1125}
1126
1127static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1128			     size_t count)
1129{
1130	struct file *file = iocb->ki_filp;
1131	struct inode *inode = file_inode(file);
1132	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1133	loff_t pos = iocb->ki_pos;
1134	int ret;
1135	loff_t oldsize;
1136	loff_t start_pos;
1137
1138	/*
1139	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1140	 * prealloc flags, as without those flags we always have to COW. We will
1141	 * later check if we can really COW into the target range (using
1142	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1143	 */
1144	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1145	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1146		return -EAGAIN;
1147
1148	current->backing_dev_info = inode_to_bdi(inode);
1149	ret = file_remove_privs(file);
1150	if (ret)
1151		return ret;
1152
1153	/*
1154	 * We reserve space for updating the inode when we reserve space for the
1155	 * extent we are going to write, so we will enospc out there.  We don't
1156	 * need to start yet another transaction to update the inode as we will
1157	 * update the inode when we finish writing whatever data we write.
1158	 */
1159	update_time_for_write(inode);
1160
1161	start_pos = round_down(pos, fs_info->sectorsize);
1162	oldsize = i_size_read(inode);
1163	if (start_pos > oldsize) {
1164		/* Expand hole size to cover write data, preventing empty gap */
1165		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1166
1167		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1168		if (ret) {
1169			current->backing_dev_info = NULL;
1170			return ret;
1171		}
1172	}
1173
1174	return 0;
 
 
1175}
1176
1177static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1178					       struct iov_iter *i)
 
1179{
1180	struct file *file = iocb->ki_filp;
1181	loff_t pos;
1182	struct inode *inode = file_inode(file);
1183	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
1184	struct page **pages = NULL;
1185	struct extent_changeset *data_reserved = NULL;
1186	u64 release_bytes = 0;
1187	u64 lockstart;
1188	u64 lockend;
1189	size_t num_written = 0;
1190	int nrptrs;
1191	ssize_t ret;
1192	bool only_release_metadata = false;
1193	bool force_page_uptodate = false;
1194	loff_t old_isize = i_size_read(inode);
1195	unsigned int ilock_flags = 0;
1196	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1197	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1198
1199	if (nowait)
1200		ilock_flags |= BTRFS_ILOCK_TRY;
1201
1202	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1203	if (ret < 0)
1204		return ret;
1205
1206	ret = generic_write_checks(iocb, i);
1207	if (ret <= 0)
1208		goto out;
1209
1210	ret = btrfs_write_check(iocb, i, ret);
1211	if (ret < 0)
1212		goto out;
1213
1214	pos = iocb->ki_pos;
1215	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1216			PAGE_SIZE / (sizeof(struct page *)));
1217	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1218	nrptrs = max(nrptrs, 8);
1219	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1220	if (!pages) {
1221		ret = -ENOMEM;
1222		goto out;
1223	}
1224
1225	while (iov_iter_count(i) > 0) {
1226		struct extent_state *cached_state = NULL;
1227		size_t offset = offset_in_page(pos);
1228		size_t sector_offset;
1229		size_t write_bytes = min(iov_iter_count(i),
1230					 nrptrs * (size_t)PAGE_SIZE -
1231					 offset);
1232		size_t num_pages;
 
1233		size_t reserve_bytes;
1234		size_t dirty_pages;
1235		size_t copied;
1236		size_t dirty_sectors;
1237		size_t num_sectors;
1238		int extents_locked;
 
1239
1240		/*
1241		 * Fault pages before locking them in prepare_pages
1242		 * to avoid recursive lock
1243		 */
1244		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1245			ret = -EFAULT;
1246			break;
1247		}
1248
1249		only_release_metadata = false;
1250		sector_offset = pos & (fs_info->sectorsize - 1);
 
 
1251
1252		extent_changeset_release(data_reserved);
1253		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1254						  &data_reserved, pos,
1255						  write_bytes, nowait);
1256		if (ret < 0) {
1257			int can_nocow;
1258
1259			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1260				ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261				break;
1262			}
1263
1264			/*
1265			 * If we don't have to COW at the offset, reserve
1266			 * metadata only. write_bytes may get smaller than
1267			 * requested here.
1268			 */
1269			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1270							   &write_bytes, nowait);
1271			if (can_nocow < 0)
1272				ret = can_nocow;
1273			if (can_nocow > 0)
1274				ret = 0;
1275			if (ret)
1276				break;
1277			only_release_metadata = true;
1278		}
1279
1280		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1281		WARN_ON(num_pages > nrptrs);
1282		reserve_bytes = round_up(write_bytes + sector_offset,
1283					 fs_info->sectorsize);
1284		WARN_ON(reserve_bytes == 0);
1285		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1286						      reserve_bytes,
1287						      reserve_bytes, nowait);
1288		if (ret) {
1289			if (!only_release_metadata)
1290				btrfs_free_reserved_data_space(BTRFS_I(inode),
1291						data_reserved, pos,
1292						write_bytes);
1293			else
1294				btrfs_check_nocow_unlock(BTRFS_I(inode));
1295
1296			if (nowait && ret == -ENOSPC)
1297				ret = -EAGAIN;
1298			break;
1299		}
1300
1301		release_bytes = reserve_bytes;
 
1302again:
1303		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1304		if (ret) {
1305			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1306			break;
1307		}
1308
1309		/*
1310		 * This is going to setup the pages array with the number of
1311		 * pages we want, so we don't really need to worry about the
1312		 * contents of pages from loop to loop
1313		 */
1314		ret = prepare_pages(inode, pages, num_pages,
1315				    pos, write_bytes, force_page_uptodate, false);
1316		if (ret) {
1317			btrfs_delalloc_release_extents(BTRFS_I(inode),
1318						       reserve_bytes);
1319			break;
1320		}
1321
1322		extents_locked = lock_and_cleanup_extent_if_need(
1323				BTRFS_I(inode), pages,
1324				num_pages, pos, write_bytes, &lockstart,
1325				&lockend, nowait, &cached_state);
1326		if (extents_locked < 0) {
1327			if (!nowait && extents_locked == -EAGAIN)
1328				goto again;
1329
1330			btrfs_delalloc_release_extents(BTRFS_I(inode),
1331						       reserve_bytes);
1332			ret = extents_locked;
1333			break;
 
 
 
1334		}
1335
1336		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1337
1338		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1339		dirty_sectors = round_up(copied + sector_offset,
1340					fs_info->sectorsize);
1341		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1342
1343		/*
1344		 * if we have trouble faulting in the pages, fall
1345		 * back to one page at a time
1346		 */
1347		if (copied < write_bytes)
1348			nrptrs = 1;
1349
1350		if (copied == 0) {
1351			force_page_uptodate = true;
1352			dirty_sectors = 0;
1353			dirty_pages = 0;
1354		} else {
1355			force_page_uptodate = false;
1356			dirty_pages = DIV_ROUND_UP(copied + offset,
1357						   PAGE_SIZE);
1358		}
1359
 
 
 
 
 
 
 
 
1360		if (num_sectors > dirty_sectors) {
1361			/* release everything except the sectors we dirtied */
1362			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
 
 
 
 
 
 
1363			if (only_release_metadata) {
1364				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1365							release_bytes, true);
1366			} else {
1367				u64 __pos;
1368
1369				__pos = round_down(pos,
1370						   fs_info->sectorsize) +
1371					(dirty_pages << PAGE_SHIFT);
1372				btrfs_delalloc_release_space(BTRFS_I(inode),
1373						data_reserved, __pos,
1374						release_bytes, true);
1375			}
1376		}
1377
1378		release_bytes = round_up(copied + sector_offset,
1379					fs_info->sectorsize);
1380
1381		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1382					dirty_pages, pos, copied,
1383					&cached_state, only_release_metadata);
1384
1385		/*
1386		 * If we have not locked the extent range, because the range's
1387		 * start offset is >= i_size, we might still have a non-NULL
1388		 * cached extent state, acquired while marking the extent range
1389		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1390		 * possible cached extent state to avoid a memory leak.
1391		 */
1392		if (extents_locked)
1393			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1394				      lockend, &cached_state);
1395		else
1396			free_extent_state(cached_state);
1397
1398		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1399		if (ret) {
1400			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1401			break;
1402		}
1403
1404		release_bytes = 0;
1405		if (only_release_metadata)
1406			btrfs_check_nocow_unlock(BTRFS_I(inode));
 
 
 
 
 
 
 
 
 
 
 
 
1407
1408		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1409
1410		cond_resched();
1411
 
 
 
 
1412		pos += copied;
1413		num_written += copied;
1414	}
1415
1416	kfree(pages);
1417
1418	if (release_bytes) {
1419		if (only_release_metadata) {
1420			btrfs_check_nocow_unlock(BTRFS_I(inode));
1421			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1422					release_bytes, true);
1423		} else {
1424			btrfs_delalloc_release_space(BTRFS_I(inode),
1425					data_reserved,
1426					round_down(pos, fs_info->sectorsize),
1427					release_bytes, true);
1428		}
1429	}
1430
1431	extent_changeset_free(data_reserved);
1432	if (num_written > 0) {
1433		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1434		iocb->ki_pos += num_written;
1435	}
1436out:
1437	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1438	return num_written ? num_written : ret;
1439}
1440
1441static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1442			       const struct iov_iter *iter, loff_t offset)
1443{
1444	const u32 blocksize_mask = fs_info->sectorsize - 1;
1445
1446	if (offset & blocksize_mask)
1447		return -EINVAL;
1448
1449	if (iov_iter_alignment(iter) & blocksize_mask)
1450		return -EINVAL;
1451
1452	return 0;
1453}
1454
1455static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1456{
1457	struct file *file = iocb->ki_filp;
1458	struct inode *inode = file_inode(file);
1459	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1460	loff_t pos;
1461	ssize_t written = 0;
1462	ssize_t written_buffered;
1463	size_t prev_left = 0;
1464	loff_t endbyte;
1465	ssize_t err;
1466	unsigned int ilock_flags = 0;
1467	struct iomap_dio *dio;
1468
1469	if (iocb->ki_flags & IOCB_NOWAIT)
1470		ilock_flags |= BTRFS_ILOCK_TRY;
1471
1472	/* If the write DIO is within EOF, use a shared lock */
1473	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1474		ilock_flags |= BTRFS_ILOCK_SHARED;
1475
1476relock:
1477	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1478	if (err < 0)
1479		return err;
1480
1481	err = generic_write_checks(iocb, from);
1482	if (err <= 0) {
1483		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1484		return err;
1485	}
1486
1487	err = btrfs_write_check(iocb, from, err);
1488	if (err < 0) {
1489		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1490		goto out;
1491	}
1492
1493	pos = iocb->ki_pos;
1494	/*
1495	 * Re-check since file size may have changed just before taking the
1496	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1497	 */
1498	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1499	    pos + iov_iter_count(from) > i_size_read(inode)) {
1500		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1501		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1502		goto relock;
1503	}
1504
1505	if (check_direct_IO(fs_info, from, pos)) {
1506		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1507		goto buffered;
1508	}
1509
1510	/*
1511	 * The iov_iter can be mapped to the same file range we are writing to.
1512	 * If that's the case, then we will deadlock in the iomap code, because
1513	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1514	 * an ordered extent, and after that it will fault in the pages that the
1515	 * iov_iter refers to. During the fault in we end up in the readahead
1516	 * pages code (starting at btrfs_readahead()), which will lock the range,
1517	 * find that ordered extent and then wait for it to complete (at
1518	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1519	 * obviously the ordered extent can never complete as we didn't submit
1520	 * yet the respective bio(s). This always happens when the buffer is
1521	 * memory mapped to the same file range, since the iomap DIO code always
1522	 * invalidates pages in the target file range (after starting and waiting
1523	 * for any writeback).
1524	 *
1525	 * So here we disable page faults in the iov_iter and then retry if we
1526	 * got -EFAULT, faulting in the pages before the retry.
1527	 */
1528	from->nofault = true;
1529	dio = btrfs_dio_write(iocb, from, written);
1530	from->nofault = false;
1531
1532	/*
1533	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1534	 * iocb, and that needs to lock the inode. So unlock it before calling
1535	 * iomap_dio_complete() to avoid a deadlock.
1536	 */
1537	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1538
1539	if (IS_ERR_OR_NULL(dio))
1540		err = PTR_ERR_OR_ZERO(dio);
1541	else
1542		err = iomap_dio_complete(dio);
1543
1544	/* No increment (+=) because iomap returns a cumulative value. */
1545	if (err > 0)
1546		written = err;
1547
1548	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1549		const size_t left = iov_iter_count(from);
1550		/*
1551		 * We have more data left to write. Try to fault in as many as
1552		 * possible of the remainder pages and retry. We do this without
1553		 * releasing and locking again the inode, to prevent races with
1554		 * truncate.
1555		 *
1556		 * Also, in case the iov refers to pages in the file range of the
1557		 * file we want to write to (due to a mmap), we could enter an
1558		 * infinite loop if we retry after faulting the pages in, since
1559		 * iomap will invalidate any pages in the range early on, before
1560		 * it tries to fault in the pages of the iov. So we keep track of
1561		 * how much was left of iov in the previous EFAULT and fallback
1562		 * to buffered IO in case we haven't made any progress.
1563		 */
1564		if (left == prev_left) {
1565			err = -ENOTBLK;
1566		} else {
1567			fault_in_iov_iter_readable(from, left);
1568			prev_left = left;
1569			goto relock;
1570		}
1571	}
1572
1573	/*
1574	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1575	 * we must fallback to buffered IO.
1576	 */
1577	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1578		goto out;
1579
1580buffered:
1581	/*
1582	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1583	 * it must retry the operation in a context where blocking is acceptable,
1584	 * because even if we end up not blocking during the buffered IO attempt
1585	 * below, we will block when flushing and waiting for the IO.
1586	 */
1587	if (iocb->ki_flags & IOCB_NOWAIT) {
1588		err = -EAGAIN;
1589		goto out;
1590	}
1591
1592	pos = iocb->ki_pos;
1593	written_buffered = btrfs_buffered_write(iocb, from);
1594	if (written_buffered < 0) {
1595		err = written_buffered;
1596		goto out;
1597	}
1598	/*
1599	 * Ensure all data is persisted. We want the next direct IO read to be
1600	 * able to read what was just written.
1601	 */
1602	endbyte = pos + written_buffered - 1;
1603	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1604	if (err)
1605		goto out;
1606	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1607	if (err)
1608		goto out;
1609	written += written_buffered;
1610	iocb->ki_pos = pos + written_buffered;
1611	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1612				 endbyte >> PAGE_SHIFT);
1613out:
1614	return err < 0 ? err : written;
1615}
1616
1617static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1618			const struct btrfs_ioctl_encoded_io_args *encoded)
1619{
1620	struct file *file = iocb->ki_filp;
1621	struct inode *inode = file_inode(file);
1622	loff_t count;
1623	ssize_t ret;
1624
1625	btrfs_inode_lock(BTRFS_I(inode), 0);
1626	count = encoded->len;
1627	ret = generic_write_checks_count(iocb, &count);
1628	if (ret == 0 && count != encoded->len) {
1629		/*
1630		 * The write got truncated by generic_write_checks_count(). We
1631		 * can't do a partial encoded write.
1632		 */
1633		ret = -EFBIG;
1634	}
1635	if (ret || encoded->len == 0)
1636		goto out;
1637
1638	ret = btrfs_write_check(iocb, from, encoded->len);
1639	if (ret < 0)
1640		goto out;
1641
1642	ret = btrfs_do_encoded_write(iocb, from, encoded);
1643out:
1644	btrfs_inode_unlock(BTRFS_I(inode), 0);
1645	return ret;
 
1646}
1647
1648ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1649			    const struct btrfs_ioctl_encoded_io_args *encoded)
1650{
1651	struct file *file = iocb->ki_filp;
1652	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1653	ssize_t num_written, num_sync;
1654	const bool sync = iocb_is_dsync(iocb);
1655
1656	/*
1657	 * If the fs flips readonly due to some impossible error, although we
1658	 * have opened a file as writable, we have to stop this write operation
1659	 * to ensure consistency.
1660	 */
1661	if (BTRFS_FS_ERROR(inode->root->fs_info))
1662		return -EROFS;
 
1663
1664	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1665		return -EOPNOTSUPP;
 
 
 
 
1666
1667	if (sync)
1668		atomic_inc(&inode->sync_writers);
 
 
 
 
1669
1670	if (encoded) {
1671		num_written = btrfs_encoded_write(iocb, from, encoded);
1672		num_sync = encoded->len;
1673	} else if (iocb->ki_flags & IOCB_DIRECT) {
1674		num_written = btrfs_direct_write(iocb, from);
1675		num_sync = num_written;
1676	} else {
1677		num_written = btrfs_buffered_write(iocb, from);
1678		num_sync = num_written;
 
1679	}
1680
1681	btrfs_set_inode_last_sub_trans(inode);
 
 
 
 
 
 
1682
1683	if (num_sync > 0) {
1684		num_sync = generic_write_sync(iocb, num_sync);
1685		if (num_sync < 0)
1686			num_written = num_sync;
 
 
 
 
 
 
 
 
 
 
 
1687	}
1688
1689	if (sync)
1690		atomic_dec(&inode->sync_writers);
1691
1692	current->backing_dev_info = NULL;
1693	return num_written;
1694}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695
1696static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1697{
1698	return btrfs_do_write_iter(iocb, from, NULL);
 
 
1699}
1700
1701int btrfs_release_file(struct inode *inode, struct file *filp)
1702{
1703	struct btrfs_file_private *private = filp->private_data;
1704
1705	if (private) {
1706		kfree(private->filldir_buf);
1707		free_extent_state(private->llseek_cached_state);
1708		kfree(private);
1709		filp->private_data = NULL;
1710	}
1711
1712	/*
1713	 * Set by setattr when we are about to truncate a file from a non-zero
1714	 * size to a zero size.  This tries to flush down new bytes that may
1715	 * have been written if the application were using truncate to replace
1716	 * a file in place.
1717	 */
1718	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1719			       &BTRFS_I(inode)->runtime_flags))
1720			filemap_flush(inode->i_mapping);
1721	return 0;
1722}
1723
1724static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1725{
1726	int ret;
1727	struct blk_plug plug;
1728
1729	/*
1730	 * This is only called in fsync, which would do synchronous writes, so
1731	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1732	 * multiple disks using raid profile, a large IO can be split to
1733	 * several segments of stripe length (currently 64K).
1734	 */
1735	blk_start_plug(&plug);
1736	atomic_inc(&BTRFS_I(inode)->sync_writers);
1737	ret = btrfs_fdatawrite_range(inode, start, end);
1738	atomic_dec(&BTRFS_I(inode)->sync_writers);
1739	blk_finish_plug(&plug);
1740
1741	return ret;
1742}
1743
1744static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1745{
1746	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1747	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1748
1749	if (btrfs_inode_in_log(inode, fs_info->generation) &&
1750	    list_empty(&ctx->ordered_extents))
1751		return true;
1752
1753	/*
1754	 * If we are doing a fast fsync we can not bail out if the inode's
1755	 * last_trans is <= then the last committed transaction, because we only
1756	 * update the last_trans of the inode during ordered extent completion,
1757	 * and for a fast fsync we don't wait for that, we only wait for the
1758	 * writeback to complete.
1759	 */
1760	if (inode->last_trans <= fs_info->last_trans_committed &&
1761	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1762	     list_empty(&ctx->ordered_extents)))
1763		return true;
1764
1765	return false;
1766}
1767
1768/*
1769 * fsync call for both files and directories.  This logs the inode into
1770 * the tree log instead of forcing full commits whenever possible.
1771 *
1772 * It needs to call filemap_fdatawait so that all ordered extent updates are
1773 * in the metadata btree are up to date for copying to the log.
1774 *
1775 * It drops the inode mutex before doing the tree log commit.  This is an
1776 * important optimization for directories because holding the mutex prevents
1777 * new operations on the dir while we write to disk.
1778 */
1779int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1780{
1781	struct dentry *dentry = file_dentry(file);
1782	struct inode *inode = d_inode(dentry);
1783	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1784	struct btrfs_root *root = BTRFS_I(inode)->root;
1785	struct btrfs_trans_handle *trans;
1786	struct btrfs_log_ctx ctx;
1787	int ret = 0, err;
 
1788	u64 len;
1789	bool full_sync;
1790
1791	trace_btrfs_sync_file(file, datasync);
1792
1793	btrfs_init_log_ctx(&ctx, inode);
1794
1795	/*
1796	 * Always set the range to a full range, otherwise we can get into
1797	 * several problems, from missing file extent items to represent holes
1798	 * when not using the NO_HOLES feature, to log tree corruption due to
1799	 * races between hole detection during logging and completion of ordered
1800	 * extents outside the range, to missing checksums due to ordered extents
1801	 * for which we flushed only a subset of their pages.
1802	 */
1803	start = 0;
1804	end = LLONG_MAX;
1805	len = (u64)LLONG_MAX + 1;
1806
1807	/*
1808	 * We write the dirty pages in the range and wait until they complete
1809	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1810	 * multi-task, and make the performance up.  See
1811	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1812	 */
1813	ret = start_ordered_ops(inode, start, end);
1814	if (ret)
1815		goto out;
1816
1817	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1818
 
1819	atomic_inc(&root->log_batch);
1820
1821	/*
1822	 * Before we acquired the inode's lock and the mmap lock, someone may
1823	 * have dirtied more pages in the target range. We need to make sure
1824	 * that writeback for any such pages does not start while we are logging
1825	 * the inode, because if it does, any of the following might happen when
1826	 * we are not doing a full inode sync:
1827	 *
1828	 * 1) We log an extent after its writeback finishes but before its
1829	 *    checksums are added to the csum tree, leading to -EIO errors
1830	 *    when attempting to read the extent after a log replay.
1831	 *
1832	 * 2) We can end up logging an extent before its writeback finishes.
1833	 *    Therefore after the log replay we will have a file extent item
1834	 *    pointing to an unwritten extent (and no data checksums as well).
1835	 *
1836	 * So trigger writeback for any eventual new dirty pages and then we
1837	 * wait for all ordered extents to complete below.
1838	 */
1839	ret = start_ordered_ops(inode, start, end);
1840	if (ret) {
1841		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1842		goto out;
1843	}
1844
1845	/*
1846	 * Always check for the full sync flag while holding the inode's lock,
1847	 * to avoid races with other tasks. The flag must be either set all the
1848	 * time during logging or always off all the time while logging.
1849	 * We check the flag here after starting delalloc above, because when
1850	 * running delalloc the full sync flag may be set if we need to drop
1851	 * extra extent map ranges due to temporary memory allocation failures.
1852	 */
1853	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1854			     &BTRFS_I(inode)->runtime_flags);
1855
1856	/*
1857	 * We have to do this here to avoid the priority inversion of waiting on
1858	 * IO of a lower priority task while holding a transaction open.
1859	 *
1860	 * For a full fsync we wait for the ordered extents to complete while
1861	 * for a fast fsync we wait just for writeback to complete, and then
1862	 * attach the ordered extents to the transaction so that a transaction
1863	 * commit waits for their completion, to avoid data loss if we fsync,
1864	 * the current transaction commits before the ordered extents complete
1865	 * and a power failure happens right after that.
1866	 *
1867	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1868	 * logical address recorded in the ordered extent may change. We need
1869	 * to wait for the IO to stabilize the logical address.
1870	 */
1871	if (full_sync || btrfs_is_zoned(fs_info)) {
 
 
 
 
 
 
1872		ret = btrfs_wait_ordered_range(inode, start, len);
1873	} else {
1874		/*
1875		 * Get our ordered extents as soon as possible to avoid doing
1876		 * checksum lookups in the csum tree, and use instead the
1877		 * checksums attached to the ordered extents.
1878		 */
1879		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1880						      &ctx.ordered_extents);
1881		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882	}
1883
1884	if (ret)
1885		goto out_release_extents;
1886
1887	atomic_inc(&root->log_batch);
1888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	smp_mb();
1890	if (skip_inode_logging(&ctx)) {
 
 
 
 
 
1891		/*
1892		 * We've had everything committed since the last time we were
1893		 * modified so clear this flag in case it was set for whatever
1894		 * reason, it's no longer relevant.
1895		 */
1896		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1897			  &BTRFS_I(inode)->runtime_flags);
1898		/*
1899		 * An ordered extent might have started before and completed
1900		 * already with io errors, in which case the inode was not
1901		 * updated and we end up here. So check the inode's mapping
1902		 * for any errors that might have happened since we last
1903		 * checked called fsync.
1904		 */
1905		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1906		goto out_release_extents;
 
1907	}
1908
1909	/*
 
 
 
 
 
 
1910	 * We use start here because we will need to wait on the IO to complete
1911	 * in btrfs_sync_log, which could require joining a transaction (for
1912	 * example checking cross references in the nocow path).  If we use join
1913	 * here we could get into a situation where we're waiting on IO to
1914	 * happen that is blocked on a transaction trying to commit.  With start
1915	 * we inc the extwriter counter, so we wait for all extwriters to exit
1916	 * before we start blocking joiners.  This comment is to keep somebody
1917	 * from thinking they are super smart and changing this to
1918	 * btrfs_join_transaction *cough*Josef*cough*.
1919	 */
1920	trans = btrfs_start_transaction(root, 0);
1921	if (IS_ERR(trans)) {
1922		ret = PTR_ERR(trans);
1923		goto out_release_extents;
 
1924	}
1925	trans->in_fsync = true;
1926
1927	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1928	btrfs_release_log_ctx_extents(&ctx);
 
1929	if (ret < 0) {
1930		/* Fallthrough and commit/free transaction. */
1931		ret = BTRFS_LOG_FORCE_COMMIT;
1932	}
1933
1934	/* we've logged all the items and now have a consistent
1935	 * version of the file in the log.  It is possible that
1936	 * someone will come in and modify the file, but that's
1937	 * fine because the log is consistent on disk, and we
1938	 * have references to all of the file's extents
1939	 *
1940	 * It is possible that someone will come in and log the
1941	 * file again, but that will end up using the synchronization
1942	 * inside btrfs_sync_log to keep things safe.
1943	 */
1944	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1945
1946	if (ret == BTRFS_NO_LOG_SYNC) {
1947		ret = btrfs_end_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948		goto out;
1949	}
1950
1951	/* We successfully logged the inode, attempt to sync the log. */
1952	if (!ret) {
1953		ret = btrfs_sync_log(trans, root, &ctx);
1954		if (!ret) {
1955			ret = btrfs_end_transaction(trans);
1956			goto out;
 
 
 
1957		}
1958	}
1959
1960	/*
1961	 * At this point we need to commit the transaction because we had
1962	 * btrfs_need_log_full_commit() or some other error.
1963	 *
1964	 * If we didn't do a full sync we have to stop the trans handle, wait on
1965	 * the ordered extents, start it again and commit the transaction.  If
1966	 * we attempt to wait on the ordered extents here we could deadlock with
1967	 * something like fallocate() that is holding the extent lock trying to
1968	 * start a transaction while some other thread is trying to commit the
1969	 * transaction while we (fsync) are currently holding the transaction
1970	 * open.
1971	 */
1972	if (!full_sync) {
1973		ret = btrfs_end_transaction(trans);
1974		if (ret)
1975			goto out;
1976		ret = btrfs_wait_ordered_range(inode, start, len);
1977		if (ret)
1978			goto out;
1979
1980		/*
1981		 * This is safe to use here because we're only interested in
1982		 * making sure the transaction that had the ordered extents is
1983		 * committed.  We aren't waiting on anything past this point,
1984		 * we're purely getting the transaction and committing it.
1985		 */
1986		trans = btrfs_attach_transaction_barrier(root);
1987		if (IS_ERR(trans)) {
1988			ret = PTR_ERR(trans);
1989
1990			/*
1991			 * We committed the transaction and there's no currently
1992			 * running transaction, this means everything we care
1993			 * about made it to disk and we are done.
1994			 */
1995			if (ret == -ENOENT)
1996				ret = 0;
1997			goto out;
1998		}
 
 
 
1999	}
2000
2001	ret = btrfs_commit_transaction(trans);
2002out:
2003	ASSERT(list_empty(&ctx.list));
2004	ASSERT(list_empty(&ctx.conflict_inodes));
2005	err = file_check_and_advance_wb_err(file);
2006	if (!ret)
2007		ret = err;
2008	return ret > 0 ? -EIO : ret;
2009
2010out_release_extents:
2011	btrfs_release_log_ctx_extents(&ctx);
2012	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2013	goto out;
2014}
2015
2016static const struct vm_operations_struct btrfs_file_vm_ops = {
2017	.fault		= filemap_fault,
2018	.map_pages	= filemap_map_pages,
2019	.page_mkwrite	= btrfs_page_mkwrite,
2020};
2021
2022static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2023{
2024	struct address_space *mapping = filp->f_mapping;
2025
2026	if (!mapping->a_ops->read_folio)
2027		return -ENOEXEC;
2028
2029	file_accessed(filp);
2030	vma->vm_ops = &btrfs_file_vm_ops;
2031
2032	return 0;
2033}
2034
2035static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2036			  int slot, u64 start, u64 end)
2037{
2038	struct btrfs_file_extent_item *fi;
2039	struct btrfs_key key;
2040
2041	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2042		return 0;
2043
2044	btrfs_item_key_to_cpu(leaf, &key, slot);
2045	if (key.objectid != btrfs_ino(inode) ||
2046	    key.type != BTRFS_EXTENT_DATA_KEY)
2047		return 0;
2048
2049	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2050
2051	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2052		return 0;
2053
2054	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2055		return 0;
2056
2057	if (key.offset == end)
2058		return 1;
2059	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2060		return 1;
2061	return 0;
2062}
2063
2064static int fill_holes(struct btrfs_trans_handle *trans,
2065		struct btrfs_inode *inode,
2066		struct btrfs_path *path, u64 offset, u64 end)
2067{
2068	struct btrfs_fs_info *fs_info = trans->fs_info;
2069	struct btrfs_root *root = inode->root;
2070	struct extent_buffer *leaf;
2071	struct btrfs_file_extent_item *fi;
2072	struct extent_map *hole_em;
 
2073	struct btrfs_key key;
2074	int ret;
2075
2076	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2077		goto out;
2078
2079	key.objectid = btrfs_ino(inode);
2080	key.type = BTRFS_EXTENT_DATA_KEY;
2081	key.offset = offset;
2082
2083	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2084	if (ret <= 0) {
2085		/*
2086		 * We should have dropped this offset, so if we find it then
2087		 * something has gone horribly wrong.
2088		 */
2089		if (ret == 0)
2090			ret = -EINVAL;
2091		return ret;
2092	}
2093
2094	leaf = path->nodes[0];
2095	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2096		u64 num_bytes;
2097
2098		path->slots[0]--;
2099		fi = btrfs_item_ptr(leaf, path->slots[0],
2100				    struct btrfs_file_extent_item);
2101		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2102			end - offset;
2103		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2104		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2105		btrfs_set_file_extent_offset(leaf, fi, 0);
2106		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2107		btrfs_mark_buffer_dirty(leaf);
2108		goto out;
2109	}
2110
2111	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2112		u64 num_bytes;
2113
2114		key.offset = offset;
2115		btrfs_set_item_key_safe(fs_info, path, &key);
2116		fi = btrfs_item_ptr(leaf, path->slots[0],
2117				    struct btrfs_file_extent_item);
2118		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2119			offset;
2120		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2122		btrfs_set_file_extent_offset(leaf, fi, 0);
2123		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2124		btrfs_mark_buffer_dirty(leaf);
2125		goto out;
2126	}
2127	btrfs_release_path(path);
2128
2129	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2130				       end - offset);
 
2131	if (ret)
2132		return ret;
2133
2134out:
2135	btrfs_release_path(path);
2136
2137	hole_em = alloc_extent_map();
2138	if (!hole_em) {
2139		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2140		btrfs_set_inode_full_sync(inode);
 
2141	} else {
2142		hole_em->start = offset;
2143		hole_em->len = end - offset;
2144		hole_em->ram_bytes = hole_em->len;
2145		hole_em->orig_start = offset;
2146
2147		hole_em->block_start = EXTENT_MAP_HOLE;
2148		hole_em->block_len = 0;
2149		hole_em->orig_block_len = 0;
 
2150		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2151		hole_em->generation = trans->transid;
2152
2153		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
 
 
 
 
 
2154		free_extent_map(hole_em);
2155		if (ret)
2156			btrfs_set_inode_full_sync(inode);
 
2157	}
2158
2159	return 0;
2160}
2161
2162/*
2163 * Find a hole extent on given inode and change start/len to the end of hole
2164 * extent.(hole/vacuum extent whose em->start <= start &&
2165 *	   em->start + em->len > start)
2166 * When a hole extent is found, return 1 and modify start/len.
2167 */
2168static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2169{
2170	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2171	struct extent_map *em;
2172	int ret = 0;
2173
2174	em = btrfs_get_extent(inode, NULL, 0,
2175			      round_down(*start, fs_info->sectorsize),
2176			      round_up(*len, fs_info->sectorsize));
2177	if (IS_ERR(em))
2178		return PTR_ERR(em);
 
 
 
2179
2180	/* Hole or vacuum extent(only exists in no-hole mode) */
2181	if (em->block_start == EXTENT_MAP_HOLE) {
2182		ret = 1;
2183		*len = em->start + em->len > *start + *len ?
2184		       0 : *start + *len - em->start - em->len;
2185		*start = em->start + em->len;
2186	}
2187	free_extent_map(em);
2188	return ret;
2189}
2190
2191static void btrfs_punch_hole_lock_range(struct inode *inode,
2192					const u64 lockstart,
2193					const u64 lockend,
2194					struct extent_state **cached_state)
2195{
2196	/*
2197	 * For subpage case, if the range is not at page boundary, we could
2198	 * have pages at the leading/tailing part of the range.
2199	 * This could lead to dead loop since filemap_range_has_page()
2200	 * will always return true.
2201	 * So here we need to do extra page alignment for
2202	 * filemap_range_has_page().
2203	 */
2204	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2205	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2206
2207	while (1) {
2208		truncate_pagecache_range(inode, lockstart, lockend);
2209
2210		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2211			    cached_state);
2212		/*
2213		 * We can't have ordered extents in the range, nor dirty/writeback
2214		 * pages, because we have locked the inode's VFS lock in exclusive
2215		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2216		 * we have flushed all delalloc in the range and we have waited
2217		 * for any ordered extents in the range to complete.
2218		 * We can race with anyone reading pages from this range, so after
2219		 * locking the range check if we have pages in the range, and if
2220		 * we do, unlock the range and retry.
2221		 */
2222		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2223					    page_lockend))
2224			break;
2225
2226		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2227			      cached_state);
2228	}
2229
2230	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2231}
2232
2233static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2234				     struct btrfs_inode *inode,
2235				     struct btrfs_path *path,
2236				     struct btrfs_replace_extent_info *extent_info,
2237				     const u64 replace_len,
2238				     const u64 bytes_to_drop)
2239{
2240	struct btrfs_fs_info *fs_info = trans->fs_info;
2241	struct btrfs_root *root = inode->root;
2242	struct btrfs_file_extent_item *extent;
2243	struct extent_buffer *leaf;
2244	struct btrfs_key key;
2245	int slot;
2246	struct btrfs_ref ref = { 0 };
2247	int ret;
2248
2249	if (replace_len == 0)
2250		return 0;
2251
2252	if (extent_info->disk_offset == 0 &&
2253	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2254		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2255		return 0;
2256	}
2257
2258	key.objectid = btrfs_ino(inode);
2259	key.type = BTRFS_EXTENT_DATA_KEY;
2260	key.offset = extent_info->file_offset;
2261	ret = btrfs_insert_empty_item(trans, root, path, &key,
2262				      sizeof(struct btrfs_file_extent_item));
2263	if (ret)
2264		return ret;
2265	leaf = path->nodes[0];
2266	slot = path->slots[0];
2267	write_extent_buffer(leaf, extent_info->extent_buf,
2268			    btrfs_item_ptr_offset(leaf, slot),
2269			    sizeof(struct btrfs_file_extent_item));
2270	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2271	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2272	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2273	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2274	if (extent_info->is_new_extent)
2275		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2276	btrfs_mark_buffer_dirty(leaf);
2277	btrfs_release_path(path);
2278
2279	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2280						replace_len);
2281	if (ret)
2282		return ret;
2283
2284	/* If it's a hole, nothing more needs to be done. */
2285	if (extent_info->disk_offset == 0) {
2286		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2287		return 0;
2288	}
2289
2290	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2291
2292	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2293		key.objectid = extent_info->disk_offset;
2294		key.type = BTRFS_EXTENT_ITEM_KEY;
2295		key.offset = extent_info->disk_len;
2296		ret = btrfs_alloc_reserved_file_extent(trans, root,
2297						       btrfs_ino(inode),
2298						       extent_info->file_offset,
2299						       extent_info->qgroup_reserved,
2300						       &key);
2301	} else {
2302		u64 ref_offset;
2303
2304		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2305				       extent_info->disk_offset,
2306				       extent_info->disk_len, 0);
2307		ref_offset = extent_info->file_offset - extent_info->data_offset;
2308		btrfs_init_data_ref(&ref, root->root_key.objectid,
2309				    btrfs_ino(inode), ref_offset, 0, false);
2310		ret = btrfs_inc_extent_ref(trans, &ref);
2311	}
2312
2313	extent_info->insertions++;
2314
2315	return ret;
2316}
2317
2318/*
2319 * The respective range must have been previously locked, as well as the inode.
2320 * The end offset is inclusive (last byte of the range).
2321 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2322 * the file range with an extent.
2323 * When not punching a hole, we don't want to end up in a state where we dropped
2324 * extents without inserting a new one, so we must abort the transaction to avoid
2325 * a corruption.
2326 */
2327int btrfs_replace_file_extents(struct btrfs_inode *inode,
2328			       struct btrfs_path *path, const u64 start,
2329			       const u64 end,
2330			       struct btrfs_replace_extent_info *extent_info,
2331			       struct btrfs_trans_handle **trans_out)
2332{
2333	struct btrfs_drop_extents_args drop_args = { 0 };
2334	struct btrfs_root *root = inode->root;
2335	struct btrfs_fs_info *fs_info = root->fs_info;
2336	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2337	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2338	struct btrfs_trans_handle *trans = NULL;
2339	struct btrfs_block_rsv *rsv;
2340	unsigned int rsv_count;
2341	u64 cur_offset;
2342	u64 len = end - start;
2343	int ret = 0;
2344
2345	if (end <= start)
2346		return -EINVAL;
2347
2348	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2349	if (!rsv) {
2350		ret = -ENOMEM;
2351		goto out;
2352	}
2353	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2354	rsv->failfast = true;
2355
2356	/*
2357	 * 1 - update the inode
2358	 * 1 - removing the extents in the range
2359	 * 1 - adding the hole extent if no_holes isn't set or if we are
2360	 *     replacing the range with a new extent
2361	 */
2362	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2363		rsv_count = 3;
2364	else
2365		rsv_count = 2;
2366
2367	trans = btrfs_start_transaction(root, rsv_count);
2368	if (IS_ERR(trans)) {
2369		ret = PTR_ERR(trans);
2370		trans = NULL;
2371		goto out_free;
2372	}
2373
2374	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2375				      min_size, false);
2376	if (WARN_ON(ret))
2377		goto out_trans;
2378	trans->block_rsv = rsv;
2379
2380	cur_offset = start;
2381	drop_args.path = path;
2382	drop_args.end = end + 1;
2383	drop_args.drop_cache = true;
2384	while (cur_offset < end) {
2385		drop_args.start = cur_offset;
2386		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2387		/* If we are punching a hole decrement the inode's byte count */
2388		if (!extent_info)
2389			btrfs_update_inode_bytes(inode, 0,
2390						 drop_args.bytes_found);
2391		if (ret != -ENOSPC) {
2392			/*
2393			 * The only time we don't want to abort is if we are
2394			 * attempting to clone a partial inline extent, in which
2395			 * case we'll get EOPNOTSUPP.  However if we aren't
2396			 * clone we need to abort no matter what, because if we
2397			 * got EOPNOTSUPP via prealloc then we messed up and
2398			 * need to abort.
2399			 */
2400			if (ret &&
2401			    (ret != -EOPNOTSUPP ||
2402			     (extent_info && extent_info->is_new_extent)))
2403				btrfs_abort_transaction(trans, ret);
2404			break;
2405		}
2406
2407		trans->block_rsv = &fs_info->trans_block_rsv;
2408
2409		if (!extent_info && cur_offset < drop_args.drop_end &&
2410		    cur_offset < ino_size) {
2411			ret = fill_holes(trans, inode, path, cur_offset,
2412					 drop_args.drop_end);
2413			if (ret) {
2414				/*
2415				 * If we failed then we didn't insert our hole
2416				 * entries for the area we dropped, so now the
2417				 * fs is corrupted, so we must abort the
2418				 * transaction.
2419				 */
2420				btrfs_abort_transaction(trans, ret);
2421				break;
2422			}
2423		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2424			/*
2425			 * We are past the i_size here, but since we didn't
2426			 * insert holes we need to clear the mapped area so we
2427			 * know to not set disk_i_size in this area until a new
2428			 * file extent is inserted here.
2429			 */
2430			ret = btrfs_inode_clear_file_extent_range(inode,
2431					cur_offset,
2432					drop_args.drop_end - cur_offset);
2433			if (ret) {
2434				/*
2435				 * We couldn't clear our area, so we could
2436				 * presumably adjust up and corrupt the fs, so
2437				 * we need to abort.
2438				 */
2439				btrfs_abort_transaction(trans, ret);
2440				break;
2441			}
2442		}
2443
2444		if (extent_info &&
2445		    drop_args.drop_end > extent_info->file_offset) {
2446			u64 replace_len = drop_args.drop_end -
2447					  extent_info->file_offset;
2448
2449			ret = btrfs_insert_replace_extent(trans, inode,	path,
2450					extent_info, replace_len,
2451					drop_args.bytes_found);
2452			if (ret) {
2453				btrfs_abort_transaction(trans, ret);
2454				break;
2455			}
2456			extent_info->data_len -= replace_len;
2457			extent_info->data_offset += replace_len;
2458			extent_info->file_offset += replace_len;
2459		}
2460
2461		/*
2462		 * We are releasing our handle on the transaction, balance the
2463		 * dirty pages of the btree inode and flush delayed items, and
2464		 * then get a new transaction handle, which may now point to a
2465		 * new transaction in case someone else may have committed the
2466		 * transaction we used to replace/drop file extent items. So
2467		 * bump the inode's iversion and update mtime and ctime except
2468		 * if we are called from a dedupe context. This is because a
2469		 * power failure/crash may happen after the transaction is
2470		 * committed and before we finish replacing/dropping all the
2471		 * file extent items we need.
2472		 */
2473		inode_inc_iversion(&inode->vfs_inode);
2474
2475		if (!extent_info || extent_info->update_times) {
2476			inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2477			inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2478		}
2479
2480		ret = btrfs_update_inode(trans, root, inode);
2481		if (ret)
2482			break;
2483
2484		btrfs_end_transaction(trans);
2485		btrfs_btree_balance_dirty(fs_info);
2486
2487		trans = btrfs_start_transaction(root, rsv_count);
2488		if (IS_ERR(trans)) {
2489			ret = PTR_ERR(trans);
2490			trans = NULL;
2491			break;
2492		}
2493
2494		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2495					      rsv, min_size, false);
2496		if (WARN_ON(ret))
2497			break;
2498		trans->block_rsv = rsv;
2499
2500		cur_offset = drop_args.drop_end;
2501		len = end - cur_offset;
2502		if (!extent_info && len) {
2503			ret = find_first_non_hole(inode, &cur_offset, &len);
2504			if (unlikely(ret < 0))
2505				break;
2506			if (ret && !len) {
2507				ret = 0;
2508				break;
2509			}
2510		}
2511	}
2512
2513	/*
2514	 * If we were cloning, force the next fsync to be a full one since we
2515	 * we replaced (or just dropped in the case of cloning holes when
2516	 * NO_HOLES is enabled) file extent items and did not setup new extent
2517	 * maps for the replacement extents (or holes).
2518	 */
2519	if (extent_info && !extent_info->is_new_extent)
2520		btrfs_set_inode_full_sync(inode);
2521
2522	if (ret)
2523		goto out_trans;
2524
2525	trans->block_rsv = &fs_info->trans_block_rsv;
2526	/*
2527	 * If we are using the NO_HOLES feature we might have had already an
2528	 * hole that overlaps a part of the region [lockstart, lockend] and
2529	 * ends at (or beyond) lockend. Since we have no file extent items to
2530	 * represent holes, drop_end can be less than lockend and so we must
2531	 * make sure we have an extent map representing the existing hole (the
2532	 * call to __btrfs_drop_extents() might have dropped the existing extent
2533	 * map representing the existing hole), otherwise the fast fsync path
2534	 * will not record the existence of the hole region
2535	 * [existing_hole_start, lockend].
2536	 */
2537	if (drop_args.drop_end <= end)
2538		drop_args.drop_end = end + 1;
2539	/*
2540	 * Don't insert file hole extent item if it's for a range beyond eof
2541	 * (because it's useless) or if it represents a 0 bytes range (when
2542	 * cur_offset == drop_end).
2543	 */
2544	if (!extent_info && cur_offset < ino_size &&
2545	    cur_offset < drop_args.drop_end) {
2546		ret = fill_holes(trans, inode, path, cur_offset,
2547				 drop_args.drop_end);
2548		if (ret) {
2549			/* Same comment as above. */
2550			btrfs_abort_transaction(trans, ret);
2551			goto out_trans;
2552		}
2553	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2554		/* See the comment in the loop above for the reasoning here. */
2555		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2556					drop_args.drop_end - cur_offset);
2557		if (ret) {
2558			btrfs_abort_transaction(trans, ret);
2559			goto out_trans;
2560		}
2561
2562	}
2563	if (extent_info) {
2564		ret = btrfs_insert_replace_extent(trans, inode, path,
2565				extent_info, extent_info->data_len,
2566				drop_args.bytes_found);
2567		if (ret) {
2568			btrfs_abort_transaction(trans, ret);
2569			goto out_trans;
2570		}
2571	}
2572
2573out_trans:
2574	if (!trans)
2575		goto out_free;
2576
2577	trans->block_rsv = &fs_info->trans_block_rsv;
2578	if (ret)
2579		btrfs_end_transaction(trans);
2580	else
2581		*trans_out = trans;
2582out_free:
2583	btrfs_free_block_rsv(fs_info, rsv);
2584out:
2585	return ret;
2586}
2587
2588static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2589{
2590	struct inode *inode = file_inode(file);
2591	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2592	struct btrfs_root *root = BTRFS_I(inode)->root;
2593	struct extent_state *cached_state = NULL;
2594	struct btrfs_path *path;
2595	struct btrfs_trans_handle *trans = NULL;
 
2596	u64 lockstart;
2597	u64 lockend;
2598	u64 tail_start;
2599	u64 tail_len;
2600	u64 orig_start = offset;
 
 
 
2601	int ret = 0;
 
 
2602	bool same_block;
 
2603	u64 ino_size;
2604	bool truncated_block = false;
2605	bool updated_inode = false;
2606
2607	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2608
2609	ret = btrfs_wait_ordered_range(inode, offset, len);
2610	if (ret)
2611		goto out_only_mutex;
2612
 
2613	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2614	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2615	if (ret < 0)
2616		goto out_only_mutex;
2617	if (ret && !len) {
2618		/* Already in a large hole */
2619		ret = 0;
2620		goto out_only_mutex;
2621	}
2622
2623	ret = file_modified(file);
2624	if (ret)
2625		goto out_only_mutex;
2626
2627	lockstart = round_up(offset, fs_info->sectorsize);
2628	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2629	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2630		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2631	/*
2632	 * We needn't truncate any block which is beyond the end of the file
2633	 * because we are sure there is no data there.
2634	 */
2635	/*
2636	 * Only do this if we are in the same block and we aren't doing the
2637	 * entire block.
2638	 */
2639	if (same_block && len < fs_info->sectorsize) {
2640		if (offset < ino_size) {
2641			truncated_block = true;
2642			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2643						   0);
2644		} else {
2645			ret = 0;
2646		}
2647		goto out_only_mutex;
2648	}
2649
2650	/* zero back part of the first block */
2651	if (offset < ino_size) {
2652		truncated_block = true;
2653		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2654		if (ret) {
2655			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2656			return ret;
2657		}
2658	}
2659
2660	/* Check the aligned pages after the first unaligned page,
2661	 * if offset != orig_start, which means the first unaligned page
2662	 * including several following pages are already in holes,
2663	 * the extra check can be skipped */
2664	if (offset == orig_start) {
2665		/* after truncate page, check hole again */
2666		len = offset + len - lockstart;
2667		offset = lockstart;
2668		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2669		if (ret < 0)
2670			goto out_only_mutex;
2671		if (ret && !len) {
2672			ret = 0;
2673			goto out_only_mutex;
2674		}
2675		lockstart = offset;
2676	}
2677
2678	/* Check the tail unaligned part is in a hole */
2679	tail_start = lockend + 1;
2680	tail_len = offset + len - tail_start;
2681	if (tail_len) {
2682		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2683		if (unlikely(ret < 0))
2684			goto out_only_mutex;
2685		if (!ret) {
2686			/* zero the front end of the last page */
2687			if (tail_start + tail_len < ino_size) {
2688				truncated_block = true;
2689				ret = btrfs_truncate_block(BTRFS_I(inode),
2690							tail_start + tail_len,
2691							0, 1);
2692				if (ret)
2693					goto out_only_mutex;
2694			}
2695		}
2696	}
2697
2698	if (lockend < lockstart) {
2699		ret = 0;
2700		goto out_only_mutex;
2701	}
2702
2703	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704
2705	path = btrfs_alloc_path();
2706	if (!path) {
2707		ret = -ENOMEM;
2708		goto out;
2709	}
2710
2711	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2712					 lockend, NULL, &trans);
2713	btrfs_free_path(path);
2714	if (ret)
2715		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2716
2717	ASSERT(trans != NULL);
2718	inode_inc_iversion(inode);
2719	inode->i_mtime = current_time(inode);
2720	inode->i_ctime = inode->i_mtime;
2721	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 
2722	updated_inode = true;
2723	btrfs_end_transaction(trans);
2724	btrfs_btree_balance_dirty(fs_info);
 
 
 
2725out:
2726	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2727		      &cached_state);
2728out_only_mutex:
2729	if (!updated_inode && truncated_block && !ret) {
2730		/*
2731		 * If we only end up zeroing part of a page, we still need to
2732		 * update the inode item, so that all the time fields are
2733		 * updated as well as the necessary btrfs inode in memory fields
2734		 * for detecting, at fsync time, if the inode isn't yet in the
2735		 * log tree or it's there but not up to date.
2736		 */
2737		struct timespec64 now = current_time(inode);
2738
2739		inode_inc_iversion(inode);
2740		inode->i_mtime = now;
2741		inode->i_ctime = now;
2742		trans = btrfs_start_transaction(root, 1);
2743		if (IS_ERR(trans)) {
2744			ret = PTR_ERR(trans);
2745		} else {
2746			int ret2;
2747
2748			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2749			ret2 = btrfs_end_transaction(trans);
2750			if (!ret)
2751				ret = ret2;
2752		}
2753	}
2754	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2755	return ret;
 
 
2756}
2757
2758/* Helper structure to record which range is already reserved */
2759struct falloc_range {
2760	struct list_head list;
2761	u64 start;
2762	u64 len;
2763};
2764
2765/*
2766 * Helper function to add falloc range
2767 *
2768 * Caller should have locked the larger range of extent containing
2769 * [start, len)
2770 */
2771static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2772{
 
2773	struct falloc_range *range = NULL;
2774
2775	if (!list_empty(head)) {
2776		/*
2777		 * As fallocate iterates by bytenr order, we only need to check
2778		 * the last range.
2779		 */
2780		range = list_last_entry(head, struct falloc_range, list);
2781		if (range->start + range->len == start) {
2782			range->len += len;
2783			return 0;
2784		}
2785	}
2786
 
 
 
 
 
 
 
 
 
 
2787	range = kmalloc(sizeof(*range), GFP_KERNEL);
2788	if (!range)
2789		return -ENOMEM;
2790	range->start = start;
2791	range->len = len;
2792	list_add_tail(&range->list, head);
2793	return 0;
2794}
2795
2796static int btrfs_fallocate_update_isize(struct inode *inode,
2797					const u64 end,
2798					const int mode)
2799{
2800	struct btrfs_trans_handle *trans;
2801	struct btrfs_root *root = BTRFS_I(inode)->root;
2802	int ret;
2803	int ret2;
2804
2805	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2806		return 0;
2807
2808	trans = btrfs_start_transaction(root, 1);
2809	if (IS_ERR(trans))
2810		return PTR_ERR(trans);
2811
2812	inode->i_ctime = current_time(inode);
2813	i_size_write(inode, end);
2814	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2815	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2816	ret2 = btrfs_end_transaction(trans);
2817
2818	return ret ? ret : ret2;
2819}
2820
2821enum {
2822	RANGE_BOUNDARY_WRITTEN_EXTENT,
2823	RANGE_BOUNDARY_PREALLOC_EXTENT,
2824	RANGE_BOUNDARY_HOLE,
2825};
2826
2827static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2828						 u64 offset)
2829{
2830	const u64 sectorsize = inode->root->fs_info->sectorsize;
2831	struct extent_map *em;
2832	int ret;
2833
2834	offset = round_down(offset, sectorsize);
2835	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2836	if (IS_ERR(em))
2837		return PTR_ERR(em);
2838
2839	if (em->block_start == EXTENT_MAP_HOLE)
2840		ret = RANGE_BOUNDARY_HOLE;
2841	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2842		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2843	else
2844		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2845
2846	free_extent_map(em);
2847	return ret;
2848}
2849
2850static int btrfs_zero_range(struct inode *inode,
2851			    loff_t offset,
2852			    loff_t len,
2853			    const int mode)
2854{
2855	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2856	struct extent_map *em;
2857	struct extent_changeset *data_reserved = NULL;
2858	int ret;
2859	u64 alloc_hint = 0;
2860	const u64 sectorsize = fs_info->sectorsize;
2861	u64 alloc_start = round_down(offset, sectorsize);
2862	u64 alloc_end = round_up(offset + len, sectorsize);
2863	u64 bytes_to_reserve = 0;
2864	bool space_reserved = false;
2865
2866	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2867			      alloc_end - alloc_start);
2868	if (IS_ERR(em)) {
2869		ret = PTR_ERR(em);
2870		goto out;
2871	}
2872
2873	/*
2874	 * Avoid hole punching and extent allocation for some cases. More cases
2875	 * could be considered, but these are unlikely common and we keep things
2876	 * as simple as possible for now. Also, intentionally, if the target
2877	 * range contains one or more prealloc extents together with regular
2878	 * extents and holes, we drop all the existing extents and allocate a
2879	 * new prealloc extent, so that we get a larger contiguous disk extent.
2880	 */
2881	if (em->start <= alloc_start &&
2882	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2883		const u64 em_end = em->start + em->len;
2884
2885		if (em_end >= offset + len) {
2886			/*
2887			 * The whole range is already a prealloc extent,
2888			 * do nothing except updating the inode's i_size if
2889			 * needed.
2890			 */
2891			free_extent_map(em);
2892			ret = btrfs_fallocate_update_isize(inode, offset + len,
2893							   mode);
2894			goto out;
2895		}
2896		/*
2897		 * Part of the range is already a prealloc extent, so operate
2898		 * only on the remaining part of the range.
2899		 */
2900		alloc_start = em_end;
2901		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2902		len = offset + len - alloc_start;
2903		offset = alloc_start;
2904		alloc_hint = em->block_start + em->len;
2905	}
2906	free_extent_map(em);
2907
2908	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2909	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2910		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2911				      sectorsize);
2912		if (IS_ERR(em)) {
2913			ret = PTR_ERR(em);
2914			goto out;
2915		}
2916
2917		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2918			free_extent_map(em);
2919			ret = btrfs_fallocate_update_isize(inode, offset + len,
2920							   mode);
2921			goto out;
2922		}
2923		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2924			free_extent_map(em);
2925			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2926						   0);
2927			if (!ret)
2928				ret = btrfs_fallocate_update_isize(inode,
2929								   offset + len,
2930								   mode);
2931			return ret;
2932		}
2933		free_extent_map(em);
2934		alloc_start = round_down(offset, sectorsize);
2935		alloc_end = alloc_start + sectorsize;
2936		goto reserve_space;
2937	}
2938
2939	alloc_start = round_up(offset, sectorsize);
2940	alloc_end = round_down(offset + len, sectorsize);
2941
2942	/*
2943	 * For unaligned ranges, check the pages at the boundaries, they might
2944	 * map to an extent, in which case we need to partially zero them, or
2945	 * they might map to a hole, in which case we need our allocation range
2946	 * to cover them.
2947	 */
2948	if (!IS_ALIGNED(offset, sectorsize)) {
2949		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2950							    offset);
2951		if (ret < 0)
2952			goto out;
2953		if (ret == RANGE_BOUNDARY_HOLE) {
2954			alloc_start = round_down(offset, sectorsize);
2955			ret = 0;
2956		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2957			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2958			if (ret)
2959				goto out;
2960		} else {
2961			ret = 0;
2962		}
2963	}
2964
2965	if (!IS_ALIGNED(offset + len, sectorsize)) {
2966		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2967							    offset + len);
2968		if (ret < 0)
2969			goto out;
2970		if (ret == RANGE_BOUNDARY_HOLE) {
2971			alloc_end = round_up(offset + len, sectorsize);
2972			ret = 0;
2973		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2974			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2975						   0, 1);
2976			if (ret)
2977				goto out;
2978		} else {
2979			ret = 0;
2980		}
2981	}
2982
2983reserve_space:
2984	if (alloc_start < alloc_end) {
2985		struct extent_state *cached_state = NULL;
2986		const u64 lockstart = alloc_start;
2987		const u64 lockend = alloc_end - 1;
2988
2989		bytes_to_reserve = alloc_end - alloc_start;
2990		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2991						      bytes_to_reserve);
2992		if (ret < 0)
2993			goto out;
2994		space_reserved = true;
2995		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2996					    &cached_state);
2997		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2998						alloc_start, bytes_to_reserve);
2999		if (ret) {
3000			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3001				      lockend, &cached_state);
3002			goto out;
3003		}
3004		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3005						alloc_end - alloc_start,
3006						i_blocksize(inode),
3007						offset + len, &alloc_hint);
3008		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3009			      &cached_state);
3010		/* btrfs_prealloc_file_range releases reserved space on error */
3011		if (ret) {
3012			space_reserved = false;
3013			goto out;
3014		}
3015	}
3016	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3017 out:
3018	if (ret && space_reserved)
3019		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3020					       alloc_start, bytes_to_reserve);
3021	extent_changeset_free(data_reserved);
3022
3023	return ret;
3024}
3025
3026static long btrfs_fallocate(struct file *file, int mode,
3027			    loff_t offset, loff_t len)
3028{
3029	struct inode *inode = file_inode(file);
3030	struct extent_state *cached_state = NULL;
3031	struct extent_changeset *data_reserved = NULL;
3032	struct falloc_range *range;
3033	struct falloc_range *tmp;
3034	struct list_head reserve_list;
3035	u64 cur_offset;
3036	u64 last_byte;
3037	u64 alloc_start;
3038	u64 alloc_end;
3039	u64 alloc_hint = 0;
3040	u64 locked_end;
3041	u64 actual_end = 0;
3042	u64 data_space_needed = 0;
3043	u64 data_space_reserved = 0;
3044	u64 qgroup_reserved = 0;
3045	struct extent_map *em;
3046	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3047	int ret;
3048
3049	/* Do not allow fallocate in ZONED mode */
3050	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3051		return -EOPNOTSUPP;
3052
3053	alloc_start = round_down(offset, blocksize);
3054	alloc_end = round_up(offset + len, blocksize);
3055	cur_offset = alloc_start;
3056
3057	/* Make sure we aren't being give some crap mode */
3058	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3059		     FALLOC_FL_ZERO_RANGE))
3060		return -EOPNOTSUPP;
3061
3062	if (mode & FALLOC_FL_PUNCH_HOLE)
3063		return btrfs_punch_hole(file, offset, len);
 
 
 
 
 
 
 
 
 
3064
3065	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3066
3067	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3068		ret = inode_newsize_ok(inode, offset + len);
3069		if (ret)
3070			goto out;
3071	}
3072
3073	ret = file_modified(file);
3074	if (ret)
3075		goto out;
3076
3077	/*
3078	 * TODO: Move these two operations after we have checked
3079	 * accurate reserved space, or fallocate can still fail but
3080	 * with page truncated or size expanded.
3081	 *
3082	 * But that's a minor problem and won't do much harm BTW.
3083	 */
3084	if (alloc_start > inode->i_size) {
3085		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3086					alloc_start);
3087		if (ret)
3088			goto out;
3089	} else if (offset + len > inode->i_size) {
3090		/*
3091		 * If we are fallocating from the end of the file onward we
3092		 * need to zero out the end of the block if i_size lands in the
3093		 * middle of a block.
3094		 */
3095		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3096		if (ret)
3097			goto out;
3098	}
3099
3100	/*
3101	 * We have locked the inode at the VFS level (in exclusive mode) and we
3102	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3103	 * locking the file range, flush all dealloc in the range and wait for
3104	 * all ordered extents in the range to complete. After this we can lock
3105	 * the file range and, due to the previous locking we did, we know there
3106	 * can't be more delalloc or ordered extents in the range.
3107	 */
3108	ret = btrfs_wait_ordered_range(inode, alloc_start,
3109				       alloc_end - alloc_start);
3110	if (ret)
3111		goto out;
3112
3113	if (mode & FALLOC_FL_ZERO_RANGE) {
3114		ret = btrfs_zero_range(inode, offset, len, mode);
3115		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3116		return ret;
3117	}
3118
3119	locked_end = alloc_end - 1;
3120	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3121		    &cached_state);
3122
3123	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124
3125	/* First, check if we exceed the qgroup limit */
3126	INIT_LIST_HEAD(&reserve_list);
3127	while (cur_offset < alloc_end) {
3128		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3129				      alloc_end - cur_offset);
3130		if (IS_ERR(em)) {
3131			ret = PTR_ERR(em);
 
 
 
3132			break;
3133		}
3134		last_byte = min(extent_map_end(em), alloc_end);
3135		actual_end = min_t(u64, extent_map_end(em), offset + len);
3136		last_byte = ALIGN(last_byte, blocksize);
3137		if (em->block_start == EXTENT_MAP_HOLE ||
3138		    (cur_offset >= inode->i_size &&
3139		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3140			const u64 range_len = last_byte - cur_offset;
3141
3142			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3143			if (ret < 0) {
3144				free_extent_map(em);
3145				break;
3146			}
3147			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3148					&data_reserved, cur_offset, range_len);
3149			if (ret < 0) {
3150				free_extent_map(em);
3151				break;
3152			}
3153			qgroup_reserved += range_len;
3154			data_space_needed += range_len;
 
 
 
 
 
3155		}
3156		free_extent_map(em);
3157		cur_offset = last_byte;
3158	}
3159
3160	if (!ret && data_space_needed > 0) {
3161		/*
3162		 * We are safe to reserve space here as we can't have delalloc
3163		 * in the range, see above.
3164		 */
3165		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3166						      data_space_needed);
3167		if (!ret)
3168			data_space_reserved = data_space_needed;
3169	}
3170
3171	/*
3172	 * If ret is still 0, means we're OK to fallocate.
3173	 * Or just cleanup the list and exit.
3174	 */
3175	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3176		if (!ret) {
3177			ret = btrfs_prealloc_file_range(inode, mode,
3178					range->start,
3179					range->len, i_blocksize(inode),
3180					offset + len, &alloc_hint);
3181			/*
3182			 * btrfs_prealloc_file_range() releases space even
3183			 * if it returns an error.
3184			 */
3185			data_space_reserved -= range->len;
3186			qgroup_reserved -= range->len;
3187		} else if (data_space_reserved > 0) {
3188			btrfs_free_reserved_data_space(BTRFS_I(inode),
3189					       data_reserved, range->start,
3190					       range->len);
3191			data_space_reserved -= range->len;
3192			qgroup_reserved -= range->len;
3193		} else if (qgroup_reserved > 0) {
3194			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3195					       range->start, range->len);
3196			qgroup_reserved -= range->len;
3197		}
3198		list_del(&range->list);
3199		kfree(range);
3200	}
3201	if (ret < 0)
3202		goto out_unlock;
3203
3204	/*
3205	 * We didn't need to allocate any more space, but we still extended the
3206	 * size of the file so we need to update i_size and the inode item.
3207	 */
3208	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3209out_unlock:
3210	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3211		      &cached_state);
3212out:
3213	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3214	extent_changeset_free(data_reserved);
3215	return ret;
3216}
3217
3218/*
3219 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3220 * that has unflushed and/or flushing delalloc. There might be other adjacent
3221 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3222 * looping while it gets adjacent subranges, and merging them together.
3223 */
3224static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3225				   struct extent_state **cached_state,
3226				   bool *search_io_tree,
3227				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3228{
3229	u64 len = end + 1 - start;
3230	u64 delalloc_len = 0;
3231	struct btrfs_ordered_extent *oe;
3232	u64 oe_start;
3233	u64 oe_end;
3234
3235	/*
3236	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3237	 * means we have delalloc (dirty pages) for which writeback has not
3238	 * started yet.
3239	 */
3240	if (*search_io_tree) {
3241		spin_lock(&inode->lock);
3242		if (inode->delalloc_bytes > 0) {
3243			spin_unlock(&inode->lock);
3244			*delalloc_start_ret = start;
3245			delalloc_len = count_range_bits(&inode->io_tree,
3246							delalloc_start_ret, end,
3247							len, EXTENT_DELALLOC, 1,
3248							cached_state);
3249		} else {
3250			spin_unlock(&inode->lock);
3251		}
3252	}
3253
3254	if (delalloc_len > 0) {
3255		/*
3256		 * If delalloc was found then *delalloc_start_ret has a sector size
3257		 * aligned value (rounded down).
 
3258		 */
3259		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3260
3261		if (*delalloc_start_ret == start) {
3262			/* Delalloc for the whole range, nothing more to do. */
3263			if (*delalloc_end_ret == end)
3264				return true;
3265			/* Else trim our search range for ordered extents. */
3266			start = *delalloc_end_ret + 1;
3267			len = end + 1 - start;
3268		}
3269	} else {
3270		/* No delalloc, future calls don't need to search again. */
3271		*search_io_tree = false;
3272	}
3273
3274	/*
3275	 * Now also check if there's any ordered extent in the range.
3276	 * We do this because:
3277	 *
3278	 * 1) When delalloc is flushed, the file range is locked, we clear the
3279	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3280	 *    an ordered extent for the write. So we might just have been called
3281	 *    after delalloc is flushed and before the ordered extent completes
3282	 *    and inserts the new file extent item in the subvolume's btree;
3283	 *
3284	 * 2) We may have an ordered extent created by flushing delalloc for a
3285	 *    subrange that starts before the subrange we found marked with
3286	 *    EXTENT_DELALLOC in the io tree.
3287	 *
3288	 * We could also use the extent map tree to find such delalloc that is
3289	 * being flushed, but using the ordered extents tree is more efficient
3290	 * because it's usually much smaller as ordered extents are removed from
3291	 * the tree once they complete. With the extent maps, we mau have them
3292	 * in the extent map tree for a very long time, and they were either
3293	 * created by previous writes or loaded by read operations.
3294	 */
3295	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3296	if (!oe)
3297		return (delalloc_len > 0);
3298
3299	/* The ordered extent may span beyond our search range. */
3300	oe_start = max(oe->file_offset, start);
3301	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3302
3303	btrfs_put_ordered_extent(oe);
3304
3305	/* Don't have unflushed delalloc, return the ordered extent range. */
3306	if (delalloc_len == 0) {
3307		*delalloc_start_ret = oe_start;
3308		*delalloc_end_ret = oe_end;
3309		return true;
3310	}
3311
3312	/*
3313	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3314	 * If the ranges are adjacent returned a combined range, otherwise
3315	 * return the leftmost range.
3316	 */
3317	if (oe_start < *delalloc_start_ret) {
3318		if (oe_end < *delalloc_start_ret)
3319			*delalloc_end_ret = oe_end;
3320		*delalloc_start_ret = oe_start;
3321	} else if (*delalloc_end_ret + 1 == oe_start) {
3322		*delalloc_end_ret = oe_end;
3323	}
3324
3325	return true;
3326}
3327
3328/*
3329 * Check if there's delalloc in a given range.
3330 *
3331 * @inode:               The inode.
3332 * @start:               The start offset of the range. It does not need to be
3333 *                       sector size aligned.
3334 * @end:                 The end offset (inclusive value) of the search range.
3335 *                       It does not need to be sector size aligned.
3336 * @cached_state:        Extent state record used for speeding up delalloc
3337 *                       searches in the inode's io_tree. Can be NULL.
3338 * @delalloc_start_ret:  Output argument, set to the start offset of the
3339 *                       subrange found with delalloc (may not be sector size
3340 *                       aligned).
3341 * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3342 *                       of the subrange found with delalloc.
3343 *
3344 * Returns true if a subrange with delalloc is found within the given range, and
3345 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3346 * end offsets of the subrange.
3347 */
3348bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3349				  struct extent_state **cached_state,
3350				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3351{
3352	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3353	u64 prev_delalloc_end = 0;
3354	bool search_io_tree = true;
3355	bool ret = false;
3356
3357	while (cur_offset <= end) {
3358		u64 delalloc_start;
3359		u64 delalloc_end;
3360		bool delalloc;
3361
3362		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3363						  cached_state, &search_io_tree,
3364						  &delalloc_start,
3365						  &delalloc_end);
3366		if (!delalloc)
3367			break;
3368
3369		if (prev_delalloc_end == 0) {
3370			/* First subrange found. */
3371			*delalloc_start_ret = max(delalloc_start, start);
3372			*delalloc_end_ret = delalloc_end;
3373			ret = true;
3374		} else if (delalloc_start == prev_delalloc_end + 1) {
3375			/* Subrange adjacent to the previous one, merge them. */
3376			*delalloc_end_ret = delalloc_end;
3377		} else {
3378			/* Subrange not adjacent to the previous one, exit. */
3379			break;
 
 
 
 
 
 
3380		}
3381
3382		prev_delalloc_end = delalloc_end;
3383		cur_offset = delalloc_end + 1;
3384		cond_resched();
3385	}
3386
 
 
 
 
 
 
 
 
3387	return ret;
3388}
3389
3390/*
3391 * Check if there's a hole or delalloc range in a range representing a hole (or
3392 * prealloc extent) found in the inode's subvolume btree.
3393 *
3394 * @inode:      The inode.
3395 * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3396 * @start:      Start offset of the hole region. It does not need to be sector
3397 *              size aligned.
3398 * @end:        End offset (inclusive value) of the hole region. It does not
3399 *              need to be sector size aligned.
3400 * @start_ret:  Return parameter, used to set the start of the subrange in the
3401 *              hole that matches the search criteria (seek mode), if such
3402 *              subrange is found (return value of the function is true).
3403 *              The value returned here may not be sector size aligned.
3404 *
3405 * Returns true if a subrange matching the given seek mode is found, and if one
3406 * is found, it updates @start_ret with the start of the subrange.
3407 */
3408static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3409					struct extent_state **cached_state,
3410					u64 start, u64 end, u64 *start_ret)
3411{
3412	u64 delalloc_start;
3413	u64 delalloc_end;
3414	bool delalloc;
3415
3416	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3417						&delalloc_start, &delalloc_end);
3418	if (delalloc && whence == SEEK_DATA) {
3419		*start_ret = delalloc_start;
3420		return true;
3421	}
3422
3423	if (delalloc && whence == SEEK_HOLE) {
3424		/*
3425		 * We found delalloc but it starts after out start offset. So we
3426		 * have a hole between our start offset and the delalloc start.
3427		 */
3428		if (start < delalloc_start) {
3429			*start_ret = start;
3430			return true;
3431		}
3432		/*
3433		 * Delalloc range starts at our start offset.
3434		 * If the delalloc range's length is smaller than our range,
3435		 * then it means we have a hole that starts where the delalloc
3436		 * subrange ends.
3437		 */
3438		if (delalloc_end < end) {
3439			*start_ret = delalloc_end + 1;
3440			return true;
3441		}
3442
3443		/* There's delalloc for the whole range. */
3444		return false;
3445	}
3446
3447	if (!delalloc && whence == SEEK_HOLE) {
3448		*start_ret = start;
3449		return true;
3450	}
3451
3452	/*
3453	 * No delalloc in the range and we are seeking for data. The caller has
3454	 * to iterate to the next extent item in the subvolume btree.
3455	 */
3456	return false;
3457}
3458
3459static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3460{
3461	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3462	struct btrfs_file_private *private = file->private_data;
3463	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3464	struct extent_state *cached_state = NULL;
3465	struct extent_state **delalloc_cached_state;
3466	const loff_t i_size = i_size_read(&inode->vfs_inode);
3467	const u64 ino = btrfs_ino(inode);
3468	struct btrfs_root *root = inode->root;
3469	struct btrfs_path *path;
3470	struct btrfs_key key;
3471	u64 last_extent_end;
3472	u64 lockstart;
3473	u64 lockend;
3474	u64 start;
3475	int ret;
3476	bool found = false;
3477
3478	if (i_size == 0 || offset >= i_size)
3479		return -ENXIO;
3480
3481	/*
3482	 * Quick path. If the inode has no prealloc extents and its number of
3483	 * bytes used matches its i_size, then it can not have holes.
3484	 */
3485	if (whence == SEEK_HOLE &&
3486	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3487	    inode_get_bytes(&inode->vfs_inode) == i_size)
3488		return i_size;
3489
3490	if (!private) {
3491		private = kzalloc(sizeof(*private), GFP_KERNEL);
3492		/*
3493		 * No worries if memory allocation failed.
3494		 * The private structure is used only for speeding up multiple
3495		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3496		 * so everything will still be correct.
3497		 */
3498		file->private_data = private;
3499	}
3500
3501	if (private)
3502		delalloc_cached_state = &private->llseek_cached_state;
3503	else
3504		delalloc_cached_state = NULL;
3505
3506	/*
3507	 * offset can be negative, in this case we start finding DATA/HOLE from
3508	 * the very start of the file.
3509	 */
3510	start = max_t(loff_t, 0, offset);
3511
3512	lockstart = round_down(start, fs_info->sectorsize);
3513	lockend = round_up(i_size, fs_info->sectorsize);
 
3514	if (lockend <= lockstart)
3515		lockend = lockstart + fs_info->sectorsize;
3516	lockend--;
 
3517
3518	path = btrfs_alloc_path();
3519	if (!path)
3520		return -ENOMEM;
3521	path->reada = READA_FORWARD;
3522
3523	key.objectid = ino;
3524	key.type = BTRFS_EXTENT_DATA_KEY;
3525	key.offset = start;
3526
3527	last_extent_end = lockstart;
3528
3529	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3530
3531	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3532	if (ret < 0) {
3533		goto out;
3534	} else if (ret > 0 && path->slots[0] > 0) {
3535		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3536		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3537			path->slots[0]--;
3538	}
3539
3540	while (start < i_size) {
3541		struct extent_buffer *leaf = path->nodes[0];
3542		struct btrfs_file_extent_item *extent;
3543		u64 extent_end;
3544		u8 type;
3545
3546		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3547			ret = btrfs_next_leaf(root, path);
3548			if (ret < 0)
3549				goto out;
3550			else if (ret > 0)
3551				break;
3552
3553			leaf = path->nodes[0];
3554		}
3555
3556		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3557		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3558			break;
3559
3560		extent_end = btrfs_file_extent_end(path);
3561
3562		/*
3563		 * In the first iteration we may have a slot that points to an
3564		 * extent that ends before our start offset, so skip it.
3565		 */
3566		if (extent_end <= start) {
3567			path->slots[0]++;
3568			continue;
3569		}
3570
3571		/* We have an implicit hole, NO_HOLES feature is likely set. */
3572		if (last_extent_end < key.offset) {
3573			u64 search_start = last_extent_end;
3574			u64 found_start;
3575
3576			/*
3577			 * First iteration, @start matches @offset and it's
3578			 * within the hole.
3579			 */
3580			if (start == offset)
3581				search_start = offset;
3582
3583			found = find_desired_extent_in_hole(inode, whence,
3584							    delalloc_cached_state,
3585							    search_start,
3586							    key.offset - 1,
3587							    &found_start);
3588			if (found) {
3589				start = found_start;
3590				break;
3591			}
3592			/*
3593			 * Didn't find data or a hole (due to delalloc) in the
3594			 * implicit hole range, so need to analyze the extent.
3595			 */
3596		}
3597
3598		extent = btrfs_item_ptr(leaf, path->slots[0],
3599					struct btrfs_file_extent_item);
3600		type = btrfs_file_extent_type(leaf, extent);
3601
3602		/*
3603		 * Can't access the extent's disk_bytenr field if this is an
3604		 * inline extent, since at that offset, it's where the extent
3605		 * data starts.
3606		 */
3607		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3608		    (type == BTRFS_FILE_EXTENT_REG &&
3609		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3610			/*
3611			 * Explicit hole or prealloc extent, search for delalloc.
3612			 * A prealloc extent is treated like a hole.
3613			 */
3614			u64 search_start = key.offset;
3615			u64 found_start;
3616
3617			/*
3618			 * First iteration, @start matches @offset and it's
3619			 * within the hole.
3620			 */
3621			if (start == offset)
3622				search_start = offset;
3623
3624			found = find_desired_extent_in_hole(inode, whence,
3625							    delalloc_cached_state,
3626							    search_start,
3627							    extent_end - 1,
3628							    &found_start);
3629			if (found) {
3630				start = found_start;
3631				break;
3632			}
3633			/*
3634			 * Didn't find data or a hole (due to delalloc) in the
3635			 * implicit hole range, so need to analyze the next
3636			 * extent item.
3637			 */
3638		} else {
3639			/*
3640			 * Found a regular or inline extent.
3641			 * If we are seeking for data, adjust the start offset
3642			 * and stop, we're done.
3643			 */
3644			if (whence == SEEK_DATA) {
3645				start = max_t(u64, key.offset, offset);
3646				found = true;
3647				break;
3648			}
3649			/*
3650			 * Else, we are seeking for a hole, check the next file
3651			 * extent item.
3652			 */
3653		}
3654
3655		start = extent_end;
3656		last_extent_end = extent_end;
3657		path->slots[0]++;
3658		if (fatal_signal_pending(current)) {
3659			ret = -EINTR;
3660			goto out;
3661		}
3662		cond_resched();
3663	}
3664
3665	/* We have an implicit hole from the last extent found up to i_size. */
3666	if (!found && start < i_size) {
3667		found = find_desired_extent_in_hole(inode, whence,
3668						    delalloc_cached_state, start,
3669						    i_size - 1, &start);
3670		if (!found)
3671			start = i_size;
3672	}
3673
3674out:
3675	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3676	btrfs_free_path(path);
3677
3678	if (ret < 0)
3679		return ret;
3680
3681	if (whence == SEEK_DATA && start >= i_size)
3682		return -ENXIO;
3683
3684	return min_t(loff_t, start, i_size);
3685}
3686
3687static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3688{
3689	struct inode *inode = file->f_mapping->host;
 
3690
 
3691	switch (whence) {
3692	default:
3693		return generic_file_llseek(file, offset, whence);
 
 
3694	case SEEK_DATA:
3695	case SEEK_HOLE:
3696		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3697		offset = find_desired_extent(file, offset, whence);
3698		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3699		break;
3700	}
3701
3702	if (offset < 0)
3703		return offset;
3704
3705	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3706}
3707
3708static int btrfs_file_open(struct inode *inode, struct file *filp)
3709{
3710	int ret;
3711
3712	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
3713
3714	ret = fsverity_file_open(inode, filp);
3715	if (ret)
3716		return ret;
3717	return generic_file_open(inode, filp);
3718}
3719
3720static int check_direct_read(struct btrfs_fs_info *fs_info,
3721			     const struct iov_iter *iter, loff_t offset)
3722{
3723	int ret;
3724	int i, seg;
3725
3726	ret = check_direct_IO(fs_info, iter, offset);
3727	if (ret < 0)
3728		return ret;
3729
3730	if (!iter_is_iovec(iter))
3731		return 0;
3732
3733	for (seg = 0; seg < iter->nr_segs; seg++)
3734		for (i = seg + 1; i < iter->nr_segs; i++)
3735			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3736				return -EINVAL;
3737	return 0;
3738}
3739
3740static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3741{
3742	struct inode *inode = file_inode(iocb->ki_filp);
3743	size_t prev_left = 0;
3744	ssize_t read = 0;
3745	ssize_t ret;
3746
3747	if (fsverity_active(inode))
3748		return 0;
3749
3750	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3751		return 0;
3752
3753	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3754again:
3755	/*
3756	 * This is similar to what we do for direct IO writes, see the comment
3757	 * at btrfs_direct_write(), but we also disable page faults in addition
3758	 * to disabling them only at the iov_iter level. This is because when
3759	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3760	 * which can still trigger page fault ins despite having set ->nofault
3761	 * to true of our 'to' iov_iter.
3762	 *
3763	 * The difference to direct IO writes is that we deadlock when trying
3764	 * to lock the extent range in the inode's tree during he page reads
3765	 * triggered by the fault in (while for writes it is due to waiting for
3766	 * our own ordered extent). This is because for direct IO reads,
3767	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3768	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3769	 */
3770	pagefault_disable();
3771	to->nofault = true;
3772	ret = btrfs_dio_read(iocb, to, read);
3773	to->nofault = false;
3774	pagefault_enable();
3775
3776	/* No increment (+=) because iomap returns a cumulative value. */
3777	if (ret > 0)
3778		read = ret;
3779
3780	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3781		const size_t left = iov_iter_count(to);
3782
3783		if (left == prev_left) {
3784			/*
3785			 * We didn't make any progress since the last attempt,
3786			 * fallback to a buffered read for the remainder of the
3787			 * range. This is just to avoid any possibility of looping
3788			 * for too long.
3789			 */
3790			ret = read;
3791		} else {
3792			/*
3793			 * We made some progress since the last retry or this is
3794			 * the first time we are retrying. Fault in as many pages
3795			 * as possible and retry.
3796			 */
3797			fault_in_iov_iter_writeable(to, left);
3798			prev_left = left;
3799			goto again;
3800		}
3801	}
3802	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3803	return ret < 0 ? ret : read;
3804}
3805
3806static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3807{
3808	ssize_t ret = 0;
3809
3810	if (iocb->ki_flags & IOCB_DIRECT) {
3811		ret = btrfs_direct_read(iocb, to);
3812		if (ret < 0 || !iov_iter_count(to) ||
3813		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3814			return ret;
 
3815	}
3816
3817	return filemap_read(iocb, to, ret);
 
 
 
3818}
3819
3820const struct file_operations btrfs_file_operations = {
3821	.llseek		= btrfs_file_llseek,
3822	.read_iter      = btrfs_file_read_iter,
3823	.splice_read	= generic_file_splice_read,
3824	.write_iter	= btrfs_file_write_iter,
3825	.splice_write	= iter_file_splice_write,
3826	.mmap		= btrfs_file_mmap,
3827	.open		= btrfs_file_open,
3828	.release	= btrfs_release_file,
3829	.get_unmapped_area = thp_get_unmapped_area,
3830	.fsync		= btrfs_sync_file,
3831	.fallocate	= btrfs_fallocate,
3832	.unlocked_ioctl	= btrfs_ioctl,
3833#ifdef CONFIG_COMPAT
3834	.compat_ioctl	= btrfs_compat_ioctl,
3835#endif
3836	.remap_file_range = btrfs_remap_file_range,
 
3837};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3838
3839int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3840{
3841	int ret;
3842
3843	/*
3844	 * So with compression we will find and lock a dirty page and clear the
3845	 * first one as dirty, setup an async extent, and immediately return
3846	 * with the entire range locked but with nobody actually marked with
3847	 * writeback.  So we can't just filemap_write_and_wait_range() and
3848	 * expect it to work since it will just kick off a thread to do the
3849	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3850	 * since it will wait on the page lock, which won't be unlocked until
3851	 * after the pages have been marked as writeback and so we're good to go
3852	 * from there.  We have to do this otherwise we'll miss the ordered
3853	 * extents and that results in badness.  Please Josef, do not think you
3854	 * know better and pull this out at some point in the future, it is
3855	 * right and you are wrong.
3856	 */
3857	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3858	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3859			     &BTRFS_I(inode)->runtime_flags))
3860		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3861
3862	return ret;
3863}
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/compat.h>
  31#include <linux/slab.h>
  32#include <linux/btrfs.h>
  33#include <linux/uio.h>
 
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "transaction.h"
  37#include "btrfs_inode.h"
  38#include "print-tree.h"
  39#include "tree-log.h"
  40#include "locking.h"
  41#include "volumes.h"
  42#include "qgroup.h"
  43#include "compression.h"
  44
  45static struct kmem_cache *btrfs_inode_defrag_cachep;
  46/*
  47 * when auto defrag is enabled we
  48 * queue up these defrag structs to remember which
  49 * inodes need defragging passes
  50 */
  51struct inode_defrag {
  52	struct rb_node rb_node;
  53	/* objectid */
  54	u64 ino;
  55	/*
  56	 * transid where the defrag was added, we search for
  57	 * extents newer than this
  58	 */
  59	u64 transid;
  60
  61	/* root objectid */
  62	u64 root;
  63
  64	/* last offset we were able to defrag */
  65	u64 last_offset;
  66
  67	/* if we've wrapped around back to zero once already */
  68	int cycled;
  69};
  70
  71static int __compare_inode_defrag(struct inode_defrag *defrag1,
  72				  struct inode_defrag *defrag2)
  73{
  74	if (defrag1->root > defrag2->root)
  75		return 1;
  76	else if (defrag1->root < defrag2->root)
  77		return -1;
  78	else if (defrag1->ino > defrag2->ino)
  79		return 1;
  80	else if (defrag1->ino < defrag2->ino)
  81		return -1;
  82	else
  83		return 0;
  84}
  85
  86/* pop a record for an inode into the defrag tree.  The lock
  87 * must be held already
  88 *
  89 * If you're inserting a record for an older transid than an
  90 * existing record, the transid already in the tree is lowered
  91 *
  92 * If an existing record is found the defrag item you
  93 * pass in is freed
  94 */
  95static int __btrfs_add_inode_defrag(struct inode *inode,
  96				    struct inode_defrag *defrag)
  97{
  98	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  99	struct inode_defrag *entry;
 100	struct rb_node **p;
 101	struct rb_node *parent = NULL;
 102	int ret;
 103
 104	p = &fs_info->defrag_inodes.rb_node;
 105	while (*p) {
 106		parent = *p;
 107		entry = rb_entry(parent, struct inode_defrag, rb_node);
 108
 109		ret = __compare_inode_defrag(defrag, entry);
 110		if (ret < 0)
 111			p = &parent->rb_left;
 112		else if (ret > 0)
 113			p = &parent->rb_right;
 114		else {
 115			/* if we're reinserting an entry for
 116			 * an old defrag run, make sure to
 117			 * lower the transid of our existing record
 118			 */
 119			if (defrag->transid < entry->transid)
 120				entry->transid = defrag->transid;
 121			if (defrag->last_offset > entry->last_offset)
 122				entry->last_offset = defrag->last_offset;
 123			return -EEXIST;
 124		}
 125	}
 126	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 127	rb_link_node(&defrag->rb_node, parent, p);
 128	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 129	return 0;
 130}
 131
 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 133{
 134	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 135		return 0;
 136
 137	if (btrfs_fs_closing(fs_info))
 138		return 0;
 139
 140	return 1;
 141}
 142
 143/*
 144 * insert a defrag record for this inode if auto defrag is
 145 * enabled
 146 */
 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 148			   struct inode *inode)
 149{
 150	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 151	struct btrfs_root *root = BTRFS_I(inode)->root;
 152	struct inode_defrag *defrag;
 153	u64 transid;
 154	int ret;
 155
 156	if (!__need_auto_defrag(fs_info))
 157		return 0;
 158
 159	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 160		return 0;
 161
 162	if (trans)
 163		transid = trans->transid;
 164	else
 165		transid = BTRFS_I(inode)->root->last_trans;
 166
 167	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168	if (!defrag)
 169		return -ENOMEM;
 170
 171	defrag->ino = btrfs_ino(inode);
 172	defrag->transid = transid;
 173	defrag->root = root->root_key.objectid;
 174
 175	spin_lock(&fs_info->defrag_inodes_lock);
 176	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 177		/*
 178		 * If we set IN_DEFRAG flag and evict the inode from memory,
 179		 * and then re-read this inode, this new inode doesn't have
 180		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181		 */
 182		ret = __btrfs_add_inode_defrag(inode, defrag);
 183		if (ret)
 184			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185	} else {
 186		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187	}
 188	spin_unlock(&fs_info->defrag_inodes_lock);
 189	return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct inode *inode,
 198				       struct inode_defrag *defrag)
 199{
 200	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 201	int ret;
 202
 203	if (!__need_auto_defrag(fs_info))
 204		goto out;
 205
 206	/*
 207	 * Here we don't check the IN_DEFRAG flag, because we need merge
 208	 * them together.
 209	 */
 210	spin_lock(&fs_info->defrag_inodes_lock);
 211	ret = __btrfs_add_inode_defrag(inode, defrag);
 212	spin_unlock(&fs_info->defrag_inodes_lock);
 213	if (ret)
 214		goto out;
 215	return;
 216out:
 217	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227	struct inode_defrag *entry = NULL;
 228	struct inode_defrag tmp;
 229	struct rb_node *p;
 230	struct rb_node *parent = NULL;
 231	int ret;
 232
 233	tmp.ino = ino;
 234	tmp.root = root;
 235
 236	spin_lock(&fs_info->defrag_inodes_lock);
 237	p = fs_info->defrag_inodes.rb_node;
 238	while (p) {
 239		parent = p;
 240		entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242		ret = __compare_inode_defrag(&tmp, entry);
 243		if (ret < 0)
 244			p = parent->rb_left;
 245		else if (ret > 0)
 246			p = parent->rb_right;
 247		else
 248			goto out;
 249	}
 250
 251	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252		parent = rb_next(parent);
 253		if (parent)
 254			entry = rb_entry(parent, struct inode_defrag, rb_node);
 255		else
 256			entry = NULL;
 257	}
 258out:
 259	if (entry)
 260		rb_erase(parent, &fs_info->defrag_inodes);
 261	spin_unlock(&fs_info->defrag_inodes_lock);
 262	return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267	struct inode_defrag *defrag;
 268	struct rb_node *node;
 269
 270	spin_lock(&fs_info->defrag_inodes_lock);
 271	node = rb_first(&fs_info->defrag_inodes);
 272	while (node) {
 273		rb_erase(node, &fs_info->defrag_inodes);
 274		defrag = rb_entry(node, struct inode_defrag, rb_node);
 275		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277		cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279		node = rb_first(&fs_info->defrag_inodes);
 280	}
 281	spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH	1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287				    struct inode_defrag *defrag)
 288{
 289	struct btrfs_root *inode_root;
 290	struct inode *inode;
 291	struct btrfs_key key;
 292	struct btrfs_ioctl_defrag_range_args range;
 293	int num_defrag;
 294	int index;
 295	int ret;
 296
 297	/* get the inode */
 298	key.objectid = defrag->root;
 299	key.type = BTRFS_ROOT_ITEM_KEY;
 300	key.offset = (u64)-1;
 301
 302	index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305	if (IS_ERR(inode_root)) {
 306		ret = PTR_ERR(inode_root);
 307		goto cleanup;
 308	}
 309
 310	key.objectid = defrag->ino;
 311	key.type = BTRFS_INODE_ITEM_KEY;
 312	key.offset = 0;
 313	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314	if (IS_ERR(inode)) {
 315		ret = PTR_ERR(inode);
 316		goto cleanup;
 317	}
 318	srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320	/* do a chunk of defrag */
 321	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322	memset(&range, 0, sizeof(range));
 323	range.len = (u64)-1;
 324	range.start = defrag->last_offset;
 325
 326	sb_start_write(fs_info->sb);
 327	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328				       BTRFS_DEFRAG_BATCH);
 329	sb_end_write(fs_info->sb);
 330	/*
 331	 * if we filled the whole defrag batch, there
 332	 * must be more work to do.  Queue this defrag
 333	 * again
 334	 */
 335	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336		defrag->last_offset = range.start;
 337		btrfs_requeue_inode_defrag(inode, defrag);
 338	} else if (defrag->last_offset && !defrag->cycled) {
 339		/*
 340		 * we didn't fill our defrag batch, but
 341		 * we didn't start at zero.  Make sure we loop
 342		 * around to the start of the file.
 343		 */
 344		defrag->last_offset = 0;
 345		defrag->cycled = 1;
 346		btrfs_requeue_inode_defrag(inode, defrag);
 347	} else {
 348		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349	}
 350
 351	iput(inode);
 352	return 0;
 353cleanup:
 354	srcu_read_unlock(&fs_info->subvol_srcu, index);
 355	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356	return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365	struct inode_defrag *defrag;
 366	u64 first_ino = 0;
 367	u64 root_objectid = 0;
 368
 369	atomic_inc(&fs_info->defrag_running);
 370	while (1) {
 371		/* Pause the auto defragger. */
 372		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373			     &fs_info->fs_state))
 374			break;
 375
 376		if (!__need_auto_defrag(fs_info))
 377			break;
 378
 379		/* find an inode to defrag */
 380		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381						 first_ino);
 382		if (!defrag) {
 383			if (root_objectid || first_ino) {
 384				root_objectid = 0;
 385				first_ino = 0;
 386				continue;
 387			} else {
 388				break;
 389			}
 390		}
 391
 392		first_ino = defrag->ino + 1;
 393		root_objectid = defrag->root;
 394
 395		__btrfs_run_defrag_inode(fs_info, defrag);
 396	}
 397	atomic_dec(&fs_info->defrag_running);
 398
 399	/*
 400	 * during unmount, we use the transaction_wait queue to
 401	 * wait for the defragger to stop
 402	 */
 403	wake_up(&fs_info->transaction_wait);
 404	return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411					 struct page **prepared_pages,
 412					 struct iov_iter *i)
 413{
 414	size_t copied = 0;
 415	size_t total_copied = 0;
 416	int pg = 0;
 417	int offset = pos & (PAGE_SIZE - 1);
 418
 419	while (write_bytes > 0) {
 420		size_t count = min_t(size_t,
 421				     PAGE_SIZE - offset, write_bytes);
 422		struct page *page = prepared_pages[pg];
 423		/*
 424		 * Copy data from userspace to the current page
 425		 */
 426		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428		/* Flush processor's dcache for this page */
 429		flush_dcache_page(page);
 430
 431		/*
 432		 * if we get a partial write, we can end up with
 433		 * partially up to date pages.  These add
 434		 * a lot of complexity, so make sure they don't
 435		 * happen by forcing this copy to be retried.
 436		 *
 437		 * The rest of the btrfs_file_write code will fall
 438		 * back to page at a time copies after we return 0.
 439		 */
 440		if (!PageUptodate(page) && copied < count)
 441			copied = 0;
 
 
 
 
 
 
 442
 443		iov_iter_advance(i, copied);
 444		write_bytes -= copied;
 445		total_copied += copied;
 446
 447		/* Return to btrfs_file_write_iter to fault page */
 448		if (unlikely(copied == 0))
 449			break;
 450
 451		if (copied < PAGE_SIZE - offset) {
 452			offset += copied;
 453		} else {
 454			pg++;
 455			offset = 0;
 456		}
 457	}
 458	return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 
 
 465{
 466	size_t i;
 
 
 
 
 467	for (i = 0; i < num_pages; i++) {
 468		/* page checked is some magic around finding pages that
 469		 * have been modified without going through btrfs_set_page_dirty
 470		 * clear it here. There should be no need to mark the pages
 471		 * accessed as prepare_pages should have marked them accessed
 472		 * in prepare_pages via find_or_create_page()
 473		 */
 474		ClearPageChecked(pages[i]);
 
 475		unlock_page(pages[i]);
 476		put_page(pages[i]);
 477	}
 478}
 479
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct inode *inode, struct page **pages,
 489		      size_t num_pages, loff_t pos, size_t write_bytes,
 490		      struct extent_state **cached)
 491{
 492	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 493	int err = 0;
 494	int i;
 495	u64 num_bytes;
 496	u64 start_pos;
 497	u64 end_of_last_block;
 498	u64 end_pos = pos + write_bytes;
 499	loff_t isize = i_size_read(inode);
 
 
 
 
 
 
 
 500
 501	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 502	num_bytes = round_up(write_bytes + pos - start_pos,
 503			     fs_info->sectorsize);
 
 504
 505	end_of_last_block = start_pos + num_bytes - 1;
 
 
 
 
 
 
 
 
 
 506	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 507					cached, 0);
 508	if (err)
 509		return err;
 510
 511	for (i = 0; i < num_pages; i++) {
 512		struct page *p = pages[i];
 513		SetPageUptodate(p);
 514		ClearPageChecked(p);
 515		set_page_dirty(p);
 
 516	}
 517
 518	/*
 519	 * we've only changed i_size in ram, and we haven't updated
 520	 * the disk i_size.  There is no need to log the inode
 521	 * at this time.
 522	 */
 523	if (end_pos > isize)
 524		i_size_write(inode, end_pos);
 525	return 0;
 526}
 527
 528/*
 529 * this drops all the extents in the cache that intersect the range
 530 * [start, end].  Existing extents are split as required.
 531 */
 532void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 533			     int skip_pinned)
 534{
 535	struct extent_map *em;
 536	struct extent_map *split = NULL;
 537	struct extent_map *split2 = NULL;
 538	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 539	u64 len = end - start + 1;
 540	u64 gen;
 541	int ret;
 542	int testend = 1;
 543	unsigned long flags;
 544	int compressed = 0;
 545	bool modified;
 546
 547	WARN_ON(end < start);
 548	if (end == (u64)-1) {
 549		len = (u64)-1;
 550		testend = 0;
 551	}
 552	while (1) {
 553		int no_splits = 0;
 554
 555		modified = false;
 556		if (!split)
 557			split = alloc_extent_map();
 558		if (!split2)
 559			split2 = alloc_extent_map();
 560		if (!split || !split2)
 561			no_splits = 1;
 562
 563		write_lock(&em_tree->lock);
 564		em = lookup_extent_mapping(em_tree, start, len);
 565		if (!em) {
 566			write_unlock(&em_tree->lock);
 567			break;
 568		}
 569		flags = em->flags;
 570		gen = em->generation;
 571		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 572			if (testend && em->start + em->len >= start + len) {
 573				free_extent_map(em);
 574				write_unlock(&em_tree->lock);
 575				break;
 576			}
 577			start = em->start + em->len;
 578			if (testend)
 579				len = start + len - (em->start + em->len);
 580			free_extent_map(em);
 581			write_unlock(&em_tree->lock);
 582			continue;
 583		}
 584		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 585		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 586		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 587		modified = !list_empty(&em->list);
 588		if (no_splits)
 589			goto next;
 590
 591		if (em->start < start) {
 592			split->start = em->start;
 593			split->len = start - em->start;
 594
 595			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 596				split->orig_start = em->orig_start;
 597				split->block_start = em->block_start;
 598
 599				if (compressed)
 600					split->block_len = em->block_len;
 601				else
 602					split->block_len = split->len;
 603				split->orig_block_len = max(split->block_len,
 604						em->orig_block_len);
 605				split->ram_bytes = em->ram_bytes;
 606			} else {
 607				split->orig_start = split->start;
 608				split->block_len = 0;
 609				split->block_start = em->block_start;
 610				split->orig_block_len = 0;
 611				split->ram_bytes = split->len;
 612			}
 613
 614			split->generation = gen;
 615			split->bdev = em->bdev;
 616			split->flags = flags;
 617			split->compress_type = em->compress_type;
 618			replace_extent_mapping(em_tree, em, split, modified);
 619			free_extent_map(split);
 620			split = split2;
 621			split2 = NULL;
 622		}
 623		if (testend && em->start + em->len > start + len) {
 624			u64 diff = start + len - em->start;
 625
 626			split->start = start + len;
 627			split->len = em->start + em->len - (start + len);
 628			split->bdev = em->bdev;
 629			split->flags = flags;
 630			split->compress_type = em->compress_type;
 631			split->generation = gen;
 632
 633			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 634				split->orig_block_len = max(em->block_len,
 635						    em->orig_block_len);
 636
 637				split->ram_bytes = em->ram_bytes;
 638				if (compressed) {
 639					split->block_len = em->block_len;
 640					split->block_start = em->block_start;
 641					split->orig_start = em->orig_start;
 642				} else {
 643					split->block_len = split->len;
 644					split->block_start = em->block_start
 645						+ diff;
 646					split->orig_start = em->orig_start;
 647				}
 648			} else {
 649				split->ram_bytes = split->len;
 650				split->orig_start = split->start;
 651				split->block_len = 0;
 652				split->block_start = em->block_start;
 653				split->orig_block_len = 0;
 654			}
 655
 656			if (extent_map_in_tree(em)) {
 657				replace_extent_mapping(em_tree, em, split,
 658						       modified);
 659			} else {
 660				ret = add_extent_mapping(em_tree, split,
 661							 modified);
 662				ASSERT(ret == 0); /* Logic error */
 663			}
 664			free_extent_map(split);
 665			split = NULL;
 666		}
 667next:
 668		if (extent_map_in_tree(em))
 669			remove_extent_mapping(em_tree, em);
 670		write_unlock(&em_tree->lock);
 671
 672		/* once for us */
 673		free_extent_map(em);
 674		/* once for the tree*/
 675		free_extent_map(em);
 676	}
 677	if (split)
 678		free_extent_map(split);
 679	if (split2)
 680		free_extent_map(split2);
 681}
 682
 683/*
 684 * this is very complex, but the basic idea is to drop all extents
 685 * in the range start - end.  hint_block is filled in with a block number
 686 * that would be a good hint to the block allocator for this file.
 687 *
 688 * If an extent intersects the range but is not entirely inside the range
 689 * it is either truncated or split.  Anything entirely inside the range
 690 * is deleted from the tree.
 
 
 
 
 
 
 691 */
 692int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 693			 struct btrfs_root *root, struct inode *inode,
 694			 struct btrfs_path *path, u64 start, u64 end,
 695			 u64 *drop_end, int drop_cache,
 696			 int replace_extent,
 697			 u32 extent_item_size,
 698			 int *key_inserted)
 699{
 700	struct btrfs_fs_info *fs_info = root->fs_info;
 701	struct extent_buffer *leaf;
 702	struct btrfs_file_extent_item *fi;
 
 703	struct btrfs_key key;
 704	struct btrfs_key new_key;
 705	u64 ino = btrfs_ino(inode);
 706	u64 search_start = start;
 707	u64 disk_bytenr = 0;
 708	u64 num_bytes = 0;
 709	u64 extent_offset = 0;
 710	u64 extent_end = 0;
 711	u64 last_end = start;
 712	int del_nr = 0;
 713	int del_slot = 0;
 714	int extent_type;
 715	int recow;
 716	int ret;
 717	int modify_tree = -1;
 718	int update_refs;
 719	int found = 0;
 720	int leafs_visited = 0;
 721
 722	if (drop_cache)
 723		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 724
 725	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726		modify_tree = 0;
 727
 728	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 729		       root == fs_info->tree_root);
 730	while (1) {
 731		recow = 0;
 732		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 733					       search_start, modify_tree);
 734		if (ret < 0)
 735			break;
 736		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 737			leaf = path->nodes[0];
 738			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 739			if (key.objectid == ino &&
 740			    key.type == BTRFS_EXTENT_DATA_KEY)
 741				path->slots[0]--;
 742		}
 743		ret = 0;
 744		leafs_visited++;
 745next_slot:
 746		leaf = path->nodes[0];
 747		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 748			BUG_ON(del_nr > 0);
 749			ret = btrfs_next_leaf(root, path);
 750			if (ret < 0)
 751				break;
 752			if (ret > 0) {
 753				ret = 0;
 754				break;
 755			}
 756			leafs_visited++;
 757			leaf = path->nodes[0];
 758			recow = 1;
 759		}
 760
 761		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 762
 763		if (key.objectid > ino)
 764			break;
 765		if (WARN_ON_ONCE(key.objectid < ino) ||
 766		    key.type < BTRFS_EXTENT_DATA_KEY) {
 767			ASSERT(del_nr == 0);
 768			path->slots[0]++;
 769			goto next_slot;
 770		}
 771		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 772			break;
 773
 774		fi = btrfs_item_ptr(leaf, path->slots[0],
 775				    struct btrfs_file_extent_item);
 776		extent_type = btrfs_file_extent_type(leaf, fi);
 777
 778		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 779		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 780			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 781			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 782			extent_offset = btrfs_file_extent_offset(leaf, fi);
 783			extent_end = key.offset +
 784				btrfs_file_extent_num_bytes(leaf, fi);
 785		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 786			extent_end = key.offset +
 787				btrfs_file_extent_inline_len(leaf,
 788						     path->slots[0], fi);
 789		} else {
 790			/* can't happen */
 791			BUG();
 792		}
 793
 794		/*
 795		 * Don't skip extent items representing 0 byte lengths. They
 796		 * used to be created (bug) if while punching holes we hit
 797		 * -ENOSPC condition. So if we find one here, just ensure we
 798		 * delete it, otherwise we would insert a new file extent item
 799		 * with the same key (offset) as that 0 bytes length file
 800		 * extent item in the call to setup_items_for_insert() later
 801		 * in this function.
 802		 */
 803		if (extent_end == key.offset && extent_end >= search_start) {
 804			last_end = extent_end;
 805			goto delete_extent_item;
 806		}
 807
 808		if (extent_end <= search_start) {
 809			path->slots[0]++;
 810			goto next_slot;
 811		}
 812
 813		found = 1;
 814		search_start = max(key.offset, start);
 815		if (recow || !modify_tree) {
 816			modify_tree = -1;
 817			btrfs_release_path(path);
 818			continue;
 819		}
 820
 821		/*
 822		 *     | - range to drop - |
 823		 *  | -------- extent -------- |
 824		 */
 825		if (start > key.offset && end < extent_end) {
 826			BUG_ON(del_nr > 0);
 827			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 828				ret = -EOPNOTSUPP;
 829				break;
 830			}
 831
 832			memcpy(&new_key, &key, sizeof(new_key));
 833			new_key.offset = start;
 834			ret = btrfs_duplicate_item(trans, root, path,
 835						   &new_key);
 836			if (ret == -EAGAIN) {
 837				btrfs_release_path(path);
 838				continue;
 839			}
 840			if (ret < 0)
 841				break;
 842
 843			leaf = path->nodes[0];
 844			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 845					    struct btrfs_file_extent_item);
 846			btrfs_set_file_extent_num_bytes(leaf, fi,
 847							start - key.offset);
 848
 849			fi = btrfs_item_ptr(leaf, path->slots[0],
 850					    struct btrfs_file_extent_item);
 851
 852			extent_offset += start - key.offset;
 853			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 854			btrfs_set_file_extent_num_bytes(leaf, fi,
 855							extent_end - start);
 856			btrfs_mark_buffer_dirty(leaf);
 857
 858			if (update_refs && disk_bytenr > 0) {
 859				ret = btrfs_inc_extent_ref(trans, fs_info,
 860						disk_bytenr, num_bytes, 0,
 
 
 861						root->root_key.objectid,
 862						new_key.objectid,
 863						start - extent_offset);
 864				BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 865			}
 866			key.offset = start;
 867		}
 868		/*
 869		 * From here on out we will have actually dropped something, so
 870		 * last_end can be updated.
 871		 */
 872		last_end = extent_end;
 873
 874		/*
 875		 *  | ---- range to drop ----- |
 876		 *      | -------- extent -------- |
 877		 */
 878		if (start <= key.offset && end < extent_end) {
 879			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 880				ret = -EOPNOTSUPP;
 881				break;
 882			}
 883
 884			memcpy(&new_key, &key, sizeof(new_key));
 885			new_key.offset = end;
 886			btrfs_set_item_key_safe(fs_info, path, &new_key);
 887
 888			extent_offset += end - key.offset;
 889			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 890			btrfs_set_file_extent_num_bytes(leaf, fi,
 891							extent_end - end);
 892			btrfs_mark_buffer_dirty(leaf);
 893			if (update_refs && disk_bytenr > 0)
 894				inode_sub_bytes(inode, end - key.offset);
 895			break;
 896		}
 897
 898		search_start = extent_end;
 899		/*
 900		 *       | ---- range to drop ----- |
 901		 *  | -------- extent -------- |
 902		 */
 903		if (start > key.offset && end >= extent_end) {
 904			BUG_ON(del_nr > 0);
 905			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 906				ret = -EOPNOTSUPP;
 907				break;
 908			}
 909
 910			btrfs_set_file_extent_num_bytes(leaf, fi,
 911							start - key.offset);
 912			btrfs_mark_buffer_dirty(leaf);
 913			if (update_refs && disk_bytenr > 0)
 914				inode_sub_bytes(inode, extent_end - start);
 915			if (end == extent_end)
 916				break;
 917
 918			path->slots[0]++;
 919			goto next_slot;
 920		}
 921
 922		/*
 923		 *  | ---- range to drop ----- |
 924		 *    | ------ extent ------ |
 925		 */
 926		if (start <= key.offset && end >= extent_end) {
 927delete_extent_item:
 928			if (del_nr == 0) {
 929				del_slot = path->slots[0];
 930				del_nr = 1;
 931			} else {
 932				BUG_ON(del_slot + del_nr != path->slots[0]);
 933				del_nr++;
 934			}
 935
 936			if (update_refs &&
 937			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 938				inode_sub_bytes(inode,
 939						extent_end - key.offset);
 940				extent_end = ALIGN(extent_end,
 941						   fs_info->sectorsize);
 942			} else if (update_refs && disk_bytenr > 0) {
 943				ret = btrfs_free_extent(trans, fs_info,
 944						disk_bytenr, num_bytes, 0,
 
 
 945						root->root_key.objectid,
 946						key.objectid, key.offset -
 947						extent_offset);
 948				BUG_ON(ret); /* -ENOMEM */
 949				inode_sub_bytes(inode,
 950						extent_end - key.offset);
 
 
 
 
 951			}
 952
 953			if (end == extent_end)
 954				break;
 955
 956			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 957				path->slots[0]++;
 958				goto next_slot;
 959			}
 960
 961			ret = btrfs_del_items(trans, root, path, del_slot,
 962					      del_nr);
 963			if (ret) {
 964				btrfs_abort_transaction(trans, ret);
 965				break;
 966			}
 967
 968			del_nr = 0;
 969			del_slot = 0;
 970
 971			btrfs_release_path(path);
 972			continue;
 973		}
 974
 975		BUG_ON(1);
 976	}
 977
 978	if (!ret && del_nr > 0) {
 979		/*
 980		 * Set path->slots[0] to first slot, so that after the delete
 981		 * if items are move off from our leaf to its immediate left or
 982		 * right neighbor leafs, we end up with a correct and adjusted
 983		 * path->slots[0] for our insertion (if replace_extent != 0).
 984		 */
 985		path->slots[0] = del_slot;
 986		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 987		if (ret)
 988			btrfs_abort_transaction(trans, ret);
 989	}
 990
 991	leaf = path->nodes[0];
 992	/*
 993	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 994	 * which case it unlocked our path, so check path->locks[0] matches a
 995	 * write lock.
 996	 */
 997	if (!ret && replace_extent && leafs_visited == 1 &&
 998	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 999	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1000	    btrfs_leaf_free_space(fs_info, leaf) >=
1001	    sizeof(struct btrfs_item) + extent_item_size) {
1002
1003		key.objectid = ino;
1004		key.type = BTRFS_EXTENT_DATA_KEY;
1005		key.offset = start;
1006		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007			struct btrfs_key slot_key;
1008
1009			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011				path->slots[0]++;
1012		}
1013		setup_items_for_insert(root, path, &key,
1014				       &extent_item_size,
1015				       extent_item_size,
1016				       sizeof(struct btrfs_item) +
1017				       extent_item_size, 1);
1018		*key_inserted = 1;
1019	}
1020
1021	if (!replace_extent || !(*key_inserted))
 
 
1022		btrfs_release_path(path);
1023	if (drop_end)
1024		*drop_end = found ? min(end, last_end) : end;
1025	return ret;
1026}
1027
1028int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029		       struct btrfs_root *root, struct inode *inode, u64 start,
1030		       u64 end, int drop_cache)
1031{
1032	struct btrfs_path *path;
1033	int ret;
1034
1035	path = btrfs_alloc_path();
1036	if (!path)
1037		return -ENOMEM;
1038	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1039				   drop_cache, 0, 0, NULL);
1040	btrfs_free_path(path);
1041	return ret;
1042}
1043
1044static int extent_mergeable(struct extent_buffer *leaf, int slot,
1045			    u64 objectid, u64 bytenr, u64 orig_offset,
1046			    u64 *start, u64 *end)
1047{
1048	struct btrfs_file_extent_item *fi;
1049	struct btrfs_key key;
1050	u64 extent_end;
1051
1052	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053		return 0;
1054
1055	btrfs_item_key_to_cpu(leaf, &key, slot);
1056	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057		return 0;
1058
1059	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1062	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1063	    btrfs_file_extent_compression(leaf, fi) ||
1064	    btrfs_file_extent_encryption(leaf, fi) ||
1065	    btrfs_file_extent_other_encoding(leaf, fi))
1066		return 0;
1067
1068	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070		return 0;
1071
1072	*start = key.offset;
1073	*end = extent_end;
1074	return 1;
1075}
1076
1077/*
1078 * Mark extent in the range start - end as written.
1079 *
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1082 * two or three.
1083 */
1084int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1085			      struct inode *inode, u64 start, u64 end)
1086{
1087	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1088	struct btrfs_root *root = BTRFS_I(inode)->root;
1089	struct extent_buffer *leaf;
1090	struct btrfs_path *path;
1091	struct btrfs_file_extent_item *fi;
 
1092	struct btrfs_key key;
1093	struct btrfs_key new_key;
1094	u64 bytenr;
1095	u64 num_bytes;
1096	u64 extent_end;
1097	u64 orig_offset;
1098	u64 other_start;
1099	u64 other_end;
1100	u64 split;
1101	int del_nr = 0;
1102	int del_slot = 0;
1103	int recow;
1104	int ret;
1105	u64 ino = btrfs_ino(inode);
1106
1107	path = btrfs_alloc_path();
1108	if (!path)
1109		return -ENOMEM;
1110again:
1111	recow = 0;
1112	split = start;
1113	key.objectid = ino;
1114	key.type = BTRFS_EXTENT_DATA_KEY;
1115	key.offset = split;
1116
1117	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1118	if (ret < 0)
1119		goto out;
1120	if (ret > 0 && path->slots[0] > 0)
1121		path->slots[0]--;
1122
1123	leaf = path->nodes[0];
1124	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1125	if (key.objectid != ino ||
1126	    key.type != BTRFS_EXTENT_DATA_KEY) {
1127		ret = -EINVAL;
1128		btrfs_abort_transaction(trans, ret);
1129		goto out;
1130	}
1131	fi = btrfs_item_ptr(leaf, path->slots[0],
1132			    struct btrfs_file_extent_item);
1133	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134		ret = -EINVAL;
1135		btrfs_abort_transaction(trans, ret);
1136		goto out;
1137	}
1138	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139	if (key.offset > start || extent_end < end) {
1140		ret = -EINVAL;
1141		btrfs_abort_transaction(trans, ret);
1142		goto out;
1143	}
1144
1145	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1148	memcpy(&new_key, &key, sizeof(new_key));
1149
1150	if (start == key.offset && end < extent_end) {
1151		other_start = 0;
1152		other_end = start;
1153		if (extent_mergeable(leaf, path->slots[0] - 1,
1154				     ino, bytenr, orig_offset,
1155				     &other_start, &other_end)) {
1156			new_key.offset = end;
1157			btrfs_set_item_key_safe(fs_info, path, &new_key);
1158			fi = btrfs_item_ptr(leaf, path->slots[0],
1159					    struct btrfs_file_extent_item);
1160			btrfs_set_file_extent_generation(leaf, fi,
1161							 trans->transid);
1162			btrfs_set_file_extent_num_bytes(leaf, fi,
1163							extent_end - end);
1164			btrfs_set_file_extent_offset(leaf, fi,
1165						     end - orig_offset);
1166			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167					    struct btrfs_file_extent_item);
1168			btrfs_set_file_extent_generation(leaf, fi,
1169							 trans->transid);
1170			btrfs_set_file_extent_num_bytes(leaf, fi,
1171							end - other_start);
1172			btrfs_mark_buffer_dirty(leaf);
1173			goto out;
1174		}
1175	}
1176
1177	if (start > key.offset && end == extent_end) {
1178		other_start = end;
1179		other_end = 0;
1180		if (extent_mergeable(leaf, path->slots[0] + 1,
1181				     ino, bytenr, orig_offset,
1182				     &other_start, &other_end)) {
1183			fi = btrfs_item_ptr(leaf, path->slots[0],
1184					    struct btrfs_file_extent_item);
1185			btrfs_set_file_extent_num_bytes(leaf, fi,
1186							start - key.offset);
1187			btrfs_set_file_extent_generation(leaf, fi,
1188							 trans->transid);
1189			path->slots[0]++;
1190			new_key.offset = start;
1191			btrfs_set_item_key_safe(fs_info, path, &new_key);
1192
1193			fi = btrfs_item_ptr(leaf, path->slots[0],
1194					    struct btrfs_file_extent_item);
1195			btrfs_set_file_extent_generation(leaf, fi,
1196							 trans->transid);
1197			btrfs_set_file_extent_num_bytes(leaf, fi,
1198							other_end - start);
1199			btrfs_set_file_extent_offset(leaf, fi,
1200						     start - orig_offset);
1201			btrfs_mark_buffer_dirty(leaf);
1202			goto out;
1203		}
1204	}
1205
1206	while (start > key.offset || end < extent_end) {
1207		if (key.offset == start)
1208			split = end;
1209
1210		new_key.offset = split;
1211		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212		if (ret == -EAGAIN) {
1213			btrfs_release_path(path);
1214			goto again;
1215		}
1216		if (ret < 0) {
1217			btrfs_abort_transaction(trans, ret);
1218			goto out;
1219		}
1220
1221		leaf = path->nodes[0];
1222		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223				    struct btrfs_file_extent_item);
1224		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225		btrfs_set_file_extent_num_bytes(leaf, fi,
1226						split - key.offset);
1227
1228		fi = btrfs_item_ptr(leaf, path->slots[0],
1229				    struct btrfs_file_extent_item);
1230
1231		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1232		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233		btrfs_set_file_extent_num_bytes(leaf, fi,
1234						extent_end - split);
1235		btrfs_mark_buffer_dirty(leaf);
1236
1237		ret = btrfs_inc_extent_ref(trans, fs_info, bytenr, num_bytes,
1238					   0, root->root_key.objectid,
1239					   ino, orig_offset);
 
 
1240		if (ret) {
1241			btrfs_abort_transaction(trans, ret);
1242			goto out;
1243		}
1244
1245		if (split == start) {
1246			key.offset = start;
1247		} else {
1248			if (start != key.offset) {
1249				ret = -EINVAL;
1250				btrfs_abort_transaction(trans, ret);
1251				goto out;
1252			}
1253			path->slots[0]--;
1254			extent_end = end;
1255		}
1256		recow = 1;
1257	}
1258
1259	other_start = end;
1260	other_end = 0;
 
 
 
 
1261	if (extent_mergeable(leaf, path->slots[0] + 1,
1262			     ino, bytenr, orig_offset,
1263			     &other_start, &other_end)) {
1264		if (recow) {
1265			btrfs_release_path(path);
1266			goto again;
1267		}
1268		extent_end = other_end;
1269		del_slot = path->slots[0] + 1;
1270		del_nr++;
1271		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1272					0, root->root_key.objectid,
1273					ino, orig_offset);
1274		if (ret) {
1275			btrfs_abort_transaction(trans, ret);
1276			goto out;
1277		}
1278	}
1279	other_start = 0;
1280	other_end = start;
1281	if (extent_mergeable(leaf, path->slots[0] - 1,
1282			     ino, bytenr, orig_offset,
1283			     &other_start, &other_end)) {
1284		if (recow) {
1285			btrfs_release_path(path);
1286			goto again;
1287		}
1288		key.offset = other_start;
1289		del_slot = path->slots[0];
1290		del_nr++;
1291		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1292					0, root->root_key.objectid,
1293					ino, orig_offset);
1294		if (ret) {
1295			btrfs_abort_transaction(trans, ret);
1296			goto out;
1297		}
1298	}
1299	if (del_nr == 0) {
1300		fi = btrfs_item_ptr(leaf, path->slots[0],
1301			   struct btrfs_file_extent_item);
1302		btrfs_set_file_extent_type(leaf, fi,
1303					   BTRFS_FILE_EXTENT_REG);
1304		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1305		btrfs_mark_buffer_dirty(leaf);
1306	} else {
1307		fi = btrfs_item_ptr(leaf, del_slot - 1,
1308			   struct btrfs_file_extent_item);
1309		btrfs_set_file_extent_type(leaf, fi,
1310					   BTRFS_FILE_EXTENT_REG);
1311		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1312		btrfs_set_file_extent_num_bytes(leaf, fi,
1313						extent_end - key.offset);
1314		btrfs_mark_buffer_dirty(leaf);
1315
1316		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1317		if (ret < 0) {
1318			btrfs_abort_transaction(trans, ret);
1319			goto out;
1320		}
1321	}
1322out:
1323	btrfs_free_path(path);
1324	return 0;
1325}
1326
1327/*
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1330 */
1331static int prepare_uptodate_page(struct inode *inode,
1332				 struct page *page, u64 pos,
1333				 bool force_uptodate)
1334{
 
1335	int ret = 0;
1336
1337	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1338	    !PageUptodate(page)) {
1339		ret = btrfs_readpage(NULL, page);
1340		if (ret)
1341			return ret;
1342		lock_page(page);
1343		if (!PageUptodate(page)) {
1344			unlock_page(page);
1345			return -EIO;
1346		}
1347		if (page->mapping != inode->i_mapping) {
 
 
 
 
 
 
 
 
 
 
 
1348			unlock_page(page);
1349			return -EAGAIN;
1350		}
1351	}
1352	return 0;
1353}
1354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355/*
1356 * this just gets pages into the page cache and locks them down.
1357 */
1358static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359				  size_t num_pages, loff_t pos,
1360				  size_t write_bytes, bool force_uptodate)
 
1361{
1362	int i;
1363	unsigned long index = pos >> PAGE_SHIFT;
1364	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 
1365	int err = 0;
1366	int faili;
1367
1368	for (i = 0; i < num_pages; i++) {
1369again:
1370		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1371					       mask | __GFP_WRITE);
1372		if (!pages[i]) {
1373			faili = i - 1;
1374			err = -ENOMEM;
 
 
 
 
 
 
 
 
 
1375			goto fail;
1376		}
1377
1378		if (i == 0)
1379			err = prepare_uptodate_page(inode, pages[i], pos,
1380						    force_uptodate);
1381		if (!err && i == num_pages - 1)
1382			err = prepare_uptodate_page(inode, pages[i],
1383						    pos + write_bytes, false);
1384		if (err) {
1385			put_page(pages[i]);
1386			if (err == -EAGAIN) {
1387				err = 0;
1388				goto again;
1389			}
1390			faili = i - 1;
1391			goto fail;
1392		}
1393		wait_on_page_writeback(pages[i]);
1394	}
1395
1396	return 0;
1397fail:
1398	while (faili >= 0) {
1399		unlock_page(pages[faili]);
1400		put_page(pages[faili]);
1401		faili--;
1402	}
1403	return err;
1404
1405}
1406
1407/*
1408 * This function locks the extent and properly waits for data=ordered extents
1409 * to finish before allowing the pages to be modified if need.
1410 *
1411 * The return value:
1412 * 1 - the extent is locked
1413 * 0 - the extent is not locked, and everything is OK
1414 * -EAGAIN - need re-prepare the pages
1415 * the other < 0 number - Something wrong happens
1416 */
1417static noinline int
1418lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1419				size_t num_pages, loff_t pos,
1420				size_t write_bytes,
1421				u64 *lockstart, u64 *lockend,
1422				struct extent_state **cached_state)
1423{
1424	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1425	u64 start_pos;
1426	u64 last_pos;
1427	int i;
1428	int ret = 0;
1429
1430	start_pos = round_down(pos, fs_info->sectorsize);
1431	last_pos = start_pos
1432		+ round_up(pos + write_bytes - start_pos,
1433			   fs_info->sectorsize) - 1;
1434
1435	if (start_pos < inode->i_size) {
1436		struct btrfs_ordered_extent *ordered;
1437		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1438				 start_pos, last_pos, cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1440						     last_pos - start_pos + 1);
1441		if (ordered &&
1442		    ordered->file_offset + ordered->len > start_pos &&
1443		    ordered->file_offset <= last_pos) {
1444			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1445					     start_pos, last_pos,
1446					     cached_state, GFP_NOFS);
1447			for (i = 0; i < num_pages; i++) {
1448				unlock_page(pages[i]);
1449				put_page(pages[i]);
1450			}
1451			btrfs_start_ordered_extent(inode, ordered, 1);
1452			btrfs_put_ordered_extent(ordered);
1453			return -EAGAIN;
1454		}
1455		if (ordered)
1456			btrfs_put_ordered_extent(ordered);
1457
1458		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1459				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1460				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1461				  0, 0, cached_state, GFP_NOFS);
1462		*lockstart = start_pos;
1463		*lockend = last_pos;
1464		ret = 1;
1465	}
1466
1467	for (i = 0; i < num_pages; i++) {
1468		if (clear_page_dirty_for_io(pages[i]))
1469			account_page_redirty(pages[i]);
1470		set_page_extent_mapped(pages[i]);
 
1471		WARN_ON(!PageLocked(pages[i]));
1472	}
1473
1474	return ret;
1475}
1476
1477static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1478				    size_t *write_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479{
1480	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1481	struct btrfs_root *root = BTRFS_I(inode)->root;
1482	struct btrfs_ordered_extent *ordered;
1483	u64 lockstart, lockend;
1484	u64 num_bytes;
1485	int ret;
1486
1487	ret = btrfs_start_write_no_snapshoting(root);
1488	if (!ret)
1489		return -ENOSPC;
 
 
1490
1491	lockstart = round_down(pos, fs_info->sectorsize);
1492	lockend = round_up(pos + *write_bytes,
1493			   fs_info->sectorsize) - 1;
 
1494
1495	while (1) {
1496		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1497		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498						     lockend - lockstart + 1);
1499		if (!ordered) {
1500			break;
1501		}
1502		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503		btrfs_start_ordered_extent(inode, ordered, 1);
1504		btrfs_put_ordered_extent(ordered);
1505	}
1506
1507	num_bytes = lockend - lockstart + 1;
1508	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1509	if (ret <= 0) {
1510		ret = 0;
1511		btrfs_end_write_no_snapshoting(root);
1512	} else {
1513		*write_bytes = min_t(size_t, *write_bytes ,
1514				     num_bytes - pos + lockstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515	}
1516
1517	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1518
1519	return ret;
1520}
1521
1522static noinline ssize_t __btrfs_buffered_write(struct file *file,
1523					       struct iov_iter *i,
1524					       loff_t pos)
1525{
 
 
1526	struct inode *inode = file_inode(file);
1527	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1528	struct btrfs_root *root = BTRFS_I(inode)->root;
1529	struct page **pages = NULL;
1530	struct extent_state *cached_state = NULL;
1531	u64 release_bytes = 0;
1532	u64 lockstart;
1533	u64 lockend;
1534	size_t num_written = 0;
1535	int nrptrs;
1536	int ret = 0;
1537	bool only_release_metadata = false;
1538	bool force_page_uptodate = false;
1539	bool need_unlock;
 
 
 
 
 
 
 
 
 
 
1540
 
 
 
 
 
 
 
 
 
1541	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1542			PAGE_SIZE / (sizeof(struct page *)));
1543	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1544	nrptrs = max(nrptrs, 8);
1545	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1546	if (!pages)
1547		return -ENOMEM;
 
 
1548
1549	while (iov_iter_count(i) > 0) {
1550		size_t offset = pos & (PAGE_SIZE - 1);
 
1551		size_t sector_offset;
1552		size_t write_bytes = min(iov_iter_count(i),
1553					 nrptrs * (size_t)PAGE_SIZE -
1554					 offset);
1555		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1556						PAGE_SIZE);
1557		size_t reserve_bytes;
1558		size_t dirty_pages;
1559		size_t copied;
1560		size_t dirty_sectors;
1561		size_t num_sectors;
1562
1563		WARN_ON(num_pages > nrptrs);
1564
1565		/*
1566		 * Fault pages before locking them in prepare_pages
1567		 * to avoid recursive lock
1568		 */
1569		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1570			ret = -EFAULT;
1571			break;
1572		}
1573
 
1574		sector_offset = pos & (fs_info->sectorsize - 1);
1575		reserve_bytes = round_up(write_bytes + sector_offset,
1576				fs_info->sectorsize);
1577
1578		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
 
 
 
1579		if (ret < 0) {
1580			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1581						      BTRFS_INODE_PREALLOC)) &&
1582			    check_can_nocow(inode, pos, &write_bytes) > 0) {
1583				/*
1584				 * For nodata cow case, no need to reserve
1585				 * data space.
1586				 */
1587				only_release_metadata = true;
1588				/*
1589				 * our prealloc extent may be smaller than
1590				 * write_bytes, so scale down.
1591				 */
1592				num_pages = DIV_ROUND_UP(write_bytes + offset,
1593							 PAGE_SIZE);
1594				reserve_bytes = round_up(write_bytes +
1595							 sector_offset,
1596							 fs_info->sectorsize);
1597			} else {
1598				break;
1599			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600		}
1601
1602		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
 
 
 
 
 
 
 
1603		if (ret) {
1604			if (!only_release_metadata)
1605				btrfs_free_reserved_data_space(inode, pos,
1606							       write_bytes);
 
1607			else
1608				btrfs_end_write_no_snapshoting(root);
 
 
 
1609			break;
1610		}
1611
1612		release_bytes = reserve_bytes;
1613		need_unlock = false;
1614again:
 
 
 
 
 
 
1615		/*
1616		 * This is going to setup the pages array with the number of
1617		 * pages we want, so we don't really need to worry about the
1618		 * contents of pages from loop to loop
1619		 */
1620		ret = prepare_pages(inode, pages, num_pages,
1621				    pos, write_bytes,
1622				    force_page_uptodate);
1623		if (ret)
 
1624			break;
 
1625
1626		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1627						pos, write_bytes, &lockstart,
1628						&lockend, &cached_state);
1629		if (ret < 0) {
1630			if (ret == -EAGAIN)
 
1631				goto again;
 
 
 
 
1632			break;
1633		} else if (ret > 0) {
1634			need_unlock = true;
1635			ret = 0;
1636		}
1637
1638		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1639
1640		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1641		dirty_sectors = round_up(copied + sector_offset,
1642					fs_info->sectorsize);
1643		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1644
1645		/*
1646		 * if we have trouble faulting in the pages, fall
1647		 * back to one page at a time
1648		 */
1649		if (copied < write_bytes)
1650			nrptrs = 1;
1651
1652		if (copied == 0) {
1653			force_page_uptodate = true;
1654			dirty_sectors = 0;
1655			dirty_pages = 0;
1656		} else {
1657			force_page_uptodate = false;
1658			dirty_pages = DIV_ROUND_UP(copied + offset,
1659						   PAGE_SIZE);
1660		}
1661
1662		/*
1663		 * If we had a short copy we need to release the excess delaloc
1664		 * bytes we reserved.  We need to increment outstanding_extents
1665		 * because btrfs_delalloc_release_space and
1666		 * btrfs_delalloc_release_metadata will decrement it, but
1667		 * we still have an outstanding extent for the chunk we actually
1668		 * managed to copy.
1669		 */
1670		if (num_sectors > dirty_sectors) {
1671			/* release everything except the sectors we dirtied */
1672			release_bytes -= dirty_sectors <<
1673						fs_info->sb->s_blocksize_bits;
1674			if (copied > 0) {
1675				spin_lock(&BTRFS_I(inode)->lock);
1676				BTRFS_I(inode)->outstanding_extents++;
1677				spin_unlock(&BTRFS_I(inode)->lock);
1678			}
1679			if (only_release_metadata) {
1680				btrfs_delalloc_release_metadata(inode,
1681								release_bytes);
1682			} else {
1683				u64 __pos;
1684
1685				__pos = round_down(pos,
1686						   fs_info->sectorsize) +
1687					(dirty_pages << PAGE_SHIFT);
1688				btrfs_delalloc_release_space(inode, __pos,
1689							     release_bytes);
 
1690			}
1691		}
1692
1693		release_bytes = round_up(copied + sector_offset,
1694					fs_info->sectorsize);
1695
1696		if (copied > 0)
1697			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1698						pos, copied, NULL);
1699		if (need_unlock)
1700			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1701					     lockstart, lockend, &cached_state,
1702					     GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
1703		if (ret) {
1704			btrfs_drop_pages(pages, num_pages);
1705			break;
1706		}
1707
1708		release_bytes = 0;
1709		if (only_release_metadata)
1710			btrfs_end_write_no_snapshoting(root);
1711
1712		if (only_release_metadata && copied > 0) {
1713			lockstart = round_down(pos,
1714					       fs_info->sectorsize);
1715			lockend = round_up(pos + copied,
1716					   fs_info->sectorsize) - 1;
1717
1718			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1719				       lockend, EXTENT_NORESERVE, NULL,
1720				       NULL, GFP_NOFS);
1721			only_release_metadata = false;
1722		}
1723
1724		btrfs_drop_pages(pages, num_pages);
1725
1726		cond_resched();
1727
1728		balance_dirty_pages_ratelimited(inode->i_mapping);
1729		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1730			btrfs_btree_balance_dirty(fs_info);
1731
1732		pos += copied;
1733		num_written += copied;
1734	}
1735
1736	kfree(pages);
1737
1738	if (release_bytes) {
1739		if (only_release_metadata) {
1740			btrfs_end_write_no_snapshoting(root);
1741			btrfs_delalloc_release_metadata(inode, release_bytes);
 
1742		} else {
1743			btrfs_delalloc_release_space(inode,
1744						round_down(pos, fs_info->sectorsize),
1745						release_bytes);
 
1746		}
1747	}
1748
 
 
 
 
 
 
 
1749	return num_written ? num_written : ret;
1750}
1751
1752static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753{
1754	struct file *file = iocb->ki_filp;
1755	struct inode *inode = file_inode(file);
1756	loff_t pos = iocb->ki_pos;
1757	ssize_t written;
 
1758	ssize_t written_buffered;
 
1759	loff_t endbyte;
1760	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761
1762	written = generic_file_direct_write(iocb, from);
 
 
 
 
 
1763
1764	if (written < 0 || !iov_iter_count(from))
1765		return written;
 
 
 
 
 
 
 
 
 
1766
1767	pos += written;
1768	written_buffered = __btrfs_buffered_write(file, from, pos);
1769	if (written_buffered < 0) {
1770		err = written_buffered;
1771		goto out;
1772	}
1773	/*
1774	 * Ensure all data is persisted. We want the next direct IO read to be
1775	 * able to read what was just written.
1776	 */
1777	endbyte = pos + written_buffered - 1;
1778	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1779	if (err)
1780		goto out;
1781	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1782	if (err)
1783		goto out;
1784	written += written_buffered;
1785	iocb->ki_pos = pos + written_buffered;
1786	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1787				 endbyte >> PAGE_SHIFT);
1788out:
1789	return written ? written : err;
1790}
1791
1792static void update_time_for_write(struct inode *inode)
 
1793{
1794	struct timespec now;
 
 
 
1795
1796	if (IS_NOCMTIME(inode))
1797		return;
 
 
 
 
 
 
 
 
 
 
1798
1799	now = current_time(inode);
1800	if (!timespec_equal(&inode->i_mtime, &now))
1801		inode->i_mtime = now;
1802
1803	if (!timespec_equal(&inode->i_ctime, &now))
1804		inode->i_ctime = now;
1805
1806	if (IS_I_VERSION(inode))
1807		inode_inc_iversion(inode);
1808}
1809
1810static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1811				    struct iov_iter *from)
1812{
1813	struct file *file = iocb->ki_filp;
1814	struct inode *inode = file_inode(file);
1815	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1816	struct btrfs_root *root = BTRFS_I(inode)->root;
1817	u64 start_pos;
1818	u64 end_pos;
1819	ssize_t num_written = 0;
1820	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1821	ssize_t err;
1822	loff_t pos;
1823	size_t count;
1824	loff_t oldsize;
1825	int clean_page = 0;
1826
1827	inode_lock(inode);
1828	err = generic_write_checks(iocb, from);
1829	if (err <= 0) {
1830		inode_unlock(inode);
1831		return err;
1832	}
1833
1834	current->backing_dev_info = inode_to_bdi(inode);
1835	err = file_remove_privs(file);
1836	if (err) {
1837		inode_unlock(inode);
1838		goto out;
1839	}
1840
1841	/*
1842	 * If BTRFS flips readonly due to some impossible error
1843	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1844	 * although we have opened a file as writable, we have
1845	 * to stop this write operation to ensure FS consistency.
1846	 */
1847	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1848		inode_unlock(inode);
1849		err = -EROFS;
1850		goto out;
1851	}
1852
1853	/*
1854	 * We reserve space for updating the inode when we reserve space for the
1855	 * extent we are going to write, so we will enospc out there.  We don't
1856	 * need to start yet another transaction to update the inode as we will
1857	 * update the inode when we finish writing whatever data we write.
1858	 */
1859	update_time_for_write(inode);
1860
1861	pos = iocb->ki_pos;
1862	count = iov_iter_count(from);
1863	start_pos = round_down(pos, fs_info->sectorsize);
1864	oldsize = i_size_read(inode);
1865	if (start_pos > oldsize) {
1866		/* Expand hole size to cover write data, preventing empty gap */
1867		end_pos = round_up(pos + count,
1868				   fs_info->sectorsize);
1869		err = btrfs_cont_expand(inode, oldsize, end_pos);
1870		if (err) {
1871			inode_unlock(inode);
1872			goto out;
1873		}
1874		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1875			clean_page = 1;
1876	}
1877
1878	if (sync)
1879		atomic_inc(&BTRFS_I(inode)->sync_writers);
1880
1881	if (iocb->ki_flags & IOCB_DIRECT) {
1882		num_written = __btrfs_direct_write(iocb, from);
1883	} else {
1884		num_written = __btrfs_buffered_write(file, from, pos);
1885		if (num_written > 0)
1886			iocb->ki_pos = pos + num_written;
1887		if (clean_page)
1888			pagecache_isize_extended(inode, oldsize,
1889						i_size_read(inode));
1890	}
1891
1892	inode_unlock(inode);
1893
1894	/*
1895	 * We also have to set last_sub_trans to the current log transid,
1896	 * otherwise subsequent syncs to a file that's been synced in this
1897	 * transaction will appear to have already occurred.
1898	 */
1899	spin_lock(&BTRFS_I(inode)->lock);
1900	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1901	spin_unlock(&BTRFS_I(inode)->lock);
1902	if (num_written > 0)
1903		num_written = generic_write_sync(iocb, num_written);
1904
1905	if (sync)
1906		atomic_dec(&BTRFS_I(inode)->sync_writers);
1907out:
1908	current->backing_dev_info = NULL;
1909	return num_written ? num_written : err;
1910}
1911
1912int btrfs_release_file(struct inode *inode, struct file *filp)
1913{
1914	if (filp->private_data)
1915		btrfs_ioctl_trans_end(filp);
 
 
 
 
 
 
 
1916	/*
1917	 * ordered_data_close is set by settattr when we are about to truncate
1918	 * a file from a non-zero size to a zero size.  This tries to
1919	 * flush down new bytes that may have been written if the
1920	 * application were using truncate to replace a file in place.
1921	 */
1922	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1923			       &BTRFS_I(inode)->runtime_flags))
1924			filemap_flush(inode->i_mapping);
1925	return 0;
1926}
1927
1928static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1929{
1930	int ret;
 
1931
 
 
 
 
 
 
 
1932	atomic_inc(&BTRFS_I(inode)->sync_writers);
1933	ret = btrfs_fdatawrite_range(inode, start, end);
1934	atomic_dec(&BTRFS_I(inode)->sync_writers);
 
1935
1936	return ret;
1937}
1938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939/*
1940 * fsync call for both files and directories.  This logs the inode into
1941 * the tree log instead of forcing full commits whenever possible.
1942 *
1943 * It needs to call filemap_fdatawait so that all ordered extent updates are
1944 * in the metadata btree are up to date for copying to the log.
1945 *
1946 * It drops the inode mutex before doing the tree log commit.  This is an
1947 * important optimization for directories because holding the mutex prevents
1948 * new operations on the dir while we write to disk.
1949 */
1950int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1951{
1952	struct dentry *dentry = file_dentry(file);
1953	struct inode *inode = d_inode(dentry);
1954	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1955	struct btrfs_root *root = BTRFS_I(inode)->root;
1956	struct btrfs_trans_handle *trans;
1957	struct btrfs_log_ctx ctx;
1958	int ret = 0;
1959	bool full_sync = 0;
1960	u64 len;
 
 
 
 
 
1961
1962	/*
1963	 * The range length can be represented by u64, we have to do the typecasts
1964	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1965	 */
1966	len = (u64)end - (u64)start + 1;
1967	trace_btrfs_sync_file(file, datasync);
 
 
 
 
 
1968
1969	/*
1970	 * We write the dirty pages in the range and wait until they complete
1971	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1972	 * multi-task, and make the performance up.  See
1973	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1974	 */
1975	ret = start_ordered_ops(inode, start, end);
1976	if (ret)
1977		return ret;
 
 
1978
1979	inode_lock(inode);
1980	atomic_inc(&root->log_batch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1982			     &BTRFS_I(inode)->runtime_flags);
 
1983	/*
1984	 * We might have have had more pages made dirty after calling
1985	 * start_ordered_ops and before acquiring the inode's i_mutex.
 
 
 
 
 
 
 
 
 
 
 
1986	 */
1987	if (full_sync) {
1988		/*
1989		 * For a full sync, we need to make sure any ordered operations
1990		 * start and finish before we start logging the inode, so that
1991		 * all extents are persisted and the respective file extent
1992		 * items are in the fs/subvol btree.
1993		 */
1994		ret = btrfs_wait_ordered_range(inode, start, len);
1995	} else {
1996		/*
1997		 * Start any new ordered operations before starting to log the
1998		 * inode. We will wait for them to finish in btrfs_sync_log().
1999		 *
2000		 * Right before acquiring the inode's mutex, we might have new
2001		 * writes dirtying pages, which won't immediately start the
2002		 * respective ordered operations - that is done through the
2003		 * fill_delalloc callbacks invoked from the writepage and
2004		 * writepages address space operations. So make sure we start
2005		 * all ordered operations before starting to log our inode. Not
2006		 * doing this means that while logging the inode, writeback
2007		 * could start and invoke writepage/writepages, which would call
2008		 * the fill_delalloc callbacks (cow_file_range,
2009		 * submit_compressed_extents). These callbacks add first an
2010		 * extent map to the modified list of extents and then create
2011		 * the respective ordered operation, which means in
2012		 * tree-log.c:btrfs_log_inode() we might capture all existing
2013		 * ordered operations (with btrfs_get_logged_extents()) before
2014		 * the fill_delalloc callback adds its ordered operation, and by
2015		 * the time we visit the modified list of extent maps (with
2016		 * btrfs_log_changed_extents()), we see and process the extent
2017		 * map they created. We then use the extent map to construct a
2018		 * file extent item for logging without waiting for the
2019		 * respective ordered operation to finish - this file extent
2020		 * item points to a disk location that might not have yet been
2021		 * written to, containing random data - so after a crash a log
2022		 * replay will make our inode have file extent items that point
2023		 * to disk locations containing invalid data, as we returned
2024		 * success to userspace without waiting for the respective
2025		 * ordered operation to finish, because it wasn't captured by
2026		 * btrfs_get_logged_extents().
2027		 */
2028		ret = start_ordered_ops(inode, start, end);
2029	}
2030	if (ret) {
2031		inode_unlock(inode);
2032		goto out;
2033	}
 
 
 
 
2034	atomic_inc(&root->log_batch);
2035
2036	/*
2037	 * If the last transaction that changed this file was before the current
2038	 * transaction and we have the full sync flag set in our inode, we can
2039	 * bail out now without any syncing.
2040	 *
2041	 * Note that we can't bail out if the full sync flag isn't set. This is
2042	 * because when the full sync flag is set we start all ordered extents
2043	 * and wait for them to fully complete - when they complete they update
2044	 * the inode's last_trans field through:
2045	 *
2046	 *     btrfs_finish_ordered_io() ->
2047	 *         btrfs_update_inode_fallback() ->
2048	 *             btrfs_update_inode() ->
2049	 *                 btrfs_set_inode_last_trans()
2050	 *
2051	 * So we are sure that last_trans is up to date and can do this check to
2052	 * bail out safely. For the fast path, when the full sync flag is not
2053	 * set in our inode, we can not do it because we start only our ordered
2054	 * extents and don't wait for them to complete (that is when
2055	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2056	 * value might be less than or equals to fs_info->last_trans_committed,
2057	 * and setting a speculative last_trans for an inode when a buffered
2058	 * write is made (such as fs_info->generation + 1 for example) would not
2059	 * be reliable since after setting the value and before fsync is called
2060	 * any number of transactions can start and commit (transaction kthread
2061	 * commits the current transaction periodically), and a transaction
2062	 * commit does not start nor waits for ordered extents to complete.
2063	 */
2064	smp_mb();
2065	if (btrfs_inode_in_log(inode, fs_info->generation) ||
2066	    (full_sync && BTRFS_I(inode)->last_trans <=
2067	     fs_info->last_trans_committed) ||
2068	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2069	     BTRFS_I(inode)->last_trans
2070	     <= fs_info->last_trans_committed)) {
2071		/*
2072		 * We've had everything committed since the last time we were
2073		 * modified so clear this flag in case it was set for whatever
2074		 * reason, it's no longer relevant.
2075		 */
2076		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2077			  &BTRFS_I(inode)->runtime_flags);
2078		/*
2079		 * An ordered extent might have started before and completed
2080		 * already with io errors, in which case the inode was not
2081		 * updated and we end up here. So check the inode's mapping
2082		 * flags for any errors that might have happened while doing
2083		 * writeback of file data.
2084		 */
2085		ret = filemap_check_errors(inode->i_mapping);
2086		inode_unlock(inode);
2087		goto out;
2088	}
2089
2090	/*
2091	 * ok we haven't committed the transaction yet, lets do a commit
2092	 */
2093	if (file->private_data)
2094		btrfs_ioctl_trans_end(file);
2095
2096	/*
2097	 * We use start here because we will need to wait on the IO to complete
2098	 * in btrfs_sync_log, which could require joining a transaction (for
2099	 * example checking cross references in the nocow path).  If we use join
2100	 * here we could get into a situation where we're waiting on IO to
2101	 * happen that is blocked on a transaction trying to commit.  With start
2102	 * we inc the extwriter counter, so we wait for all extwriters to exit
2103	 * before we start blocking join'ers.  This comment is to keep somebody
2104	 * from thinking they are super smart and changing this to
2105	 * btrfs_join_transaction *cough*Josef*cough*.
2106	 */
2107	trans = btrfs_start_transaction(root, 0);
2108	if (IS_ERR(trans)) {
2109		ret = PTR_ERR(trans);
2110		inode_unlock(inode);
2111		goto out;
2112	}
2113	trans->sync = true;
2114
2115	btrfs_init_log_ctx(&ctx, inode);
2116
2117	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2118	if (ret < 0) {
2119		/* Fallthrough and commit/free transaction. */
2120		ret = 1;
2121	}
2122
2123	/* we've logged all the items and now have a consistent
2124	 * version of the file in the log.  It is possible that
2125	 * someone will come in and modify the file, but that's
2126	 * fine because the log is consistent on disk, and we
2127	 * have references to all of the file's extents
2128	 *
2129	 * It is possible that someone will come in and log the
2130	 * file again, but that will end up using the synchronization
2131	 * inside btrfs_sync_log to keep things safe.
2132	 */
2133	inode_unlock(inode);
2134
2135	/*
2136	 * If any of the ordered extents had an error, just return it to user
2137	 * space, so that the application knows some writes didn't succeed and
2138	 * can take proper action (retry for e.g.). Blindly committing the
2139	 * transaction in this case, would fool userspace that everything was
2140	 * successful. And we also want to make sure our log doesn't contain
2141	 * file extent items pointing to extents that weren't fully written to -
2142	 * just like in the non fast fsync path, where we check for the ordered
2143	 * operation's error flag before writing to the log tree and return -EIO
2144	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2145	 * therefore we need to check for errors in the ordered operations,
2146	 * which are indicated by ctx.io_err.
2147	 */
2148	if (ctx.io_err) {
2149		btrfs_end_transaction(trans);
2150		ret = ctx.io_err;
2151		goto out;
2152	}
2153
2154	if (ret != BTRFS_NO_LOG_SYNC) {
 
 
2155		if (!ret) {
2156			ret = btrfs_sync_log(trans, root, &ctx);
2157			if (!ret) {
2158				ret = btrfs_end_transaction(trans);
2159				goto out;
2160			}
2161		}
2162		if (!full_sync) {
2163			ret = btrfs_wait_ordered_range(inode, start, len);
2164			if (ret) {
2165				btrfs_end_transaction(trans);
2166				goto out;
2167			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168		}
2169		ret = btrfs_commit_transaction(trans);
2170	} else {
2171		ret = btrfs_end_transaction(trans);
2172	}
 
 
2173out:
 
 
 
 
 
2174	return ret > 0 ? -EIO : ret;
 
 
 
 
 
2175}
2176
2177static const struct vm_operations_struct btrfs_file_vm_ops = {
2178	.fault		= filemap_fault,
2179	.map_pages	= filemap_map_pages,
2180	.page_mkwrite	= btrfs_page_mkwrite,
2181};
2182
2183static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2184{
2185	struct address_space *mapping = filp->f_mapping;
2186
2187	if (!mapping->a_ops->readpage)
2188		return -ENOEXEC;
2189
2190	file_accessed(filp);
2191	vma->vm_ops = &btrfs_file_vm_ops;
2192
2193	return 0;
2194}
2195
2196static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2197			  int slot, u64 start, u64 end)
2198{
2199	struct btrfs_file_extent_item *fi;
2200	struct btrfs_key key;
2201
2202	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2203		return 0;
2204
2205	btrfs_item_key_to_cpu(leaf, &key, slot);
2206	if (key.objectid != btrfs_ino(inode) ||
2207	    key.type != BTRFS_EXTENT_DATA_KEY)
2208		return 0;
2209
2210	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2211
2212	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2213		return 0;
2214
2215	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2216		return 0;
2217
2218	if (key.offset == end)
2219		return 1;
2220	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2221		return 1;
2222	return 0;
2223}
2224
2225static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2226		      struct btrfs_path *path, u64 offset, u64 end)
 
2227{
2228	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2229	struct btrfs_root *root = BTRFS_I(inode)->root;
2230	struct extent_buffer *leaf;
2231	struct btrfs_file_extent_item *fi;
2232	struct extent_map *hole_em;
2233	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2234	struct btrfs_key key;
2235	int ret;
2236
2237	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2238		goto out;
2239
2240	key.objectid = btrfs_ino(inode);
2241	key.type = BTRFS_EXTENT_DATA_KEY;
2242	key.offset = offset;
2243
2244	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2245	if (ret <= 0) {
2246		/*
2247		 * We should have dropped this offset, so if we find it then
2248		 * something has gone horribly wrong.
2249		 */
2250		if (ret == 0)
2251			ret = -EINVAL;
2252		return ret;
2253	}
2254
2255	leaf = path->nodes[0];
2256	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2257		u64 num_bytes;
2258
2259		path->slots[0]--;
2260		fi = btrfs_item_ptr(leaf, path->slots[0],
2261				    struct btrfs_file_extent_item);
2262		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2263			end - offset;
2264		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2265		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2266		btrfs_set_file_extent_offset(leaf, fi, 0);
 
2267		btrfs_mark_buffer_dirty(leaf);
2268		goto out;
2269	}
2270
2271	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2272		u64 num_bytes;
2273
2274		key.offset = offset;
2275		btrfs_set_item_key_safe(fs_info, path, &key);
2276		fi = btrfs_item_ptr(leaf, path->slots[0],
2277				    struct btrfs_file_extent_item);
2278		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2279			offset;
2280		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2281		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2282		btrfs_set_file_extent_offset(leaf, fi, 0);
 
2283		btrfs_mark_buffer_dirty(leaf);
2284		goto out;
2285	}
2286	btrfs_release_path(path);
2287
2288	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2289				       0, 0, end - offset, 0, end - offset,
2290				       0, 0, 0);
2291	if (ret)
2292		return ret;
2293
2294out:
2295	btrfs_release_path(path);
2296
2297	hole_em = alloc_extent_map();
2298	if (!hole_em) {
2299		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2300		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2301			&BTRFS_I(inode)->runtime_flags);
2302	} else {
2303		hole_em->start = offset;
2304		hole_em->len = end - offset;
2305		hole_em->ram_bytes = hole_em->len;
2306		hole_em->orig_start = offset;
2307
2308		hole_em->block_start = EXTENT_MAP_HOLE;
2309		hole_em->block_len = 0;
2310		hole_em->orig_block_len = 0;
2311		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2312		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2313		hole_em->generation = trans->transid;
2314
2315		do {
2316			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2317			write_lock(&em_tree->lock);
2318			ret = add_extent_mapping(em_tree, hole_em, 1);
2319			write_unlock(&em_tree->lock);
2320		} while (ret == -EEXIST);
2321		free_extent_map(hole_em);
2322		if (ret)
2323			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2324				&BTRFS_I(inode)->runtime_flags);
2325	}
2326
2327	return 0;
2328}
2329
2330/*
2331 * Find a hole extent on given inode and change start/len to the end of hole
2332 * extent.(hole/vacuum extent whose em->start <= start &&
2333 *	   em->start + em->len > start)
2334 * When a hole extent is found, return 1 and modify start/len.
2335 */
2336static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2337{
 
2338	struct extent_map *em;
2339	int ret = 0;
2340
2341	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2342	if (IS_ERR_OR_NULL(em)) {
2343		if (!em)
2344			ret = -ENOMEM;
2345		else
2346			ret = PTR_ERR(em);
2347		return ret;
2348	}
2349
2350	/* Hole or vacuum extent(only exists in no-hole mode) */
2351	if (em->block_start == EXTENT_MAP_HOLE) {
2352		ret = 1;
2353		*len = em->start + em->len > *start + *len ?
2354		       0 : *start + *len - em->start - em->len;
2355		*start = em->start + em->len;
2356	}
2357	free_extent_map(em);
2358	return ret;
2359}
2360
2361static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 
 
 
2362{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2364	struct btrfs_root *root = BTRFS_I(inode)->root;
2365	struct extent_state *cached_state = NULL;
2366	struct btrfs_path *path;
2367	struct btrfs_block_rsv *rsv;
2368	struct btrfs_trans_handle *trans;
2369	u64 lockstart;
2370	u64 lockend;
2371	u64 tail_start;
2372	u64 tail_len;
2373	u64 orig_start = offset;
2374	u64 cur_offset;
2375	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2376	u64 drop_end;
2377	int ret = 0;
2378	int err = 0;
2379	unsigned int rsv_count;
2380	bool same_block;
2381	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2382	u64 ino_size;
2383	bool truncated_block = false;
2384	bool updated_inode = false;
2385
 
 
2386	ret = btrfs_wait_ordered_range(inode, offset, len);
2387	if (ret)
2388		return ret;
2389
2390	inode_lock(inode);
2391	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2392	ret = find_first_non_hole(inode, &offset, &len);
2393	if (ret < 0)
2394		goto out_only_mutex;
2395	if (ret && !len) {
2396		/* Already in a large hole */
2397		ret = 0;
2398		goto out_only_mutex;
2399	}
2400
2401	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2402	lockend = round_down(offset + len,
2403			     btrfs_inode_sectorsize(inode)) - 1;
 
 
 
2404	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2405		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2406	/*
2407	 * We needn't truncate any block which is beyond the end of the file
2408	 * because we are sure there is no data there.
2409	 */
2410	/*
2411	 * Only do this if we are in the same block and we aren't doing the
2412	 * entire block.
2413	 */
2414	if (same_block && len < fs_info->sectorsize) {
2415		if (offset < ino_size) {
2416			truncated_block = true;
2417			ret = btrfs_truncate_block(inode, offset, len, 0);
 
2418		} else {
2419			ret = 0;
2420		}
2421		goto out_only_mutex;
2422	}
2423
2424	/* zero back part of the first block */
2425	if (offset < ino_size) {
2426		truncated_block = true;
2427		ret = btrfs_truncate_block(inode, offset, 0, 0);
2428		if (ret) {
2429			inode_unlock(inode);
2430			return ret;
2431		}
2432	}
2433
2434	/* Check the aligned pages after the first unaligned page,
2435	 * if offset != orig_start, which means the first unaligned page
2436	 * including several following pages are already in holes,
2437	 * the extra check can be skipped */
2438	if (offset == orig_start) {
2439		/* after truncate page, check hole again */
2440		len = offset + len - lockstart;
2441		offset = lockstart;
2442		ret = find_first_non_hole(inode, &offset, &len);
2443		if (ret < 0)
2444			goto out_only_mutex;
2445		if (ret && !len) {
2446			ret = 0;
2447			goto out_only_mutex;
2448		}
2449		lockstart = offset;
2450	}
2451
2452	/* Check the tail unaligned part is in a hole */
2453	tail_start = lockend + 1;
2454	tail_len = offset + len - tail_start;
2455	if (tail_len) {
2456		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2457		if (unlikely(ret < 0))
2458			goto out_only_mutex;
2459		if (!ret) {
2460			/* zero the front end of the last page */
2461			if (tail_start + tail_len < ino_size) {
2462				truncated_block = true;
2463				ret = btrfs_truncate_block(inode,
2464							tail_start + tail_len,
2465							0, 1);
2466				if (ret)
2467					goto out_only_mutex;
2468			}
2469		}
2470	}
2471
2472	if (lockend < lockstart) {
2473		ret = 0;
2474		goto out_only_mutex;
2475	}
2476
2477	while (1) {
2478		struct btrfs_ordered_extent *ordered;
2479
2480		truncate_pagecache_range(inode, lockstart, lockend);
2481
2482		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2483				 &cached_state);
2484		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2485
2486		/*
2487		 * We need to make sure we have no ordered extents in this range
2488		 * and nobody raced in and read a page in this range, if we did
2489		 * we need to try again.
2490		 */
2491		if ((!ordered ||
2492		    (ordered->file_offset + ordered->len <= lockstart ||
2493		     ordered->file_offset > lockend)) &&
2494		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2495			if (ordered)
2496				btrfs_put_ordered_extent(ordered);
2497			break;
2498		}
2499		if (ordered)
2500			btrfs_put_ordered_extent(ordered);
2501		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2502				     lockend, &cached_state, GFP_NOFS);
2503		ret = btrfs_wait_ordered_range(inode, lockstart,
2504					       lockend - lockstart + 1);
2505		if (ret) {
2506			inode_unlock(inode);
2507			return ret;
2508		}
2509	}
2510
2511	path = btrfs_alloc_path();
2512	if (!path) {
2513		ret = -ENOMEM;
2514		goto out;
2515	}
2516
2517	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2518	if (!rsv) {
2519		ret = -ENOMEM;
2520		goto out_free;
2521	}
2522	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2523	rsv->failfast = 1;
2524
2525	/*
2526	 * 1 - update the inode
2527	 * 1 - removing the extents in the range
2528	 * 1 - adding the hole extent if no_holes isn't set
2529	 */
2530	rsv_count = no_holes ? 2 : 3;
2531	trans = btrfs_start_transaction(root, rsv_count);
2532	if (IS_ERR(trans)) {
2533		err = PTR_ERR(trans);
2534		goto out_free;
2535	}
2536
2537	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2538				      min_size, 0);
2539	BUG_ON(ret);
2540	trans->block_rsv = rsv;
2541
2542	cur_offset = lockstart;
2543	len = lockend - cur_offset;
2544	while (cur_offset < lockend) {
2545		ret = __btrfs_drop_extents(trans, root, inode, path,
2546					   cur_offset, lockend + 1,
2547					   &drop_end, 1, 0, 0, NULL);
2548		if (ret != -ENOSPC)
2549			break;
2550
2551		trans->block_rsv = &fs_info->trans_block_rsv;
2552
2553		if (cur_offset < drop_end && cur_offset < ino_size) {
2554			ret = fill_holes(trans, inode, path, cur_offset,
2555					 drop_end);
2556			if (ret) {
2557				/*
2558				 * If we failed then we didn't insert our hole
2559				 * entries for the area we dropped, so now the
2560				 * fs is corrupted, so we must abort the
2561				 * transaction.
2562				 */
2563				btrfs_abort_transaction(trans, ret);
2564				err = ret;
2565				break;
2566			}
2567		}
2568
2569		cur_offset = drop_end;
2570
2571		ret = btrfs_update_inode(trans, root, inode);
2572		if (ret) {
2573			err = ret;
2574			break;
2575		}
2576
2577		btrfs_end_transaction(trans);
2578		btrfs_btree_balance_dirty(fs_info);
2579
2580		trans = btrfs_start_transaction(root, rsv_count);
2581		if (IS_ERR(trans)) {
2582			ret = PTR_ERR(trans);
2583			trans = NULL;
2584			break;
2585		}
2586
2587		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2588					      rsv, min_size, 0);
2589		BUG_ON(ret);	/* shouldn't happen */
2590		trans->block_rsv = rsv;
2591
2592		ret = find_first_non_hole(inode, &cur_offset, &len);
2593		if (unlikely(ret < 0))
2594			break;
2595		if (ret && !len) {
2596			ret = 0;
2597			break;
2598		}
2599	}
2600
2601	if (ret) {
2602		err = ret;
2603		goto out_trans;
2604	}
2605
2606	trans->block_rsv = &fs_info->trans_block_rsv;
2607	/*
2608	 * If we are using the NO_HOLES feature we might have had already an
2609	 * hole that overlaps a part of the region [lockstart, lockend] and
2610	 * ends at (or beyond) lockend. Since we have no file extent items to
2611	 * represent holes, drop_end can be less than lockend and so we must
2612	 * make sure we have an extent map representing the existing hole (the
2613	 * call to __btrfs_drop_extents() might have dropped the existing extent
2614	 * map representing the existing hole), otherwise the fast fsync path
2615	 * will not record the existence of the hole region
2616	 * [existing_hole_start, lockend].
2617	 */
2618	if (drop_end <= lockend)
2619		drop_end = lockend + 1;
2620	/*
2621	 * Don't insert file hole extent item if it's for a range beyond eof
2622	 * (because it's useless) or if it represents a 0 bytes range (when
2623	 * cur_offset == drop_end).
2624	 */
2625	if (cur_offset < ino_size && cur_offset < drop_end) {
2626		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2627		if (ret) {
2628			/* Same comment as above. */
2629			btrfs_abort_transaction(trans, ret);
2630			err = ret;
2631			goto out_trans;
2632		}
2633	}
2634
2635out_trans:
2636	if (!trans)
2637		goto out_free;
2638
 
2639	inode_inc_iversion(inode);
2640	inode->i_mtime = inode->i_ctime = current_time(inode);
2641
2642	trans->block_rsv = &fs_info->trans_block_rsv;
2643	ret = btrfs_update_inode(trans, root, inode);
2644	updated_inode = true;
2645	btrfs_end_transaction(trans);
2646	btrfs_btree_balance_dirty(fs_info);
2647out_free:
2648	btrfs_free_path(path);
2649	btrfs_free_block_rsv(fs_info, rsv);
2650out:
2651	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2652			     &cached_state, GFP_NOFS);
2653out_only_mutex:
2654	if (!updated_inode && truncated_block && !ret && !err) {
2655		/*
2656		 * If we only end up zeroing part of a page, we still need to
2657		 * update the inode item, so that all the time fields are
2658		 * updated as well as the necessary btrfs inode in memory fields
2659		 * for detecting, at fsync time, if the inode isn't yet in the
2660		 * log tree or it's there but not up to date.
2661		 */
 
 
 
 
 
2662		trans = btrfs_start_transaction(root, 1);
2663		if (IS_ERR(trans)) {
2664			err = PTR_ERR(trans);
2665		} else {
2666			err = btrfs_update_inode(trans, root, inode);
2667			ret = btrfs_end_transaction(trans);
 
 
 
 
2668		}
2669	}
2670	inode_unlock(inode);
2671	if (ret && !err)
2672		err = ret;
2673	return err;
2674}
2675
2676/* Helper structure to record which range is already reserved */
2677struct falloc_range {
2678	struct list_head list;
2679	u64 start;
2680	u64 len;
2681};
2682
2683/*
2684 * Helper function to add falloc range
2685 *
2686 * Caller should have locked the larger range of extent containing
2687 * [start, len)
2688 */
2689static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2690{
2691	struct falloc_range *prev = NULL;
2692	struct falloc_range *range = NULL;
2693
2694	if (list_empty(head))
2695		goto insert;
 
 
 
 
 
 
 
 
 
2696
2697	/*
2698	 * As fallocate iterate by bytenr order, we only need to check
2699	 * the last range.
2700	 */
2701	prev = list_entry(head->prev, struct falloc_range, list);
2702	if (prev->start + prev->len == start) {
2703		prev->len += len;
2704		return 0;
2705	}
2706insert:
2707	range = kmalloc(sizeof(*range), GFP_KERNEL);
2708	if (!range)
2709		return -ENOMEM;
2710	range->start = start;
2711	range->len = len;
2712	list_add_tail(&range->list, head);
2713	return 0;
2714}
2715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2716static long btrfs_fallocate(struct file *file, int mode,
2717			    loff_t offset, loff_t len)
2718{
2719	struct inode *inode = file_inode(file);
2720	struct extent_state *cached_state = NULL;
 
2721	struct falloc_range *range;
2722	struct falloc_range *tmp;
2723	struct list_head reserve_list;
2724	u64 cur_offset;
2725	u64 last_byte;
2726	u64 alloc_start;
2727	u64 alloc_end;
2728	u64 alloc_hint = 0;
2729	u64 locked_end;
2730	u64 actual_end = 0;
 
 
 
2731	struct extent_map *em;
2732	int blocksize = btrfs_inode_sectorsize(inode);
2733	int ret;
2734
 
 
 
 
2735	alloc_start = round_down(offset, blocksize);
2736	alloc_end = round_up(offset + len, blocksize);
2737	cur_offset = alloc_start;
2738
2739	/* Make sure we aren't being give some crap mode */
2740	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
2741		return -EOPNOTSUPP;
2742
2743	if (mode & FALLOC_FL_PUNCH_HOLE)
2744		return btrfs_punch_hole(inode, offset, len);
2745
2746	/*
2747	 * Only trigger disk allocation, don't trigger qgroup reserve
2748	 *
2749	 * For qgroup space, it will be checked later.
2750	 */
2751	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2752	if (ret < 0)
2753		return ret;
2754
2755	inode_lock(inode);
2756
2757	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2758		ret = inode_newsize_ok(inode, offset + len);
2759		if (ret)
2760			goto out;
2761	}
2762
 
 
 
 
2763	/*
2764	 * TODO: Move these two operations after we have checked
2765	 * accurate reserved space, or fallocate can still fail but
2766	 * with page truncated or size expanded.
2767	 *
2768	 * But that's a minor problem and won't do much harm BTW.
2769	 */
2770	if (alloc_start > inode->i_size) {
2771		ret = btrfs_cont_expand(inode, i_size_read(inode),
2772					alloc_start);
2773		if (ret)
2774			goto out;
2775	} else if (offset + len > inode->i_size) {
2776		/*
2777		 * If we are fallocating from the end of the file onward we
2778		 * need to zero out the end of the block if i_size lands in the
2779		 * middle of a block.
2780		 */
2781		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2782		if (ret)
2783			goto out;
2784	}
2785
2786	/*
2787	 * wait for ordered IO before we have any locks.  We'll loop again
2788	 * below with the locks held.
 
 
 
 
2789	 */
2790	ret = btrfs_wait_ordered_range(inode, alloc_start,
2791				       alloc_end - alloc_start);
2792	if (ret)
2793		goto out;
2794
 
 
 
 
 
 
2795	locked_end = alloc_end - 1;
2796	while (1) {
2797		struct btrfs_ordered_extent *ordered;
2798
2799		/* the extent lock is ordered inside the running
2800		 * transaction
2801		 */
2802		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2803				 locked_end, &cached_state);
2804		ordered = btrfs_lookup_first_ordered_extent(inode,
2805							    alloc_end - 1);
2806		if (ordered &&
2807		    ordered->file_offset + ordered->len > alloc_start &&
2808		    ordered->file_offset < alloc_end) {
2809			btrfs_put_ordered_extent(ordered);
2810			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2811					     alloc_start, locked_end,
2812					     &cached_state, GFP_KERNEL);
2813			/*
2814			 * we can't wait on the range with the transaction
2815			 * running or with the extent lock held
2816			 */
2817			ret = btrfs_wait_ordered_range(inode, alloc_start,
2818						       alloc_end - alloc_start);
2819			if (ret)
2820				goto out;
2821		} else {
2822			if (ordered)
2823				btrfs_put_ordered_extent(ordered);
2824			break;
2825		}
2826	}
2827
2828	/* First, check if we exceed the qgroup limit */
2829	INIT_LIST_HEAD(&reserve_list);
2830	while (1) {
2831		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2832				      alloc_end - cur_offset, 0);
2833		if (IS_ERR_OR_NULL(em)) {
2834			if (!em)
2835				ret = -ENOMEM;
2836			else
2837				ret = PTR_ERR(em);
2838			break;
2839		}
2840		last_byte = min(extent_map_end(em), alloc_end);
2841		actual_end = min_t(u64, extent_map_end(em), offset + len);
2842		last_byte = ALIGN(last_byte, blocksize);
2843		if (em->block_start == EXTENT_MAP_HOLE ||
2844		    (cur_offset >= inode->i_size &&
2845		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2846			ret = add_falloc_range(&reserve_list, cur_offset,
2847					       last_byte - cur_offset);
 
2848			if (ret < 0) {
2849				free_extent_map(em);
2850				break;
2851			}
2852			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2853					last_byte - cur_offset);
2854			if (ret < 0)
 
2855				break;
2856		} else {
2857			/*
2858			 * Do not need to reserve unwritten extent for this
2859			 * range, free reserved data space first, otherwise
2860			 * it'll result in false ENOSPC error.
2861			 */
2862			btrfs_free_reserved_data_space(inode, cur_offset,
2863				last_byte - cur_offset);
2864		}
2865		free_extent_map(em);
2866		cur_offset = last_byte;
2867		if (cur_offset >= alloc_end)
2868			break;
 
 
 
 
 
 
 
 
 
2869	}
2870
2871	/*
2872	 * If ret is still 0, means we're OK to fallocate.
2873	 * Or just cleanup the list and exit.
2874	 */
2875	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2876		if (!ret)
2877			ret = btrfs_prealloc_file_range(inode, mode,
2878					range->start,
2879					range->len, 1 << inode->i_blkbits,
2880					offset + len, &alloc_hint);
2881		else
2882			btrfs_free_reserved_data_space(inode, range->start,
2883						       range->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884		list_del(&range->list);
2885		kfree(range);
2886	}
2887	if (ret < 0)
2888		goto out_unlock;
2889
2890	if (actual_end > inode->i_size &&
2891	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2892		struct btrfs_trans_handle *trans;
2893		struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
2894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895		/*
2896		 * We didn't need to allocate any more space, but we
2897		 * still extended the size of the file so we need to
2898		 * update i_size and the inode item.
2899		 */
2900		trans = btrfs_start_transaction(root, 1);
2901		if (IS_ERR(trans)) {
2902			ret = PTR_ERR(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2903		} else {
2904			inode->i_ctime = current_time(inode);
2905			i_size_write(inode, actual_end);
2906			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2907			ret = btrfs_update_inode(trans, root, inode);
2908			if (ret)
2909				btrfs_end_transaction(trans);
2910			else
2911				ret = btrfs_end_transaction(trans);
2912		}
 
 
 
 
2913	}
2914out_unlock:
2915	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2916			     &cached_state, GFP_KERNEL);
2917out:
2918	inode_unlock(inode);
2919	/* Let go of our reservation. */
2920	if (ret != 0)
2921		btrfs_free_reserved_data_space(inode, alloc_start,
2922				       alloc_end - cur_offset);
2923	return ret;
2924}
2925
2926static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2927{
2928	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2929	struct extent_map *em = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930	struct extent_state *cached_state = NULL;
 
 
 
 
 
 
 
2931	u64 lockstart;
2932	u64 lockend;
2933	u64 start;
2934	u64 len;
2935	int ret = 0;
2936
2937	if (inode->i_size == 0)
2938		return -ENXIO;
2939
2940	/*
2941	 * *offset can be negative, in this case we start finding DATA/HOLE from
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942	 * the very start of the file.
2943	 */
2944	start = max_t(loff_t, 0, *offset);
2945
2946	lockstart = round_down(start, fs_info->sectorsize);
2947	lockend = round_up(i_size_read(inode),
2948			   fs_info->sectorsize);
2949	if (lockend <= lockstart)
2950		lockend = lockstart + fs_info->sectorsize;
2951	lockend--;
2952	len = lockend - lockstart + 1;
2953
2954	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2955			 &cached_state);
 
 
 
 
 
 
 
 
 
 
2956
2957	while (start < inode->i_size) {
2958		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2959		if (IS_ERR(em)) {
2960			ret = PTR_ERR(em);
2961			em = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962			break;
 
 
 
 
 
 
 
 
 
 
2963		}
2964
2965		if (whence == SEEK_HOLE &&
2966		    (em->block_start == EXTENT_MAP_HOLE ||
2967		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2968			break;
2969		else if (whence == SEEK_DATA &&
2970			   (em->block_start != EXTENT_MAP_HOLE &&
2971			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2972			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973
2974		start = em->start + em->len;
2975		free_extent_map(em);
2976		em = NULL;
 
 
 
 
2977		cond_resched();
2978	}
2979	free_extent_map(em);
2980	if (!ret) {
2981		if (whence == SEEK_DATA && start >= inode->i_size)
2982			ret = -ENXIO;
2983		else
2984			*offset = min_t(loff_t, start, inode->i_size);
 
 
2985	}
2986	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2987			     &cached_state, GFP_NOFS);
2988	return ret;
 
 
 
 
 
 
 
 
 
2989}
2990
2991static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2992{
2993	struct inode *inode = file->f_mapping->host;
2994	int ret;
2995
2996	inode_lock(inode);
2997	switch (whence) {
2998	case SEEK_END:
2999	case SEEK_CUR:
3000		offset = generic_file_llseek(file, offset, whence);
3001		goto out;
3002	case SEEK_DATA:
3003	case SEEK_HOLE:
3004		if (offset >= i_size_read(inode)) {
3005			inode_unlock(inode);
3006			return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007		}
 
 
 
 
3008
3009		ret = find_desired_extent(inode, &offset, whence);
3010		if (ret) {
3011			inode_unlock(inode);
 
 
 
 
 
3012			return ret;
3013		}
3014	}
3015
3016	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3017out:
3018	inode_unlock(inode);
3019	return offset;
3020}
3021
3022const struct file_operations btrfs_file_operations = {
3023	.llseek		= btrfs_file_llseek,
3024	.read_iter      = generic_file_read_iter,
3025	.splice_read	= generic_file_splice_read,
3026	.write_iter	= btrfs_file_write_iter,
 
3027	.mmap		= btrfs_file_mmap,
3028	.open		= generic_file_open,
3029	.release	= btrfs_release_file,
 
3030	.fsync		= btrfs_sync_file,
3031	.fallocate	= btrfs_fallocate,
3032	.unlocked_ioctl	= btrfs_ioctl,
3033#ifdef CONFIG_COMPAT
3034	.compat_ioctl	= btrfs_compat_ioctl,
3035#endif
3036	.clone_file_range = btrfs_clone_file_range,
3037	.dedupe_file_range = btrfs_dedupe_file_range,
3038};
3039
3040void btrfs_auto_defrag_exit(void)
3041{
3042	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3043}
3044
3045int btrfs_auto_defrag_init(void)
3046{
3047	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3048					sizeof(struct inode_defrag), 0,
3049					SLAB_MEM_SPREAD,
3050					NULL);
3051	if (!btrfs_inode_defrag_cachep)
3052		return -ENOMEM;
3053
3054	return 0;
3055}
3056
3057int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3058{
3059	int ret;
3060
3061	/*
3062	 * So with compression we will find and lock a dirty page and clear the
3063	 * first one as dirty, setup an async extent, and immediately return
3064	 * with the entire range locked but with nobody actually marked with
3065	 * writeback.  So we can't just filemap_write_and_wait_range() and
3066	 * expect it to work since it will just kick off a thread to do the
3067	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3068	 * since it will wait on the page lock, which won't be unlocked until
3069	 * after the pages have been marked as writeback and so we're good to go
3070	 * from there.  We have to do this otherwise we'll miss the ordered
3071	 * extents and that results in badness.  Please Josef, do not think you
3072	 * know better and pull this out at some point in the future, it is
3073	 * right and you are wrong.
3074	 */
3075	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3076	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3077			     &BTRFS_I(inode)->runtime_flags))
3078		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3079
3080	return ret;
3081}