Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright 2007-2008 Pierre Ossman
 
 
 
 
 
   4 */
   5
   6#include <linux/mmc/core.h>
   7#include <linux/mmc/card.h>
   8#include <linux/mmc/host.h>
   9#include <linux/mmc/mmc.h>
  10#include <linux/slab.h>
  11
  12#include <linux/scatterlist.h>
 
  13#include <linux/list.h>
  14
  15#include <linux/debugfs.h>
  16#include <linux/uaccess.h>
  17#include <linux/seq_file.h>
  18#include <linux/module.h>
  19
  20#include "core.h"
  21#include "card.h"
  22#include "host.h"
  23#include "bus.h"
  24#include "mmc_ops.h"
  25
  26#define RESULT_OK		0
  27#define RESULT_FAIL		1
  28#define RESULT_UNSUP_HOST	2
  29#define RESULT_UNSUP_CARD	3
  30
  31#define BUFFER_ORDER		2
  32#define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
  33
  34#define TEST_ALIGN_END		8
  35
  36/*
  37 * Limit the test area size to the maximum MMC HC erase group size.  Note that
  38 * the maximum SD allocation unit size is just 4MiB.
  39 */
  40#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
  41
  42/**
  43 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
  44 * @page: first page in the allocation
  45 * @order: order of the number of pages allocated
  46 */
  47struct mmc_test_pages {
  48	struct page *page;
  49	unsigned int order;
  50};
  51
  52/**
  53 * struct mmc_test_mem - allocated memory.
  54 * @arr: array of allocations
  55 * @cnt: number of allocations
  56 */
  57struct mmc_test_mem {
  58	struct mmc_test_pages *arr;
  59	unsigned int cnt;
  60};
  61
  62/**
  63 * struct mmc_test_area - information for performance tests.
  64 * @max_sz: test area size (in bytes)
  65 * @dev_addr: address on card at which to do performance tests
  66 * @max_tfr: maximum transfer size allowed by driver (in bytes)
  67 * @max_segs: maximum segments allowed by driver in scatterlist @sg
  68 * @max_seg_sz: maximum segment size allowed by driver
  69 * @blocks: number of (512 byte) blocks currently mapped by @sg
  70 * @sg_len: length of currently mapped scatterlist @sg
  71 * @mem: allocated memory
  72 * @sg: scatterlist
  73 * @sg_areq: scatterlist for non-blocking request
  74 */
  75struct mmc_test_area {
  76	unsigned long max_sz;
  77	unsigned int dev_addr;
  78	unsigned int max_tfr;
  79	unsigned int max_segs;
  80	unsigned int max_seg_sz;
  81	unsigned int blocks;
  82	unsigned int sg_len;
  83	struct mmc_test_mem *mem;
  84	struct scatterlist *sg;
  85	struct scatterlist *sg_areq;
  86};
  87
  88/**
  89 * struct mmc_test_transfer_result - transfer results for performance tests.
  90 * @link: double-linked list
  91 * @count: amount of group of sectors to check
  92 * @sectors: amount of sectors to check in one group
  93 * @ts: time values of transfer
  94 * @rate: calculated transfer rate
  95 * @iops: I/O operations per second (times 100)
  96 */
  97struct mmc_test_transfer_result {
  98	struct list_head link;
  99	unsigned int count;
 100	unsigned int sectors;
 101	struct timespec64 ts;
 102	unsigned int rate;
 103	unsigned int iops;
 104};
 105
 106/**
 107 * struct mmc_test_general_result - results for tests.
 108 * @link: double-linked list
 109 * @card: card under test
 110 * @testcase: number of test case
 111 * @result: result of test run
 112 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
 113 */
 114struct mmc_test_general_result {
 115	struct list_head link;
 116	struct mmc_card *card;
 117	int testcase;
 118	int result;
 119	struct list_head tr_lst;
 120};
 121
 122/**
 123 * struct mmc_test_dbgfs_file - debugfs related file.
 124 * @link: double-linked list
 125 * @card: card under test
 126 * @file: file created under debugfs
 127 */
 128struct mmc_test_dbgfs_file {
 129	struct list_head link;
 130	struct mmc_card *card;
 131	struct dentry *file;
 132};
 133
 134/**
 135 * struct mmc_test_card - test information.
 136 * @card: card under test
 137 * @scratch: transfer buffer
 138 * @buffer: transfer buffer
 139 * @highmem: buffer for highmem tests
 140 * @area: information for performance tests
 141 * @gr: pointer to results of current testcase
 142 */
 143struct mmc_test_card {
 144	struct mmc_card	*card;
 145
 146	u8		scratch[BUFFER_SIZE];
 147	u8		*buffer;
 148#ifdef CONFIG_HIGHMEM
 149	struct page	*highmem;
 150#endif
 151	struct mmc_test_area		area;
 152	struct mmc_test_general_result	*gr;
 153};
 154
 155enum mmc_test_prep_media {
 156	MMC_TEST_PREP_NONE = 0,
 157	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
 158	MMC_TEST_PREP_ERASE = 1 << 1,
 159};
 160
 161struct mmc_test_multiple_rw {
 162	unsigned int *sg_len;
 163	unsigned int *bs;
 164	unsigned int len;
 165	unsigned int size;
 166	bool do_write;
 167	bool do_nonblock_req;
 168	enum mmc_test_prep_media prepare;
 169};
 170
 
 
 
 
 
 171/*******************************************************************/
 172/*  General helper functions                                       */
 173/*******************************************************************/
 174
 175/*
 176 * Configure correct block size in card
 177 */
 178static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
 179{
 180	return mmc_set_blocklen(test->card, size);
 181}
 182
 183static bool mmc_test_card_cmd23(struct mmc_card *card)
 184{
 185	return mmc_card_mmc(card) ||
 186	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
 187}
 188
 189static void mmc_test_prepare_sbc(struct mmc_test_card *test,
 190				 struct mmc_request *mrq, unsigned int blocks)
 191{
 192	struct mmc_card *card = test->card;
 193
 194	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
 195	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
 196	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
 197		mrq->sbc = NULL;
 198		return;
 199	}
 200
 201	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
 202	mrq->sbc->arg = blocks;
 203	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
 204}
 205
 206/*
 207 * Fill in the mmc_request structure given a set of transfer parameters.
 208 */
 209static void mmc_test_prepare_mrq(struct mmc_test_card *test,
 210	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
 211	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
 212{
 213	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
 214		return;
 215
 216	if (blocks > 1) {
 217		mrq->cmd->opcode = write ?
 218			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
 219	} else {
 220		mrq->cmd->opcode = write ?
 221			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 222	}
 223
 224	mrq->cmd->arg = dev_addr;
 225	if (!mmc_card_blockaddr(test->card))
 226		mrq->cmd->arg <<= 9;
 227
 228	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 229
 230	if (blocks == 1)
 231		mrq->stop = NULL;
 232	else {
 233		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
 234		mrq->stop->arg = 0;
 235		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
 236	}
 237
 238	mrq->data->blksz = blksz;
 239	mrq->data->blocks = blocks;
 240	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
 241	mrq->data->sg = sg;
 242	mrq->data->sg_len = sg_len;
 243
 244	mmc_test_prepare_sbc(test, mrq, blocks);
 245
 246	mmc_set_data_timeout(mrq->data, test->card);
 247}
 248
 249static int mmc_test_busy(struct mmc_command *cmd)
 250{
 251	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
 252		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
 253}
 254
 255/*
 256 * Wait for the card to finish the busy state
 257 */
 258static int mmc_test_wait_busy(struct mmc_test_card *test)
 259{
 260	int ret, busy;
 261	struct mmc_command cmd = {};
 262
 263	busy = 0;
 264	do {
 265		memset(&cmd, 0, sizeof(struct mmc_command));
 266
 267		cmd.opcode = MMC_SEND_STATUS;
 268		cmd.arg = test->card->rca << 16;
 269		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 270
 271		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
 272		if (ret)
 273			break;
 274
 275		if (!busy && mmc_test_busy(&cmd)) {
 276			busy = 1;
 277			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
 278				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
 
 279					mmc_hostname(test->card->host));
 280		}
 281	} while (mmc_test_busy(&cmd));
 282
 283	return ret;
 284}
 285
 286/*
 287 * Transfer a single sector of kernel addressable data
 288 */
 289static int mmc_test_buffer_transfer(struct mmc_test_card *test,
 290	u8 *buffer, unsigned addr, unsigned blksz, int write)
 291{
 292	struct mmc_request mrq = {};
 293	struct mmc_command cmd = {};
 294	struct mmc_command stop = {};
 295	struct mmc_data data = {};
 296
 297	struct scatterlist sg;
 298
 299	mrq.cmd = &cmd;
 300	mrq.data = &data;
 301	mrq.stop = &stop;
 302
 303	sg_init_one(&sg, buffer, blksz);
 304
 305	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
 306
 307	mmc_wait_for_req(test->card->host, &mrq);
 308
 309	if (cmd.error)
 310		return cmd.error;
 311	if (data.error)
 312		return data.error;
 313
 314	return mmc_test_wait_busy(test);
 315}
 316
 317static void mmc_test_free_mem(struct mmc_test_mem *mem)
 318{
 319	if (!mem)
 320		return;
 321	while (mem->cnt--)
 322		__free_pages(mem->arr[mem->cnt].page,
 323			     mem->arr[mem->cnt].order);
 324	kfree(mem->arr);
 325	kfree(mem);
 326}
 327
 328/*
 329 * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
 330 * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
 331 * not exceed a maximum number of segments and try not to make segments much
 332 * bigger than maximum segment size.
 333 */
 334static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
 335					       unsigned long max_sz,
 336					       unsigned int max_segs,
 337					       unsigned int max_seg_sz)
 338{
 339	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
 340	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
 341	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
 342	unsigned long page_cnt = 0;
 343	unsigned long limit = nr_free_buffer_pages() >> 4;
 344	struct mmc_test_mem *mem;
 345
 346	if (max_page_cnt > limit)
 347		max_page_cnt = limit;
 348	if (min_page_cnt > max_page_cnt)
 349		min_page_cnt = max_page_cnt;
 350
 351	if (max_seg_page_cnt > max_page_cnt)
 352		max_seg_page_cnt = max_page_cnt;
 353
 354	if (max_segs > max_page_cnt)
 355		max_segs = max_page_cnt;
 356
 357	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 358	if (!mem)
 359		return NULL;
 360
 361	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
 
 362	if (!mem->arr)
 363		goto out_free;
 364
 365	while (max_page_cnt) {
 366		struct page *page;
 367		unsigned int order;
 368		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
 369				__GFP_NORETRY;
 370
 371		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
 372		while (1) {
 373			page = alloc_pages(flags, order);
 374			if (page || !order)
 375				break;
 376			order -= 1;
 377		}
 378		if (!page) {
 379			if (page_cnt < min_page_cnt)
 380				goto out_free;
 381			break;
 382		}
 383		mem->arr[mem->cnt].page = page;
 384		mem->arr[mem->cnt].order = order;
 385		mem->cnt += 1;
 386		if (max_page_cnt <= (1UL << order))
 387			break;
 388		max_page_cnt -= 1UL << order;
 389		page_cnt += 1UL << order;
 390		if (mem->cnt >= max_segs) {
 391			if (page_cnt < min_page_cnt)
 392				goto out_free;
 393			break;
 394		}
 395	}
 396
 397	return mem;
 398
 399out_free:
 400	mmc_test_free_mem(mem);
 401	return NULL;
 402}
 403
 404/*
 405 * Map memory into a scatterlist.  Optionally allow the same memory to be
 406 * mapped more than once.
 407 */
 408static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
 409			   struct scatterlist *sglist, int repeat,
 410			   unsigned int max_segs, unsigned int max_seg_sz,
 411			   unsigned int *sg_len, int min_sg_len)
 412{
 413	struct scatterlist *sg = NULL;
 414	unsigned int i;
 415	unsigned long sz = size;
 416
 417	sg_init_table(sglist, max_segs);
 418	if (min_sg_len > max_segs)
 419		min_sg_len = max_segs;
 420
 421	*sg_len = 0;
 422	do {
 423		for (i = 0; i < mem->cnt; i++) {
 424			unsigned long len = PAGE_SIZE << mem->arr[i].order;
 425
 426			if (min_sg_len && (size / min_sg_len < len))
 427				len = ALIGN(size / min_sg_len, 512);
 428			if (len > sz)
 429				len = sz;
 430			if (len > max_seg_sz)
 431				len = max_seg_sz;
 432			if (sg)
 433				sg = sg_next(sg);
 434			else
 435				sg = sglist;
 436			if (!sg)
 437				return -EINVAL;
 438			sg_set_page(sg, mem->arr[i].page, len, 0);
 439			sz -= len;
 440			*sg_len += 1;
 441			if (!sz)
 442				break;
 443		}
 444	} while (sz && repeat);
 445
 446	if (sz)
 447		return -EINVAL;
 448
 449	if (sg)
 450		sg_mark_end(sg);
 451
 452	return 0;
 453}
 454
 455/*
 456 * Map memory into a scatterlist so that no pages are contiguous.  Allow the
 457 * same memory to be mapped more than once.
 458 */
 459static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
 460				       unsigned long sz,
 461				       struct scatterlist *sglist,
 462				       unsigned int max_segs,
 463				       unsigned int max_seg_sz,
 464				       unsigned int *sg_len)
 465{
 466	struct scatterlist *sg = NULL;
 467	unsigned int i = mem->cnt, cnt;
 468	unsigned long len;
 469	void *base, *addr, *last_addr = NULL;
 470
 471	sg_init_table(sglist, max_segs);
 472
 473	*sg_len = 0;
 474	while (sz) {
 475		base = page_address(mem->arr[--i].page);
 476		cnt = 1 << mem->arr[i].order;
 477		while (sz && cnt) {
 478			addr = base + PAGE_SIZE * --cnt;
 479			if (last_addr && last_addr + PAGE_SIZE == addr)
 480				continue;
 481			last_addr = addr;
 482			len = PAGE_SIZE;
 483			if (len > max_seg_sz)
 484				len = max_seg_sz;
 485			if (len > sz)
 486				len = sz;
 487			if (sg)
 488				sg = sg_next(sg);
 489			else
 490				sg = sglist;
 491			if (!sg)
 492				return -EINVAL;
 493			sg_set_page(sg, virt_to_page(addr), len, 0);
 494			sz -= len;
 495			*sg_len += 1;
 496		}
 497		if (i == 0)
 498			i = mem->cnt;
 499	}
 500
 501	if (sg)
 502		sg_mark_end(sg);
 503
 504	return 0;
 505}
 506
 507/*
 508 * Calculate transfer rate in bytes per second.
 509 */
 510static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
 511{
 512	uint64_t ns;
 513
 514	ns = timespec64_to_ns(ts);
 
 
 
 515	bytes *= 1000000000;
 516
 517	while (ns > UINT_MAX) {
 518		bytes >>= 1;
 519		ns >>= 1;
 520	}
 521
 522	if (!ns)
 523		return 0;
 524
 525	do_div(bytes, (uint32_t)ns);
 526
 527	return bytes;
 528}
 529
 530/*
 531 * Save transfer results for future usage
 532 */
 533static void mmc_test_save_transfer_result(struct mmc_test_card *test,
 534	unsigned int count, unsigned int sectors, struct timespec64 ts,
 535	unsigned int rate, unsigned int iops)
 536{
 537	struct mmc_test_transfer_result *tr;
 538
 539	if (!test->gr)
 540		return;
 541
 542	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
 543	if (!tr)
 544		return;
 545
 546	tr->count = count;
 547	tr->sectors = sectors;
 548	tr->ts = ts;
 549	tr->rate = rate;
 550	tr->iops = iops;
 551
 552	list_add_tail(&tr->link, &test->gr->tr_lst);
 553}
 554
 555/*
 556 * Print the transfer rate.
 557 */
 558static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
 559				struct timespec64 *ts1, struct timespec64 *ts2)
 560{
 561	unsigned int rate, iops, sectors = bytes >> 9;
 562	struct timespec64 ts;
 563
 564	ts = timespec64_sub(*ts2, *ts1);
 565
 566	rate = mmc_test_rate(bytes, &ts);
 567	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
 568
 569	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
 570			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
 571			 mmc_hostname(test->card->host), sectors, sectors >> 1,
 572			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
 573			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
 574			 iops / 100, iops % 100);
 575
 576	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
 577}
 578
 579/*
 580 * Print the average transfer rate.
 581 */
 582static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
 583				    unsigned int count, struct timespec64 *ts1,
 584				    struct timespec64 *ts2)
 585{
 586	unsigned int rate, iops, sectors = bytes >> 9;
 587	uint64_t tot = bytes * count;
 588	struct timespec64 ts;
 589
 590	ts = timespec64_sub(*ts2, *ts1);
 591
 592	rate = mmc_test_rate(tot, &ts);
 593	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
 594
 595	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
 596			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
 597			 "%u.%02u IOPS, sg_len %d)\n",
 598			 mmc_hostname(test->card->host), count, sectors, count,
 599			 sectors >> 1, (sectors & 1 ? ".5" : ""),
 600			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
 601			 rate / 1000, rate / 1024, iops / 100, iops % 100,
 602			 test->area.sg_len);
 603
 604	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
 605}
 606
 607/*
 608 * Return the card size in sectors.
 609 */
 610static unsigned int mmc_test_capacity(struct mmc_card *card)
 611{
 612	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
 613		return card->ext_csd.sectors;
 614	else
 615		return card->csd.capacity << (card->csd.read_blkbits - 9);
 616}
 617
 618/*******************************************************************/
 619/*  Test preparation and cleanup                                   */
 620/*******************************************************************/
 621
 622/*
 623 * Fill the first couple of sectors of the card with known data
 624 * so that bad reads/writes can be detected
 625 */
 626static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
 627{
 628	int ret, i;
 629
 630	ret = mmc_test_set_blksize(test, 512);
 631	if (ret)
 632		return ret;
 633
 634	if (write)
 635		memset(test->buffer, val, 512);
 636	else {
 637		for (i = 0; i < 512; i++)
 638			test->buffer[i] = i;
 639	}
 640
 641	for (i = 0; i < BUFFER_SIZE / 512; i++) {
 642		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 643		if (ret)
 644			return ret;
 645	}
 646
 647	return 0;
 648}
 649
 650static int mmc_test_prepare_write(struct mmc_test_card *test)
 651{
 652	return __mmc_test_prepare(test, 1, 0xDF);
 653}
 654
 655static int mmc_test_prepare_read(struct mmc_test_card *test)
 656{
 657	return __mmc_test_prepare(test, 0, 0);
 658}
 659
 660static int mmc_test_cleanup(struct mmc_test_card *test)
 661{
 662	return __mmc_test_prepare(test, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663}
 664
 665/*******************************************************************/
 666/*  Test execution helpers                                         */
 667/*******************************************************************/
 668
 669/*
 670 * Modifies the mmc_request to perform the "short transfer" tests
 671 */
 672static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
 673	struct mmc_request *mrq, int write)
 674{
 675	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 676		return;
 677
 678	if (mrq->data->blocks > 1) {
 679		mrq->cmd->opcode = write ?
 680			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 681		mrq->stop = NULL;
 682	} else {
 683		mrq->cmd->opcode = MMC_SEND_STATUS;
 684		mrq->cmd->arg = test->card->rca << 16;
 685	}
 686}
 687
 688/*
 689 * Checks that a normal transfer didn't have any errors
 690 */
 691static int mmc_test_check_result(struct mmc_test_card *test,
 692				 struct mmc_request *mrq)
 693{
 694	int ret;
 695
 696	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 697		return -EINVAL;
 698
 699	ret = 0;
 700
 701	if (mrq->sbc && mrq->sbc->error)
 702		ret = mrq->sbc->error;
 703	if (!ret && mrq->cmd->error)
 704		ret = mrq->cmd->error;
 705	if (!ret && mrq->data->error)
 706		ret = mrq->data->error;
 707	if (!ret && mrq->stop && mrq->stop->error)
 708		ret = mrq->stop->error;
 709	if (!ret && mrq->data->bytes_xfered !=
 710		mrq->data->blocks * mrq->data->blksz)
 711		ret = RESULT_FAIL;
 712
 713	if (ret == -EINVAL)
 714		ret = RESULT_UNSUP_HOST;
 715
 716	return ret;
 717}
 718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719/*
 720 * Checks that a "short transfer" behaved as expected
 721 */
 722static int mmc_test_check_broken_result(struct mmc_test_card *test,
 723	struct mmc_request *mrq)
 724{
 725	int ret;
 726
 727	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 728		return -EINVAL;
 729
 730	ret = 0;
 731
 732	if (!ret && mrq->cmd->error)
 733		ret = mrq->cmd->error;
 734	if (!ret && mrq->data->error == 0)
 735		ret = RESULT_FAIL;
 736	if (!ret && mrq->data->error != -ETIMEDOUT)
 737		ret = mrq->data->error;
 738	if (!ret && mrq->stop && mrq->stop->error)
 739		ret = mrq->stop->error;
 740	if (mrq->data->blocks > 1) {
 741		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
 742			ret = RESULT_FAIL;
 743	} else {
 744		if (!ret && mrq->data->bytes_xfered > 0)
 745			ret = RESULT_FAIL;
 746	}
 747
 748	if (ret == -EINVAL)
 749		ret = RESULT_UNSUP_HOST;
 750
 751	return ret;
 752}
 753
 754struct mmc_test_req {
 755	struct mmc_request mrq;
 756	struct mmc_command sbc;
 757	struct mmc_command cmd;
 758	struct mmc_command stop;
 759	struct mmc_command status;
 760	struct mmc_data data;
 761};
 762
 763/*
 764 * Tests nonblock transfer with certain parameters
 765 */
 766static void mmc_test_req_reset(struct mmc_test_req *rq)
 767{
 768	memset(rq, 0, sizeof(struct mmc_test_req));
 769
 770	rq->mrq.cmd = &rq->cmd;
 771	rq->mrq.data = &rq->data;
 772	rq->mrq.stop = &rq->stop;
 773}
 774
 775static struct mmc_test_req *mmc_test_req_alloc(void)
 776{
 777	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
 778
 779	if (rq)
 780		mmc_test_req_reset(rq);
 781
 782	return rq;
 783}
 784
 785static void mmc_test_wait_done(struct mmc_request *mrq)
 786{
 787	complete(&mrq->completion);
 788}
 789
 790static int mmc_test_start_areq(struct mmc_test_card *test,
 791			       struct mmc_request *mrq,
 792			       struct mmc_request *prev_mrq)
 793{
 794	struct mmc_host *host = test->card->host;
 795	int err = 0;
 796
 797	if (mrq) {
 798		init_completion(&mrq->completion);
 799		mrq->done = mmc_test_wait_done;
 800		mmc_pre_req(host, mrq);
 801	}
 802
 803	if (prev_mrq) {
 804		wait_for_completion(&prev_mrq->completion);
 805		err = mmc_test_wait_busy(test);
 806		if (!err)
 807			err = mmc_test_check_result(test, prev_mrq);
 808	}
 809
 810	if (!err && mrq) {
 811		err = mmc_start_request(host, mrq);
 812		if (err)
 813			mmc_retune_release(host);
 814	}
 815
 816	if (prev_mrq)
 817		mmc_post_req(host, prev_mrq, 0);
 818
 819	if (err && mrq)
 820		mmc_post_req(host, mrq, err);
 821
 822	return err;
 823}
 824
 825static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
 826				      unsigned int dev_addr, int write,
 827				      int count)
 828{
 829	struct mmc_test_req *rq1, *rq2;
 830	struct mmc_request *mrq, *prev_mrq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831	int i;
 832	int ret = RESULT_OK;
 833	struct mmc_test_area *t = &test->area;
 834	struct scatterlist *sg = t->sg;
 835	struct scatterlist *sg_areq = t->sg_areq;
 836
 837	rq1 = mmc_test_req_alloc();
 838	rq2 = mmc_test_req_alloc();
 839	if (!rq1 || !rq2) {
 840		ret = RESULT_FAIL;
 841		goto err;
 842	}
 843
 844	mrq = &rq1->mrq;
 845	prev_mrq = NULL;
 
 
 846
 847	for (i = 0; i < count; i++) {
 848		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
 849		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
 850				     t->blocks, 512, write);
 851		ret = mmc_test_start_areq(test, mrq, prev_mrq);
 852		if (ret)
 853			goto err;
 854
 855		if (!prev_mrq)
 856			prev_mrq = &rq2->mrq;
 
 
 857
 858		swap(mrq, prev_mrq);
 859		swap(sg, sg_areq);
 860		dev_addr += t->blocks;
 
 
 
 
 
 
 
 861	}
 862
 863	ret = mmc_test_start_areq(test, NULL, prev_mrq);
 
 
 
 
 864err:
 865	kfree(rq1);
 866	kfree(rq2);
 867	return ret;
 868}
 869
 870/*
 871 * Tests a basic transfer with certain parameters
 872 */
 873static int mmc_test_simple_transfer(struct mmc_test_card *test,
 874	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 875	unsigned blocks, unsigned blksz, int write)
 876{
 877	struct mmc_request mrq = {};
 878	struct mmc_command cmd = {};
 879	struct mmc_command stop = {};
 880	struct mmc_data data = {};
 881
 882	mrq.cmd = &cmd;
 883	mrq.data = &data;
 884	mrq.stop = &stop;
 885
 886	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
 887		blocks, blksz, write);
 888
 889	mmc_wait_for_req(test->card->host, &mrq);
 890
 891	mmc_test_wait_busy(test);
 892
 893	return mmc_test_check_result(test, &mrq);
 894}
 895
 896/*
 897 * Tests a transfer where the card will fail completely or partly
 898 */
 899static int mmc_test_broken_transfer(struct mmc_test_card *test,
 900	unsigned blocks, unsigned blksz, int write)
 901{
 902	struct mmc_request mrq = {};
 903	struct mmc_command cmd = {};
 904	struct mmc_command stop = {};
 905	struct mmc_data data = {};
 906
 907	struct scatterlist sg;
 908
 909	mrq.cmd = &cmd;
 910	mrq.data = &data;
 911	mrq.stop = &stop;
 912
 913	sg_init_one(&sg, test->buffer, blocks * blksz);
 914
 915	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
 916	mmc_test_prepare_broken_mrq(test, &mrq, write);
 917
 918	mmc_wait_for_req(test->card->host, &mrq);
 919
 920	mmc_test_wait_busy(test);
 921
 922	return mmc_test_check_broken_result(test, &mrq);
 923}
 924
 925/*
 926 * Does a complete transfer test where data is also validated
 927 *
 928 * Note: mmc_test_prepare() must have been done before this call
 929 */
 930static int mmc_test_transfer(struct mmc_test_card *test,
 931	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 932	unsigned blocks, unsigned blksz, int write)
 933{
 934	int ret, i;
 
 935
 936	if (write) {
 937		for (i = 0; i < blocks * blksz; i++)
 938			test->scratch[i] = i;
 939	} else {
 940		memset(test->scratch, 0, BUFFER_SIZE);
 941	}
 
 942	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
 
 943
 944	ret = mmc_test_set_blksize(test, blksz);
 945	if (ret)
 946		return ret;
 947
 948	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
 949		blocks, blksz, write);
 950	if (ret)
 951		return ret;
 952
 953	if (write) {
 954		int sectors;
 955
 956		ret = mmc_test_set_blksize(test, 512);
 957		if (ret)
 958			return ret;
 959
 960		sectors = (blocks * blksz + 511) / 512;
 961		if ((sectors * 512) == (blocks * blksz))
 962			sectors++;
 963
 964		if ((sectors * 512) > BUFFER_SIZE)
 965			return -EINVAL;
 966
 967		memset(test->buffer, 0, sectors * 512);
 968
 969		for (i = 0; i < sectors; i++) {
 970			ret = mmc_test_buffer_transfer(test,
 971				test->buffer + i * 512,
 972				dev_addr + i, 512, 0);
 973			if (ret)
 974				return ret;
 975		}
 976
 977		for (i = 0; i < blocks * blksz; i++) {
 978			if (test->buffer[i] != (u8)i)
 979				return RESULT_FAIL;
 980		}
 981
 982		for (; i < sectors * 512; i++) {
 983			if (test->buffer[i] != 0xDF)
 984				return RESULT_FAIL;
 985		}
 986	} else {
 
 987		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
 988		for (i = 0; i < blocks * blksz; i++) {
 
 989			if (test->scratch[i] != (u8)i)
 990				return RESULT_FAIL;
 991		}
 992	}
 993
 994	return 0;
 995}
 996
 997/*******************************************************************/
 998/*  Tests                                                          */
 999/*******************************************************************/
1000
1001struct mmc_test_case {
1002	const char *name;
1003
1004	int (*prepare)(struct mmc_test_card *);
1005	int (*run)(struct mmc_test_card *);
1006	int (*cleanup)(struct mmc_test_card *);
1007};
1008
1009static int mmc_test_basic_write(struct mmc_test_card *test)
1010{
1011	int ret;
1012	struct scatterlist sg;
1013
1014	ret = mmc_test_set_blksize(test, 512);
1015	if (ret)
1016		return ret;
1017
1018	sg_init_one(&sg, test->buffer, 512);
1019
1020	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1021}
1022
1023static int mmc_test_basic_read(struct mmc_test_card *test)
1024{
1025	int ret;
1026	struct scatterlist sg;
1027
1028	ret = mmc_test_set_blksize(test, 512);
1029	if (ret)
1030		return ret;
1031
1032	sg_init_one(&sg, test->buffer, 512);
1033
1034	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1035}
1036
1037static int mmc_test_verify_write(struct mmc_test_card *test)
1038{
1039	struct scatterlist sg;
1040
1041	sg_init_one(&sg, test->buffer, 512);
1042
1043	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1044}
1045
1046static int mmc_test_verify_read(struct mmc_test_card *test)
1047{
1048	struct scatterlist sg;
1049
1050	sg_init_one(&sg, test->buffer, 512);
1051
1052	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1053}
1054
1055static int mmc_test_multi_write(struct mmc_test_card *test)
1056{
1057	unsigned int size;
1058	struct scatterlist sg;
1059
1060	if (test->card->host->max_blk_count == 1)
1061		return RESULT_UNSUP_HOST;
1062
1063	size = PAGE_SIZE * 2;
1064	size = min(size, test->card->host->max_req_size);
1065	size = min(size, test->card->host->max_seg_size);
1066	size = min(size, test->card->host->max_blk_count * 512);
1067
1068	if (size < 1024)
1069		return RESULT_UNSUP_HOST;
1070
1071	sg_init_one(&sg, test->buffer, size);
1072
1073	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1074}
1075
1076static int mmc_test_multi_read(struct mmc_test_card *test)
1077{
1078	unsigned int size;
1079	struct scatterlist sg;
1080
1081	if (test->card->host->max_blk_count == 1)
1082		return RESULT_UNSUP_HOST;
1083
1084	size = PAGE_SIZE * 2;
1085	size = min(size, test->card->host->max_req_size);
1086	size = min(size, test->card->host->max_seg_size);
1087	size = min(size, test->card->host->max_blk_count * 512);
1088
1089	if (size < 1024)
1090		return RESULT_UNSUP_HOST;
1091
1092	sg_init_one(&sg, test->buffer, size);
1093
1094	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1095}
1096
1097static int mmc_test_pow2_write(struct mmc_test_card *test)
1098{
1099	int ret, i;
1100	struct scatterlist sg;
1101
1102	if (!test->card->csd.write_partial)
1103		return RESULT_UNSUP_CARD;
1104
1105	for (i = 1; i < 512; i <<= 1) {
1106		sg_init_one(&sg, test->buffer, i);
1107		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1108		if (ret)
1109			return ret;
1110	}
1111
1112	return 0;
1113}
1114
1115static int mmc_test_pow2_read(struct mmc_test_card *test)
1116{
1117	int ret, i;
1118	struct scatterlist sg;
1119
1120	if (!test->card->csd.read_partial)
1121		return RESULT_UNSUP_CARD;
1122
1123	for (i = 1; i < 512; i <<= 1) {
1124		sg_init_one(&sg, test->buffer, i);
1125		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1126		if (ret)
1127			return ret;
1128	}
1129
1130	return 0;
1131}
1132
1133static int mmc_test_weird_write(struct mmc_test_card *test)
1134{
1135	int ret, i;
1136	struct scatterlist sg;
1137
1138	if (!test->card->csd.write_partial)
1139		return RESULT_UNSUP_CARD;
1140
1141	for (i = 3; i < 512; i += 7) {
1142		sg_init_one(&sg, test->buffer, i);
1143		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1144		if (ret)
1145			return ret;
1146	}
1147
1148	return 0;
1149}
1150
1151static int mmc_test_weird_read(struct mmc_test_card *test)
1152{
1153	int ret, i;
1154	struct scatterlist sg;
1155
1156	if (!test->card->csd.read_partial)
1157		return RESULT_UNSUP_CARD;
1158
1159	for (i = 3; i < 512; i += 7) {
1160		sg_init_one(&sg, test->buffer, i);
1161		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1162		if (ret)
1163			return ret;
1164	}
1165
1166	return 0;
1167}
1168
1169static int mmc_test_align_write(struct mmc_test_card *test)
1170{
1171	int ret, i;
1172	struct scatterlist sg;
1173
1174	for (i = 1; i < TEST_ALIGN_END; i++) {
1175		sg_init_one(&sg, test->buffer + i, 512);
1176		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1177		if (ret)
1178			return ret;
1179	}
1180
1181	return 0;
1182}
1183
1184static int mmc_test_align_read(struct mmc_test_card *test)
1185{
1186	int ret, i;
1187	struct scatterlist sg;
1188
1189	for (i = 1; i < TEST_ALIGN_END; i++) {
1190		sg_init_one(&sg, test->buffer + i, 512);
1191		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1192		if (ret)
1193			return ret;
1194	}
1195
1196	return 0;
1197}
1198
1199static int mmc_test_align_multi_write(struct mmc_test_card *test)
1200{
1201	int ret, i;
1202	unsigned int size;
1203	struct scatterlist sg;
1204
1205	if (test->card->host->max_blk_count == 1)
1206		return RESULT_UNSUP_HOST;
1207
1208	size = PAGE_SIZE * 2;
1209	size = min(size, test->card->host->max_req_size);
1210	size = min(size, test->card->host->max_seg_size);
1211	size = min(size, test->card->host->max_blk_count * 512);
1212
1213	if (size < 1024)
1214		return RESULT_UNSUP_HOST;
1215
1216	for (i = 1; i < TEST_ALIGN_END; i++) {
1217		sg_init_one(&sg, test->buffer + i, size);
1218		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1219		if (ret)
1220			return ret;
1221	}
1222
1223	return 0;
1224}
1225
1226static int mmc_test_align_multi_read(struct mmc_test_card *test)
1227{
1228	int ret, i;
1229	unsigned int size;
1230	struct scatterlist sg;
1231
1232	if (test->card->host->max_blk_count == 1)
1233		return RESULT_UNSUP_HOST;
1234
1235	size = PAGE_SIZE * 2;
1236	size = min(size, test->card->host->max_req_size);
1237	size = min(size, test->card->host->max_seg_size);
1238	size = min(size, test->card->host->max_blk_count * 512);
1239
1240	if (size < 1024)
1241		return RESULT_UNSUP_HOST;
1242
1243	for (i = 1; i < TEST_ALIGN_END; i++) {
1244		sg_init_one(&sg, test->buffer + i, size);
1245		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1246		if (ret)
1247			return ret;
1248	}
1249
1250	return 0;
1251}
1252
1253static int mmc_test_xfersize_write(struct mmc_test_card *test)
1254{
1255	int ret;
1256
1257	ret = mmc_test_set_blksize(test, 512);
1258	if (ret)
1259		return ret;
1260
1261	return mmc_test_broken_transfer(test, 1, 512, 1);
1262}
1263
1264static int mmc_test_xfersize_read(struct mmc_test_card *test)
1265{
1266	int ret;
1267
1268	ret = mmc_test_set_blksize(test, 512);
1269	if (ret)
1270		return ret;
1271
1272	return mmc_test_broken_transfer(test, 1, 512, 0);
1273}
1274
1275static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1276{
1277	int ret;
1278
1279	if (test->card->host->max_blk_count == 1)
1280		return RESULT_UNSUP_HOST;
1281
1282	ret = mmc_test_set_blksize(test, 512);
1283	if (ret)
1284		return ret;
1285
1286	return mmc_test_broken_transfer(test, 2, 512, 1);
1287}
1288
1289static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1290{
1291	int ret;
1292
1293	if (test->card->host->max_blk_count == 1)
1294		return RESULT_UNSUP_HOST;
1295
1296	ret = mmc_test_set_blksize(test, 512);
1297	if (ret)
1298		return ret;
1299
1300	return mmc_test_broken_transfer(test, 2, 512, 0);
1301}
1302
1303#ifdef CONFIG_HIGHMEM
1304
1305static int mmc_test_write_high(struct mmc_test_card *test)
1306{
1307	struct scatterlist sg;
1308
1309	sg_init_table(&sg, 1);
1310	sg_set_page(&sg, test->highmem, 512, 0);
1311
1312	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1313}
1314
1315static int mmc_test_read_high(struct mmc_test_card *test)
1316{
1317	struct scatterlist sg;
1318
1319	sg_init_table(&sg, 1);
1320	sg_set_page(&sg, test->highmem, 512, 0);
1321
1322	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1323}
1324
1325static int mmc_test_multi_write_high(struct mmc_test_card *test)
1326{
1327	unsigned int size;
1328	struct scatterlist sg;
1329
1330	if (test->card->host->max_blk_count == 1)
1331		return RESULT_UNSUP_HOST;
1332
1333	size = PAGE_SIZE * 2;
1334	size = min(size, test->card->host->max_req_size);
1335	size = min(size, test->card->host->max_seg_size);
1336	size = min(size, test->card->host->max_blk_count * 512);
1337
1338	if (size < 1024)
1339		return RESULT_UNSUP_HOST;
1340
1341	sg_init_table(&sg, 1);
1342	sg_set_page(&sg, test->highmem, size, 0);
1343
1344	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1345}
1346
1347static int mmc_test_multi_read_high(struct mmc_test_card *test)
1348{
1349	unsigned int size;
1350	struct scatterlist sg;
1351
1352	if (test->card->host->max_blk_count == 1)
1353		return RESULT_UNSUP_HOST;
1354
1355	size = PAGE_SIZE * 2;
1356	size = min(size, test->card->host->max_req_size);
1357	size = min(size, test->card->host->max_seg_size);
1358	size = min(size, test->card->host->max_blk_count * 512);
1359
1360	if (size < 1024)
1361		return RESULT_UNSUP_HOST;
1362
1363	sg_init_table(&sg, 1);
1364	sg_set_page(&sg, test->highmem, size, 0);
1365
1366	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1367}
1368
1369#else
1370
1371static int mmc_test_no_highmem(struct mmc_test_card *test)
1372{
1373	pr_info("%s: Highmem not configured - test skipped\n",
1374	       mmc_hostname(test->card->host));
1375	return 0;
1376}
1377
1378#endif /* CONFIG_HIGHMEM */
1379
1380/*
1381 * Map sz bytes so that it can be transferred.
1382 */
1383static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1384			     int max_scatter, int min_sg_len, bool nonblock)
1385{
1386	struct mmc_test_area *t = &test->area;
1387	int err;
1388	unsigned int sg_len = 0;
1389
1390	t->blocks = sz >> 9;
1391
1392	if (max_scatter) {
1393		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1394						  t->max_segs, t->max_seg_sz,
1395				       &t->sg_len);
1396	} else {
1397		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1398				      t->max_seg_sz, &t->sg_len, min_sg_len);
1399	}
1400
1401	if (err || !nonblock)
1402		goto err;
1403
1404	if (max_scatter) {
1405		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1406						  t->max_segs, t->max_seg_sz,
1407						  &sg_len);
1408	} else {
1409		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1410				      t->max_seg_sz, &sg_len, min_sg_len);
1411	}
1412	if (!err && sg_len != t->sg_len)
1413		err = -EINVAL;
1414
1415err:
1416	if (err)
1417		pr_info("%s: Failed to map sg list\n",
1418		       mmc_hostname(test->card->host));
1419	return err;
1420}
1421
1422/*
1423 * Transfer bytes mapped by mmc_test_area_map().
1424 */
1425static int mmc_test_area_transfer(struct mmc_test_card *test,
1426				  unsigned int dev_addr, int write)
1427{
1428	struct mmc_test_area *t = &test->area;
1429
1430	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1431					t->blocks, 512, write);
1432}
1433
1434/*
1435 * Map and transfer bytes for multiple transfers.
1436 */
1437static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1438				unsigned int dev_addr, int write,
1439				int max_scatter, int timed, int count,
1440				bool nonblock, int min_sg_len)
1441{
1442	struct timespec64 ts1, ts2;
1443	int ret = 0;
1444	int i;
 
1445
1446	/*
1447	 * In the case of a maximally scattered transfer, the maximum transfer
1448	 * size is further limited by using PAGE_SIZE segments.
1449	 */
1450	if (max_scatter) {
1451		struct mmc_test_area *t = &test->area;
1452		unsigned long max_tfr;
1453
1454		if (t->max_seg_sz >= PAGE_SIZE)
1455			max_tfr = t->max_segs * PAGE_SIZE;
1456		else
1457			max_tfr = t->max_segs * t->max_seg_sz;
1458		if (sz > max_tfr)
1459			sz = max_tfr;
1460	}
1461
1462	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1463	if (ret)
1464		return ret;
1465
1466	if (timed)
1467		ktime_get_ts64(&ts1);
1468	if (nonblock)
1469		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
 
1470	else
1471		for (i = 0; i < count && ret == 0; i++) {
1472			ret = mmc_test_area_transfer(test, dev_addr, write);
1473			dev_addr += sz >> 9;
1474		}
1475
1476	if (ret)
1477		return ret;
1478
1479	if (timed)
1480		ktime_get_ts64(&ts2);
1481
1482	if (timed)
1483		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1484
1485	return 0;
1486}
1487
1488static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1489			    unsigned int dev_addr, int write, int max_scatter,
1490			    int timed)
1491{
1492	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1493				    timed, 1, false, 0);
1494}
1495
1496/*
1497 * Write the test area entirely.
1498 */
1499static int mmc_test_area_fill(struct mmc_test_card *test)
1500{
1501	struct mmc_test_area *t = &test->area;
1502
1503	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1504}
1505
1506/*
1507 * Erase the test area entirely.
1508 */
1509static int mmc_test_area_erase(struct mmc_test_card *test)
1510{
1511	struct mmc_test_area *t = &test->area;
1512
1513	if (!mmc_can_erase(test->card))
1514		return 0;
1515
1516	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1517			 MMC_ERASE_ARG);
1518}
1519
1520/*
1521 * Cleanup struct mmc_test_area.
1522 */
1523static int mmc_test_area_cleanup(struct mmc_test_card *test)
1524{
1525	struct mmc_test_area *t = &test->area;
1526
1527	kfree(t->sg);
1528	kfree(t->sg_areq);
1529	mmc_test_free_mem(t->mem);
1530
1531	return 0;
1532}
1533
1534/*
1535 * Initialize an area for testing large transfers.  The test area is set to the
1536 * middle of the card because cards may have different characteristics at the
1537 * front (for FAT file system optimization).  Optionally, the area is erased
1538 * (if the card supports it) which may improve write performance.  Optionally,
1539 * the area is filled with data for subsequent read tests.
1540 */
1541static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1542{
1543	struct mmc_test_area *t = &test->area;
1544	unsigned long min_sz = 64 * 1024, sz;
1545	int ret;
1546
1547	ret = mmc_test_set_blksize(test, 512);
1548	if (ret)
1549		return ret;
1550
1551	/* Make the test area size about 4MiB */
1552	sz = (unsigned long)test->card->pref_erase << 9;
1553	t->max_sz = sz;
1554	while (t->max_sz < 4 * 1024 * 1024)
1555		t->max_sz += sz;
1556	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1557		t->max_sz -= sz;
1558
1559	t->max_segs = test->card->host->max_segs;
1560	t->max_seg_sz = test->card->host->max_seg_size;
1561	t->max_seg_sz -= t->max_seg_sz % 512;
1562
1563	t->max_tfr = t->max_sz;
1564	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1565		t->max_tfr = test->card->host->max_blk_count << 9;
1566	if (t->max_tfr > test->card->host->max_req_size)
1567		t->max_tfr = test->card->host->max_req_size;
1568	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1569		t->max_tfr = t->max_segs * t->max_seg_sz;
1570
1571	/*
1572	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1573	 * because the same memory can be mapped into the scatterlist more than
1574	 * once.  Also, take into account the limits imposed on scatterlist
1575	 * segments by the host driver.
1576	 */
1577	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1578				    t->max_seg_sz);
1579	if (!t->mem)
1580		return -ENOMEM;
1581
1582	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1583	if (!t->sg) {
1584		ret = -ENOMEM;
1585		goto out_free;
1586	}
1587
1588	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1589				   GFP_KERNEL);
1590	if (!t->sg_areq) {
1591		ret = -ENOMEM;
1592		goto out_free;
1593	}
1594
1595	t->dev_addr = mmc_test_capacity(test->card) / 2;
1596	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1597
1598	if (erase) {
1599		ret = mmc_test_area_erase(test);
1600		if (ret)
1601			goto out_free;
1602	}
1603
1604	if (fill) {
1605		ret = mmc_test_area_fill(test);
1606		if (ret)
1607			goto out_free;
1608	}
1609
1610	return 0;
1611
1612out_free:
1613	mmc_test_area_cleanup(test);
1614	return ret;
1615}
1616
1617/*
1618 * Prepare for large transfers.  Do not erase the test area.
1619 */
1620static int mmc_test_area_prepare(struct mmc_test_card *test)
1621{
1622	return mmc_test_area_init(test, 0, 0);
1623}
1624
1625/*
1626 * Prepare for large transfers.  Do erase the test area.
1627 */
1628static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1629{
1630	return mmc_test_area_init(test, 1, 0);
1631}
1632
1633/*
1634 * Prepare for large transfers.  Erase and fill the test area.
1635 */
1636static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1637{
1638	return mmc_test_area_init(test, 1, 1);
1639}
1640
1641/*
1642 * Test best-case performance.  Best-case performance is expected from
1643 * a single large transfer.
1644 *
1645 * An additional option (max_scatter) allows the measurement of the same
1646 * transfer but with no contiguous pages in the scatter list.  This tests
1647 * the efficiency of DMA to handle scattered pages.
1648 */
1649static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1650				     int max_scatter)
1651{
1652	struct mmc_test_area *t = &test->area;
1653
1654	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1655				max_scatter, 1);
1656}
1657
1658/*
1659 * Best-case read performance.
1660 */
1661static int mmc_test_best_read_performance(struct mmc_test_card *test)
1662{
1663	return mmc_test_best_performance(test, 0, 0);
1664}
1665
1666/*
1667 * Best-case write performance.
1668 */
1669static int mmc_test_best_write_performance(struct mmc_test_card *test)
1670{
1671	return mmc_test_best_performance(test, 1, 0);
1672}
1673
1674/*
1675 * Best-case read performance into scattered pages.
1676 */
1677static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1678{
1679	return mmc_test_best_performance(test, 0, 1);
1680}
1681
1682/*
1683 * Best-case write performance from scattered pages.
1684 */
1685static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1686{
1687	return mmc_test_best_performance(test, 1, 1);
1688}
1689
1690/*
1691 * Single read performance by transfer size.
1692 */
1693static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1694{
1695	struct mmc_test_area *t = &test->area;
1696	unsigned long sz;
1697	unsigned int dev_addr;
1698	int ret;
1699
1700	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1701		dev_addr = t->dev_addr + (sz >> 9);
1702		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1703		if (ret)
1704			return ret;
1705	}
1706	sz = t->max_tfr;
1707	dev_addr = t->dev_addr;
1708	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1709}
1710
1711/*
1712 * Single write performance by transfer size.
1713 */
1714static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1715{
1716	struct mmc_test_area *t = &test->area;
1717	unsigned long sz;
1718	unsigned int dev_addr;
1719	int ret;
1720
1721	ret = mmc_test_area_erase(test);
1722	if (ret)
1723		return ret;
1724	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1725		dev_addr = t->dev_addr + (sz >> 9);
1726		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1727		if (ret)
1728			return ret;
1729	}
1730	ret = mmc_test_area_erase(test);
1731	if (ret)
1732		return ret;
1733	sz = t->max_tfr;
1734	dev_addr = t->dev_addr;
1735	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1736}
1737
1738/*
1739 * Single trim performance by transfer size.
1740 */
1741static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1742{
1743	struct mmc_test_area *t = &test->area;
1744	unsigned long sz;
1745	unsigned int dev_addr;
1746	struct timespec64 ts1, ts2;
1747	int ret;
1748
1749	if (!mmc_can_trim(test->card))
1750		return RESULT_UNSUP_CARD;
1751
1752	if (!mmc_can_erase(test->card))
1753		return RESULT_UNSUP_HOST;
1754
1755	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1756		dev_addr = t->dev_addr + (sz >> 9);
1757		ktime_get_ts64(&ts1);
1758		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1759		if (ret)
1760			return ret;
1761		ktime_get_ts64(&ts2);
1762		mmc_test_print_rate(test, sz, &ts1, &ts2);
1763	}
1764	dev_addr = t->dev_addr;
1765	ktime_get_ts64(&ts1);
1766	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1767	if (ret)
1768		return ret;
1769	ktime_get_ts64(&ts2);
1770	mmc_test_print_rate(test, sz, &ts1, &ts2);
1771	return 0;
1772}
1773
1774static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1775{
1776	struct mmc_test_area *t = &test->area;
1777	unsigned int dev_addr, i, cnt;
1778	struct timespec64 ts1, ts2;
1779	int ret;
1780
1781	cnt = t->max_sz / sz;
1782	dev_addr = t->dev_addr;
1783	ktime_get_ts64(&ts1);
1784	for (i = 0; i < cnt; i++) {
1785		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1786		if (ret)
1787			return ret;
1788		dev_addr += (sz >> 9);
1789	}
1790	ktime_get_ts64(&ts2);
1791	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1792	return 0;
1793}
1794
1795/*
1796 * Consecutive read performance by transfer size.
1797 */
1798static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1799{
1800	struct mmc_test_area *t = &test->area;
1801	unsigned long sz;
1802	int ret;
1803
1804	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1805		ret = mmc_test_seq_read_perf(test, sz);
1806		if (ret)
1807			return ret;
1808	}
1809	sz = t->max_tfr;
1810	return mmc_test_seq_read_perf(test, sz);
1811}
1812
1813static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1814{
1815	struct mmc_test_area *t = &test->area;
1816	unsigned int dev_addr, i, cnt;
1817	struct timespec64 ts1, ts2;
1818	int ret;
1819
1820	ret = mmc_test_area_erase(test);
1821	if (ret)
1822		return ret;
1823	cnt = t->max_sz / sz;
1824	dev_addr = t->dev_addr;
1825	ktime_get_ts64(&ts1);
1826	for (i = 0; i < cnt; i++) {
1827		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1828		if (ret)
1829			return ret;
1830		dev_addr += (sz >> 9);
1831	}
1832	ktime_get_ts64(&ts2);
1833	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1834	return 0;
1835}
1836
1837/*
1838 * Consecutive write performance by transfer size.
1839 */
1840static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1841{
1842	struct mmc_test_area *t = &test->area;
1843	unsigned long sz;
1844	int ret;
1845
1846	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1847		ret = mmc_test_seq_write_perf(test, sz);
1848		if (ret)
1849			return ret;
1850	}
1851	sz = t->max_tfr;
1852	return mmc_test_seq_write_perf(test, sz);
1853}
1854
1855/*
1856 * Consecutive trim performance by transfer size.
1857 */
1858static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1859{
1860	struct mmc_test_area *t = &test->area;
1861	unsigned long sz;
1862	unsigned int dev_addr, i, cnt;
1863	struct timespec64 ts1, ts2;
1864	int ret;
1865
1866	if (!mmc_can_trim(test->card))
1867		return RESULT_UNSUP_CARD;
1868
1869	if (!mmc_can_erase(test->card))
1870		return RESULT_UNSUP_HOST;
1871
1872	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1873		ret = mmc_test_area_erase(test);
1874		if (ret)
1875			return ret;
1876		ret = mmc_test_area_fill(test);
1877		if (ret)
1878			return ret;
1879		cnt = t->max_sz / sz;
1880		dev_addr = t->dev_addr;
1881		ktime_get_ts64(&ts1);
1882		for (i = 0; i < cnt; i++) {
1883			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1884					MMC_TRIM_ARG);
1885			if (ret)
1886				return ret;
1887			dev_addr += (sz >> 9);
1888		}
1889		ktime_get_ts64(&ts2);
1890		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1891	}
1892	return 0;
1893}
1894
1895static unsigned int rnd_next = 1;
1896
1897static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1898{
1899	uint64_t r;
1900
1901	rnd_next = rnd_next * 1103515245 + 12345;
1902	r = (rnd_next >> 16) & 0x7fff;
1903	return (r * rnd_cnt) >> 15;
1904}
1905
1906static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1907			     unsigned long sz)
1908{
1909	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1910	unsigned int ssz;
1911	struct timespec64 ts1, ts2, ts;
1912	int ret;
1913
1914	ssz = sz >> 9;
1915
1916	rnd_addr = mmc_test_capacity(test->card) / 4;
1917	range1 = rnd_addr / test->card->pref_erase;
1918	range2 = range1 / ssz;
1919
1920	ktime_get_ts64(&ts1);
1921	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1922		ktime_get_ts64(&ts2);
1923		ts = timespec64_sub(ts2, ts1);
1924		if (ts.tv_sec >= 10)
1925			break;
1926		ea = mmc_test_rnd_num(range1);
1927		if (ea == last_ea)
1928			ea -= 1;
1929		last_ea = ea;
1930		dev_addr = rnd_addr + test->card->pref_erase * ea +
1931			   ssz * mmc_test_rnd_num(range2);
1932		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1933		if (ret)
1934			return ret;
1935	}
1936	if (print)
1937		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1938	return 0;
1939}
1940
1941static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1942{
1943	struct mmc_test_area *t = &test->area;
1944	unsigned int next;
1945	unsigned long sz;
1946	int ret;
1947
1948	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1949		/*
1950		 * When writing, try to get more consistent results by running
1951		 * the test twice with exactly the same I/O but outputting the
1952		 * results only for the 2nd run.
1953		 */
1954		if (write) {
1955			next = rnd_next;
1956			ret = mmc_test_rnd_perf(test, write, 0, sz);
1957			if (ret)
1958				return ret;
1959			rnd_next = next;
1960		}
1961		ret = mmc_test_rnd_perf(test, write, 1, sz);
1962		if (ret)
1963			return ret;
1964	}
1965	sz = t->max_tfr;
1966	if (write) {
1967		next = rnd_next;
1968		ret = mmc_test_rnd_perf(test, write, 0, sz);
1969		if (ret)
1970			return ret;
1971		rnd_next = next;
1972	}
1973	return mmc_test_rnd_perf(test, write, 1, sz);
1974}
1975
1976/*
1977 * Random read performance by transfer size.
1978 */
1979static int mmc_test_random_read_perf(struct mmc_test_card *test)
1980{
1981	return mmc_test_random_perf(test, 0);
1982}
1983
1984/*
1985 * Random write performance by transfer size.
1986 */
1987static int mmc_test_random_write_perf(struct mmc_test_card *test)
1988{
1989	return mmc_test_random_perf(test, 1);
1990}
1991
1992static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1993			     unsigned int tot_sz, int max_scatter)
1994{
1995	struct mmc_test_area *t = &test->area;
1996	unsigned int dev_addr, i, cnt, sz, ssz;
1997	struct timespec64 ts1, ts2;
1998	int ret;
1999
2000	sz = t->max_tfr;
2001
2002	/*
2003	 * In the case of a maximally scattered transfer, the maximum transfer
2004	 * size is further limited by using PAGE_SIZE segments.
2005	 */
2006	if (max_scatter) {
2007		unsigned long max_tfr;
2008
2009		if (t->max_seg_sz >= PAGE_SIZE)
2010			max_tfr = t->max_segs * PAGE_SIZE;
2011		else
2012			max_tfr = t->max_segs * t->max_seg_sz;
2013		if (sz > max_tfr)
2014			sz = max_tfr;
2015	}
2016
2017	ssz = sz >> 9;
2018	dev_addr = mmc_test_capacity(test->card) / 4;
2019	if (tot_sz > dev_addr << 9)
2020		tot_sz = dev_addr << 9;
2021	cnt = tot_sz / sz;
2022	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2023
2024	ktime_get_ts64(&ts1);
2025	for (i = 0; i < cnt; i++) {
2026		ret = mmc_test_area_io(test, sz, dev_addr, write,
2027				       max_scatter, 0);
2028		if (ret)
2029			return ret;
2030		dev_addr += ssz;
2031	}
2032	ktime_get_ts64(&ts2);
2033
2034	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2035
2036	return 0;
2037}
2038
2039static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2040{
2041	int ret, i;
2042
2043	for (i = 0; i < 10; i++) {
2044		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2045		if (ret)
2046			return ret;
2047	}
2048	for (i = 0; i < 5; i++) {
2049		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2050		if (ret)
2051			return ret;
2052	}
2053	for (i = 0; i < 3; i++) {
2054		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2055		if (ret)
2056			return ret;
2057	}
2058
2059	return ret;
2060}
2061
2062/*
2063 * Large sequential read performance.
2064 */
2065static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2066{
2067	return mmc_test_large_seq_perf(test, 0);
2068}
2069
2070/*
2071 * Large sequential write performance.
2072 */
2073static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2074{
2075	return mmc_test_large_seq_perf(test, 1);
2076}
2077
2078static int mmc_test_rw_multiple(struct mmc_test_card *test,
2079				struct mmc_test_multiple_rw *tdata,
2080				unsigned int reqsize, unsigned int size,
2081				int min_sg_len)
2082{
2083	unsigned int dev_addr;
2084	struct mmc_test_area *t = &test->area;
2085	int ret = 0;
2086
2087	/* Set up test area */
2088	if (size > mmc_test_capacity(test->card) / 2 * 512)
2089		size = mmc_test_capacity(test->card) / 2 * 512;
2090	if (reqsize > t->max_tfr)
2091		reqsize = t->max_tfr;
2092	dev_addr = mmc_test_capacity(test->card) / 4;
2093	if ((dev_addr & 0xffff0000))
2094		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2095	else
2096		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2097	if (!dev_addr)
2098		goto err;
2099
2100	if (reqsize > size)
2101		return 0;
2102
2103	/* prepare test area */
2104	if (mmc_can_erase(test->card) &&
2105	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2106		ret = mmc_erase(test->card, dev_addr,
2107				size / 512, test->card->erase_arg);
2108		if (ret)
2109			ret = mmc_erase(test->card, dev_addr,
2110					size / 512, MMC_ERASE_ARG);
2111		if (ret)
2112			goto err;
2113	}
2114
2115	/* Run test */
2116	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2117				   tdata->do_write, 0, 1, size / reqsize,
2118				   tdata->do_nonblock_req, min_sg_len);
2119	if (ret)
2120		goto err;
2121
2122	return ret;
2123 err:
2124	pr_info("[%s] error\n", __func__);
2125	return ret;
2126}
2127
2128static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2129				     struct mmc_test_multiple_rw *rw)
2130{
2131	int ret = 0;
2132	int i;
2133	void *pre_req = test->card->host->ops->pre_req;
2134	void *post_req = test->card->host->ops->post_req;
2135
2136	if (rw->do_nonblock_req &&
2137	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2138		pr_info("error: only one of pre/post is defined\n");
2139		return -EINVAL;
2140	}
2141
2142	for (i = 0 ; i < rw->len && ret == 0; i++) {
2143		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2144		if (ret)
2145			break;
2146	}
2147	return ret;
2148}
2149
2150static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2151				       struct mmc_test_multiple_rw *rw)
2152{
2153	int ret = 0;
2154	int i;
2155
2156	for (i = 0 ; i < rw->len && ret == 0; i++) {
2157		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2158					   rw->sg_len[i]);
2159		if (ret)
2160			break;
2161	}
2162	return ret;
2163}
2164
2165/*
2166 * Multiple blocking write 4k to 4 MB chunks
2167 */
2168static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2169{
2170	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2171			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2172	struct mmc_test_multiple_rw test_data = {
2173		.bs = bs,
2174		.size = TEST_AREA_MAX_SIZE,
2175		.len = ARRAY_SIZE(bs),
2176		.do_write = true,
2177		.do_nonblock_req = false,
2178		.prepare = MMC_TEST_PREP_ERASE,
2179	};
2180
2181	return mmc_test_rw_multiple_size(test, &test_data);
2182};
2183
2184/*
2185 * Multiple non-blocking write 4k to 4 MB chunks
2186 */
2187static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2188{
2189	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2190			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2191	struct mmc_test_multiple_rw test_data = {
2192		.bs = bs,
2193		.size = TEST_AREA_MAX_SIZE,
2194		.len = ARRAY_SIZE(bs),
2195		.do_write = true,
2196		.do_nonblock_req = true,
2197		.prepare = MMC_TEST_PREP_ERASE,
2198	};
2199
2200	return mmc_test_rw_multiple_size(test, &test_data);
2201}
2202
2203/*
2204 * Multiple blocking read 4k to 4 MB chunks
2205 */
2206static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2207{
2208	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2209			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2210	struct mmc_test_multiple_rw test_data = {
2211		.bs = bs,
2212		.size = TEST_AREA_MAX_SIZE,
2213		.len = ARRAY_SIZE(bs),
2214		.do_write = false,
2215		.do_nonblock_req = false,
2216		.prepare = MMC_TEST_PREP_NONE,
2217	};
2218
2219	return mmc_test_rw_multiple_size(test, &test_data);
2220}
2221
2222/*
2223 * Multiple non-blocking read 4k to 4 MB chunks
2224 */
2225static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2226{
2227	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2228			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2229	struct mmc_test_multiple_rw test_data = {
2230		.bs = bs,
2231		.size = TEST_AREA_MAX_SIZE,
2232		.len = ARRAY_SIZE(bs),
2233		.do_write = false,
2234		.do_nonblock_req = true,
2235		.prepare = MMC_TEST_PREP_NONE,
2236	};
2237
2238	return mmc_test_rw_multiple_size(test, &test_data);
2239}
2240
2241/*
2242 * Multiple blocking write 1 to 512 sg elements
2243 */
2244static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2245{
2246	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2247				 1 << 7, 1 << 8, 1 << 9};
2248	struct mmc_test_multiple_rw test_data = {
2249		.sg_len = sg_len,
2250		.size = TEST_AREA_MAX_SIZE,
2251		.len = ARRAY_SIZE(sg_len),
2252		.do_write = true,
2253		.do_nonblock_req = false,
2254		.prepare = MMC_TEST_PREP_ERASE,
2255	};
2256
2257	return mmc_test_rw_multiple_sg_len(test, &test_data);
2258};
2259
2260/*
2261 * Multiple non-blocking write 1 to 512 sg elements
2262 */
2263static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2264{
2265	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2266				 1 << 7, 1 << 8, 1 << 9};
2267	struct mmc_test_multiple_rw test_data = {
2268		.sg_len = sg_len,
2269		.size = TEST_AREA_MAX_SIZE,
2270		.len = ARRAY_SIZE(sg_len),
2271		.do_write = true,
2272		.do_nonblock_req = true,
2273		.prepare = MMC_TEST_PREP_ERASE,
2274	};
2275
2276	return mmc_test_rw_multiple_sg_len(test, &test_data);
2277}
2278
2279/*
2280 * Multiple blocking read 1 to 512 sg elements
2281 */
2282static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2283{
2284	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2285				 1 << 7, 1 << 8, 1 << 9};
2286	struct mmc_test_multiple_rw test_data = {
2287		.sg_len = sg_len,
2288		.size = TEST_AREA_MAX_SIZE,
2289		.len = ARRAY_SIZE(sg_len),
2290		.do_write = false,
2291		.do_nonblock_req = false,
2292		.prepare = MMC_TEST_PREP_NONE,
2293	};
2294
2295	return mmc_test_rw_multiple_sg_len(test, &test_data);
2296}
2297
2298/*
2299 * Multiple non-blocking read 1 to 512 sg elements
2300 */
2301static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2302{
2303	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2304				 1 << 7, 1 << 8, 1 << 9};
2305	struct mmc_test_multiple_rw test_data = {
2306		.sg_len = sg_len,
2307		.size = TEST_AREA_MAX_SIZE,
2308		.len = ARRAY_SIZE(sg_len),
2309		.do_write = false,
2310		.do_nonblock_req = true,
2311		.prepare = MMC_TEST_PREP_NONE,
2312	};
2313
2314	return mmc_test_rw_multiple_sg_len(test, &test_data);
2315}
2316
2317/*
2318 * eMMC hardware reset.
2319 */
2320static int mmc_test_reset(struct mmc_test_card *test)
2321{
2322	struct mmc_card *card = test->card;
 
2323	int err;
2324
2325	err = mmc_hw_reset(card);
2326	if (!err) {
2327		/*
2328		 * Reset will re-enable the card's command queue, but tests
2329		 * expect it to be disabled.
2330		 */
2331		if (card->ext_csd.cmdq_en)
2332			mmc_cmdq_disable(card);
2333		return RESULT_OK;
2334	} else if (err == -EOPNOTSUPP) {
2335		return RESULT_UNSUP_HOST;
2336	}
2337
2338	return RESULT_FAIL;
2339}
2340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341static int mmc_test_send_status(struct mmc_test_card *test,
2342				struct mmc_command *cmd)
2343{
2344	memset(cmd, 0, sizeof(*cmd));
2345
2346	cmd->opcode = MMC_SEND_STATUS;
2347	if (!mmc_host_is_spi(test->card->host))
2348		cmd->arg = test->card->rca << 16;
2349	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2350
2351	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2352}
2353
2354static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2355				     unsigned int dev_addr, int use_sbc,
2356				     int repeat_cmd, int write, int use_areq)
2357{
2358	struct mmc_test_req *rq = mmc_test_req_alloc();
2359	struct mmc_host *host = test->card->host;
2360	struct mmc_test_area *t = &test->area;
 
2361	struct mmc_request *mrq;
2362	unsigned long timeout;
2363	bool expired = false;
 
2364	int ret = 0, cmd_ret;
2365	u32 status = 0;
2366	int count = 0;
2367
2368	if (!rq)
2369		return -ENOMEM;
2370
2371	mrq = &rq->mrq;
2372	if (use_sbc)
2373		mrq->sbc = &rq->sbc;
2374	mrq->cap_cmd_during_tfr = true;
2375
 
 
 
2376	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2377			     512, write);
2378
2379	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2380		ret =  mmc_host_cmd23(host) ?
2381		       RESULT_UNSUP_CARD :
2382		       RESULT_UNSUP_HOST;
2383		goto out_free;
2384	}
2385
2386	/* Start ongoing data request */
2387	if (use_areq) {
2388		ret = mmc_test_start_areq(test, mrq, NULL);
2389		if (ret)
 
2390			goto out_free;
 
2391	} else {
2392		mmc_wait_for_req(host, mrq);
2393	}
2394
2395	timeout = jiffies + msecs_to_jiffies(3000);
2396	do {
2397		count += 1;
2398
2399		/* Send status command while data transfer in progress */
2400		cmd_ret = mmc_test_send_status(test, &rq->status);
2401		if (cmd_ret)
2402			break;
2403
2404		status = rq->status.resp[0];
2405		if (status & R1_ERROR) {
2406			cmd_ret = -EIO;
2407			break;
2408		}
2409
2410		if (mmc_is_req_done(host, mrq))
2411			break;
2412
2413		expired = time_after(jiffies, timeout);
2414		if (expired) {
2415			pr_info("%s: timeout waiting for Tran state status %#x\n",
2416				mmc_hostname(host), status);
2417			cmd_ret = -ETIMEDOUT;
2418			break;
2419		}
2420	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2421
2422	/* Wait for data request to complete */
2423	if (use_areq) {
2424		ret = mmc_test_start_areq(test, NULL, mrq);
 
 
2425	} else {
2426		mmc_wait_for_req_done(test->card->host, mrq);
2427	}
2428
2429	/*
2430	 * For cap_cmd_during_tfr request, upper layer must send stop if
2431	 * required.
2432	 */
2433	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2434		if (ret)
2435			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2436		else
2437			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2438	}
2439
2440	if (ret)
2441		goto out_free;
2442
2443	if (cmd_ret) {
2444		pr_info("%s: Send Status failed: status %#x, error %d\n",
2445			mmc_hostname(test->card->host), status, cmd_ret);
2446	}
2447
2448	ret = mmc_test_check_result(test, mrq);
2449	if (ret)
2450		goto out_free;
2451
2452	ret = mmc_test_wait_busy(test);
2453	if (ret)
2454		goto out_free;
2455
2456	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2457		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2458			mmc_hostname(test->card->host), count, t->blocks);
2459
2460	if (cmd_ret)
2461		ret = cmd_ret;
2462out_free:
2463	kfree(rq);
2464
2465	return ret;
2466}
2467
2468static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2469				      unsigned long sz, int use_sbc, int write,
2470				      int use_areq)
2471{
2472	struct mmc_test_area *t = &test->area;
2473	int ret;
2474
2475	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2476		return RESULT_UNSUP_HOST;
2477
2478	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2479	if (ret)
2480		return ret;
2481
2482	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2483					use_areq);
2484	if (ret)
2485		return ret;
2486
2487	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2488					 use_areq);
2489}
2490
2491static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2492				    int write, int use_areq)
2493{
2494	struct mmc_test_area *t = &test->area;
2495	unsigned long sz;
2496	int ret;
2497
2498	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2499		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2500						 use_areq);
2501		if (ret)
2502			return ret;
2503	}
2504	return 0;
2505}
2506
2507/*
2508 * Commands during read - no Set Block Count (CMD23).
2509 */
2510static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2511{
2512	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2513}
2514
2515/*
2516 * Commands during write - no Set Block Count (CMD23).
2517 */
2518static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2519{
2520	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2521}
2522
2523/*
2524 * Commands during read - use Set Block Count (CMD23).
2525 */
2526static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2527{
2528	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2529}
2530
2531/*
2532 * Commands during write - use Set Block Count (CMD23).
2533 */
2534static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2535{
2536	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2537}
2538
2539/*
2540 * Commands during non-blocking read - use Set Block Count (CMD23).
2541 */
2542static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2543{
2544	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2545}
2546
2547/*
2548 * Commands during non-blocking write - use Set Block Count (CMD23).
2549 */
2550static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2551{
2552	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2553}
2554
2555static const struct mmc_test_case mmc_test_cases[] = {
2556	{
2557		.name = "Basic write (no data verification)",
2558		.run = mmc_test_basic_write,
2559	},
2560
2561	{
2562		.name = "Basic read (no data verification)",
2563		.run = mmc_test_basic_read,
2564	},
2565
2566	{
2567		.name = "Basic write (with data verification)",
2568		.prepare = mmc_test_prepare_write,
2569		.run = mmc_test_verify_write,
2570		.cleanup = mmc_test_cleanup,
2571	},
2572
2573	{
2574		.name = "Basic read (with data verification)",
2575		.prepare = mmc_test_prepare_read,
2576		.run = mmc_test_verify_read,
2577		.cleanup = mmc_test_cleanup,
2578	},
2579
2580	{
2581		.name = "Multi-block write",
2582		.prepare = mmc_test_prepare_write,
2583		.run = mmc_test_multi_write,
2584		.cleanup = mmc_test_cleanup,
2585	},
2586
2587	{
2588		.name = "Multi-block read",
2589		.prepare = mmc_test_prepare_read,
2590		.run = mmc_test_multi_read,
2591		.cleanup = mmc_test_cleanup,
2592	},
2593
2594	{
2595		.name = "Power of two block writes",
2596		.prepare = mmc_test_prepare_write,
2597		.run = mmc_test_pow2_write,
2598		.cleanup = mmc_test_cleanup,
2599	},
2600
2601	{
2602		.name = "Power of two block reads",
2603		.prepare = mmc_test_prepare_read,
2604		.run = mmc_test_pow2_read,
2605		.cleanup = mmc_test_cleanup,
2606	},
2607
2608	{
2609		.name = "Weird sized block writes",
2610		.prepare = mmc_test_prepare_write,
2611		.run = mmc_test_weird_write,
2612		.cleanup = mmc_test_cleanup,
2613	},
2614
2615	{
2616		.name = "Weird sized block reads",
2617		.prepare = mmc_test_prepare_read,
2618		.run = mmc_test_weird_read,
2619		.cleanup = mmc_test_cleanup,
2620	},
2621
2622	{
2623		.name = "Badly aligned write",
2624		.prepare = mmc_test_prepare_write,
2625		.run = mmc_test_align_write,
2626		.cleanup = mmc_test_cleanup,
2627	},
2628
2629	{
2630		.name = "Badly aligned read",
2631		.prepare = mmc_test_prepare_read,
2632		.run = mmc_test_align_read,
2633		.cleanup = mmc_test_cleanup,
2634	},
2635
2636	{
2637		.name = "Badly aligned multi-block write",
2638		.prepare = mmc_test_prepare_write,
2639		.run = mmc_test_align_multi_write,
2640		.cleanup = mmc_test_cleanup,
2641	},
2642
2643	{
2644		.name = "Badly aligned multi-block read",
2645		.prepare = mmc_test_prepare_read,
2646		.run = mmc_test_align_multi_read,
2647		.cleanup = mmc_test_cleanup,
2648	},
2649
2650	{
2651		.name = "Proper xfer_size at write (start failure)",
2652		.run = mmc_test_xfersize_write,
2653	},
2654
2655	{
2656		.name = "Proper xfer_size at read (start failure)",
2657		.run = mmc_test_xfersize_read,
2658	},
2659
2660	{
2661		.name = "Proper xfer_size at write (midway failure)",
2662		.run = mmc_test_multi_xfersize_write,
2663	},
2664
2665	{
2666		.name = "Proper xfer_size at read (midway failure)",
2667		.run = mmc_test_multi_xfersize_read,
2668	},
2669
2670#ifdef CONFIG_HIGHMEM
2671
2672	{
2673		.name = "Highmem write",
2674		.prepare = mmc_test_prepare_write,
2675		.run = mmc_test_write_high,
2676		.cleanup = mmc_test_cleanup,
2677	},
2678
2679	{
2680		.name = "Highmem read",
2681		.prepare = mmc_test_prepare_read,
2682		.run = mmc_test_read_high,
2683		.cleanup = mmc_test_cleanup,
2684	},
2685
2686	{
2687		.name = "Multi-block highmem write",
2688		.prepare = mmc_test_prepare_write,
2689		.run = mmc_test_multi_write_high,
2690		.cleanup = mmc_test_cleanup,
2691	},
2692
2693	{
2694		.name = "Multi-block highmem read",
2695		.prepare = mmc_test_prepare_read,
2696		.run = mmc_test_multi_read_high,
2697		.cleanup = mmc_test_cleanup,
2698	},
2699
2700#else
2701
2702	{
2703		.name = "Highmem write",
2704		.run = mmc_test_no_highmem,
2705	},
2706
2707	{
2708		.name = "Highmem read",
2709		.run = mmc_test_no_highmem,
2710	},
2711
2712	{
2713		.name = "Multi-block highmem write",
2714		.run = mmc_test_no_highmem,
2715	},
2716
2717	{
2718		.name = "Multi-block highmem read",
2719		.run = mmc_test_no_highmem,
2720	},
2721
2722#endif /* CONFIG_HIGHMEM */
2723
2724	{
2725		.name = "Best-case read performance",
2726		.prepare = mmc_test_area_prepare_fill,
2727		.run = mmc_test_best_read_performance,
2728		.cleanup = mmc_test_area_cleanup,
2729	},
2730
2731	{
2732		.name = "Best-case write performance",
2733		.prepare = mmc_test_area_prepare_erase,
2734		.run = mmc_test_best_write_performance,
2735		.cleanup = mmc_test_area_cleanup,
2736	},
2737
2738	{
2739		.name = "Best-case read performance into scattered pages",
2740		.prepare = mmc_test_area_prepare_fill,
2741		.run = mmc_test_best_read_perf_max_scatter,
2742		.cleanup = mmc_test_area_cleanup,
2743	},
2744
2745	{
2746		.name = "Best-case write performance from scattered pages",
2747		.prepare = mmc_test_area_prepare_erase,
2748		.run = mmc_test_best_write_perf_max_scatter,
2749		.cleanup = mmc_test_area_cleanup,
2750	},
2751
2752	{
2753		.name = "Single read performance by transfer size",
2754		.prepare = mmc_test_area_prepare_fill,
2755		.run = mmc_test_profile_read_perf,
2756		.cleanup = mmc_test_area_cleanup,
2757	},
2758
2759	{
2760		.name = "Single write performance by transfer size",
2761		.prepare = mmc_test_area_prepare,
2762		.run = mmc_test_profile_write_perf,
2763		.cleanup = mmc_test_area_cleanup,
2764	},
2765
2766	{
2767		.name = "Single trim performance by transfer size",
2768		.prepare = mmc_test_area_prepare_fill,
2769		.run = mmc_test_profile_trim_perf,
2770		.cleanup = mmc_test_area_cleanup,
2771	},
2772
2773	{
2774		.name = "Consecutive read performance by transfer size",
2775		.prepare = mmc_test_area_prepare_fill,
2776		.run = mmc_test_profile_seq_read_perf,
2777		.cleanup = mmc_test_area_cleanup,
2778	},
2779
2780	{
2781		.name = "Consecutive write performance by transfer size",
2782		.prepare = mmc_test_area_prepare,
2783		.run = mmc_test_profile_seq_write_perf,
2784		.cleanup = mmc_test_area_cleanup,
2785	},
2786
2787	{
2788		.name = "Consecutive trim performance by transfer size",
2789		.prepare = mmc_test_area_prepare,
2790		.run = mmc_test_profile_seq_trim_perf,
2791		.cleanup = mmc_test_area_cleanup,
2792	},
2793
2794	{
2795		.name = "Random read performance by transfer size",
2796		.prepare = mmc_test_area_prepare,
2797		.run = mmc_test_random_read_perf,
2798		.cleanup = mmc_test_area_cleanup,
2799	},
2800
2801	{
2802		.name = "Random write performance by transfer size",
2803		.prepare = mmc_test_area_prepare,
2804		.run = mmc_test_random_write_perf,
2805		.cleanup = mmc_test_area_cleanup,
2806	},
2807
2808	{
2809		.name = "Large sequential read into scattered pages",
2810		.prepare = mmc_test_area_prepare,
2811		.run = mmc_test_large_seq_read_perf,
2812		.cleanup = mmc_test_area_cleanup,
2813	},
2814
2815	{
2816		.name = "Large sequential write from scattered pages",
2817		.prepare = mmc_test_area_prepare,
2818		.run = mmc_test_large_seq_write_perf,
2819		.cleanup = mmc_test_area_cleanup,
2820	},
2821
2822	{
2823		.name = "Write performance with blocking req 4k to 4MB",
2824		.prepare = mmc_test_area_prepare,
2825		.run = mmc_test_profile_mult_write_blocking_perf,
2826		.cleanup = mmc_test_area_cleanup,
2827	},
2828
2829	{
2830		.name = "Write performance with non-blocking req 4k to 4MB",
2831		.prepare = mmc_test_area_prepare,
2832		.run = mmc_test_profile_mult_write_nonblock_perf,
2833		.cleanup = mmc_test_area_cleanup,
2834	},
2835
2836	{
2837		.name = "Read performance with blocking req 4k to 4MB",
2838		.prepare = mmc_test_area_prepare,
2839		.run = mmc_test_profile_mult_read_blocking_perf,
2840		.cleanup = mmc_test_area_cleanup,
2841	},
2842
2843	{
2844		.name = "Read performance with non-blocking req 4k to 4MB",
2845		.prepare = mmc_test_area_prepare,
2846		.run = mmc_test_profile_mult_read_nonblock_perf,
2847		.cleanup = mmc_test_area_cleanup,
2848	},
2849
2850	{
2851		.name = "Write performance blocking req 1 to 512 sg elems",
2852		.prepare = mmc_test_area_prepare,
2853		.run = mmc_test_profile_sglen_wr_blocking_perf,
2854		.cleanup = mmc_test_area_cleanup,
2855	},
2856
2857	{
2858		.name = "Write performance non-blocking req 1 to 512 sg elems",
2859		.prepare = mmc_test_area_prepare,
2860		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2861		.cleanup = mmc_test_area_cleanup,
2862	},
2863
2864	{
2865		.name = "Read performance blocking req 1 to 512 sg elems",
2866		.prepare = mmc_test_area_prepare,
2867		.run = mmc_test_profile_sglen_r_blocking_perf,
2868		.cleanup = mmc_test_area_cleanup,
2869	},
2870
2871	{
2872		.name = "Read performance non-blocking req 1 to 512 sg elems",
2873		.prepare = mmc_test_area_prepare,
2874		.run = mmc_test_profile_sglen_r_nonblock_perf,
2875		.cleanup = mmc_test_area_cleanup,
2876	},
2877
2878	{
2879		.name = "Reset test",
2880		.run = mmc_test_reset,
2881	},
2882
2883	{
2884		.name = "Commands during read - no Set Block Count (CMD23)",
2885		.prepare = mmc_test_area_prepare,
2886		.run = mmc_test_cmds_during_read,
2887		.cleanup = mmc_test_area_cleanup,
2888	},
2889
2890	{
2891		.name = "Commands during write - no Set Block Count (CMD23)",
2892		.prepare = mmc_test_area_prepare,
2893		.run = mmc_test_cmds_during_write,
2894		.cleanup = mmc_test_area_cleanup,
2895	},
2896
2897	{
2898		.name = "Commands during read - use Set Block Count (CMD23)",
2899		.prepare = mmc_test_area_prepare,
2900		.run = mmc_test_cmds_during_read_cmd23,
2901		.cleanup = mmc_test_area_cleanup,
2902	},
2903
2904	{
2905		.name = "Commands during write - use Set Block Count (CMD23)",
2906		.prepare = mmc_test_area_prepare,
2907		.run = mmc_test_cmds_during_write_cmd23,
2908		.cleanup = mmc_test_area_cleanup,
2909	},
2910
2911	{
2912		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2913		.prepare = mmc_test_area_prepare,
2914		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2915		.cleanup = mmc_test_area_cleanup,
2916	},
2917
2918	{
2919		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2920		.prepare = mmc_test_area_prepare,
2921		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2922		.cleanup = mmc_test_area_cleanup,
2923	},
2924};
2925
2926static DEFINE_MUTEX(mmc_test_lock);
2927
2928static LIST_HEAD(mmc_test_result);
2929
2930static void mmc_test_run(struct mmc_test_card *test, int testcase)
2931{
2932	int i, ret;
2933
2934	pr_info("%s: Starting tests of card %s...\n",
2935		mmc_hostname(test->card->host), mmc_card_id(test->card));
2936
2937	mmc_claim_host(test->card->host);
2938
2939	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2940		struct mmc_test_general_result *gr;
2941
2942		if (testcase && ((i + 1) != testcase))
2943			continue;
2944
2945		pr_info("%s: Test case %d. %s...\n",
2946			mmc_hostname(test->card->host), i + 1,
2947			mmc_test_cases[i].name);
2948
2949		if (mmc_test_cases[i].prepare) {
2950			ret = mmc_test_cases[i].prepare(test);
2951			if (ret) {
2952				pr_info("%s: Result: Prepare stage failed! (%d)\n",
 
2953					mmc_hostname(test->card->host),
2954					ret);
2955				continue;
2956			}
2957		}
2958
2959		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
 
2960		if (gr) {
2961			INIT_LIST_HEAD(&gr->tr_lst);
2962
2963			/* Assign data what we know already */
2964			gr->card = test->card;
2965			gr->testcase = i;
2966
2967			/* Append container to global one */
2968			list_add_tail(&gr->link, &mmc_test_result);
2969
2970			/*
2971			 * Save the pointer to created container in our private
2972			 * structure.
2973			 */
2974			test->gr = gr;
2975		}
2976
2977		ret = mmc_test_cases[i].run(test);
2978		switch (ret) {
2979		case RESULT_OK:
2980			pr_info("%s: Result: OK\n",
2981				mmc_hostname(test->card->host));
2982			break;
2983		case RESULT_FAIL:
2984			pr_info("%s: Result: FAILED\n",
2985				mmc_hostname(test->card->host));
2986			break;
2987		case RESULT_UNSUP_HOST:
2988			pr_info("%s: Result: UNSUPPORTED (by host)\n",
 
2989				mmc_hostname(test->card->host));
2990			break;
2991		case RESULT_UNSUP_CARD:
2992			pr_info("%s: Result: UNSUPPORTED (by card)\n",
 
2993				mmc_hostname(test->card->host));
2994			break;
2995		default:
2996			pr_info("%s: Result: ERROR (%d)\n",
2997				mmc_hostname(test->card->host), ret);
2998		}
2999
3000		/* Save the result */
3001		if (gr)
3002			gr->result = ret;
3003
3004		if (mmc_test_cases[i].cleanup) {
3005			ret = mmc_test_cases[i].cleanup(test);
3006			if (ret) {
3007				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
 
3008					mmc_hostname(test->card->host),
3009					ret);
3010			}
3011		}
3012	}
3013
3014	mmc_release_host(test->card->host);
3015
3016	pr_info("%s: Tests completed.\n",
3017		mmc_hostname(test->card->host));
3018}
3019
3020static void mmc_test_free_result(struct mmc_card *card)
3021{
3022	struct mmc_test_general_result *gr, *grs;
3023
3024	mutex_lock(&mmc_test_lock);
3025
3026	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3027		struct mmc_test_transfer_result *tr, *trs;
3028
3029		if (card && gr->card != card)
3030			continue;
3031
3032		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3033			list_del(&tr->link);
3034			kfree(tr);
3035		}
3036
3037		list_del(&gr->link);
3038		kfree(gr);
3039	}
3040
3041	mutex_unlock(&mmc_test_lock);
3042}
3043
3044static LIST_HEAD(mmc_test_file_test);
3045
3046static int mtf_test_show(struct seq_file *sf, void *data)
3047{
3048	struct mmc_card *card = (struct mmc_card *)sf->private;
3049	struct mmc_test_general_result *gr;
3050
3051	mutex_lock(&mmc_test_lock);
3052
3053	list_for_each_entry(gr, &mmc_test_result, link) {
3054		struct mmc_test_transfer_result *tr;
3055
3056		if (gr->card != card)
3057			continue;
3058
3059		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3060
3061		list_for_each_entry(tr, &gr->tr_lst, link) {
3062			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3063				tr->count, tr->sectors,
3064				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
 
3065				tr->rate, tr->iops / 100, tr->iops % 100);
3066		}
3067	}
3068
3069	mutex_unlock(&mmc_test_lock);
3070
3071	return 0;
3072}
3073
3074static int mtf_test_open(struct inode *inode, struct file *file)
3075{
3076	return single_open(file, mtf_test_show, inode->i_private);
3077}
3078
3079static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3080	size_t count, loff_t *pos)
3081{
3082	struct seq_file *sf = (struct seq_file *)file->private_data;
3083	struct mmc_card *card = (struct mmc_card *)sf->private;
3084	struct mmc_test_card *test;
3085	long testcase;
3086	int ret;
3087
3088	ret = kstrtol_from_user(buf, count, 10, &testcase);
3089	if (ret)
3090		return ret;
3091
3092	test = kzalloc(sizeof(*test), GFP_KERNEL);
3093	if (!test)
3094		return -ENOMEM;
3095
3096	/*
3097	 * Remove all test cases associated with given card. Thus we have only
3098	 * actual data of the last run.
3099	 */
3100	mmc_test_free_result(card);
3101
3102	test->card = card;
3103
3104	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3105#ifdef CONFIG_HIGHMEM
3106	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3107#endif
3108
3109#ifdef CONFIG_HIGHMEM
3110	if (test->buffer && test->highmem) {
3111#else
3112	if (test->buffer) {
3113#endif
3114		mutex_lock(&mmc_test_lock);
3115		mmc_test_run(test, testcase);
3116		mutex_unlock(&mmc_test_lock);
3117	}
3118
3119#ifdef CONFIG_HIGHMEM
3120	__free_pages(test->highmem, BUFFER_ORDER);
3121#endif
3122	kfree(test->buffer);
3123	kfree(test);
3124
3125	return count;
3126}
3127
3128static const struct file_operations mmc_test_fops_test = {
3129	.open		= mtf_test_open,
3130	.read		= seq_read,
3131	.write		= mtf_test_write,
3132	.llseek		= seq_lseek,
3133	.release	= single_release,
3134};
3135
3136static int mtf_testlist_show(struct seq_file *sf, void *data)
3137{
3138	int i;
3139
3140	mutex_lock(&mmc_test_lock);
3141
3142	seq_puts(sf, "0:\tRun all tests\n");
3143	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3144		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3145
3146	mutex_unlock(&mmc_test_lock);
3147
3148	return 0;
3149}
3150
3151DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
 
 
 
 
 
 
 
 
 
 
3152
3153static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3154{
3155	struct mmc_test_dbgfs_file *df, *dfs;
3156
3157	mutex_lock(&mmc_test_lock);
3158
3159	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3160		if (card && df->card != card)
3161			continue;
3162		debugfs_remove(df->file);
3163		list_del(&df->link);
3164		kfree(df);
3165	}
3166
3167	mutex_unlock(&mmc_test_lock);
3168}
3169
3170static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3171	const char *name, umode_t mode, const struct file_operations *fops)
3172{
3173	struct dentry *file = NULL;
3174	struct mmc_test_dbgfs_file *df;
3175
3176	if (card->debugfs_root)
3177		file = debugfs_create_file(name, mode, card->debugfs_root,
3178					   card, fops);
 
 
 
 
 
 
 
3179
3180	df = kmalloc(sizeof(*df), GFP_KERNEL);
3181	if (!df) {
3182		debugfs_remove(file);
 
 
3183		return -ENOMEM;
3184	}
3185
3186	df->card = card;
3187	df->file = file;
3188
3189	list_add(&df->link, &mmc_test_file_test);
3190	return 0;
3191}
3192
3193static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3194{
3195	int ret;
3196
3197	mutex_lock(&mmc_test_lock);
3198
3199	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3200		&mmc_test_fops_test);
3201	if (ret)
3202		goto err;
3203
3204	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3205		&mtf_testlist_fops);
3206	if (ret)
3207		goto err;
3208
3209err:
3210	mutex_unlock(&mmc_test_lock);
3211
3212	return ret;
3213}
3214
3215static int mmc_test_probe(struct mmc_card *card)
3216{
3217	int ret;
3218
3219	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3220		return -ENODEV;
3221
3222	ret = mmc_test_register_dbgfs_file(card);
3223	if (ret)
3224		return ret;
3225
3226	if (card->ext_csd.cmdq_en) {
3227		mmc_claim_host(card->host);
3228		ret = mmc_cmdq_disable(card);
3229		mmc_release_host(card->host);
3230		if (ret)
3231			return ret;
3232	}
3233
3234	dev_info(&card->dev, "Card claimed for testing.\n");
3235
3236	return 0;
3237}
3238
3239static void mmc_test_remove(struct mmc_card *card)
3240{
3241	if (card->reenable_cmdq) {
3242		mmc_claim_host(card->host);
3243		mmc_cmdq_enable(card);
3244		mmc_release_host(card->host);
3245	}
3246	mmc_test_free_result(card);
3247	mmc_test_free_dbgfs_file(card);
3248}
3249
 
 
 
 
3250static struct mmc_driver mmc_driver = {
3251	.drv		= {
3252		.name	= "mmc_test",
3253	},
3254	.probe		= mmc_test_probe,
3255	.remove		= mmc_test_remove,
 
3256};
3257
3258static int __init mmc_test_init(void)
3259{
3260	return mmc_register_driver(&mmc_driver);
3261}
3262
3263static void __exit mmc_test_exit(void)
3264{
3265	/* Clear stalled data if card is still plugged */
3266	mmc_test_free_result(NULL);
3267	mmc_test_free_dbgfs_file(NULL);
3268
3269	mmc_unregister_driver(&mmc_driver);
3270}
3271
3272module_init(mmc_test_init);
3273module_exit(mmc_test_exit);
3274
3275MODULE_LICENSE("GPL");
3276MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3277MODULE_AUTHOR("Pierre Ossman");
v4.10.11
 
   1/*
   2 *  Copyright 2007-2008 Pierre Ossman
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or (at
   7 * your option) any later version.
   8 */
   9
  10#include <linux/mmc/core.h>
  11#include <linux/mmc/card.h>
  12#include <linux/mmc/host.h>
  13#include <linux/mmc/mmc.h>
  14#include <linux/slab.h>
  15
  16#include <linux/scatterlist.h>
  17#include <linux/swap.h>		/* For nr_free_buffer_pages() */
  18#include <linux/list.h>
  19
  20#include <linux/debugfs.h>
  21#include <linux/uaccess.h>
  22#include <linux/seq_file.h>
  23#include <linux/module.h>
  24
 
 
 
 
 
 
  25#define RESULT_OK		0
  26#define RESULT_FAIL		1
  27#define RESULT_UNSUP_HOST	2
  28#define RESULT_UNSUP_CARD	3
  29
  30#define BUFFER_ORDER		2
  31#define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
  32
  33#define TEST_ALIGN_END		8
  34
  35/*
  36 * Limit the test area size to the maximum MMC HC erase group size.  Note that
  37 * the maximum SD allocation unit size is just 4MiB.
  38 */
  39#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
  40
  41/**
  42 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
  43 * @page: first page in the allocation
  44 * @order: order of the number of pages allocated
  45 */
  46struct mmc_test_pages {
  47	struct page *page;
  48	unsigned int order;
  49};
  50
  51/**
  52 * struct mmc_test_mem - allocated memory.
  53 * @arr: array of allocations
  54 * @cnt: number of allocations
  55 */
  56struct mmc_test_mem {
  57	struct mmc_test_pages *arr;
  58	unsigned int cnt;
  59};
  60
  61/**
  62 * struct mmc_test_area - information for performance tests.
  63 * @max_sz: test area size (in bytes)
  64 * @dev_addr: address on card at which to do performance tests
  65 * @max_tfr: maximum transfer size allowed by driver (in bytes)
  66 * @max_segs: maximum segments allowed by driver in scatterlist @sg
  67 * @max_seg_sz: maximum segment size allowed by driver
  68 * @blocks: number of (512 byte) blocks currently mapped by @sg
  69 * @sg_len: length of currently mapped scatterlist @sg
  70 * @mem: allocated memory
  71 * @sg: scatterlist
 
  72 */
  73struct mmc_test_area {
  74	unsigned long max_sz;
  75	unsigned int dev_addr;
  76	unsigned int max_tfr;
  77	unsigned int max_segs;
  78	unsigned int max_seg_sz;
  79	unsigned int blocks;
  80	unsigned int sg_len;
  81	struct mmc_test_mem *mem;
  82	struct scatterlist *sg;
 
  83};
  84
  85/**
  86 * struct mmc_test_transfer_result - transfer results for performance tests.
  87 * @link: double-linked list
  88 * @count: amount of group of sectors to check
  89 * @sectors: amount of sectors to check in one group
  90 * @ts: time values of transfer
  91 * @rate: calculated transfer rate
  92 * @iops: I/O operations per second (times 100)
  93 */
  94struct mmc_test_transfer_result {
  95	struct list_head link;
  96	unsigned int count;
  97	unsigned int sectors;
  98	struct timespec ts;
  99	unsigned int rate;
 100	unsigned int iops;
 101};
 102
 103/**
 104 * struct mmc_test_general_result - results for tests.
 105 * @link: double-linked list
 106 * @card: card under test
 107 * @testcase: number of test case
 108 * @result: result of test run
 109 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
 110 */
 111struct mmc_test_general_result {
 112	struct list_head link;
 113	struct mmc_card *card;
 114	int testcase;
 115	int result;
 116	struct list_head tr_lst;
 117};
 118
 119/**
 120 * struct mmc_test_dbgfs_file - debugfs related file.
 121 * @link: double-linked list
 122 * @card: card under test
 123 * @file: file created under debugfs
 124 */
 125struct mmc_test_dbgfs_file {
 126	struct list_head link;
 127	struct mmc_card *card;
 128	struct dentry *file;
 129};
 130
 131/**
 132 * struct mmc_test_card - test information.
 133 * @card: card under test
 134 * @scratch: transfer buffer
 135 * @buffer: transfer buffer
 136 * @highmem: buffer for highmem tests
 137 * @area: information for performance tests
 138 * @gr: pointer to results of current testcase
 139 */
 140struct mmc_test_card {
 141	struct mmc_card	*card;
 142
 143	u8		scratch[BUFFER_SIZE];
 144	u8		*buffer;
 145#ifdef CONFIG_HIGHMEM
 146	struct page	*highmem;
 147#endif
 148	struct mmc_test_area		area;
 149	struct mmc_test_general_result	*gr;
 150};
 151
 152enum mmc_test_prep_media {
 153	MMC_TEST_PREP_NONE = 0,
 154	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
 155	MMC_TEST_PREP_ERASE = 1 << 1,
 156};
 157
 158struct mmc_test_multiple_rw {
 159	unsigned int *sg_len;
 160	unsigned int *bs;
 161	unsigned int len;
 162	unsigned int size;
 163	bool do_write;
 164	bool do_nonblock_req;
 165	enum mmc_test_prep_media prepare;
 166};
 167
 168struct mmc_test_async_req {
 169	struct mmc_async_req areq;
 170	struct mmc_test_card *test;
 171};
 172
 173/*******************************************************************/
 174/*  General helper functions                                       */
 175/*******************************************************************/
 176
 177/*
 178 * Configure correct block size in card
 179 */
 180static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
 181{
 182	return mmc_set_blocklen(test->card, size);
 183}
 184
 185static bool mmc_test_card_cmd23(struct mmc_card *card)
 186{
 187	return mmc_card_mmc(card) ||
 188	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
 189}
 190
 191static void mmc_test_prepare_sbc(struct mmc_test_card *test,
 192				 struct mmc_request *mrq, unsigned int blocks)
 193{
 194	struct mmc_card *card = test->card;
 195
 196	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
 197	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
 198	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
 199		mrq->sbc = NULL;
 200		return;
 201	}
 202
 203	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
 204	mrq->sbc->arg = blocks;
 205	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
 206}
 207
 208/*
 209 * Fill in the mmc_request structure given a set of transfer parameters.
 210 */
 211static void mmc_test_prepare_mrq(struct mmc_test_card *test,
 212	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
 213	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
 214{
 215	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
 216		return;
 217
 218	if (blocks > 1) {
 219		mrq->cmd->opcode = write ?
 220			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
 221	} else {
 222		mrq->cmd->opcode = write ?
 223			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 224	}
 225
 226	mrq->cmd->arg = dev_addr;
 227	if (!mmc_card_blockaddr(test->card))
 228		mrq->cmd->arg <<= 9;
 229
 230	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 231
 232	if (blocks == 1)
 233		mrq->stop = NULL;
 234	else {
 235		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
 236		mrq->stop->arg = 0;
 237		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
 238	}
 239
 240	mrq->data->blksz = blksz;
 241	mrq->data->blocks = blocks;
 242	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
 243	mrq->data->sg = sg;
 244	mrq->data->sg_len = sg_len;
 245
 246	mmc_test_prepare_sbc(test, mrq, blocks);
 247
 248	mmc_set_data_timeout(mrq->data, test->card);
 249}
 250
 251static int mmc_test_busy(struct mmc_command *cmd)
 252{
 253	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
 254		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
 255}
 256
 257/*
 258 * Wait for the card to finish the busy state
 259 */
 260static int mmc_test_wait_busy(struct mmc_test_card *test)
 261{
 262	int ret, busy;
 263	struct mmc_command cmd = {0};
 264
 265	busy = 0;
 266	do {
 267		memset(&cmd, 0, sizeof(struct mmc_command));
 268
 269		cmd.opcode = MMC_SEND_STATUS;
 270		cmd.arg = test->card->rca << 16;
 271		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 272
 273		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
 274		if (ret)
 275			break;
 276
 277		if (!busy && mmc_test_busy(&cmd)) {
 278			busy = 1;
 279			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
 280				pr_info("%s: Warning: Host did not "
 281					"wait for busy state to end.\n",
 282					mmc_hostname(test->card->host));
 283		}
 284	} while (mmc_test_busy(&cmd));
 285
 286	return ret;
 287}
 288
 289/*
 290 * Transfer a single sector of kernel addressable data
 291 */
 292static int mmc_test_buffer_transfer(struct mmc_test_card *test,
 293	u8 *buffer, unsigned addr, unsigned blksz, int write)
 294{
 295	struct mmc_request mrq = {0};
 296	struct mmc_command cmd = {0};
 297	struct mmc_command stop = {0};
 298	struct mmc_data data = {0};
 299
 300	struct scatterlist sg;
 301
 302	mrq.cmd = &cmd;
 303	mrq.data = &data;
 304	mrq.stop = &stop;
 305
 306	sg_init_one(&sg, buffer, blksz);
 307
 308	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
 309
 310	mmc_wait_for_req(test->card->host, &mrq);
 311
 312	if (cmd.error)
 313		return cmd.error;
 314	if (data.error)
 315		return data.error;
 316
 317	return mmc_test_wait_busy(test);
 318}
 319
 320static void mmc_test_free_mem(struct mmc_test_mem *mem)
 321{
 322	if (!mem)
 323		return;
 324	while (mem->cnt--)
 325		__free_pages(mem->arr[mem->cnt].page,
 326			     mem->arr[mem->cnt].order);
 327	kfree(mem->arr);
 328	kfree(mem);
 329}
 330
 331/*
 332 * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
 333 * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
 334 * not exceed a maximum number of segments and try not to make segments much
 335 * bigger than maximum segment size.
 336 */
 337static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
 338					       unsigned long max_sz,
 339					       unsigned int max_segs,
 340					       unsigned int max_seg_sz)
 341{
 342	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
 343	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
 344	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
 345	unsigned long page_cnt = 0;
 346	unsigned long limit = nr_free_buffer_pages() >> 4;
 347	struct mmc_test_mem *mem;
 348
 349	if (max_page_cnt > limit)
 350		max_page_cnt = limit;
 351	if (min_page_cnt > max_page_cnt)
 352		min_page_cnt = max_page_cnt;
 353
 354	if (max_seg_page_cnt > max_page_cnt)
 355		max_seg_page_cnt = max_page_cnt;
 356
 357	if (max_segs > max_page_cnt)
 358		max_segs = max_page_cnt;
 359
 360	mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
 361	if (!mem)
 362		return NULL;
 363
 364	mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
 365			   GFP_KERNEL);
 366	if (!mem->arr)
 367		goto out_free;
 368
 369	while (max_page_cnt) {
 370		struct page *page;
 371		unsigned int order;
 372		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
 373				__GFP_NORETRY;
 374
 375		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
 376		while (1) {
 377			page = alloc_pages(flags, order);
 378			if (page || !order)
 379				break;
 380			order -= 1;
 381		}
 382		if (!page) {
 383			if (page_cnt < min_page_cnt)
 384				goto out_free;
 385			break;
 386		}
 387		mem->arr[mem->cnt].page = page;
 388		mem->arr[mem->cnt].order = order;
 389		mem->cnt += 1;
 390		if (max_page_cnt <= (1UL << order))
 391			break;
 392		max_page_cnt -= 1UL << order;
 393		page_cnt += 1UL << order;
 394		if (mem->cnt >= max_segs) {
 395			if (page_cnt < min_page_cnt)
 396				goto out_free;
 397			break;
 398		}
 399	}
 400
 401	return mem;
 402
 403out_free:
 404	mmc_test_free_mem(mem);
 405	return NULL;
 406}
 407
 408/*
 409 * Map memory into a scatterlist.  Optionally allow the same memory to be
 410 * mapped more than once.
 411 */
 412static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
 413			   struct scatterlist *sglist, int repeat,
 414			   unsigned int max_segs, unsigned int max_seg_sz,
 415			   unsigned int *sg_len, int min_sg_len)
 416{
 417	struct scatterlist *sg = NULL;
 418	unsigned int i;
 419	unsigned long sz = size;
 420
 421	sg_init_table(sglist, max_segs);
 422	if (min_sg_len > max_segs)
 423		min_sg_len = max_segs;
 424
 425	*sg_len = 0;
 426	do {
 427		for (i = 0; i < mem->cnt; i++) {
 428			unsigned long len = PAGE_SIZE << mem->arr[i].order;
 429
 430			if (min_sg_len && (size / min_sg_len < len))
 431				len = ALIGN(size / min_sg_len, 512);
 432			if (len > sz)
 433				len = sz;
 434			if (len > max_seg_sz)
 435				len = max_seg_sz;
 436			if (sg)
 437				sg = sg_next(sg);
 438			else
 439				sg = sglist;
 440			if (!sg)
 441				return -EINVAL;
 442			sg_set_page(sg, mem->arr[i].page, len, 0);
 443			sz -= len;
 444			*sg_len += 1;
 445			if (!sz)
 446				break;
 447		}
 448	} while (sz && repeat);
 449
 450	if (sz)
 451		return -EINVAL;
 452
 453	if (sg)
 454		sg_mark_end(sg);
 455
 456	return 0;
 457}
 458
 459/*
 460 * Map memory into a scatterlist so that no pages are contiguous.  Allow the
 461 * same memory to be mapped more than once.
 462 */
 463static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
 464				       unsigned long sz,
 465				       struct scatterlist *sglist,
 466				       unsigned int max_segs,
 467				       unsigned int max_seg_sz,
 468				       unsigned int *sg_len)
 469{
 470	struct scatterlist *sg = NULL;
 471	unsigned int i = mem->cnt, cnt;
 472	unsigned long len;
 473	void *base, *addr, *last_addr = NULL;
 474
 475	sg_init_table(sglist, max_segs);
 476
 477	*sg_len = 0;
 478	while (sz) {
 479		base = page_address(mem->arr[--i].page);
 480		cnt = 1 << mem->arr[i].order;
 481		while (sz && cnt) {
 482			addr = base + PAGE_SIZE * --cnt;
 483			if (last_addr && last_addr + PAGE_SIZE == addr)
 484				continue;
 485			last_addr = addr;
 486			len = PAGE_SIZE;
 487			if (len > max_seg_sz)
 488				len = max_seg_sz;
 489			if (len > sz)
 490				len = sz;
 491			if (sg)
 492				sg = sg_next(sg);
 493			else
 494				sg = sglist;
 495			if (!sg)
 496				return -EINVAL;
 497			sg_set_page(sg, virt_to_page(addr), len, 0);
 498			sz -= len;
 499			*sg_len += 1;
 500		}
 501		if (i == 0)
 502			i = mem->cnt;
 503	}
 504
 505	if (sg)
 506		sg_mark_end(sg);
 507
 508	return 0;
 509}
 510
 511/*
 512 * Calculate transfer rate in bytes per second.
 513 */
 514static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
 515{
 516	uint64_t ns;
 517
 518	ns = ts->tv_sec;
 519	ns *= 1000000000;
 520	ns += ts->tv_nsec;
 521
 522	bytes *= 1000000000;
 523
 524	while (ns > UINT_MAX) {
 525		bytes >>= 1;
 526		ns >>= 1;
 527	}
 528
 529	if (!ns)
 530		return 0;
 531
 532	do_div(bytes, (uint32_t)ns);
 533
 534	return bytes;
 535}
 536
 537/*
 538 * Save transfer results for future usage
 539 */
 540static void mmc_test_save_transfer_result(struct mmc_test_card *test,
 541	unsigned int count, unsigned int sectors, struct timespec ts,
 542	unsigned int rate, unsigned int iops)
 543{
 544	struct mmc_test_transfer_result *tr;
 545
 546	if (!test->gr)
 547		return;
 548
 549	tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
 550	if (!tr)
 551		return;
 552
 553	tr->count = count;
 554	tr->sectors = sectors;
 555	tr->ts = ts;
 556	tr->rate = rate;
 557	tr->iops = iops;
 558
 559	list_add_tail(&tr->link, &test->gr->tr_lst);
 560}
 561
 562/*
 563 * Print the transfer rate.
 564 */
 565static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
 566				struct timespec *ts1, struct timespec *ts2)
 567{
 568	unsigned int rate, iops, sectors = bytes >> 9;
 569	struct timespec ts;
 570
 571	ts = timespec_sub(*ts2, *ts1);
 572
 573	rate = mmc_test_rate(bytes, &ts);
 574	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
 575
 576	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
 577			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
 578			 mmc_hostname(test->card->host), sectors, sectors >> 1,
 579			 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
 580			 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
 581			 iops / 100, iops % 100);
 582
 583	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
 584}
 585
 586/*
 587 * Print the average transfer rate.
 588 */
 589static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
 590				    unsigned int count, struct timespec *ts1,
 591				    struct timespec *ts2)
 592{
 593	unsigned int rate, iops, sectors = bytes >> 9;
 594	uint64_t tot = bytes * count;
 595	struct timespec ts;
 596
 597	ts = timespec_sub(*ts2, *ts1);
 598
 599	rate = mmc_test_rate(tot, &ts);
 600	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
 601
 602	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
 603			 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
 604			 "%u.%02u IOPS, sg_len %d)\n",
 605			 mmc_hostname(test->card->host), count, sectors, count,
 606			 sectors >> 1, (sectors & 1 ? ".5" : ""),
 607			 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
 608			 rate / 1000, rate / 1024, iops / 100, iops % 100,
 609			 test->area.sg_len);
 610
 611	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
 612}
 613
 614/*
 615 * Return the card size in sectors.
 616 */
 617static unsigned int mmc_test_capacity(struct mmc_card *card)
 618{
 619	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
 620		return card->ext_csd.sectors;
 621	else
 622		return card->csd.capacity << (card->csd.read_blkbits - 9);
 623}
 624
 625/*******************************************************************/
 626/*  Test preparation and cleanup                                   */
 627/*******************************************************************/
 628
 629/*
 630 * Fill the first couple of sectors of the card with known data
 631 * so that bad reads/writes can be detected
 632 */
 633static int __mmc_test_prepare(struct mmc_test_card *test, int write)
 634{
 635	int ret, i;
 636
 637	ret = mmc_test_set_blksize(test, 512);
 638	if (ret)
 639		return ret;
 640
 641	if (write)
 642		memset(test->buffer, 0xDF, 512);
 643	else {
 644		for (i = 0;i < 512;i++)
 645			test->buffer[i] = i;
 646	}
 647
 648	for (i = 0;i < BUFFER_SIZE / 512;i++) {
 649		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 650		if (ret)
 651			return ret;
 652	}
 653
 654	return 0;
 655}
 656
 657static int mmc_test_prepare_write(struct mmc_test_card *test)
 658{
 659	return __mmc_test_prepare(test, 1);
 660}
 661
 662static int mmc_test_prepare_read(struct mmc_test_card *test)
 663{
 664	return __mmc_test_prepare(test, 0);
 665}
 666
 667static int mmc_test_cleanup(struct mmc_test_card *test)
 668{
 669	int ret, i;
 670
 671	ret = mmc_test_set_blksize(test, 512);
 672	if (ret)
 673		return ret;
 674
 675	memset(test->buffer, 0, 512);
 676
 677	for (i = 0;i < BUFFER_SIZE / 512;i++) {
 678		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 679		if (ret)
 680			return ret;
 681	}
 682
 683	return 0;
 684}
 685
 686/*******************************************************************/
 687/*  Test execution helpers                                         */
 688/*******************************************************************/
 689
 690/*
 691 * Modifies the mmc_request to perform the "short transfer" tests
 692 */
 693static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
 694	struct mmc_request *mrq, int write)
 695{
 696	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 697		return;
 698
 699	if (mrq->data->blocks > 1) {
 700		mrq->cmd->opcode = write ?
 701			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 702		mrq->stop = NULL;
 703	} else {
 704		mrq->cmd->opcode = MMC_SEND_STATUS;
 705		mrq->cmd->arg = test->card->rca << 16;
 706	}
 707}
 708
 709/*
 710 * Checks that a normal transfer didn't have any errors
 711 */
 712static int mmc_test_check_result(struct mmc_test_card *test,
 713				 struct mmc_request *mrq)
 714{
 715	int ret;
 716
 717	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 718		return -EINVAL;
 719
 720	ret = 0;
 721
 722	if (mrq->sbc && mrq->sbc->error)
 723		ret = mrq->sbc->error;
 724	if (!ret && mrq->cmd->error)
 725		ret = mrq->cmd->error;
 726	if (!ret && mrq->data->error)
 727		ret = mrq->data->error;
 728	if (!ret && mrq->stop && mrq->stop->error)
 729		ret = mrq->stop->error;
 730	if (!ret && mrq->data->bytes_xfered !=
 731		mrq->data->blocks * mrq->data->blksz)
 732		ret = RESULT_FAIL;
 733
 734	if (ret == -EINVAL)
 735		ret = RESULT_UNSUP_HOST;
 736
 737	return ret;
 738}
 739
 740static enum mmc_blk_status mmc_test_check_result_async(struct mmc_card *card,
 741				       struct mmc_async_req *areq)
 742{
 743	struct mmc_test_async_req *test_async =
 744		container_of(areq, struct mmc_test_async_req, areq);
 745	int ret;
 746
 747	mmc_test_wait_busy(test_async->test);
 748
 749	/*
 750	 * FIXME: this would earlier just casts a regular error code,
 751	 * either of the kernel type -ERRORCODE or the local test framework
 752	 * RESULT_* errorcode, into an enum mmc_blk_status and return as
 753	 * result check. Instead, convert it to some reasonable type by just
 754	 * returning either MMC_BLK_SUCCESS or MMC_BLK_CMD_ERR.
 755	 * If possible, a reasonable error code should be returned.
 756	 */
 757	ret = mmc_test_check_result(test_async->test, areq->mrq);
 758	if (ret)
 759		return MMC_BLK_CMD_ERR;
 760
 761	return MMC_BLK_SUCCESS;
 762}
 763
 764/*
 765 * Checks that a "short transfer" behaved as expected
 766 */
 767static int mmc_test_check_broken_result(struct mmc_test_card *test,
 768	struct mmc_request *mrq)
 769{
 770	int ret;
 771
 772	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 773		return -EINVAL;
 774
 775	ret = 0;
 776
 777	if (!ret && mrq->cmd->error)
 778		ret = mrq->cmd->error;
 779	if (!ret && mrq->data->error == 0)
 780		ret = RESULT_FAIL;
 781	if (!ret && mrq->data->error != -ETIMEDOUT)
 782		ret = mrq->data->error;
 783	if (!ret && mrq->stop && mrq->stop->error)
 784		ret = mrq->stop->error;
 785	if (mrq->data->blocks > 1) {
 786		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
 787			ret = RESULT_FAIL;
 788	} else {
 789		if (!ret && mrq->data->bytes_xfered > 0)
 790			ret = RESULT_FAIL;
 791	}
 792
 793	if (ret == -EINVAL)
 794		ret = RESULT_UNSUP_HOST;
 795
 796	return ret;
 797}
 798
 
 
 
 
 
 
 
 
 
 799/*
 800 * Tests nonblock transfer with certain parameters
 801 */
 802static void mmc_test_nonblock_reset(struct mmc_request *mrq,
 803				    struct mmc_command *cmd,
 804				    struct mmc_command *stop,
 805				    struct mmc_data *data)
 806{
 807	memset(mrq, 0, sizeof(struct mmc_request));
 808	memset(cmd, 0, sizeof(struct mmc_command));
 809	memset(data, 0, sizeof(struct mmc_data));
 810	memset(stop, 0, sizeof(struct mmc_command));
 811
 812	mrq->cmd = cmd;
 813	mrq->data = data;
 814	mrq->stop = stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815}
 
 816static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
 817				      struct scatterlist *sg, unsigned sg_len,
 818				      unsigned dev_addr, unsigned blocks,
 819				      unsigned blksz, int write, int count)
 820{
 821	struct mmc_request mrq1;
 822	struct mmc_command cmd1;
 823	struct mmc_command stop1;
 824	struct mmc_data data1;
 825
 826	struct mmc_request mrq2;
 827	struct mmc_command cmd2;
 828	struct mmc_command stop2;
 829	struct mmc_data data2;
 830
 831	struct mmc_test_async_req test_areq[2];
 832	struct mmc_async_req *done_areq;
 833	struct mmc_async_req *cur_areq = &test_areq[0].areq;
 834	struct mmc_async_req *other_areq = &test_areq[1].areq;
 835	enum mmc_blk_status status;
 836	int i;
 837	int ret = RESULT_OK;
 
 
 
 838
 839	test_areq[0].test = test;
 840	test_areq[1].test = test;
 841
 842	mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
 843	mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
 
 844
 845	cur_areq->mrq = &mrq1;
 846	cur_areq->err_check = mmc_test_check_result_async;
 847	other_areq->mrq = &mrq2;
 848	other_areq->err_check = mmc_test_check_result_async;
 849
 850	for (i = 0; i < count; i++) {
 851		mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
 852				     blocks, blksz, write);
 853		done_areq = mmc_start_req(test->card->host, cur_areq, &status);
 
 
 
 854
 855		if (status != MMC_BLK_SUCCESS || (!done_areq && i > 0)) {
 856			ret = RESULT_FAIL;
 857			goto err;
 858		}
 859
 860		if (done_areq) {
 861			if (done_areq->mrq == &mrq2)
 862				mmc_test_nonblock_reset(&mrq2, &cmd2,
 863							&stop2, &data2);
 864			else
 865				mmc_test_nonblock_reset(&mrq1, &cmd1,
 866							&stop1, &data1);
 867		}
 868		swap(cur_areq, other_areq);
 869		dev_addr += blocks;
 870	}
 871
 872	done_areq = mmc_start_req(test->card->host, NULL, &status);
 873	if (status != MMC_BLK_SUCCESS)
 874		ret = RESULT_FAIL;
 875
 876	return ret;
 877err:
 
 
 878	return ret;
 879}
 880
 881/*
 882 * Tests a basic transfer with certain parameters
 883 */
 884static int mmc_test_simple_transfer(struct mmc_test_card *test,
 885	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 886	unsigned blocks, unsigned blksz, int write)
 887{
 888	struct mmc_request mrq = {0};
 889	struct mmc_command cmd = {0};
 890	struct mmc_command stop = {0};
 891	struct mmc_data data = {0};
 892
 893	mrq.cmd = &cmd;
 894	mrq.data = &data;
 895	mrq.stop = &stop;
 896
 897	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
 898		blocks, blksz, write);
 899
 900	mmc_wait_for_req(test->card->host, &mrq);
 901
 902	mmc_test_wait_busy(test);
 903
 904	return mmc_test_check_result(test, &mrq);
 905}
 906
 907/*
 908 * Tests a transfer where the card will fail completely or partly
 909 */
 910static int mmc_test_broken_transfer(struct mmc_test_card *test,
 911	unsigned blocks, unsigned blksz, int write)
 912{
 913	struct mmc_request mrq = {0};
 914	struct mmc_command cmd = {0};
 915	struct mmc_command stop = {0};
 916	struct mmc_data data = {0};
 917
 918	struct scatterlist sg;
 919
 920	mrq.cmd = &cmd;
 921	mrq.data = &data;
 922	mrq.stop = &stop;
 923
 924	sg_init_one(&sg, test->buffer, blocks * blksz);
 925
 926	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
 927	mmc_test_prepare_broken_mrq(test, &mrq, write);
 928
 929	mmc_wait_for_req(test->card->host, &mrq);
 930
 931	mmc_test_wait_busy(test);
 932
 933	return mmc_test_check_broken_result(test, &mrq);
 934}
 935
 936/*
 937 * Does a complete transfer test where data is also validated
 938 *
 939 * Note: mmc_test_prepare() must have been done before this call
 940 */
 941static int mmc_test_transfer(struct mmc_test_card *test,
 942	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 943	unsigned blocks, unsigned blksz, int write)
 944{
 945	int ret, i;
 946	unsigned long flags;
 947
 948	if (write) {
 949		for (i = 0;i < blocks * blksz;i++)
 950			test->scratch[i] = i;
 951	} else {
 952		memset(test->scratch, 0, BUFFER_SIZE);
 953	}
 954	local_irq_save(flags);
 955	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
 956	local_irq_restore(flags);
 957
 958	ret = mmc_test_set_blksize(test, blksz);
 959	if (ret)
 960		return ret;
 961
 962	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
 963		blocks, blksz, write);
 964	if (ret)
 965		return ret;
 966
 967	if (write) {
 968		int sectors;
 969
 970		ret = mmc_test_set_blksize(test, 512);
 971		if (ret)
 972			return ret;
 973
 974		sectors = (blocks * blksz + 511) / 512;
 975		if ((sectors * 512) == (blocks * blksz))
 976			sectors++;
 977
 978		if ((sectors * 512) > BUFFER_SIZE)
 979			return -EINVAL;
 980
 981		memset(test->buffer, 0, sectors * 512);
 982
 983		for (i = 0;i < sectors;i++) {
 984			ret = mmc_test_buffer_transfer(test,
 985				test->buffer + i * 512,
 986				dev_addr + i, 512, 0);
 987			if (ret)
 988				return ret;
 989		}
 990
 991		for (i = 0;i < blocks * blksz;i++) {
 992			if (test->buffer[i] != (u8)i)
 993				return RESULT_FAIL;
 994		}
 995
 996		for (;i < sectors * 512;i++) {
 997			if (test->buffer[i] != 0xDF)
 998				return RESULT_FAIL;
 999		}
1000	} else {
1001		local_irq_save(flags);
1002		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1003		local_irq_restore(flags);
1004		for (i = 0;i < blocks * blksz;i++) {
1005			if (test->scratch[i] != (u8)i)
1006				return RESULT_FAIL;
1007		}
1008	}
1009
1010	return 0;
1011}
1012
1013/*******************************************************************/
1014/*  Tests                                                          */
1015/*******************************************************************/
1016
1017struct mmc_test_case {
1018	const char *name;
1019
1020	int (*prepare)(struct mmc_test_card *);
1021	int (*run)(struct mmc_test_card *);
1022	int (*cleanup)(struct mmc_test_card *);
1023};
1024
1025static int mmc_test_basic_write(struct mmc_test_card *test)
1026{
1027	int ret;
1028	struct scatterlist sg;
1029
1030	ret = mmc_test_set_blksize(test, 512);
1031	if (ret)
1032		return ret;
1033
1034	sg_init_one(&sg, test->buffer, 512);
1035
1036	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1037}
1038
1039static int mmc_test_basic_read(struct mmc_test_card *test)
1040{
1041	int ret;
1042	struct scatterlist sg;
1043
1044	ret = mmc_test_set_blksize(test, 512);
1045	if (ret)
1046		return ret;
1047
1048	sg_init_one(&sg, test->buffer, 512);
1049
1050	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1051}
1052
1053static int mmc_test_verify_write(struct mmc_test_card *test)
1054{
1055	struct scatterlist sg;
1056
1057	sg_init_one(&sg, test->buffer, 512);
1058
1059	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1060}
1061
1062static int mmc_test_verify_read(struct mmc_test_card *test)
1063{
1064	struct scatterlist sg;
1065
1066	sg_init_one(&sg, test->buffer, 512);
1067
1068	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1069}
1070
1071static int mmc_test_multi_write(struct mmc_test_card *test)
1072{
1073	unsigned int size;
1074	struct scatterlist sg;
1075
1076	if (test->card->host->max_blk_count == 1)
1077		return RESULT_UNSUP_HOST;
1078
1079	size = PAGE_SIZE * 2;
1080	size = min(size, test->card->host->max_req_size);
1081	size = min(size, test->card->host->max_seg_size);
1082	size = min(size, test->card->host->max_blk_count * 512);
1083
1084	if (size < 1024)
1085		return RESULT_UNSUP_HOST;
1086
1087	sg_init_one(&sg, test->buffer, size);
1088
1089	return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1090}
1091
1092static int mmc_test_multi_read(struct mmc_test_card *test)
1093{
1094	unsigned int size;
1095	struct scatterlist sg;
1096
1097	if (test->card->host->max_blk_count == 1)
1098		return RESULT_UNSUP_HOST;
1099
1100	size = PAGE_SIZE * 2;
1101	size = min(size, test->card->host->max_req_size);
1102	size = min(size, test->card->host->max_seg_size);
1103	size = min(size, test->card->host->max_blk_count * 512);
1104
1105	if (size < 1024)
1106		return RESULT_UNSUP_HOST;
1107
1108	sg_init_one(&sg, test->buffer, size);
1109
1110	return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1111}
1112
1113static int mmc_test_pow2_write(struct mmc_test_card *test)
1114{
1115	int ret, i;
1116	struct scatterlist sg;
1117
1118	if (!test->card->csd.write_partial)
1119		return RESULT_UNSUP_CARD;
1120
1121	for (i = 1; i < 512;i <<= 1) {
1122		sg_init_one(&sg, test->buffer, i);
1123		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1124		if (ret)
1125			return ret;
1126	}
1127
1128	return 0;
1129}
1130
1131static int mmc_test_pow2_read(struct mmc_test_card *test)
1132{
1133	int ret, i;
1134	struct scatterlist sg;
1135
1136	if (!test->card->csd.read_partial)
1137		return RESULT_UNSUP_CARD;
1138
1139	for (i = 1; i < 512;i <<= 1) {
1140		sg_init_one(&sg, test->buffer, i);
1141		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1142		if (ret)
1143			return ret;
1144	}
1145
1146	return 0;
1147}
1148
1149static int mmc_test_weird_write(struct mmc_test_card *test)
1150{
1151	int ret, i;
1152	struct scatterlist sg;
1153
1154	if (!test->card->csd.write_partial)
1155		return RESULT_UNSUP_CARD;
1156
1157	for (i = 3; i < 512;i += 7) {
1158		sg_init_one(&sg, test->buffer, i);
1159		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1160		if (ret)
1161			return ret;
1162	}
1163
1164	return 0;
1165}
1166
1167static int mmc_test_weird_read(struct mmc_test_card *test)
1168{
1169	int ret, i;
1170	struct scatterlist sg;
1171
1172	if (!test->card->csd.read_partial)
1173		return RESULT_UNSUP_CARD;
1174
1175	for (i = 3; i < 512;i += 7) {
1176		sg_init_one(&sg, test->buffer, i);
1177		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1178		if (ret)
1179			return ret;
1180	}
1181
1182	return 0;
1183}
1184
1185static int mmc_test_align_write(struct mmc_test_card *test)
1186{
1187	int ret, i;
1188	struct scatterlist sg;
1189
1190	for (i = 1; i < TEST_ALIGN_END; i++) {
1191		sg_init_one(&sg, test->buffer + i, 512);
1192		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1193		if (ret)
1194			return ret;
1195	}
1196
1197	return 0;
1198}
1199
1200static int mmc_test_align_read(struct mmc_test_card *test)
1201{
1202	int ret, i;
1203	struct scatterlist sg;
1204
1205	for (i = 1; i < TEST_ALIGN_END; i++) {
1206		sg_init_one(&sg, test->buffer + i, 512);
1207		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1208		if (ret)
1209			return ret;
1210	}
1211
1212	return 0;
1213}
1214
1215static int mmc_test_align_multi_write(struct mmc_test_card *test)
1216{
1217	int ret, i;
1218	unsigned int size;
1219	struct scatterlist sg;
1220
1221	if (test->card->host->max_blk_count == 1)
1222		return RESULT_UNSUP_HOST;
1223
1224	size = PAGE_SIZE * 2;
1225	size = min(size, test->card->host->max_req_size);
1226	size = min(size, test->card->host->max_seg_size);
1227	size = min(size, test->card->host->max_blk_count * 512);
1228
1229	if (size < 1024)
1230		return RESULT_UNSUP_HOST;
1231
1232	for (i = 1; i < TEST_ALIGN_END; i++) {
1233		sg_init_one(&sg, test->buffer + i, size);
1234		ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1235		if (ret)
1236			return ret;
1237	}
1238
1239	return 0;
1240}
1241
1242static int mmc_test_align_multi_read(struct mmc_test_card *test)
1243{
1244	int ret, i;
1245	unsigned int size;
1246	struct scatterlist sg;
1247
1248	if (test->card->host->max_blk_count == 1)
1249		return RESULT_UNSUP_HOST;
1250
1251	size = PAGE_SIZE * 2;
1252	size = min(size, test->card->host->max_req_size);
1253	size = min(size, test->card->host->max_seg_size);
1254	size = min(size, test->card->host->max_blk_count * 512);
1255
1256	if (size < 1024)
1257		return RESULT_UNSUP_HOST;
1258
1259	for (i = 1; i < TEST_ALIGN_END; i++) {
1260		sg_init_one(&sg, test->buffer + i, size);
1261		ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1262		if (ret)
1263			return ret;
1264	}
1265
1266	return 0;
1267}
1268
1269static int mmc_test_xfersize_write(struct mmc_test_card *test)
1270{
1271	int ret;
1272
1273	ret = mmc_test_set_blksize(test, 512);
1274	if (ret)
1275		return ret;
1276
1277	return mmc_test_broken_transfer(test, 1, 512, 1);
1278}
1279
1280static int mmc_test_xfersize_read(struct mmc_test_card *test)
1281{
1282	int ret;
1283
1284	ret = mmc_test_set_blksize(test, 512);
1285	if (ret)
1286		return ret;
1287
1288	return mmc_test_broken_transfer(test, 1, 512, 0);
1289}
1290
1291static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1292{
1293	int ret;
1294
1295	if (test->card->host->max_blk_count == 1)
1296		return RESULT_UNSUP_HOST;
1297
1298	ret = mmc_test_set_blksize(test, 512);
1299	if (ret)
1300		return ret;
1301
1302	return mmc_test_broken_transfer(test, 2, 512, 1);
1303}
1304
1305static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1306{
1307	int ret;
1308
1309	if (test->card->host->max_blk_count == 1)
1310		return RESULT_UNSUP_HOST;
1311
1312	ret = mmc_test_set_blksize(test, 512);
1313	if (ret)
1314		return ret;
1315
1316	return mmc_test_broken_transfer(test, 2, 512, 0);
1317}
1318
1319#ifdef CONFIG_HIGHMEM
1320
1321static int mmc_test_write_high(struct mmc_test_card *test)
1322{
1323	struct scatterlist sg;
1324
1325	sg_init_table(&sg, 1);
1326	sg_set_page(&sg, test->highmem, 512, 0);
1327
1328	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1329}
1330
1331static int mmc_test_read_high(struct mmc_test_card *test)
1332{
1333	struct scatterlist sg;
1334
1335	sg_init_table(&sg, 1);
1336	sg_set_page(&sg, test->highmem, 512, 0);
1337
1338	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1339}
1340
1341static int mmc_test_multi_write_high(struct mmc_test_card *test)
1342{
1343	unsigned int size;
1344	struct scatterlist sg;
1345
1346	if (test->card->host->max_blk_count == 1)
1347		return RESULT_UNSUP_HOST;
1348
1349	size = PAGE_SIZE * 2;
1350	size = min(size, test->card->host->max_req_size);
1351	size = min(size, test->card->host->max_seg_size);
1352	size = min(size, test->card->host->max_blk_count * 512);
1353
1354	if (size < 1024)
1355		return RESULT_UNSUP_HOST;
1356
1357	sg_init_table(&sg, 1);
1358	sg_set_page(&sg, test->highmem, size, 0);
1359
1360	return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1361}
1362
1363static int mmc_test_multi_read_high(struct mmc_test_card *test)
1364{
1365	unsigned int size;
1366	struct scatterlist sg;
1367
1368	if (test->card->host->max_blk_count == 1)
1369		return RESULT_UNSUP_HOST;
1370
1371	size = PAGE_SIZE * 2;
1372	size = min(size, test->card->host->max_req_size);
1373	size = min(size, test->card->host->max_seg_size);
1374	size = min(size, test->card->host->max_blk_count * 512);
1375
1376	if (size < 1024)
1377		return RESULT_UNSUP_HOST;
1378
1379	sg_init_table(&sg, 1);
1380	sg_set_page(&sg, test->highmem, size, 0);
1381
1382	return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1383}
1384
1385#else
1386
1387static int mmc_test_no_highmem(struct mmc_test_card *test)
1388{
1389	pr_info("%s: Highmem not configured - test skipped\n",
1390	       mmc_hostname(test->card->host));
1391	return 0;
1392}
1393
1394#endif /* CONFIG_HIGHMEM */
1395
1396/*
1397 * Map sz bytes so that it can be transferred.
1398 */
1399static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1400			     int max_scatter, int min_sg_len)
1401{
1402	struct mmc_test_area *t = &test->area;
1403	int err;
 
1404
1405	t->blocks = sz >> 9;
1406
1407	if (max_scatter) {
1408		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1409						  t->max_segs, t->max_seg_sz,
1410				       &t->sg_len);
1411	} else {
1412		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1413				      t->max_seg_sz, &t->sg_len, min_sg_len);
1414	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415	if (err)
1416		pr_info("%s: Failed to map sg list\n",
1417		       mmc_hostname(test->card->host));
1418	return err;
1419}
1420
1421/*
1422 * Transfer bytes mapped by mmc_test_area_map().
1423 */
1424static int mmc_test_area_transfer(struct mmc_test_card *test,
1425				  unsigned int dev_addr, int write)
1426{
1427	struct mmc_test_area *t = &test->area;
1428
1429	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1430					t->blocks, 512, write);
1431}
1432
1433/*
1434 * Map and transfer bytes for multiple transfers.
1435 */
1436static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1437				unsigned int dev_addr, int write,
1438				int max_scatter, int timed, int count,
1439				bool nonblock, int min_sg_len)
1440{
1441	struct timespec ts1, ts2;
1442	int ret = 0;
1443	int i;
1444	struct mmc_test_area *t = &test->area;
1445
1446	/*
1447	 * In the case of a maximally scattered transfer, the maximum transfer
1448	 * size is further limited by using PAGE_SIZE segments.
1449	 */
1450	if (max_scatter) {
1451		struct mmc_test_area *t = &test->area;
1452		unsigned long max_tfr;
1453
1454		if (t->max_seg_sz >= PAGE_SIZE)
1455			max_tfr = t->max_segs * PAGE_SIZE;
1456		else
1457			max_tfr = t->max_segs * t->max_seg_sz;
1458		if (sz > max_tfr)
1459			sz = max_tfr;
1460	}
1461
1462	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1463	if (ret)
1464		return ret;
1465
1466	if (timed)
1467		getnstimeofday(&ts1);
1468	if (nonblock)
1469		ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1470				 dev_addr, t->blocks, 512, write, count);
1471	else
1472		for (i = 0; i < count && ret == 0; i++) {
1473			ret = mmc_test_area_transfer(test, dev_addr, write);
1474			dev_addr += sz >> 9;
1475		}
1476
1477	if (ret)
1478		return ret;
1479
1480	if (timed)
1481		getnstimeofday(&ts2);
1482
1483	if (timed)
1484		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1485
1486	return 0;
1487}
1488
1489static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1490			    unsigned int dev_addr, int write, int max_scatter,
1491			    int timed)
1492{
1493	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1494				    timed, 1, false, 0);
1495}
1496
1497/*
1498 * Write the test area entirely.
1499 */
1500static int mmc_test_area_fill(struct mmc_test_card *test)
1501{
1502	struct mmc_test_area *t = &test->area;
1503
1504	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1505}
1506
1507/*
1508 * Erase the test area entirely.
1509 */
1510static int mmc_test_area_erase(struct mmc_test_card *test)
1511{
1512	struct mmc_test_area *t = &test->area;
1513
1514	if (!mmc_can_erase(test->card))
1515		return 0;
1516
1517	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1518			 MMC_ERASE_ARG);
1519}
1520
1521/*
1522 * Cleanup struct mmc_test_area.
1523 */
1524static int mmc_test_area_cleanup(struct mmc_test_card *test)
1525{
1526	struct mmc_test_area *t = &test->area;
1527
1528	kfree(t->sg);
 
1529	mmc_test_free_mem(t->mem);
1530
1531	return 0;
1532}
1533
1534/*
1535 * Initialize an area for testing large transfers.  The test area is set to the
1536 * middle of the card because cards may have different charateristics at the
1537 * front (for FAT file system optimization).  Optionally, the area is erased
1538 * (if the card supports it) which may improve write performance.  Optionally,
1539 * the area is filled with data for subsequent read tests.
1540 */
1541static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1542{
1543	struct mmc_test_area *t = &test->area;
1544	unsigned long min_sz = 64 * 1024, sz;
1545	int ret;
1546
1547	ret = mmc_test_set_blksize(test, 512);
1548	if (ret)
1549		return ret;
1550
1551	/* Make the test area size about 4MiB */
1552	sz = (unsigned long)test->card->pref_erase << 9;
1553	t->max_sz = sz;
1554	while (t->max_sz < 4 * 1024 * 1024)
1555		t->max_sz += sz;
1556	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1557		t->max_sz -= sz;
1558
1559	t->max_segs = test->card->host->max_segs;
1560	t->max_seg_sz = test->card->host->max_seg_size;
1561	t->max_seg_sz -= t->max_seg_sz % 512;
1562
1563	t->max_tfr = t->max_sz;
1564	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1565		t->max_tfr = test->card->host->max_blk_count << 9;
1566	if (t->max_tfr > test->card->host->max_req_size)
1567		t->max_tfr = test->card->host->max_req_size;
1568	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1569		t->max_tfr = t->max_segs * t->max_seg_sz;
1570
1571	/*
1572	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1573	 * because the same memory can be mapped into the scatterlist more than
1574	 * once.  Also, take into account the limits imposed on scatterlist
1575	 * segments by the host driver.
1576	 */
1577	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1578				    t->max_seg_sz);
1579	if (!t->mem)
1580		return -ENOMEM;
1581
1582	t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1583	if (!t->sg) {
1584		ret = -ENOMEM;
1585		goto out_free;
1586	}
1587
 
 
 
 
 
 
 
1588	t->dev_addr = mmc_test_capacity(test->card) / 2;
1589	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1590
1591	if (erase) {
1592		ret = mmc_test_area_erase(test);
1593		if (ret)
1594			goto out_free;
1595	}
1596
1597	if (fill) {
1598		ret = mmc_test_area_fill(test);
1599		if (ret)
1600			goto out_free;
1601	}
1602
1603	return 0;
1604
1605out_free:
1606	mmc_test_area_cleanup(test);
1607	return ret;
1608}
1609
1610/*
1611 * Prepare for large transfers.  Do not erase the test area.
1612 */
1613static int mmc_test_area_prepare(struct mmc_test_card *test)
1614{
1615	return mmc_test_area_init(test, 0, 0);
1616}
1617
1618/*
1619 * Prepare for large transfers.  Do erase the test area.
1620 */
1621static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1622{
1623	return mmc_test_area_init(test, 1, 0);
1624}
1625
1626/*
1627 * Prepare for large transfers.  Erase and fill the test area.
1628 */
1629static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1630{
1631	return mmc_test_area_init(test, 1, 1);
1632}
1633
1634/*
1635 * Test best-case performance.  Best-case performance is expected from
1636 * a single large transfer.
1637 *
1638 * An additional option (max_scatter) allows the measurement of the same
1639 * transfer but with no contiguous pages in the scatter list.  This tests
1640 * the efficiency of DMA to handle scattered pages.
1641 */
1642static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1643				     int max_scatter)
1644{
1645	struct mmc_test_area *t = &test->area;
1646
1647	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1648				max_scatter, 1);
1649}
1650
1651/*
1652 * Best-case read performance.
1653 */
1654static int mmc_test_best_read_performance(struct mmc_test_card *test)
1655{
1656	return mmc_test_best_performance(test, 0, 0);
1657}
1658
1659/*
1660 * Best-case write performance.
1661 */
1662static int mmc_test_best_write_performance(struct mmc_test_card *test)
1663{
1664	return mmc_test_best_performance(test, 1, 0);
1665}
1666
1667/*
1668 * Best-case read performance into scattered pages.
1669 */
1670static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1671{
1672	return mmc_test_best_performance(test, 0, 1);
1673}
1674
1675/*
1676 * Best-case write performance from scattered pages.
1677 */
1678static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1679{
1680	return mmc_test_best_performance(test, 1, 1);
1681}
1682
1683/*
1684 * Single read performance by transfer size.
1685 */
1686static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1687{
1688	struct mmc_test_area *t = &test->area;
1689	unsigned long sz;
1690	unsigned int dev_addr;
1691	int ret;
1692
1693	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1694		dev_addr = t->dev_addr + (sz >> 9);
1695		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1696		if (ret)
1697			return ret;
1698	}
1699	sz = t->max_tfr;
1700	dev_addr = t->dev_addr;
1701	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1702}
1703
1704/*
1705 * Single write performance by transfer size.
1706 */
1707static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1708{
1709	struct mmc_test_area *t = &test->area;
1710	unsigned long sz;
1711	unsigned int dev_addr;
1712	int ret;
1713
1714	ret = mmc_test_area_erase(test);
1715	if (ret)
1716		return ret;
1717	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1718		dev_addr = t->dev_addr + (sz >> 9);
1719		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1720		if (ret)
1721			return ret;
1722	}
1723	ret = mmc_test_area_erase(test);
1724	if (ret)
1725		return ret;
1726	sz = t->max_tfr;
1727	dev_addr = t->dev_addr;
1728	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1729}
1730
1731/*
1732 * Single trim performance by transfer size.
1733 */
1734static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1735{
1736	struct mmc_test_area *t = &test->area;
1737	unsigned long sz;
1738	unsigned int dev_addr;
1739	struct timespec ts1, ts2;
1740	int ret;
1741
1742	if (!mmc_can_trim(test->card))
1743		return RESULT_UNSUP_CARD;
1744
1745	if (!mmc_can_erase(test->card))
1746		return RESULT_UNSUP_HOST;
1747
1748	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1749		dev_addr = t->dev_addr + (sz >> 9);
1750		getnstimeofday(&ts1);
1751		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1752		if (ret)
1753			return ret;
1754		getnstimeofday(&ts2);
1755		mmc_test_print_rate(test, sz, &ts1, &ts2);
1756	}
1757	dev_addr = t->dev_addr;
1758	getnstimeofday(&ts1);
1759	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1760	if (ret)
1761		return ret;
1762	getnstimeofday(&ts2);
1763	mmc_test_print_rate(test, sz, &ts1, &ts2);
1764	return 0;
1765}
1766
1767static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1768{
1769	struct mmc_test_area *t = &test->area;
1770	unsigned int dev_addr, i, cnt;
1771	struct timespec ts1, ts2;
1772	int ret;
1773
1774	cnt = t->max_sz / sz;
1775	dev_addr = t->dev_addr;
1776	getnstimeofday(&ts1);
1777	for (i = 0; i < cnt; i++) {
1778		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1779		if (ret)
1780			return ret;
1781		dev_addr += (sz >> 9);
1782	}
1783	getnstimeofday(&ts2);
1784	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1785	return 0;
1786}
1787
1788/*
1789 * Consecutive read performance by transfer size.
1790 */
1791static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1792{
1793	struct mmc_test_area *t = &test->area;
1794	unsigned long sz;
1795	int ret;
1796
1797	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1798		ret = mmc_test_seq_read_perf(test, sz);
1799		if (ret)
1800			return ret;
1801	}
1802	sz = t->max_tfr;
1803	return mmc_test_seq_read_perf(test, sz);
1804}
1805
1806static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1807{
1808	struct mmc_test_area *t = &test->area;
1809	unsigned int dev_addr, i, cnt;
1810	struct timespec ts1, ts2;
1811	int ret;
1812
1813	ret = mmc_test_area_erase(test);
1814	if (ret)
1815		return ret;
1816	cnt = t->max_sz / sz;
1817	dev_addr = t->dev_addr;
1818	getnstimeofday(&ts1);
1819	for (i = 0; i < cnt; i++) {
1820		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1821		if (ret)
1822			return ret;
1823		dev_addr += (sz >> 9);
1824	}
1825	getnstimeofday(&ts2);
1826	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1827	return 0;
1828}
1829
1830/*
1831 * Consecutive write performance by transfer size.
1832 */
1833static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1834{
1835	struct mmc_test_area *t = &test->area;
1836	unsigned long sz;
1837	int ret;
1838
1839	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1840		ret = mmc_test_seq_write_perf(test, sz);
1841		if (ret)
1842			return ret;
1843	}
1844	sz = t->max_tfr;
1845	return mmc_test_seq_write_perf(test, sz);
1846}
1847
1848/*
1849 * Consecutive trim performance by transfer size.
1850 */
1851static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1852{
1853	struct mmc_test_area *t = &test->area;
1854	unsigned long sz;
1855	unsigned int dev_addr, i, cnt;
1856	struct timespec ts1, ts2;
1857	int ret;
1858
1859	if (!mmc_can_trim(test->card))
1860		return RESULT_UNSUP_CARD;
1861
1862	if (!mmc_can_erase(test->card))
1863		return RESULT_UNSUP_HOST;
1864
1865	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1866		ret = mmc_test_area_erase(test);
1867		if (ret)
1868			return ret;
1869		ret = mmc_test_area_fill(test);
1870		if (ret)
1871			return ret;
1872		cnt = t->max_sz / sz;
1873		dev_addr = t->dev_addr;
1874		getnstimeofday(&ts1);
1875		for (i = 0; i < cnt; i++) {
1876			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1877					MMC_TRIM_ARG);
1878			if (ret)
1879				return ret;
1880			dev_addr += (sz >> 9);
1881		}
1882		getnstimeofday(&ts2);
1883		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1884	}
1885	return 0;
1886}
1887
1888static unsigned int rnd_next = 1;
1889
1890static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1891{
1892	uint64_t r;
1893
1894	rnd_next = rnd_next * 1103515245 + 12345;
1895	r = (rnd_next >> 16) & 0x7fff;
1896	return (r * rnd_cnt) >> 15;
1897}
1898
1899static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1900			     unsigned long sz)
1901{
1902	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1903	unsigned int ssz;
1904	struct timespec ts1, ts2, ts;
1905	int ret;
1906
1907	ssz = sz >> 9;
1908
1909	rnd_addr = mmc_test_capacity(test->card) / 4;
1910	range1 = rnd_addr / test->card->pref_erase;
1911	range2 = range1 / ssz;
1912
1913	getnstimeofday(&ts1);
1914	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1915		getnstimeofday(&ts2);
1916		ts = timespec_sub(ts2, ts1);
1917		if (ts.tv_sec >= 10)
1918			break;
1919		ea = mmc_test_rnd_num(range1);
1920		if (ea == last_ea)
1921			ea -= 1;
1922		last_ea = ea;
1923		dev_addr = rnd_addr + test->card->pref_erase * ea +
1924			   ssz * mmc_test_rnd_num(range2);
1925		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1926		if (ret)
1927			return ret;
1928	}
1929	if (print)
1930		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1931	return 0;
1932}
1933
1934static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1935{
1936	struct mmc_test_area *t = &test->area;
1937	unsigned int next;
1938	unsigned long sz;
1939	int ret;
1940
1941	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1942		/*
1943		 * When writing, try to get more consistent results by running
1944		 * the test twice with exactly the same I/O but outputting the
1945		 * results only for the 2nd run.
1946		 */
1947		if (write) {
1948			next = rnd_next;
1949			ret = mmc_test_rnd_perf(test, write, 0, sz);
1950			if (ret)
1951				return ret;
1952			rnd_next = next;
1953		}
1954		ret = mmc_test_rnd_perf(test, write, 1, sz);
1955		if (ret)
1956			return ret;
1957	}
1958	sz = t->max_tfr;
1959	if (write) {
1960		next = rnd_next;
1961		ret = mmc_test_rnd_perf(test, write, 0, sz);
1962		if (ret)
1963			return ret;
1964		rnd_next = next;
1965	}
1966	return mmc_test_rnd_perf(test, write, 1, sz);
1967}
1968
1969/*
1970 * Random read performance by transfer size.
1971 */
1972static int mmc_test_random_read_perf(struct mmc_test_card *test)
1973{
1974	return mmc_test_random_perf(test, 0);
1975}
1976
1977/*
1978 * Random write performance by transfer size.
1979 */
1980static int mmc_test_random_write_perf(struct mmc_test_card *test)
1981{
1982	return mmc_test_random_perf(test, 1);
1983}
1984
1985static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1986			     unsigned int tot_sz, int max_scatter)
1987{
1988	struct mmc_test_area *t = &test->area;
1989	unsigned int dev_addr, i, cnt, sz, ssz;
1990	struct timespec ts1, ts2;
1991	int ret;
1992
1993	sz = t->max_tfr;
1994
1995	/*
1996	 * In the case of a maximally scattered transfer, the maximum transfer
1997	 * size is further limited by using PAGE_SIZE segments.
1998	 */
1999	if (max_scatter) {
2000		unsigned long max_tfr;
2001
2002		if (t->max_seg_sz >= PAGE_SIZE)
2003			max_tfr = t->max_segs * PAGE_SIZE;
2004		else
2005			max_tfr = t->max_segs * t->max_seg_sz;
2006		if (sz > max_tfr)
2007			sz = max_tfr;
2008	}
2009
2010	ssz = sz >> 9;
2011	dev_addr = mmc_test_capacity(test->card) / 4;
2012	if (tot_sz > dev_addr << 9)
2013		tot_sz = dev_addr << 9;
2014	cnt = tot_sz / sz;
2015	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2016
2017	getnstimeofday(&ts1);
2018	for (i = 0; i < cnt; i++) {
2019		ret = mmc_test_area_io(test, sz, dev_addr, write,
2020				       max_scatter, 0);
2021		if (ret)
2022			return ret;
2023		dev_addr += ssz;
2024	}
2025	getnstimeofday(&ts2);
2026
2027	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2028
2029	return 0;
2030}
2031
2032static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2033{
2034	int ret, i;
2035
2036	for (i = 0; i < 10; i++) {
2037		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2038		if (ret)
2039			return ret;
2040	}
2041	for (i = 0; i < 5; i++) {
2042		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2043		if (ret)
2044			return ret;
2045	}
2046	for (i = 0; i < 3; i++) {
2047		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2048		if (ret)
2049			return ret;
2050	}
2051
2052	return ret;
2053}
2054
2055/*
2056 * Large sequential read performance.
2057 */
2058static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2059{
2060	return mmc_test_large_seq_perf(test, 0);
2061}
2062
2063/*
2064 * Large sequential write performance.
2065 */
2066static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2067{
2068	return mmc_test_large_seq_perf(test, 1);
2069}
2070
2071static int mmc_test_rw_multiple(struct mmc_test_card *test,
2072				struct mmc_test_multiple_rw *tdata,
2073				unsigned int reqsize, unsigned int size,
2074				int min_sg_len)
2075{
2076	unsigned int dev_addr;
2077	struct mmc_test_area *t = &test->area;
2078	int ret = 0;
2079
2080	/* Set up test area */
2081	if (size > mmc_test_capacity(test->card) / 2 * 512)
2082		size = mmc_test_capacity(test->card) / 2 * 512;
2083	if (reqsize > t->max_tfr)
2084		reqsize = t->max_tfr;
2085	dev_addr = mmc_test_capacity(test->card) / 4;
2086	if ((dev_addr & 0xffff0000))
2087		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2088	else
2089		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2090	if (!dev_addr)
2091		goto err;
2092
2093	if (reqsize > size)
2094		return 0;
2095
2096	/* prepare test area */
2097	if (mmc_can_erase(test->card) &&
2098	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2099		ret = mmc_erase(test->card, dev_addr,
2100				size / 512, MMC_SECURE_ERASE_ARG);
2101		if (ret)
2102			ret = mmc_erase(test->card, dev_addr,
2103					size / 512, MMC_ERASE_ARG);
2104		if (ret)
2105			goto err;
2106	}
2107
2108	/* Run test */
2109	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2110				   tdata->do_write, 0, 1, size / reqsize,
2111				   tdata->do_nonblock_req, min_sg_len);
2112	if (ret)
2113		goto err;
2114
2115	return ret;
2116 err:
2117	pr_info("[%s] error\n", __func__);
2118	return ret;
2119}
2120
2121static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2122				     struct mmc_test_multiple_rw *rw)
2123{
2124	int ret = 0;
2125	int i;
2126	void *pre_req = test->card->host->ops->pre_req;
2127	void *post_req = test->card->host->ops->post_req;
2128
2129	if (rw->do_nonblock_req &&
2130	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2131		pr_info("error: only one of pre/post is defined\n");
2132		return -EINVAL;
2133	}
2134
2135	for (i = 0 ; i < rw->len && ret == 0; i++) {
2136		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2137		if (ret)
2138			break;
2139	}
2140	return ret;
2141}
2142
2143static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2144				       struct mmc_test_multiple_rw *rw)
2145{
2146	int ret = 0;
2147	int i;
2148
2149	for (i = 0 ; i < rw->len && ret == 0; i++) {
2150		ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2151					   rw->sg_len[i]);
2152		if (ret)
2153			break;
2154	}
2155	return ret;
2156}
2157
2158/*
2159 * Multiple blocking write 4k to 4 MB chunks
2160 */
2161static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2162{
2163	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2164			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2165	struct mmc_test_multiple_rw test_data = {
2166		.bs = bs,
2167		.size = TEST_AREA_MAX_SIZE,
2168		.len = ARRAY_SIZE(bs),
2169		.do_write = true,
2170		.do_nonblock_req = false,
2171		.prepare = MMC_TEST_PREP_ERASE,
2172	};
2173
2174	return mmc_test_rw_multiple_size(test, &test_data);
2175};
2176
2177/*
2178 * Multiple non-blocking write 4k to 4 MB chunks
2179 */
2180static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2181{
2182	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2183			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2184	struct mmc_test_multiple_rw test_data = {
2185		.bs = bs,
2186		.size = TEST_AREA_MAX_SIZE,
2187		.len = ARRAY_SIZE(bs),
2188		.do_write = true,
2189		.do_nonblock_req = true,
2190		.prepare = MMC_TEST_PREP_ERASE,
2191	};
2192
2193	return mmc_test_rw_multiple_size(test, &test_data);
2194}
2195
2196/*
2197 * Multiple blocking read 4k to 4 MB chunks
2198 */
2199static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2200{
2201	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2202			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2203	struct mmc_test_multiple_rw test_data = {
2204		.bs = bs,
2205		.size = TEST_AREA_MAX_SIZE,
2206		.len = ARRAY_SIZE(bs),
2207		.do_write = false,
2208		.do_nonblock_req = false,
2209		.prepare = MMC_TEST_PREP_NONE,
2210	};
2211
2212	return mmc_test_rw_multiple_size(test, &test_data);
2213}
2214
2215/*
2216 * Multiple non-blocking read 4k to 4 MB chunks
2217 */
2218static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2219{
2220	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2221			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2222	struct mmc_test_multiple_rw test_data = {
2223		.bs = bs,
2224		.size = TEST_AREA_MAX_SIZE,
2225		.len = ARRAY_SIZE(bs),
2226		.do_write = false,
2227		.do_nonblock_req = true,
2228		.prepare = MMC_TEST_PREP_NONE,
2229	};
2230
2231	return mmc_test_rw_multiple_size(test, &test_data);
2232}
2233
2234/*
2235 * Multiple blocking write 1 to 512 sg elements
2236 */
2237static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2238{
2239	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2240				 1 << 7, 1 << 8, 1 << 9};
2241	struct mmc_test_multiple_rw test_data = {
2242		.sg_len = sg_len,
2243		.size = TEST_AREA_MAX_SIZE,
2244		.len = ARRAY_SIZE(sg_len),
2245		.do_write = true,
2246		.do_nonblock_req = false,
2247		.prepare = MMC_TEST_PREP_ERASE,
2248	};
2249
2250	return mmc_test_rw_multiple_sg_len(test, &test_data);
2251};
2252
2253/*
2254 * Multiple non-blocking write 1 to 512 sg elements
2255 */
2256static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2257{
2258	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2259				 1 << 7, 1 << 8, 1 << 9};
2260	struct mmc_test_multiple_rw test_data = {
2261		.sg_len = sg_len,
2262		.size = TEST_AREA_MAX_SIZE,
2263		.len = ARRAY_SIZE(sg_len),
2264		.do_write = true,
2265		.do_nonblock_req = true,
2266		.prepare = MMC_TEST_PREP_ERASE,
2267	};
2268
2269	return mmc_test_rw_multiple_sg_len(test, &test_data);
2270}
2271
2272/*
2273 * Multiple blocking read 1 to 512 sg elements
2274 */
2275static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2276{
2277	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2278				 1 << 7, 1 << 8, 1 << 9};
2279	struct mmc_test_multiple_rw test_data = {
2280		.sg_len = sg_len,
2281		.size = TEST_AREA_MAX_SIZE,
2282		.len = ARRAY_SIZE(sg_len),
2283		.do_write = false,
2284		.do_nonblock_req = false,
2285		.prepare = MMC_TEST_PREP_NONE,
2286	};
2287
2288	return mmc_test_rw_multiple_sg_len(test, &test_data);
2289}
2290
2291/*
2292 * Multiple non-blocking read 1 to 512 sg elements
2293 */
2294static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2295{
2296	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2297				 1 << 7, 1 << 8, 1 << 9};
2298	struct mmc_test_multiple_rw test_data = {
2299		.sg_len = sg_len,
2300		.size = TEST_AREA_MAX_SIZE,
2301		.len = ARRAY_SIZE(sg_len),
2302		.do_write = false,
2303		.do_nonblock_req = true,
2304		.prepare = MMC_TEST_PREP_NONE,
2305	};
2306
2307	return mmc_test_rw_multiple_sg_len(test, &test_data);
2308}
2309
2310/*
2311 * eMMC hardware reset.
2312 */
2313static int mmc_test_reset(struct mmc_test_card *test)
2314{
2315	struct mmc_card *card = test->card;
2316	struct mmc_host *host = card->host;
2317	int err;
2318
2319	err = mmc_hw_reset(host);
2320	if (!err)
 
 
 
 
 
 
2321		return RESULT_OK;
2322	else if (err == -EOPNOTSUPP)
2323		return RESULT_UNSUP_HOST;
 
2324
2325	return RESULT_FAIL;
2326}
2327
2328struct mmc_test_req {
2329	struct mmc_request mrq;
2330	struct mmc_command sbc;
2331	struct mmc_command cmd;
2332	struct mmc_command stop;
2333	struct mmc_command status;
2334	struct mmc_data data;
2335};
2336
2337static struct mmc_test_req *mmc_test_req_alloc(void)
2338{
2339	struct mmc_test_req *rq = kzalloc(sizeof(*rq), GFP_KERNEL);
2340
2341	if (rq) {
2342		rq->mrq.cmd = &rq->cmd;
2343		rq->mrq.data = &rq->data;
2344		rq->mrq.stop = &rq->stop;
2345	}
2346
2347	return rq;
2348}
2349
2350static int mmc_test_send_status(struct mmc_test_card *test,
2351				struct mmc_command *cmd)
2352{
2353	memset(cmd, 0, sizeof(*cmd));
2354
2355	cmd->opcode = MMC_SEND_STATUS;
2356	if (!mmc_host_is_spi(test->card->host))
2357		cmd->arg = test->card->rca << 16;
2358	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2359
2360	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2361}
2362
2363static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2364				     unsigned int dev_addr, int use_sbc,
2365				     int repeat_cmd, int write, int use_areq)
2366{
2367	struct mmc_test_req *rq = mmc_test_req_alloc();
2368	struct mmc_host *host = test->card->host;
2369	struct mmc_test_area *t = &test->area;
2370	struct mmc_test_async_req test_areq = { .test = test };
2371	struct mmc_request *mrq;
2372	unsigned long timeout;
2373	bool expired = false;
2374	enum mmc_blk_status blkstat = MMC_BLK_SUCCESS;
2375	int ret = 0, cmd_ret;
2376	u32 status = 0;
2377	int count = 0;
2378
2379	if (!rq)
2380		return -ENOMEM;
2381
2382	mrq = &rq->mrq;
2383	if (use_sbc)
2384		mrq->sbc = &rq->sbc;
2385	mrq->cap_cmd_during_tfr = true;
2386
2387	test_areq.areq.mrq = mrq;
2388	test_areq.areq.err_check = mmc_test_check_result_async;
2389
2390	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2391			     512, write);
2392
2393	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2394		ret =  mmc_host_cmd23(host) ?
2395		       RESULT_UNSUP_CARD :
2396		       RESULT_UNSUP_HOST;
2397		goto out_free;
2398	}
2399
2400	/* Start ongoing data request */
2401	if (use_areq) {
2402		mmc_start_req(host, &test_areq.areq, &blkstat);
2403		if (blkstat != MMC_BLK_SUCCESS) {
2404			ret = RESULT_FAIL;
2405			goto out_free;
2406		}
2407	} else {
2408		mmc_wait_for_req(host, mrq);
2409	}
2410
2411	timeout = jiffies + msecs_to_jiffies(3000);
2412	do {
2413		count += 1;
2414
2415		/* Send status command while data transfer in progress */
2416		cmd_ret = mmc_test_send_status(test, &rq->status);
2417		if (cmd_ret)
2418			break;
2419
2420		status = rq->status.resp[0];
2421		if (status & R1_ERROR) {
2422			cmd_ret = -EIO;
2423			break;
2424		}
2425
2426		if (mmc_is_req_done(host, mrq))
2427			break;
2428
2429		expired = time_after(jiffies, timeout);
2430		if (expired) {
2431			pr_info("%s: timeout waiting for Tran state status %#x\n",
2432				mmc_hostname(host), status);
2433			cmd_ret = -ETIMEDOUT;
2434			break;
2435		}
2436	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2437
2438	/* Wait for data request to complete */
2439	if (use_areq) {
2440		mmc_start_req(host, NULL, &blkstat);
2441		if (blkstat != MMC_BLK_SUCCESS)
2442			ret = RESULT_FAIL;
2443	} else {
2444		mmc_wait_for_req_done(test->card->host, mrq);
2445	}
2446
2447	/*
2448	 * For cap_cmd_during_tfr request, upper layer must send stop if
2449	 * required.
2450	 */
2451	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2452		if (ret)
2453			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2454		else
2455			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2456	}
2457
2458	if (ret)
2459		goto out_free;
2460
2461	if (cmd_ret) {
2462		pr_info("%s: Send Status failed: status %#x, error %d\n",
2463			mmc_hostname(test->card->host), status, cmd_ret);
2464	}
2465
2466	ret = mmc_test_check_result(test, mrq);
2467	if (ret)
2468		goto out_free;
2469
2470	ret = mmc_test_wait_busy(test);
2471	if (ret)
2472		goto out_free;
2473
2474	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2475		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2476			mmc_hostname(test->card->host), count, t->blocks);
2477
2478	if (cmd_ret)
2479		ret = cmd_ret;
2480out_free:
2481	kfree(rq);
2482
2483	return ret;
2484}
2485
2486static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2487				      unsigned long sz, int use_sbc, int write,
2488				      int use_areq)
2489{
2490	struct mmc_test_area *t = &test->area;
2491	int ret;
2492
2493	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2494		return RESULT_UNSUP_HOST;
2495
2496	ret = mmc_test_area_map(test, sz, 0, 0);
2497	if (ret)
2498		return ret;
2499
2500	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2501					use_areq);
2502	if (ret)
2503		return ret;
2504
2505	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2506					 use_areq);
2507}
2508
2509static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2510				    int write, int use_areq)
2511{
2512	struct mmc_test_area *t = &test->area;
2513	unsigned long sz;
2514	int ret;
2515
2516	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2517		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2518						 use_areq);
2519		if (ret)
2520			return ret;
2521	}
2522	return 0;
2523}
2524
2525/*
2526 * Commands during read - no Set Block Count (CMD23).
2527 */
2528static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2529{
2530	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2531}
2532
2533/*
2534 * Commands during write - no Set Block Count (CMD23).
2535 */
2536static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2537{
2538	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2539}
2540
2541/*
2542 * Commands during read - use Set Block Count (CMD23).
2543 */
2544static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2545{
2546	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2547}
2548
2549/*
2550 * Commands during write - use Set Block Count (CMD23).
2551 */
2552static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2553{
2554	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2555}
2556
2557/*
2558 * Commands during non-blocking read - use Set Block Count (CMD23).
2559 */
2560static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2561{
2562	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2563}
2564
2565/*
2566 * Commands during non-blocking write - use Set Block Count (CMD23).
2567 */
2568static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2569{
2570	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2571}
2572
2573static const struct mmc_test_case mmc_test_cases[] = {
2574	{
2575		.name = "Basic write (no data verification)",
2576		.run = mmc_test_basic_write,
2577	},
2578
2579	{
2580		.name = "Basic read (no data verification)",
2581		.run = mmc_test_basic_read,
2582	},
2583
2584	{
2585		.name = "Basic write (with data verification)",
2586		.prepare = mmc_test_prepare_write,
2587		.run = mmc_test_verify_write,
2588		.cleanup = mmc_test_cleanup,
2589	},
2590
2591	{
2592		.name = "Basic read (with data verification)",
2593		.prepare = mmc_test_prepare_read,
2594		.run = mmc_test_verify_read,
2595		.cleanup = mmc_test_cleanup,
2596	},
2597
2598	{
2599		.name = "Multi-block write",
2600		.prepare = mmc_test_prepare_write,
2601		.run = mmc_test_multi_write,
2602		.cleanup = mmc_test_cleanup,
2603	},
2604
2605	{
2606		.name = "Multi-block read",
2607		.prepare = mmc_test_prepare_read,
2608		.run = mmc_test_multi_read,
2609		.cleanup = mmc_test_cleanup,
2610	},
2611
2612	{
2613		.name = "Power of two block writes",
2614		.prepare = mmc_test_prepare_write,
2615		.run = mmc_test_pow2_write,
2616		.cleanup = mmc_test_cleanup,
2617	},
2618
2619	{
2620		.name = "Power of two block reads",
2621		.prepare = mmc_test_prepare_read,
2622		.run = mmc_test_pow2_read,
2623		.cleanup = mmc_test_cleanup,
2624	},
2625
2626	{
2627		.name = "Weird sized block writes",
2628		.prepare = mmc_test_prepare_write,
2629		.run = mmc_test_weird_write,
2630		.cleanup = mmc_test_cleanup,
2631	},
2632
2633	{
2634		.name = "Weird sized block reads",
2635		.prepare = mmc_test_prepare_read,
2636		.run = mmc_test_weird_read,
2637		.cleanup = mmc_test_cleanup,
2638	},
2639
2640	{
2641		.name = "Badly aligned write",
2642		.prepare = mmc_test_prepare_write,
2643		.run = mmc_test_align_write,
2644		.cleanup = mmc_test_cleanup,
2645	},
2646
2647	{
2648		.name = "Badly aligned read",
2649		.prepare = mmc_test_prepare_read,
2650		.run = mmc_test_align_read,
2651		.cleanup = mmc_test_cleanup,
2652	},
2653
2654	{
2655		.name = "Badly aligned multi-block write",
2656		.prepare = mmc_test_prepare_write,
2657		.run = mmc_test_align_multi_write,
2658		.cleanup = mmc_test_cleanup,
2659	},
2660
2661	{
2662		.name = "Badly aligned multi-block read",
2663		.prepare = mmc_test_prepare_read,
2664		.run = mmc_test_align_multi_read,
2665		.cleanup = mmc_test_cleanup,
2666	},
2667
2668	{
2669		.name = "Correct xfer_size at write (start failure)",
2670		.run = mmc_test_xfersize_write,
2671	},
2672
2673	{
2674		.name = "Correct xfer_size at read (start failure)",
2675		.run = mmc_test_xfersize_read,
2676	},
2677
2678	{
2679		.name = "Correct xfer_size at write (midway failure)",
2680		.run = mmc_test_multi_xfersize_write,
2681	},
2682
2683	{
2684		.name = "Correct xfer_size at read (midway failure)",
2685		.run = mmc_test_multi_xfersize_read,
2686	},
2687
2688#ifdef CONFIG_HIGHMEM
2689
2690	{
2691		.name = "Highmem write",
2692		.prepare = mmc_test_prepare_write,
2693		.run = mmc_test_write_high,
2694		.cleanup = mmc_test_cleanup,
2695	},
2696
2697	{
2698		.name = "Highmem read",
2699		.prepare = mmc_test_prepare_read,
2700		.run = mmc_test_read_high,
2701		.cleanup = mmc_test_cleanup,
2702	},
2703
2704	{
2705		.name = "Multi-block highmem write",
2706		.prepare = mmc_test_prepare_write,
2707		.run = mmc_test_multi_write_high,
2708		.cleanup = mmc_test_cleanup,
2709	},
2710
2711	{
2712		.name = "Multi-block highmem read",
2713		.prepare = mmc_test_prepare_read,
2714		.run = mmc_test_multi_read_high,
2715		.cleanup = mmc_test_cleanup,
2716	},
2717
2718#else
2719
2720	{
2721		.name = "Highmem write",
2722		.run = mmc_test_no_highmem,
2723	},
2724
2725	{
2726		.name = "Highmem read",
2727		.run = mmc_test_no_highmem,
2728	},
2729
2730	{
2731		.name = "Multi-block highmem write",
2732		.run = mmc_test_no_highmem,
2733	},
2734
2735	{
2736		.name = "Multi-block highmem read",
2737		.run = mmc_test_no_highmem,
2738	},
2739
2740#endif /* CONFIG_HIGHMEM */
2741
2742	{
2743		.name = "Best-case read performance",
2744		.prepare = mmc_test_area_prepare_fill,
2745		.run = mmc_test_best_read_performance,
2746		.cleanup = mmc_test_area_cleanup,
2747	},
2748
2749	{
2750		.name = "Best-case write performance",
2751		.prepare = mmc_test_area_prepare_erase,
2752		.run = mmc_test_best_write_performance,
2753		.cleanup = mmc_test_area_cleanup,
2754	},
2755
2756	{
2757		.name = "Best-case read performance into scattered pages",
2758		.prepare = mmc_test_area_prepare_fill,
2759		.run = mmc_test_best_read_perf_max_scatter,
2760		.cleanup = mmc_test_area_cleanup,
2761	},
2762
2763	{
2764		.name = "Best-case write performance from scattered pages",
2765		.prepare = mmc_test_area_prepare_erase,
2766		.run = mmc_test_best_write_perf_max_scatter,
2767		.cleanup = mmc_test_area_cleanup,
2768	},
2769
2770	{
2771		.name = "Single read performance by transfer size",
2772		.prepare = mmc_test_area_prepare_fill,
2773		.run = mmc_test_profile_read_perf,
2774		.cleanup = mmc_test_area_cleanup,
2775	},
2776
2777	{
2778		.name = "Single write performance by transfer size",
2779		.prepare = mmc_test_area_prepare,
2780		.run = mmc_test_profile_write_perf,
2781		.cleanup = mmc_test_area_cleanup,
2782	},
2783
2784	{
2785		.name = "Single trim performance by transfer size",
2786		.prepare = mmc_test_area_prepare_fill,
2787		.run = mmc_test_profile_trim_perf,
2788		.cleanup = mmc_test_area_cleanup,
2789	},
2790
2791	{
2792		.name = "Consecutive read performance by transfer size",
2793		.prepare = mmc_test_area_prepare_fill,
2794		.run = mmc_test_profile_seq_read_perf,
2795		.cleanup = mmc_test_area_cleanup,
2796	},
2797
2798	{
2799		.name = "Consecutive write performance by transfer size",
2800		.prepare = mmc_test_area_prepare,
2801		.run = mmc_test_profile_seq_write_perf,
2802		.cleanup = mmc_test_area_cleanup,
2803	},
2804
2805	{
2806		.name = "Consecutive trim performance by transfer size",
2807		.prepare = mmc_test_area_prepare,
2808		.run = mmc_test_profile_seq_trim_perf,
2809		.cleanup = mmc_test_area_cleanup,
2810	},
2811
2812	{
2813		.name = "Random read performance by transfer size",
2814		.prepare = mmc_test_area_prepare,
2815		.run = mmc_test_random_read_perf,
2816		.cleanup = mmc_test_area_cleanup,
2817	},
2818
2819	{
2820		.name = "Random write performance by transfer size",
2821		.prepare = mmc_test_area_prepare,
2822		.run = mmc_test_random_write_perf,
2823		.cleanup = mmc_test_area_cleanup,
2824	},
2825
2826	{
2827		.name = "Large sequential read into scattered pages",
2828		.prepare = mmc_test_area_prepare,
2829		.run = mmc_test_large_seq_read_perf,
2830		.cleanup = mmc_test_area_cleanup,
2831	},
2832
2833	{
2834		.name = "Large sequential write from scattered pages",
2835		.prepare = mmc_test_area_prepare,
2836		.run = mmc_test_large_seq_write_perf,
2837		.cleanup = mmc_test_area_cleanup,
2838	},
2839
2840	{
2841		.name = "Write performance with blocking req 4k to 4MB",
2842		.prepare = mmc_test_area_prepare,
2843		.run = mmc_test_profile_mult_write_blocking_perf,
2844		.cleanup = mmc_test_area_cleanup,
2845	},
2846
2847	{
2848		.name = "Write performance with non-blocking req 4k to 4MB",
2849		.prepare = mmc_test_area_prepare,
2850		.run = mmc_test_profile_mult_write_nonblock_perf,
2851		.cleanup = mmc_test_area_cleanup,
2852	},
2853
2854	{
2855		.name = "Read performance with blocking req 4k to 4MB",
2856		.prepare = mmc_test_area_prepare,
2857		.run = mmc_test_profile_mult_read_blocking_perf,
2858		.cleanup = mmc_test_area_cleanup,
2859	},
2860
2861	{
2862		.name = "Read performance with non-blocking req 4k to 4MB",
2863		.prepare = mmc_test_area_prepare,
2864		.run = mmc_test_profile_mult_read_nonblock_perf,
2865		.cleanup = mmc_test_area_cleanup,
2866	},
2867
2868	{
2869		.name = "Write performance blocking req 1 to 512 sg elems",
2870		.prepare = mmc_test_area_prepare,
2871		.run = mmc_test_profile_sglen_wr_blocking_perf,
2872		.cleanup = mmc_test_area_cleanup,
2873	},
2874
2875	{
2876		.name = "Write performance non-blocking req 1 to 512 sg elems",
2877		.prepare = mmc_test_area_prepare,
2878		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2879		.cleanup = mmc_test_area_cleanup,
2880	},
2881
2882	{
2883		.name = "Read performance blocking req 1 to 512 sg elems",
2884		.prepare = mmc_test_area_prepare,
2885		.run = mmc_test_profile_sglen_r_blocking_perf,
2886		.cleanup = mmc_test_area_cleanup,
2887	},
2888
2889	{
2890		.name = "Read performance non-blocking req 1 to 512 sg elems",
2891		.prepare = mmc_test_area_prepare,
2892		.run = mmc_test_profile_sglen_r_nonblock_perf,
2893		.cleanup = mmc_test_area_cleanup,
2894	},
2895
2896	{
2897		.name = "Reset test",
2898		.run = mmc_test_reset,
2899	},
2900
2901	{
2902		.name = "Commands during read - no Set Block Count (CMD23)",
2903		.prepare = mmc_test_area_prepare,
2904		.run = mmc_test_cmds_during_read,
2905		.cleanup = mmc_test_area_cleanup,
2906	},
2907
2908	{
2909		.name = "Commands during write - no Set Block Count (CMD23)",
2910		.prepare = mmc_test_area_prepare,
2911		.run = mmc_test_cmds_during_write,
2912		.cleanup = mmc_test_area_cleanup,
2913	},
2914
2915	{
2916		.name = "Commands during read - use Set Block Count (CMD23)",
2917		.prepare = mmc_test_area_prepare,
2918		.run = mmc_test_cmds_during_read_cmd23,
2919		.cleanup = mmc_test_area_cleanup,
2920	},
2921
2922	{
2923		.name = "Commands during write - use Set Block Count (CMD23)",
2924		.prepare = mmc_test_area_prepare,
2925		.run = mmc_test_cmds_during_write_cmd23,
2926		.cleanup = mmc_test_area_cleanup,
2927	},
2928
2929	{
2930		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2931		.prepare = mmc_test_area_prepare,
2932		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2933		.cleanup = mmc_test_area_cleanup,
2934	},
2935
2936	{
2937		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2938		.prepare = mmc_test_area_prepare,
2939		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2940		.cleanup = mmc_test_area_cleanup,
2941	},
2942};
2943
2944static DEFINE_MUTEX(mmc_test_lock);
2945
2946static LIST_HEAD(mmc_test_result);
2947
2948static void mmc_test_run(struct mmc_test_card *test, int testcase)
2949{
2950	int i, ret;
2951
2952	pr_info("%s: Starting tests of card %s...\n",
2953		mmc_hostname(test->card->host), mmc_card_id(test->card));
2954
2955	mmc_claim_host(test->card->host);
2956
2957	for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2958		struct mmc_test_general_result *gr;
2959
2960		if (testcase && ((i + 1) != testcase))
2961			continue;
2962
2963		pr_info("%s: Test case %d. %s...\n",
2964			mmc_hostname(test->card->host), i + 1,
2965			mmc_test_cases[i].name);
2966
2967		if (mmc_test_cases[i].prepare) {
2968			ret = mmc_test_cases[i].prepare(test);
2969			if (ret) {
2970				pr_info("%s: Result: Prepare "
2971					"stage failed! (%d)\n",
2972					mmc_hostname(test->card->host),
2973					ret);
2974				continue;
2975			}
2976		}
2977
2978		gr = kzalloc(sizeof(struct mmc_test_general_result),
2979			GFP_KERNEL);
2980		if (gr) {
2981			INIT_LIST_HEAD(&gr->tr_lst);
2982
2983			/* Assign data what we know already */
2984			gr->card = test->card;
2985			gr->testcase = i;
2986
2987			/* Append container to global one */
2988			list_add_tail(&gr->link, &mmc_test_result);
2989
2990			/*
2991			 * Save the pointer to created container in our private
2992			 * structure.
2993			 */
2994			test->gr = gr;
2995		}
2996
2997		ret = mmc_test_cases[i].run(test);
2998		switch (ret) {
2999		case RESULT_OK:
3000			pr_info("%s: Result: OK\n",
3001				mmc_hostname(test->card->host));
3002			break;
3003		case RESULT_FAIL:
3004			pr_info("%s: Result: FAILED\n",
3005				mmc_hostname(test->card->host));
3006			break;
3007		case RESULT_UNSUP_HOST:
3008			pr_info("%s: Result: UNSUPPORTED "
3009				"(by host)\n",
3010				mmc_hostname(test->card->host));
3011			break;
3012		case RESULT_UNSUP_CARD:
3013			pr_info("%s: Result: UNSUPPORTED "
3014				"(by card)\n",
3015				mmc_hostname(test->card->host));
3016			break;
3017		default:
3018			pr_info("%s: Result: ERROR (%d)\n",
3019				mmc_hostname(test->card->host), ret);
3020		}
3021
3022		/* Save the result */
3023		if (gr)
3024			gr->result = ret;
3025
3026		if (mmc_test_cases[i].cleanup) {
3027			ret = mmc_test_cases[i].cleanup(test);
3028			if (ret) {
3029				pr_info("%s: Warning: Cleanup "
3030					"stage failed! (%d)\n",
3031					mmc_hostname(test->card->host),
3032					ret);
3033			}
3034		}
3035	}
3036
3037	mmc_release_host(test->card->host);
3038
3039	pr_info("%s: Tests completed.\n",
3040		mmc_hostname(test->card->host));
3041}
3042
3043static void mmc_test_free_result(struct mmc_card *card)
3044{
3045	struct mmc_test_general_result *gr, *grs;
3046
3047	mutex_lock(&mmc_test_lock);
3048
3049	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3050		struct mmc_test_transfer_result *tr, *trs;
3051
3052		if (card && gr->card != card)
3053			continue;
3054
3055		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3056			list_del(&tr->link);
3057			kfree(tr);
3058		}
3059
3060		list_del(&gr->link);
3061		kfree(gr);
3062	}
3063
3064	mutex_unlock(&mmc_test_lock);
3065}
3066
3067static LIST_HEAD(mmc_test_file_test);
3068
3069static int mtf_test_show(struct seq_file *sf, void *data)
3070{
3071	struct mmc_card *card = (struct mmc_card *)sf->private;
3072	struct mmc_test_general_result *gr;
3073
3074	mutex_lock(&mmc_test_lock);
3075
3076	list_for_each_entry(gr, &mmc_test_result, link) {
3077		struct mmc_test_transfer_result *tr;
3078
3079		if (gr->card != card)
3080			continue;
3081
3082		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3083
3084		list_for_each_entry(tr, &gr->tr_lst, link) {
3085			seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
3086				tr->count, tr->sectors,
3087				(unsigned long)tr->ts.tv_sec,
3088				(unsigned long)tr->ts.tv_nsec,
3089				tr->rate, tr->iops / 100, tr->iops % 100);
3090		}
3091	}
3092
3093	mutex_unlock(&mmc_test_lock);
3094
3095	return 0;
3096}
3097
3098static int mtf_test_open(struct inode *inode, struct file *file)
3099{
3100	return single_open(file, mtf_test_show, inode->i_private);
3101}
3102
3103static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3104	size_t count, loff_t *pos)
3105{
3106	struct seq_file *sf = (struct seq_file *)file->private_data;
3107	struct mmc_card *card = (struct mmc_card *)sf->private;
3108	struct mmc_test_card *test;
3109	long testcase;
3110	int ret;
3111
3112	ret = kstrtol_from_user(buf, count, 10, &testcase);
3113	if (ret)
3114		return ret;
3115
3116	test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
3117	if (!test)
3118		return -ENOMEM;
3119
3120	/*
3121	 * Remove all test cases associated with given card. Thus we have only
3122	 * actual data of the last run.
3123	 */
3124	mmc_test_free_result(card);
3125
3126	test->card = card;
3127
3128	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3129#ifdef CONFIG_HIGHMEM
3130	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3131#endif
3132
3133#ifdef CONFIG_HIGHMEM
3134	if (test->buffer && test->highmem) {
3135#else
3136	if (test->buffer) {
3137#endif
3138		mutex_lock(&mmc_test_lock);
3139		mmc_test_run(test, testcase);
3140		mutex_unlock(&mmc_test_lock);
3141	}
3142
3143#ifdef CONFIG_HIGHMEM
3144	__free_pages(test->highmem, BUFFER_ORDER);
3145#endif
3146	kfree(test->buffer);
3147	kfree(test);
3148
3149	return count;
3150}
3151
3152static const struct file_operations mmc_test_fops_test = {
3153	.open		= mtf_test_open,
3154	.read		= seq_read,
3155	.write		= mtf_test_write,
3156	.llseek		= seq_lseek,
3157	.release	= single_release,
3158};
3159
3160static int mtf_testlist_show(struct seq_file *sf, void *data)
3161{
3162	int i;
3163
3164	mutex_lock(&mmc_test_lock);
3165
3166	seq_printf(sf, "0:\tRun all tests\n");
3167	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3168		seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
3169
3170	mutex_unlock(&mmc_test_lock);
3171
3172	return 0;
3173}
3174
3175static int mtf_testlist_open(struct inode *inode, struct file *file)
3176{
3177	return single_open(file, mtf_testlist_show, inode->i_private);
3178}
3179
3180static const struct file_operations mmc_test_fops_testlist = {
3181	.open		= mtf_testlist_open,
3182	.read		= seq_read,
3183	.llseek		= seq_lseek,
3184	.release	= single_release,
3185};
3186
3187static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3188{
3189	struct mmc_test_dbgfs_file *df, *dfs;
3190
3191	mutex_lock(&mmc_test_lock);
3192
3193	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3194		if (card && df->card != card)
3195			continue;
3196		debugfs_remove(df->file);
3197		list_del(&df->link);
3198		kfree(df);
3199	}
3200
3201	mutex_unlock(&mmc_test_lock);
3202}
3203
3204static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3205	const char *name, umode_t mode, const struct file_operations *fops)
3206{
3207	struct dentry *file = NULL;
3208	struct mmc_test_dbgfs_file *df;
3209
3210	if (card->debugfs_root)
3211		file = debugfs_create_file(name, mode, card->debugfs_root,
3212			card, fops);
3213
3214	if (IS_ERR_OR_NULL(file)) {
3215		dev_err(&card->dev,
3216			"Can't create %s. Perhaps debugfs is disabled.\n",
3217			name);
3218		return -ENODEV;
3219	}
3220
3221	df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
3222	if (!df) {
3223		debugfs_remove(file);
3224		dev_err(&card->dev,
3225			"Can't allocate memory for internal usage.\n");
3226		return -ENOMEM;
3227	}
3228
3229	df->card = card;
3230	df->file = file;
3231
3232	list_add(&df->link, &mmc_test_file_test);
3233	return 0;
3234}
3235
3236static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3237{
3238	int ret;
3239
3240	mutex_lock(&mmc_test_lock);
3241
3242	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3243		&mmc_test_fops_test);
3244	if (ret)
3245		goto err;
3246
3247	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3248		&mmc_test_fops_testlist);
3249	if (ret)
3250		goto err;
3251
3252err:
3253	mutex_unlock(&mmc_test_lock);
3254
3255	return ret;
3256}
3257
3258static int mmc_test_probe(struct mmc_card *card)
3259{
3260	int ret;
3261
3262	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3263		return -ENODEV;
3264
3265	ret = mmc_test_register_dbgfs_file(card);
3266	if (ret)
3267		return ret;
3268
 
 
 
 
 
 
 
 
3269	dev_info(&card->dev, "Card claimed for testing.\n");
3270
3271	return 0;
3272}
3273
3274static void mmc_test_remove(struct mmc_card *card)
3275{
 
 
 
 
 
3276	mmc_test_free_result(card);
3277	mmc_test_free_dbgfs_file(card);
3278}
3279
3280static void mmc_test_shutdown(struct mmc_card *card)
3281{
3282}
3283
3284static struct mmc_driver mmc_driver = {
3285	.drv		= {
3286		.name	= "mmc_test",
3287	},
3288	.probe		= mmc_test_probe,
3289	.remove		= mmc_test_remove,
3290	.shutdown	= mmc_test_shutdown,
3291};
3292
3293static int __init mmc_test_init(void)
3294{
3295	return mmc_register_driver(&mmc_driver);
3296}
3297
3298static void __exit mmc_test_exit(void)
3299{
3300	/* Clear stalled data if card is still plugged */
3301	mmc_test_free_result(NULL);
3302	mmc_test_free_dbgfs_file(NULL);
3303
3304	mmc_unregister_driver(&mmc_driver);
3305}
3306
3307module_init(mmc_test_init);
3308module_exit(mmc_test_exit);
3309
3310MODULE_LICENSE("GPL");
3311MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3312MODULE_AUTHOR("Pierre Ossman");