Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/prctl.h>
   9#include <linux/slab.h>
  10#include <linux/sched.h>
  11#include <linux/sched/idle.h>
  12#include <linux/sched/debug.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/pm.h>
  18#include <linux/tick.h>
  19#include <linux/random.h>
  20#include <linux/user-return-notifier.h>
  21#include <linux/dmi.h>
  22#include <linux/utsname.h>
  23#include <linux/stackprotector.h>
 
  24#include <linux/cpuidle.h>
  25#include <linux/acpi.h>
  26#include <linux/elf-randomize.h>
  27#include <trace/events/power.h>
  28#include <linux/hw_breakpoint.h>
  29#include <asm/cpu.h>
  30#include <asm/apic.h>
 
  31#include <linux/uaccess.h>
  32#include <asm/mwait.h>
  33#include <asm/fpu/api.h>
  34#include <asm/fpu/sched.h>
  35#include <asm/fpu/xstate.h>
  36#include <asm/debugreg.h>
  37#include <asm/nmi.h>
  38#include <asm/tlbflush.h>
  39#include <asm/mce.h>
  40#include <asm/vm86.h>
  41#include <asm/switch_to.h>
  42#include <asm/desc.h>
  43#include <asm/prctl.h>
  44#include <asm/spec-ctrl.h>
  45#include <asm/io_bitmap.h>
  46#include <asm/proto.h>
  47#include <asm/frame.h>
  48#include <asm/unwind.h>
  49#include <asm/tdx.h>
  50
  51#include "process.h"
  52
  53/*
  54 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  55 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  56 * so they are allowed to end up in the .data..cacheline_aligned
  57 * section. Since TSS's are completely CPU-local, we want them
  58 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  59 */
  60__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  61	.x86_tss = {
  62		/*
  63		 * .sp0 is only used when entering ring 0 from a lower
  64		 * privilege level.  Since the init task never runs anything
  65		 * but ring 0 code, there is no need for a valid value here.
  66		 * Poison it.
  67		 */
  68		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  69
  70#ifdef CONFIG_X86_32
  71		.sp1 = TOP_OF_INIT_STACK,
  72
  73		.ss0 = __KERNEL_DS,
  74		.ss1 = __KERNEL_CS,
 
  75#endif
  76		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  77	 },
 
 
 
 
 
 
 
 
 
 
 
 
  78};
  79EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  80
  81DEFINE_PER_CPU(bool, __tss_limit_invalid);
  82EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  83
  84/*
  85 * this gets called so that we can store lazy state into memory and copy the
  86 * current task into the new thread.
  87 */
  88int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  89{
  90	memcpy(dst, src, arch_task_struct_size);
  91#ifdef CONFIG_VM86
  92	dst->thread.vm86 = NULL;
  93#endif
  94	/* Drop the copied pointer to current's fpstate */
  95	dst->thread.fpu.fpstate = NULL;
  96
  97	return 0;
  98}
  99
 100#ifdef CONFIG_X86_64
 101void arch_release_task_struct(struct task_struct *tsk)
 102{
 103	if (fpu_state_size_dynamic())
 104		fpstate_free(&tsk->thread.fpu);
 105}
 106#endif
 107
 108/*
 109 * Free thread data structures etc..
 110 */
 111void exit_thread(struct task_struct *tsk)
 112{
 113	struct thread_struct *t = &tsk->thread;
 
 114	struct fpu *fpu = &t->fpu;
 115
 116	if (test_thread_flag(TIF_IO_BITMAP))
 117		io_bitmap_exit(tsk);
 118
 119	free_vm86(t);
 120
 121	fpu__drop(fpu);
 122}
 123
 124static int set_new_tls(struct task_struct *p, unsigned long tls)
 125{
 126	struct user_desc __user *utls = (struct user_desc __user *)tls;
 127
 128	if (in_ia32_syscall())
 129		return do_set_thread_area(p, -1, utls, 0);
 130	else
 131		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 132}
 133
 134int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 135{
 136	unsigned long clone_flags = args->flags;
 137	unsigned long sp = args->stack;
 138	unsigned long tls = args->tls;
 139	struct inactive_task_frame *frame;
 140	struct fork_frame *fork_frame;
 141	struct pt_regs *childregs;
 142	int ret = 0;
 143
 144	childregs = task_pt_regs(p);
 145	fork_frame = container_of(childregs, struct fork_frame, regs);
 146	frame = &fork_frame->frame;
 147
 148	frame->bp = encode_frame_pointer(childregs);
 149	frame->ret_addr = (unsigned long) ret_from_fork;
 150	p->thread.sp = (unsigned long) fork_frame;
 151	p->thread.io_bitmap = NULL;
 152	p->thread.iopl_warn = 0;
 153	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 154
 155#ifdef CONFIG_X86_64
 156	current_save_fsgs();
 157	p->thread.fsindex = current->thread.fsindex;
 158	p->thread.fsbase = current->thread.fsbase;
 159	p->thread.gsindex = current->thread.gsindex;
 160	p->thread.gsbase = current->thread.gsbase;
 161
 162	savesegment(es, p->thread.es);
 163	savesegment(ds, p->thread.ds);
 164#else
 165	p->thread.sp0 = (unsigned long) (childregs + 1);
 166	savesegment(gs, p->thread.gs);
 167	/*
 168	 * Clear all status flags including IF and set fixed bit. 64bit
 169	 * does not have this initialization as the frame does not contain
 170	 * flags. The flags consistency (especially vs. AC) is there
 171	 * ensured via objtool, which lacks 32bit support.
 172	 */
 173	frame->flags = X86_EFLAGS_FIXED;
 174#endif
 175
 176	fpu_clone(p, clone_flags, args->fn);
 177
 178	/* Kernel thread ? */
 179	if (unlikely(p->flags & PF_KTHREAD)) {
 180		p->thread.pkru = pkru_get_init_value();
 181		memset(childregs, 0, sizeof(struct pt_regs));
 182		kthread_frame_init(frame, args->fn, args->fn_arg);
 183		return 0;
 184	}
 185
 186	/*
 187	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 188	 * is only valid when scheduled out.
 189	 */
 190	p->thread.pkru = read_pkru();
 191
 192	frame->bx = 0;
 193	*childregs = *current_pt_regs();
 194	childregs->ax = 0;
 195	if (sp)
 196		childregs->sp = sp;
 197
 198	if (unlikely(args->fn)) {
 199		/*
 200		 * A user space thread, but it doesn't return to
 201		 * ret_after_fork().
 202		 *
 203		 * In order to indicate that to tools like gdb,
 204		 * we reset the stack and instruction pointers.
 205		 *
 206		 * It does the same kernel frame setup to return to a kernel
 207		 * function that a kernel thread does.
 208		 */
 209		childregs->sp = 0;
 210		childregs->ip = 0;
 211		kthread_frame_init(frame, args->fn, args->fn_arg);
 212		return 0;
 213	}
 214
 215	/* Set a new TLS for the child thread? */
 216	if (clone_flags & CLONE_SETTLS)
 217		ret = set_new_tls(p, tls);
 218
 219	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 220		io_bitmap_share(p);
 221
 222	return ret;
 223}
 224
 225static void pkru_flush_thread(void)
 226{
 227	/*
 228	 * If PKRU is enabled the default PKRU value has to be loaded into
 229	 * the hardware right here (similar to context switch).
 230	 */
 231	pkru_write_default();
 232}
 233
 234void flush_thread(void)
 235{
 236	struct task_struct *tsk = current;
 237
 238	flush_ptrace_hw_breakpoint(tsk);
 239	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 240
 241	fpu_flush_thread();
 242	pkru_flush_thread();
 
 
 
 
 243}
 244
 245void disable_TSC(void)
 246{
 247	preempt_disable();
 248	if (!test_and_set_thread_flag(TIF_NOTSC))
 249		/*
 250		 * Must flip the CPU state synchronously with
 251		 * TIF_NOTSC in the current running context.
 252		 */
 253		cr4_set_bits(X86_CR4_TSD);
 254	preempt_enable();
 255}
 256
 
 
 
 
 
 257static void enable_TSC(void)
 258{
 259	preempt_disable();
 260	if (test_and_clear_thread_flag(TIF_NOTSC))
 261		/*
 262		 * Must flip the CPU state synchronously with
 263		 * TIF_NOTSC in the current running context.
 264		 */
 265		cr4_clear_bits(X86_CR4_TSD);
 266	preempt_enable();
 267}
 268
 269int get_tsc_mode(unsigned long adr)
 270{
 271	unsigned int val;
 272
 273	if (test_thread_flag(TIF_NOTSC))
 274		val = PR_TSC_SIGSEGV;
 275	else
 276		val = PR_TSC_ENABLE;
 277
 278	return put_user(val, (unsigned int __user *)adr);
 279}
 280
 281int set_tsc_mode(unsigned int val)
 282{
 283	if (val == PR_TSC_SIGSEGV)
 284		disable_TSC();
 285	else if (val == PR_TSC_ENABLE)
 286		enable_TSC();
 287	else
 288		return -EINVAL;
 289
 290	return 0;
 291}
 292
 293DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 294
 295static void set_cpuid_faulting(bool on)
 296{
 297	u64 msrval;
 298
 299	msrval = this_cpu_read(msr_misc_features_shadow);
 300	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 301	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 302	this_cpu_write(msr_misc_features_shadow, msrval);
 303	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 304}
 305
 306static void disable_cpuid(void)
 307{
 308	preempt_disable();
 309	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 310		/*
 311		 * Must flip the CPU state synchronously with
 312		 * TIF_NOCPUID in the current running context.
 313		 */
 314		set_cpuid_faulting(true);
 315	}
 316	preempt_enable();
 317}
 318
 319static void enable_cpuid(void)
 320{
 321	preempt_disable();
 322	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 323		/*
 324		 * Must flip the CPU state synchronously with
 325		 * TIF_NOCPUID in the current running context.
 326		 */
 327		set_cpuid_faulting(false);
 328	}
 329	preempt_enable();
 330}
 331
 332static int get_cpuid_mode(void)
 333{
 334	return !test_thread_flag(TIF_NOCPUID);
 335}
 336
 337static int set_cpuid_mode(unsigned long cpuid_enabled)
 338{
 339	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 340		return -ENODEV;
 341
 342	if (cpuid_enabled)
 343		enable_cpuid();
 344	else
 345		disable_cpuid();
 346
 347	return 0;
 348}
 
 349
 350/*
 351 * Called immediately after a successful exec.
 352 */
 353void arch_setup_new_exec(void)
 354{
 355	/* If cpuid was previously disabled for this task, re-enable it. */
 356	if (test_thread_flag(TIF_NOCPUID))
 357		enable_cpuid();
 358
 359	/*
 360	 * Don't inherit TIF_SSBD across exec boundary when
 361	 * PR_SPEC_DISABLE_NOEXEC is used.
 362	 */
 363	if (test_thread_flag(TIF_SSBD) &&
 364	    task_spec_ssb_noexec(current)) {
 365		clear_thread_flag(TIF_SSBD);
 366		task_clear_spec_ssb_disable(current);
 367		task_clear_spec_ssb_noexec(current);
 368		speculation_ctrl_update(read_thread_flags());
 369	}
 370}
 371
 372#ifdef CONFIG_X86_IOPL_IOPERM
 373static inline void switch_to_bitmap(unsigned long tifp)
 374{
 375	/*
 376	 * Invalidate I/O bitmap if the previous task used it. This prevents
 377	 * any possible leakage of an active I/O bitmap.
 378	 *
 379	 * If the next task has an I/O bitmap it will handle it on exit to
 380	 * user mode.
 381	 */
 382	if (tifp & _TIF_IO_BITMAP)
 383		tss_invalidate_io_bitmap();
 384}
 385
 386static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 387{
 388	/*
 389	 * Copy at least the byte range of the incoming tasks bitmap which
 390	 * covers the permitted I/O ports.
 391	 *
 392	 * If the previous task which used an I/O bitmap had more bits
 393	 * permitted, then the copy needs to cover those as well so they
 394	 * get turned off.
 395	 */
 396	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 397	       max(tss->io_bitmap.prev_max, iobm->max));
 398
 399	/*
 400	 * Store the new max and the sequence number of this bitmap
 401	 * and a pointer to the bitmap itself.
 402	 */
 403	tss->io_bitmap.prev_max = iobm->max;
 404	tss->io_bitmap.prev_sequence = iobm->sequence;
 405}
 406
 407/**
 408 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
 409 */
 410void native_tss_update_io_bitmap(void)
 411{
 412	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 413	struct thread_struct *t = &current->thread;
 414	u16 *base = &tss->x86_tss.io_bitmap_base;
 415
 416	if (!test_thread_flag(TIF_IO_BITMAP)) {
 417		native_tss_invalidate_io_bitmap();
 418		return;
 
 
 
 
 419	}
 420
 421	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 422		*base = IO_BITMAP_OFFSET_VALID_ALL;
 423	} else {
 424		struct io_bitmap *iobm = t->io_bitmap;
 425
 426		/*
 427		 * Only copy bitmap data when the sequence number differs. The
 428		 * update time is accounted to the incoming task.
 429		 */
 430		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 431			tss_copy_io_bitmap(tss, iobm);
 432
 433		/* Enable the bitmap */
 434		*base = IO_BITMAP_OFFSET_VALID_MAP;
 435	}
 436
 437	/*
 438	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 439	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 440	 * access from user space to trigger a #GP because tbe bitmap is outside
 441	 * the TSS limit.
 442	 */
 443	refresh_tss_limit();
 444}
 445#else /* CONFIG_X86_IOPL_IOPERM */
 446static inline void switch_to_bitmap(unsigned long tifp) { }
 447#endif
 448
 449#ifdef CONFIG_SMP
 450
 451struct ssb_state {
 452	struct ssb_state	*shared_state;
 453	raw_spinlock_t		lock;
 454	unsigned int		disable_state;
 455	unsigned long		local_state;
 456};
 457
 458#define LSTATE_SSB	0
 459
 460static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 461
 462void speculative_store_bypass_ht_init(void)
 463{
 464	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 465	unsigned int this_cpu = smp_processor_id();
 466	unsigned int cpu;
 467
 468	st->local_state = 0;
 469
 470	/*
 471	 * Shared state setup happens once on the first bringup
 472	 * of the CPU. It's not destroyed on CPU hotunplug.
 473	 */
 474	if (st->shared_state)
 475		return;
 476
 477	raw_spin_lock_init(&st->lock);
 478
 479	/*
 480	 * Go over HT siblings and check whether one of them has set up the
 481	 * shared state pointer already.
 482	 */
 483	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 484		if (cpu == this_cpu)
 485			continue;
 486
 487		if (!per_cpu(ssb_state, cpu).shared_state)
 488			continue;
 489
 490		/* Link it to the state of the sibling: */
 491		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 492		return;
 493	}
 494
 495	/*
 496	 * First HT sibling to come up on the core.  Link shared state of
 497	 * the first HT sibling to itself. The siblings on the same core
 498	 * which come up later will see the shared state pointer and link
 499	 * themselves to the state of this CPU.
 500	 */
 501	st->shared_state = st;
 502}
 503
 504/*
 505 * Logic is: First HT sibling enables SSBD for both siblings in the core
 506 * and last sibling to disable it, disables it for the whole core. This how
 507 * MSR_SPEC_CTRL works in "hardware":
 508 *
 509 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 510 */
 511static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 512{
 513	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 514	u64 msr = x86_amd_ls_cfg_base;
 515
 516	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 517		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 518		wrmsrl(MSR_AMD64_LS_CFG, msr);
 519		return;
 520	}
 521
 522	if (tifn & _TIF_SSBD) {
 523		/*
 524		 * Since this can race with prctl(), block reentry on the
 525		 * same CPU.
 526		 */
 527		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 528			return;
 529
 530		msr |= x86_amd_ls_cfg_ssbd_mask;
 531
 532		raw_spin_lock(&st->shared_state->lock);
 533		/* First sibling enables SSBD: */
 534		if (!st->shared_state->disable_state)
 535			wrmsrl(MSR_AMD64_LS_CFG, msr);
 536		st->shared_state->disable_state++;
 537		raw_spin_unlock(&st->shared_state->lock);
 538	} else {
 539		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 540			return;
 541
 542		raw_spin_lock(&st->shared_state->lock);
 543		st->shared_state->disable_state--;
 544		if (!st->shared_state->disable_state)
 545			wrmsrl(MSR_AMD64_LS_CFG, msr);
 546		raw_spin_unlock(&st->shared_state->lock);
 547	}
 548}
 549#else
 550static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 551{
 552	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 553
 554	wrmsrl(MSR_AMD64_LS_CFG, msr);
 555}
 556#endif
 557
 558static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 559{
 560	/*
 561	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 562	 * so ssbd_tif_to_spec_ctrl() just works.
 563	 */
 564	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 565}
 566
 567/*
 568 * Update the MSRs managing speculation control, during context switch.
 569 *
 570 * tifp: Previous task's thread flags
 571 * tifn: Next task's thread flags
 572 */
 573static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 574						      unsigned long tifn)
 575{
 576	unsigned long tif_diff = tifp ^ tifn;
 577	u64 msr = x86_spec_ctrl_base;
 578	bool updmsr = false;
 579
 580	lockdep_assert_irqs_disabled();
 581
 582	/* Handle change of TIF_SSBD depending on the mitigation method. */
 583	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 584		if (tif_diff & _TIF_SSBD)
 585			amd_set_ssb_virt_state(tifn);
 586	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 587		if (tif_diff & _TIF_SSBD)
 588			amd_set_core_ssb_state(tifn);
 589	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 590		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 591		updmsr |= !!(tif_diff & _TIF_SSBD);
 592		msr |= ssbd_tif_to_spec_ctrl(tifn);
 593	}
 594
 595	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 596	if (IS_ENABLED(CONFIG_SMP) &&
 597	    static_branch_unlikely(&switch_to_cond_stibp)) {
 598		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 599		msr |= stibp_tif_to_spec_ctrl(tifn);
 600	}
 601
 602	if (updmsr)
 603		update_spec_ctrl_cond(msr);
 604}
 605
 606static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 607{
 608	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 609		if (task_spec_ssb_disable(tsk))
 610			set_tsk_thread_flag(tsk, TIF_SSBD);
 611		else
 612			clear_tsk_thread_flag(tsk, TIF_SSBD);
 613
 614		if (task_spec_ib_disable(tsk))
 615			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 616		else
 617			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 618	}
 619	/* Return the updated threadinfo flags*/
 620	return read_task_thread_flags(tsk);
 621}
 622
 623void speculation_ctrl_update(unsigned long tif)
 624{
 625	unsigned long flags;
 626
 627	/* Forced update. Make sure all relevant TIF flags are different */
 628	local_irq_save(flags);
 629	__speculation_ctrl_update(~tif, tif);
 630	local_irq_restore(flags);
 631}
 632
 633/* Called from seccomp/prctl update */
 634void speculation_ctrl_update_current(void)
 635{
 636	preempt_disable();
 637	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 638	preempt_enable();
 639}
 640
 641static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 642{
 643	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 644
 645	newval = cr4 ^ mask;
 646	if (newval != cr4) {
 647		this_cpu_write(cpu_tlbstate.cr4, newval);
 648		__write_cr4(newval);
 649	}
 650}
 651
 652void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 653{
 654	unsigned long tifp, tifn;
 655
 656	tifn = read_task_thread_flags(next_p);
 657	tifp = read_task_thread_flags(prev_p);
 658
 659	switch_to_bitmap(tifp);
 660
 661	propagate_user_return_notify(prev_p, next_p);
 662
 663	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 664	    arch_has_block_step()) {
 665		unsigned long debugctl, msk;
 666
 667		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 668		debugctl &= ~DEBUGCTLMSR_BTF;
 669		msk = tifn & _TIF_BLOCKSTEP;
 670		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 671		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 672	}
 673
 674	if ((tifp ^ tifn) & _TIF_NOTSC)
 675		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 676
 677	if ((tifp ^ tifn) & _TIF_NOCPUID)
 678		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 679
 680	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 681		__speculation_ctrl_update(tifp, tifn);
 682	} else {
 683		speculation_ctrl_update_tif(prev_p);
 684		tifn = speculation_ctrl_update_tif(next_p);
 685
 686		/* Enforce MSR update to ensure consistent state */
 687		__speculation_ctrl_update(~tifn, tifn);
 688	}
 689}
 690
 691/*
 692 * Idle related variables and functions
 693 */
 694unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 695EXPORT_SYMBOL(boot_option_idle_override);
 696
 697static void (*x86_idle)(void);
 698
 699#ifndef CONFIG_SMP
 700static inline void play_dead(void)
 701{
 702	BUG();
 703}
 704#endif
 705
 706void arch_cpu_idle_enter(void)
 707{
 708	tsc_verify_tsc_adjust(false);
 709	local_touch_nmi();
 710}
 711
 712void arch_cpu_idle_dead(void)
 713{
 714	play_dead();
 715}
 716
 717/*
 718 * Called from the generic idle code.
 719 */
 720void arch_cpu_idle(void)
 721{
 722	x86_idle();
 723}
 724
 725/*
 726 * We use this if we don't have any better idle routine..
 727 */
 728void __cpuidle default_idle(void)
 729{
 730	raw_safe_halt();
 
 
 731}
 732#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 733EXPORT_SYMBOL(default_idle);
 734#endif
 735
 736#ifdef CONFIG_XEN
 737bool xen_set_default_idle(void)
 738{
 739	bool ret = !!x86_idle;
 740
 741	x86_idle = default_idle;
 742
 743	return ret;
 744}
 745#endif
 746
 747void __noreturn stop_this_cpu(void *dummy)
 748{
 749	local_irq_disable();
 750	/*
 751	 * Remove this CPU:
 752	 */
 753	set_cpu_online(smp_processor_id(), false);
 754	disable_local_APIC();
 755	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 756
 757	/*
 758	 * Use wbinvd on processors that support SME. This provides support
 759	 * for performing a successful kexec when going from SME inactive
 760	 * to SME active (or vice-versa). The cache must be cleared so that
 761	 * if there are entries with the same physical address, both with and
 762	 * without the encryption bit, they don't race each other when flushed
 763	 * and potentially end up with the wrong entry being committed to
 764	 * memory.
 765	 *
 766	 * Test the CPUID bit directly because the machine might've cleared
 767	 * X86_FEATURE_SME due to cmdline options.
 768	 */
 769	if (cpuid_eax(0x8000001f) & BIT(0))
 770		native_wbinvd();
 771	for (;;) {
 772		/*
 773		 * Use native_halt() so that memory contents don't change
 774		 * (stack usage and variables) after possibly issuing the
 775		 * native_wbinvd() above.
 776		 */
 777		native_halt();
 778	}
 779}
 780
 781/*
 782 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 783 * states (local apic timer and TSC stop).
 784 *
 785 * XXX this function is completely buggered vs RCU and tracing.
 786 */
 787static void amd_e400_idle(void)
 788{
 789	/*
 790	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 791	 * gets set after static_cpu_has() places have been converted via
 792	 * alternatives.
 793	 */
 794	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 795		default_idle();
 796		return;
 797	}
 798
 799	tick_broadcast_enter();
 800
 801	default_idle();
 802
 803	/*
 804	 * The switch back from broadcast mode needs to be called with
 805	 * interrupts disabled.
 806	 */
 807	raw_local_irq_disable();
 808	tick_broadcast_exit();
 809	raw_local_irq_enable();
 810}
 811
 812/*
 813 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
 814 * exists and whenever MONITOR/MWAIT extensions are present there is at
 815 * least one C1 substate.
 
 
 816 *
 817 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
 818 * is passed to kernel commandline parameter.
 819 */
 820static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 821{
 822	u32 eax, ebx, ecx, edx;
 823
 824	/* User has disallowed the use of MWAIT. Fallback to HALT */
 825	if (boot_option_idle_override == IDLE_NOMWAIT)
 826		return 0;
 827
 828	/* MWAIT is not supported on this platform. Fallback to HALT */
 829	if (!cpu_has(c, X86_FEATURE_MWAIT))
 830		return 0;
 831
 832	/* Monitor has a bug. Fallback to HALT */
 833	if (boot_cpu_has_bug(X86_BUG_MONITOR))
 834		return 0;
 835
 836	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 837
 838	/*
 839	 * If MWAIT extensions are not available, it is safe to use MWAIT
 840	 * with EAX=0, ECX=0.
 841	 */
 842	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
 843		return 1;
 844
 845	/*
 846	 * If MWAIT extensions are available, there should be at least one
 847	 * MWAIT C1 substate present.
 848	 */
 849	return (edx & MWAIT_C1_SUBSTATE_MASK);
 850}
 851
 852/*
 853 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 854 * with interrupts enabled and no flags, which is backwards compatible with the
 855 * original MWAIT implementation.
 856 */
 857static __cpuidle void mwait_idle(void)
 858{
 859	if (!current_set_polling_and_test()) {
 
 860		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 861			mb(); /* quirk */
 862			clflush((void *)&current_thread_info()->flags);
 863			mb(); /* quirk */
 864		}
 865
 866		__monitor((void *)&current_thread_info()->flags, 0, 0);
 867		if (!need_resched())
 868			__sti_mwait(0, 0);
 869		else
 870			raw_local_irq_enable();
 
 871	} else {
 872		raw_local_irq_enable();
 873	}
 874	__current_clr_polling();
 875}
 876
 877void select_idle_routine(const struct cpuinfo_x86 *c)
 878{
 879#ifdef CONFIG_SMP
 880	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 881		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 882#endif
 883	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 884		return;
 885
 886	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 887		pr_info("using AMD E400 aware idle routine\n");
 888		x86_idle = amd_e400_idle;
 889	} else if (prefer_mwait_c1_over_halt(c)) {
 890		pr_info("using mwait in idle threads\n");
 891		x86_idle = mwait_idle;
 892	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
 893		pr_info("using TDX aware idle routine\n");
 894		x86_idle = tdx_safe_halt;
 895	} else
 896		x86_idle = default_idle;
 897}
 898
 899void amd_e400_c1e_apic_setup(void)
 900{
 901	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 902		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 903		local_irq_disable();
 904		tick_broadcast_force();
 905		local_irq_enable();
 906	}
 907}
 908
 909void __init arch_post_acpi_subsys_init(void)
 910{
 911	u32 lo, hi;
 912
 913	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 914		return;
 915
 916	/*
 917	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 918	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 919	 * MSR_K8_INT_PENDING_MSG.
 920	 */
 921	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 922	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 923		return;
 924
 925	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 926
 927	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 928		mark_tsc_unstable("TSC halt in AMD C1E");
 929	pr_info("System has AMD C1E enabled\n");
 930}
 931
 932static int __init idle_setup(char *str)
 933{
 934	if (!str)
 935		return -EINVAL;
 936
 937	if (!strcmp(str, "poll")) {
 938		pr_info("using polling idle threads\n");
 939		boot_option_idle_override = IDLE_POLL;
 940		cpu_idle_poll_ctrl(true);
 941	} else if (!strcmp(str, "halt")) {
 942		/*
 943		 * When the boot option of idle=halt is added, halt is
 944		 * forced to be used for CPU idle. In such case CPU C2/C3
 945		 * won't be used again.
 946		 * To continue to load the CPU idle driver, don't touch
 947		 * the boot_option_idle_override.
 948		 */
 949		x86_idle = default_idle;
 950		boot_option_idle_override = IDLE_HALT;
 951	} else if (!strcmp(str, "nomwait")) {
 952		/*
 953		 * If the boot option of "idle=nomwait" is added,
 954		 * it means that mwait will be disabled for CPU C1/C2/C3
 955		 * states.
 
 956		 */
 957		boot_option_idle_override = IDLE_NOMWAIT;
 958	} else
 959		return -1;
 960
 961	return 0;
 962}
 963early_param("idle", idle_setup);
 964
 965unsigned long arch_align_stack(unsigned long sp)
 966{
 967	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 968		sp -= get_random_u32_below(8192);
 969	return sp & ~0xf;
 970}
 971
 972unsigned long arch_randomize_brk(struct mm_struct *mm)
 973{
 974	return randomize_page(mm->brk, 0x02000000);
 975}
 976
 977/*
 
 
 
 
 
 
 
 
 
 
 
 978 * Called from fs/proc with a reference on @p to find the function
 979 * which called into schedule(). This needs to be done carefully
 980 * because the task might wake up and we might look at a stack
 981 * changing under us.
 982 */
 983unsigned long __get_wchan(struct task_struct *p)
 984{
 985	struct unwind_state state;
 986	unsigned long addr = 0;
 987
 988	if (!try_get_task_stack(p))
 989		return 0;
 990
 991	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
 992	     unwind_next_frame(&state)) {
 993		addr = unwind_get_return_address(&state);
 994		if (!addr)
 995			break;
 996		if (in_sched_functions(addr))
 997			continue;
 998		break;
 999	}
1000
1001	put_task_stack(p);
1002
1003	return addr;
1004}
 
1005
1006long do_arch_prctl_common(int option, unsigned long arg2)
1007{
1008	switch (option) {
1009	case ARCH_GET_CPUID:
1010		return get_cpuid_mode();
1011	case ARCH_SET_CPUID:
1012		return set_cpuid_mode(arg2);
1013	case ARCH_GET_XCOMP_SUPP:
1014	case ARCH_GET_XCOMP_PERM:
1015	case ARCH_REQ_XCOMP_PERM:
1016	case ARCH_GET_XCOMP_GUEST_PERM:
1017	case ARCH_REQ_XCOMP_GUEST_PERM:
1018		return fpu_xstate_prctl(option, arg2);
1019	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020
1021	return -EINVAL;
 
 
1022}
v4.10.11
 
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 
 
 
 
 10#include <linux/init.h>
 11#include <linux/export.h>
 12#include <linux/pm.h>
 13#include <linux/tick.h>
 14#include <linux/random.h>
 15#include <linux/user-return-notifier.h>
 16#include <linux/dmi.h>
 17#include <linux/utsname.h>
 18#include <linux/stackprotector.h>
 19#include <linux/tick.h>
 20#include <linux/cpuidle.h>
 
 
 21#include <trace/events/power.h>
 22#include <linux/hw_breakpoint.h>
 23#include <asm/cpu.h>
 24#include <asm/apic.h>
 25#include <asm/syscalls.h>
 26#include <linux/uaccess.h>
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 
 
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 34#include <asm/switch_to.h>
 
 
 
 
 
 
 
 
 
 
 35
 36/*
 37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 39 * so they are allowed to end up in the .data..cacheline_aligned
 40 * section. Since TSS's are completely CPU-local, we want them
 41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 42 */
 43__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 44	.x86_tss = {
 45		.sp0 = TOP_OF_INIT_STACK,
 
 
 
 
 
 
 
 46#ifdef CONFIG_X86_32
 
 
 47		.ss0 = __KERNEL_DS,
 48		.ss1 = __KERNEL_CS,
 49		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 50#endif
 
 51	 },
 52#ifdef CONFIG_X86_32
 53	 /*
 54	  * Note that the .io_bitmap member must be extra-big. This is because
 55	  * the CPU will access an additional byte beyond the end of the IO
 56	  * permission bitmap. The extra byte must be all 1 bits, and must
 57	  * be within the limit.
 58	  */
 59	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 60#endif
 61#ifdef CONFIG_X86_32
 62	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 63#endif
 64};
 65EXPORT_PER_CPU_SYMBOL(cpu_tss);
 
 
 
 66
 67/*
 68 * this gets called so that we can store lazy state into memory and copy the
 69 * current task into the new thread.
 70 */
 71int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 72{
 73	memcpy(dst, src, arch_task_struct_size);
 74#ifdef CONFIG_VM86
 75	dst->thread.vm86 = NULL;
 76#endif
 
 
 
 
 
 77
 78	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 
 
 
 
 79}
 
 80
 81/*
 82 * Free current thread data structures etc..
 83 */
 84void exit_thread(struct task_struct *tsk)
 85{
 86	struct thread_struct *t = &tsk->thread;
 87	unsigned long *bp = t->io_bitmap_ptr;
 88	struct fpu *fpu = &t->fpu;
 89
 90	if (bp) {
 91		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92
 93		t->io_bitmap_ptr = NULL;
 94		clear_thread_flag(TIF_IO_BITMAP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95		/*
 96		 * Careful, clear this in the TSS too:
 
 
 
 
 
 
 
 97		 */
 98		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 99		t->io_bitmap_max = 0;
100		put_cpu();
101		kfree(bp);
102	}
103
104	free_vm86(t);
 
 
 
 
 
 
 
 
105
106	fpu__drop(fpu);
 
 
 
 
 
 
107}
108
109void flush_thread(void)
110{
111	struct task_struct *tsk = current;
112
113	flush_ptrace_hw_breakpoint(tsk);
114	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115
116	fpu__clear(&tsk->thread.fpu);
117}
118
119static void hard_disable_TSC(void)
120{
121	cr4_set_bits(X86_CR4_TSD);
122}
123
124void disable_TSC(void)
125{
126	preempt_disable();
127	if (!test_and_set_thread_flag(TIF_NOTSC))
128		/*
129		 * Must flip the CPU state synchronously with
130		 * TIF_NOTSC in the current running context.
131		 */
132		hard_disable_TSC();
133	preempt_enable();
134}
135
136static void hard_enable_TSC(void)
137{
138	cr4_clear_bits(X86_CR4_TSD);
139}
140
141static void enable_TSC(void)
142{
143	preempt_disable();
144	if (test_and_clear_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_enable_TSC();
150	preempt_enable();
151}
152
153int get_tsc_mode(unsigned long adr)
154{
155	unsigned int val;
156
157	if (test_thread_flag(TIF_NOTSC))
158		val = PR_TSC_SIGSEGV;
159	else
160		val = PR_TSC_ENABLE;
161
162	return put_user(val, (unsigned int __user *)adr);
163}
164
165int set_tsc_mode(unsigned int val)
166{
167	if (val == PR_TSC_SIGSEGV)
168		disable_TSC();
169	else if (val == PR_TSC_ENABLE)
170		enable_TSC();
171	else
172		return -EINVAL;
173
174	return 0;
175}
176
177void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179{
180	struct thread_struct *prev, *next;
 
181
182	prev = &prev_p->thread;
183	next = &next_p->thread;
 
 
184
185	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187		unsigned long debugctl = get_debugctlmsr();
188
189		debugctl &= ~DEBUGCTLMSR_BTF;
190		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191			debugctl |= DEBUGCTLMSR_BTF;
 
 
 
 
 
192
193		update_debugctlmsr(debugctl);
 
 
 
 
 
 
 
 
 
194	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
196	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198		/* prev and next are different */
199		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200			hard_disable_TSC();
201		else
202			hard_enable_TSC();
203	}
204
205	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
 
206		/*
207		 * Copy the relevant range of the IO bitmap.
208		 * Normally this is 128 bytes or less:
209		 */
210		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211		       max(prev->io_bitmap_max, next->io_bitmap_max));
212	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213		/*
214		 * Clear any possible leftover bits:
 
215		 */
216		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217	}
 
 
 
 
 
 
 
 
 
 
 
218	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219}
220
221/*
222 * Idle related variables and functions
223 */
224unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225EXPORT_SYMBOL(boot_option_idle_override);
226
227static void (*x86_idle)(void);
228
229#ifndef CONFIG_SMP
230static inline void play_dead(void)
231{
232	BUG();
233}
234#endif
235
236void arch_cpu_idle_enter(void)
237{
238	tsc_verify_tsc_adjust(false);
239	local_touch_nmi();
240}
241
242void arch_cpu_idle_dead(void)
243{
244	play_dead();
245}
246
247/*
248 * Called from the generic idle code.
249 */
250void arch_cpu_idle(void)
251{
252	x86_idle();
253}
254
255/*
256 * We use this if we don't have any better idle routine..
257 */
258void __cpuidle default_idle(void)
259{
260	trace_cpu_idle_rcuidle(1, smp_processor_id());
261	safe_halt();
262	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
263}
264#ifdef CONFIG_APM_MODULE
265EXPORT_SYMBOL(default_idle);
266#endif
267
268#ifdef CONFIG_XEN
269bool xen_set_default_idle(void)
270{
271	bool ret = !!x86_idle;
272
273	x86_idle = default_idle;
274
275	return ret;
276}
277#endif
278void stop_this_cpu(void *dummy)
 
279{
280	local_irq_disable();
281	/*
282	 * Remove this CPU:
283	 */
284	set_cpu_online(smp_processor_id(), false);
285	disable_local_APIC();
286	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
287
288	for (;;)
289		halt();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290}
291
292/*
293 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
294 * states (local apic timer and TSC stop).
 
 
295 */
296static void amd_e400_idle(void)
297{
298	/*
299	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
300	 * gets set after static_cpu_has() places have been converted via
301	 * alternatives.
302	 */
303	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
304		default_idle();
305		return;
306	}
307
308	tick_broadcast_enter();
309
310	default_idle();
311
312	/*
313	 * The switch back from broadcast mode needs to be called with
314	 * interrupts disabled.
315	 */
316	local_irq_disable();
317	tick_broadcast_exit();
318	local_irq_enable();
319}
320
321/*
322 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
323 * We can't rely on cpuidle installing MWAIT, because it will not load
324 * on systems that support only C1 -- so the boot default must be MWAIT.
325 *
326 * Some AMD machines are the opposite, they depend on using HALT.
327 *
328 * So for default C1, which is used during boot until cpuidle loads,
329 * use MWAIT-C1 on Intel HW that has it, else use HALT.
330 */
331static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
332{
333	if (c->x86_vendor != X86_VENDOR_INTEL)
 
 
 
 
 
 
 
334		return 0;
335
336	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
 
337		return 0;
338
339	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
340}
341
342/*
343 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
344 * with interrupts enabled and no flags, which is backwards compatible with the
345 * original MWAIT implementation.
346 */
347static __cpuidle void mwait_idle(void)
348{
349	if (!current_set_polling_and_test()) {
350		trace_cpu_idle_rcuidle(1, smp_processor_id());
351		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
352			mb(); /* quirk */
353			clflush((void *)&current_thread_info()->flags);
354			mb(); /* quirk */
355		}
356
357		__monitor((void *)&current_thread_info()->flags, 0, 0);
358		if (!need_resched())
359			__sti_mwait(0, 0);
360		else
361			local_irq_enable();
362		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
363	} else {
364		local_irq_enable();
365	}
366	__current_clr_polling();
367}
368
369void select_idle_routine(const struct cpuinfo_x86 *c)
370{
371#ifdef CONFIG_SMP
372	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
373		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
374#endif
375	if (x86_idle || boot_option_idle_override == IDLE_POLL)
376		return;
377
378	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
379		pr_info("using AMD E400 aware idle routine\n");
380		x86_idle = amd_e400_idle;
381	} else if (prefer_mwait_c1_over_halt(c)) {
382		pr_info("using mwait in idle threads\n");
383		x86_idle = mwait_idle;
 
 
 
384	} else
385		x86_idle = default_idle;
386}
387
388void amd_e400_c1e_apic_setup(void)
389{
390	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
391		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
392		local_irq_disable();
393		tick_broadcast_force();
394		local_irq_enable();
395	}
396}
397
398void __init arch_post_acpi_subsys_init(void)
399{
400	u32 lo, hi;
401
402	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
403		return;
404
405	/*
406	 * AMD E400 detection needs to happen after ACPI has been enabled. If
407	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
408	 * MSR_K8_INT_PENDING_MSG.
409	 */
410	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
411	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
412		return;
413
414	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
415
416	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
417		mark_tsc_unstable("TSC halt in AMD C1E");
418	pr_info("System has AMD C1E enabled\n");
419}
420
421static int __init idle_setup(char *str)
422{
423	if (!str)
424		return -EINVAL;
425
426	if (!strcmp(str, "poll")) {
427		pr_info("using polling idle threads\n");
428		boot_option_idle_override = IDLE_POLL;
429		cpu_idle_poll_ctrl(true);
430	} else if (!strcmp(str, "halt")) {
431		/*
432		 * When the boot option of idle=halt is added, halt is
433		 * forced to be used for CPU idle. In such case CPU C2/C3
434		 * won't be used again.
435		 * To continue to load the CPU idle driver, don't touch
436		 * the boot_option_idle_override.
437		 */
438		x86_idle = default_idle;
439		boot_option_idle_override = IDLE_HALT;
440	} else if (!strcmp(str, "nomwait")) {
441		/*
442		 * If the boot option of "idle=nomwait" is added,
443		 * it means that mwait will be disabled for CPU C2/C3
444		 * states. In such case it won't touch the variable
445		 * of boot_option_idle_override.
446		 */
447		boot_option_idle_override = IDLE_NOMWAIT;
448	} else
449		return -1;
450
451	return 0;
452}
453early_param("idle", idle_setup);
454
455unsigned long arch_align_stack(unsigned long sp)
456{
457	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458		sp -= get_random_int() % 8192;
459	return sp & ~0xf;
460}
461
462unsigned long arch_randomize_brk(struct mm_struct *mm)
463{
464	return randomize_page(mm->brk, 0x02000000);
465}
466
467/*
468 * Return saved PC of a blocked thread.
469 * What is this good for? it will be always the scheduler or ret_from_fork.
470 */
471unsigned long thread_saved_pc(struct task_struct *tsk)
472{
473	struct inactive_task_frame *frame =
474		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475	return READ_ONCE_NOCHECK(frame->ret_addr);
476}
477
478/*
479 * Called from fs/proc with a reference on @p to find the function
480 * which called into schedule(). This needs to be done carefully
481 * because the task might wake up and we might look at a stack
482 * changing under us.
483 */
484unsigned long get_wchan(struct task_struct *p)
485{
486	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
487	int count = 0;
488
489	if (!p || p == current || p->state == TASK_RUNNING)
490		return 0;
491
492	if (!try_get_task_stack(p))
493		return 0;
 
 
 
 
 
 
 
 
 
494
495	start = (unsigned long)task_stack_page(p);
496	if (!start)
497		goto out;
498
499	/*
500	 * Layout of the stack page:
501	 *
502	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503	 * PADDING
504	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505	 * stack
506	 * ----------- bottom = start
507	 *
508	 * The tasks stack pointer points at the location where the
509	 * framepointer is stored. The data on the stack is:
510	 * ... IP FP ... IP FP
511	 *
512	 * We need to read FP and IP, so we need to adjust the upper
513	 * bound by another unsigned long.
514	 */
515	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516	top -= 2 * sizeof(unsigned long);
517	bottom = start;
518
519	sp = READ_ONCE(p->thread.sp);
520	if (sp < bottom || sp > top)
521		goto out;
522
523	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
524	do {
525		if (fp < bottom || fp > top)
526			goto out;
527		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
528		if (!in_sched_functions(ip)) {
529			ret = ip;
530			goto out;
531		}
532		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
533	} while (count++ < 16 && p->state != TASK_RUNNING);
534
535out:
536	put_task_stack(p);
537	return ret;
538}