Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/debug.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
31#include <linux/memblock.h>
32#include <linux/interrupt.h>
33#include <linux/ptrace.h>
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
36#include <linux/kprobes.h>
37#include <linux/notifier.h>
38#include <linux/kdb.h>
39#include <linux/irq.h>
40#include <linux/perf_event.h>
41
42#include <asm/addrspace.h>
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
46#include <asm/cop2.h>
47#include <asm/cpu.h>
48#include <asm/cpu-type.h>
49#include <asm/dsp.h>
50#include <asm/fpu.h>
51#include <asm/fpu_emulator.h>
52#include <asm/idle.h>
53#include <asm/isa-rev.h>
54#include <asm/mips-cps.h>
55#include <asm/mips-r2-to-r6-emul.h>
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
58#include <asm/module.h>
59#include <asm/msa.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
62#include <asm/siginfo.h>
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
65#include <linux/uaccess.h>
66#include <asm/watch.h>
67#include <asm/mmu_context.h>
68#include <asm/types.h>
69#include <asm/stacktrace.h>
70#include <asm/tlbex.h>
71#include <asm/uasm.h>
72
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
75#include "access-helper.h"
76
77extern void check_wait(void);
78extern asmlinkage void rollback_handle_int(void);
79extern asmlinkage void handle_int(void);
80extern asmlinkage void handle_adel(void);
81extern asmlinkage void handle_ades(void);
82extern asmlinkage void handle_ibe(void);
83extern asmlinkage void handle_dbe(void);
84extern asmlinkage void handle_sys(void);
85extern asmlinkage void handle_bp(void);
86extern asmlinkage void handle_ri(void);
87extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88extern asmlinkage void handle_ri_rdhwr(void);
89extern asmlinkage void handle_cpu(void);
90extern asmlinkage void handle_ov(void);
91extern asmlinkage void handle_tr(void);
92extern asmlinkage void handle_msa_fpe(void);
93extern asmlinkage void handle_fpe(void);
94extern asmlinkage void handle_ftlb(void);
95extern asmlinkage void handle_gsexc(void);
96extern asmlinkage void handle_msa(void);
97extern asmlinkage void handle_mdmx(void);
98extern asmlinkage void handle_watch(void);
99extern asmlinkage void handle_mt(void);
100extern asmlinkage void handle_dsp(void);
101extern asmlinkage void handle_mcheck(void);
102extern asmlinkage void handle_reserved(void);
103extern void tlb_do_page_fault_0(void);
104
105void (*board_be_init)(void);
106static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107void (*board_nmi_handler_setup)(void);
108void (*board_ejtag_handler_setup)(void);
109void (*board_bind_eic_interrupt)(int irq, int regset);
110void (*board_ebase_setup)(void);
111void(*board_cache_error_setup)(void);
112
113void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
114{
115 board_be_handler = handler;
116}
117EXPORT_SYMBOL_GPL(mips_set_be_handler);
118
119static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
120 bool user)
121{
122 unsigned long *sp = (unsigned long *)(reg29 & ~3);
123 unsigned long addr;
124
125 printk("%sCall Trace:", loglvl);
126#ifdef CONFIG_KALLSYMS
127 printk("%s\n", loglvl);
128#endif
129 while (!kstack_end(sp)) {
130 if (__get_addr(&addr, sp++, user)) {
131 printk("%s (Bad stack address)", loglvl);
132 break;
133 }
134 if (__kernel_text_address(addr))
135 print_ip_sym(loglvl, addr);
136 }
137 printk("%s\n", loglvl);
138}
139
140#ifdef CONFIG_KALLSYMS
141int raw_show_trace;
142static int __init set_raw_show_trace(char *str)
143{
144 raw_show_trace = 1;
145 return 1;
146}
147__setup("raw_show_trace", set_raw_show_trace);
148#endif
149
150static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
151 const char *loglvl, bool user)
152{
153 unsigned long sp = regs->regs[29];
154 unsigned long ra = regs->regs[31];
155 unsigned long pc = regs->cp0_epc;
156
157 if (!task)
158 task = current;
159
160 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
161 show_raw_backtrace(sp, loglvl, user);
162 return;
163 }
164 printk("%sCall Trace:\n", loglvl);
165 do {
166 print_ip_sym(loglvl, pc);
167 pc = unwind_stack(task, &sp, pc, &ra);
168 } while (pc);
169 pr_cont("\n");
170}
171
172/*
173 * This routine abuses get_user()/put_user() to reference pointers
174 * with at least a bit of error checking ...
175 */
176static void show_stacktrace(struct task_struct *task,
177 const struct pt_regs *regs, const char *loglvl, bool user)
178{
179 const int field = 2 * sizeof(unsigned long);
180 unsigned long stackdata;
181 int i;
182 unsigned long *sp = (unsigned long *)regs->regs[29];
183
184 printk("%sStack :", loglvl);
185 i = 0;
186 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
187 if (i && ((i % (64 / field)) == 0)) {
188 pr_cont("\n");
189 printk("%s ", loglvl);
190 }
191 if (i > 39) {
192 pr_cont(" ...");
193 break;
194 }
195
196 if (__get_addr(&stackdata, sp++, user)) {
197 pr_cont(" (Bad stack address)");
198 break;
199 }
200
201 pr_cont(" %0*lx", field, stackdata);
202 i++;
203 }
204 pr_cont("\n");
205 show_backtrace(task, regs, loglvl, user);
206}
207
208void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
209{
210 struct pt_regs regs;
211
212 regs.cp0_status = KSU_KERNEL;
213 if (sp) {
214 regs.regs[29] = (unsigned long)sp;
215 regs.regs[31] = 0;
216 regs.cp0_epc = 0;
217 } else {
218 if (task && task != current) {
219 regs.regs[29] = task->thread.reg29;
220 regs.regs[31] = 0;
221 regs.cp0_epc = task->thread.reg31;
222 } else {
223 prepare_frametrace(®s);
224 }
225 }
226 show_stacktrace(task, ®s, loglvl, false);
227}
228
229static void show_code(void *pc, bool user)
230{
231 long i;
232 unsigned short *pc16 = NULL;
233
234 printk("Code:");
235
236 if ((unsigned long)pc & 1)
237 pc16 = (u16 *)((unsigned long)pc & ~1);
238
239 for(i = -3 ; i < 6 ; i++) {
240 if (pc16) {
241 u16 insn16;
242
243 if (__get_inst16(&insn16, pc16 + i, user))
244 goto bad_address;
245
246 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
247 } else {
248 u32 insn32;
249
250 if (__get_inst32(&insn32, (u32 *)pc + i, user))
251 goto bad_address;
252
253 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
254 }
255 }
256 pr_cont("\n");
257 return;
258
259bad_address:
260 pr_cont(" (Bad address in epc)\n\n");
261}
262
263static void __show_regs(const struct pt_regs *regs)
264{
265 const int field = 2 * sizeof(unsigned long);
266 unsigned int cause = regs->cp0_cause;
267 unsigned int exccode;
268 int i;
269
270 show_regs_print_info(KERN_DEFAULT);
271
272 /*
273 * Saved main processor registers
274 */
275 for (i = 0; i < 32; ) {
276 if ((i % 4) == 0)
277 printk("$%2d :", i);
278 if (i == 0)
279 pr_cont(" %0*lx", field, 0UL);
280 else if (i == 26 || i == 27)
281 pr_cont(" %*s", field, "");
282 else
283 pr_cont(" %0*lx", field, regs->regs[i]);
284
285 i++;
286 if ((i % 4) == 0)
287 pr_cont("\n");
288 }
289
290#ifdef CONFIG_CPU_HAS_SMARTMIPS
291 printk("Acx : %0*lx\n", field, regs->acx);
292#endif
293 if (MIPS_ISA_REV < 6) {
294 printk("Hi : %0*lx\n", field, regs->hi);
295 printk("Lo : %0*lx\n", field, regs->lo);
296 }
297
298 /*
299 * Saved cp0 registers
300 */
301 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
302 (void *) regs->cp0_epc);
303 printk("ra : %0*lx %pS\n", field, regs->regs[31],
304 (void *) regs->regs[31]);
305
306 printk("Status: %08x ", (uint32_t) regs->cp0_status);
307
308 if (cpu_has_3kex) {
309 if (regs->cp0_status & ST0_KUO)
310 pr_cont("KUo ");
311 if (regs->cp0_status & ST0_IEO)
312 pr_cont("IEo ");
313 if (regs->cp0_status & ST0_KUP)
314 pr_cont("KUp ");
315 if (regs->cp0_status & ST0_IEP)
316 pr_cont("IEp ");
317 if (regs->cp0_status & ST0_KUC)
318 pr_cont("KUc ");
319 if (regs->cp0_status & ST0_IEC)
320 pr_cont("IEc ");
321 } else if (cpu_has_4kex) {
322 if (regs->cp0_status & ST0_KX)
323 pr_cont("KX ");
324 if (regs->cp0_status & ST0_SX)
325 pr_cont("SX ");
326 if (regs->cp0_status & ST0_UX)
327 pr_cont("UX ");
328 switch (regs->cp0_status & ST0_KSU) {
329 case KSU_USER:
330 pr_cont("USER ");
331 break;
332 case KSU_SUPERVISOR:
333 pr_cont("SUPERVISOR ");
334 break;
335 case KSU_KERNEL:
336 pr_cont("KERNEL ");
337 break;
338 default:
339 pr_cont("BAD_MODE ");
340 break;
341 }
342 if (regs->cp0_status & ST0_ERL)
343 pr_cont("ERL ");
344 if (regs->cp0_status & ST0_EXL)
345 pr_cont("EXL ");
346 if (regs->cp0_status & ST0_IE)
347 pr_cont("IE ");
348 }
349 pr_cont("\n");
350
351 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
352 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
353
354 if (1 <= exccode && exccode <= 5)
355 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
356
357 printk("PrId : %08x (%s)\n", read_c0_prid(),
358 cpu_name_string());
359}
360
361/*
362 * FIXME: really the generic show_regs should take a const pointer argument.
363 */
364void show_regs(struct pt_regs *regs)
365{
366 __show_regs(regs);
367 dump_stack();
368}
369
370void show_registers(struct pt_regs *regs)
371{
372 const int field = 2 * sizeof(unsigned long);
373
374 __show_regs(regs);
375 print_modules();
376 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
377 current->comm, current->pid, current_thread_info(), current,
378 field, current_thread_info()->tp_value);
379 if (cpu_has_userlocal) {
380 unsigned long tls;
381
382 tls = read_c0_userlocal();
383 if (tls != current_thread_info()->tp_value)
384 printk("*HwTLS: %0*lx\n", field, tls);
385 }
386
387 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
388 show_code((void *)regs->cp0_epc, user_mode(regs));
389 printk("\n");
390}
391
392static DEFINE_RAW_SPINLOCK(die_lock);
393
394void __noreturn die(const char *str, struct pt_regs *regs)
395{
396 static int die_counter;
397 int sig = SIGSEGV;
398
399 oops_enter();
400
401 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
402 SIGSEGV) == NOTIFY_STOP)
403 sig = 0;
404
405 console_verbose();
406 raw_spin_lock_irq(&die_lock);
407 bust_spinlocks(1);
408
409 printk("%s[#%d]:\n", str, ++die_counter);
410 show_registers(regs);
411 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
412 raw_spin_unlock_irq(&die_lock);
413
414 oops_exit();
415
416 if (in_interrupt())
417 panic("Fatal exception in interrupt");
418
419 if (panic_on_oops)
420 panic("Fatal exception");
421
422 if (regs && kexec_should_crash(current))
423 crash_kexec(regs);
424
425 make_task_dead(sig);
426}
427
428extern struct exception_table_entry __start___dbe_table[];
429extern struct exception_table_entry __stop___dbe_table[];
430
431__asm__(
432" .section __dbe_table, \"a\"\n"
433" .previous \n");
434
435/* Given an address, look for it in the exception tables. */
436static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
437{
438 const struct exception_table_entry *e;
439
440 e = search_extable(__start___dbe_table,
441 __stop___dbe_table - __start___dbe_table, addr);
442 if (!e)
443 e = search_module_dbetables(addr);
444 return e;
445}
446
447asmlinkage void do_be(struct pt_regs *regs)
448{
449 const int field = 2 * sizeof(unsigned long);
450 const struct exception_table_entry *fixup = NULL;
451 int data = regs->cp0_cause & 4;
452 int action = MIPS_BE_FATAL;
453 enum ctx_state prev_state;
454
455 prev_state = exception_enter();
456 /* XXX For now. Fixme, this searches the wrong table ... */
457 if (data && !user_mode(regs))
458 fixup = search_dbe_tables(exception_epc(regs));
459
460 if (fixup)
461 action = MIPS_BE_FIXUP;
462
463 if (board_be_handler)
464 action = board_be_handler(regs, fixup != NULL);
465 else
466 mips_cm_error_report();
467
468 switch (action) {
469 case MIPS_BE_DISCARD:
470 goto out;
471 case MIPS_BE_FIXUP:
472 if (fixup) {
473 regs->cp0_epc = fixup->nextinsn;
474 goto out;
475 }
476 break;
477 default:
478 break;
479 }
480
481 /*
482 * Assume it would be too dangerous to continue ...
483 */
484 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
485 data ? "Data" : "Instruction",
486 field, regs->cp0_epc, field, regs->regs[31]);
487 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
488 SIGBUS) == NOTIFY_STOP)
489 goto out;
490
491 die_if_kernel("Oops", regs);
492 force_sig(SIGBUS);
493
494out:
495 exception_exit(prev_state);
496}
497
498/*
499 * ll/sc, rdhwr, sync emulation
500 */
501
502#define OPCODE 0xfc000000
503#define BASE 0x03e00000
504#define RT 0x001f0000
505#define OFFSET 0x0000ffff
506#define LL 0xc0000000
507#define SC 0xe0000000
508#define SPEC0 0x00000000
509#define SPEC3 0x7c000000
510#define RD 0x0000f800
511#define FUNC 0x0000003f
512#define SYNC 0x0000000f
513#define RDHWR 0x0000003b
514
515/* microMIPS definitions */
516#define MM_POOL32A_FUNC 0xfc00ffff
517#define MM_RDHWR 0x00006b3c
518#define MM_RS 0x001f0000
519#define MM_RT 0x03e00000
520
521/*
522 * The ll_bit is cleared by r*_switch.S
523 */
524
525unsigned int ll_bit;
526struct task_struct *ll_task;
527
528static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
529{
530 unsigned long value, __user *vaddr;
531 long offset;
532
533 /*
534 * analyse the ll instruction that just caused a ri exception
535 * and put the referenced address to addr.
536 */
537
538 /* sign extend offset */
539 offset = opcode & OFFSET;
540 offset <<= 16;
541 offset >>= 16;
542
543 vaddr = (unsigned long __user *)
544 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
545
546 if ((unsigned long)vaddr & 3)
547 return SIGBUS;
548 if (get_user(value, vaddr))
549 return SIGSEGV;
550
551 preempt_disable();
552
553 if (ll_task == NULL || ll_task == current) {
554 ll_bit = 1;
555 } else {
556 ll_bit = 0;
557 }
558 ll_task = current;
559
560 preempt_enable();
561
562 regs->regs[(opcode & RT) >> 16] = value;
563
564 return 0;
565}
566
567static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
568{
569 unsigned long __user *vaddr;
570 unsigned long reg;
571 long offset;
572
573 /*
574 * analyse the sc instruction that just caused a ri exception
575 * and put the referenced address to addr.
576 */
577
578 /* sign extend offset */
579 offset = opcode & OFFSET;
580 offset <<= 16;
581 offset >>= 16;
582
583 vaddr = (unsigned long __user *)
584 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
585 reg = (opcode & RT) >> 16;
586
587 if ((unsigned long)vaddr & 3)
588 return SIGBUS;
589
590 preempt_disable();
591
592 if (ll_bit == 0 || ll_task != current) {
593 regs->regs[reg] = 0;
594 preempt_enable();
595 return 0;
596 }
597
598 preempt_enable();
599
600 if (put_user(regs->regs[reg], vaddr))
601 return SIGSEGV;
602
603 regs->regs[reg] = 1;
604
605 return 0;
606}
607
608/*
609 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
610 * opcodes are supposed to result in coprocessor unusable exceptions if
611 * executed on ll/sc-less processors. That's the theory. In practice a
612 * few processors such as NEC's VR4100 throw reserved instruction exceptions
613 * instead, so we're doing the emulation thing in both exception handlers.
614 */
615static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
616{
617 if ((opcode & OPCODE) == LL) {
618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 1, regs, 0);
620 return simulate_ll(regs, opcode);
621 }
622 if ((opcode & OPCODE) == SC) {
623 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
624 1, regs, 0);
625 return simulate_sc(regs, opcode);
626 }
627
628 return -1; /* Must be something else ... */
629}
630
631/*
632 * Simulate trapping 'rdhwr' instructions to provide user accessible
633 * registers not implemented in hardware.
634 */
635static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
636{
637 struct thread_info *ti = task_thread_info(current);
638
639 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
640 1, regs, 0);
641 switch (rd) {
642 case MIPS_HWR_CPUNUM: /* CPU number */
643 regs->regs[rt] = smp_processor_id();
644 return 0;
645 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
646 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
647 current_cpu_data.icache.linesz);
648 return 0;
649 case MIPS_HWR_CC: /* Read count register */
650 regs->regs[rt] = read_c0_count();
651 return 0;
652 case MIPS_HWR_CCRES: /* Count register resolution */
653 switch (current_cpu_type()) {
654 case CPU_20KC:
655 case CPU_25KF:
656 regs->regs[rt] = 1;
657 break;
658 default:
659 regs->regs[rt] = 2;
660 }
661 return 0;
662 case MIPS_HWR_ULR: /* Read UserLocal register */
663 regs->regs[rt] = ti->tp_value;
664 return 0;
665 default:
666 return -1;
667 }
668}
669
670static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
671{
672 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
673 int rd = (opcode & RD) >> 11;
674 int rt = (opcode & RT) >> 16;
675
676 simulate_rdhwr(regs, rd, rt);
677 return 0;
678 }
679
680 /* Not ours. */
681 return -1;
682}
683
684static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
685{
686 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
687 int rd = (opcode & MM_RS) >> 16;
688 int rt = (opcode & MM_RT) >> 21;
689 simulate_rdhwr(regs, rd, rt);
690 return 0;
691 }
692
693 /* Not ours. */
694 return -1;
695}
696
697static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
698{
699 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
700 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
701 1, regs, 0);
702 return 0;
703 }
704
705 return -1; /* Must be something else ... */
706}
707
708/*
709 * Loongson-3 CSR instructions emulation
710 */
711
712#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
713
714#define LWC2 0xc8000000
715#define RS BASE
716#define CSR_OPCODE2 0x00000118
717#define CSR_OPCODE2_MASK 0x000007ff
718#define CSR_FUNC_MASK RT
719#define CSR_FUNC_CPUCFG 0x8
720
721static int simulate_loongson3_cpucfg(struct pt_regs *regs,
722 unsigned int opcode)
723{
724 int op = opcode & OPCODE;
725 int op2 = opcode & CSR_OPCODE2_MASK;
726 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
727
728 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
729 int rd = (opcode & RD) >> 11;
730 int rs = (opcode & RS) >> 21;
731 __u64 sel = regs->regs[rs];
732
733 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
734
735 /* Do not emulate on unsupported core models. */
736 preempt_disable();
737 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
738 preempt_enable();
739 return -1;
740 }
741 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
742 ¤t_cpu_data, sel);
743 preempt_enable();
744 return 0;
745 }
746
747 /* Not ours. */
748 return -1;
749}
750#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
751
752asmlinkage void do_ov(struct pt_regs *regs)
753{
754 enum ctx_state prev_state;
755
756 prev_state = exception_enter();
757 die_if_kernel("Integer overflow", regs);
758
759 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
760 exception_exit(prev_state);
761}
762
763#ifdef CONFIG_MIPS_FP_SUPPORT
764
765/*
766 * Send SIGFPE according to FCSR Cause bits, which must have already
767 * been masked against Enable bits. This is impotant as Inexact can
768 * happen together with Overflow or Underflow, and `ptrace' can set
769 * any bits.
770 */
771void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
772 struct task_struct *tsk)
773{
774 int si_code = FPE_FLTUNK;
775
776 if (fcr31 & FPU_CSR_INV_X)
777 si_code = FPE_FLTINV;
778 else if (fcr31 & FPU_CSR_DIV_X)
779 si_code = FPE_FLTDIV;
780 else if (fcr31 & FPU_CSR_OVF_X)
781 si_code = FPE_FLTOVF;
782 else if (fcr31 & FPU_CSR_UDF_X)
783 si_code = FPE_FLTUND;
784 else if (fcr31 & FPU_CSR_INE_X)
785 si_code = FPE_FLTRES;
786
787 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
788}
789
790int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
791{
792 int si_code;
793
794 switch (sig) {
795 case 0:
796 return 0;
797
798 case SIGFPE:
799 force_fcr31_sig(fcr31, fault_addr, current);
800 return 1;
801
802 case SIGBUS:
803 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
804 return 1;
805
806 case SIGSEGV:
807 mmap_read_lock(current->mm);
808 if (vma_lookup(current->mm, (unsigned long)fault_addr))
809 si_code = SEGV_ACCERR;
810 else
811 si_code = SEGV_MAPERR;
812 mmap_read_unlock(current->mm);
813 force_sig_fault(SIGSEGV, si_code, fault_addr);
814 return 1;
815
816 default:
817 force_sig(sig);
818 return 1;
819 }
820}
821
822static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
823 unsigned long old_epc, unsigned long old_ra)
824{
825 union mips_instruction inst = { .word = opcode };
826 void __user *fault_addr;
827 unsigned long fcr31;
828 int sig;
829
830 /* If it's obviously not an FP instruction, skip it */
831 switch (inst.i_format.opcode) {
832 case cop1_op:
833 case cop1x_op:
834 case lwc1_op:
835 case ldc1_op:
836 case swc1_op:
837 case sdc1_op:
838 break;
839
840 default:
841 return -1;
842 }
843
844 /*
845 * do_ri skipped over the instruction via compute_return_epc, undo
846 * that for the FPU emulator.
847 */
848 regs->cp0_epc = old_epc;
849 regs->regs[31] = old_ra;
850
851 /* Run the emulator */
852 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
853 &fault_addr);
854
855 /*
856 * We can't allow the emulated instruction to leave any
857 * enabled Cause bits set in $fcr31.
858 */
859 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
860 current->thread.fpu.fcr31 &= ~fcr31;
861
862 /* Restore the hardware register state */
863 own_fpu(1);
864
865 /* Send a signal if required. */
866 process_fpemu_return(sig, fault_addr, fcr31);
867
868 return 0;
869}
870
871/*
872 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
873 */
874asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
875{
876 enum ctx_state prev_state;
877 void __user *fault_addr;
878 int sig;
879
880 prev_state = exception_enter();
881 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
882 SIGFPE) == NOTIFY_STOP)
883 goto out;
884
885 /* Clear FCSR.Cause before enabling interrupts */
886 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
887 local_irq_enable();
888
889 die_if_kernel("FP exception in kernel code", regs);
890
891 if (fcr31 & FPU_CSR_UNI_X) {
892 /*
893 * Unimplemented operation exception. If we've got the full
894 * software emulator on-board, let's use it...
895 *
896 * Force FPU to dump state into task/thread context. We're
897 * moving a lot of data here for what is probably a single
898 * instruction, but the alternative is to pre-decode the FP
899 * register operands before invoking the emulator, which seems
900 * a bit extreme for what should be an infrequent event.
901 */
902
903 /* Run the emulator */
904 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
905 &fault_addr);
906
907 /*
908 * We can't allow the emulated instruction to leave any
909 * enabled Cause bits set in $fcr31.
910 */
911 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
912 current->thread.fpu.fcr31 &= ~fcr31;
913
914 /* Restore the hardware register state */
915 own_fpu(1); /* Using the FPU again. */
916 } else {
917 sig = SIGFPE;
918 fault_addr = (void __user *) regs->cp0_epc;
919 }
920
921 /* Send a signal if required. */
922 process_fpemu_return(sig, fault_addr, fcr31);
923
924out:
925 exception_exit(prev_state);
926}
927
928/*
929 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
930 * emulated more than some threshold number of instructions, force migration to
931 * a "CPU" that has FP support.
932 */
933static void mt_ase_fp_affinity(void)
934{
935#ifdef CONFIG_MIPS_MT_FPAFF
936 if (mt_fpemul_threshold > 0 &&
937 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
938 /*
939 * If there's no FPU present, or if the application has already
940 * restricted the allowed set to exclude any CPUs with FPUs,
941 * we'll skip the procedure.
942 */
943 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
944 cpumask_t tmask;
945
946 current->thread.user_cpus_allowed
947 = current->cpus_mask;
948 cpumask_and(&tmask, ¤t->cpus_mask,
949 &mt_fpu_cpumask);
950 set_cpus_allowed_ptr(current, &tmask);
951 set_thread_flag(TIF_FPUBOUND);
952 }
953 }
954#endif /* CONFIG_MIPS_MT_FPAFF */
955}
956
957#else /* !CONFIG_MIPS_FP_SUPPORT */
958
959static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
960 unsigned long old_epc, unsigned long old_ra)
961{
962 return -1;
963}
964
965#endif /* !CONFIG_MIPS_FP_SUPPORT */
966
967void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
968 const char *str)
969{
970 char b[40];
971
972#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
973 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
974 SIGTRAP) == NOTIFY_STOP)
975 return;
976#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
977
978 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
979 SIGTRAP) == NOTIFY_STOP)
980 return;
981
982 /*
983 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
984 * insns, even for trap and break codes that indicate arithmetic
985 * failures. Weird ...
986 * But should we continue the brokenness??? --macro
987 */
988 switch (code) {
989 case BRK_OVERFLOW:
990 case BRK_DIVZERO:
991 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
992 die_if_kernel(b, regs);
993 force_sig_fault(SIGFPE,
994 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
995 (void __user *) regs->cp0_epc);
996 break;
997 case BRK_BUG:
998 die_if_kernel("Kernel bug detected", regs);
999 force_sig(SIGTRAP);
1000 break;
1001 case BRK_MEMU:
1002 /*
1003 * This breakpoint code is used by the FPU emulator to retake
1004 * control of the CPU after executing the instruction from the
1005 * delay slot of an emulated branch.
1006 *
1007 * Terminate if exception was recognized as a delay slot return
1008 * otherwise handle as normal.
1009 */
1010 if (do_dsemulret(regs))
1011 return;
1012
1013 die_if_kernel("Math emu break/trap", regs);
1014 force_sig(SIGTRAP);
1015 break;
1016 default:
1017 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1018 die_if_kernel(b, regs);
1019 if (si_code) {
1020 force_sig_fault(SIGTRAP, si_code, NULL);
1021 } else {
1022 force_sig(SIGTRAP);
1023 }
1024 }
1025}
1026
1027asmlinkage void do_bp(struct pt_regs *regs)
1028{
1029 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1030 unsigned int opcode, bcode;
1031 enum ctx_state prev_state;
1032 bool user = user_mode(regs);
1033
1034 prev_state = exception_enter();
1035 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1036 if (get_isa16_mode(regs->cp0_epc)) {
1037 u16 instr[2];
1038
1039 if (__get_inst16(&instr[0], (u16 *)epc, user))
1040 goto out_sigsegv;
1041
1042 if (!cpu_has_mmips) {
1043 /* MIPS16e mode */
1044 bcode = (instr[0] >> 5) & 0x3f;
1045 } else if (mm_insn_16bit(instr[0])) {
1046 /* 16-bit microMIPS BREAK */
1047 bcode = instr[0] & 0xf;
1048 } else {
1049 /* 32-bit microMIPS BREAK */
1050 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1051 goto out_sigsegv;
1052 opcode = (instr[0] << 16) | instr[1];
1053 bcode = (opcode >> 6) & ((1 << 20) - 1);
1054 }
1055 } else {
1056 if (__get_inst32(&opcode, (u32 *)epc, user))
1057 goto out_sigsegv;
1058 bcode = (opcode >> 6) & ((1 << 20) - 1);
1059 }
1060
1061 /*
1062 * There is the ancient bug in the MIPS assemblers that the break
1063 * code starts left to bit 16 instead to bit 6 in the opcode.
1064 * Gas is bug-compatible, but not always, grrr...
1065 * We handle both cases with a simple heuristics. --macro
1066 */
1067 if (bcode >= (1 << 10))
1068 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1069
1070 /*
1071 * notify the kprobe handlers, if instruction is likely to
1072 * pertain to them.
1073 */
1074 switch (bcode) {
1075 case BRK_UPROBE:
1076 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1077 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 goto out;
1079 else
1080 break;
1081 case BRK_UPROBE_XOL:
1082 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1083 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084 goto out;
1085 else
1086 break;
1087 case BRK_KPROBE_BP:
1088 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1089 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090 goto out;
1091 else
1092 break;
1093 case BRK_KPROBE_SSTEPBP:
1094 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1095 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1096 goto out;
1097 else
1098 break;
1099 default:
1100 break;
1101 }
1102
1103 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1104
1105out:
1106 exception_exit(prev_state);
1107 return;
1108
1109out_sigsegv:
1110 force_sig(SIGSEGV);
1111 goto out;
1112}
1113
1114asmlinkage void do_tr(struct pt_regs *regs)
1115{
1116 u32 opcode, tcode = 0;
1117 enum ctx_state prev_state;
1118 u16 instr[2];
1119 bool user = user_mode(regs);
1120 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1121
1122 prev_state = exception_enter();
1123 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1124 if (get_isa16_mode(regs->cp0_epc)) {
1125 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1126 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1127 goto out_sigsegv;
1128 opcode = (instr[0] << 16) | instr[1];
1129 /* Immediate versions don't provide a code. */
1130 if (!(opcode & OPCODE))
1131 tcode = (opcode >> 12) & ((1 << 4) - 1);
1132 } else {
1133 if (__get_inst32(&opcode, (u32 *)epc, user))
1134 goto out_sigsegv;
1135 /* Immediate versions don't provide a code. */
1136 if (!(opcode & OPCODE))
1137 tcode = (opcode >> 6) & ((1 << 10) - 1);
1138 }
1139
1140 do_trap_or_bp(regs, tcode, 0, "Trap");
1141
1142out:
1143 exception_exit(prev_state);
1144 return;
1145
1146out_sigsegv:
1147 force_sig(SIGSEGV);
1148 goto out;
1149}
1150
1151asmlinkage void do_ri(struct pt_regs *regs)
1152{
1153 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1154 unsigned long old_epc = regs->cp0_epc;
1155 unsigned long old31 = regs->regs[31];
1156 enum ctx_state prev_state;
1157 unsigned int opcode = 0;
1158 int status = -1;
1159
1160 /*
1161 * Avoid any kernel code. Just emulate the R2 instruction
1162 * as quickly as possible.
1163 */
1164 if (mipsr2_emulation && cpu_has_mips_r6 &&
1165 likely(user_mode(regs)) &&
1166 likely(get_user(opcode, epc) >= 0)) {
1167 unsigned long fcr31 = 0;
1168
1169 status = mipsr2_decoder(regs, opcode, &fcr31);
1170 switch (status) {
1171 case 0:
1172 case SIGEMT:
1173 return;
1174 case SIGILL:
1175 goto no_r2_instr;
1176 default:
1177 process_fpemu_return(status,
1178 ¤t->thread.cp0_baduaddr,
1179 fcr31);
1180 return;
1181 }
1182 }
1183
1184no_r2_instr:
1185
1186 prev_state = exception_enter();
1187 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1188
1189 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1190 SIGILL) == NOTIFY_STOP)
1191 goto out;
1192
1193 die_if_kernel("Reserved instruction in kernel code", regs);
1194
1195 if (unlikely(compute_return_epc(regs) < 0))
1196 goto out;
1197
1198 if (!get_isa16_mode(regs->cp0_epc)) {
1199 if (unlikely(get_user(opcode, epc) < 0))
1200 status = SIGSEGV;
1201
1202 if (!cpu_has_llsc && status < 0)
1203 status = simulate_llsc(regs, opcode);
1204
1205 if (status < 0)
1206 status = simulate_rdhwr_normal(regs, opcode);
1207
1208 if (status < 0)
1209 status = simulate_sync(regs, opcode);
1210
1211 if (status < 0)
1212 status = simulate_fp(regs, opcode, old_epc, old31);
1213
1214#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1215 if (status < 0)
1216 status = simulate_loongson3_cpucfg(regs, opcode);
1217#endif
1218 } else if (cpu_has_mmips) {
1219 unsigned short mmop[2] = { 0 };
1220
1221 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1222 status = SIGSEGV;
1223 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1224 status = SIGSEGV;
1225 opcode = mmop[0];
1226 opcode = (opcode << 16) | mmop[1];
1227
1228 if (status < 0)
1229 status = simulate_rdhwr_mm(regs, opcode);
1230 }
1231
1232 if (status < 0)
1233 status = SIGILL;
1234
1235 if (unlikely(status > 0)) {
1236 regs->cp0_epc = old_epc; /* Undo skip-over. */
1237 regs->regs[31] = old31;
1238 force_sig(status);
1239 }
1240
1241out:
1242 exception_exit(prev_state);
1243}
1244
1245/*
1246 * No lock; only written during early bootup by CPU 0.
1247 */
1248static RAW_NOTIFIER_HEAD(cu2_chain);
1249
1250int __ref register_cu2_notifier(struct notifier_block *nb)
1251{
1252 return raw_notifier_chain_register(&cu2_chain, nb);
1253}
1254
1255int cu2_notifier_call_chain(unsigned long val, void *v)
1256{
1257 return raw_notifier_call_chain(&cu2_chain, val, v);
1258}
1259
1260static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1261 void *data)
1262{
1263 struct pt_regs *regs = data;
1264
1265 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1266 "instruction", regs);
1267 force_sig(SIGILL);
1268
1269 return NOTIFY_OK;
1270}
1271
1272#ifdef CONFIG_MIPS_FP_SUPPORT
1273
1274static int enable_restore_fp_context(int msa)
1275{
1276 int err, was_fpu_owner, prior_msa;
1277 bool first_fp;
1278
1279 /* Initialize context if it hasn't been used already */
1280 first_fp = init_fp_ctx(current);
1281
1282 if (first_fp) {
1283 preempt_disable();
1284 err = own_fpu_inatomic(1);
1285 if (msa && !err) {
1286 enable_msa();
1287 /*
1288 * with MSA enabled, userspace can see MSACSR
1289 * and MSA regs, but the values in them are from
1290 * other task before current task, restore them
1291 * from saved fp/msa context
1292 */
1293 write_msa_csr(current->thread.fpu.msacsr);
1294 /*
1295 * own_fpu_inatomic(1) just restore low 64bit,
1296 * fix the high 64bit
1297 */
1298 init_msa_upper();
1299 set_thread_flag(TIF_USEDMSA);
1300 set_thread_flag(TIF_MSA_CTX_LIVE);
1301 }
1302 preempt_enable();
1303 return err;
1304 }
1305
1306 /*
1307 * This task has formerly used the FP context.
1308 *
1309 * If this thread has no live MSA vector context then we can simply
1310 * restore the scalar FP context. If it has live MSA vector context
1311 * (that is, it has or may have used MSA since last performing a
1312 * function call) then we'll need to restore the vector context. This
1313 * applies even if we're currently only executing a scalar FP
1314 * instruction. This is because if we were to later execute an MSA
1315 * instruction then we'd either have to:
1316 *
1317 * - Restore the vector context & clobber any registers modified by
1318 * scalar FP instructions between now & then.
1319 *
1320 * or
1321 *
1322 * - Not restore the vector context & lose the most significant bits
1323 * of all vector registers.
1324 *
1325 * Neither of those options is acceptable. We cannot restore the least
1326 * significant bits of the registers now & only restore the most
1327 * significant bits later because the most significant bits of any
1328 * vector registers whose aliased FP register is modified now will have
1329 * been zeroed. We'd have no way to know that when restoring the vector
1330 * context & thus may load an outdated value for the most significant
1331 * bits of a vector register.
1332 */
1333 if (!msa && !thread_msa_context_live())
1334 return own_fpu(1);
1335
1336 /*
1337 * This task is using or has previously used MSA. Thus we require
1338 * that Status.FR == 1.
1339 */
1340 preempt_disable();
1341 was_fpu_owner = is_fpu_owner();
1342 err = own_fpu_inatomic(0);
1343 if (err)
1344 goto out;
1345
1346 enable_msa();
1347 write_msa_csr(current->thread.fpu.msacsr);
1348 set_thread_flag(TIF_USEDMSA);
1349
1350 /*
1351 * If this is the first time that the task is using MSA and it has
1352 * previously used scalar FP in this time slice then we already nave
1353 * FP context which we shouldn't clobber. We do however need to clear
1354 * the upper 64b of each vector register so that this task has no
1355 * opportunity to see data left behind by another.
1356 */
1357 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1358 if (!prior_msa && was_fpu_owner) {
1359 init_msa_upper();
1360
1361 goto out;
1362 }
1363
1364 if (!prior_msa) {
1365 /*
1366 * Restore the least significant 64b of each vector register
1367 * from the existing scalar FP context.
1368 */
1369 _restore_fp(current);
1370
1371 /*
1372 * The task has not formerly used MSA, so clear the upper 64b
1373 * of each vector register such that it cannot see data left
1374 * behind by another task.
1375 */
1376 init_msa_upper();
1377 } else {
1378 /* We need to restore the vector context. */
1379 restore_msa(current);
1380
1381 /* Restore the scalar FP control & status register */
1382 if (!was_fpu_owner)
1383 write_32bit_cp1_register(CP1_STATUS,
1384 current->thread.fpu.fcr31);
1385 }
1386
1387out:
1388 preempt_enable();
1389
1390 return 0;
1391}
1392
1393#else /* !CONFIG_MIPS_FP_SUPPORT */
1394
1395static int enable_restore_fp_context(int msa)
1396{
1397 return SIGILL;
1398}
1399
1400#endif /* CONFIG_MIPS_FP_SUPPORT */
1401
1402asmlinkage void do_cpu(struct pt_regs *regs)
1403{
1404 enum ctx_state prev_state;
1405 unsigned int __user *epc;
1406 unsigned long old_epc, old31;
1407 unsigned int opcode;
1408 unsigned int cpid;
1409 int status;
1410
1411 prev_state = exception_enter();
1412 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1413
1414 if (cpid != 2)
1415 die_if_kernel("do_cpu invoked from kernel context!", regs);
1416
1417 switch (cpid) {
1418 case 0:
1419 epc = (unsigned int __user *)exception_epc(regs);
1420 old_epc = regs->cp0_epc;
1421 old31 = regs->regs[31];
1422 opcode = 0;
1423 status = -1;
1424
1425 if (unlikely(compute_return_epc(regs) < 0))
1426 break;
1427
1428 if (!get_isa16_mode(regs->cp0_epc)) {
1429 if (unlikely(get_user(opcode, epc) < 0))
1430 status = SIGSEGV;
1431
1432 if (!cpu_has_llsc && status < 0)
1433 status = simulate_llsc(regs, opcode);
1434 }
1435
1436 if (status < 0)
1437 status = SIGILL;
1438
1439 if (unlikely(status > 0)) {
1440 regs->cp0_epc = old_epc; /* Undo skip-over. */
1441 regs->regs[31] = old31;
1442 force_sig(status);
1443 }
1444
1445 break;
1446
1447#ifdef CONFIG_MIPS_FP_SUPPORT
1448 case 3:
1449 /*
1450 * The COP3 opcode space and consequently the CP0.Status.CU3
1451 * bit and the CP0.Cause.CE=3 encoding have been removed as
1452 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1453 * up the space has been reused for COP1X instructions, that
1454 * are enabled by the CP0.Status.CU1 bit and consequently
1455 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1456 * exceptions. Some FPU-less processors that implement one
1457 * of these ISAs however use this code erroneously for COP1X
1458 * instructions. Therefore we redirect this trap to the FP
1459 * emulator too.
1460 */
1461 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1462 force_sig(SIGILL);
1463 break;
1464 }
1465 fallthrough;
1466 case 1: {
1467 void __user *fault_addr;
1468 unsigned long fcr31;
1469 int err, sig;
1470
1471 err = enable_restore_fp_context(0);
1472
1473 if (raw_cpu_has_fpu && !err)
1474 break;
1475
1476 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1477 &fault_addr);
1478
1479 /*
1480 * We can't allow the emulated instruction to leave
1481 * any enabled Cause bits set in $fcr31.
1482 */
1483 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1484 current->thread.fpu.fcr31 &= ~fcr31;
1485
1486 /* Send a signal if required. */
1487 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1488 mt_ase_fp_affinity();
1489
1490 break;
1491 }
1492#else /* CONFIG_MIPS_FP_SUPPORT */
1493 case 1:
1494 case 3:
1495 force_sig(SIGILL);
1496 break;
1497#endif /* CONFIG_MIPS_FP_SUPPORT */
1498
1499 case 2:
1500 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1501 break;
1502 }
1503
1504 exception_exit(prev_state);
1505}
1506
1507asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1508{
1509 enum ctx_state prev_state;
1510
1511 prev_state = exception_enter();
1512 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1513 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1514 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1515 goto out;
1516
1517 /* Clear MSACSR.Cause before enabling interrupts */
1518 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1519 local_irq_enable();
1520
1521 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1522 force_sig(SIGFPE);
1523out:
1524 exception_exit(prev_state);
1525}
1526
1527asmlinkage void do_msa(struct pt_regs *regs)
1528{
1529 enum ctx_state prev_state;
1530 int err;
1531
1532 prev_state = exception_enter();
1533
1534 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1535 force_sig(SIGILL);
1536 goto out;
1537 }
1538
1539 die_if_kernel("do_msa invoked from kernel context!", regs);
1540
1541 err = enable_restore_fp_context(1);
1542 if (err)
1543 force_sig(SIGILL);
1544out:
1545 exception_exit(prev_state);
1546}
1547
1548asmlinkage void do_mdmx(struct pt_regs *regs)
1549{
1550 enum ctx_state prev_state;
1551
1552 prev_state = exception_enter();
1553 force_sig(SIGILL);
1554 exception_exit(prev_state);
1555}
1556
1557/*
1558 * Called with interrupts disabled.
1559 */
1560asmlinkage void do_watch(struct pt_regs *regs)
1561{
1562 enum ctx_state prev_state;
1563
1564 prev_state = exception_enter();
1565 /*
1566 * Clear WP (bit 22) bit of cause register so we don't loop
1567 * forever.
1568 */
1569 clear_c0_cause(CAUSEF_WP);
1570
1571 /*
1572 * If the current thread has the watch registers loaded, save
1573 * their values and send SIGTRAP. Otherwise another thread
1574 * left the registers set, clear them and continue.
1575 */
1576 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1577 mips_read_watch_registers();
1578 local_irq_enable();
1579 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1580 } else {
1581 mips_clear_watch_registers();
1582 local_irq_enable();
1583 }
1584 exception_exit(prev_state);
1585}
1586
1587asmlinkage void do_mcheck(struct pt_regs *regs)
1588{
1589 int multi_match = regs->cp0_status & ST0_TS;
1590 enum ctx_state prev_state;
1591
1592 prev_state = exception_enter();
1593 show_regs(regs);
1594
1595 if (multi_match) {
1596 dump_tlb_regs();
1597 pr_info("\n");
1598 dump_tlb_all();
1599 }
1600
1601 show_code((void *)regs->cp0_epc, user_mode(regs));
1602
1603 /*
1604 * Some chips may have other causes of machine check (e.g. SB1
1605 * graduation timer)
1606 */
1607 panic("Caught Machine Check exception - %scaused by multiple "
1608 "matching entries in the TLB.",
1609 (multi_match) ? "" : "not ");
1610}
1611
1612asmlinkage void do_mt(struct pt_regs *regs)
1613{
1614 int subcode;
1615
1616 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1617 >> VPECONTROL_EXCPT_SHIFT;
1618 switch (subcode) {
1619 case 0:
1620 printk(KERN_DEBUG "Thread Underflow\n");
1621 break;
1622 case 1:
1623 printk(KERN_DEBUG "Thread Overflow\n");
1624 break;
1625 case 2:
1626 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1627 break;
1628 case 3:
1629 printk(KERN_DEBUG "Gating Storage Exception\n");
1630 break;
1631 case 4:
1632 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1633 break;
1634 case 5:
1635 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1636 break;
1637 default:
1638 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1639 subcode);
1640 break;
1641 }
1642 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1643
1644 force_sig(SIGILL);
1645}
1646
1647
1648asmlinkage void do_dsp(struct pt_regs *regs)
1649{
1650 if (cpu_has_dsp)
1651 panic("Unexpected DSP exception");
1652
1653 force_sig(SIGILL);
1654}
1655
1656asmlinkage void do_reserved(struct pt_regs *regs)
1657{
1658 /*
1659 * Game over - no way to handle this if it ever occurs. Most probably
1660 * caused by a new unknown cpu type or after another deadly
1661 * hard/software error.
1662 */
1663 show_regs(regs);
1664 panic("Caught reserved exception %ld - should not happen.",
1665 (regs->cp0_cause & 0x7f) >> 2);
1666}
1667
1668static int __initdata l1parity = 1;
1669static int __init nol1parity(char *s)
1670{
1671 l1parity = 0;
1672 return 1;
1673}
1674__setup("nol1par", nol1parity);
1675static int __initdata l2parity = 1;
1676static int __init nol2parity(char *s)
1677{
1678 l2parity = 0;
1679 return 1;
1680}
1681__setup("nol2par", nol2parity);
1682
1683/*
1684 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1685 * it different ways.
1686 */
1687static inline __init void parity_protection_init(void)
1688{
1689#define ERRCTL_PE 0x80000000
1690#define ERRCTL_L2P 0x00800000
1691
1692 if (mips_cm_revision() >= CM_REV_CM3) {
1693 ulong gcr_ectl, cp0_ectl;
1694
1695 /*
1696 * With CM3 systems we need to ensure that the L1 & L2
1697 * parity enables are set to the same value, since this
1698 * is presumed by the hardware engineers.
1699 *
1700 * If the user disabled either of L1 or L2 ECC checking,
1701 * disable both.
1702 */
1703 l1parity &= l2parity;
1704 l2parity &= l1parity;
1705
1706 /* Probe L1 ECC support */
1707 cp0_ectl = read_c0_ecc();
1708 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1709 back_to_back_c0_hazard();
1710 cp0_ectl = read_c0_ecc();
1711
1712 /* Probe L2 ECC support */
1713 gcr_ectl = read_gcr_err_control();
1714
1715 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1716 !(cp0_ectl & ERRCTL_PE)) {
1717 /*
1718 * One of L1 or L2 ECC checking isn't supported,
1719 * so we cannot enable either.
1720 */
1721 l1parity = l2parity = 0;
1722 }
1723
1724 /* Configure L1 ECC checking */
1725 if (l1parity)
1726 cp0_ectl |= ERRCTL_PE;
1727 else
1728 cp0_ectl &= ~ERRCTL_PE;
1729 write_c0_ecc(cp0_ectl);
1730 back_to_back_c0_hazard();
1731 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1732
1733 /* Configure L2 ECC checking */
1734 if (l2parity)
1735 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1736 else
1737 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1738 write_gcr_err_control(gcr_ectl);
1739 gcr_ectl = read_gcr_err_control();
1740 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1741 WARN_ON(!!gcr_ectl != l2parity);
1742
1743 pr_info("Cache parity protection %sabled\n",
1744 l1parity ? "en" : "dis");
1745 return;
1746 }
1747
1748 switch (current_cpu_type()) {
1749 case CPU_24K:
1750 case CPU_34K:
1751 case CPU_74K:
1752 case CPU_1004K:
1753 case CPU_1074K:
1754 case CPU_INTERAPTIV:
1755 case CPU_PROAPTIV:
1756 case CPU_P5600:
1757 case CPU_QEMU_GENERIC:
1758 case CPU_P6600:
1759 {
1760 unsigned long errctl;
1761 unsigned int l1parity_present, l2parity_present;
1762
1763 errctl = read_c0_ecc();
1764 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1765
1766 /* probe L1 parity support */
1767 write_c0_ecc(errctl | ERRCTL_PE);
1768 back_to_back_c0_hazard();
1769 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1770
1771 /* probe L2 parity support */
1772 write_c0_ecc(errctl|ERRCTL_L2P);
1773 back_to_back_c0_hazard();
1774 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1775
1776 if (l1parity_present && l2parity_present) {
1777 if (l1parity)
1778 errctl |= ERRCTL_PE;
1779 if (l1parity ^ l2parity)
1780 errctl |= ERRCTL_L2P;
1781 } else if (l1parity_present) {
1782 if (l1parity)
1783 errctl |= ERRCTL_PE;
1784 } else if (l2parity_present) {
1785 if (l2parity)
1786 errctl |= ERRCTL_L2P;
1787 } else {
1788 /* No parity available */
1789 }
1790
1791 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1792
1793 write_c0_ecc(errctl);
1794 back_to_back_c0_hazard();
1795 errctl = read_c0_ecc();
1796 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1797
1798 if (l1parity_present)
1799 printk(KERN_INFO "Cache parity protection %sabled\n",
1800 (errctl & ERRCTL_PE) ? "en" : "dis");
1801
1802 if (l2parity_present) {
1803 if (l1parity_present && l1parity)
1804 errctl ^= ERRCTL_L2P;
1805 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1806 (errctl & ERRCTL_L2P) ? "en" : "dis");
1807 }
1808 }
1809 break;
1810
1811 case CPU_5KC:
1812 case CPU_5KE:
1813 case CPU_LOONGSON32:
1814 write_c0_ecc(0x80000000);
1815 back_to_back_c0_hazard();
1816 /* Set the PE bit (bit 31) in the c0_errctl register. */
1817 printk(KERN_INFO "Cache parity protection %sabled\n",
1818 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1819 break;
1820 case CPU_20KC:
1821 case CPU_25KF:
1822 /* Clear the DE bit (bit 16) in the c0_status register. */
1823 printk(KERN_INFO "Enable cache parity protection for "
1824 "MIPS 20KC/25KF CPUs.\n");
1825 clear_c0_status(ST0_DE);
1826 break;
1827 default:
1828 break;
1829 }
1830}
1831
1832asmlinkage void cache_parity_error(void)
1833{
1834 const int field = 2 * sizeof(unsigned long);
1835 unsigned int reg_val;
1836
1837 /* For the moment, report the problem and hang. */
1838 printk("Cache error exception:\n");
1839 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1840 reg_val = read_c0_cacheerr();
1841 printk("c0_cacheerr == %08x\n", reg_val);
1842
1843 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1844 reg_val & (1<<30) ? "secondary" : "primary",
1845 reg_val & (1<<31) ? "data" : "insn");
1846 if ((cpu_has_mips_r2_r6) &&
1847 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1848 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1849 reg_val & (1<<29) ? "ED " : "",
1850 reg_val & (1<<28) ? "ET " : "",
1851 reg_val & (1<<27) ? "ES " : "",
1852 reg_val & (1<<26) ? "EE " : "",
1853 reg_val & (1<<25) ? "EB " : "",
1854 reg_val & (1<<24) ? "EI " : "",
1855 reg_val & (1<<23) ? "E1 " : "",
1856 reg_val & (1<<22) ? "E0 " : "");
1857 } else {
1858 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1859 reg_val & (1<<29) ? "ED " : "",
1860 reg_val & (1<<28) ? "ET " : "",
1861 reg_val & (1<<26) ? "EE " : "",
1862 reg_val & (1<<25) ? "EB " : "",
1863 reg_val & (1<<24) ? "EI " : "",
1864 reg_val & (1<<23) ? "E1 " : "",
1865 reg_val & (1<<22) ? "E0 " : "");
1866 }
1867 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1868
1869#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1870 if (reg_val & (1<<22))
1871 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1872
1873 if (reg_val & (1<<23))
1874 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1875#endif
1876
1877 panic("Can't handle the cache error!");
1878}
1879
1880asmlinkage void do_ftlb(void)
1881{
1882 const int field = 2 * sizeof(unsigned long);
1883 unsigned int reg_val;
1884
1885 /* For the moment, report the problem and hang. */
1886 if ((cpu_has_mips_r2_r6) &&
1887 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1888 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1889 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1890 read_c0_ecc());
1891 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1892 reg_val = read_c0_cacheerr();
1893 pr_err("c0_cacheerr == %08x\n", reg_val);
1894
1895 if ((reg_val & 0xc0000000) == 0xc0000000) {
1896 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1897 } else {
1898 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1899 reg_val & (1<<30) ? "secondary" : "primary",
1900 reg_val & (1<<31) ? "data" : "insn");
1901 }
1902 } else {
1903 pr_err("FTLB error exception\n");
1904 }
1905 /* Just print the cacheerr bits for now */
1906 cache_parity_error();
1907}
1908
1909asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1910{
1911 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1912 LOONGSON_DIAG1_EXCCODE_SHIFT;
1913 enum ctx_state prev_state;
1914
1915 prev_state = exception_enter();
1916
1917 switch (exccode) {
1918 case 0x08:
1919 /* Undocumented exception, will trigger on certain
1920 * also-undocumented instructions accessible from userspace.
1921 * Processor state is not otherwise corrupted, but currently
1922 * we don't know how to proceed. Maybe there is some
1923 * undocumented control flag to enable the instructions?
1924 */
1925 force_sig(SIGILL);
1926 break;
1927
1928 default:
1929 /* None of the other exceptions, documented or not, have
1930 * further details given; none are encountered in the wild
1931 * either. Panic in case some of them turn out to be fatal.
1932 */
1933 show_regs(regs);
1934 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1935 }
1936
1937 exception_exit(prev_state);
1938}
1939
1940/*
1941 * SDBBP EJTAG debug exception handler.
1942 * We skip the instruction and return to the next instruction.
1943 */
1944void ejtag_exception_handler(struct pt_regs *regs)
1945{
1946 const int field = 2 * sizeof(unsigned long);
1947 unsigned long depc, old_epc, old_ra;
1948 unsigned int debug;
1949
1950 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1951 depc = read_c0_depc();
1952 debug = read_c0_debug();
1953 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1954 if (debug & 0x80000000) {
1955 /*
1956 * In branch delay slot.
1957 * We cheat a little bit here and use EPC to calculate the
1958 * debug return address (DEPC). EPC is restored after the
1959 * calculation.
1960 */
1961 old_epc = regs->cp0_epc;
1962 old_ra = regs->regs[31];
1963 regs->cp0_epc = depc;
1964 compute_return_epc(regs);
1965 depc = regs->cp0_epc;
1966 regs->cp0_epc = old_epc;
1967 regs->regs[31] = old_ra;
1968 } else
1969 depc += 4;
1970 write_c0_depc(depc);
1971
1972#if 0
1973 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1974 write_c0_debug(debug | 0x100);
1975#endif
1976}
1977
1978/*
1979 * NMI exception handler.
1980 * No lock; only written during early bootup by CPU 0.
1981 */
1982static RAW_NOTIFIER_HEAD(nmi_chain);
1983
1984int register_nmi_notifier(struct notifier_block *nb)
1985{
1986 return raw_notifier_chain_register(&nmi_chain, nb);
1987}
1988
1989void __noreturn nmi_exception_handler(struct pt_regs *regs)
1990{
1991 char str[100];
1992
1993 nmi_enter();
1994 raw_notifier_call_chain(&nmi_chain, 0, regs);
1995 bust_spinlocks(1);
1996 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1997 smp_processor_id(), regs->cp0_epc);
1998 regs->cp0_epc = read_c0_errorepc();
1999 die(str, regs);
2000 nmi_exit();
2001}
2002
2003unsigned long ebase;
2004EXPORT_SYMBOL_GPL(ebase);
2005unsigned long exception_handlers[32];
2006unsigned long vi_handlers[64];
2007
2008void reserve_exception_space(phys_addr_t addr, unsigned long size)
2009{
2010 memblock_reserve(addr, size);
2011}
2012
2013void __init *set_except_vector(int n, void *addr)
2014{
2015 unsigned long handler = (unsigned long) addr;
2016 unsigned long old_handler;
2017
2018#ifdef CONFIG_CPU_MICROMIPS
2019 /*
2020 * Only the TLB handlers are cache aligned with an even
2021 * address. All other handlers are on an odd address and
2022 * require no modification. Otherwise, MIPS32 mode will
2023 * be entered when handling any TLB exceptions. That
2024 * would be bad...since we must stay in microMIPS mode.
2025 */
2026 if (!(handler & 0x1))
2027 handler |= 1;
2028#endif
2029 old_handler = xchg(&exception_handlers[n], handler);
2030
2031 if (n == 0 && cpu_has_divec) {
2032#ifdef CONFIG_CPU_MICROMIPS
2033 unsigned long jump_mask = ~((1 << 27) - 1);
2034#else
2035 unsigned long jump_mask = ~((1 << 28) - 1);
2036#endif
2037 u32 *buf = (u32 *)(ebase + 0x200);
2038 unsigned int k0 = 26;
2039 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2040 uasm_i_j(&buf, handler & ~jump_mask);
2041 uasm_i_nop(&buf);
2042 } else {
2043 UASM_i_LA(&buf, k0, handler);
2044 uasm_i_jr(&buf, k0);
2045 uasm_i_nop(&buf);
2046 }
2047 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2048 }
2049 return (void *)old_handler;
2050}
2051
2052static void do_default_vi(void)
2053{
2054 show_regs(get_irq_regs());
2055 panic("Caught unexpected vectored interrupt.");
2056}
2057
2058static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2059{
2060 unsigned long handler;
2061 unsigned long old_handler = vi_handlers[n];
2062 int srssets = current_cpu_data.srsets;
2063 u16 *h;
2064 unsigned char *b;
2065
2066 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2067
2068 if (addr == NULL) {
2069 handler = (unsigned long) do_default_vi;
2070 srs = 0;
2071 } else
2072 handler = (unsigned long) addr;
2073 vi_handlers[n] = handler;
2074
2075 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2076
2077 if (srs >= srssets)
2078 panic("Shadow register set %d not supported", srs);
2079
2080 if (cpu_has_veic) {
2081 if (board_bind_eic_interrupt)
2082 board_bind_eic_interrupt(n, srs);
2083 } else if (cpu_has_vint) {
2084 /* SRSMap is only defined if shadow sets are implemented */
2085 if (srssets > 1)
2086 change_c0_srsmap(0xf << n*4, srs << n*4);
2087 }
2088
2089 if (srs == 0) {
2090 /*
2091 * If no shadow set is selected then use the default handler
2092 * that does normal register saving and standard interrupt exit
2093 */
2094 extern const u8 except_vec_vi[], except_vec_vi_lui[];
2095 extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2096 extern const u8 rollback_except_vec_vi[];
2097 const u8 *vec_start = using_rollback_handler() ?
2098 rollback_except_vec_vi : except_vec_vi;
2099#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100 const int lui_offset = except_vec_vi_lui - vec_start + 2;
2101 const int ori_offset = except_vec_vi_ori - vec_start + 2;
2102#else
2103 const int lui_offset = except_vec_vi_lui - vec_start;
2104 const int ori_offset = except_vec_vi_ori - vec_start;
2105#endif
2106 const int handler_len = except_vec_vi_end - vec_start;
2107
2108 if (handler_len > VECTORSPACING) {
2109 /*
2110 * Sigh... panicing won't help as the console
2111 * is probably not configured :(
2112 */
2113 panic("VECTORSPACING too small");
2114 }
2115
2116 set_handler(((unsigned long)b - ebase), vec_start,
2117#ifdef CONFIG_CPU_MICROMIPS
2118 (handler_len - 1));
2119#else
2120 handler_len);
2121#endif
2122 h = (u16 *)(b + lui_offset);
2123 *h = (handler >> 16) & 0xffff;
2124 h = (u16 *)(b + ori_offset);
2125 *h = (handler & 0xffff);
2126 local_flush_icache_range((unsigned long)b,
2127 (unsigned long)(b+handler_len));
2128 }
2129 else {
2130 /*
2131 * In other cases jump directly to the interrupt handler. It
2132 * is the handler's responsibility to save registers if required
2133 * (eg hi/lo) and return from the exception using "eret".
2134 */
2135 u32 insn;
2136
2137 h = (u16 *)b;
2138 /* j handler */
2139#ifdef CONFIG_CPU_MICROMIPS
2140 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2141#else
2142 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2143#endif
2144 h[0] = (insn >> 16) & 0xffff;
2145 h[1] = insn & 0xffff;
2146 h[2] = 0;
2147 h[3] = 0;
2148 local_flush_icache_range((unsigned long)b,
2149 (unsigned long)(b+8));
2150 }
2151
2152 return (void *)old_handler;
2153}
2154
2155void *set_vi_handler(int n, vi_handler_t addr)
2156{
2157 return set_vi_srs_handler(n, addr, 0);
2158}
2159
2160extern void tlb_init(void);
2161
2162/*
2163 * Timer interrupt
2164 */
2165int cp0_compare_irq;
2166EXPORT_SYMBOL_GPL(cp0_compare_irq);
2167int cp0_compare_irq_shift;
2168
2169/*
2170 * Performance counter IRQ or -1 if shared with timer
2171 */
2172int cp0_perfcount_irq;
2173EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2174
2175/*
2176 * Fast debug channel IRQ or -1 if not present
2177 */
2178int cp0_fdc_irq;
2179EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2180
2181static int noulri;
2182
2183static int __init ulri_disable(char *s)
2184{
2185 pr_info("Disabling ulri\n");
2186 noulri = 1;
2187
2188 return 1;
2189}
2190__setup("noulri", ulri_disable);
2191
2192/* configure STATUS register */
2193static void configure_status(void)
2194{
2195 /*
2196 * Disable coprocessors and select 32-bit or 64-bit addressing
2197 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2198 * flag that some firmware may have left set and the TS bit (for
2199 * IP27). Set XX for ISA IV code to work.
2200 */
2201 unsigned int status_set = ST0_KERNEL_CUMASK;
2202#ifdef CONFIG_64BIT
2203 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2204#endif
2205 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2206 status_set |= ST0_XX;
2207 if (cpu_has_dsp)
2208 status_set |= ST0_MX;
2209
2210 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2211 status_set);
2212 back_to_back_c0_hazard();
2213}
2214
2215unsigned int hwrena;
2216EXPORT_SYMBOL_GPL(hwrena);
2217
2218/* configure HWRENA register */
2219static void configure_hwrena(void)
2220{
2221 hwrena = cpu_hwrena_impl_bits;
2222
2223 if (cpu_has_mips_r2_r6)
2224 hwrena |= MIPS_HWRENA_CPUNUM |
2225 MIPS_HWRENA_SYNCISTEP |
2226 MIPS_HWRENA_CC |
2227 MIPS_HWRENA_CCRES;
2228
2229 if (!noulri && cpu_has_userlocal)
2230 hwrena |= MIPS_HWRENA_ULR;
2231
2232 if (hwrena)
2233 write_c0_hwrena(hwrena);
2234}
2235
2236static void configure_exception_vector(void)
2237{
2238 if (cpu_has_mips_r2_r6) {
2239 unsigned long sr = set_c0_status(ST0_BEV);
2240 /* If available, use WG to set top bits of EBASE */
2241 if (cpu_has_ebase_wg) {
2242#ifdef CONFIG_64BIT
2243 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2244#else
2245 write_c0_ebase(ebase | MIPS_EBASE_WG);
2246#endif
2247 }
2248 write_c0_ebase(ebase);
2249 write_c0_status(sr);
2250 }
2251 if (cpu_has_veic || cpu_has_vint) {
2252 /* Setting vector spacing enables EI/VI mode */
2253 change_c0_intctl(0x3e0, VECTORSPACING);
2254 }
2255 if (cpu_has_divec) {
2256 if (cpu_has_mipsmt) {
2257 unsigned int vpflags = dvpe();
2258 set_c0_cause(CAUSEF_IV);
2259 evpe(vpflags);
2260 } else
2261 set_c0_cause(CAUSEF_IV);
2262 }
2263}
2264
2265void per_cpu_trap_init(bool is_boot_cpu)
2266{
2267 unsigned int cpu = smp_processor_id();
2268
2269 configure_status();
2270 configure_hwrena();
2271
2272 configure_exception_vector();
2273
2274 /*
2275 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2276 *
2277 * o read IntCtl.IPTI to determine the timer interrupt
2278 * o read IntCtl.IPPCI to determine the performance counter interrupt
2279 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2280 */
2281 if (cpu_has_mips_r2_r6) {
2282 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2283 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2284 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2285 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2286 if (!cp0_fdc_irq)
2287 cp0_fdc_irq = -1;
2288
2289 } else {
2290 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2291 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2292 cp0_perfcount_irq = -1;
2293 cp0_fdc_irq = -1;
2294 }
2295
2296 if (cpu_has_mmid)
2297 cpu_data[cpu].asid_cache = 0;
2298 else if (!cpu_data[cpu].asid_cache)
2299 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2300
2301 mmgrab(&init_mm);
2302 current->active_mm = &init_mm;
2303 BUG_ON(current->mm);
2304 enter_lazy_tlb(&init_mm, current);
2305
2306 /* Boot CPU's cache setup in setup_arch(). */
2307 if (!is_boot_cpu)
2308 cpu_cache_init();
2309 tlb_init();
2310 TLBMISS_HANDLER_SETUP();
2311}
2312
2313/* Install CPU exception handler */
2314void set_handler(unsigned long offset, const void *addr, unsigned long size)
2315{
2316#ifdef CONFIG_CPU_MICROMIPS
2317 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2318#else
2319 memcpy((void *)(ebase + offset), addr, size);
2320#endif
2321 local_flush_icache_range(ebase + offset, ebase + offset + size);
2322}
2323
2324static const char panic_null_cerr[] =
2325 "Trying to set NULL cache error exception handler\n";
2326
2327/*
2328 * Install uncached CPU exception handler.
2329 * This is suitable only for the cache error exception which is the only
2330 * exception handler that is being run uncached.
2331 */
2332void set_uncached_handler(unsigned long offset, void *addr,
2333 unsigned long size)
2334{
2335 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2336
2337 if (!addr)
2338 panic(panic_null_cerr);
2339
2340 memcpy((void *)(uncached_ebase + offset), addr, size);
2341}
2342
2343static int __initdata rdhwr_noopt;
2344static int __init set_rdhwr_noopt(char *str)
2345{
2346 rdhwr_noopt = 1;
2347 return 1;
2348}
2349
2350__setup("rdhwr_noopt", set_rdhwr_noopt);
2351
2352void __init trap_init(void)
2353{
2354 extern char except_vec3_generic;
2355 extern char except_vec4;
2356 extern char except_vec3_r4000;
2357 unsigned long i, vec_size;
2358 phys_addr_t ebase_pa;
2359
2360 check_wait();
2361
2362 if (!cpu_has_mips_r2_r6) {
2363 ebase = CAC_BASE;
2364 vec_size = 0x400;
2365 } else {
2366 if (cpu_has_veic || cpu_has_vint)
2367 vec_size = 0x200 + VECTORSPACING*64;
2368 else
2369 vec_size = PAGE_SIZE;
2370
2371 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2372 if (!ebase_pa)
2373 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2374 __func__, vec_size, 1 << fls(vec_size));
2375
2376 /*
2377 * Try to ensure ebase resides in KSeg0 if possible.
2378 *
2379 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2380 * hitting a poorly defined exception base for Cache Errors.
2381 * The allocation is likely to be in the low 512MB of physical,
2382 * in which case we should be able to convert to KSeg0.
2383 *
2384 * EVA is special though as it allows segments to be rearranged
2385 * and to become uncached during cache error handling.
2386 */
2387 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2388 ebase = CKSEG0ADDR(ebase_pa);
2389 else
2390 ebase = (unsigned long)phys_to_virt(ebase_pa);
2391 }
2392
2393 if (cpu_has_mmips) {
2394 unsigned int config3 = read_c0_config3();
2395
2396 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2397 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2398 else
2399 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2400 }
2401
2402 if (board_ebase_setup)
2403 board_ebase_setup();
2404 per_cpu_trap_init(true);
2405 memblock_set_bottom_up(false);
2406
2407 /*
2408 * Copy the generic exception handlers to their final destination.
2409 * This will be overridden later as suitable for a particular
2410 * configuration.
2411 */
2412 set_handler(0x180, &except_vec3_generic, 0x80);
2413
2414 /*
2415 * Setup default vectors
2416 */
2417 for (i = 0; i <= 31; i++)
2418 set_except_vector(i, handle_reserved);
2419
2420 /*
2421 * Copy the EJTAG debug exception vector handler code to it's final
2422 * destination.
2423 */
2424 if (cpu_has_ejtag && board_ejtag_handler_setup)
2425 board_ejtag_handler_setup();
2426
2427 /*
2428 * Only some CPUs have the watch exceptions.
2429 */
2430 if (cpu_has_watch)
2431 set_except_vector(EXCCODE_WATCH, handle_watch);
2432
2433 /*
2434 * Initialise interrupt handlers
2435 */
2436 if (cpu_has_veic || cpu_has_vint) {
2437 int nvec = cpu_has_veic ? 64 : 8;
2438 for (i = 0; i < nvec; i++)
2439 set_vi_handler(i, NULL);
2440 }
2441 else if (cpu_has_divec)
2442 set_handler(0x200, &except_vec4, 0x8);
2443
2444 /*
2445 * Some CPUs can enable/disable for cache parity detection, but does
2446 * it different ways.
2447 */
2448 parity_protection_init();
2449
2450 /*
2451 * The Data Bus Errors / Instruction Bus Errors are signaled
2452 * by external hardware. Therefore these two exceptions
2453 * may have board specific handlers.
2454 */
2455 if (board_be_init)
2456 board_be_init();
2457
2458 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2459 rollback_handle_int : handle_int);
2460 set_except_vector(EXCCODE_MOD, handle_tlbm);
2461 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2462 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2463
2464 set_except_vector(EXCCODE_ADEL, handle_adel);
2465 set_except_vector(EXCCODE_ADES, handle_ades);
2466
2467 set_except_vector(EXCCODE_IBE, handle_ibe);
2468 set_except_vector(EXCCODE_DBE, handle_dbe);
2469
2470 set_except_vector(EXCCODE_SYS, handle_sys);
2471 set_except_vector(EXCCODE_BP, handle_bp);
2472
2473 if (rdhwr_noopt)
2474 set_except_vector(EXCCODE_RI, handle_ri);
2475 else {
2476 if (cpu_has_vtag_icache)
2477 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2478 else if (current_cpu_type() == CPU_LOONGSON64)
2479 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2480 else
2481 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2482 }
2483
2484 set_except_vector(EXCCODE_CPU, handle_cpu);
2485 set_except_vector(EXCCODE_OV, handle_ov);
2486 set_except_vector(EXCCODE_TR, handle_tr);
2487 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2488
2489 if (board_nmi_handler_setup)
2490 board_nmi_handler_setup();
2491
2492 if (cpu_has_fpu && !cpu_has_nofpuex)
2493 set_except_vector(EXCCODE_FPE, handle_fpe);
2494
2495 if (cpu_has_ftlbparex)
2496 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2497
2498 if (cpu_has_gsexcex)
2499 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2500
2501 if (cpu_has_rixiex) {
2502 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2503 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2504 }
2505
2506 set_except_vector(EXCCODE_MSADIS, handle_msa);
2507 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2508
2509 if (cpu_has_mcheck)
2510 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2511
2512 if (cpu_has_mipsmt)
2513 set_except_vector(EXCCODE_THREAD, handle_mt);
2514
2515 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2516
2517 if (board_cache_error_setup)
2518 board_cache_error_setup();
2519
2520 if (cpu_has_vce)
2521 /* Special exception: R4[04]00 uses also the divec space. */
2522 set_handler(0x180, &except_vec3_r4000, 0x100);
2523 else if (cpu_has_4kex)
2524 set_handler(0x180, &except_vec3_generic, 0x80);
2525 else
2526 set_handler(0x080, &except_vec3_generic, 0x80);
2527
2528 local_flush_icache_range(ebase, ebase + vec_size);
2529
2530 sort_extable(__start___dbe_table, __stop___dbe_table);
2531
2532 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2533}
2534
2535static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2536 void *v)
2537{
2538 switch (cmd) {
2539 case CPU_PM_ENTER_FAILED:
2540 case CPU_PM_EXIT:
2541 configure_status();
2542 configure_hwrena();
2543 configure_exception_vector();
2544
2545 /* Restore register with CPU number for TLB handlers */
2546 TLBMISS_HANDLER_RESTORE();
2547
2548 break;
2549 }
2550
2551 return NOTIFY_OK;
2552}
2553
2554static struct notifier_block trap_pm_notifier_block = {
2555 .notifier_call = trap_pm_notifier,
2556};
2557
2558static int __init trap_pm_init(void)
2559{
2560 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2561}
2562arch_initcall(trap_pm_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched.h>
27#include <linux/smp.h>
28#include <linux/spinlock.h>
29#include <linux/kallsyms.h>
30#include <linux/bootmem.h>
31#include <linux/interrupt.h>
32#include <linux/ptrace.h>
33#include <linux/kgdb.h>
34#include <linux/kdebug.h>
35#include <linux/kprobes.h>
36#include <linux/notifier.h>
37#include <linux/kdb.h>
38#include <linux/irq.h>
39#include <linux/perf_event.h>
40
41#include <asm/addrspace.h>
42#include <asm/bootinfo.h>
43#include <asm/branch.h>
44#include <asm/break.h>
45#include <asm/cop2.h>
46#include <asm/cpu.h>
47#include <asm/cpu-type.h>
48#include <asm/dsp.h>
49#include <asm/fpu.h>
50#include <asm/fpu_emulator.h>
51#include <asm/idle.h>
52#include <asm/mips-cm.h>
53#include <asm/mips-r2-to-r6-emul.h>
54#include <asm/mipsregs.h>
55#include <asm/mipsmtregs.h>
56#include <asm/module.h>
57#include <asm/msa.h>
58#include <asm/pgtable.h>
59#include <asm/ptrace.h>
60#include <asm/sections.h>
61#include <asm/siginfo.h>
62#include <asm/tlbdebug.h>
63#include <asm/traps.h>
64#include <linux/uaccess.h>
65#include <asm/watch.h>
66#include <asm/mmu_context.h>
67#include <asm/types.h>
68#include <asm/stacktrace.h>
69#include <asm/uasm.h>
70
71extern void check_wait(void);
72extern asmlinkage void rollback_handle_int(void);
73extern asmlinkage void handle_int(void);
74extern u32 handle_tlbl[];
75extern u32 handle_tlbs[];
76extern u32 handle_tlbm[];
77extern asmlinkage void handle_adel(void);
78extern asmlinkage void handle_ades(void);
79extern asmlinkage void handle_ibe(void);
80extern asmlinkage void handle_dbe(void);
81extern asmlinkage void handle_sys(void);
82extern asmlinkage void handle_bp(void);
83extern asmlinkage void handle_ri(void);
84extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85extern asmlinkage void handle_ri_rdhwr(void);
86extern asmlinkage void handle_cpu(void);
87extern asmlinkage void handle_ov(void);
88extern asmlinkage void handle_tr(void);
89extern asmlinkage void handle_msa_fpe(void);
90extern asmlinkage void handle_fpe(void);
91extern asmlinkage void handle_ftlb(void);
92extern asmlinkage void handle_msa(void);
93extern asmlinkage void handle_mdmx(void);
94extern asmlinkage void handle_watch(void);
95extern asmlinkage void handle_mt(void);
96extern asmlinkage void handle_dsp(void);
97extern asmlinkage void handle_mcheck(void);
98extern asmlinkage void handle_reserved(void);
99extern void tlb_do_page_fault_0(void);
100
101void (*board_be_init)(void);
102int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103void (*board_nmi_handler_setup)(void);
104void (*board_ejtag_handler_setup)(void);
105void (*board_bind_eic_interrupt)(int irq, int regset);
106void (*board_ebase_setup)(void);
107void(*board_cache_error_setup)(void);
108
109static void show_raw_backtrace(unsigned long reg29)
110{
111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 unsigned long addr;
113
114 printk("Call Trace:");
115#ifdef CONFIG_KALLSYMS
116 printk("\n");
117#endif
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
123 break;
124 }
125 if (__kernel_text_address(addr))
126 print_ip_sym(addr);
127 }
128 printk("\n");
129}
130
131#ifdef CONFIG_KALLSYMS
132int raw_show_trace;
133static int __init set_raw_show_trace(char *str)
134{
135 raw_show_trace = 1;
136 return 1;
137}
138__setup("raw_show_trace", set_raw_show_trace);
139#endif
140
141static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142{
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
145 unsigned long pc = regs->cp0_epc;
146
147 if (!task)
148 task = current;
149
150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 show_raw_backtrace(sp);
152 return;
153 }
154 printk("Call Trace:\n");
155 do {
156 print_ip_sym(pc);
157 pc = unwind_stack(task, &sp, pc, &ra);
158 } while (pc);
159 pr_cont("\n");
160}
161
162/*
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
165 */
166static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
168{
169 const int field = 2 * sizeof(unsigned long);
170 long stackdata;
171 int i;
172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173
174 printk("Stack :");
175 i = 0;
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 if (i && ((i % (64 / field)) == 0)) {
178 pr_cont("\n");
179 printk(" ");
180 }
181 if (i > 39) {
182 pr_cont(" ...");
183 break;
184 }
185
186 if (__get_user(stackdata, sp++)) {
187 pr_cont(" (Bad stack address)");
188 break;
189 }
190
191 pr_cont(" %0*lx", field, stackdata);
192 i++;
193 }
194 pr_cont("\n");
195 show_backtrace(task, regs);
196}
197
198void show_stack(struct task_struct *task, unsigned long *sp)
199{
200 struct pt_regs regs;
201 mm_segment_t old_fs = get_fs();
202 if (sp) {
203 regs.regs[29] = (unsigned long)sp;
204 regs.regs[31] = 0;
205 regs.cp0_epc = 0;
206 } else {
207 if (task && task != current) {
208 regs.regs[29] = task->thread.reg29;
209 regs.regs[31] = 0;
210 regs.cp0_epc = task->thread.reg31;
211#ifdef CONFIG_KGDB_KDB
212 } else if (atomic_read(&kgdb_active) != -1 &&
213 kdb_current_regs) {
214 memcpy(®s, kdb_current_regs, sizeof(regs));
215#endif /* CONFIG_KGDB_KDB */
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 /*
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
223 */
224 set_fs(KERNEL_DS);
225 show_stacktrace(task, ®s);
226 set_fs(old_fs);
227}
228
229static void show_code(unsigned int __user *pc)
230{
231 long i;
232 unsigned short __user *pc16 = NULL;
233
234 printk("Code:");
235
236 if ((unsigned long)pc & 1)
237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 for(i = -3 ; i < 6 ; i++) {
239 unsigned int insn;
240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 pr_cont(" (Bad address in epc)\n");
242 break;
243 }
244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 }
246 pr_cont("\n");
247}
248
249static void __show_regs(const struct pt_regs *regs)
250{
251 const int field = 2 * sizeof(unsigned long);
252 unsigned int cause = regs->cp0_cause;
253 unsigned int exccode;
254 int i;
255
256 show_regs_print_info(KERN_DEFAULT);
257
258 /*
259 * Saved main processor registers
260 */
261 for (i = 0; i < 32; ) {
262 if ((i % 4) == 0)
263 printk("$%2d :", i);
264 if (i == 0)
265 pr_cont(" %0*lx", field, 0UL);
266 else if (i == 26 || i == 27)
267 pr_cont(" %*s", field, "");
268 else
269 pr_cont(" %0*lx", field, regs->regs[i]);
270
271 i++;
272 if ((i % 4) == 0)
273 pr_cont("\n");
274 }
275
276#ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field, regs->acx);
278#endif
279 printk("Hi : %0*lx\n", field, regs->hi);
280 printk("Lo : %0*lx\n", field, regs->lo);
281
282 /*
283 * Saved cp0 registers
284 */
285 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
286 (void *) regs->cp0_epc);
287 printk("ra : %0*lx %pS\n", field, regs->regs[31],
288 (void *) regs->regs[31]);
289
290 printk("Status: %08x ", (uint32_t) regs->cp0_status);
291
292 if (cpu_has_3kex) {
293 if (regs->cp0_status & ST0_KUO)
294 pr_cont("KUo ");
295 if (regs->cp0_status & ST0_IEO)
296 pr_cont("IEo ");
297 if (regs->cp0_status & ST0_KUP)
298 pr_cont("KUp ");
299 if (regs->cp0_status & ST0_IEP)
300 pr_cont("IEp ");
301 if (regs->cp0_status & ST0_KUC)
302 pr_cont("KUc ");
303 if (regs->cp0_status & ST0_IEC)
304 pr_cont("IEc ");
305 } else if (cpu_has_4kex) {
306 if (regs->cp0_status & ST0_KX)
307 pr_cont("KX ");
308 if (regs->cp0_status & ST0_SX)
309 pr_cont("SX ");
310 if (regs->cp0_status & ST0_UX)
311 pr_cont("UX ");
312 switch (regs->cp0_status & ST0_KSU) {
313 case KSU_USER:
314 pr_cont("USER ");
315 break;
316 case KSU_SUPERVISOR:
317 pr_cont("SUPERVISOR ");
318 break;
319 case KSU_KERNEL:
320 pr_cont("KERNEL ");
321 break;
322 default:
323 pr_cont("BAD_MODE ");
324 break;
325 }
326 if (regs->cp0_status & ST0_ERL)
327 pr_cont("ERL ");
328 if (regs->cp0_status & ST0_EXL)
329 pr_cont("EXL ");
330 if (regs->cp0_status & ST0_IE)
331 pr_cont("IE ");
332 }
333 pr_cont("\n");
334
335 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
336 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
337
338 if (1 <= exccode && exccode <= 5)
339 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
340
341 printk("PrId : %08x (%s)\n", read_c0_prid(),
342 cpu_name_string());
343}
344
345/*
346 * FIXME: really the generic show_regs should take a const pointer argument.
347 */
348void show_regs(struct pt_regs *regs)
349{
350 __show_regs((struct pt_regs *)regs);
351}
352
353void show_registers(struct pt_regs *regs)
354{
355 const int field = 2 * sizeof(unsigned long);
356 mm_segment_t old_fs = get_fs();
357
358 __show_regs(regs);
359 print_modules();
360 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 current->comm, current->pid, current_thread_info(), current,
362 field, current_thread_info()->tp_value);
363 if (cpu_has_userlocal) {
364 unsigned long tls;
365
366 tls = read_c0_userlocal();
367 if (tls != current_thread_info()->tp_value)
368 printk("*HwTLS: %0*lx\n", field, tls);
369 }
370
371 if (!user_mode(regs))
372 /* Necessary for getting the correct stack content */
373 set_fs(KERNEL_DS);
374 show_stacktrace(current, regs);
375 show_code((unsigned int __user *) regs->cp0_epc);
376 printk("\n");
377 set_fs(old_fs);
378}
379
380static DEFINE_RAW_SPINLOCK(die_lock);
381
382void __noreturn die(const char *str, struct pt_regs *regs)
383{
384 static int die_counter;
385 int sig = SIGSEGV;
386
387 oops_enter();
388
389 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
390 SIGSEGV) == NOTIFY_STOP)
391 sig = 0;
392
393 console_verbose();
394 raw_spin_lock_irq(&die_lock);
395 bust_spinlocks(1);
396
397 printk("%s[#%d]:\n", str, ++die_counter);
398 show_registers(regs);
399 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400 raw_spin_unlock_irq(&die_lock);
401
402 oops_exit();
403
404 if (in_interrupt())
405 panic("Fatal exception in interrupt");
406
407 if (panic_on_oops)
408 panic("Fatal exception");
409
410 if (regs && kexec_should_crash(current))
411 crash_kexec(regs);
412
413 do_exit(sig);
414}
415
416extern struct exception_table_entry __start___dbe_table[];
417extern struct exception_table_entry __stop___dbe_table[];
418
419__asm__(
420" .section __dbe_table, \"a\"\n"
421" .previous \n");
422
423/* Given an address, look for it in the exception tables. */
424static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425{
426 const struct exception_table_entry *e;
427
428 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
429 if (!e)
430 e = search_module_dbetables(addr);
431 return e;
432}
433
434asmlinkage void do_be(struct pt_regs *regs)
435{
436 const int field = 2 * sizeof(unsigned long);
437 const struct exception_table_entry *fixup = NULL;
438 int data = regs->cp0_cause & 4;
439 int action = MIPS_BE_FATAL;
440 enum ctx_state prev_state;
441
442 prev_state = exception_enter();
443 /* XXX For now. Fixme, this searches the wrong table ... */
444 if (data && !user_mode(regs))
445 fixup = search_dbe_tables(exception_epc(regs));
446
447 if (fixup)
448 action = MIPS_BE_FIXUP;
449
450 if (board_be_handler)
451 action = board_be_handler(regs, fixup != NULL);
452 else
453 mips_cm_error_report();
454
455 switch (action) {
456 case MIPS_BE_DISCARD:
457 goto out;
458 case MIPS_BE_FIXUP:
459 if (fixup) {
460 regs->cp0_epc = fixup->nextinsn;
461 goto out;
462 }
463 break;
464 default:
465 break;
466 }
467
468 /*
469 * Assume it would be too dangerous to continue ...
470 */
471 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
472 data ? "Data" : "Instruction",
473 field, regs->cp0_epc, field, regs->regs[31]);
474 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
475 SIGBUS) == NOTIFY_STOP)
476 goto out;
477
478 die_if_kernel("Oops", regs);
479 force_sig(SIGBUS, current);
480
481out:
482 exception_exit(prev_state);
483}
484
485/*
486 * ll/sc, rdhwr, sync emulation
487 */
488
489#define OPCODE 0xfc000000
490#define BASE 0x03e00000
491#define RT 0x001f0000
492#define OFFSET 0x0000ffff
493#define LL 0xc0000000
494#define SC 0xe0000000
495#define SPEC0 0x00000000
496#define SPEC3 0x7c000000
497#define RD 0x0000f800
498#define FUNC 0x0000003f
499#define SYNC 0x0000000f
500#define RDHWR 0x0000003b
501
502/* microMIPS definitions */
503#define MM_POOL32A_FUNC 0xfc00ffff
504#define MM_RDHWR 0x00006b3c
505#define MM_RS 0x001f0000
506#define MM_RT 0x03e00000
507
508/*
509 * The ll_bit is cleared by r*_switch.S
510 */
511
512unsigned int ll_bit;
513struct task_struct *ll_task;
514
515static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
516{
517 unsigned long value, __user *vaddr;
518 long offset;
519
520 /*
521 * analyse the ll instruction that just caused a ri exception
522 * and put the referenced address to addr.
523 */
524
525 /* sign extend offset */
526 offset = opcode & OFFSET;
527 offset <<= 16;
528 offset >>= 16;
529
530 vaddr = (unsigned long __user *)
531 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
532
533 if ((unsigned long)vaddr & 3)
534 return SIGBUS;
535 if (get_user(value, vaddr))
536 return SIGSEGV;
537
538 preempt_disable();
539
540 if (ll_task == NULL || ll_task == current) {
541 ll_bit = 1;
542 } else {
543 ll_bit = 0;
544 }
545 ll_task = current;
546
547 preempt_enable();
548
549 regs->regs[(opcode & RT) >> 16] = value;
550
551 return 0;
552}
553
554static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
555{
556 unsigned long __user *vaddr;
557 unsigned long reg;
558 long offset;
559
560 /*
561 * analyse the sc instruction that just caused a ri exception
562 * and put the referenced address to addr.
563 */
564
565 /* sign extend offset */
566 offset = opcode & OFFSET;
567 offset <<= 16;
568 offset >>= 16;
569
570 vaddr = (unsigned long __user *)
571 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
572 reg = (opcode & RT) >> 16;
573
574 if ((unsigned long)vaddr & 3)
575 return SIGBUS;
576
577 preempt_disable();
578
579 if (ll_bit == 0 || ll_task != current) {
580 regs->regs[reg] = 0;
581 preempt_enable();
582 return 0;
583 }
584
585 preempt_enable();
586
587 if (put_user(regs->regs[reg], vaddr))
588 return SIGSEGV;
589
590 regs->regs[reg] = 1;
591
592 return 0;
593}
594
595/*
596 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
597 * opcodes are supposed to result in coprocessor unusable exceptions if
598 * executed on ll/sc-less processors. That's the theory. In practice a
599 * few processors such as NEC's VR4100 throw reserved instruction exceptions
600 * instead, so we're doing the emulation thing in both exception handlers.
601 */
602static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
603{
604 if ((opcode & OPCODE) == LL) {
605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 1, regs, 0);
607 return simulate_ll(regs, opcode);
608 }
609 if ((opcode & OPCODE) == SC) {
610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
611 1, regs, 0);
612 return simulate_sc(regs, opcode);
613 }
614
615 return -1; /* Must be something else ... */
616}
617
618/*
619 * Simulate trapping 'rdhwr' instructions to provide user accessible
620 * registers not implemented in hardware.
621 */
622static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
623{
624 struct thread_info *ti = task_thread_info(current);
625
626 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
627 1, regs, 0);
628 switch (rd) {
629 case MIPS_HWR_CPUNUM: /* CPU number */
630 regs->regs[rt] = smp_processor_id();
631 return 0;
632 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
633 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
634 current_cpu_data.icache.linesz);
635 return 0;
636 case MIPS_HWR_CC: /* Read count register */
637 regs->regs[rt] = read_c0_count();
638 return 0;
639 case MIPS_HWR_CCRES: /* Count register resolution */
640 switch (current_cpu_type()) {
641 case CPU_20KC:
642 case CPU_25KF:
643 regs->regs[rt] = 1;
644 break;
645 default:
646 regs->regs[rt] = 2;
647 }
648 return 0;
649 case MIPS_HWR_ULR: /* Read UserLocal register */
650 regs->regs[rt] = ti->tp_value;
651 return 0;
652 default:
653 return -1;
654 }
655}
656
657static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
658{
659 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
660 int rd = (opcode & RD) >> 11;
661 int rt = (opcode & RT) >> 16;
662
663 simulate_rdhwr(regs, rd, rt);
664 return 0;
665 }
666
667 /* Not ours. */
668 return -1;
669}
670
671static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
672{
673 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
674 int rd = (opcode & MM_RS) >> 16;
675 int rt = (opcode & MM_RT) >> 21;
676 simulate_rdhwr(regs, rd, rt);
677 return 0;
678 }
679
680 /* Not ours. */
681 return -1;
682}
683
684static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
685{
686 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
687 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
688 1, regs, 0);
689 return 0;
690 }
691
692 return -1; /* Must be something else ... */
693}
694
695asmlinkage void do_ov(struct pt_regs *regs)
696{
697 enum ctx_state prev_state;
698 siginfo_t info = {
699 .si_signo = SIGFPE,
700 .si_code = FPE_INTOVF,
701 .si_addr = (void __user *)regs->cp0_epc,
702 };
703
704 prev_state = exception_enter();
705 die_if_kernel("Integer overflow", regs);
706
707 force_sig_info(SIGFPE, &info, current);
708 exception_exit(prev_state);
709}
710
711/*
712 * Send SIGFPE according to FCSR Cause bits, which must have already
713 * been masked against Enable bits. This is impotant as Inexact can
714 * happen together with Overflow or Underflow, and `ptrace' can set
715 * any bits.
716 */
717void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
718 struct task_struct *tsk)
719{
720 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
721
722 if (fcr31 & FPU_CSR_INV_X)
723 si.si_code = FPE_FLTINV;
724 else if (fcr31 & FPU_CSR_DIV_X)
725 si.si_code = FPE_FLTDIV;
726 else if (fcr31 & FPU_CSR_OVF_X)
727 si.si_code = FPE_FLTOVF;
728 else if (fcr31 & FPU_CSR_UDF_X)
729 si.si_code = FPE_FLTUND;
730 else if (fcr31 & FPU_CSR_INE_X)
731 si.si_code = FPE_FLTRES;
732 else
733 si.si_code = __SI_FAULT;
734 force_sig_info(SIGFPE, &si, tsk);
735}
736
737int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
738{
739 struct siginfo si = { 0 };
740 struct vm_area_struct *vma;
741
742 switch (sig) {
743 case 0:
744 return 0;
745
746 case SIGFPE:
747 force_fcr31_sig(fcr31, fault_addr, current);
748 return 1;
749
750 case SIGBUS:
751 si.si_addr = fault_addr;
752 si.si_signo = sig;
753 si.si_code = BUS_ADRERR;
754 force_sig_info(sig, &si, current);
755 return 1;
756
757 case SIGSEGV:
758 si.si_addr = fault_addr;
759 si.si_signo = sig;
760 down_read(¤t->mm->mmap_sem);
761 vma = find_vma(current->mm, (unsigned long)fault_addr);
762 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
763 si.si_code = SEGV_ACCERR;
764 else
765 si.si_code = SEGV_MAPERR;
766 up_read(¤t->mm->mmap_sem);
767 force_sig_info(sig, &si, current);
768 return 1;
769
770 default:
771 force_sig(sig, current);
772 return 1;
773 }
774}
775
776static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
777 unsigned long old_epc, unsigned long old_ra)
778{
779 union mips_instruction inst = { .word = opcode };
780 void __user *fault_addr;
781 unsigned long fcr31;
782 int sig;
783
784 /* If it's obviously not an FP instruction, skip it */
785 switch (inst.i_format.opcode) {
786 case cop1_op:
787 case cop1x_op:
788 case lwc1_op:
789 case ldc1_op:
790 case swc1_op:
791 case sdc1_op:
792 break;
793
794 default:
795 return -1;
796 }
797
798 /*
799 * do_ri skipped over the instruction via compute_return_epc, undo
800 * that for the FPU emulator.
801 */
802 regs->cp0_epc = old_epc;
803 regs->regs[31] = old_ra;
804
805 /* Save the FP context to struct thread_struct */
806 lose_fpu(1);
807
808 /* Run the emulator */
809 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
810 &fault_addr);
811
812 /*
813 * We can't allow the emulated instruction to leave any
814 * enabled Cause bits set in $fcr31.
815 */
816 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
817 current->thread.fpu.fcr31 &= ~fcr31;
818
819 /* Restore the hardware register state */
820 own_fpu(1);
821
822 /* Send a signal if required. */
823 process_fpemu_return(sig, fault_addr, fcr31);
824
825 return 0;
826}
827
828/*
829 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
830 */
831asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
832{
833 enum ctx_state prev_state;
834 void __user *fault_addr;
835 int sig;
836
837 prev_state = exception_enter();
838 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
839 SIGFPE) == NOTIFY_STOP)
840 goto out;
841
842 /* Clear FCSR.Cause before enabling interrupts */
843 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
844 local_irq_enable();
845
846 die_if_kernel("FP exception in kernel code", regs);
847
848 if (fcr31 & FPU_CSR_UNI_X) {
849 /*
850 * Unimplemented operation exception. If we've got the full
851 * software emulator on-board, let's use it...
852 *
853 * Force FPU to dump state into task/thread context. We're
854 * moving a lot of data here for what is probably a single
855 * instruction, but the alternative is to pre-decode the FP
856 * register operands before invoking the emulator, which seems
857 * a bit extreme for what should be an infrequent event.
858 */
859 /* Ensure 'resume' not overwrite saved fp context again. */
860 lose_fpu(1);
861
862 /* Run the emulator */
863 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
864 &fault_addr);
865
866 /*
867 * We can't allow the emulated instruction to leave any
868 * enabled Cause bits set in $fcr31.
869 */
870 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
871 current->thread.fpu.fcr31 &= ~fcr31;
872
873 /* Restore the hardware register state */
874 own_fpu(1); /* Using the FPU again. */
875 } else {
876 sig = SIGFPE;
877 fault_addr = (void __user *) regs->cp0_epc;
878 }
879
880 /* Send a signal if required. */
881 process_fpemu_return(sig, fault_addr, fcr31);
882
883out:
884 exception_exit(prev_state);
885}
886
887void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
888 const char *str)
889{
890 siginfo_t info = { 0 };
891 char b[40];
892
893#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
894 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
895 SIGTRAP) == NOTIFY_STOP)
896 return;
897#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
898
899 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
900 SIGTRAP) == NOTIFY_STOP)
901 return;
902
903 /*
904 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
905 * insns, even for trap and break codes that indicate arithmetic
906 * failures. Weird ...
907 * But should we continue the brokenness??? --macro
908 */
909 switch (code) {
910 case BRK_OVERFLOW:
911 case BRK_DIVZERO:
912 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
913 die_if_kernel(b, regs);
914 if (code == BRK_DIVZERO)
915 info.si_code = FPE_INTDIV;
916 else
917 info.si_code = FPE_INTOVF;
918 info.si_signo = SIGFPE;
919 info.si_addr = (void __user *) regs->cp0_epc;
920 force_sig_info(SIGFPE, &info, current);
921 break;
922 case BRK_BUG:
923 die_if_kernel("Kernel bug detected", regs);
924 force_sig(SIGTRAP, current);
925 break;
926 case BRK_MEMU:
927 /*
928 * This breakpoint code is used by the FPU emulator to retake
929 * control of the CPU after executing the instruction from the
930 * delay slot of an emulated branch.
931 *
932 * Terminate if exception was recognized as a delay slot return
933 * otherwise handle as normal.
934 */
935 if (do_dsemulret(regs))
936 return;
937
938 die_if_kernel("Math emu break/trap", regs);
939 force_sig(SIGTRAP, current);
940 break;
941 default:
942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 die_if_kernel(b, regs);
944 if (si_code) {
945 info.si_signo = SIGTRAP;
946 info.si_code = si_code;
947 force_sig_info(SIGTRAP, &info, current);
948 } else {
949 force_sig(SIGTRAP, current);
950 }
951 }
952}
953
954asmlinkage void do_bp(struct pt_regs *regs)
955{
956 unsigned long epc = msk_isa16_mode(exception_epc(regs));
957 unsigned int opcode, bcode;
958 enum ctx_state prev_state;
959 mm_segment_t seg;
960
961 seg = get_fs();
962 if (!user_mode(regs))
963 set_fs(KERNEL_DS);
964
965 prev_state = exception_enter();
966 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
967 if (get_isa16_mode(regs->cp0_epc)) {
968 u16 instr[2];
969
970 if (__get_user(instr[0], (u16 __user *)epc))
971 goto out_sigsegv;
972
973 if (!cpu_has_mmips) {
974 /* MIPS16e mode */
975 bcode = (instr[0] >> 5) & 0x3f;
976 } else if (mm_insn_16bit(instr[0])) {
977 /* 16-bit microMIPS BREAK */
978 bcode = instr[0] & 0xf;
979 } else {
980 /* 32-bit microMIPS BREAK */
981 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
982 goto out_sigsegv;
983 opcode = (instr[0] << 16) | instr[1];
984 bcode = (opcode >> 6) & ((1 << 20) - 1);
985 }
986 } else {
987 if (__get_user(opcode, (unsigned int __user *)epc))
988 goto out_sigsegv;
989 bcode = (opcode >> 6) & ((1 << 20) - 1);
990 }
991
992 /*
993 * There is the ancient bug in the MIPS assemblers that the break
994 * code starts left to bit 16 instead to bit 6 in the opcode.
995 * Gas is bug-compatible, but not always, grrr...
996 * We handle both cases with a simple heuristics. --macro
997 */
998 if (bcode >= (1 << 10))
999 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1000
1001 /*
1002 * notify the kprobe handlers, if instruction is likely to
1003 * pertain to them.
1004 */
1005 switch (bcode) {
1006 case BRK_UPROBE:
1007 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009 goto out;
1010 else
1011 break;
1012 case BRK_UPROBE_XOL:
1013 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1014 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015 goto out;
1016 else
1017 break;
1018 case BRK_KPROBE_BP:
1019 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1020 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1021 goto out;
1022 else
1023 break;
1024 case BRK_KPROBE_SSTEPBP:
1025 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1026 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1027 goto out;
1028 else
1029 break;
1030 default:
1031 break;
1032 }
1033
1034 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1035
1036out:
1037 set_fs(seg);
1038 exception_exit(prev_state);
1039 return;
1040
1041out_sigsegv:
1042 force_sig(SIGSEGV, current);
1043 goto out;
1044}
1045
1046asmlinkage void do_tr(struct pt_regs *regs)
1047{
1048 u32 opcode, tcode = 0;
1049 enum ctx_state prev_state;
1050 u16 instr[2];
1051 mm_segment_t seg;
1052 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1053
1054 seg = get_fs();
1055 if (!user_mode(regs))
1056 set_fs(get_ds());
1057
1058 prev_state = exception_enter();
1059 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1060 if (get_isa16_mode(regs->cp0_epc)) {
1061 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1062 __get_user(instr[1], (u16 __user *)(epc + 2)))
1063 goto out_sigsegv;
1064 opcode = (instr[0] << 16) | instr[1];
1065 /* Immediate versions don't provide a code. */
1066 if (!(opcode & OPCODE))
1067 tcode = (opcode >> 12) & ((1 << 4) - 1);
1068 } else {
1069 if (__get_user(opcode, (u32 __user *)epc))
1070 goto out_sigsegv;
1071 /* Immediate versions don't provide a code. */
1072 if (!(opcode & OPCODE))
1073 tcode = (opcode >> 6) & ((1 << 10) - 1);
1074 }
1075
1076 do_trap_or_bp(regs, tcode, 0, "Trap");
1077
1078out:
1079 set_fs(seg);
1080 exception_exit(prev_state);
1081 return;
1082
1083out_sigsegv:
1084 force_sig(SIGSEGV, current);
1085 goto out;
1086}
1087
1088asmlinkage void do_ri(struct pt_regs *regs)
1089{
1090 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1091 unsigned long old_epc = regs->cp0_epc;
1092 unsigned long old31 = regs->regs[31];
1093 enum ctx_state prev_state;
1094 unsigned int opcode = 0;
1095 int status = -1;
1096
1097 /*
1098 * Avoid any kernel code. Just emulate the R2 instruction
1099 * as quickly as possible.
1100 */
1101 if (mipsr2_emulation && cpu_has_mips_r6 &&
1102 likely(user_mode(regs)) &&
1103 likely(get_user(opcode, epc) >= 0)) {
1104 unsigned long fcr31 = 0;
1105
1106 status = mipsr2_decoder(regs, opcode, &fcr31);
1107 switch (status) {
1108 case 0:
1109 case SIGEMT:
1110 task_thread_info(current)->r2_emul_return = 1;
1111 return;
1112 case SIGILL:
1113 goto no_r2_instr;
1114 default:
1115 process_fpemu_return(status,
1116 ¤t->thread.cp0_baduaddr,
1117 fcr31);
1118 task_thread_info(current)->r2_emul_return = 1;
1119 return;
1120 }
1121 }
1122
1123no_r2_instr:
1124
1125 prev_state = exception_enter();
1126 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1127
1128 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1129 SIGILL) == NOTIFY_STOP)
1130 goto out;
1131
1132 die_if_kernel("Reserved instruction in kernel code", regs);
1133
1134 if (unlikely(compute_return_epc(regs) < 0))
1135 goto out;
1136
1137 if (!get_isa16_mode(regs->cp0_epc)) {
1138 if (unlikely(get_user(opcode, epc) < 0))
1139 status = SIGSEGV;
1140
1141 if (!cpu_has_llsc && status < 0)
1142 status = simulate_llsc(regs, opcode);
1143
1144 if (status < 0)
1145 status = simulate_rdhwr_normal(regs, opcode);
1146
1147 if (status < 0)
1148 status = simulate_sync(regs, opcode);
1149
1150 if (status < 0)
1151 status = simulate_fp(regs, opcode, old_epc, old31);
1152 } else if (cpu_has_mmips) {
1153 unsigned short mmop[2] = { 0 };
1154
1155 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1156 status = SIGSEGV;
1157 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1158 status = SIGSEGV;
1159 opcode = mmop[0];
1160 opcode = (opcode << 16) | mmop[1];
1161
1162 if (status < 0)
1163 status = simulate_rdhwr_mm(regs, opcode);
1164 }
1165
1166 if (status < 0)
1167 status = SIGILL;
1168
1169 if (unlikely(status > 0)) {
1170 regs->cp0_epc = old_epc; /* Undo skip-over. */
1171 regs->regs[31] = old31;
1172 force_sig(status, current);
1173 }
1174
1175out:
1176 exception_exit(prev_state);
1177}
1178
1179/*
1180 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1181 * emulated more than some threshold number of instructions, force migration to
1182 * a "CPU" that has FP support.
1183 */
1184static void mt_ase_fp_affinity(void)
1185{
1186#ifdef CONFIG_MIPS_MT_FPAFF
1187 if (mt_fpemul_threshold > 0 &&
1188 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1189 /*
1190 * If there's no FPU present, or if the application has already
1191 * restricted the allowed set to exclude any CPUs with FPUs,
1192 * we'll skip the procedure.
1193 */
1194 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
1195 cpumask_t tmask;
1196
1197 current->thread.user_cpus_allowed
1198 = current->cpus_allowed;
1199 cpumask_and(&tmask, ¤t->cpus_allowed,
1200 &mt_fpu_cpumask);
1201 set_cpus_allowed_ptr(current, &tmask);
1202 set_thread_flag(TIF_FPUBOUND);
1203 }
1204 }
1205#endif /* CONFIG_MIPS_MT_FPAFF */
1206}
1207
1208/*
1209 * No lock; only written during early bootup by CPU 0.
1210 */
1211static RAW_NOTIFIER_HEAD(cu2_chain);
1212
1213int __ref register_cu2_notifier(struct notifier_block *nb)
1214{
1215 return raw_notifier_chain_register(&cu2_chain, nb);
1216}
1217
1218int cu2_notifier_call_chain(unsigned long val, void *v)
1219{
1220 return raw_notifier_call_chain(&cu2_chain, val, v);
1221}
1222
1223static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1224 void *data)
1225{
1226 struct pt_regs *regs = data;
1227
1228 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1229 "instruction", regs);
1230 force_sig(SIGILL, current);
1231
1232 return NOTIFY_OK;
1233}
1234
1235static int wait_on_fp_mode_switch(atomic_t *p)
1236{
1237 /*
1238 * The FP mode for this task is currently being switched. That may
1239 * involve modifications to the format of this tasks FP context which
1240 * make it unsafe to proceed with execution for the moment. Instead,
1241 * schedule some other task.
1242 */
1243 schedule();
1244 return 0;
1245}
1246
1247static int enable_restore_fp_context(int msa)
1248{
1249 int err, was_fpu_owner, prior_msa;
1250
1251 /*
1252 * If an FP mode switch is currently underway, wait for it to
1253 * complete before proceeding.
1254 */
1255 wait_on_atomic_t(¤t->mm->context.fp_mode_switching,
1256 wait_on_fp_mode_switch, TASK_KILLABLE);
1257
1258 if (!used_math()) {
1259 /* First time FP context user. */
1260 preempt_disable();
1261 err = init_fpu();
1262 if (msa && !err) {
1263 enable_msa();
1264 init_msa_upper();
1265 set_thread_flag(TIF_USEDMSA);
1266 set_thread_flag(TIF_MSA_CTX_LIVE);
1267 }
1268 preempt_enable();
1269 if (!err)
1270 set_used_math();
1271 return err;
1272 }
1273
1274 /*
1275 * This task has formerly used the FP context.
1276 *
1277 * If this thread has no live MSA vector context then we can simply
1278 * restore the scalar FP context. If it has live MSA vector context
1279 * (that is, it has or may have used MSA since last performing a
1280 * function call) then we'll need to restore the vector context. This
1281 * applies even if we're currently only executing a scalar FP
1282 * instruction. This is because if we were to later execute an MSA
1283 * instruction then we'd either have to:
1284 *
1285 * - Restore the vector context & clobber any registers modified by
1286 * scalar FP instructions between now & then.
1287 *
1288 * or
1289 *
1290 * - Not restore the vector context & lose the most significant bits
1291 * of all vector registers.
1292 *
1293 * Neither of those options is acceptable. We cannot restore the least
1294 * significant bits of the registers now & only restore the most
1295 * significant bits later because the most significant bits of any
1296 * vector registers whose aliased FP register is modified now will have
1297 * been zeroed. We'd have no way to know that when restoring the vector
1298 * context & thus may load an outdated value for the most significant
1299 * bits of a vector register.
1300 */
1301 if (!msa && !thread_msa_context_live())
1302 return own_fpu(1);
1303
1304 /*
1305 * This task is using or has previously used MSA. Thus we require
1306 * that Status.FR == 1.
1307 */
1308 preempt_disable();
1309 was_fpu_owner = is_fpu_owner();
1310 err = own_fpu_inatomic(0);
1311 if (err)
1312 goto out;
1313
1314 enable_msa();
1315 write_msa_csr(current->thread.fpu.msacsr);
1316 set_thread_flag(TIF_USEDMSA);
1317
1318 /*
1319 * If this is the first time that the task is using MSA and it has
1320 * previously used scalar FP in this time slice then we already nave
1321 * FP context which we shouldn't clobber. We do however need to clear
1322 * the upper 64b of each vector register so that this task has no
1323 * opportunity to see data left behind by another.
1324 */
1325 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1326 if (!prior_msa && was_fpu_owner) {
1327 init_msa_upper();
1328
1329 goto out;
1330 }
1331
1332 if (!prior_msa) {
1333 /*
1334 * Restore the least significant 64b of each vector register
1335 * from the existing scalar FP context.
1336 */
1337 _restore_fp(current);
1338
1339 /*
1340 * The task has not formerly used MSA, so clear the upper 64b
1341 * of each vector register such that it cannot see data left
1342 * behind by another task.
1343 */
1344 init_msa_upper();
1345 } else {
1346 /* We need to restore the vector context. */
1347 restore_msa(current);
1348
1349 /* Restore the scalar FP control & status register */
1350 if (!was_fpu_owner)
1351 write_32bit_cp1_register(CP1_STATUS,
1352 current->thread.fpu.fcr31);
1353 }
1354
1355out:
1356 preempt_enable();
1357
1358 return 0;
1359}
1360
1361asmlinkage void do_cpu(struct pt_regs *regs)
1362{
1363 enum ctx_state prev_state;
1364 unsigned int __user *epc;
1365 unsigned long old_epc, old31;
1366 void __user *fault_addr;
1367 unsigned int opcode;
1368 unsigned long fcr31;
1369 unsigned int cpid;
1370 int status, err;
1371 int sig;
1372
1373 prev_state = exception_enter();
1374 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1375
1376 if (cpid != 2)
1377 die_if_kernel("do_cpu invoked from kernel context!", regs);
1378
1379 switch (cpid) {
1380 case 0:
1381 epc = (unsigned int __user *)exception_epc(regs);
1382 old_epc = regs->cp0_epc;
1383 old31 = regs->regs[31];
1384 opcode = 0;
1385 status = -1;
1386
1387 if (unlikely(compute_return_epc(regs) < 0))
1388 break;
1389
1390 if (!get_isa16_mode(regs->cp0_epc)) {
1391 if (unlikely(get_user(opcode, epc) < 0))
1392 status = SIGSEGV;
1393
1394 if (!cpu_has_llsc && status < 0)
1395 status = simulate_llsc(regs, opcode);
1396 }
1397
1398 if (status < 0)
1399 status = SIGILL;
1400
1401 if (unlikely(status > 0)) {
1402 regs->cp0_epc = old_epc; /* Undo skip-over. */
1403 regs->regs[31] = old31;
1404 force_sig(status, current);
1405 }
1406
1407 break;
1408
1409 case 3:
1410 /*
1411 * The COP3 opcode space and consequently the CP0.Status.CU3
1412 * bit and the CP0.Cause.CE=3 encoding have been removed as
1413 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1414 * up the space has been reused for COP1X instructions, that
1415 * are enabled by the CP0.Status.CU1 bit and consequently
1416 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1417 * exceptions. Some FPU-less processors that implement one
1418 * of these ISAs however use this code erroneously for COP1X
1419 * instructions. Therefore we redirect this trap to the FP
1420 * emulator too.
1421 */
1422 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1423 force_sig(SIGILL, current);
1424 break;
1425 }
1426 /* Fall through. */
1427
1428 case 1:
1429 err = enable_restore_fp_context(0);
1430
1431 if (raw_cpu_has_fpu && !err)
1432 break;
1433
1434 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1435 &fault_addr);
1436
1437 /*
1438 * We can't allow the emulated instruction to leave
1439 * any enabled Cause bits set in $fcr31.
1440 */
1441 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1442 current->thread.fpu.fcr31 &= ~fcr31;
1443
1444 /* Send a signal if required. */
1445 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1446 mt_ase_fp_affinity();
1447
1448 break;
1449
1450 case 2:
1451 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1452 break;
1453 }
1454
1455 exception_exit(prev_state);
1456}
1457
1458asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1459{
1460 enum ctx_state prev_state;
1461
1462 prev_state = exception_enter();
1463 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1464 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1465 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1466 goto out;
1467
1468 /* Clear MSACSR.Cause before enabling interrupts */
1469 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1470 local_irq_enable();
1471
1472 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1473 force_sig(SIGFPE, current);
1474out:
1475 exception_exit(prev_state);
1476}
1477
1478asmlinkage void do_msa(struct pt_regs *regs)
1479{
1480 enum ctx_state prev_state;
1481 int err;
1482
1483 prev_state = exception_enter();
1484
1485 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1486 force_sig(SIGILL, current);
1487 goto out;
1488 }
1489
1490 die_if_kernel("do_msa invoked from kernel context!", regs);
1491
1492 err = enable_restore_fp_context(1);
1493 if (err)
1494 force_sig(SIGILL, current);
1495out:
1496 exception_exit(prev_state);
1497}
1498
1499asmlinkage void do_mdmx(struct pt_regs *regs)
1500{
1501 enum ctx_state prev_state;
1502
1503 prev_state = exception_enter();
1504 force_sig(SIGILL, current);
1505 exception_exit(prev_state);
1506}
1507
1508/*
1509 * Called with interrupts disabled.
1510 */
1511asmlinkage void do_watch(struct pt_regs *regs)
1512{
1513 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1514 enum ctx_state prev_state;
1515
1516 prev_state = exception_enter();
1517 /*
1518 * Clear WP (bit 22) bit of cause register so we don't loop
1519 * forever.
1520 */
1521 clear_c0_cause(CAUSEF_WP);
1522
1523 /*
1524 * If the current thread has the watch registers loaded, save
1525 * their values and send SIGTRAP. Otherwise another thread
1526 * left the registers set, clear them and continue.
1527 */
1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529 mips_read_watch_registers();
1530 local_irq_enable();
1531 force_sig_info(SIGTRAP, &info, current);
1532 } else {
1533 mips_clear_watch_registers();
1534 local_irq_enable();
1535 }
1536 exception_exit(prev_state);
1537}
1538
1539asmlinkage void do_mcheck(struct pt_regs *regs)
1540{
1541 int multi_match = regs->cp0_status & ST0_TS;
1542 enum ctx_state prev_state;
1543 mm_segment_t old_fs = get_fs();
1544
1545 prev_state = exception_enter();
1546 show_regs(regs);
1547
1548 if (multi_match) {
1549 dump_tlb_regs();
1550 pr_info("\n");
1551 dump_tlb_all();
1552 }
1553
1554 if (!user_mode(regs))
1555 set_fs(KERNEL_DS);
1556
1557 show_code((unsigned int __user *) regs->cp0_epc);
1558
1559 set_fs(old_fs);
1560
1561 /*
1562 * Some chips may have other causes of machine check (e.g. SB1
1563 * graduation timer)
1564 */
1565 panic("Caught Machine Check exception - %scaused by multiple "
1566 "matching entries in the TLB.",
1567 (multi_match) ? "" : "not ");
1568}
1569
1570asmlinkage void do_mt(struct pt_regs *regs)
1571{
1572 int subcode;
1573
1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575 >> VPECONTROL_EXCPT_SHIFT;
1576 switch (subcode) {
1577 case 0:
1578 printk(KERN_DEBUG "Thread Underflow\n");
1579 break;
1580 case 1:
1581 printk(KERN_DEBUG "Thread Overflow\n");
1582 break;
1583 case 2:
1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1585 break;
1586 case 3:
1587 printk(KERN_DEBUG "Gating Storage Exception\n");
1588 break;
1589 case 4:
1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1591 break;
1592 case 5:
1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1594 break;
1595 default:
1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1597 subcode);
1598 break;
1599 }
1600 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1601
1602 force_sig(SIGILL, current);
1603}
1604
1605
1606asmlinkage void do_dsp(struct pt_regs *regs)
1607{
1608 if (cpu_has_dsp)
1609 panic("Unexpected DSP exception");
1610
1611 force_sig(SIGILL, current);
1612}
1613
1614asmlinkage void do_reserved(struct pt_regs *regs)
1615{
1616 /*
1617 * Game over - no way to handle this if it ever occurs. Most probably
1618 * caused by a new unknown cpu type or after another deadly
1619 * hard/software error.
1620 */
1621 show_regs(regs);
1622 panic("Caught reserved exception %ld - should not happen.",
1623 (regs->cp0_cause & 0x7f) >> 2);
1624}
1625
1626static int __initdata l1parity = 1;
1627static int __init nol1parity(char *s)
1628{
1629 l1parity = 0;
1630 return 1;
1631}
1632__setup("nol1par", nol1parity);
1633static int __initdata l2parity = 1;
1634static int __init nol2parity(char *s)
1635{
1636 l2parity = 0;
1637 return 1;
1638}
1639__setup("nol2par", nol2parity);
1640
1641/*
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1644 */
1645static inline void parity_protection_init(void)
1646{
1647 switch (current_cpu_type()) {
1648 case CPU_24K:
1649 case CPU_34K:
1650 case CPU_74K:
1651 case CPU_1004K:
1652 case CPU_1074K:
1653 case CPU_INTERAPTIV:
1654 case CPU_PROAPTIV:
1655 case CPU_P5600:
1656 case CPU_QEMU_GENERIC:
1657 case CPU_I6400:
1658 case CPU_P6600:
1659 {
1660#define ERRCTL_PE 0x80000000
1661#define ERRCTL_L2P 0x00800000
1662 unsigned long errctl;
1663 unsigned int l1parity_present, l2parity_present;
1664
1665 errctl = read_c0_ecc();
1666 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1667
1668 /* probe L1 parity support */
1669 write_c0_ecc(errctl | ERRCTL_PE);
1670 back_to_back_c0_hazard();
1671 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1672
1673 /* probe L2 parity support */
1674 write_c0_ecc(errctl|ERRCTL_L2P);
1675 back_to_back_c0_hazard();
1676 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1677
1678 if (l1parity_present && l2parity_present) {
1679 if (l1parity)
1680 errctl |= ERRCTL_PE;
1681 if (l1parity ^ l2parity)
1682 errctl |= ERRCTL_L2P;
1683 } else if (l1parity_present) {
1684 if (l1parity)
1685 errctl |= ERRCTL_PE;
1686 } else if (l2parity_present) {
1687 if (l2parity)
1688 errctl |= ERRCTL_L2P;
1689 } else {
1690 /* No parity available */
1691 }
1692
1693 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1694
1695 write_c0_ecc(errctl);
1696 back_to_back_c0_hazard();
1697 errctl = read_c0_ecc();
1698 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1699
1700 if (l1parity_present)
1701 printk(KERN_INFO "Cache parity protection %sabled\n",
1702 (errctl & ERRCTL_PE) ? "en" : "dis");
1703
1704 if (l2parity_present) {
1705 if (l1parity_present && l1parity)
1706 errctl ^= ERRCTL_L2P;
1707 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1708 (errctl & ERRCTL_L2P) ? "en" : "dis");
1709 }
1710 }
1711 break;
1712
1713 case CPU_5KC:
1714 case CPU_5KE:
1715 case CPU_LOONGSON1:
1716 write_c0_ecc(0x80000000);
1717 back_to_back_c0_hazard();
1718 /* Set the PE bit (bit 31) in the c0_errctl register. */
1719 printk(KERN_INFO "Cache parity protection %sabled\n",
1720 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1721 break;
1722 case CPU_20KC:
1723 case CPU_25KF:
1724 /* Clear the DE bit (bit 16) in the c0_status register. */
1725 printk(KERN_INFO "Enable cache parity protection for "
1726 "MIPS 20KC/25KF CPUs.\n");
1727 clear_c0_status(ST0_DE);
1728 break;
1729 default:
1730 break;
1731 }
1732}
1733
1734asmlinkage void cache_parity_error(void)
1735{
1736 const int field = 2 * sizeof(unsigned long);
1737 unsigned int reg_val;
1738
1739 /* For the moment, report the problem and hang. */
1740 printk("Cache error exception:\n");
1741 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1742 reg_val = read_c0_cacheerr();
1743 printk("c0_cacheerr == %08x\n", reg_val);
1744
1745 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1746 reg_val & (1<<30) ? "secondary" : "primary",
1747 reg_val & (1<<31) ? "data" : "insn");
1748 if ((cpu_has_mips_r2_r6) &&
1749 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1750 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1751 reg_val & (1<<29) ? "ED " : "",
1752 reg_val & (1<<28) ? "ET " : "",
1753 reg_val & (1<<27) ? "ES " : "",
1754 reg_val & (1<<26) ? "EE " : "",
1755 reg_val & (1<<25) ? "EB " : "",
1756 reg_val & (1<<24) ? "EI " : "",
1757 reg_val & (1<<23) ? "E1 " : "",
1758 reg_val & (1<<22) ? "E0 " : "");
1759 } else {
1760 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1761 reg_val & (1<<29) ? "ED " : "",
1762 reg_val & (1<<28) ? "ET " : "",
1763 reg_val & (1<<26) ? "EE " : "",
1764 reg_val & (1<<25) ? "EB " : "",
1765 reg_val & (1<<24) ? "EI " : "",
1766 reg_val & (1<<23) ? "E1 " : "",
1767 reg_val & (1<<22) ? "E0 " : "");
1768 }
1769 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1770
1771#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1772 if (reg_val & (1<<22))
1773 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1774
1775 if (reg_val & (1<<23))
1776 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1777#endif
1778
1779 panic("Can't handle the cache error!");
1780}
1781
1782asmlinkage void do_ftlb(void)
1783{
1784 const int field = 2 * sizeof(unsigned long);
1785 unsigned int reg_val;
1786
1787 /* For the moment, report the problem and hang. */
1788 if ((cpu_has_mips_r2_r6) &&
1789 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1790 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1791 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1792 read_c0_ecc());
1793 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1794 reg_val = read_c0_cacheerr();
1795 pr_err("c0_cacheerr == %08x\n", reg_val);
1796
1797 if ((reg_val & 0xc0000000) == 0xc0000000) {
1798 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1799 } else {
1800 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 reg_val & (1<<30) ? "secondary" : "primary",
1802 reg_val & (1<<31) ? "data" : "insn");
1803 }
1804 } else {
1805 pr_err("FTLB error exception\n");
1806 }
1807 /* Just print the cacheerr bits for now */
1808 cache_parity_error();
1809}
1810
1811/*
1812 * SDBBP EJTAG debug exception handler.
1813 * We skip the instruction and return to the next instruction.
1814 */
1815void ejtag_exception_handler(struct pt_regs *regs)
1816{
1817 const int field = 2 * sizeof(unsigned long);
1818 unsigned long depc, old_epc, old_ra;
1819 unsigned int debug;
1820
1821 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1822 depc = read_c0_depc();
1823 debug = read_c0_debug();
1824 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1825 if (debug & 0x80000000) {
1826 /*
1827 * In branch delay slot.
1828 * We cheat a little bit here and use EPC to calculate the
1829 * debug return address (DEPC). EPC is restored after the
1830 * calculation.
1831 */
1832 old_epc = regs->cp0_epc;
1833 old_ra = regs->regs[31];
1834 regs->cp0_epc = depc;
1835 compute_return_epc(regs);
1836 depc = regs->cp0_epc;
1837 regs->cp0_epc = old_epc;
1838 regs->regs[31] = old_ra;
1839 } else
1840 depc += 4;
1841 write_c0_depc(depc);
1842
1843#if 0
1844 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1845 write_c0_debug(debug | 0x100);
1846#endif
1847}
1848
1849/*
1850 * NMI exception handler.
1851 * No lock; only written during early bootup by CPU 0.
1852 */
1853static RAW_NOTIFIER_HEAD(nmi_chain);
1854
1855int register_nmi_notifier(struct notifier_block *nb)
1856{
1857 return raw_notifier_chain_register(&nmi_chain, nb);
1858}
1859
1860void __noreturn nmi_exception_handler(struct pt_regs *regs)
1861{
1862 char str[100];
1863
1864 nmi_enter();
1865 raw_notifier_call_chain(&nmi_chain, 0, regs);
1866 bust_spinlocks(1);
1867 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1868 smp_processor_id(), regs->cp0_epc);
1869 regs->cp0_epc = read_c0_errorepc();
1870 die(str, regs);
1871 nmi_exit();
1872}
1873
1874#define VECTORSPACING 0x100 /* for EI/VI mode */
1875
1876unsigned long ebase;
1877EXPORT_SYMBOL_GPL(ebase);
1878unsigned long exception_handlers[32];
1879unsigned long vi_handlers[64];
1880
1881void __init *set_except_vector(int n, void *addr)
1882{
1883 unsigned long handler = (unsigned long) addr;
1884 unsigned long old_handler;
1885
1886#ifdef CONFIG_CPU_MICROMIPS
1887 /*
1888 * Only the TLB handlers are cache aligned with an even
1889 * address. All other handlers are on an odd address and
1890 * require no modification. Otherwise, MIPS32 mode will
1891 * be entered when handling any TLB exceptions. That
1892 * would be bad...since we must stay in microMIPS mode.
1893 */
1894 if (!(handler & 0x1))
1895 handler |= 1;
1896#endif
1897 old_handler = xchg(&exception_handlers[n], handler);
1898
1899 if (n == 0 && cpu_has_divec) {
1900#ifdef CONFIG_CPU_MICROMIPS
1901 unsigned long jump_mask = ~((1 << 27) - 1);
1902#else
1903 unsigned long jump_mask = ~((1 << 28) - 1);
1904#endif
1905 u32 *buf = (u32 *)(ebase + 0x200);
1906 unsigned int k0 = 26;
1907 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1908 uasm_i_j(&buf, handler & ~jump_mask);
1909 uasm_i_nop(&buf);
1910 } else {
1911 UASM_i_LA(&buf, k0, handler);
1912 uasm_i_jr(&buf, k0);
1913 uasm_i_nop(&buf);
1914 }
1915 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1916 }
1917 return (void *)old_handler;
1918}
1919
1920static void do_default_vi(void)
1921{
1922 show_regs(get_irq_regs());
1923 panic("Caught unexpected vectored interrupt.");
1924}
1925
1926static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1927{
1928 unsigned long handler;
1929 unsigned long old_handler = vi_handlers[n];
1930 int srssets = current_cpu_data.srsets;
1931 u16 *h;
1932 unsigned char *b;
1933
1934 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1935
1936 if (addr == NULL) {
1937 handler = (unsigned long) do_default_vi;
1938 srs = 0;
1939 } else
1940 handler = (unsigned long) addr;
1941 vi_handlers[n] = handler;
1942
1943 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1944
1945 if (srs >= srssets)
1946 panic("Shadow register set %d not supported", srs);
1947
1948 if (cpu_has_veic) {
1949 if (board_bind_eic_interrupt)
1950 board_bind_eic_interrupt(n, srs);
1951 } else if (cpu_has_vint) {
1952 /* SRSMap is only defined if shadow sets are implemented */
1953 if (srssets > 1)
1954 change_c0_srsmap(0xf << n*4, srs << n*4);
1955 }
1956
1957 if (srs == 0) {
1958 /*
1959 * If no shadow set is selected then use the default handler
1960 * that does normal register saving and standard interrupt exit
1961 */
1962 extern char except_vec_vi, except_vec_vi_lui;
1963 extern char except_vec_vi_ori, except_vec_vi_end;
1964 extern char rollback_except_vec_vi;
1965 char *vec_start = using_rollback_handler() ?
1966 &rollback_except_vec_vi : &except_vec_vi;
1967#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1968 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1969 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1970#else
1971 const int lui_offset = &except_vec_vi_lui - vec_start;
1972 const int ori_offset = &except_vec_vi_ori - vec_start;
1973#endif
1974 const int handler_len = &except_vec_vi_end - vec_start;
1975
1976 if (handler_len > VECTORSPACING) {
1977 /*
1978 * Sigh... panicing won't help as the console
1979 * is probably not configured :(
1980 */
1981 panic("VECTORSPACING too small");
1982 }
1983
1984 set_handler(((unsigned long)b - ebase), vec_start,
1985#ifdef CONFIG_CPU_MICROMIPS
1986 (handler_len - 1));
1987#else
1988 handler_len);
1989#endif
1990 h = (u16 *)(b + lui_offset);
1991 *h = (handler >> 16) & 0xffff;
1992 h = (u16 *)(b + ori_offset);
1993 *h = (handler & 0xffff);
1994 local_flush_icache_range((unsigned long)b,
1995 (unsigned long)(b+handler_len));
1996 }
1997 else {
1998 /*
1999 * In other cases jump directly to the interrupt handler. It
2000 * is the handler's responsibility to save registers if required
2001 * (eg hi/lo) and return from the exception using "eret".
2002 */
2003 u32 insn;
2004
2005 h = (u16 *)b;
2006 /* j handler */
2007#ifdef CONFIG_CPU_MICROMIPS
2008 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2009#else
2010 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2011#endif
2012 h[0] = (insn >> 16) & 0xffff;
2013 h[1] = insn & 0xffff;
2014 h[2] = 0;
2015 h[3] = 0;
2016 local_flush_icache_range((unsigned long)b,
2017 (unsigned long)(b+8));
2018 }
2019
2020 return (void *)old_handler;
2021}
2022
2023void *set_vi_handler(int n, vi_handler_t addr)
2024{
2025 return set_vi_srs_handler(n, addr, 0);
2026}
2027
2028extern void tlb_init(void);
2029
2030/*
2031 * Timer interrupt
2032 */
2033int cp0_compare_irq;
2034EXPORT_SYMBOL_GPL(cp0_compare_irq);
2035int cp0_compare_irq_shift;
2036
2037/*
2038 * Performance counter IRQ or -1 if shared with timer
2039 */
2040int cp0_perfcount_irq;
2041EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2042
2043/*
2044 * Fast debug channel IRQ or -1 if not present
2045 */
2046int cp0_fdc_irq;
2047EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2048
2049static int noulri;
2050
2051static int __init ulri_disable(char *s)
2052{
2053 pr_info("Disabling ulri\n");
2054 noulri = 1;
2055
2056 return 1;
2057}
2058__setup("noulri", ulri_disable);
2059
2060/* configure STATUS register */
2061static void configure_status(void)
2062{
2063 /*
2064 * Disable coprocessors and select 32-bit or 64-bit addressing
2065 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2066 * flag that some firmware may have left set and the TS bit (for
2067 * IP27). Set XX for ISA IV code to work.
2068 */
2069 unsigned int status_set = ST0_CU0;
2070#ifdef CONFIG_64BIT
2071 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2072#endif
2073 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2074 status_set |= ST0_XX;
2075 if (cpu_has_dsp)
2076 status_set |= ST0_MX;
2077
2078 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2079 status_set);
2080}
2081
2082unsigned int hwrena;
2083EXPORT_SYMBOL_GPL(hwrena);
2084
2085/* configure HWRENA register */
2086static void configure_hwrena(void)
2087{
2088 hwrena = cpu_hwrena_impl_bits;
2089
2090 if (cpu_has_mips_r2_r6)
2091 hwrena |= MIPS_HWRENA_CPUNUM |
2092 MIPS_HWRENA_SYNCISTEP |
2093 MIPS_HWRENA_CC |
2094 MIPS_HWRENA_CCRES;
2095
2096 if (!noulri && cpu_has_userlocal)
2097 hwrena |= MIPS_HWRENA_ULR;
2098
2099 if (hwrena)
2100 write_c0_hwrena(hwrena);
2101}
2102
2103static void configure_exception_vector(void)
2104{
2105 if (cpu_has_veic || cpu_has_vint) {
2106 unsigned long sr = set_c0_status(ST0_BEV);
2107 /* If available, use WG to set top bits of EBASE */
2108 if (cpu_has_ebase_wg) {
2109#ifdef CONFIG_64BIT
2110 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2111#else
2112 write_c0_ebase(ebase | MIPS_EBASE_WG);
2113#endif
2114 }
2115 write_c0_ebase(ebase);
2116 write_c0_status(sr);
2117 /* Setting vector spacing enables EI/VI mode */
2118 change_c0_intctl(0x3e0, VECTORSPACING);
2119 }
2120 if (cpu_has_divec) {
2121 if (cpu_has_mipsmt) {
2122 unsigned int vpflags = dvpe();
2123 set_c0_cause(CAUSEF_IV);
2124 evpe(vpflags);
2125 } else
2126 set_c0_cause(CAUSEF_IV);
2127 }
2128}
2129
2130void per_cpu_trap_init(bool is_boot_cpu)
2131{
2132 unsigned int cpu = smp_processor_id();
2133
2134 configure_status();
2135 configure_hwrena();
2136
2137 configure_exception_vector();
2138
2139 /*
2140 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2141 *
2142 * o read IntCtl.IPTI to determine the timer interrupt
2143 * o read IntCtl.IPPCI to determine the performance counter interrupt
2144 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2145 */
2146 if (cpu_has_mips_r2_r6) {
2147 /*
2148 * We shouldn't trust a secondary core has a sane EBASE register
2149 * so use the one calculated by the boot CPU.
2150 */
2151 if (!is_boot_cpu) {
2152 /* If available, use WG to set top bits of EBASE */
2153 if (cpu_has_ebase_wg) {
2154#ifdef CONFIG_64BIT
2155 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2156#else
2157 write_c0_ebase(ebase | MIPS_EBASE_WG);
2158#endif
2159 }
2160 write_c0_ebase(ebase);
2161 }
2162
2163 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2164 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2165 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2166 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2167 if (!cp0_fdc_irq)
2168 cp0_fdc_irq = -1;
2169
2170 } else {
2171 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2172 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2173 cp0_perfcount_irq = -1;
2174 cp0_fdc_irq = -1;
2175 }
2176
2177 if (!cpu_data[cpu].asid_cache)
2178 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2179
2180 atomic_inc(&init_mm.mm_count);
2181 current->active_mm = &init_mm;
2182 BUG_ON(current->mm);
2183 enter_lazy_tlb(&init_mm, current);
2184
2185 /* Boot CPU's cache setup in setup_arch(). */
2186 if (!is_boot_cpu)
2187 cpu_cache_init();
2188 tlb_init();
2189 TLBMISS_HANDLER_SETUP();
2190}
2191
2192/* Install CPU exception handler */
2193void set_handler(unsigned long offset, void *addr, unsigned long size)
2194{
2195#ifdef CONFIG_CPU_MICROMIPS
2196 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2197#else
2198 memcpy((void *)(ebase + offset), addr, size);
2199#endif
2200 local_flush_icache_range(ebase + offset, ebase + offset + size);
2201}
2202
2203static char panic_null_cerr[] =
2204 "Trying to set NULL cache error exception handler";
2205
2206/*
2207 * Install uncached CPU exception handler.
2208 * This is suitable only for the cache error exception which is the only
2209 * exception handler that is being run uncached.
2210 */
2211void set_uncached_handler(unsigned long offset, void *addr,
2212 unsigned long size)
2213{
2214 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2215
2216 if (!addr)
2217 panic(panic_null_cerr);
2218
2219 memcpy((void *)(uncached_ebase + offset), addr, size);
2220}
2221
2222static int __initdata rdhwr_noopt;
2223static int __init set_rdhwr_noopt(char *str)
2224{
2225 rdhwr_noopt = 1;
2226 return 1;
2227}
2228
2229__setup("rdhwr_noopt", set_rdhwr_noopt);
2230
2231void __init trap_init(void)
2232{
2233 extern char except_vec3_generic;
2234 extern char except_vec4;
2235 extern char except_vec3_r4000;
2236 unsigned long i;
2237
2238 check_wait();
2239
2240 if (cpu_has_veic || cpu_has_vint) {
2241 unsigned long size = 0x200 + VECTORSPACING*64;
2242 phys_addr_t ebase_pa;
2243
2244 ebase = (unsigned long)
2245 __alloc_bootmem(size, 1 << fls(size), 0);
2246
2247 /*
2248 * Try to ensure ebase resides in KSeg0 if possible.
2249 *
2250 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2251 * hitting a poorly defined exception base for Cache Errors.
2252 * The allocation is likely to be in the low 512MB of physical,
2253 * in which case we should be able to convert to KSeg0.
2254 *
2255 * EVA is special though as it allows segments to be rearranged
2256 * and to become uncached during cache error handling.
2257 */
2258 ebase_pa = __pa(ebase);
2259 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2260 ebase = CKSEG0ADDR(ebase_pa);
2261 } else {
2262 ebase = CAC_BASE;
2263
2264 if (cpu_has_mips_r2_r6) {
2265 if (cpu_has_ebase_wg) {
2266#ifdef CONFIG_64BIT
2267 ebase = (read_c0_ebase_64() & ~0xfff);
2268#else
2269 ebase = (read_c0_ebase() & ~0xfff);
2270#endif
2271 } else {
2272 ebase += (read_c0_ebase() & 0x3ffff000);
2273 }
2274 }
2275 }
2276
2277 if (cpu_has_mmips) {
2278 unsigned int config3 = read_c0_config3();
2279
2280 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2281 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2282 else
2283 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2284 }
2285
2286 if (board_ebase_setup)
2287 board_ebase_setup();
2288 per_cpu_trap_init(true);
2289
2290 /*
2291 * Copy the generic exception handlers to their final destination.
2292 * This will be overridden later as suitable for a particular
2293 * configuration.
2294 */
2295 set_handler(0x180, &except_vec3_generic, 0x80);
2296
2297 /*
2298 * Setup default vectors
2299 */
2300 for (i = 0; i <= 31; i++)
2301 set_except_vector(i, handle_reserved);
2302
2303 /*
2304 * Copy the EJTAG debug exception vector handler code to it's final
2305 * destination.
2306 */
2307 if (cpu_has_ejtag && board_ejtag_handler_setup)
2308 board_ejtag_handler_setup();
2309
2310 /*
2311 * Only some CPUs have the watch exceptions.
2312 */
2313 if (cpu_has_watch)
2314 set_except_vector(EXCCODE_WATCH, handle_watch);
2315
2316 /*
2317 * Initialise interrupt handlers
2318 */
2319 if (cpu_has_veic || cpu_has_vint) {
2320 int nvec = cpu_has_veic ? 64 : 8;
2321 for (i = 0; i < nvec; i++)
2322 set_vi_handler(i, NULL);
2323 }
2324 else if (cpu_has_divec)
2325 set_handler(0x200, &except_vec4, 0x8);
2326
2327 /*
2328 * Some CPUs can enable/disable for cache parity detection, but does
2329 * it different ways.
2330 */
2331 parity_protection_init();
2332
2333 /*
2334 * The Data Bus Errors / Instruction Bus Errors are signaled
2335 * by external hardware. Therefore these two exceptions
2336 * may have board specific handlers.
2337 */
2338 if (board_be_init)
2339 board_be_init();
2340
2341 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2342 rollback_handle_int : handle_int);
2343 set_except_vector(EXCCODE_MOD, handle_tlbm);
2344 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2345 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2346
2347 set_except_vector(EXCCODE_ADEL, handle_adel);
2348 set_except_vector(EXCCODE_ADES, handle_ades);
2349
2350 set_except_vector(EXCCODE_IBE, handle_ibe);
2351 set_except_vector(EXCCODE_DBE, handle_dbe);
2352
2353 set_except_vector(EXCCODE_SYS, handle_sys);
2354 set_except_vector(EXCCODE_BP, handle_bp);
2355
2356 if (rdhwr_noopt)
2357 set_except_vector(EXCCODE_RI, handle_ri);
2358 else {
2359 if (cpu_has_vtag_icache)
2360 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2361 else if (current_cpu_type() == CPU_LOONGSON3)
2362 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2363 else
2364 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2365 }
2366
2367 set_except_vector(EXCCODE_CPU, handle_cpu);
2368 set_except_vector(EXCCODE_OV, handle_ov);
2369 set_except_vector(EXCCODE_TR, handle_tr);
2370 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2371
2372 if (current_cpu_type() == CPU_R6000 ||
2373 current_cpu_type() == CPU_R6000A) {
2374 /*
2375 * The R6000 is the only R-series CPU that features a machine
2376 * check exception (similar to the R4000 cache error) and
2377 * unaligned ldc1/sdc1 exception. The handlers have not been
2378 * written yet. Well, anyway there is no R6000 machine on the
2379 * current list of targets for Linux/MIPS.
2380 * (Duh, crap, there is someone with a triple R6k machine)
2381 */
2382 //set_except_vector(14, handle_mc);
2383 //set_except_vector(15, handle_ndc);
2384 }
2385
2386
2387 if (board_nmi_handler_setup)
2388 board_nmi_handler_setup();
2389
2390 if (cpu_has_fpu && !cpu_has_nofpuex)
2391 set_except_vector(EXCCODE_FPE, handle_fpe);
2392
2393 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2394
2395 if (cpu_has_rixiex) {
2396 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2397 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2398 }
2399
2400 set_except_vector(EXCCODE_MSADIS, handle_msa);
2401 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2402
2403 if (cpu_has_mcheck)
2404 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2405
2406 if (cpu_has_mipsmt)
2407 set_except_vector(EXCCODE_THREAD, handle_mt);
2408
2409 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2410
2411 if (board_cache_error_setup)
2412 board_cache_error_setup();
2413
2414 if (cpu_has_vce)
2415 /* Special exception: R4[04]00 uses also the divec space. */
2416 set_handler(0x180, &except_vec3_r4000, 0x100);
2417 else if (cpu_has_4kex)
2418 set_handler(0x180, &except_vec3_generic, 0x80);
2419 else
2420 set_handler(0x080, &except_vec3_generic, 0x80);
2421
2422 local_flush_icache_range(ebase, ebase + 0x400);
2423
2424 sort_extable(__start___dbe_table, __stop___dbe_table);
2425
2426 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2427}
2428
2429static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2430 void *v)
2431{
2432 switch (cmd) {
2433 case CPU_PM_ENTER_FAILED:
2434 case CPU_PM_EXIT:
2435 configure_status();
2436 configure_hwrena();
2437 configure_exception_vector();
2438
2439 /* Restore register with CPU number for TLB handlers */
2440 TLBMISS_HANDLER_RESTORE();
2441
2442 break;
2443 }
2444
2445 return NOTIFY_OK;
2446}
2447
2448static struct notifier_block trap_pm_notifier_block = {
2449 .notifier_call = trap_pm_notifier,
2450};
2451
2452static int __init trap_pm_init(void)
2453{
2454 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2455}
2456arch_initcall(trap_pm_init);