Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2013 Imagination Technologies
  4 * Author: Paul Burton <paul.burton@mips.com>
 
 
 
 
 
  5 */
  6
  7#include <linux/cpu.h>
  8#include <linux/delay.h>
  9#include <linux/io.h>
 10#include <linux/sched/task_stack.h>
 11#include <linux/sched/hotplug.h>
 12#include <linux/slab.h>
 13#include <linux/smp.h>
 14#include <linux/types.h>
 15#include <linux/irq.h>
 16
 17#include <asm/bcache.h>
 18#include <asm/mips-cps.h>
 
 19#include <asm/mips_mt.h>
 20#include <asm/mipsregs.h>
 21#include <asm/pm-cps.h>
 22#include <asm/r4kcache.h>
 23#include <asm/smp-cps.h>
 24#include <asm/time.h>
 25#include <asm/uasm.h>
 26
 27static bool threads_disabled;
 28static DECLARE_BITMAP(core_power, NR_CPUS);
 29
 30struct core_boot_config *mips_cps_core_bootcfg;
 31
 32static int __init setup_nothreads(char *s)
 33{
 34	threads_disabled = true;
 35	return 0;
 36}
 37early_param("nothreads", setup_nothreads);
 38
 39static unsigned core_vpe_count(unsigned int cluster, unsigned core)
 40{
 
 
 41	if (threads_disabled)
 42		return 1;
 43
 44	return mips_cps_numvps(cluster, core);
 
 
 
 
 
 
 
 45}
 46
 47static void __init cps_smp_setup(void)
 48{
 49	unsigned int nclusters, ncores, nvpes, core_vpes;
 50	unsigned long core_entry;
 51	int cl, c, v;
 52
 53	/* Detect & record VPE topology */
 54	nvpes = 0;
 55	nclusters = mips_cps_numclusters();
 56	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
 57	for (cl = 0; cl < nclusters; cl++) {
 58		if (cl > 0)
 59			pr_cont(",");
 60		pr_cont("{");
 61
 62		ncores = mips_cps_numcores(cl);
 63		for (c = 0; c < ncores; c++) {
 64			core_vpes = core_vpe_count(cl, c);
 65
 66			if (c > 0)
 67				pr_cont(",");
 68			pr_cont("%u", core_vpes);
 69
 70			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
 71			if (!cl && !c)
 72				smp_num_siblings = core_vpes;
 73
 74			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
 75				cpu_set_cluster(&cpu_data[nvpes + v], cl);
 76				cpu_set_core(&cpu_data[nvpes + v], c);
 77				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
 78			}
 79
 80			nvpes += core_vpes;
 81		}
 82
 83		pr_cont("}");
 84	}
 85	pr_cont(" total %u\n", nvpes);
 86
 87	/* Indicate present CPUs (CPU being synonymous with VPE) */
 88	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
 89		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
 90		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
 91		__cpu_number_map[v] = v;
 92		__cpu_logical_map[v] = v;
 93	}
 94
 95	/* Set a coherent default CCA (CWB) */
 96	change_c0_config(CONF_CM_CMASK, 0x5);
 97
 98	/* Core 0 is powered up (we're running on it) */
 99	bitmap_set(core_power, 0, 1);
100
101	/* Initialise core 0 */
102	mips_cps_core_init();
103
104	/* Make core 0 coherent with everything */
105	write_gcr_cl_coherence(0xff);
106
107	if (mips_cm_revision() >= CM_REV_CM3) {
108		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109		write_gcr_bev_base(core_entry);
110	}
111
112#ifdef CONFIG_MIPS_MT_FPAFF
113	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114	if (cpu_has_fpu)
115		cpumask_set_cpu(0, &mt_fpu_cpumask);
116#endif /* CONFIG_MIPS_MT_FPAFF */
117}
118
119static void __init cps_prepare_cpus(unsigned int max_cpus)
120{
121	unsigned ncores, core_vpes, c, cca;
122	bool cca_unsuitable, cores_limited;
123	u32 *entry_code;
124
125	mips_mt_set_cpuoptions();
126
127	/* Detect whether the CCA is unsuited to multi-core SMP */
128	cca = read_c0_config() & CONF_CM_CMASK;
129	switch (cca) {
130	case 0x4: /* CWBE */
131	case 0x5: /* CWB */
132		/* The CCA is coherent, multi-core is fine */
133		cca_unsuitable = false;
134		break;
135
136	default:
137		/* CCA is not coherent, multi-core is not usable */
138		cca_unsuitable = true;
139	}
140
141	/* Warn the user if the CCA prevents multi-core */
142	cores_limited = false;
143	if (cca_unsuitable || cpu_has_dc_aliases) {
144		for_each_present_cpu(c) {
145			if (cpus_are_siblings(smp_processor_id(), c))
146				continue;
147
148			set_cpu_present(c, false);
149			cores_limited = true;
 
150		}
151	}
152	if (cores_limited)
153		pr_warn("Using only one core due to %s%s%s\n",
154			cca_unsuitable ? "unsuitable CCA" : "",
155			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
156			cpu_has_dc_aliases ? "dcache aliasing" : "");
157
158	/*
159	 * Patch the start of mips_cps_core_entry to provide:
160	 *
161	 * s0 = kseg0 CCA
162	 */
163	entry_code = (u32 *)&mips_cps_core_entry;
164	uasm_i_addiu(&entry_code, 16, 0, cca);
165	blast_dcache_range((unsigned long)&mips_cps_core_entry,
166			   (unsigned long)entry_code);
167	bc_wback_inv((unsigned long)&mips_cps_core_entry,
168		     (void *)entry_code - (void *)&mips_cps_core_entry);
169	__sync();
170
171	/* Allocate core boot configuration structs */
172	ncores = mips_cps_numcores(0);
173	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
174					GFP_KERNEL);
175	if (!mips_cps_core_bootcfg) {
176		pr_err("Failed to allocate boot config for %u cores\n", ncores);
177		goto err_out;
178	}
179
180	/* Allocate VPE boot configuration structs */
181	for (c = 0; c < ncores; c++) {
182		core_vpes = core_vpe_count(0, c);
183		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
184				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
185				GFP_KERNEL);
186		if (!mips_cps_core_bootcfg[c].vpe_config) {
187			pr_err("Failed to allocate %u VPE boot configs\n",
188			       core_vpes);
189			goto err_out;
190		}
191	}
192
193	/* Mark this CPU as booted */
194	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
195		   1 << cpu_vpe_id(&current_cpu_data));
196
197	return;
198err_out:
199	/* Clean up allocations */
200	if (mips_cps_core_bootcfg) {
201		for (c = 0; c < ncores; c++)
202			kfree(mips_cps_core_bootcfg[c].vpe_config);
203		kfree(mips_cps_core_bootcfg);
204		mips_cps_core_bootcfg = NULL;
205	}
206
207	/* Effectively disable SMP by declaring CPUs not present */
208	for_each_possible_cpu(c) {
209		if (c == 0)
210			continue;
211		set_cpu_present(c, false);
212	}
213}
214
215static void boot_core(unsigned int core, unsigned int vpe_id)
216{
217	u32 stat, seq_state;
218	unsigned timeout;
219
220	/* Select the appropriate core */
221	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
222
223	/* Set its reset vector */
224	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
225
226	/* Ensure its coherency is disabled */
227	write_gcr_co_coherence(0);
228
229	/* Start it with the legacy memory map and exception base */
230	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
231
232	/* Ensure the core can access the GCRs */
233	set_gcr_access(1 << core);
 
 
234
235	if (mips_cpc_present()) {
236		/* Reset the core */
237		mips_cpc_lock_other(core);
238
239		if (mips_cm_revision() >= CM_REV_CM3) {
240			/* Run only the requested VP following the reset */
241			write_cpc_co_vp_stop(0xf);
242			write_cpc_co_vp_run(1 << vpe_id);
243
244			/*
245			 * Ensure that the VP_RUN register is written before the
246			 * core leaves reset.
247			 */
248			wmb();
249		}
250
251		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
252
253		timeout = 100;
254		while (true) {
255			stat = read_cpc_co_stat_conf();
256			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
257			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
258
259			/* U6 == coherent execution, ie. the core is up */
260			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
261				break;
262
263			/* Delay a little while before we start warning */
264			if (timeout) {
265				timeout--;
266				mdelay(10);
267				continue;
268			}
269
270			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
271				core, stat);
272			mdelay(1000);
273		}
274
275		mips_cpc_unlock_other();
276	} else {
277		/* Take the core out of reset */
278		write_gcr_co_reset_release(0);
279	}
280
281	mips_cm_unlock_other();
282
283	/* The core is now powered up */
284	bitmap_set(core_power, core, 1);
285}
286
287static void remote_vpe_boot(void *dummy)
288{
289	unsigned core = cpu_core(&current_cpu_data);
290	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
291
292	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
293}
294
295static int cps_boot_secondary(int cpu, struct task_struct *idle)
296{
297	unsigned core = cpu_core(&cpu_data[cpu]);
298	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
299	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
300	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
301	unsigned long core_entry;
302	unsigned int remote;
303	int err;
304
305	/* We don't yet support booting CPUs in other clusters */
306	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
307		return -ENOSYS;
308
309	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
310	vpe_cfg->sp = __KSTK_TOS(idle);
311	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
312
313	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
314
315	preempt_disable();
316
317	if (!test_bit(core, core_power)) {
318		/* Boot a VPE on a powered down core */
319		boot_core(core, vpe_id);
320		goto out;
321	}
322
323	if (cpu_has_vp) {
324		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
325		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
326		write_gcr_co_reset_base(core_entry);
327		mips_cm_unlock_other();
328	}
329
330	if (!cpus_are_siblings(cpu, smp_processor_id())) {
331		/* Boot a VPE on another powered up core */
332		for (remote = 0; remote < NR_CPUS; remote++) {
333			if (!cpus_are_siblings(cpu, remote))
334				continue;
335			if (cpu_online(remote))
336				break;
337		}
338		if (remote >= NR_CPUS) {
339			pr_crit("No online CPU in core %u to start CPU%d\n",
340				core, cpu);
341			goto out;
342		}
343
344		err = smp_call_function_single(remote, remote_vpe_boot,
345					       NULL, 1);
346		if (err)
347			panic("Failed to call remote CPU\n");
348		goto out;
349	}
350
351	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
352
353	/* Boot a VPE on this core */
354	mips_cps_boot_vpes(core_cfg, vpe_id);
355out:
356	preempt_enable();
357	return 0;
358}
359
360static void cps_init_secondary(void)
361{
362	/* Disable MT - we only want to run 1 TC per VPE */
363	if (cpu_has_mipsmt)
364		dmt();
365
366	if (mips_cm_revision() >= CM_REV_CM3) {
367		unsigned int ident = read_gic_vl_ident();
368
369		/*
370		 * Ensure that our calculation of the VP ID matches up with
371		 * what the GIC reports, otherwise we'll have configured
372		 * interrupts incorrectly.
373		 */
374		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
375	}
376
377	if (cpu_has_veic)
378		clear_c0_status(ST0_IM);
379	else
380		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
381					 STATUSF_IP4 | STATUSF_IP5 |
382					 STATUSF_IP6 | STATUSF_IP7);
383}
384
385static void cps_smp_finish(void)
386{
387	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
388
389#ifdef CONFIG_MIPS_MT_FPAFF
390	/* If we have an FPU, enroll ourselves in the FPU-full mask */
391	if (cpu_has_fpu)
392		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
393#endif /* CONFIG_MIPS_MT_FPAFF */
394
395	local_irq_enable();
396}
397
398#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
399
400enum cpu_death {
401	CPU_DEATH_HALT,
402	CPU_DEATH_POWER,
403};
404
405static void cps_shutdown_this_cpu(enum cpu_death death)
406{
407	unsigned int cpu, core, vpe_id;
408
409	cpu = smp_processor_id();
410	core = cpu_core(&cpu_data[cpu]);
411
412	if (death == CPU_DEATH_HALT) {
413		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
414
415		pr_debug("Halting core %d VP%d\n", core, vpe_id);
416		if (cpu_has_mipsmt) {
417			/* Halt this TC */
418			write_c0_tchalt(TCHALT_H);
419			instruction_hazard();
420		} else if (cpu_has_vp) {
421			write_cpc_cl_vp_stop(1 << vpe_id);
422
423			/* Ensure that the VP_STOP register is written */
424			wmb();
425		}
426	} else {
427		pr_debug("Gating power to core %d\n", core);
428		/* Power down the core */
429		cps_pm_enter_state(CPS_PM_POWER_GATED);
430	}
431}
432
433#ifdef CONFIG_KEXEC
434
435static void cps_kexec_nonboot_cpu(void)
436{
437	if (cpu_has_mipsmt || cpu_has_vp)
438		cps_shutdown_this_cpu(CPU_DEATH_HALT);
439	else
440		cps_shutdown_this_cpu(CPU_DEATH_POWER);
441}
442
443#endif /* CONFIG_KEXEC */
444
445#endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
446
447#ifdef CONFIG_HOTPLUG_CPU
448
449static int cps_cpu_disable(void)
450{
451	unsigned cpu = smp_processor_id();
452	struct core_boot_config *core_cfg;
453
 
 
 
454	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
455		return -EINVAL;
456
457	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
458	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
459	smp_mb__after_atomic();
460	set_cpu_online(cpu, false);
461	calculate_cpu_foreign_map();
462	irq_migrate_all_off_this_cpu();
463
464	return 0;
465}
466
 
467static unsigned cpu_death_sibling;
468static enum cpu_death cpu_death;
 
 
 
469
470void play_dead(void)
471{
472	unsigned int cpu;
473
474	local_irq_disable();
475	idle_task_exit();
476	cpu = smp_processor_id();
477	cpu_death = CPU_DEATH_POWER;
478
479	pr_debug("CPU%d going offline\n", cpu);
480
481	if (cpu_has_mipsmt || cpu_has_vp) {
 
 
482		/* Look for another online VPE within the core */
483		for_each_online_cpu(cpu_death_sibling) {
484			if (!cpus_are_siblings(cpu, cpu_death_sibling))
485				continue;
486
487			/*
488			 * There is an online VPE within the core. Just halt
489			 * this TC and leave the core alone.
490			 */
491			cpu_death = CPU_DEATH_HALT;
492			break;
493		}
494	}
495
496	/* This CPU has chosen its way out */
497	(void)cpu_report_death();
 
 
 
 
 
 
 
 
 
 
 
498
499	cps_shutdown_this_cpu(cpu_death);
 
 
 
 
 
 
 
500
501	/* This should never be reached */
502	panic("Failed to offline CPU %u", cpu);
503}
504
505static void wait_for_sibling_halt(void *ptr_cpu)
506{
507	unsigned cpu = (unsigned long)ptr_cpu;
508	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
509	unsigned halted;
510	unsigned long flags;
511
512	do {
513		local_irq_save(flags);
514		settc(vpe_id);
515		halted = read_tc_c0_tchalt();
516		local_irq_restore(flags);
517	} while (!(halted & TCHALT_H));
518}
519
520static void cps_cpu_die(unsigned int cpu)
521{
522	unsigned core = cpu_core(&cpu_data[cpu]);
523	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
524	ktime_t fail_time;
525	unsigned stat;
526	int err;
527
528	/* Wait for the cpu to choose its way out */
529	if (!cpu_wait_death(cpu, 5)) {
 
530		pr_err("CPU%u: didn't offline\n", cpu);
531		return;
532	}
533
534	/*
535	 * Now wait for the CPU to actually offline. Without doing this that
536	 * offlining may race with one or more of:
537	 *
538	 *   - Onlining the CPU again.
539	 *   - Powering down the core if another VPE within it is offlined.
540	 *   - A sibling VPE entering a non-coherent state.
541	 *
542	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
543	 * with which we could race, so do nothing.
544	 */
545	if (cpu_death == CPU_DEATH_POWER) {
546		/*
547		 * Wait for the core to enter a powered down or clock gated
548		 * state, the latter happening when a JTAG probe is connected
549		 * in which case the CPC will refuse to power down the core.
550		 */
551		fail_time = ktime_add_ms(ktime_get(), 2000);
552		do {
553			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
554			mips_cpc_lock_other(core);
555			stat = read_cpc_co_stat_conf();
556			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
557			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
558			mips_cpc_unlock_other();
559			mips_cm_unlock_other();
560
561			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
562			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
563			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
564				break;
565
566			/*
567			 * The core ought to have powered down, but didn't &
568			 * now we don't really know what state it's in. It's
569			 * likely that its _pwr_up pin has been wired to logic
570			 * 1 & it powered back up as soon as we powered it
571			 * down...
572			 *
573			 * The best we can do is warn the user & continue in
574			 * the hope that the core is doing nothing harmful &
575			 * might behave properly if we online it later.
576			 */
577			if (WARN(ktime_after(ktime_get(), fail_time),
578				 "CPU%u hasn't powered down, seq. state %u\n",
579				 cpu, stat))
580				break;
581		} while (1);
582
583		/* Indicate the core is powered off */
584		bitmap_clear(core_power, core, 1);
585	} else if (cpu_has_mipsmt) {
586		/*
587		 * Have a CPU with access to the offlined CPUs registers wait
588		 * for its TC to halt.
589		 */
590		err = smp_call_function_single(cpu_death_sibling,
591					       wait_for_sibling_halt,
592					       (void *)(unsigned long)cpu, 1);
593		if (err)
594			panic("Failed to call remote sibling CPU\n");
595	} else if (cpu_has_vp) {
596		do {
597			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
598			stat = read_cpc_co_vp_running();
599			mips_cm_unlock_other();
600		} while (stat & (1 << vpe_id));
601	}
602}
603
604#endif /* CONFIG_HOTPLUG_CPU */
605
606static const struct plat_smp_ops cps_smp_ops = {
607	.smp_setup		= cps_smp_setup,
608	.prepare_cpus		= cps_prepare_cpus,
609	.boot_secondary		= cps_boot_secondary,
610	.init_secondary		= cps_init_secondary,
611	.smp_finish		= cps_smp_finish,
612	.send_ipi_single	= mips_smp_send_ipi_single,
613	.send_ipi_mask		= mips_smp_send_ipi_mask,
614#ifdef CONFIG_HOTPLUG_CPU
615	.cpu_disable		= cps_cpu_disable,
616	.cpu_die		= cps_cpu_die,
617#endif
618#ifdef CONFIG_KEXEC
619	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
620#endif
621};
622
623bool mips_cps_smp_in_use(void)
624{
625	extern const struct plat_smp_ops *mp_ops;
626	return mp_ops == &cps_smp_ops;
627}
628
629int register_cps_smp_ops(void)
630{
631	if (!mips_cm_present()) {
632		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
633		return -ENODEV;
634	}
635
636	/* check we have a GIC - we need one for IPIs */
637	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
638		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
639		return -ENODEV;
640	}
641
642	register_smp_ops(&cps_smp_ops);
643	return 0;
644}
v4.10.11
 
  1/*
  2 * Copyright (C) 2013 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@imgtec.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 
 11#include <linux/delay.h>
 12#include <linux/io.h>
 13#include <linux/irqchip/mips-gic.h>
 14#include <linux/sched.h>
 15#include <linux/slab.h>
 16#include <linux/smp.h>
 17#include <linux/types.h>
 
 18
 19#include <asm/bcache.h>
 20#include <asm/mips-cm.h>
 21#include <asm/mips-cpc.h>
 22#include <asm/mips_mt.h>
 23#include <asm/mipsregs.h>
 24#include <asm/pm-cps.h>
 25#include <asm/r4kcache.h>
 26#include <asm/smp-cps.h>
 27#include <asm/time.h>
 28#include <asm/uasm.h>
 29
 30static bool threads_disabled;
 31static DECLARE_BITMAP(core_power, NR_CPUS);
 32
 33struct core_boot_config *mips_cps_core_bootcfg;
 34
 35static int __init setup_nothreads(char *s)
 36{
 37	threads_disabled = true;
 38	return 0;
 39}
 40early_param("nothreads", setup_nothreads);
 41
 42static unsigned core_vpe_count(unsigned core)
 43{
 44	unsigned cfg;
 45
 46	if (threads_disabled)
 47		return 1;
 48
 49	if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
 50		&& (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
 51		return 1;
 52
 53	mips_cm_lock_other(core, 0);
 54	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
 55	mips_cm_unlock_other();
 56	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
 57}
 58
 59static void __init cps_smp_setup(void)
 60{
 61	unsigned int ncores, nvpes, core_vpes;
 62	unsigned long core_entry;
 63	int c, v;
 64
 65	/* Detect & record VPE topology */
 66	ncores = mips_cm_numcores();
 
 67	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
 68	for (c = nvpes = 0; c < ncores; c++) {
 69		core_vpes = core_vpe_count(c);
 70		pr_cont("%c%u", c ? ',' : '{', core_vpes);
 71
 72		/* Use the number of VPEs in core 0 for smp_num_siblings */
 73		if (!c)
 74			smp_num_siblings = core_vpes;
 75
 76		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
 77			cpu_data[nvpes + v].core = c;
 78#if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
 79			cpu_data[nvpes + v].vpe_id = v;
 80#endif
 
 
 
 
 
 
 
 
 
 
 
 81		}
 82
 83		nvpes += core_vpes;
 84	}
 85	pr_cont("} total %u\n", nvpes);
 86
 87	/* Indicate present CPUs (CPU being synonymous with VPE) */
 88	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
 89		set_cpu_possible(v, true);
 90		set_cpu_present(v, true);
 91		__cpu_number_map[v] = v;
 92		__cpu_logical_map[v] = v;
 93	}
 94
 95	/* Set a coherent default CCA (CWB) */
 96	change_c0_config(CONF_CM_CMASK, 0x5);
 97
 98	/* Core 0 is powered up (we're running on it) */
 99	bitmap_set(core_power, 0, 1);
100
101	/* Initialise core 0 */
102	mips_cps_core_init();
103
104	/* Make core 0 coherent with everything */
105	write_gcr_cl_coherence(0xff);
106
107	if (mips_cm_revision() >= CM_REV_CM3) {
108		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109		write_gcr_bev_base(core_entry);
110	}
111
112#ifdef CONFIG_MIPS_MT_FPAFF
113	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114	if (cpu_has_fpu)
115		cpumask_set_cpu(0, &mt_fpu_cpumask);
116#endif /* CONFIG_MIPS_MT_FPAFF */
117}
118
119static void __init cps_prepare_cpus(unsigned int max_cpus)
120{
121	unsigned ncores, core_vpes, c, cca;
122	bool cca_unsuitable;
123	u32 *entry_code;
124
125	mips_mt_set_cpuoptions();
126
127	/* Detect whether the CCA is unsuited to multi-core SMP */
128	cca = read_c0_config() & CONF_CM_CMASK;
129	switch (cca) {
130	case 0x4: /* CWBE */
131	case 0x5: /* CWB */
132		/* The CCA is coherent, multi-core is fine */
133		cca_unsuitable = false;
134		break;
135
136	default:
137		/* CCA is not coherent, multi-core is not usable */
138		cca_unsuitable = true;
139	}
140
141	/* Warn the user if the CCA prevents multi-core */
142	ncores = mips_cm_numcores();
143	if (cca_unsuitable && ncores > 1) {
144		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
145			cca);
 
146
147		for_each_present_cpu(c) {
148			if (cpu_data[c].core)
149				set_cpu_present(c, false);
150		}
151	}
 
 
 
 
 
152
153	/*
154	 * Patch the start of mips_cps_core_entry to provide:
155	 *
156	 * s0 = kseg0 CCA
157	 */
158	entry_code = (u32 *)&mips_cps_core_entry;
159	uasm_i_addiu(&entry_code, 16, 0, cca);
160	blast_dcache_range((unsigned long)&mips_cps_core_entry,
161			   (unsigned long)entry_code);
162	bc_wback_inv((unsigned long)&mips_cps_core_entry,
163		     (void *)entry_code - (void *)&mips_cps_core_entry);
164	__sync();
165
166	/* Allocate core boot configuration structs */
 
167	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
168					GFP_KERNEL);
169	if (!mips_cps_core_bootcfg) {
170		pr_err("Failed to allocate boot config for %u cores\n", ncores);
171		goto err_out;
172	}
173
174	/* Allocate VPE boot configuration structs */
175	for (c = 0; c < ncores; c++) {
176		core_vpes = core_vpe_count(c);
177		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
178				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
179				GFP_KERNEL);
180		if (!mips_cps_core_bootcfg[c].vpe_config) {
181			pr_err("Failed to allocate %u VPE boot configs\n",
182			       core_vpes);
183			goto err_out;
184		}
185	}
186
187	/* Mark this CPU as booted */
188	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
189		   1 << cpu_vpe_id(&current_cpu_data));
190
191	return;
192err_out:
193	/* Clean up allocations */
194	if (mips_cps_core_bootcfg) {
195		for (c = 0; c < ncores; c++)
196			kfree(mips_cps_core_bootcfg[c].vpe_config);
197		kfree(mips_cps_core_bootcfg);
198		mips_cps_core_bootcfg = NULL;
199	}
200
201	/* Effectively disable SMP by declaring CPUs not present */
202	for_each_possible_cpu(c) {
203		if (c == 0)
204			continue;
205		set_cpu_present(c, false);
206	}
207}
208
209static void boot_core(unsigned int core, unsigned int vpe_id)
210{
211	u32 access, stat, seq_state;
212	unsigned timeout;
213
214	/* Select the appropriate core */
215	mips_cm_lock_other(core, 0);
216
217	/* Set its reset vector */
218	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
219
220	/* Ensure its coherency is disabled */
221	write_gcr_co_coherence(0);
222
223	/* Start it with the legacy memory map and exception base */
224	write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
225
226	/* Ensure the core can access the GCRs */
227	access = read_gcr_access();
228	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
229	write_gcr_access(access);
230
231	if (mips_cpc_present()) {
232		/* Reset the core */
233		mips_cpc_lock_other(core);
234
235		if (mips_cm_revision() >= CM_REV_CM3) {
236			/* Run only the requested VP following the reset */
237			write_cpc_co_vp_stop(0xf);
238			write_cpc_co_vp_run(1 << vpe_id);
239
240			/*
241			 * Ensure that the VP_RUN register is written before the
242			 * core leaves reset.
243			 */
244			wmb();
245		}
246
247		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
248
249		timeout = 100;
250		while (true) {
251			stat = read_cpc_co_stat_conf();
252			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
 
253
254			/* U6 == coherent execution, ie. the core is up */
255			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
256				break;
257
258			/* Delay a little while before we start warning */
259			if (timeout) {
260				timeout--;
261				mdelay(10);
262				continue;
263			}
264
265			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
266				core, stat);
267			mdelay(1000);
268		}
269
270		mips_cpc_unlock_other();
271	} else {
272		/* Take the core out of reset */
273		write_gcr_co_reset_release(0);
274	}
275
276	mips_cm_unlock_other();
277
278	/* The core is now powered up */
279	bitmap_set(core_power, core, 1);
280}
281
282static void remote_vpe_boot(void *dummy)
283{
284	unsigned core = current_cpu_data.core;
285	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
286
287	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
288}
289
290static void cps_boot_secondary(int cpu, struct task_struct *idle)
291{
292	unsigned core = cpu_data[cpu].core;
293	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
294	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
295	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
296	unsigned long core_entry;
297	unsigned int remote;
298	int err;
299
 
 
 
 
300	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
301	vpe_cfg->sp = __KSTK_TOS(idle);
302	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
303
304	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
305
306	preempt_disable();
307
308	if (!test_bit(core, core_power)) {
309		/* Boot a VPE on a powered down core */
310		boot_core(core, vpe_id);
311		goto out;
312	}
313
314	if (cpu_has_vp) {
315		mips_cm_lock_other(core, vpe_id);
316		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
317		write_gcr_co_reset_base(core_entry);
318		mips_cm_unlock_other();
319	}
320
321	if (core != current_cpu_data.core) {
322		/* Boot a VPE on another powered up core */
323		for (remote = 0; remote < NR_CPUS; remote++) {
324			if (cpu_data[remote].core != core)
325				continue;
326			if (cpu_online(remote))
327				break;
328		}
329		BUG_ON(remote >= NR_CPUS);
 
 
 
 
330
331		err = smp_call_function_single(remote, remote_vpe_boot,
332					       NULL, 1);
333		if (err)
334			panic("Failed to call remote CPU\n");
335		goto out;
336	}
337
338	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
339
340	/* Boot a VPE on this core */
341	mips_cps_boot_vpes(core_cfg, vpe_id);
342out:
343	preempt_enable();
 
344}
345
346static void cps_init_secondary(void)
347{
348	/* Disable MT - we only want to run 1 TC per VPE */
349	if (cpu_has_mipsmt)
350		dmt();
351
352	if (mips_cm_revision() >= CM_REV_CM3) {
353		unsigned ident = gic_read_local_vp_id();
354
355		/*
356		 * Ensure that our calculation of the VP ID matches up with
357		 * what the GIC reports, otherwise we'll have configured
358		 * interrupts incorrectly.
359		 */
360		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
361	}
362
363	if (cpu_has_veic)
364		clear_c0_status(ST0_IM);
365	else
366		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
367					 STATUSF_IP4 | STATUSF_IP5 |
368					 STATUSF_IP6 | STATUSF_IP7);
369}
370
371static void cps_smp_finish(void)
372{
373	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
374
375#ifdef CONFIG_MIPS_MT_FPAFF
376	/* If we have an FPU, enroll ourselves in the FPU-full mask */
377	if (cpu_has_fpu)
378		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
379#endif /* CONFIG_MIPS_MT_FPAFF */
380
381	local_irq_enable();
382}
383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384#ifdef CONFIG_HOTPLUG_CPU
385
386static int cps_cpu_disable(void)
387{
388	unsigned cpu = smp_processor_id();
389	struct core_boot_config *core_cfg;
390
391	if (!cpu)
392		return -EBUSY;
393
394	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
395		return -EINVAL;
396
397	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
398	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
399	smp_mb__after_atomic();
400	set_cpu_online(cpu, false);
401	calculate_cpu_foreign_map();
402	cpumask_clear_cpu(cpu, &cpu_callin_map);
403
404	return 0;
405}
406
407static DECLARE_COMPLETION(cpu_death_chosen);
408static unsigned cpu_death_sibling;
409static enum {
410	CPU_DEATH_HALT,
411	CPU_DEATH_POWER,
412} cpu_death;
413
414void play_dead(void)
415{
416	unsigned int cpu, core, vpe_id;
417
418	local_irq_disable();
419	idle_task_exit();
420	cpu = smp_processor_id();
421	cpu_death = CPU_DEATH_POWER;
422
423	pr_debug("CPU%d going offline\n", cpu);
424
425	if (cpu_has_mipsmt || cpu_has_vp) {
426		core = cpu_data[cpu].core;
427
428		/* Look for another online VPE within the core */
429		for_each_online_cpu(cpu_death_sibling) {
430			if (cpu_data[cpu_death_sibling].core != core)
431				continue;
432
433			/*
434			 * There is an online VPE within the core. Just halt
435			 * this TC and leave the core alone.
436			 */
437			cpu_death = CPU_DEATH_HALT;
438			break;
439		}
440	}
441
442	/* This CPU has chosen its way out */
443	complete(&cpu_death_chosen);
444
445	if (cpu_death == CPU_DEATH_HALT) {
446		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
447
448		pr_debug("Halting core %d VP%d\n", core, vpe_id);
449		if (cpu_has_mipsmt) {
450			/* Halt this TC */
451			write_c0_tchalt(TCHALT_H);
452			instruction_hazard();
453		} else if (cpu_has_vp) {
454			write_cpc_cl_vp_stop(1 << vpe_id);
455
456			/* Ensure that the VP_STOP register is written */
457			wmb();
458		}
459	} else {
460		pr_debug("Gating power to core %d\n", core);
461		/* Power down the core */
462		cps_pm_enter_state(CPS_PM_POWER_GATED);
463	}
464
465	/* This should never be reached */
466	panic("Failed to offline CPU %u", cpu);
467}
468
469static void wait_for_sibling_halt(void *ptr_cpu)
470{
471	unsigned cpu = (unsigned long)ptr_cpu;
472	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
473	unsigned halted;
474	unsigned long flags;
475
476	do {
477		local_irq_save(flags);
478		settc(vpe_id);
479		halted = read_tc_c0_tchalt();
480		local_irq_restore(flags);
481	} while (!(halted & TCHALT_H));
482}
483
484static void cps_cpu_die(unsigned int cpu)
485{
486	unsigned core = cpu_data[cpu].core;
487	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 
488	unsigned stat;
489	int err;
490
491	/* Wait for the cpu to choose its way out */
492	if (!wait_for_completion_timeout(&cpu_death_chosen,
493					 msecs_to_jiffies(5000))) {
494		pr_err("CPU%u: didn't offline\n", cpu);
495		return;
496	}
497
498	/*
499	 * Now wait for the CPU to actually offline. Without doing this that
500	 * offlining may race with one or more of:
501	 *
502	 *   - Onlining the CPU again.
503	 *   - Powering down the core if another VPE within it is offlined.
504	 *   - A sibling VPE entering a non-coherent state.
505	 *
506	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
507	 * with which we could race, so do nothing.
508	 */
509	if (cpu_death == CPU_DEATH_POWER) {
510		/*
511		 * Wait for the core to enter a powered down or clock gated
512		 * state, the latter happening when a JTAG probe is connected
513		 * in which case the CPC will refuse to power down the core.
514		 */
 
515		do {
516			mips_cm_lock_other(core, 0);
517			mips_cpc_lock_other(core);
518			stat = read_cpc_co_stat_conf();
519			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
 
520			mips_cpc_unlock_other();
521			mips_cm_unlock_other();
522		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
523			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
524			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525
526		/* Indicate the core is powered off */
527		bitmap_clear(core_power, core, 1);
528	} else if (cpu_has_mipsmt) {
529		/*
530		 * Have a CPU with access to the offlined CPUs registers wait
531		 * for its TC to halt.
532		 */
533		err = smp_call_function_single(cpu_death_sibling,
534					       wait_for_sibling_halt,
535					       (void *)(unsigned long)cpu, 1);
536		if (err)
537			panic("Failed to call remote sibling CPU\n");
538	} else if (cpu_has_vp) {
539		do {
540			mips_cm_lock_other(core, vpe_id);
541			stat = read_cpc_co_vp_running();
542			mips_cm_unlock_other();
543		} while (stat & (1 << vpe_id));
544	}
545}
546
547#endif /* CONFIG_HOTPLUG_CPU */
548
549static struct plat_smp_ops cps_smp_ops = {
550	.smp_setup		= cps_smp_setup,
551	.prepare_cpus		= cps_prepare_cpus,
552	.boot_secondary		= cps_boot_secondary,
553	.init_secondary		= cps_init_secondary,
554	.smp_finish		= cps_smp_finish,
555	.send_ipi_single	= mips_smp_send_ipi_single,
556	.send_ipi_mask		= mips_smp_send_ipi_mask,
557#ifdef CONFIG_HOTPLUG_CPU
558	.cpu_disable		= cps_cpu_disable,
559	.cpu_die		= cps_cpu_die,
560#endif
 
 
 
561};
562
563bool mips_cps_smp_in_use(void)
564{
565	extern struct plat_smp_ops *mp_ops;
566	return mp_ops == &cps_smp_ops;
567}
568
569int register_cps_smp_ops(void)
570{
571	if (!mips_cm_present()) {
572		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
573		return -ENODEV;
574	}
575
576	/* check we have a GIC - we need one for IPIs */
577	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
578		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
579		return -ENODEV;
580	}
581
582	register_smp_ops(&cps_smp_ops);
583	return 0;
584}