Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: Apache-2.0 OR MIT
  2
  3#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
  4
  5use core::alloc::LayoutError;
  6use core::cmp;
  7use core::intrinsics;
  8use core::mem::{self, ManuallyDrop, MaybeUninit};
  9use core::ops::Drop;
 10use core::ptr::{self, NonNull, Unique};
 11use core::slice;
 12
 13#[cfg(not(no_global_oom_handling))]
 14use crate::alloc::handle_alloc_error;
 15use crate::alloc::{Allocator, Global, Layout};
 16use crate::boxed::Box;
 17use crate::collections::TryReserveError;
 18use crate::collections::TryReserveErrorKind::*;
 19
 20#[cfg(test)]
 21mod tests;
 22
 23enum AllocInit {
 24    /// The contents of the new memory are uninitialized.
 25    Uninitialized,
 26    /// The new memory is guaranteed to be zeroed.
 27    #[allow(dead_code)]
 28    Zeroed,
 29}
 30
 31/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
 32/// a buffer of memory on the heap without having to worry about all the corner cases
 33/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
 34/// In particular:
 35///
 36/// * Produces `Unique::dangling()` on zero-sized types.
 37/// * Produces `Unique::dangling()` on zero-length allocations.
 38/// * Avoids freeing `Unique::dangling()`.
 39/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
 40/// * Guards against 32-bit systems allocating more than isize::MAX bytes.
 41/// * Guards against overflowing your length.
 42/// * Calls `handle_alloc_error` for fallible allocations.
 43/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
 44/// * Uses the excess returned from the allocator to use the largest available capacity.
 45///
 46/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
 47/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
 48/// to handle the actual things *stored* inside of a `RawVec`.
 49///
 50/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
 51/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
 52/// `Box<[T]>`, since `capacity()` won't yield the length.
 53#[allow(missing_debug_implementations)]
 54pub(crate) struct RawVec<T, A: Allocator = Global> {
 55    ptr: Unique<T>,
 56    cap: usize,
 57    alloc: A,
 58}
 59
 60impl<T> RawVec<T, Global> {
 61    /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
 62    /// they cannot call `Self::new()`.
 63    ///
 64    /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
 65    /// that would truly const-call something unstable.
 66    pub const NEW: Self = Self::new();
 67
 68    /// Creates the biggest possible `RawVec` (on the system heap)
 69    /// without allocating. If `T` has positive size, then this makes a
 70    /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
 71    /// `RawVec` with capacity `usize::MAX`. Useful for implementing
 72    /// delayed allocation.
 73    #[must_use]
 74    pub const fn new() -> Self {
 75        Self::new_in(Global)
 76    }
 77
 78    /// Creates a `RawVec` (on the system heap) with exactly the
 79    /// capacity and alignment requirements for a `[T; capacity]`. This is
 80    /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
 81    /// zero-sized. Note that if `T` is zero-sized this means you will
 82    /// *not* get a `RawVec` with the requested capacity.
 83    ///
 84    /// # Panics
 85    ///
 86    /// Panics if the requested capacity exceeds `isize::MAX` bytes.
 87    ///
 88    /// # Aborts
 89    ///
 90    /// Aborts on OOM.
 91    #[cfg(not(any(no_global_oom_handling, test)))]
 92    #[must_use]
 93    #[inline]
 94    pub fn with_capacity(capacity: usize) -> Self {
 95        Self::with_capacity_in(capacity, Global)
 96    }
 97
 98    /// Like `with_capacity`, but guarantees the buffer is zeroed.
 99    #[cfg(not(any(no_global_oom_handling, test)))]
100    #[must_use]
101    #[inline]
102    pub fn with_capacity_zeroed(capacity: usize) -> Self {
103        Self::with_capacity_zeroed_in(capacity, Global)
104    }
105}
106
107impl<T, A: Allocator> RawVec<T, A> {
108    // Tiny Vecs are dumb. Skip to:
109    // - 8 if the element size is 1, because any heap allocators is likely
110    //   to round up a request of less than 8 bytes to at least 8 bytes.
111    // - 4 if elements are moderate-sized (<= 1 KiB).
112    // - 1 otherwise, to avoid wasting too much space for very short Vecs.
113    pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
114        8
115    } else if mem::size_of::<T>() <= 1024 {
116        4
117    } else {
118        1
119    };
120
121    /// Like `new`, but parameterized over the choice of allocator for
122    /// the returned `RawVec`.
123    pub const fn new_in(alloc: A) -> Self {
124        // `cap: 0` means "unallocated". zero-sized types are ignored.
125        Self { ptr: Unique::dangling(), cap: 0, alloc }
126    }
127
128    /// Like `with_capacity`, but parameterized over the choice of
129    /// allocator for the returned `RawVec`.
130    #[cfg(not(no_global_oom_handling))]
131    #[inline]
132    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
133        Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
134    }
135
136    /// Like `try_with_capacity`, but parameterized over the choice of
137    /// allocator for the returned `RawVec`.
138    #[inline]
139    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
140        Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc)
141    }
142
143    /// Like `with_capacity_zeroed`, but parameterized over the choice
144    /// of allocator for the returned `RawVec`.
145    #[cfg(not(no_global_oom_handling))]
146    #[inline]
147    pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
148        Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
149    }
150
151    /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
152    ///
153    /// Note that this will correctly reconstitute any `cap` changes
154    /// that may have been performed. (See description of type for details.)
155    ///
156    /// # Safety
157    ///
158    /// * `len` must be greater than or equal to the most recently requested capacity, and
159    /// * `len` must be less than or equal to `self.capacity()`.
160    ///
161    /// Note, that the requested capacity and `self.capacity()` could differ, as
162    /// an allocator could overallocate and return a greater memory block than requested.
163    pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
164        // Sanity-check one half of the safety requirement (we cannot check the other half).
165        debug_assert!(
166            len <= self.capacity(),
167            "`len` must be smaller than or equal to `self.capacity()`"
168        );
169
170        let me = ManuallyDrop::new(self);
171        unsafe {
172            let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
173            Box::from_raw_in(slice, ptr::read(&me.alloc))
174        }
175    }
176
177    #[cfg(not(no_global_oom_handling))]
178    fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
179        // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
180        if mem::size_of::<T>() == 0 || capacity == 0 {
181            Self::new_in(alloc)
182        } else {
183            // We avoid `unwrap_or_else` here because it bloats the amount of
184            // LLVM IR generated.
185            let layout = match Layout::array::<T>(capacity) {
186                Ok(layout) => layout,
187                Err(_) => capacity_overflow(),
188            };
189            match alloc_guard(layout.size()) {
190                Ok(_) => {}
191                Err(_) => capacity_overflow(),
192            }
193            let result = match init {
194                AllocInit::Uninitialized => alloc.allocate(layout),
195                AllocInit::Zeroed => alloc.allocate_zeroed(layout),
196            };
197            let ptr = match result {
198                Ok(ptr) => ptr,
199                Err(_) => handle_alloc_error(layout),
200            };
201
202            // Allocators currently return a `NonNull<[u8]>` whose length
203            // matches the size requested. If that ever changes, the capacity
204            // here should change to `ptr.len() / mem::size_of::<T>()`.
205            Self {
206                ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
207                cap: capacity,
208                alloc,
209            }
210        }
211    }
212
213    fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError> {
214        // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
215        if mem::size_of::<T>() == 0 || capacity == 0 {
216            return Ok(Self::new_in(alloc));
217        }
218
219        let layout = Layout::array::<T>(capacity).map_err(|_| CapacityOverflow)?;
220        alloc_guard(layout.size())?;
221        let result = match init {
222            AllocInit::Uninitialized => alloc.allocate(layout),
223            AllocInit::Zeroed => alloc.allocate_zeroed(layout),
224        };
225        let ptr = result.map_err(|_| AllocError { layout, non_exhaustive: () })?;
226
227        // Allocators currently return a `NonNull<[u8]>` whose length
228        // matches the size requested. If that ever changes, the capacity
229        // here should change to `ptr.len() / mem::size_of::<T>()`.
230        Ok(Self {
231            ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
232            cap: capacity,
233            alloc,
234        })
235    }
236
237    /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
238    ///
239    /// # Safety
240    ///
241    /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
242    /// `capacity`.
243    /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
244    /// systems). ZST vectors may have a capacity up to `usize::MAX`.
245    /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
246    /// guaranteed.
247    #[inline]
248    pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
249        Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
250    }
251
252    /// Gets a raw pointer to the start of the allocation. Note that this is
253    /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
254    /// be careful.
255    #[inline]
256    pub fn ptr(&self) -> *mut T {
257        self.ptr.as_ptr()
258    }
259
260    /// Gets the capacity of the allocation.
261    ///
262    /// This will always be `usize::MAX` if `T` is zero-sized.
263    #[inline(always)]
264    pub fn capacity(&self) -> usize {
265        if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap }
266    }
267
268    /// Returns a shared reference to the allocator backing this `RawVec`.
269    pub fn allocator(&self) -> &A {
270        &self.alloc
271    }
272
273    fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
274        if mem::size_of::<T>() == 0 || self.cap == 0 {
275            None
276        } else {
277            // We have an allocated chunk of memory, so we can bypass runtime
278            // checks to get our current layout.
279            unsafe {
280                let layout = Layout::array::<T>(self.cap).unwrap_unchecked();
281                Some((self.ptr.cast().into(), layout))
282            }
283        }
284    }
285
286    /// Ensures that the buffer contains at least enough space to hold `len +
287    /// additional` elements. If it doesn't already have enough capacity, will
288    /// reallocate enough space plus comfortable slack space to get amortized
289    /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
290    /// itself to panic.
291    ///
292    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
293    /// the requested space. This is not really unsafe, but the unsafe
294    /// code *you* write that relies on the behavior of this function may break.
295    ///
296    /// This is ideal for implementing a bulk-push operation like `extend`.
297    ///
298    /// # Panics
299    ///
300    /// Panics if the new capacity exceeds `isize::MAX` bytes.
301    ///
302    /// # Aborts
303    ///
304    /// Aborts on OOM.
305    #[cfg(not(no_global_oom_handling))]
306    #[inline]
307    pub fn reserve(&mut self, len: usize, additional: usize) {
308        // Callers expect this function to be very cheap when there is already sufficient capacity.
309        // Therefore, we move all the resizing and error-handling logic from grow_amortized and
310        // handle_reserve behind a call, while making sure that this function is likely to be
311        // inlined as just a comparison and a call if the comparison fails.
312        #[cold]
313        fn do_reserve_and_handle<T, A: Allocator>(
314            slf: &mut RawVec<T, A>,
315            len: usize,
316            additional: usize,
317        ) {
318            handle_reserve(slf.grow_amortized(len, additional));
319        }
320
321        if self.needs_to_grow(len, additional) {
322            do_reserve_and_handle(self, len, additional);
323        }
324    }
325
326    /// A specialized version of `reserve()` used only by the hot and
327    /// oft-instantiated `Vec::push()`, which does its own capacity check.
328    #[cfg(not(no_global_oom_handling))]
329    #[inline(never)]
330    pub fn reserve_for_push(&mut self, len: usize) {
331        handle_reserve(self.grow_amortized(len, 1));
332    }
333
334    /// The same as `reserve`, but returns on errors instead of panicking or aborting.
335    pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
336        if self.needs_to_grow(len, additional) {
337            self.grow_amortized(len, additional)
338        } else {
339            Ok(())
340        }
341    }
342
343    /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting.
344    #[inline(never)]
345    pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> {
346        self.grow_amortized(len, 1)
347    }
348
349    /// Ensures that the buffer contains at least enough space to hold `len +
350    /// additional` elements. If it doesn't already, will reallocate the
351    /// minimum possible amount of memory necessary. Generally this will be
352    /// exactly the amount of memory necessary, but in principle the allocator
353    /// is free to give back more than we asked for.
354    ///
355    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
356    /// the requested space. This is not really unsafe, but the unsafe code
357    /// *you* write that relies on the behavior of this function may break.
358    ///
359    /// # Panics
360    ///
361    /// Panics if the new capacity exceeds `isize::MAX` bytes.
362    ///
363    /// # Aborts
364    ///
365    /// Aborts on OOM.
366    #[cfg(not(no_global_oom_handling))]
367    pub fn reserve_exact(&mut self, len: usize, additional: usize) {
368        handle_reserve(self.try_reserve_exact(len, additional));
369    }
370
371    /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
372    pub fn try_reserve_exact(
373        &mut self,
374        len: usize,
375        additional: usize,
376    ) -> Result<(), TryReserveError> {
377        if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
378    }
379
380    /// Shrinks the buffer down to the specified capacity. If the given amount
381    /// is 0, actually completely deallocates.
382    ///
383    /// # Panics
384    ///
385    /// Panics if the given amount is *larger* than the current capacity.
386    ///
387    /// # Aborts
388    ///
389    /// Aborts on OOM.
390    #[cfg(not(no_global_oom_handling))]
391    pub fn shrink_to_fit(&mut self, cap: usize) {
392        handle_reserve(self.shrink(cap));
393    }
394}
395
396impl<T, A: Allocator> RawVec<T, A> {
397    /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
398    /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
399    fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
400        additional > self.capacity().wrapping_sub(len)
401    }
402
403    fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
404        // Allocators currently return a `NonNull<[u8]>` whose length matches
405        // the size requested. If that ever changes, the capacity here should
406        // change to `ptr.len() / mem::size_of::<T>()`.
407        self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
408        self.cap = cap;
409    }
410
411    // This method is usually instantiated many times. So we want it to be as
412    // small as possible, to improve compile times. But we also want as much of
413    // its contents to be statically computable as possible, to make the
414    // generated code run faster. Therefore, this method is carefully written
415    // so that all of the code that depends on `T` is within it, while as much
416    // of the code that doesn't depend on `T` as possible is in functions that
417    // are non-generic over `T`.
418    fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
419        // This is ensured by the calling contexts.
420        debug_assert!(additional > 0);
421
422        if mem::size_of::<T>() == 0 {
423            // Since we return a capacity of `usize::MAX` when `elem_size` is
424            // 0, getting to here necessarily means the `RawVec` is overfull.
425            return Err(CapacityOverflow.into());
426        }
427
428        // Nothing we can really do about these checks, sadly.
429        let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
430
431        // This guarantees exponential growth. The doubling cannot overflow
432        // because `cap <= isize::MAX` and the type of `cap` is `usize`.
433        let cap = cmp::max(self.cap * 2, required_cap);
434        let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
435
436        let new_layout = Layout::array::<T>(cap);
437
438        // `finish_grow` is non-generic over `T`.
439        let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
440        self.set_ptr_and_cap(ptr, cap);
441        Ok(())
442    }
443
444    // The constraints on this method are much the same as those on
445    // `grow_amortized`, but this method is usually instantiated less often so
446    // it's less critical.
447    fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
448        if mem::size_of::<T>() == 0 {
449            // Since we return a capacity of `usize::MAX` when the type size is
450            // 0, getting to here necessarily means the `RawVec` is overfull.
451            return Err(CapacityOverflow.into());
452        }
453
454        let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
455        let new_layout = Layout::array::<T>(cap);
456
457        // `finish_grow` is non-generic over `T`.
458        let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
459        self.set_ptr_and_cap(ptr, cap);
460        Ok(())
461    }
462
463    #[allow(dead_code)]
464    fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
465        assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
466
467        let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
468
469        let ptr = unsafe {
470            // `Layout::array` cannot overflow here because it would have
471            // overflowed earlier when capacity was larger.
472            let new_layout = Layout::array::<T>(cap).unwrap_unchecked();
473            self.alloc
474                .shrink(ptr, layout, new_layout)
475                .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
476        };
477        self.set_ptr_and_cap(ptr, cap);
478        Ok(())
479    }
480}
481
482// This function is outside `RawVec` to minimize compile times. See the comment
483// above `RawVec::grow_amortized` for details. (The `A` parameter isn't
484// significant, because the number of different `A` types seen in practice is
485// much smaller than the number of `T` types.)
486#[inline(never)]
487fn finish_grow<A>(
488    new_layout: Result<Layout, LayoutError>,
489    current_memory: Option<(NonNull<u8>, Layout)>,
490    alloc: &mut A,
491) -> Result<NonNull<[u8]>, TryReserveError>
492where
493    A: Allocator,
494{
495    // Check for the error here to minimize the size of `RawVec::grow_*`.
496    let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
497
498    alloc_guard(new_layout.size())?;
499
500    let memory = if let Some((ptr, old_layout)) = current_memory {
501        debug_assert_eq!(old_layout.align(), new_layout.align());
502        unsafe {
503            // The allocator checks for alignment equality
504            intrinsics::assume(old_layout.align() == new_layout.align());
505            alloc.grow(ptr, old_layout, new_layout)
506        }
507    } else {
508        alloc.allocate(new_layout)
509    };
510
511    memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
512}
513
514unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
515    /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
516    fn drop(&mut self) {
517        if let Some((ptr, layout)) = self.current_memory() {
518            unsafe { self.alloc.deallocate(ptr, layout) }
519        }
520    }
521}
522
523// Central function for reserve error handling.
524#[cfg(not(no_global_oom_handling))]
525#[inline]
526fn handle_reserve(result: Result<(), TryReserveError>) {
527    match result.map_err(|e| e.kind()) {
528        Err(CapacityOverflow) => capacity_overflow(),
529        Err(AllocError { layout, .. }) => handle_alloc_error(layout),
530        Ok(()) => { /* yay */ }
531    }
532}
533
534// We need to guarantee the following:
535// * We don't ever allocate `> isize::MAX` byte-size objects.
536// * We don't overflow `usize::MAX` and actually allocate too little.
537//
538// On 64-bit we just need to check for overflow since trying to allocate
539// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
540// an extra guard for this in case we're running on a platform which can use
541// all 4GB in user-space, e.g., PAE or x32.
542
543#[inline]
544fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
545    if usize::BITS < 64 && alloc_size > isize::MAX as usize {
546        Err(CapacityOverflow.into())
547    } else {
548        Ok(())
549    }
550}
551
552// One central function responsible for reporting capacity overflows. This'll
553// ensure that the code generation related to these panics is minimal as there's
554// only one location which panics rather than a bunch throughout the module.
555#[cfg(not(no_global_oom_handling))]
556fn capacity_overflow() -> ! {
557    panic!("capacity overflow");
558}