Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? As a power of 2 */
  47int page_cluster;
  48const int page_cluster_max = 31;
  49
  50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
  51struct lru_rotate {
  52	local_lock_t lock;
  53	struct folio_batch fbatch;
  54};
  55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  56	.lock = INIT_LOCAL_LOCK(lock),
  57};
  58
  59/*
  60 * The following folio batches are grouped together because they are protected
  61 * by disabling preemption (and interrupts remain enabled).
  62 */
  63struct cpu_fbatches {
  64	local_lock_t lock;
  65	struct folio_batch lru_add;
  66	struct folio_batch lru_deactivate_file;
  67	struct folio_batch lru_deactivate;
  68	struct folio_batch lru_lazyfree;
  69#ifdef CONFIG_SMP
  70	struct folio_batch activate;
  71#endif
  72};
  73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
  74	.lock = INIT_LOCAL_LOCK(lock),
  75};
  76
  77/*
  78 * This path almost never happens for VM activity - pages are normally freed
  79 * via pagevecs.  But it gets used by networking - and for compound pages.
  80 */
  81static void __page_cache_release(struct folio *folio)
  82{
  83	if (folio_test_lru(folio)) {
 
  84		struct lruvec *lruvec;
  85		unsigned long flags;
  86
  87		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
  88		lruvec_del_folio(lruvec, folio);
  89		__folio_clear_lru_flags(folio);
  90		unlock_page_lruvec_irqrestore(lruvec, flags);
  91	}
  92	/* See comment on folio_test_mlocked in release_pages() */
  93	if (unlikely(folio_test_mlocked(folio))) {
  94		long nr_pages = folio_nr_pages(folio);
  95
  96		__folio_clear_mlocked(folio);
  97		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
  98		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
  99	}
 100}
 101
 102static void __folio_put_small(struct folio *folio)
 103{
 104	__page_cache_release(folio);
 105	mem_cgroup_uncharge(folio);
 106	free_unref_page(&folio->page, 0);
 107}
 108
 109static void __folio_put_large(struct folio *folio)
 110{
 111	/*
 112	 * __page_cache_release() is supposed to be called for thp, not for
 113	 * hugetlb. This is because hugetlb page does never have PageLRU set
 114	 * (it's never listed to any LRU lists) and no memcg routines should
 115	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 116	 */
 117	if (!folio_test_hugetlb(folio))
 118		__page_cache_release(folio);
 119	destroy_large_folio(folio);
 120}
 121
 122void __folio_put(struct folio *folio)
 123{
 124	if (unlikely(folio_is_zone_device(folio)))
 125		free_zone_device_page(&folio->page);
 126	else if (unlikely(folio_test_large(folio)))
 127		__folio_put_large(folio);
 128	else
 129		__folio_put_small(folio);
 130}
 131EXPORT_SYMBOL(__folio_put);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.
 138 */
 139void put_pages_list(struct list_head *pages)
 140{
 141	struct folio *folio, *next;
 
 
 142
 143	list_for_each_entry_safe(folio, next, pages, lru) {
 144		if (!folio_put_testzero(folio)) {
 145			list_del(&folio->lru);
 146			continue;
 147		}
 148		if (folio_test_large(folio)) {
 149			list_del(&folio->lru);
 150			__folio_put_large(folio);
 151			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152		}
 153		/* LRU flag must be clear because it's passed using the lru */
 
 
 
 
 154	}
 
 155
 156	free_unref_page_list(pages);
 157	INIT_LIST_HEAD(pages);
 
 
 
 
 158}
 159EXPORT_SYMBOL(put_pages_list);
 160
 161/*
 162 * get_kernel_pages() - pin kernel pages in memory
 163 * @kiov:	An array of struct kvec structures
 164 * @nr_segs:	number of segments to pin
 165 * @write:	pinning for read/write, currently ignored
 166 * @pages:	array that receives pointers to the pages pinned.
 167 *		Should be at least nr_segs long.
 168 *
 169 * Returns number of pages pinned. This may be fewer than the number requested.
 170 * If nr_segs is 0 or negative, returns 0.  If no pages were pinned, returns 0.
 171 * Each page returned must be released with a put_page() call when it is
 172 * finished with.
 173 */
 174int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 175		struct page **pages)
 176{
 177	int seg;
 
 
 
 
 
 
 
 
 
 
 178
 179	for (seg = 0; seg < nr_segs; seg++) {
 180		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 181			return seg;
 182
 183		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 184		get_page(pages[seg]);
 185	}
 
 
 
 
 
 
 
 186
 187	return seg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188}
 189EXPORT_SYMBOL_GPL(get_kernel_pages);
 190
 191typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
 192
 193static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
 
 
 
 
 
 
 
 194{
 195	int was_unevictable = folio_test_clear_unevictable(folio);
 196	long nr_pages = folio_nr_pages(folio);
 197
 198	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 199
 200	/*
 201	 * Is an smp_mb__after_atomic() still required here, before
 202	 * folio_evictable() tests the mlocked flag, to rule out the possibility
 203	 * of stranding an evictable folio on an unevictable LRU?  I think
 204	 * not, because __munlock_page() only clears the mlocked flag
 205	 * while the LRU lock is held.
 206	 *
 207	 * (That is not true of __page_cache_release(), and not necessarily
 208	 * true of release_pages(): but those only clear the mlocked flag after
 209	 * folio_put_testzero() has excluded any other users of the folio.)
 210	 */
 211	if (folio_evictable(folio)) {
 212		if (was_unevictable)
 213			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
 214	} else {
 215		folio_clear_active(folio);
 216		folio_set_unevictable(folio);
 217		/*
 218		 * folio->mlock_count = !!folio_test_mlocked(folio)?
 219		 * But that leaves __mlock_page() in doubt whether another
 220		 * actor has already counted the mlock or not.  Err on the
 221		 * safe side, underestimate, let page reclaim fix it, rather
 222		 * than leaving a page on the unevictable LRU indefinitely.
 223		 */
 224		folio->mlock_count = 0;
 225		if (!was_unevictable)
 226			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
 227	}
 228
 229	lruvec_add_folio(lruvec, folio);
 230	trace_mm_lru_insertion(folio);
 231}
 
 232
 233static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
 
 
 234{
 235	int i;
 236	struct lruvec *lruvec = NULL;
 
 237	unsigned long flags = 0;
 238
 239	for (i = 0; i < folio_batch_count(fbatch); i++) {
 240		struct folio *folio = fbatch->folios[i];
 241
 242		/* block memcg migration while the folio moves between lru */
 243		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
 244			continue;
 245
 246		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
 247		move_fn(lruvec, folio);
 
 248
 249		folio_set_lru(folio);
 
 250	}
 251
 252	if (lruvec)
 253		unlock_page_lruvec_irqrestore(lruvec, flags);
 254	folios_put(fbatch->folios, folio_batch_count(fbatch));
 255	folio_batch_init(fbatch);
 256}
 257
 258static void folio_batch_add_and_move(struct folio_batch *fbatch,
 259		struct folio *folio, move_fn_t move_fn)
 260{
 261	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
 262	    !lru_cache_disabled())
 263		return;
 264	folio_batch_move_lru(fbatch, move_fn);
 265}
 266
 267static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
 268{
 269	if (!folio_test_unevictable(folio)) {
 270		lruvec_del_folio(lruvec, folio);
 271		folio_clear_active(folio);
 272		lruvec_add_folio_tail(lruvec, folio);
 273		__count_vm_events(PGROTATED, folio_nr_pages(folio));
 274	}
 275}
 276
 277/*
 278 * Writeback is about to end against a folio which has been marked for
 279 * immediate reclaim.  If it still appears to be reclaimable, move it
 280 * to the tail of the inactive list.
 281 *
 282 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
 283 */
 284void folio_rotate_reclaimable(struct folio *folio)
 285{
 286	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
 287	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
 288		struct folio_batch *fbatch;
 289		unsigned long flags;
 290
 291		folio_get(folio);
 292		local_lock_irqsave(&lru_rotate.lock, flags);
 293		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
 294		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
 295		local_unlock_irqrestore(&lru_rotate.lock, flags);
 296	}
 297}
 298
 299void lru_note_cost(struct lruvec *lruvec, bool file,
 300		   unsigned int nr_io, unsigned int nr_rotated)
 
 
 
 
 301{
 302	unsigned long cost;
 303
 304	/*
 305	 * Reflect the relative cost of incurring IO and spending CPU
 306	 * time on rotations. This doesn't attempt to make a precise
 307	 * comparison, it just says: if reloads are about comparable
 308	 * between the LRU lists, or rotations are overwhelmingly
 309	 * different between them, adjust scan balance for CPU work.
 310	 */
 311	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
 312
 313	do {
 314		unsigned long lrusize;
 315
 316		/*
 317		 * Hold lruvec->lru_lock is safe here, since
 318		 * 1) The pinned lruvec in reclaim, or
 319		 * 2) From a pre-LRU page during refault (which also holds the
 320		 *    rcu lock, so would be safe even if the page was on the LRU
 321		 *    and could move simultaneously to a new lruvec).
 322		 */
 323		spin_lock_irq(&lruvec->lru_lock);
 324		/* Record cost event */
 325		if (file)
 326			lruvec->file_cost += cost;
 327		else
 328			lruvec->anon_cost += cost;
 329
 330		/*
 331		 * Decay previous events
 332		 *
 333		 * Because workloads change over time (and to avoid
 334		 * overflow) we keep these statistics as a floating
 335		 * average, which ends up weighing recent refaults
 336		 * more than old ones.
 337		 */
 338		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 339			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 340			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 341			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 342
 343		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 344			lruvec->file_cost /= 2;
 345			lruvec->anon_cost /= 2;
 346		}
 347		spin_unlock_irq(&lruvec->lru_lock);
 348	} while ((lruvec = parent_lruvec(lruvec)));
 349}
 350
 351void lru_note_cost_refault(struct folio *folio)
 
 352{
 353	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
 354		      folio_nr_pages(folio), 0);
 
 
 
 355}
 356
 357static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
 
 358{
 359	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
 360		long nr_pages = folio_nr_pages(folio);
 
 361
 362		lruvec_del_folio(lruvec, folio);
 363		folio_set_active(folio);
 364		lruvec_add_folio(lruvec, folio);
 365		trace_mm_lru_activate(folio);
 366
 367		__count_vm_events(PGACTIVATE, nr_pages);
 368		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 369				     nr_pages);
 370	}
 371}
 372
 373#ifdef CONFIG_SMP
 374static void folio_activate_drain(int cpu)
 
 
 375{
 376	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
 377
 378	if (folio_batch_count(fbatch))
 379		folio_batch_move_lru(fbatch, folio_activate_fn);
 380}
 381
 382void folio_activate(struct folio *folio)
 383{
 384	if (folio_test_lru(folio) && !folio_test_active(folio) &&
 385	    !folio_test_unevictable(folio)) {
 386		struct folio_batch *fbatch;
 387
 388		folio_get(folio);
 389		local_lock(&cpu_fbatches.lock);
 390		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
 391		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
 392		local_unlock(&cpu_fbatches.lock);
 393	}
 394}
 395
 396#else
 397static inline void folio_activate_drain(int cpu)
 398{
 399}
 400
 401void folio_activate(struct folio *folio)
 402{
 403	struct lruvec *lruvec;
 404
 405	if (folio_test_clear_lru(folio)) {
 406		lruvec = folio_lruvec_lock_irq(folio);
 407		folio_activate_fn(lruvec, folio);
 408		unlock_page_lruvec_irq(lruvec);
 409		folio_set_lru(folio);
 410	}
 411}
 412#endif
 413
 414static void __lru_cache_activate_folio(struct folio *folio)
 415{
 416	struct folio_batch *fbatch;
 417	int i;
 418
 419	local_lock(&cpu_fbatches.lock);
 420	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 421
 422	/*
 423	 * Search backwards on the optimistic assumption that the folio being
 424	 * activated has just been added to this batch. Note that only
 425	 * the local batch is examined as a !LRU folio could be in the
 426	 * process of being released, reclaimed, migrated or on a remote
 427	 * batch that is currently being drained. Furthermore, marking
 428	 * a remote batch's folio active potentially hits a race where
 429	 * a folio is marked active just after it is added to the inactive
 430	 * list causing accounting errors and BUG_ON checks to trigger.
 431	 */
 432	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
 433		struct folio *batch_folio = fbatch->folios[i];
 434
 435		if (batch_folio == folio) {
 436			folio_set_active(folio);
 437			break;
 438		}
 439	}
 440
 441	local_unlock(&cpu_fbatches.lock);
 442}
 443
 444#ifdef CONFIG_LRU_GEN
 445static void folio_inc_refs(struct folio *folio)
 446{
 447	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 448
 449	if (folio_test_unevictable(folio))
 450		return;
 451
 452	if (!folio_test_referenced(folio)) {
 453		folio_set_referenced(folio);
 454		return;
 455	}
 456
 457	if (!folio_test_workingset(folio)) {
 458		folio_set_workingset(folio);
 459		return;
 460	}
 461
 462	/* see the comment on MAX_NR_TIERS */
 463	do {
 464		new_flags = old_flags & LRU_REFS_MASK;
 465		if (new_flags == LRU_REFS_MASK)
 466			break;
 467
 468		new_flags += BIT(LRU_REFS_PGOFF);
 469		new_flags |= old_flags & ~LRU_REFS_MASK;
 470	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 471}
 472#else
 473static void folio_inc_refs(struct folio *folio)
 474{
 475}
 476#endif /* CONFIG_LRU_GEN */
 477
 478/*
 479 * Mark a page as having seen activity.
 480 *
 481 * inactive,unreferenced	->	inactive,referenced
 482 * inactive,referenced		->	active,unreferenced
 483 * active,unreferenced		->	active,referenced
 484 *
 485 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 486 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 487 */
 488void folio_mark_accessed(struct folio *folio)
 489{
 490	if (lru_gen_enabled()) {
 491		folio_inc_refs(folio);
 492		return;
 
 
 
 493	}
 
 
 494
 495	if (!folio_test_referenced(folio)) {
 496		folio_set_referenced(folio);
 497	} else if (folio_test_unevictable(folio)) {
 498		/*
 499		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 500		 * this list is never rotated or maintained, so marking an
 501		 * unevictable page accessed has no effect.
 502		 */
 503	} else if (!folio_test_active(folio)) {
 504		/*
 505		 * If the folio is on the LRU, queue it for activation via
 506		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
 507		 * folio_batch, mark it active and it'll be moved to the active
 508		 * LRU on the next drain.
 509		 */
 510		if (folio_test_lru(folio))
 511			folio_activate(folio);
 512		else
 513			__lru_cache_activate_folio(folio);
 514		folio_clear_referenced(folio);
 515		workingset_activation(folio);
 516	}
 517	if (folio_test_idle(folio))
 518		folio_clear_idle(folio);
 519}
 520EXPORT_SYMBOL(folio_mark_accessed);
 521
 522/**
 523 * folio_add_lru - Add a folio to an LRU list.
 524 * @folio: The folio to be added to the LRU.
 525 *
 526 * Queue the folio for addition to the LRU. The decision on whether
 527 * to add the page to the [in]active [file|anon] list is deferred until the
 528 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
 529 * have the folio added to the active list using folio_mark_accessed().
 530 */
 531void folio_add_lru(struct folio *folio)
 532{
 533	struct folio_batch *fbatch;
 
 
 534
 535	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
 536			folio_test_unevictable(folio), folio);
 537	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 538
 539	/* see the comment in lru_gen_add_folio() */
 540	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
 541	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
 542		folio_set_active(folio);
 543
 544	folio_get(folio);
 545	local_lock(&cpu_fbatches.lock);
 546	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 547	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
 548	local_unlock(&cpu_fbatches.lock);
 549}
 550EXPORT_SYMBOL(folio_add_lru);
 551
 552/**
 553 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
 554 * @folio: The folio to be added to the LRU.
 555 * @vma: VMA in which the folio is mapped.
 556 *
 557 * If the VMA is mlocked, @folio is added to the unevictable list.
 558 * Otherwise, it is treated the same way as folio_add_lru().
 
 
 
 559 */
 560void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
 561{
 562	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 
 563
 564	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
 565		mlock_new_page(&folio->page);
 566	else
 567		folio_add_lru(folio);
 
 
 568}
 569
 570/*
 571 * If the folio cannot be invalidated, it is moved to the
 572 * inactive list to speed up its reclaim.  It is moved to the
 573 * head of the list, rather than the tail, to give the flusher
 574 * threads some time to write it out, as this is much more
 575 * effective than the single-page writeout from reclaim.
 576 *
 577 * If the folio isn't mapped and dirty/writeback, the folio
 578 * could be reclaimed asap using the reclaim flag.
 579 *
 580 * 1. active, mapped folio -> none
 581 * 2. active, dirty/writeback folio -> inactive, head, reclaim
 582 * 3. inactive, mapped folio -> none
 583 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
 584 * 5. inactive, clean -> inactive, tail
 585 * 6. Others -> none
 586 *
 587 * In 4, it moves to the head of the inactive list so the folio is
 588 * written out by flusher threads as this is much more efficient
 589 * than the single-page writeout from reclaim.
 590 */
 591static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
 
 592{
 593	bool active = folio_test_active(folio);
 594	long nr_pages = folio_nr_pages(folio);
 595
 596	if (folio_test_unevictable(folio))
 597		return;
 598
 599	/* Some processes are using the folio */
 600	if (folio_mapped(folio))
 601		return;
 602
 603	lruvec_del_folio(lruvec, folio);
 604	folio_clear_active(folio);
 605	folio_clear_referenced(folio);
 
 
 
 
 
 
 
 
 
 606
 607	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
 608		/*
 609		 * Setting the reclaim flag could race with
 610		 * folio_end_writeback() and confuse readahead.  But the
 611		 * race window is _really_ small and  it's not a critical
 612		 * problem.
 613		 */
 614		lruvec_add_folio(lruvec, folio);
 615		folio_set_reclaim(folio);
 616	} else {
 617		/*
 618		 * The folio's writeback ended while it was in the batch.
 619		 * We move that folio to the tail of the inactive list.
 620		 */
 621		lruvec_add_folio_tail(lruvec, folio);
 622		__count_vm_events(PGROTATED, nr_pages);
 623	}
 624
 625	if (active) {
 626		__count_vm_events(PGDEACTIVATE, nr_pages);
 627		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 628				     nr_pages);
 629	}
 630}
 631
 632static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
 633{
 634	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
 635		long nr_pages = folio_nr_pages(folio);
 636
 637		lruvec_del_folio(lruvec, folio);
 638		folio_clear_active(folio);
 639		folio_clear_referenced(folio);
 640		lruvec_add_folio(lruvec, folio);
 641
 642		__count_vm_events(PGDEACTIVATE, nr_pages);
 643		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 644				     nr_pages);
 645	}
 646}
 647
 648static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
 649{
 650	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
 651	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
 652		long nr_pages = folio_nr_pages(folio);
 653
 654		lruvec_del_folio(lruvec, folio);
 655		folio_clear_active(folio);
 656		folio_clear_referenced(folio);
 657		/*
 658		 * Lazyfree folios are clean anonymous folios.  They have
 659		 * the swapbacked flag cleared, to distinguish them from normal
 660		 * anonymous folios
 661		 */
 662		folio_clear_swapbacked(folio);
 663		lruvec_add_folio(lruvec, folio);
 664
 665		__count_vm_events(PGLAZYFREE, nr_pages);
 666		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 667				     nr_pages);
 668	}
 669}
 670
 671/*
 672 * Drain pages out of the cpu's folio_batch.
 673 * Either "cpu" is the current CPU, and preemption has already been
 674 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 675 */
 676void lru_add_drain_cpu(int cpu)
 677{
 678	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 679	struct folio_batch *fbatch = &fbatches->lru_add;
 680
 681	if (folio_batch_count(fbatch))
 682		folio_batch_move_lru(fbatch, lru_add_fn);
 
 
 
 
 683
 684	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
 685	/* Disabling interrupts below acts as a compiler barrier. */
 686	if (data_race(folio_batch_count(fbatch))) {
 687		unsigned long flags;
 688
 689		/* No harm done if a racing interrupt already did this */
 690		local_lock_irqsave(&lru_rotate.lock, flags);
 691		folio_batch_move_lru(fbatch, lru_move_tail_fn);
 692		local_unlock_irqrestore(&lru_rotate.lock, flags);
 693	}
 694
 695	fbatch = &fbatches->lru_deactivate_file;
 696	if (folio_batch_count(fbatch))
 697		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
 698
 699	fbatch = &fbatches->lru_deactivate;
 700	if (folio_batch_count(fbatch))
 701		folio_batch_move_lru(fbatch, lru_deactivate_fn);
 702
 703	fbatch = &fbatches->lru_lazyfree;
 704	if (folio_batch_count(fbatch))
 705		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
 706
 707	folio_activate_drain(cpu);
 708}
 709
 710/**
 711 * deactivate_file_folio() - Deactivate a file folio.
 712 * @folio: Folio to deactivate.
 713 *
 714 * This function hints to the VM that @folio is a good reclaim candidate,
 715 * for example if its invalidation fails due to the folio being dirty
 716 * or under writeback.
 717 *
 718 * Context: Caller holds a reference on the folio.
 719 */
 720void deactivate_file_folio(struct folio *folio)
 721{
 722	struct folio_batch *fbatch;
 723
 724	/* Deactivating an unevictable folio will not accelerate reclaim */
 725	if (folio_test_unevictable(folio))
 726		return;
 727
 728	folio_get(folio);
 729	local_lock(&cpu_fbatches.lock);
 730	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
 731	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
 732	local_unlock(&cpu_fbatches.lock);
 733}
 734
 735/*
 736 * deactivate_page - deactivate a page
 737 * @page: page to deactivate
 738 *
 739 * deactivate_page() moves @page to the inactive list if @page was on the active
 740 * list and was not an unevictable page.  This is done to accelerate the reclaim
 741 * of @page.
 742 */
 743void deactivate_page(struct page *page)
 744{
 745	struct folio *folio = page_folio(page);
 746
 747	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
 748	    (folio_test_active(folio) || lru_gen_enabled())) {
 749		struct folio_batch *fbatch;
 750
 751		folio_get(folio);
 752		local_lock(&cpu_fbatches.lock);
 753		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
 754		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
 755		local_unlock(&cpu_fbatches.lock);
 756	}
 757}
 758
 759/**
 760 * mark_page_lazyfree - make an anon page lazyfree
 761 * @page: page to deactivate
 762 *
 763 * mark_page_lazyfree() moves @page to the inactive file list.
 764 * This is done to accelerate the reclaim of @page.
 765 */
 766void mark_page_lazyfree(struct page *page)
 767{
 768	struct folio *folio = page_folio(page);
 769
 770	if (folio_test_lru(folio) && folio_test_anon(folio) &&
 771	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
 772	    !folio_test_unevictable(folio)) {
 773		struct folio_batch *fbatch;
 774
 775		folio_get(folio);
 776		local_lock(&cpu_fbatches.lock);
 777		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
 778		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
 779		local_unlock(&cpu_fbatches.lock);
 780	}
 781}
 782
 783void lru_add_drain(void)
 784{
 785	local_lock(&cpu_fbatches.lock);
 786	lru_add_drain_cpu(smp_processor_id());
 787	local_unlock(&cpu_fbatches.lock);
 788	mlock_page_drain_local();
 789}
 790
 791/*
 792 * It's called from per-cpu workqueue context in SMP case so
 793 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 794 * the same cpu. It shouldn't be a problem in !SMP case since
 795 * the core is only one and the locks will disable preemption.
 796 */
 797static void lru_add_and_bh_lrus_drain(void)
 798{
 799	local_lock(&cpu_fbatches.lock);
 800	lru_add_drain_cpu(smp_processor_id());
 801	local_unlock(&cpu_fbatches.lock);
 802	invalidate_bh_lrus_cpu();
 803	mlock_page_drain_local();
 804}
 805
 806void lru_add_drain_cpu_zone(struct zone *zone)
 807{
 808	local_lock(&cpu_fbatches.lock);
 809	lru_add_drain_cpu(smp_processor_id());
 810	drain_local_pages(zone);
 811	local_unlock(&cpu_fbatches.lock);
 812	mlock_page_drain_local();
 813}
 814
 815#ifdef CONFIG_SMP
 816
 817static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 818
 819static void lru_add_drain_per_cpu(struct work_struct *dummy)
 820{
 821	lru_add_and_bh_lrus_drain();
 822}
 823
 824static bool cpu_needs_drain(unsigned int cpu)
 825{
 826	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 827
 828	/* Check these in order of likelihood that they're not zero */
 829	return folio_batch_count(&fbatches->lru_add) ||
 830		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
 831		folio_batch_count(&fbatches->lru_deactivate_file) ||
 832		folio_batch_count(&fbatches->lru_deactivate) ||
 833		folio_batch_count(&fbatches->lru_lazyfree) ||
 834		folio_batch_count(&fbatches->activate) ||
 835		need_mlock_page_drain(cpu) ||
 836		has_bh_in_lru(cpu, NULL);
 837}
 838
 839/*
 840 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 841 * kworkers being shut down before our page_alloc_cpu_dead callback is
 842 * executed on the offlined cpu.
 843 * Calling this function with cpu hotplug locks held can actually lead
 844 * to obscure indirect dependencies via WQ context.
 845 */
 846static inline void __lru_add_drain_all(bool force_all_cpus)
 847{
 848	/*
 849	 * lru_drain_gen - Global pages generation number
 850	 *
 851	 * (A) Definition: global lru_drain_gen = x implies that all generations
 852	 *     0 < n <= x are already *scheduled* for draining.
 853	 *
 854	 * This is an optimization for the highly-contended use case where a
 855	 * user space workload keeps constantly generating a flow of pages for
 856	 * each CPU.
 857	 */
 858	static unsigned int lru_drain_gen;
 859	static struct cpumask has_work;
 860	static DEFINE_MUTEX(lock);
 861	unsigned cpu, this_gen;
 862
 863	/*
 864	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 865	 * initialized.
 866	 */
 867	if (WARN_ON(!mm_percpu_wq))
 868		return;
 869
 870	/*
 871	 * Guarantee folio_batch counter stores visible by this CPU
 872	 * are visible to other CPUs before loading the current drain
 873	 * generation.
 874	 */
 875	smp_mb();
 876
 877	/*
 878	 * (B) Locally cache global LRU draining generation number
 879	 *
 880	 * The read barrier ensures that the counter is loaded before the mutex
 881	 * is taken. It pairs with smp_mb() inside the mutex critical section
 882	 * at (D).
 883	 */
 884	this_gen = smp_load_acquire(&lru_drain_gen);
 885
 886	mutex_lock(&lock);
 887
 888	/*
 889	 * (C) Exit the draining operation if a newer generation, from another
 890	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 891	 */
 892	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 893		goto done;
 894
 895	/*
 896	 * (D) Increment global generation number
 897	 *
 898	 * Pairs with smp_load_acquire() at (B), outside of the critical
 899	 * section. Use a full memory barrier to guarantee that the
 900	 * new global drain generation number is stored before loading
 901	 * folio_batch counters.
 902	 *
 903	 * This pairing must be done here, before the for_each_online_cpu loop
 904	 * below which drains the page vectors.
 905	 *
 906	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 907	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 908	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 909	 * along, adds some pages to its per-cpu vectors, then calls
 910	 * lru_add_drain_all().
 911	 *
 912	 * If the paired barrier is done at any later step, e.g. after the
 913	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 914	 * added pages.
 915	 */
 916	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 917	smp_mb();
 918
 919	cpumask_clear(&has_work);
 920	for_each_online_cpu(cpu) {
 921		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 922
 923		if (cpu_needs_drain(cpu)) {
 924			INIT_WORK(work, lru_add_drain_per_cpu);
 925			queue_work_on(cpu, mm_percpu_wq, work);
 926			__cpumask_set_cpu(cpu, &has_work);
 927		}
 928	}
 929
 930	for_each_cpu(cpu, &has_work)
 931		flush_work(&per_cpu(lru_add_drain_work, cpu));
 932
 933done:
 934	mutex_unlock(&lock);
 935}
 936
 937void lru_add_drain_all(void)
 938{
 939	__lru_add_drain_all(false);
 
 940}
 941#else
 942void lru_add_drain_all(void)
 943{
 944	lru_add_drain();
 945}
 946#endif /* CONFIG_SMP */
 947
 948atomic_t lru_disable_count = ATOMIC_INIT(0);
 949
 950/*
 951 * lru_cache_disable() needs to be called before we start compiling
 952 * a list of pages to be migrated using isolate_lru_page().
 953 * It drains pages on LRU cache and then disable on all cpus until
 954 * lru_cache_enable is called.
 955 *
 956 * Must be paired with a call to lru_cache_enable().
 957 */
 958void lru_cache_disable(void)
 959{
 960	atomic_inc(&lru_disable_count);
 961	/*
 962	 * Readers of lru_disable_count are protected by either disabling
 963	 * preemption or rcu_read_lock:
 964	 *
 965	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
 966	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
 967	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
 968	 *
 969	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
 970	 * preempt_disable() regions of code. So any CPU which sees
 971	 * lru_disable_count = 0 will have exited the critical
 972	 * section when synchronize_rcu() returns.
 973	 */
 974	synchronize_rcu_expedited();
 975#ifdef CONFIG_SMP
 976	__lru_add_drain_all(true);
 977#else
 978	lru_add_and_bh_lrus_drain();
 979#endif
 980}
 981
 982/**
 983 * release_pages - batched put_page()
 984 * @arg: array of pages to release
 985 * @nr: number of pages
 986 *
 987 * Decrement the reference count on all the pages in @arg.  If it
 988 * fell to zero, remove the page from the LRU and free it.
 989 *
 990 * Note that the argument can be an array of pages, encoded pages,
 991 * or folio pointers. We ignore any encoded bits, and turn any of
 992 * them into just a folio that gets free'd.
 
 993 */
 994void release_pages(release_pages_arg arg, int nr)
 995{
 996	int i;
 997	struct encoded_page **encoded = arg.encoded_pages;
 998	LIST_HEAD(pages_to_free);
 999	struct lruvec *lruvec = NULL;
1000	unsigned long flags = 0;
1001	unsigned int lock_batch;
1002
1003	for (i = 0; i < nr; i++) {
1004		struct folio *folio;
1005
1006		/* Turn any of the argument types into a folio */
1007		folio = page_folio(encoded_page_ptr(encoded[i]));
1008
1009		/*
1010		 * Make sure the IRQ-safe lock-holding time does not get
1011		 * excessive with a continuous string of pages from the
1012		 * same lruvec. The lock is held only if lruvec != NULL.
1013		 */
1014		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
1015			unlock_page_lruvec_irqrestore(lruvec, flags);
1016			lruvec = NULL;
1017		}
1018
1019		if (is_huge_zero_page(&folio->page))
1020			continue;
1021
1022		if (folio_is_zone_device(folio)) {
1023			if (lruvec) {
1024				unlock_page_lruvec_irqrestore(lruvec, flags);
1025				lruvec = NULL;
1026			}
1027			if (put_devmap_managed_page(&folio->page))
1028				continue;
1029			if (folio_put_testzero(folio))
1030				free_zone_device_page(&folio->page);
1031			continue;
1032		}
1033
1034		if (!folio_put_testzero(folio))
1035			continue;
1036
1037		if (folio_test_large(folio)) {
1038			if (lruvec) {
1039				unlock_page_lruvec_irqrestore(lruvec, flags);
1040				lruvec = NULL;
1041			}
1042			__folio_put_large(folio);
1043			continue;
1044		}
1045
1046		if (folio_test_lru(folio)) {
1047			struct lruvec *prev_lruvec = lruvec;
1048
1049			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1050									&flags);
1051			if (prev_lruvec != lruvec)
1052				lock_batch = 0;
1053
1054			lruvec_del_folio(lruvec, folio);
1055			__folio_clear_lru_flags(folio);
1056		}
1057
1058		/*
1059		 * In rare cases, when truncation or holepunching raced with
1060		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1061		 * found set here.  This does not indicate a problem, unless
1062		 * "unevictable_pgs_cleared" appears worryingly large.
1063		 */
1064		if (unlikely(folio_test_mlocked(folio))) {
1065			__folio_clear_mlocked(folio);
1066			zone_stat_sub_folio(folio, NR_MLOCK);
1067			count_vm_event(UNEVICTABLE_PGCLEARED);
1068		}
1069
1070		list_add(&folio->lru, &pages_to_free);
1071	}
1072	if (lruvec)
1073		unlock_page_lruvec_irqrestore(lruvec, flags);
1074
1075	mem_cgroup_uncharge_list(&pages_to_free);
1076	free_unref_page_list(&pages_to_free);
1077}
1078EXPORT_SYMBOL(release_pages);
1079
1080/*
1081 * The pages which we're about to release may be in the deferred lru-addition
1082 * queues.  That would prevent them from really being freed right now.  That's
1083 * OK from a correctness point of view but is inefficient - those pages may be
1084 * cache-warm and we want to give them back to the page allocator ASAP.
1085 *
1086 * So __pagevec_release() will drain those queues here.
1087 * folio_batch_move_lru() calls folios_put() directly to avoid
1088 * mutual recursion.
1089 */
1090void __pagevec_release(struct pagevec *pvec)
1091{
1092	if (!pvec->percpu_pvec_drained) {
1093		lru_add_drain();
1094		pvec->percpu_pvec_drained = true;
1095	}
1096	release_pages(pvec->pages, pagevec_count(pvec));
1097	pagevec_reinit(pvec);
1098}
1099EXPORT_SYMBOL(__pagevec_release);
1100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101/**
1102 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1103 * @fbatch: The batch to prune
 
 
 
 
 
 
 
1104 *
1105 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1106 * entries.  This function prunes all the non-folio entries from @fbatch
1107 * without leaving holes, so that it can be passed on to folio-only batch
1108 * operations.
1109 */
1110void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
 
1111{
1112	unsigned int i, j;
1113
1114	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1115		struct folio *folio = fbatch->folios[i];
1116		if (!xa_is_value(folio))
1117			fbatch->folios[j++] = folio;
1118	}
1119	fbatch->nr = j;
1120}
 
1121
1122unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1123		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1124		xa_mark_t tag)
1125{
1126	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1127					PAGEVEC_SIZE, pvec->pages);
1128	return pagevec_count(pvec);
1129}
1130EXPORT_SYMBOL(pagevec_lookup_range_tag);
1131
1132/*
1133 * Perform any setup for the swap system
1134 */
1135void __init swap_setup(void)
1136{
1137	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
 
 
 
 
1138
1139	/* Use a smaller cluster for small-memory machines */
1140	if (megs < 16)
1141		page_cluster = 2;
1142	else
1143		page_cluster = 3;
1144	/*
1145	 * Right now other parts of the system means that we
1146	 * _really_ don't want to cluster much more
1147	 */
1148}
v3.5.6
 
  1/*
  2 *  linux/mm/swap.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 */
  6
  7/*
  8 * This file contains the default values for the operation of the
  9 * Linux VM subsystem. Fine-tuning documentation can be found in
 10 * Documentation/sysctl/vm.txt.
 11 * Started 18.12.91
 12 * Swap aging added 23.2.95, Stephen Tweedie.
 13 * Buffermem limits added 12.3.98, Rik van Riel.
 14 */
 15
 16#include <linux/mm.h>
 17#include <linux/sched.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/swap.h>
 20#include <linux/mman.h>
 21#include <linux/pagemap.h>
 22#include <linux/pagevec.h>
 23#include <linux/init.h>
 24#include <linux/export.h>
 25#include <linux/mm_inline.h>
 26#include <linux/percpu_counter.h>
 
 27#include <linux/percpu.h>
 28#include <linux/cpu.h>
 29#include <linux/notifier.h>
 30#include <linux/backing-dev.h>
 31#include <linux/memcontrol.h>
 32#include <linux/gfp.h>
 
 
 
 
 
 33
 34#include "internal.h"
 35
 36/* How many pages do we try to swap or page in/out together? */
 
 
 
 37int page_cluster;
 
 38
 39static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
 40static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 41static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 
 
 
 
 
 42
 43/*
 44 * This path almost never happens for VM activity - pages are normally
 45 * freed via pagevecs.  But it gets used by networking.
 46 */
 47static void __page_cache_release(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48{
 49	if (PageLRU(page)) {
 50		struct zone *zone = page_zone(page);
 51		struct lruvec *lruvec;
 52		unsigned long flags;
 53
 54		spin_lock_irqsave(&zone->lru_lock, flags);
 55		lruvec = mem_cgroup_page_lruvec(page, zone);
 56		VM_BUG_ON(!PageLRU(page));
 57		__ClearPageLRU(page);
 58		del_page_from_lru_list(page, lruvec, page_off_lru(page));
 59		spin_unlock_irqrestore(&zone->lru_lock, flags);
 
 
 
 
 
 
 60	}
 61}
 62
 63static void __put_single_page(struct page *page)
 64{
 65	__page_cache_release(page);
 66	free_hot_cold_page(page, 0);
 
 67}
 68
 69static void __put_compound_page(struct page *page)
 70{
 71	compound_page_dtor *dtor;
 
 
 
 
 
 
 
 
 
 72
 73	__page_cache_release(page);
 74	dtor = get_compound_page_dtor(page);
 75	(*dtor)(page);
 
 
 
 
 
 76}
 
 77
 78static void put_compound_page(struct page *page)
 
 
 
 
 
 
 79{
 80	if (unlikely(PageTail(page))) {
 81		/* __split_huge_page_refcount can run under us */
 82		struct page *page_head = compound_trans_head(page);
 83
 84		if (likely(page != page_head &&
 85			   get_page_unless_zero(page_head))) {
 86			unsigned long flags;
 87
 88			/*
 89			 * THP can not break up slab pages so avoid taking
 90			 * compound_lock().  Slab performs non-atomic bit ops
 91			 * on page->flags for better performance.  In particular
 92			 * slab_unlock() in slub used to be a hot path.  It is
 93			 * still hot on arches that do not support
 94			 * this_cpu_cmpxchg_double().
 95			 */
 96			if (PageSlab(page_head)) {
 97				if (PageTail(page)) {
 98					if (put_page_testzero(page_head))
 99						VM_BUG_ON(1);
100
101					atomic_dec(&page->_mapcount);
102					goto skip_lock_tail;
103				} else
104					goto skip_lock;
105			}
106			/*
107			 * page_head wasn't a dangling pointer but it
108			 * may not be a head page anymore by the time
109			 * we obtain the lock. That is ok as long as it
110			 * can't be freed from under us.
111			 */
112			flags = compound_lock_irqsave(page_head);
113			if (unlikely(!PageTail(page))) {
114				/* __split_huge_page_refcount run before us */
115				compound_unlock_irqrestore(page_head, flags);
116skip_lock:
117				if (put_page_testzero(page_head))
118					__put_single_page(page_head);
119out_put_single:
120				if (put_page_testzero(page))
121					__put_single_page(page);
122				return;
123			}
124			VM_BUG_ON(page_head != page->first_page);
125			/*
126			 * We can release the refcount taken by
127			 * get_page_unless_zero() now that
128			 * __split_huge_page_refcount() is blocked on
129			 * the compound_lock.
130			 */
131			if (put_page_testzero(page_head))
132				VM_BUG_ON(1);
133			/* __split_huge_page_refcount will wait now */
134			VM_BUG_ON(page_mapcount(page) <= 0);
135			atomic_dec(&page->_mapcount);
136			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
137			VM_BUG_ON(atomic_read(&page->_count) != 0);
138			compound_unlock_irqrestore(page_head, flags);
139
140skip_lock_tail:
141			if (put_page_testzero(page_head)) {
142				if (PageHead(page_head))
143					__put_compound_page(page_head);
144				else
145					__put_single_page(page_head);
146			}
147		} else {
148			/* page_head is a dangling pointer */
149			VM_BUG_ON(PageTail(page));
150			goto out_put_single;
151		}
152	} else if (put_page_testzero(page)) {
153		if (PageHead(page))
154			__put_compound_page(page);
155		else
156			__put_single_page(page);
157	}
158}
159
160void put_page(struct page *page)
161{
162	if (unlikely(PageCompound(page)))
163		put_compound_page(page);
164	else if (put_page_testzero(page))
165		__put_single_page(page);
166}
167EXPORT_SYMBOL(put_page);
168
169/*
170 * This function is exported but must not be called by anything other
171 * than get_page(). It implements the slow path of get_page().
 
 
 
 
 
 
 
 
 
172 */
173bool __get_page_tail(struct page *page)
 
174{
175	/*
176	 * This takes care of get_page() if run on a tail page
177	 * returned by one of the get_user_pages/follow_page variants.
178	 * get_user_pages/follow_page itself doesn't need the compound
179	 * lock because it runs __get_page_tail_foll() under the
180	 * proper PT lock that already serializes against
181	 * split_huge_page().
182	 */
183	unsigned long flags;
184	bool got = false;
185	struct page *page_head = compound_trans_head(page);
186
187	if (likely(page != page_head && get_page_unless_zero(page_head))) {
 
 
188
189		/* Ref to put_compound_page() comment. */
190		if (PageSlab(page_head)) {
191			if (likely(PageTail(page))) {
192				__get_page_tail_foll(page, false);
193				return true;
194			} else {
195				put_page(page_head);
196				return false;
197			}
198		}
199
200		/*
201		 * page_head wasn't a dangling pointer but it
202		 * may not be a head page anymore by the time
203		 * we obtain the lock. That is ok as long as it
204		 * can't be freed from under us.
205		 */
206		flags = compound_lock_irqsave(page_head);
207		/* here __split_huge_page_refcount won't run anymore */
208		if (likely(PageTail(page))) {
209			__get_page_tail_foll(page, false);
210			got = true;
211		}
212		compound_unlock_irqrestore(page_head, flags);
213		if (unlikely(!got))
214			put_page(page_head);
215	}
216	return got;
217}
218EXPORT_SYMBOL(__get_page_tail);
 
 
219
220/**
221 * put_pages_list() - release a list of pages
222 * @pages: list of pages threaded on page->lru
223 *
224 * Release a list of pages which are strung together on page.lru.  Currently
225 * used by read_cache_pages() and related error recovery code.
226 */
227void put_pages_list(struct list_head *pages)
228{
229	while (!list_empty(pages)) {
230		struct page *victim;
231
232		victim = list_entry(pages->prev, struct page, lru);
233		list_del(&victim->lru);
234		page_cache_release(victim);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235	}
 
 
 
236}
237EXPORT_SYMBOL(put_pages_list);
238
239static void pagevec_lru_move_fn(struct pagevec *pvec,
240	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
241	void *arg)
242{
243	int i;
244	struct zone *zone = NULL;
245	struct lruvec *lruvec;
246	unsigned long flags = 0;
247
248	for (i = 0; i < pagevec_count(pvec); i++) {
249		struct page *page = pvec->pages[i];
250		struct zone *pagezone = page_zone(page);
251
252		if (pagezone != zone) {
253			if (zone)
254				spin_unlock_irqrestore(&zone->lru_lock, flags);
255			zone = pagezone;
256			spin_lock_irqsave(&zone->lru_lock, flags);
257		}
258
259		lruvec = mem_cgroup_page_lruvec(page, zone);
260		(*move_fn)(page, lruvec, arg);
261	}
262	if (zone)
263		spin_unlock_irqrestore(&zone->lru_lock, flags);
264	release_pages(pvec->pages, pvec->nr, pvec->cold);
265	pagevec_reinit(pvec);
 
266}
267
268static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
269				 void *arg)
270{
271	int *pgmoved = arg;
 
 
 
 
272
273	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
274		enum lru_list lru = page_lru_base_type(page);
275		list_move_tail(&page->lru, &lruvec->lists[lru]);
276		(*pgmoved)++;
 
 
 
277	}
278}
279
280/*
281 * pagevec_move_tail() must be called with IRQ disabled.
282 * Otherwise this may cause nasty races.
 
 
 
283 */
284static void pagevec_move_tail(struct pagevec *pvec)
285{
286	int pgmoved = 0;
 
 
 
287
288	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
289	__count_vm_events(PGROTATED, pgmoved);
 
 
 
 
290}
291
292/*
293 * Writeback is about to end against a page which has been marked for immediate
294 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
295 * inactive list.
296 */
297void rotate_reclaimable_page(struct page *page)
298{
299	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
300	    !PageUnevictable(page) && PageLRU(page)) {
301		struct pagevec *pvec;
302		unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
304		page_cache_get(page);
305		local_irq_save(flags);
306		pvec = &__get_cpu_var(lru_rotate_pvecs);
307		if (!pagevec_add(pvec, page))
308			pagevec_move_tail(pvec);
309		local_irq_restore(flags);
310	}
 
 
 
 
 
 
 
 
 
 
 
 
311}
312
313static void update_page_reclaim_stat(struct lruvec *lruvec,
314				     int file, int rotated)
315{
316	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
317
318	reclaim_stat->recent_scanned[file]++;
319	if (rotated)
320		reclaim_stat->recent_rotated[file]++;
321}
322
323static void __activate_page(struct page *page, struct lruvec *lruvec,
324			    void *arg)
325{
326	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327		int file = page_is_file_cache(page);
328		int lru = page_lru_base_type(page);
329
330		del_page_from_lru_list(page, lruvec, lru);
331		SetPageActive(page);
332		lru += LRU_ACTIVE;
333		add_page_to_lru_list(page, lruvec, lru);
334
335		__count_vm_event(PGACTIVATE);
336		update_page_reclaim_stat(lruvec, file, 1);
 
337	}
338}
339
340#ifdef CONFIG_SMP
341static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
342
343static void activate_page_drain(int cpu)
344{
345	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
346
347	if (pagevec_count(pvec))
348		pagevec_lru_move_fn(pvec, __activate_page, NULL);
349}
350
351void activate_page(struct page *page)
352{
353	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
354		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 
355
356		page_cache_get(page);
357		if (!pagevec_add(pvec, page))
358			pagevec_lru_move_fn(pvec, __activate_page, NULL);
359		put_cpu_var(activate_page_pvecs);
 
360	}
361}
362
363#else
364static inline void activate_page_drain(int cpu)
365{
366}
367
368void activate_page(struct page *page)
369{
370	struct zone *zone = page_zone(page);
371
372	spin_lock_irq(&zone->lru_lock);
373	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
374	spin_unlock_irq(&zone->lru_lock);
 
 
 
375}
376#endif
377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378/*
379 * Mark a page as having seen activity.
380 *
381 * inactive,unreferenced	->	inactive,referenced
382 * inactive,referenced		->	active,unreferenced
383 * active,unreferenced		->	active,referenced
 
 
 
384 */
385void mark_page_accessed(struct page *page)
386{
387	if (!PageActive(page) && !PageUnevictable(page) &&
388			PageReferenced(page) && PageLRU(page)) {
389		activate_page(page);
390		ClearPageReferenced(page);
391	} else if (!PageReferenced(page)) {
392		SetPageReferenced(page);
393	}
394}
395EXPORT_SYMBOL(mark_page_accessed);
396
397void __lru_cache_add(struct page *page, enum lru_list lru)
398{
399	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
400
401	page_cache_get(page);
402	if (!pagevec_add(pvec, page))
403		__pagevec_lru_add(pvec, lru);
404	put_cpu_var(lru_add_pvecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405}
406EXPORT_SYMBOL(__lru_cache_add);
407
408/**
409 * lru_cache_add_lru - add a page to a page list
410 * @page: the page to be added to the LRU.
411 * @lru: the LRU list to which the page is added.
412 */
413void lru_cache_add_lru(struct page *page, enum lru_list lru)
414{
415	if (PageActive(page)) {
416		VM_BUG_ON(PageUnevictable(page));
417		ClearPageActive(page);
418	} else if (PageUnevictable(page)) {
419		VM_BUG_ON(PageActive(page));
420		ClearPageUnevictable(page);
421	}
422
423	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
424	__lru_cache_add(page, lru);
 
 
 
 
 
 
 
 
 
 
 
 
425}
 
426
427/**
428 * add_page_to_unevictable_list - add a page to the unevictable list
429 * @page:  the page to be added to the unevictable list
 
430 *
431 * Add page directly to its zone's unevictable list.  To avoid races with
432 * tasks that might be making the page evictable, through eg. munlock,
433 * munmap or exit, while it's not on the lru, we want to add the page
434 * while it's locked or otherwise "invisible" to other tasks.  This is
435 * difficult to do when using the pagevec cache, so bypass that.
436 */
437void add_page_to_unevictable_list(struct page *page)
438{
439	struct zone *zone = page_zone(page);
440	struct lruvec *lruvec;
441
442	spin_lock_irq(&zone->lru_lock);
443	lruvec = mem_cgroup_page_lruvec(page, zone);
444	SetPageUnevictable(page);
445	SetPageLRU(page);
446	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
447	spin_unlock_irq(&zone->lru_lock);
448}
449
450/*
451 * If the page can not be invalidated, it is moved to the
452 * inactive list to speed up its reclaim.  It is moved to the
453 * head of the list, rather than the tail, to give the flusher
454 * threads some time to write it out, as this is much more
455 * effective than the single-page writeout from reclaim.
456 *
457 * If the page isn't page_mapped and dirty/writeback, the page
458 * could reclaim asap using PG_reclaim.
459 *
460 * 1. active, mapped page -> none
461 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
462 * 3. inactive, mapped page -> none
463 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
464 * 5. inactive, clean -> inactive, tail
465 * 6. Others -> none
466 *
467 * In 4, why it moves inactive's head, the VM expects the page would
468 * be write it out by flusher threads as this is much more effective
469 * than the single-page writeout from reclaim.
470 */
471static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
472			      void *arg)
473{
474	int lru, file;
475	bool active;
476
477	if (!PageLRU(page))
478		return;
479
480	if (PageUnevictable(page))
 
481		return;
482
483	/* Some processes are using the page */
484	if (page_mapped(page))
485		return;
486
487	active = PageActive(page);
488	file = page_is_file_cache(page);
489	lru = page_lru_base_type(page);
490
491	del_page_from_lru_list(page, lruvec, lru + active);
492	ClearPageActive(page);
493	ClearPageReferenced(page);
494	add_page_to_lru_list(page, lruvec, lru);
495
496	if (PageWriteback(page) || PageDirty(page)) {
497		/*
498		 * PG_reclaim could be raced with end_page_writeback
499		 * It can make readahead confusing.  But race window
500		 * is _really_ small and  it's non-critical problem.
 
501		 */
502		SetPageReclaim(page);
 
503	} else {
504		/*
505		 * The page's writeback ends up during pagevec
506		 * We moves tha page into tail of inactive.
507		 */
508		list_move_tail(&page->lru, &lruvec->lists[lru]);
509		__count_vm_event(PGROTATED);
 
 
 
 
 
 
510	}
 
 
 
 
 
 
511
512	if (active)
513		__count_vm_event(PGDEACTIVATE);
514	update_page_reclaim_stat(lruvec, file, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515}
516
517/*
518 * Drain pages out of the cpu's pagevecs.
519 * Either "cpu" is the current CPU, and preemption has already been
520 * disabled; or "cpu" is being hot-unplugged, and is already dead.
521 */
522void lru_add_drain_cpu(int cpu)
523{
524	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
525	struct pagevec *pvec;
526	int lru;
527
528	for_each_lru(lru) {
529		pvec = &pvecs[lru - LRU_BASE];
530		if (pagevec_count(pvec))
531			__pagevec_lru_add(pvec, lru);
532	}
533
534	pvec = &per_cpu(lru_rotate_pvecs, cpu);
535	if (pagevec_count(pvec)) {
 
536		unsigned long flags;
537
538		/* No harm done if a racing interrupt already did this */
539		local_irq_save(flags);
540		pagevec_move_tail(pvec);
541		local_irq_restore(flags);
542	}
543
544	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
545	if (pagevec_count(pvec))
546		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 
 
 
 
 
 
 
 
547
548	activate_page_drain(cpu);
549}
550
551/**
552 * deactivate_page - forcefully deactivate a page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553 * @page: page to deactivate
554 *
555 * This function hints the VM that @page is a good reclaim candidate,
556 * for example if its invalidation fails due to the page being dirty
557 * or under writeback.
558 */
559void deactivate_page(struct page *page)
560{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561	/*
562	 * In a workload with many unevictable page such as mprotect, unevictable
563	 * page deactivation for accelerating reclaim is pointless.
 
 
 
 
 
 
564	 */
565	if (PageUnevictable(page))
 
 
 
 
 
 
 
 
 
566		return;
567
568	if (likely(get_page_unless_zero(page))) {
569		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570
571		if (!pagevec_add(pvec, page))
572			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
573		put_cpu_var(lru_deactivate_pvecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574	}
 
 
 
 
 
 
575}
576
577void lru_add_drain(void)
578{
579	lru_add_drain_cpu(get_cpu());
580	put_cpu();
581}
582
583static void lru_add_drain_per_cpu(struct work_struct *dummy)
584{
585	lru_add_drain();
586}
 
 
 
587
588/*
589 * Returns 0 for success
 
 
 
 
 
590 */
591int lru_add_drain_all(void)
592{
593	return schedule_on_each_cpu(lru_add_drain_per_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594}
595
596/*
597 * Batched page_cache_release().  Decrement the reference count on all the
598 * passed pages.  If it fell to zero then remove the page from the LRU and
599 * free it.
600 *
601 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
602 * for the remainder of the operation.
603 *
604 * The locking in this function is against shrink_inactive_list(): we recheck
605 * the page count inside the lock to see whether shrink_inactive_list()
606 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
607 * will free it.
608 */
609void release_pages(struct page **pages, int nr, int cold)
610{
611	int i;
 
612	LIST_HEAD(pages_to_free);
613	struct zone *zone = NULL;
614	struct lruvec *lruvec;
615	unsigned long uninitialized_var(flags);
616
617	for (i = 0; i < nr; i++) {
618		struct page *page = pages[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
619
620		if (unlikely(PageCompound(page))) {
621			if (zone) {
622				spin_unlock_irqrestore(&zone->lru_lock, flags);
623				zone = NULL;
 
 
 
624			}
625			put_compound_page(page);
 
 
 
626			continue;
627		}
628
629		if (!put_page_testzero(page))
 
 
 
 
 
 
 
 
630			continue;
 
631
632		if (PageLRU(page)) {
633			struct zone *pagezone = page_zone(page);
634
635			if (pagezone != zone) {
636				if (zone)
637					spin_unlock_irqrestore(&zone->lru_lock,
638									flags);
639				zone = pagezone;
640				spin_lock_irqsave(&zone->lru_lock, flags);
641			}
 
642
643			lruvec = mem_cgroup_page_lruvec(page, zone);
644			VM_BUG_ON(!PageLRU(page));
645			__ClearPageLRU(page);
646			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 
 
 
 
 
 
647		}
648
649		list_add(&page->lru, &pages_to_free);
650	}
651	if (zone)
652		spin_unlock_irqrestore(&zone->lru_lock, flags);
653
654	free_hot_cold_page_list(&pages_to_free, cold);
 
655}
656EXPORT_SYMBOL(release_pages);
657
658/*
659 * The pages which we're about to release may be in the deferred lru-addition
660 * queues.  That would prevent them from really being freed right now.  That's
661 * OK from a correctness point of view but is inefficient - those pages may be
662 * cache-warm and we want to give them back to the page allocator ASAP.
663 *
664 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
665 * and __pagevec_lru_add_active() call release_pages() directly to avoid
666 * mutual recursion.
667 */
668void __pagevec_release(struct pagevec *pvec)
669{
670	lru_add_drain();
671	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 
 
 
672	pagevec_reinit(pvec);
673}
674EXPORT_SYMBOL(__pagevec_release);
675
676#ifdef CONFIG_TRANSPARENT_HUGEPAGE
677/* used by __split_huge_page_refcount() */
678void lru_add_page_tail(struct page *page, struct page *page_tail,
679		       struct lruvec *lruvec)
680{
681	int uninitialized_var(active);
682	enum lru_list lru;
683	const int file = 0;
684
685	VM_BUG_ON(!PageHead(page));
686	VM_BUG_ON(PageCompound(page_tail));
687	VM_BUG_ON(PageLRU(page_tail));
688	VM_BUG_ON(NR_CPUS != 1 &&
689		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
690
691	SetPageLRU(page_tail);
692
693	if (page_evictable(page_tail, NULL)) {
694		if (PageActive(page)) {
695			SetPageActive(page_tail);
696			active = 1;
697			lru = LRU_ACTIVE_ANON;
698		} else {
699			active = 0;
700			lru = LRU_INACTIVE_ANON;
701		}
702	} else {
703		SetPageUnevictable(page_tail);
704		lru = LRU_UNEVICTABLE;
705	}
706
707	if (likely(PageLRU(page)))
708		list_add_tail(&page_tail->lru, &page->lru);
709	else {
710		struct list_head *list_head;
711		/*
712		 * Head page has not yet been counted, as an hpage,
713		 * so we must account for each subpage individually.
714		 *
715		 * Use the standard add function to put page_tail on the list,
716		 * but then correct its position so they all end up in order.
717		 */
718		add_page_to_lru_list(page_tail, lruvec, lru);
719		list_head = page_tail->lru.prev;
720		list_move_tail(&page_tail->lru, list_head);
721	}
722
723	if (!PageUnevictable(page))
724		update_page_reclaim_stat(lruvec, file, active);
725}
726#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
727
728static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
729				 void *arg)
730{
731	enum lru_list lru = (enum lru_list)arg;
732	int file = is_file_lru(lru);
733	int active = is_active_lru(lru);
734
735	VM_BUG_ON(PageActive(page));
736	VM_BUG_ON(PageUnevictable(page));
737	VM_BUG_ON(PageLRU(page));
738
739	SetPageLRU(page);
740	if (active)
741		SetPageActive(page);
742	add_page_to_lru_list(page, lruvec, lru);
743	update_page_reclaim_stat(lruvec, file, active);
744}
745
746/*
747 * Add the passed pages to the LRU, then drop the caller's refcount
748 * on them.  Reinitialises the caller's pagevec.
749 */
750void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
751{
752	VM_BUG_ON(is_unevictable_lru(lru));
753
754	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
755}
756EXPORT_SYMBOL(__pagevec_lru_add);
757
758/**
759 * pagevec_lookup - gang pagecache lookup
760 * @pvec:	Where the resulting pages are placed
761 * @mapping:	The address_space to search
762 * @start:	The starting page index
763 * @nr_pages:	The maximum number of pages
764 *
765 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
766 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
767 * reference against the pages in @pvec.
768 *
769 * The search returns a group of mapping-contiguous pages with ascending
770 * indexes.  There may be holes in the indices due to not-present pages.
771 *
772 * pagevec_lookup() returns the number of pages which were found.
773 */
774unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
775		pgoff_t start, unsigned nr_pages)
776{
777	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
778	return pagevec_count(pvec);
 
 
 
 
 
 
779}
780EXPORT_SYMBOL(pagevec_lookup);
781
782unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
783		pgoff_t *index, int tag, unsigned nr_pages)
 
784{
785	pvec->nr = find_get_pages_tag(mapping, index, tag,
786					nr_pages, pvec->pages);
787	return pagevec_count(pvec);
788}
789EXPORT_SYMBOL(pagevec_lookup_tag);
790
791/*
792 * Perform any setup for the swap system
793 */
794void __init swap_setup(void)
795{
796	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
797
798#ifdef CONFIG_SWAP
799	bdi_init(swapper_space.backing_dev_info);
800#endif
801
802	/* Use a smaller cluster for small-memory machines */
803	if (megs < 16)
804		page_cluster = 2;
805	else
806		page_cluster = 3;
807	/*
808	 * Right now other parts of the system means that we
809	 * _really_ don't want to cluster much more
810	 */
811}