Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 103#include	<linux/kfence.h>
 104#include	<linux/cpu.h>
 105#include	<linux/__KEEPIDENTS__BD.h>
 106#include	<linux/__KEEPIDENTS__BE.h>
 107#include	<linux/rcupdate.h>
 108#include	<linux/__KEEPIDENTS__BF.h>
 109#include	<linux/__KEEPIDENTS__BG.h>
 110#include	<linux/__KEEPIDENTS__BH.h>
 111#include	<linux/kmemleak.h>
 112#include	<linux/__KEEPIDENTS__BI.h>
 113#include	<linux/__KEEPIDENTS__BJ.h>
 114#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 115#include	<linux/__KEEPIDENTS__CC.h>
 116#include	<linux/reciprocal_div.h>
 117#include	<linux/debugobjects.h>
 
 118#include	<linux/__KEEPIDENTS__CD.h>
 119#include	<linux/__KEEPIDENTS__CE.h>
 120#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 121
 122#include	<net/__KEEPIDENTS__CG.h>
 123
 124#include	<asm/cacheflush.h>
 125#include	<asm/tlbflush.h>
 126#include	<asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include	"internal.h"
 131
 132#include	"slab.h"
 133
 134/*
 135 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *		  0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS	- 1 to collect stats for /proc/slabinfo.
 139 *		  0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define	DEBUG		1
 146#define	STATS		1
 147#define	FORCED_DEBUG	1
 148#else
 149#define	DEBUG		0
 150#define	STATS		0
 151#define	FORCED_DEBUG	0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define	BYTES_PER_WORD		sizeof(void *)
 156#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 
 
 
 
 167#else
 168typedef unsigned short freelist_idx_t;
 
 
 
 
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186	unsigned int avail;
 187	unsigned int limit;
 188	unsigned int batchcount;
 189	unsigned int touched;
 
 190	void *entry[];	/*
 191			 * Must have this definition in here for the proper
 192			 * alignment of array_cache. Also simplifies accessing
 193			 * the entries.
 194			 */
 195};
 196
 197struct alien_cache {
 198	spinlock_t lock;
 199	struct array_cache ac;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define	CACHE_CACHE 0
 208#define	SIZE_NODE (MAX_NUMNODES)
 
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211			struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213			int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219						void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221				struct kmem_cache_node *n, struct slab *slab,
 222				void **list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229	INIT_LIST_HEAD(&parent->slabs_full);
 230	INIT_LIST_HEAD(&parent->slabs_partial);
 231	INIT_LIST_HEAD(&parent->slabs_free);
 232	parent->total_slabs = 0;
 233	parent->free_slabs = 0;
 234	parent->shared = NULL;
 235	parent->alien = NULL;
 236	parent->colour_next = 0;
 237	raw_spin_lock_init(&parent->list_lock);
 238	parent->free_objects = 0;
 239	parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 243	do {								\
 244		INIT_LIST_HEAD(listp);					\
 245		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 246	} while (0)
 247
 248#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 249	do {								\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 251	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 253	} while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 256#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 257#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT	16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnecessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC		(2*HZ)
 269#define REAPTIMEOUT_NODE	(4*HZ)
 270
 271#if STATS
 272#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 273#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 274#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 275#define	STATS_INC_GROWN(x)	((x)->grown++)
 276#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
 277#define	STATS_SET_HIGH(x)						\
 278	do {								\
 279		if ((x)->num_active > (x)->high_mark)			\
 280			(x)->high_mark = (x)->num_active;		\
 281	} while (0)
 282#define	STATS_INC_ERR(x)	((x)->errors++)
 283#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 284#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define	STATS_SET_FREEABLE(x, i)					\
 287	do {								\
 288		if ((x)->max_freeable < i)				\
 289			(x)->max_freeable = i;				\
 290	} while (0)
 291#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 295#else
 296#define	STATS_INC_ACTIVE(x)	do { } while (0)
 297#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 298#define	STATS_INC_ALLOCED(x)	do { } while (0)
 299#define	STATS_INC_GROWN(x)	do { } while (0)
 300#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
 301#define	STATS_SET_HIGH(x)	do { } while (0)
 302#define	STATS_INC_ERR(x)	do { } while (0)
 303#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 304#define	STATS_INC_NODEFREES(x)	do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 309#define STATS_INC_FREEHIT(x)	do { } while (0)
 310#define STATS_INC_FREEMISS(x)	do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0		: objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 * 		the end of an object is aligned with the end of the real
 320 * 		allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 * 		redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *					[BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330	return cachep->obj_offset;
 331}
 332
 
 
 
 
 
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336	return (unsigned long long *) (objp + obj_offset(cachep) -
 337				      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343	if (cachep->flags & SLAB_STORE_USER)
 344		return (unsigned long long *)(objp + cachep->size -
 345					      sizeof(unsigned long long) -
 346					      REDZONE_ALIGN);
 347	return (unsigned long long *) (objp + cachep->size -
 348				       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)			0
 
 360#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 363
 364#endif
 365
 
 
 
 
 
 
 
 
 366/*
 367 * Do not go above this order unless 0 objects fit into the slab or
 368 * overridden on the command line.
 369 */
 370#define	SLAB_MAX_ORDER_HI	1
 371#define	SLAB_MAX_ORDER_LO	0
 372static int slab_max_order = SLAB_MAX_ORDER_LO;
 373static bool slab_max_order_set __initdata;
 374
 375static inline void *index_to_obj(struct kmem_cache *cache,
 376				 const struct slab *slab, unsigned int idx)
 
 
 
 
 377{
 378	return slab->s_mem + cache->size * idx;
 379}
 380
 381#define BOOT_CPUCACHE_ENTRIES	1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382/* internal cache of cache description objs */
 383static struct kmem_cache kmem_cache_boot = {
 
 
 384	.batchcount = 1,
 385	.limit = BOOT_CPUCACHE_ENTRIES,
 386	.shared = 1,
 387	.size = sizeof(struct kmem_cache),
 388	.name = "kmem_cache",
 389};
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 392
 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 394{
 395	return this_cpu_ptr(cachep->cpu_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396}
 397
 398/*
 399 * Calculate the number of objects and left-over bytes for a given buffer size.
 400 */
 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 402		slab_flags_t flags, size_t *left_over)
 
 403{
 404	unsigned int num;
 
 405	size_t slab_size = PAGE_SIZE << gfporder;
 406
 407	/*
 408	 * The slab management structure can be either off the slab or
 409	 * on it. For the latter case, the memory allocated for a
 410	 * slab is used for:
 411	 *
 
 
 
 412	 * - @buffer_size bytes for each object
 413	 * - One freelist_idx_t for each object
 414	 *
 415	 * We don't need to consider alignment of freelist because
 416	 * freelist will be at the end of slab page. The objects will be
 417	 * at the correct alignment.
 418	 *
 419	 * If the slab management structure is off the slab, then the
 420	 * alignment will already be calculated into the size. Because
 421	 * the slabs are all pages aligned, the objects will be at the
 422	 * correct alignment when allocated.
 423	 */
 424	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 425		num = slab_size / buffer_size;
 426		*left_over = slab_size % buffer_size;
 
 
 
 427	} else {
 428		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 429		*left_over = slab_size %
 430			(buffer_size + sizeof(freelist_idx_t));
 431	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433	return num;
 
 
 
 434}
 435
 436#if DEBUG
 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 438
 439static void __slab_error(const char *function, struct kmem_cache *cachep,
 440			char *msg)
 441{
 442	pr_err("slab error in %s(): cache `%s': %s\n",
 443	       function, cachep->name, msg);
 444	dump_stack();
 445	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 446}
 447#endif
 448
 449/*
 450 * By default on NUMA we use alien caches to stage the freeing of
 451 * objects allocated from other nodes. This causes massive memory
 452 * inefficiencies when using fake NUMA setup to split memory into a
 453 * large number of small nodes, so it can be disabled on the command
 454 * line
 455  */
 456
 457static int use_alien_caches __read_mostly = 1;
 458static int __init noaliencache_setup(char *s)
 459{
 460	use_alien_caches = 0;
 461	return 1;
 462}
 463__setup("noaliencache", noaliencache_setup);
 464
 465static int __init slab_max_order_setup(char *str)
 466{
 467	get_option(&str, &slab_max_order);
 468	slab_max_order = slab_max_order < 0 ? 0 :
 469				min(slab_max_order, MAX_ORDER - 1);
 470	slab_max_order_set = true;
 471
 472	return 1;
 473}
 474__setup("slab_max_order=", slab_max_order_setup);
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * Special reaping functions for NUMA systems called from cache_reap().
 479 * These take care of doing round robin flushing of alien caches (containing
 480 * objects freed on different nodes from which they were allocated) and the
 481 * flushing of remote pcps by calling drain_node_pages.
 482 */
 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 484
 485static void init_reap_node(int cpu)
 486{
 487	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 488						    node_online_map);
 
 
 
 
 
 489}
 490
 491static void next_reap_node(void)
 492{
 493	int node = __this_cpu_read(slab_reap_node);
 494
 495	node = next_node_in(node, node_online_map);
 
 
 496	__this_cpu_write(slab_reap_node, node);
 497}
 498
 499#else
 500#define init_reap_node(cpu) do { } while (0)
 501#define next_reap_node(void) do { } while (0)
 502#endif
 503
 504/*
 505 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 506 * via the workqueue/eventd.
 507 * Add the CPU number into the expiration time to minimize the possibility of
 508 * the CPUs getting into lockstep and contending for the global cache chain
 509 * lock.
 510 */
 511static void start_cpu_timer(int cpu)
 512{
 513	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 514
 515	if (reap_work->work.func == NULL) {
 
 
 
 
 
 516		init_reap_node(cpu);
 517		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 518		schedule_delayed_work_on(cpu, reap_work,
 519					__round_jiffies_relative(HZ, cpu));
 520	}
 521}
 522
 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
 524{
 525	if (ac) {
 526		ac->avail = 0;
 527		ac->limit = limit;
 528		ac->batchcount = batch;
 529		ac->touched = 0;
 530	}
 531}
 532
 533static struct array_cache *alloc_arraycache(int node, int entries,
 534					    int batchcount, gfp_t gfp)
 535{
 536	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 537	struct array_cache *ac = NULL;
 538
 539	ac = kmalloc_node(memsize, gfp, node);
 540	/*
 541	 * The array_cache structures contain pointers to free object.
 542	 * However, when such objects are allocated or transferred to another
 543	 * cache the pointers are not cleared and they could be counted as
 544	 * valid references during a kmemleak scan. Therefore, kmemleak must
 545	 * not scan such objects.
 546	 */
 547	kmemleak_no_scan(ac);
 548	init_arraycache(ac, entries, batchcount);
 549	return ac;
 550}
 551
 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 553					struct slab *slab, void *objp)
 554{
 555	struct kmem_cache_node *n;
 556	int slab_node;
 557	LIST_HEAD(list);
 558
 559	slab_node = slab_nid(slab);
 560	n = get_node(cachep, slab_node);
 561
 562	raw_spin_lock(&n->list_lock);
 563	free_block(cachep, &objp, 1, slab_node, &list);
 564	raw_spin_unlock(&n->list_lock);
 565
 566	slabs_destroy(cachep, &list);
 567}
 568
 569/*
 570 * Transfer objects in one arraycache to another.
 571 * Locking must be handled by the caller.
 572 *
 573 * Return the number of entries transferred.
 574 */
 575static int transfer_objects(struct array_cache *to,
 576		struct array_cache *from, unsigned int max)
 577{
 578	/* Figure out how many entries to transfer */
 579	int nr = min3(from->avail, max, to->limit - to->avail);
 580
 581	if (!nr)
 582		return 0;
 583
 584	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 585			sizeof(void *) *nr);
 586
 587	from->avail -= nr;
 588	to->avail += nr;
 589	return nr;
 590}
 591
 592/* &alien->lock must be held by alien callers. */
 593static __always_inline void __free_one(struct array_cache *ac, void *objp)
 594{
 595	/* Avoid trivial double-free. */
 596	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 597	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 598		return;
 599	ac->entry[ac->avail++] = objp;
 600}
 601
 602#ifndef CONFIG_NUMA
 603
 604#define drain_alien_cache(cachep, alien) do { } while (0)
 605#define reap_alien(cachep, n) do { } while (0)
 606
 607static inline struct alien_cache **alloc_alien_cache(int node,
 608						int limit, gfp_t gfp)
 609{
 610	return NULL;
 611}
 612
 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
 614{
 615}
 616
 617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 618{
 619	return 0;
 620}
 621
 622static inline gfp_t gfp_exact_node(gfp_t flags)
 
 
 
 
 
 
 
 623{
 624	return flags & ~__GFP_NOFAIL;
 625}
 626
 627#else	/* CONFIG_NUMA */
 628
 629static struct alien_cache *__alloc_alien_cache(int node, int entries,
 630						int batch, gfp_t gfp)
 631{
 632	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 633	struct alien_cache *alc = NULL;
 634
 635	alc = kmalloc_node(memsize, gfp, node);
 636	if (alc) {
 637		kmemleak_no_scan(alc);
 638		init_arraycache(&alc->ac, entries, batch);
 639		spin_lock_init(&alc->lock);
 640	}
 641	return alc;
 642}
 643
 644static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 645{
 646	struct alien_cache **alc_ptr;
 
 647	int i;
 648
 649	if (limit > 1)
 650		limit = 12;
 651	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 652	if (!alc_ptr)
 653		return NULL;
 654
 655	for_each_node(i) {
 656		if (i == node || !node_online(i))
 657			continue;
 658		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 659		if (!alc_ptr[i]) {
 660			for (i--; i >= 0; i--)
 661				kfree(alc_ptr[i]);
 662			kfree(alc_ptr);
 663			return NULL;
 664		}
 665	}
 666	return alc_ptr;
 667}
 668
 669static void free_alien_cache(struct alien_cache **alc_ptr)
 670{
 671	int i;
 672
 673	if (!alc_ptr)
 674		return;
 675	for_each_node(i)
 676	    kfree(alc_ptr[i]);
 677	kfree(alc_ptr);
 678}
 679
 680static void __drain_alien_cache(struct kmem_cache *cachep,
 681				struct array_cache *ac, int node,
 682				struct list_head *list)
 683{
 684	struct kmem_cache_node *n = get_node(cachep, node);
 685
 686	if (ac->avail) {
 687		raw_spin_lock(&n->list_lock);
 688		/*
 689		 * Stuff objects into the remote nodes shared array first.
 690		 * That way we could avoid the overhead of putting the objects
 691		 * into the free lists and getting them back later.
 692		 */
 693		if (n->shared)
 694			transfer_objects(n->shared, ac, ac->limit);
 695
 696		free_block(cachep, ac->entry, ac->avail, node, list);
 697		ac->avail = 0;
 698		raw_spin_unlock(&n->list_lock);
 699	}
 700}
 701
 702/*
 703 * Called from cache_reap() to regularly drain alien caches round robin.
 704 */
 705static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 706{
 707	int node = __this_cpu_read(slab_reap_node);
 708
 709	if (n->alien) {
 710		struct alien_cache *alc = n->alien[node];
 711		struct array_cache *ac;
 712
 713		if (alc) {
 714			ac = &alc->ac;
 715			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 716				LIST_HEAD(list);
 717
 718				__drain_alien_cache(cachep, ac, node, &list);
 719				spin_unlock_irq(&alc->lock);
 720				slabs_destroy(cachep, &list);
 721			}
 722		}
 723	}
 724}
 725
 726static void drain_alien_cache(struct kmem_cache *cachep,
 727				struct alien_cache **alien)
 728{
 729	int i = 0;
 730	struct alien_cache *alc;
 731	struct array_cache *ac;
 732	unsigned long flags;
 733
 734	for_each_online_node(i) {
 735		alc = alien[i];
 736		if (alc) {
 737			LIST_HEAD(list);
 738
 739			ac = &alc->ac;
 740			spin_lock_irqsave(&alc->lock, flags);
 741			__drain_alien_cache(cachep, ac, i, &list);
 742			spin_unlock_irqrestore(&alc->lock, flags);
 743			slabs_destroy(cachep, &list);
 744		}
 745	}
 746}
 747
 748static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 749				int node, int slab_node)
 750{
 751	struct kmem_cache_node *n;
 752	struct alien_cache *alien = NULL;
 753	struct array_cache *ac;
 754	LIST_HEAD(list);
 
 
 
 
 
 
 
 
 
 
 755
 756	n = get_node(cachep, node);
 757	STATS_INC_NODEFREES(cachep);
 758	if (n->alien && n->alien[slab_node]) {
 759		alien = n->alien[slab_node];
 760		ac = &alien->ac;
 761		spin_lock(&alien->lock);
 762		if (unlikely(ac->avail == ac->limit)) {
 763			STATS_INC_ACOVERFLOW(cachep);
 764			__drain_alien_cache(cachep, ac, slab_node, &list);
 765		}
 766		__free_one(ac, objp);
 767		spin_unlock(&alien->lock);
 768		slabs_destroy(cachep, &list);
 769	} else {
 770		n = get_node(cachep, slab_node);
 771		raw_spin_lock(&n->list_lock);
 772		free_block(cachep, &objp, 1, slab_node, &list);
 773		raw_spin_unlock(&n->list_lock);
 774		slabs_destroy(cachep, &list);
 775	}
 776	return 1;
 777}
 778
 779static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 780{
 781	int slab_node = slab_nid(virt_to_slab(objp));
 782	int node = numa_mem_id();
 783	/*
 784	 * Make sure we are not freeing an object from another node to the array
 785	 * cache on this cpu.
 786	 */
 787	if (likely(node == slab_node))
 788		return 0;
 789
 790	return __cache_free_alien(cachep, objp, node, slab_node);
 791}
 792
 793/*
 794 * Construct gfp mask to allocate from a specific node but do not reclaim or
 795 * warn about failures.
 796 */
 797static inline gfp_t gfp_exact_node(gfp_t flags)
 798{
 799	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 800}
 801#endif
 802
 803static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 804{
 805	struct kmem_cache_node *n;
 806
 807	/*
 808	 * Set up the kmem_cache_node for cpu before we can
 809	 * begin anything. Make sure some other cpu on this
 810	 * node has not already allocated this
 811	 */
 812	n = get_node(cachep, node);
 813	if (n) {
 814		raw_spin_lock_irq(&n->list_lock);
 815		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 816				cachep->num;
 817		raw_spin_unlock_irq(&n->list_lock);
 818
 819		return 0;
 820	}
 821
 822	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 823	if (!n)
 824		return -ENOMEM;
 825
 826	kmem_cache_node_init(n);
 827	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 828		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 829
 830	n->free_limit =
 831		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 832
 833	/*
 834	 * The kmem_cache_nodes don't come and go as CPUs
 835	 * come and go.  slab_mutex provides sufficient
 836	 * protection here.
 837	 */
 838	cachep->node[node] = n;
 839
 840	return 0;
 841}
 842
 843#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 844/*
 845 * Allocates and initializes node for a node on each slab cache, used for
 846 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 847 * will be allocated off-node since memory is not yet online for the new node.
 848 * When hotplugging memory or a cpu, existing nodes are not replaced if
 849 * already in use.
 850 *
 851 * Must hold slab_mutex.
 852 */
 853static int init_cache_node_node(int node)
 854{
 855	int ret;
 856	struct kmem_cache *cachep;
 
 
 857
 858	list_for_each_entry(cachep, &slab_caches, list) {
 859		ret = init_cache_node(cachep, node, GFP_KERNEL);
 860		if (ret)
 861			return ret;
 862	}
 863
 864	return 0;
 865}
 866#endif
 867
 868static int setup_kmem_cache_node(struct kmem_cache *cachep,
 869				int node, gfp_t gfp, bool force_change)
 870{
 871	int ret = -ENOMEM;
 872	struct kmem_cache_node *n;
 873	struct array_cache *old_shared = NULL;
 874	struct array_cache *new_shared = NULL;
 875	struct alien_cache **new_alien = NULL;
 876	LIST_HEAD(list);
 877
 878	if (use_alien_caches) {
 879		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 880		if (!new_alien)
 881			goto fail;
 882	}
 883
 884	if (cachep->shared) {
 885		new_shared = alloc_arraycache(node,
 886			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 887		if (!new_shared)
 888			goto fail;
 889	}
 890
 891	ret = init_cache_node(cachep, node, gfp);
 892	if (ret)
 893		goto fail;
 894
 895	n = get_node(cachep, node);
 896	raw_spin_lock_irq(&n->list_lock);
 897	if (n->shared && force_change) {
 898		free_block(cachep, n->shared->entry,
 899				n->shared->avail, node, &list);
 900		n->shared->avail = 0;
 901	}
 902
 903	if (!n->shared || force_change) {
 904		old_shared = n->shared;
 905		n->shared = new_shared;
 906		new_shared = NULL;
 907	}
 
 
 908
 909	if (!n->alien) {
 910		n->alien = new_alien;
 911		new_alien = NULL;
 
 
 912	}
 913
 914	raw_spin_unlock_irq(&n->list_lock);
 915	slabs_destroy(cachep, &list);
 916
 917	/*
 918	 * To protect lockless access to n->shared during irq disabled context.
 919	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 920	 * guaranteed to be valid until irq is re-enabled, because it will be
 921	 * freed after synchronize_rcu().
 922	 */
 923	if (old_shared && force_change)
 924		synchronize_rcu();
 925
 926fail:
 927	kfree(old_shared);
 928	kfree(new_shared);
 929	free_alien_cache(new_alien);
 930
 931	return ret;
 932}
 933
 934#ifdef CONFIG_SMP
 935
 936static void cpuup_canceled(long cpu)
 937{
 938	struct kmem_cache *cachep;
 939	struct kmem_cache_node *n = NULL;
 940	int node = cpu_to_mem(cpu);
 941	const struct cpumask *mask = cpumask_of_node(node);
 942
 943	list_for_each_entry(cachep, &slab_caches, list) {
 944		struct array_cache *nc;
 945		struct array_cache *shared;
 946		struct alien_cache **alien;
 947		LIST_HEAD(list);
 948
 949		n = get_node(cachep, node);
 950		if (!n)
 951			continue;
 952
 953		raw_spin_lock_irq(&n->list_lock);
 954
 955		/* Free limit for this kmem_cache_node */
 956		n->free_limit -= cachep->batchcount;
 957
 958		/* cpu is dead; no one can alloc from it. */
 959		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 960		free_block(cachep, nc->entry, nc->avail, node, &list);
 961		nc->avail = 0;
 
 
 
 
 
 
 
 
 
 
 962
 963		if (!cpumask_empty(mask)) {
 964			raw_spin_unlock_irq(&n->list_lock);
 965			goto free_slab;
 966		}
 967
 968		shared = n->shared;
 969		if (shared) {
 970			free_block(cachep, shared->entry,
 971				   shared->avail, node, &list);
 972			n->shared = NULL;
 973		}
 974
 975		alien = n->alien;
 976		n->alien = NULL;
 977
 978		raw_spin_unlock_irq(&n->list_lock);
 979
 980		kfree(shared);
 981		if (alien) {
 982			drain_alien_cache(cachep, alien);
 983			free_alien_cache(alien);
 984		}
 985
 986free_slab:
 987		slabs_destroy(cachep, &list);
 988	}
 989	/*
 990	 * In the previous loop, all the objects were freed to
 991	 * the respective cache's slabs,  now we can go ahead and
 992	 * shrink each nodelist to its limit.
 993	 */
 994	list_for_each_entry(cachep, &slab_caches, list) {
 995		n = get_node(cachep, node);
 996		if (!n)
 997			continue;
 998		drain_freelist(cachep, n, INT_MAX);
 999	}
1000}
1001
1002static int cpuup_prepare(long cpu)
1003{
1004	struct kmem_cache *cachep;
 
1005	int node = cpu_to_mem(cpu);
1006	int err;
1007
1008	/*
1009	 * We need to do this right in the beginning since
1010	 * alloc_arraycache's are going to use this list.
1011	 * kmalloc_node allows us to add the slab to the right
1012	 * kmem_cache_node and not this cpu's kmem_cache_node
1013	 */
1014	err = init_cache_node_node(node);
1015	if (err < 0)
1016		goto bad;
1017
1018	/*
1019	 * Now we can go ahead with allocating the shared arrays and
1020	 * array caches
1021	 */
1022	list_for_each_entry(cachep, &slab_caches, list) {
1023		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1024		if (err)
 
 
 
 
 
1025			goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026	}
 
1027
1028	return 0;
1029bad:
1030	cpuup_canceled(cpu);
1031	return -ENOMEM;
1032}
1033
1034int slab_prepare_cpu(unsigned int cpu)
 
1035{
1036	int err;
1037
1038	mutex_lock(&slab_mutex);
1039	err = cpuup_prepare(cpu);
1040	mutex_unlock(&slab_mutex);
1041	return err;
1042}
1043
1044/*
1045 * This is called for a failed online attempt and for a successful
1046 * offline.
1047 *
1048 * Even if all the cpus of a node are down, we don't free the
1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1050 * a kmalloc allocation from another cpu for memory from the node of
1051 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1053 */
1054int slab_dead_cpu(unsigned int cpu)
1055{
1056	mutex_lock(&slab_mutex);
1057	cpuup_canceled(cpu);
1058	mutex_unlock(&slab_mutex);
1059	return 0;
1060}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061#endif
1062
1063static int slab_online_cpu(unsigned int cpu)
1064{
1065	start_cpu_timer(cpu);
1066	return 0;
 
 
 
1067}
1068
1069static int slab_offline_cpu(unsigned int cpu)
1070{
1071	/*
1072	 * Shutdown cache reaper. Note that the slab_mutex is held so
1073	 * that if cache_reap() is invoked it cannot do anything
1074	 * expensive but will only modify reap_work and reschedule the
1075	 * timer.
1076	 */
1077	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1078	/* Now the cache_reaper is guaranteed to be not running. */
1079	per_cpu(slab_reap_work, cpu).work.func = NULL;
1080	return 0;
1081}
1082
1083#if defined(CONFIG_NUMA)
1084/*
1085 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1086 * Returns -EBUSY if all objects cannot be drained so that the node is not
1087 * removed.
1088 *
1089 * Must hold slab_mutex.
1090 */
1091static int __meminit drain_cache_node_node(int node)
1092{
1093	struct kmem_cache *cachep;
1094	int ret = 0;
1095
1096	list_for_each_entry(cachep, &slab_caches, list) {
1097		struct kmem_cache_node *n;
1098
1099		n = get_node(cachep, node);
1100		if (!n)
1101			continue;
1102
1103		drain_freelist(cachep, n, INT_MAX);
1104
1105		if (!list_empty(&n->slabs_full) ||
1106		    !list_empty(&n->slabs_partial)) {
1107			ret = -EBUSY;
1108			break;
1109		}
1110	}
1111	return ret;
1112}
1113
1114static int __meminit slab_memory_callback(struct notifier_block *self,
1115					unsigned long action, void *arg)
1116{
1117	struct memory_notify *mnb = arg;
1118	int ret = 0;
1119	int nid;
1120
1121	nid = mnb->status_change_nid;
1122	if (nid < 0)
1123		goto out;
1124
1125	switch (action) {
1126	case MEM_GOING_ONLINE:
1127		mutex_lock(&slab_mutex);
1128		ret = init_cache_node_node(nid);
1129		mutex_unlock(&slab_mutex);
1130		break;
1131	case MEM_GOING_OFFLINE:
1132		mutex_lock(&slab_mutex);
1133		ret = drain_cache_node_node(nid);
1134		mutex_unlock(&slab_mutex);
1135		break;
1136	case MEM_ONLINE:
1137	case MEM_OFFLINE:
1138	case MEM_CANCEL_ONLINE:
1139	case MEM_CANCEL_OFFLINE:
1140		break;
1141	}
1142out:
1143	return notifier_from_errno(ret);
1144}
1145#endif /* CONFIG_NUMA */
1146
1147/*
1148 * swap the static kmem_cache_node with kmalloced memory
1149 */
1150static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1151				int nodeid)
1152{
1153	struct kmem_cache_node *ptr;
1154
1155	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1156	BUG_ON(!ptr);
1157
1158	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1159	/*
1160	 * Do not assume that spinlocks can be initialized via memcpy:
1161	 */
1162	raw_spin_lock_init(&ptr->list_lock);
1163
1164	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1165	cachep->node[nodeid] = ptr;
1166}
1167
1168/*
1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1170 * size of kmem_cache_node.
1171 */
1172static void __init set_up_node(struct kmem_cache *cachep, int index)
1173{
1174	int node;
1175
1176	for_each_online_node(node) {
1177		cachep->node[node] = &init_kmem_cache_node[index + node];
1178		cachep->node[node]->next_reap = jiffies +
1179		    REAPTIMEOUT_NODE +
1180		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1181	}
1182}
1183
1184/*
1185 * Initialisation.  Called after the page allocator have been initialised and
1186 * before smp_init().
1187 */
1188void __init kmem_cache_init(void)
1189{
 
 
 
1190	int i;
 
 
1191
1192	kmem_cache = &kmem_cache_boot;
1193
1194	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1195		use_alien_caches = 0;
1196
1197	for (i = 0; i < NUM_INIT_LISTS; i++)
1198		kmem_cache_node_init(&init_kmem_cache_node[i]);
 
 
 
 
1199
1200	/*
1201	 * Fragmentation resistance on low memory - only use bigger
1202	 * page orders on machines with more than 32MB of memory if
1203	 * not overridden on the command line.
1204	 */
1205	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1206		slab_max_order = SLAB_MAX_ORDER_HI;
1207
1208	/* Bootstrap is tricky, because several objects are allocated
1209	 * from caches that do not exist yet:
1210	 * 1) initialize the kmem_cache cache: it contains the struct
1211	 *    kmem_cache structures of all caches, except kmem_cache itself:
1212	 *    kmem_cache is statically allocated.
1213	 *    Initially an __init data area is used for the head array and the
1214	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1215	 *    array at the end of the bootstrap.
1216	 * 2) Create the first kmalloc cache.
1217	 *    The struct kmem_cache for the new cache is allocated normally.
1218	 *    An __init data area is used for the head array.
1219	 * 3) Create the remaining kmalloc caches, with minimally sized
1220	 *    head arrays.
1221	 * 4) Replace the __init data head arrays for kmem_cache and the first
1222	 *    kmalloc cache with kmalloc allocated arrays.
1223	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1224	 *    the other cache's with kmalloc allocated memory.
1225	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1226	 */
1227
1228	/* 1) create the kmem_cache */
 
 
 
 
 
 
 
1229
1230	/*
1231	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1232	 */
1233	create_boot_cache(kmem_cache, "kmem_cache",
1234		offsetof(struct kmem_cache, node) +
1235				  nr_node_ids * sizeof(struct kmem_cache_node *),
1236				  SLAB_HWCACHE_ALIGN, 0, 0);
1237	list_add(&kmem_cache->list, &slab_caches);
1238	slab_state = PARTIAL;
1239
1240	/*
1241	 * Initialize the caches that provide memory for the  kmem_cache_node
1242	 * structures first.  Without this, further allocations will bug.
1243	 */
1244	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1245				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1246				kmalloc_info[INDEX_NODE].size,
1247				ARCH_KMALLOC_FLAGS, 0,
1248				kmalloc_info[INDEX_NODE].size);
1249	slab_state = PARTIAL_NODE;
1250	setup_kmalloc_cache_index_table();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251
1252	slab_early_init = 0;
1253
1254	/* 5) Replace the bootstrap kmem_cache_node */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255	{
1256		int nid;
1257
1258		for_each_online_node(nid) {
1259			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
 
 
 
1260
1261			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1262					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
 
 
1263		}
1264	}
1265
1266	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1267}
1268
1269void __init kmem_cache_init_late(void)
1270{
1271	struct kmem_cache *cachep;
1272
 
 
 
 
 
1273	/* 6) resize the head arrays to their final sizes */
1274	mutex_lock(&slab_mutex);
1275	list_for_each_entry(cachep, &slab_caches, list)
1276		if (enable_cpucache(cachep, GFP_NOWAIT))
1277			BUG();
1278	mutex_unlock(&slab_mutex);
1279
1280	/* Done! */
1281	slab_state = FULL;
 
 
 
 
 
 
1282
1283#ifdef CONFIG_NUMA
1284	/*
1285	 * Register a memory hotplug callback that initializes and frees
1286	 * node.
1287	 */
1288	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1289#endif
1290
1291	/*
1292	 * The reap timers are started later, with a module init call: That part
1293	 * of the kernel is not yet operational.
1294	 */
1295}
1296
1297static int __init cpucache_init(void)
1298{
1299	int ret;
1300
1301	/*
1302	 * Register the timers that return unneeded pages to the page allocator
1303	 */
1304	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1305				slab_online_cpu, slab_offline_cpu);
1306	WARN_ON(ret < 0);
1307
1308	return 0;
1309}
1310__initcall(cpucache_init);
1311
1312static noinline void
1313slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1314{
1315#if DEBUG
1316	struct kmem_cache_node *n;
1317	unsigned long flags;
1318	int node;
1319	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1320				      DEFAULT_RATELIMIT_BURST);
1321
1322	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1323		return;
1324
1325	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1326		nodeid, gfpflags, &gfpflags);
1327	pr_warn("  cache: %s, object size: %d, order: %d\n",
1328		cachep->name, cachep->size, cachep->gfporder);
 
1329
1330	for_each_kmem_cache_node(cachep, node, n) {
1331		unsigned long total_slabs, free_slabs, free_objs;
 
1332
1333		raw_spin_lock_irqsave(&n->list_lock, flags);
1334		total_slabs = n->total_slabs;
1335		free_slabs = n->free_slabs;
1336		free_objs = n->free_objects;
1337		raw_spin_unlock_irqrestore(&n->list_lock, flags);
1338
1339		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1340			node, total_slabs - free_slabs, total_slabs,
1341			(total_slabs * cachep->num) - free_objs,
1342			total_slabs * cachep->num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343	}
1344#endif
1345}
1346
1347/*
1348 * Interface to system's page allocator. No need to hold the
1349 * kmem_cache_node ->list_lock.
1350 *
1351 * If we requested dmaable memory, we will get it. Even if we
1352 * did not request dmaable memory, we might get it, but that
1353 * would be relatively rare and ignorable.
1354 */
1355static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1356								int nodeid)
1357{
1358	struct folio *folio;
1359	struct slab *slab;
 
1360
1361	flags |= cachep->allocflags;
 
 
 
 
 
 
1362
1363	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1364	if (!folio) {
1365		slab_out_of_memory(cachep, flags, nodeid);
 
 
 
 
 
1366		return NULL;
1367	}
1368
1369	slab = folio_slab(folio);
 
 
 
 
 
 
 
 
 
 
 
1370
1371	account_slab(slab, cachep->gfporder, cachep, flags);
1372	__folio_set_slab(folio);
1373	/* Make the flag visible before any changes to folio->mapping */
1374	smp_wmb();
1375	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1376	if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1377		slab_set_pfmemalloc(slab);
1378
1379	return slab;
1380}
1381
1382/*
1383 * Interface to system's page release.
1384 */
1385static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1386{
1387	int order = cachep->gfporder;
1388	struct folio *folio = slab_folio(slab);
 
1389
1390	BUG_ON(!folio_test_slab(folio));
1391	__slab_clear_pfmemalloc(slab);
1392	page_mapcount_reset(folio_page(folio, 0));
1393	folio->mapping = NULL;
1394	/* Make the mapping reset visible before clearing the flag */
1395	smp_wmb();
1396	__folio_clear_slab(folio);
1397
 
 
 
 
 
 
 
 
 
 
 
1398	if (current->reclaim_state)
1399		current->reclaim_state->reclaimed_slab += 1 << order;
1400	unaccount_slab(slab, order, cachep);
1401	__free_pages(folio_page(folio, 0), order);
1402}
1403
1404static void kmem_rcu_free(struct rcu_head *head)
1405{
1406	struct kmem_cache *cachep;
1407	struct slab *slab;
1408
1409	slab = container_of(head, struct slab, rcu_head);
1410	cachep = slab->slab_cache;
1411
1412	kmem_freepages(cachep, slab);
1413}
1414
1415#if DEBUG
1416static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1417{
1418	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1419		(cachep->size % PAGE_SIZE) == 0)
1420		return true;
1421
1422	return false;
1423}
1424
1425#ifdef CONFIG_DEBUG_PAGEALLOC
1426static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
 
1427{
1428	if (!is_debug_pagealloc_cache(cachep))
 
 
 
 
1429		return;
1430
1431	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1432}
 
 
 
 
 
1433
1434#else
1435static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1436				int map) {}
 
 
 
 
 
 
1437
 
 
 
1438#endif
1439
1440static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1441{
1442	int size = cachep->object_size;
1443	addr = &((char *)addr)[obj_offset(cachep)];
1444
1445	memset(addr, val, size);
1446	*(unsigned char *)(addr + size - 1) = POISON_END;
1447}
1448
1449static void dump_line(char *data, int offset, int limit)
1450{
1451	int i;
1452	unsigned char error = 0;
1453	int bad_count = 0;
1454
1455	pr_err("%03x: ", offset);
1456	for (i = 0; i < limit; i++) {
1457		if (data[offset + i] != POISON_FREE) {
1458			error = data[offset + i];
1459			bad_count++;
1460		}
1461	}
1462	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1463			&data[offset], limit, 1);
1464
1465	if (bad_count == 1) {
1466		error ^= POISON_FREE;
1467		if (!(error & (error - 1))) {
1468			pr_err("Single bit error detected. Probably bad RAM.\n");
 
1469#ifdef CONFIG_X86
1470			pr_err("Run memtest86+ or a similar memory test tool.\n");
 
1471#else
1472			pr_err("Run a memory test tool.\n");
1473#endif
1474		}
1475	}
1476}
1477#endif
1478
1479#if DEBUG
1480
1481static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1482{
1483	int i, size;
1484	char *realobj;
1485
1486	if (cachep->flags & SLAB_RED_ZONE) {
1487		pr_err("Redzone: 0x%llx/0x%llx\n",
1488		       *dbg_redzone1(cachep, objp),
1489		       *dbg_redzone2(cachep, objp));
1490	}
1491
1492	if (cachep->flags & SLAB_STORE_USER)
1493		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
 
 
 
 
 
1494	realobj = (char *)objp + obj_offset(cachep);
1495	size = cachep->object_size;
1496	for (i = 0; i < size && lines; i += 16, lines--) {
1497		int limit;
1498		limit = 16;
1499		if (i + limit > size)
1500			limit = size - i;
1501		dump_line(realobj, i, limit);
1502	}
1503}
1504
1505static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1506{
1507	char *realobj;
1508	int size, i;
1509	int lines = 0;
1510
1511	if (is_debug_pagealloc_cache(cachep))
1512		return;
1513
1514	realobj = (char *)objp + obj_offset(cachep);
1515	size = cachep->object_size;
1516
1517	for (i = 0; i < size; i++) {
1518		char exp = POISON_FREE;
1519		if (i == size - 1)
1520			exp = POISON_END;
1521		if (realobj[i] != exp) {
1522			int limit;
1523			/* Mismatch ! */
1524			/* Print header */
1525			if (lines == 0) {
1526				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1527				       print_tainted(), cachep->name,
1528				       realobj, size);
1529				print_objinfo(cachep, objp, 0);
1530			}
1531			/* Hexdump the affected line */
1532			i = (i / 16) * 16;
1533			limit = 16;
1534			if (i + limit > size)
1535				limit = size - i;
1536			dump_line(realobj, i, limit);
1537			i += 16;
1538			lines++;
1539			/* Limit to 5 lines */
1540			if (lines > 5)
1541				break;
1542		}
1543	}
1544	if (lines != 0) {
1545		/* Print some data about the neighboring objects, if they
1546		 * exist:
1547		 */
1548		struct slab *slab = virt_to_slab(objp);
1549		unsigned int objnr;
1550
1551		objnr = obj_to_index(cachep, slab, objp);
1552		if (objnr) {
1553			objp = index_to_obj(cachep, slab, objnr - 1);
1554			realobj = (char *)objp + obj_offset(cachep);
1555			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
 
1556			print_objinfo(cachep, objp, 2);
1557		}
1558		if (objnr + 1 < cachep->num) {
1559			objp = index_to_obj(cachep, slab, objnr + 1);
1560			realobj = (char *)objp + obj_offset(cachep);
1561			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
 
1562			print_objinfo(cachep, objp, 2);
1563		}
1564	}
1565}
1566#endif
1567
1568#if DEBUG
1569static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1570						struct slab *slab)
1571{
1572	int i;
1573
1574	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1575		poison_obj(cachep, slab->freelist - obj_offset(cachep),
1576			POISON_FREE);
1577	}
1578
1579	for (i = 0; i < cachep->num; i++) {
1580		void *objp = index_to_obj(cachep, slab, i);
1581
1582		if (cachep->flags & SLAB_POISON) {
 
 
 
 
 
 
 
 
1583			check_poison_obj(cachep, objp);
1584			slab_kernel_map(cachep, objp, 1);
1585		}
1586		if (cachep->flags & SLAB_RED_ZONE) {
1587			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1588				slab_error(cachep, "start of a freed object was overwritten");
 
1589			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1590				slab_error(cachep, "end of a freed object was overwritten");
 
1591		}
1592	}
1593}
1594#else
1595static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1596						struct slab *slab)
1597{
1598}
1599#endif
1600
1601/**
1602 * slab_destroy - destroy and release all objects in a slab
1603 * @cachep: cache pointer being destroyed
1604 * @slab: slab being destroyed
1605 *
1606 * Destroy all the objs in a slab, and release the mem back to the system.
1607 * Before calling the slab must have been unlinked from the cache. The
1608 * kmem_cache_node ->list_lock is not held/needed.
1609 */
1610static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1611{
1612	void *freelist;
1613
1614	freelist = slab->freelist;
1615	slab_destroy_debugcheck(cachep, slab);
1616	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1617		call_rcu(&slab->rcu_head, kmem_rcu_free);
1618	else
1619		kmem_freepages(cachep, slab);
1620
1621	/*
1622	 * From now on, we don't use freelist
1623	 * although actual page can be freed in rcu context
1624	 */
1625	if (OFF_SLAB(cachep))
1626		kfree(freelist);
 
 
 
1627}
1628
1629/*
1630 * Update the size of the caches before calling slabs_destroy as it may
1631 * recursively call kfree.
1632 */
1633static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1634{
1635	struct slab *slab, *n;
 
1636
1637	list_for_each_entry_safe(slab, n, list, slab_list) {
1638		list_del(&slab->slab_list);
1639		slab_destroy(cachep, slab);
 
 
 
 
 
 
 
 
1640	}
 
1641}
1642
 
1643/**
1644 * calculate_slab_order - calculate size (page order) of slabs
1645 * @cachep: pointer to the cache that is being created
1646 * @size: size of objects to be created in this cache.
 
1647 * @flags: slab allocation flags
1648 *
1649 * Also calculates the number of objects per slab.
1650 *
1651 * This could be made much more intelligent.  For now, try to avoid using
1652 * high order pages for slabs.  When the gfp() functions are more friendly
1653 * towards high-order requests, this should be changed.
1654 *
1655 * Return: number of left-over bytes in a slab
1656 */
1657static size_t calculate_slab_order(struct kmem_cache *cachep,
1658				size_t size, slab_flags_t flags)
1659{
 
1660	size_t left_over = 0;
1661	int gfporder;
1662
1663	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1664		unsigned int num;
1665		size_t remainder;
1666
1667		num = cache_estimate(gfporder, size, flags, &remainder);
1668		if (!num)
1669			continue;
1670
1671		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1672		if (num > SLAB_OBJ_MAX_NUM)
1673			break;
1674
1675		if (flags & CFLGS_OFF_SLAB) {
1676			struct kmem_cache *freelist_cache;
1677			size_t freelist_size;
1678			size_t freelist_cache_size;
1679
1680			freelist_size = num * sizeof(freelist_idx_t);
1681			if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
1682				freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
1683			} else {
1684				freelist_cache = kmalloc_slab(freelist_size, 0u);
1685				if (!freelist_cache)
1686					continue;
1687				freelist_cache_size = freelist_cache->size;
1688
1689				/*
1690				 * Needed to avoid possible looping condition
1691				 * in cache_grow_begin()
1692				 */
1693				if (OFF_SLAB(freelist_cache))
1694					continue;
1695			}
1696
1697			/* check if off slab has enough benefit */
1698			if (freelist_cache_size > cachep->size / 2)
1699				continue;
1700		}
1701
1702		/* Found something acceptable - save it away */
1703		cachep->num = num;
1704		cachep->gfporder = gfporder;
1705		left_over = remainder;
1706
1707		/*
1708		 * A VFS-reclaimable slab tends to have most allocations
1709		 * as GFP_NOFS and we really don't want to have to be allocating
1710		 * higher-order pages when we are unable to shrink dcache.
1711		 */
1712		if (flags & SLAB_RECLAIM_ACCOUNT)
1713			break;
1714
1715		/*
1716		 * Large number of objects is good, but very large slabs are
1717		 * currently bad for the gfp()s.
1718		 */
1719		if (gfporder >= slab_max_order)
1720			break;
1721
1722		/*
1723		 * Acceptable internal fragmentation?
1724		 */
1725		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1726			break;
1727	}
1728	return left_over;
1729}
1730
1731static struct array_cache __percpu *alloc_kmem_cache_cpus(
1732		struct kmem_cache *cachep, int entries, int batchcount)
1733{
1734	int cpu;
1735	size_t size;
1736	struct array_cache __percpu *cpu_cache;
1737
1738	size = sizeof(void *) * entries + sizeof(struct array_cache);
1739	cpu_cache = __alloc_percpu(size, sizeof(void *));
1740
1741	if (!cpu_cache)
1742		return NULL;
1743
1744	for_each_possible_cpu(cpu) {
1745		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1746				entries, batchcount);
1747	}
1748
1749	return cpu_cache;
1750}
1751
1752static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1753{
1754	if (slab_state >= FULL)
1755		return enable_cpucache(cachep, gfp);
1756
1757	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1758	if (!cachep->cpu_cache)
1759		return 1;
 
 
 
 
1760
1761	if (slab_state == DOWN) {
1762		/* Creation of first cache (kmem_cache). */
1763		set_up_node(kmem_cache, CACHE_CACHE);
1764	} else if (slab_state == PARTIAL) {
1765		/* For kmem_cache_node */
1766		set_up_node(cachep, SIZE_NODE);
 
 
 
 
1767	} else {
1768		int node;
 
1769
1770		for_each_online_node(node) {
1771			cachep->node[node] = kmalloc_node(
1772				sizeof(struct kmem_cache_node), gfp, node);
1773			BUG_ON(!cachep->node[node]);
1774			kmem_cache_node_init(cachep->node[node]);
 
 
 
 
 
 
 
1775		}
1776	}
1777
1778	cachep->node[numa_mem_id()]->next_reap =
1779			jiffies + REAPTIMEOUT_NODE +
1780			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1781
1782	cpu_cache_get(cachep)->avail = 0;
1783	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1784	cpu_cache_get(cachep)->batchcount = 1;
1785	cpu_cache_get(cachep)->touched = 0;
1786	cachep->batchcount = 1;
1787	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1788	return 0;
1789}
1790
1791slab_flags_t kmem_cache_flags(unsigned int object_size,
1792	slab_flags_t flags, const char *name)
1793{
1794	return flags;
1795}
1796
1797struct kmem_cache *
1798__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1799		   slab_flags_t flags, void (*ctor)(void *))
1800{
1801	struct kmem_cache *cachep;
1802
1803	cachep = find_mergeable(size, align, flags, name, ctor);
1804	if (cachep) {
1805		cachep->refcount++;
1806
1807		/*
1808		 * Adjust the object sizes so that we clear
1809		 * the complete object on kzalloc.
1810		 */
1811		cachep->object_size = max_t(int, cachep->object_size, size);
1812	}
1813	return cachep;
1814}
1815
1816static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1817			size_t size, slab_flags_t flags)
1818{
1819	size_t left;
1820
1821	cachep->num = 0;
1822
1823	/*
1824	 * If slab auto-initialization on free is enabled, store the freelist
1825	 * off-slab, so that its contents don't end up in one of the allocated
1826	 * objects.
1827	 */
1828	if (unlikely(slab_want_init_on_free(cachep)))
1829		return false;
1830
1831	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1832		return false;
1833
1834	left = calculate_slab_order(cachep, size,
1835			flags | CFLGS_OBJFREELIST_SLAB);
1836	if (!cachep->num)
1837		return false;
1838
1839	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1840		return false;
1841
1842	cachep->colour = left / cachep->colour_off;
1843
1844	return true;
1845}
1846
1847static bool set_off_slab_cache(struct kmem_cache *cachep,
1848			size_t size, slab_flags_t flags)
1849{
1850	size_t left;
1851
1852	cachep->num = 0;
1853
1854	/*
1855	 * Always use on-slab management when SLAB_NOLEAKTRACE
1856	 * to avoid recursive calls into kmemleak.
1857	 */
1858	if (flags & SLAB_NOLEAKTRACE)
1859		return false;
1860
1861	/*
1862	 * Size is large, assume best to place the slab management obj
1863	 * off-slab (should allow better packing of objs).
1864	 */
1865	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1866	if (!cachep->num)
1867		return false;
1868
1869	/*
1870	 * If the slab has been placed off-slab, and we have enough space then
1871	 * move it on-slab. This is at the expense of any extra colouring.
1872	 */
1873	if (left >= cachep->num * sizeof(freelist_idx_t))
1874		return false;
1875
1876	cachep->colour = left / cachep->colour_off;
1877
1878	return true;
1879}
1880
1881static bool set_on_slab_cache(struct kmem_cache *cachep,
1882			size_t size, slab_flags_t flags)
1883{
1884	size_t left;
1885
1886	cachep->num = 0;
1887
1888	left = calculate_slab_order(cachep, size, flags);
1889	if (!cachep->num)
1890		return false;
1891
1892	cachep->colour = left / cachep->colour_off;
1893
1894	return true;
1895}
1896
1897/**
1898 * __kmem_cache_create - Create a cache.
1899 * @cachep: cache management descriptor
 
 
1900 * @flags: SLAB flags
 
1901 *
1902 * Returns a ptr to the cache on success, NULL on failure.
1903 * Cannot be called within an int, but can be interrupted.
1904 * The @ctor is run when new pages are allocated by the cache.
1905 *
 
 
 
1906 * The flags are
1907 *
1908 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1909 * to catch references to uninitialised memory.
1910 *
1911 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1912 * for buffer overruns.
1913 *
1914 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1915 * cacheline.  This can be beneficial if you're counting cycles as closely
1916 * as davem.
1917 *
1918 * Return: a pointer to the created cache or %NULL in case of error
1919 */
1920int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
 
 
1921{
1922	size_t ralign = BYTES_PER_WORD;
 
1923	gfp_t gfp;
1924	int err;
1925	unsigned int size = cachep->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926
1927#if DEBUG
 
1928#if FORCED_DEBUG
1929	/*
1930	 * Enable redzoning and last user accounting, except for caches with
1931	 * large objects, if the increased size would increase the object size
1932	 * above the next power of two: caches with object sizes just above a
1933	 * power of two have a significant amount of internal fragmentation.
1934	 */
1935	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1936						2 * sizeof(unsigned long long)))
1937		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1938	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1939		flags |= SLAB_POISON;
1940#endif
 
 
1941#endif
 
 
 
 
 
1942
1943	/*
1944	 * Check that size is in terms of words.  This is needed to avoid
1945	 * unaligned accesses for some archs when redzoning is used, and makes
1946	 * sure any on-slab bufctl's are also correctly aligned.
1947	 */
1948	size = ALIGN(size, BYTES_PER_WORD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949
1950	if (flags & SLAB_RED_ZONE) {
1951		ralign = REDZONE_ALIGN;
1952		/* If redzoning, ensure that the second redzone is suitably
1953		 * aligned, by adjusting the object size accordingly. */
1954		size = ALIGN(size, REDZONE_ALIGN);
 
1955	}
1956
 
 
 
 
1957	/* 3) caller mandated alignment */
1958	if (ralign < cachep->align) {
1959		ralign = cachep->align;
1960	}
1961	/* disable debug if necessary */
1962	if (ralign > __alignof__(unsigned long long))
1963		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1964	/*
1965	 * 4) Store it.
1966	 */
1967	cachep->align = ralign;
1968	cachep->colour_off = cache_line_size();
1969	/* Offset must be a multiple of the alignment. */
1970	if (cachep->colour_off < cachep->align)
1971		cachep->colour_off = cachep->align;
1972
1973	if (slab_is_available())
1974		gfp = GFP_KERNEL;
1975	else
1976		gfp = GFP_NOWAIT;
1977
 
 
 
 
 
 
1978#if DEBUG
 
1979
1980	/*
1981	 * Both debugging options require word-alignment which is calculated
1982	 * into align above.
1983	 */
1984	if (flags & SLAB_RED_ZONE) {
1985		/* add space for red zone words */
1986		cachep->obj_offset += sizeof(unsigned long long);
1987		size += 2 * sizeof(unsigned long long);
1988	}
1989	if (flags & SLAB_STORE_USER) {
1990		/* user store requires one word storage behind the end of
1991		 * the real object. But if the second red zone needs to be
1992		 * aligned to 64 bits, we must allow that much space.
1993		 */
1994		if (flags & SLAB_RED_ZONE)
1995			size += REDZONE_ALIGN;
1996		else
1997			size += BYTES_PER_WORD;
1998	}
 
 
 
 
 
 
 
1999#endif
2000
2001	kasan_cache_create(cachep, &size, &flags);
2002
2003	size = ALIGN(size, cachep->align);
2004	/*
2005	 * We should restrict the number of objects in a slab to implement
2006	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
 
 
2007	 */
2008	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2009		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
 
 
 
 
 
2010
2011#if DEBUG
2012	/*
2013	 * To activate debug pagealloc, off-slab management is necessary
2014	 * requirement. In early phase of initialization, small sized slab
2015	 * doesn't get initialized so it would not be possible. So, we need
2016	 * to check size >= 256. It guarantees that all necessary small
2017	 * sized slab is initialized in current slab initialization sequence.
2018	 */
2019	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2020		size >= 256 && cachep->object_size > cache_line_size()) {
2021		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2022			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2023
2024			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2025				flags |= CFLGS_OFF_SLAB;
2026				cachep->obj_offset += tmp_size - size;
2027				size = tmp_size;
2028				goto done;
2029			}
2030		}
2031	}
2032#endif
2033
2034	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2035		flags |= CFLGS_OBJFREELIST_SLAB;
2036		goto done;
2037	}
2038
2039	if (set_off_slab_cache(cachep, size, flags)) {
2040		flags |= CFLGS_OFF_SLAB;
2041		goto done;
 
 
 
2042	}
 
 
2043
2044	if (set_on_slab_cache(cachep, size, flags))
2045		goto done;
 
 
 
 
 
 
2046
2047	return -E2BIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
2048
2049done:
2050	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
 
 
 
 
2051	cachep->flags = flags;
2052	cachep->allocflags = __GFP_COMP;
2053	if (flags & SLAB_CACHE_DMA)
2054		cachep->allocflags |= GFP_DMA;
2055	if (flags & SLAB_CACHE_DMA32)
2056		cachep->allocflags |= GFP_DMA32;
2057	if (flags & SLAB_RECLAIM_ACCOUNT)
2058		cachep->allocflags |= __GFP_RECLAIMABLE;
2059	cachep->size = size;
2060	cachep->reciprocal_buffer_size = reciprocal_value(size);
2061
2062#if DEBUG
2063	/*
2064	 * If we're going to use the generic kernel_map_pages()
2065	 * poisoning, then it's going to smash the contents of
2066	 * the redzone and userword anyhow, so switch them off.
2067	 */
2068	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2069		(cachep->flags & SLAB_POISON) &&
2070		is_debug_pagealloc_cache(cachep))
2071		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2072#endif
 
 
2073
2074	err = setup_cpu_cache(cachep, gfp);
2075	if (err) {
2076		__kmem_cache_release(cachep);
2077		return err;
2078	}
2079
2080	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081}
 
2082
2083#if DEBUG
2084static void check_irq_off(void)
2085{
2086	BUG_ON(!irqs_disabled());
2087}
2088
2089static void check_irq_on(void)
2090{
2091	BUG_ON(irqs_disabled());
2092}
2093
2094static void check_mutex_acquired(void)
2095{
2096	BUG_ON(!mutex_is_locked(&slab_mutex));
2097}
2098
2099static void check_spinlock_acquired(struct kmem_cache *cachep)
2100{
2101#ifdef CONFIG_SMP
2102	check_irq_off();
2103	assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2104#endif
2105}
2106
2107static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2108{
2109#ifdef CONFIG_SMP
2110	check_irq_off();
2111	assert_raw_spin_locked(&get_node(cachep, node)->list_lock);
2112#endif
2113}
2114
2115#else
2116#define check_irq_off()	do { } while(0)
2117#define check_irq_on()	do { } while(0)
2118#define check_mutex_acquired()	do { } while(0)
2119#define check_spinlock_acquired(x) do { } while(0)
2120#define check_spinlock_acquired_node(x, y) do { } while(0)
2121#endif
2122
2123static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2124				int node, bool free_all, struct list_head *list)
2125{
2126	int tofree;
2127
2128	if (!ac || !ac->avail)
2129		return;
2130
2131	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2132	if (tofree > ac->avail)
2133		tofree = (ac->avail + 1) / 2;
2134
2135	free_block(cachep, ac->entry, tofree, node, list);
2136	ac->avail -= tofree;
2137	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2138}
2139
2140static void do_drain(void *arg)
2141{
2142	struct kmem_cache *cachep = arg;
2143	struct array_cache *ac;
2144	int node = numa_mem_id();
2145	struct kmem_cache_node *n;
2146	LIST_HEAD(list);
2147
2148	check_irq_off();
2149	ac = cpu_cache_get(cachep);
2150	n = get_node(cachep, node);
2151	raw_spin_lock(&n->list_lock);
2152	free_block(cachep, ac->entry, ac->avail, node, &list);
2153	raw_spin_unlock(&n->list_lock);
2154	ac->avail = 0;
2155	slabs_destroy(cachep, &list);
2156}
2157
2158static void drain_cpu_caches(struct kmem_cache *cachep)
2159{
2160	struct kmem_cache_node *n;
2161	int node;
2162	LIST_HEAD(list);
2163
2164	on_each_cpu(do_drain, cachep, 1);
2165	check_irq_on();
2166	for_each_kmem_cache_node(cachep, node, n)
2167		if (n->alien)
2168			drain_alien_cache(cachep, n->alien);
2169
2170	for_each_kmem_cache_node(cachep, node, n) {
2171		raw_spin_lock_irq(&n->list_lock);
2172		drain_array_locked(cachep, n->shared, node, true, &list);
2173		raw_spin_unlock_irq(&n->list_lock);
2174
2175		slabs_destroy(cachep, &list);
 
 
 
2176	}
2177}
2178
2179/*
2180 * Remove slabs from the list of free slabs.
2181 * Specify the number of slabs to drain in tofree.
2182 *
2183 * Returns the actual number of slabs released.
2184 */
2185static int drain_freelist(struct kmem_cache *cache,
2186			struct kmem_cache_node *n, int tofree)
2187{
2188	struct list_head *p;
2189	int nr_freed;
2190	struct slab *slab;
2191
2192	nr_freed = 0;
2193	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2194
2195		raw_spin_lock_irq(&n->list_lock);
2196		p = n->slabs_free.prev;
2197		if (p == &n->slabs_free) {
2198			raw_spin_unlock_irq(&n->list_lock);
2199			goto out;
2200		}
2201
2202		slab = list_entry(p, struct slab, slab_list);
2203		list_del(&slab->slab_list);
2204		n->free_slabs--;
2205		n->total_slabs--;
 
2206		/*
2207		 * Safe to drop the lock. The slab is no longer linked
2208		 * to the cache.
2209		 */
2210		n->free_objects -= cache->num;
2211		raw_spin_unlock_irq(&n->list_lock);
2212		slab_destroy(cache, slab);
2213		nr_freed++;
2214
2215		cond_resched();
2216	}
2217out:
2218	return nr_freed;
2219}
2220
2221bool __kmem_cache_empty(struct kmem_cache *s)
 
2222{
2223	int node;
2224	struct kmem_cache_node *n;
2225
2226	for_each_kmem_cache_node(s, node, n)
2227		if (!list_empty(&n->slabs_full) ||
2228		    !list_empty(&n->slabs_partial))
2229			return false;
2230	return true;
2231}
2232
2233int __kmem_cache_shrink(struct kmem_cache *cachep)
2234{
2235	int ret = 0;
2236	int node;
2237	struct kmem_cache_node *n;
2238
2239	drain_cpu_caches(cachep);
2240
2241	check_irq_on();
2242	for_each_kmem_cache_node(cachep, node, n) {
2243		drain_freelist(cachep, n, INT_MAX);
 
 
2244
2245		ret += !list_empty(&n->slabs_full) ||
2246			!list_empty(&n->slabs_partial);
 
 
2247	}
2248	return (ret ? 1 : 0);
2249}
2250
2251int __kmem_cache_shutdown(struct kmem_cache *cachep)
 
 
 
 
 
 
 
2252{
2253	return __kmem_cache_shrink(cachep);
 
 
 
 
 
 
 
 
2254}
 
2255
2256void __kmem_cache_release(struct kmem_cache *cachep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257{
2258	int i;
2259	struct kmem_cache_node *n;
2260
2261	cache_random_seq_destroy(cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
2262
2263	free_percpu(cachep->cpu_cache);
 
2264
2265	/* NUMA: free the node structures */
2266	for_each_kmem_cache_node(cachep, i, n) {
2267		kfree(n->shared);
2268		free_alien_cache(n->alien);
2269		kfree(n);
2270		cachep->node[i] = NULL;
2271	}
2272}
 
2273
2274/*
2275 * Get the memory for a slab management obj.
2276 *
2277 * For a slab cache when the slab descriptor is off-slab, the
2278 * slab descriptor can't come from the same cache which is being created,
2279 * Because if it is the case, that means we defer the creation of
2280 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2281 * And we eventually call down to __kmem_cache_create(), which
2282 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2283 * This is a "chicken-and-egg" problem.
2284 *
2285 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2286 * which are all initialized during kmem_cache_init().
2287 */
2288static void *alloc_slabmgmt(struct kmem_cache *cachep,
2289				   struct slab *slab, int colour_off,
2290				   gfp_t local_flags, int nodeid)
2291{
2292	void *freelist;
2293	void *addr = slab_address(slab);
2294
2295	slab->s_mem = addr + colour_off;
2296	slab->active = 0;
2297
2298	if (OBJFREELIST_SLAB(cachep))
2299		freelist = NULL;
2300	else if (OFF_SLAB(cachep)) {
2301		/* Slab management obj is off-slab. */
2302		freelist = kmalloc_node(cachep->freelist_size,
2303					      local_flags, nodeid);
 
 
 
 
 
 
 
 
 
 
2304	} else {
2305		/* We will use last bytes at the slab for freelist */
2306		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2307				cachep->freelist_size;
2308	}
2309
2310	return freelist;
 
 
 
 
2311}
2312
2313static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2314{
2315	return ((freelist_idx_t *) slab->freelist)[idx];
2316}
2317
2318static inline void set_free_obj(struct slab *slab,
2319					unsigned int idx, freelist_idx_t val)
2320{
2321	((freelist_idx_t *)(slab->freelist))[idx] = val;
2322}
2323
2324static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2325{
2326#if DEBUG
2327	int i;
2328
2329	for (i = 0; i < cachep->num; i++) {
2330		void *objp = index_to_obj(cachep, slab, i);
2331
 
 
 
2332		if (cachep->flags & SLAB_STORE_USER)
2333			*dbg_userword(cachep, objp) = NULL;
2334
2335		if (cachep->flags & SLAB_RED_ZONE) {
2336			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2337			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2338		}
2339		/*
2340		 * Constructors are not allowed to allocate memory from the same
2341		 * cache which they are a constructor for.  Otherwise, deadlock.
2342		 * They must also be threaded.
2343		 */
2344		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2345			kasan_unpoison_object_data(cachep,
2346						   objp + obj_offset(cachep));
2347			cachep->ctor(objp + obj_offset(cachep));
2348			kasan_poison_object_data(
2349				cachep, objp + obj_offset(cachep));
2350		}
2351
2352		if (cachep->flags & SLAB_RED_ZONE) {
2353			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2354				slab_error(cachep, "constructor overwrote the end of an object");
 
2355			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2356				slab_error(cachep, "constructor overwrote the start of an object");
2357		}
2358		/* need to poison the objs? */
2359		if (cachep->flags & SLAB_POISON) {
2360			poison_obj(cachep, objp, POISON_FREE);
2361			slab_kernel_map(cachep, objp, 0);
2362		}
2363	}
 
 
 
 
 
 
2364#endif
2365}
2366
2367#ifdef CONFIG_SLAB_FREELIST_RANDOM
2368/* Hold information during a freelist initialization */
2369union freelist_init_state {
2370	struct {
2371		unsigned int pos;
2372		unsigned int *list;
2373		unsigned int count;
2374	};
2375	struct rnd_state rnd_state;
2376};
2377
2378/*
2379 * Initialize the state based on the randomization method available.
2380 * return true if the pre-computed list is available, false otherwise.
2381 */
2382static bool freelist_state_initialize(union freelist_init_state *state,
2383				struct kmem_cache *cachep,
2384				unsigned int count)
2385{
2386	bool ret;
2387	unsigned int rand;
2388
2389	/* Use best entropy available to define a random shift */
2390	rand = get_random_u32();
2391
2392	/* Use a random state if the pre-computed list is not available */
2393	if (!cachep->random_seq) {
2394		prandom_seed_state(&state->rnd_state, rand);
2395		ret = false;
2396	} else {
2397		state->list = cachep->random_seq;
2398		state->count = count;
2399		state->pos = rand % count;
2400		ret = true;
2401	}
2402	return ret;
2403}
2404
2405/* Get the next entry on the list and randomize it using a random shift */
2406static freelist_idx_t next_random_slot(union freelist_init_state *state)
2407{
2408	if (state->pos >= state->count)
2409		state->pos = 0;
2410	return state->list[state->pos++];
2411}
2412
2413/* Swap two freelist entries */
2414static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2415{
2416	swap(((freelist_idx_t *) slab->freelist)[a],
2417		((freelist_idx_t *) slab->freelist)[b]);
2418}
2419
2420/*
2421 * Shuffle the freelist initialization state based on pre-computed lists.
2422 * return true if the list was successfully shuffled, false otherwise.
2423 */
2424static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2425{
2426	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2427	union freelist_init_state state;
2428	bool precomputed;
2429
2430	if (count < 2)
2431		return false;
2432
2433	precomputed = freelist_state_initialize(&state, cachep, count);
2434
2435	/* Take a random entry as the objfreelist */
2436	if (OBJFREELIST_SLAB(cachep)) {
2437		if (!precomputed)
2438			objfreelist = count - 1;
2439		else
2440			objfreelist = next_random_slot(&state);
2441		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2442						obj_offset(cachep);
2443		count--;
2444	}
2445
2446	/*
2447	 * On early boot, generate the list dynamically.
2448	 * Later use a pre-computed list for speed.
2449	 */
2450	if (!precomputed) {
2451		for (i = 0; i < count; i++)
2452			set_free_obj(slab, i, i);
2453
2454		/* Fisher-Yates shuffle */
2455		for (i = count - 1; i > 0; i--) {
2456			rand = prandom_u32_state(&state.rnd_state);
2457			rand %= (i + 1);
2458			swap_free_obj(slab, i, rand);
2459		}
2460	} else {
2461		for (i = 0; i < count; i++)
2462			set_free_obj(slab, i, next_random_slot(&state));
2463	}
2464
2465	if (OBJFREELIST_SLAB(cachep))
2466		set_free_obj(slab, cachep->num - 1, objfreelist);
2467
2468	return true;
2469}
2470#else
2471static inline bool shuffle_freelist(struct kmem_cache *cachep,
2472				struct slab *slab)
2473{
2474	return false;
2475}
2476#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2477
2478static void cache_init_objs(struct kmem_cache *cachep,
2479			    struct slab *slab)
2480{
2481	int i;
2482	void *objp;
2483	bool shuffled;
2484
2485	cache_init_objs_debug(cachep, slab);
2486
2487	/* Try to randomize the freelist if enabled */
2488	shuffled = shuffle_freelist(cachep, slab);
2489
2490	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2491		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2492						obj_offset(cachep);
2493	}
2494
2495	for (i = 0; i < cachep->num; i++) {
2496		objp = index_to_obj(cachep, slab, i);
2497		objp = kasan_init_slab_obj(cachep, objp);
2498
2499		/* constructor could break poison info */
2500		if (DEBUG == 0 && cachep->ctor) {
2501			kasan_unpoison_object_data(cachep, objp);
2502			cachep->ctor(objp);
2503			kasan_poison_object_data(cachep, objp);
2504		}
2505
2506		if (!shuffled)
2507			set_free_obj(slab, i, i);
2508	}
2509}
2510
2511static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
 
2512{
2513	void *objp;
 
2514
2515	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2516	slab->active++;
 
 
 
 
 
2517
2518	return objp;
2519}
2520
2521static void slab_put_obj(struct kmem_cache *cachep,
2522			struct slab *slab, void *objp)
2523{
2524	unsigned int objnr = obj_to_index(cachep, slab, objp);
 
2525#if DEBUG
2526	unsigned int i;
 
2527
2528	/* Verify double free bug */
2529	for (i = slab->active; i < cachep->num; i++) {
2530		if (get_free_obj(slab, i) == objnr) {
2531			pr_err("slab: double free detected in cache '%s', objp %px\n",
2532			       cachep->name, objp);
2533			BUG();
2534		}
2535	}
2536#endif
2537	slab->active--;
2538	if (!slab->freelist)
2539		slab->freelist = objp + obj_offset(cachep);
 
2540
2541	set_free_obj(slab, slab->active, objnr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542}
2543
2544/*
2545 * Grow (by 1) the number of slabs within a cache.  This is called by
2546 * kmem_cache_alloc() when there are no active objs left in a cache.
2547 */
2548static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2549				gfp_t flags, int nodeid)
2550{
2551	void *freelist;
2552	size_t offset;
2553	gfp_t local_flags;
2554	int slab_node;
2555	struct kmem_cache_node *n;
2556	struct slab *slab;
2557
2558	/*
2559	 * Be lazy and only check for valid flags here,  keeping it out of the
2560	 * critical path in kmem_cache_alloc().
2561	 */
2562	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2563		flags = kmalloc_fix_flags(flags);
2564
2565	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2566	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2567
 
2568	check_irq_off();
2569	if (gfpflags_allow_blocking(local_flags))
2570		local_irq_enable();
2571
2572	/*
2573	 * Get mem for the objs.  Attempt to allocate a physical page from
2574	 * 'nodeid'.
2575	 */
2576	slab = kmem_getpages(cachep, local_flags, nodeid);
2577	if (!slab)
2578		goto failed;
2579
2580	slab_node = slab_nid(slab);
2581	n = get_node(cachep, slab_node);
2582
2583	/* Get colour for the slab, and cal the next value. */
2584	n->colour_next++;
2585	if (n->colour_next >= cachep->colour)
2586		n->colour_next = 0;
2587
2588	offset = n->colour_next;
2589	if (offset >= cachep->colour)
2590		offset = 0;
2591
2592	offset *= cachep->colour_off;
2593
 
 
 
 
 
 
 
 
 
 
 
2594	/*
2595	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2596	 * page_address() in the latter returns a non-tagged pointer,
2597	 * as it should be for slab pages.
2598	 */
2599	kasan_poison_slab(slab);
 
 
 
2600
2601	/* Get slab management. */
2602	freelist = alloc_slabmgmt(cachep, slab, offset,
2603			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2604	if (OFF_SLAB(cachep) && !freelist)
2605		goto opps1;
2606
2607	slab->slab_cache = cachep;
2608	slab->freelist = freelist;
2609
2610	cache_init_objs(cachep, slab);
2611
2612	if (gfpflags_allow_blocking(local_flags))
2613		local_irq_disable();
 
 
2614
2615	return slab;
2616
 
 
 
 
2617opps1:
2618	kmem_freepages(cachep, slab);
2619failed:
2620	if (gfpflags_allow_blocking(local_flags))
2621		local_irq_disable();
2622	return NULL;
2623}
2624
2625static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2626{
2627	struct kmem_cache_node *n;
2628	void *list = NULL;
2629
2630	check_irq_off();
2631
2632	if (!slab)
2633		return;
2634
2635	INIT_LIST_HEAD(&slab->slab_list);
2636	n = get_node(cachep, slab_nid(slab));
2637
2638	raw_spin_lock(&n->list_lock);
2639	n->total_slabs++;
2640	if (!slab->active) {
2641		list_add_tail(&slab->slab_list, &n->slabs_free);
2642		n->free_slabs++;
2643	} else
2644		fixup_slab_list(cachep, n, slab, &list);
2645
2646	STATS_INC_GROWN(cachep);
2647	n->free_objects += cachep->num - slab->active;
2648	raw_spin_unlock(&n->list_lock);
2649
2650	fixup_objfreelist_debug(cachep, &list);
2651}
2652
2653#if DEBUG
2654
2655/*
2656 * Perform extra freeing checks:
2657 * - detect bad pointers.
2658 * - POISON/RED_ZONE checking
2659 */
2660static void kfree_debugcheck(const void *objp)
2661{
2662	if (!virt_addr_valid(objp)) {
2663		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2664		       (unsigned long)objp);
2665		BUG();
2666	}
2667}
2668
2669static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2670{
2671	unsigned long long redzone1, redzone2;
2672
2673	redzone1 = *dbg_redzone1(cache, obj);
2674	redzone2 = *dbg_redzone2(cache, obj);
2675
2676	/*
2677	 * Redzone is ok.
2678	 */
2679	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2680		return;
2681
2682	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2683		slab_error(cache, "double free detected");
2684	else
2685		slab_error(cache, "memory outside object was overwritten");
2686
2687	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2688	       obj, redzone1, redzone2);
2689}
2690
2691static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2692				   unsigned long caller)
2693{
 
2694	unsigned int objnr;
2695	struct slab *slab;
2696
2697	BUG_ON(virt_to_cache(objp) != cachep);
2698
2699	objp -= obj_offset(cachep);
2700	kfree_debugcheck(objp);
2701	slab = virt_to_slab(objp);
 
 
2702
2703	if (cachep->flags & SLAB_RED_ZONE) {
2704		verify_redzone_free(cachep, objp);
2705		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2706		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2707	}
2708	if (cachep->flags & SLAB_STORE_USER)
2709		*dbg_userword(cachep, objp) = (void *)caller;
2710
2711	objnr = obj_to_index(cachep, slab, objp);
2712
2713	BUG_ON(objnr >= cachep->num);
2714	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2715
 
 
 
2716	if (cachep->flags & SLAB_POISON) {
2717		poison_obj(cachep, objp, POISON_FREE);
2718		slab_kernel_map(cachep, objp, 0);
2719	}
2720	return objp;
2721}
2722
 
 
2723#else
2724#define kfree_debugcheck(x) do { } while(0)
2725#define cache_free_debugcheck(x, objp, z) (objp)
2726#endif
2727
2728static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2729						void **list)
2730{
2731#if DEBUG
2732	void *next = *list;
2733	void *objp;
2734
2735	while (next) {
2736		objp = next - obj_offset(cachep);
2737		next = *(void **)next;
2738		poison_obj(cachep, objp, POISON_FREE);
2739	}
2740#endif
2741}
2742
2743static inline void fixup_slab_list(struct kmem_cache *cachep,
2744				struct kmem_cache_node *n, struct slab *slab,
2745				void **list)
2746{
2747	/* move slabp to correct slabp list: */
2748	list_del(&slab->slab_list);
2749	if (slab->active == cachep->num) {
2750		list_add(&slab->slab_list, &n->slabs_full);
2751		if (OBJFREELIST_SLAB(cachep)) {
2752#if DEBUG
2753			/* Poisoning will be done without holding the lock */
2754			if (cachep->flags & SLAB_POISON) {
2755				void **objp = slab->freelist;
2756
2757				*objp = *list;
2758				*list = objp;
2759			}
2760#endif
2761			slab->freelist = NULL;
2762		}
2763	} else
2764		list_add(&slab->slab_list, &n->slabs_partial);
2765}
2766
2767/* Try to find non-pfmemalloc slab if needed */
2768static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2769					struct slab *slab, bool pfmemalloc)
2770{
2771	if (!slab)
2772		return NULL;
2773
2774	if (pfmemalloc)
2775		return slab;
2776
2777	if (!slab_test_pfmemalloc(slab))
2778		return slab;
2779
2780	/* No need to keep pfmemalloc slab if we have enough free objects */
2781	if (n->free_objects > n->free_limit) {
2782		slab_clear_pfmemalloc(slab);
2783		return slab;
2784	}
2785
2786	/* Move pfmemalloc slab to the end of list to speed up next search */
2787	list_del(&slab->slab_list);
2788	if (!slab->active) {
2789		list_add_tail(&slab->slab_list, &n->slabs_free);
2790		n->free_slabs++;
2791	} else
2792		list_add_tail(&slab->slab_list, &n->slabs_partial);
2793
2794	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2795		if (!slab_test_pfmemalloc(slab))
2796			return slab;
2797	}
2798
2799	n->free_touched = 1;
2800	list_for_each_entry(slab, &n->slabs_free, slab_list) {
2801		if (!slab_test_pfmemalloc(slab)) {
2802			n->free_slabs--;
2803			return slab;
2804		}
2805	}
2806
2807	return NULL;
2808}
2809
2810static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2811{
2812	struct slab *slab;
2813
2814	assert_raw_spin_locked(&n->list_lock);
2815	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2816					slab_list);
2817	if (!slab) {
2818		n->free_touched = 1;
2819		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2820						slab_list);
2821		if (slab)
2822			n->free_slabs--;
2823	}
2824
2825	if (sk_memalloc_socks())
2826		slab = get_valid_first_slab(n, slab, pfmemalloc);
2827
2828	return slab;
2829}
2830
2831static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2832				struct kmem_cache_node *n, gfp_t flags)
2833{
2834	struct slab *slab;
2835	void *obj;
2836	void *list = NULL;
2837
2838	if (!gfp_pfmemalloc_allowed(flags))
2839		return NULL;
2840
2841	raw_spin_lock(&n->list_lock);
2842	slab = get_first_slab(n, true);
2843	if (!slab) {
2844		raw_spin_unlock(&n->list_lock);
2845		return NULL;
2846	}
2847
2848	obj = slab_get_obj(cachep, slab);
2849	n->free_objects--;
2850
2851	fixup_slab_list(cachep, n, slab, &list);
2852
2853	raw_spin_unlock(&n->list_lock);
2854	fixup_objfreelist_debug(cachep, &list);
2855
2856	return obj;
2857}
2858
2859/*
2860 * Slab list should be fixed up by fixup_slab_list() for existing slab
2861 * or cache_grow_end() for new slab
2862 */
2863static __always_inline int alloc_block(struct kmem_cache *cachep,
2864		struct array_cache *ac, struct slab *slab, int batchcount)
2865{
2866	/*
2867	 * There must be at least one object available for
2868	 * allocation.
2869	 */
2870	BUG_ON(slab->active >= cachep->num);
2871
2872	while (slab->active < cachep->num && batchcount--) {
2873		STATS_INC_ALLOCED(cachep);
2874		STATS_INC_ACTIVE(cachep);
2875		STATS_SET_HIGH(cachep);
2876
2877		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2878	}
2879
2880	return batchcount;
2881}
 
 
 
 
 
2882
2883static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2884{
2885	int batchcount;
2886	struct kmem_cache_node *n;
2887	struct array_cache *ac, *shared;
2888	int node;
2889	void *list = NULL;
2890	struct slab *slab;
2891
 
2892	check_irq_off();
2893	node = numa_mem_id();
2894
2895	ac = cpu_cache_get(cachep);
2896	batchcount = ac->batchcount;
2897	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2898		/*
2899		 * If there was little recent activity on this cache, then
2900		 * perform only a partial refill.  Otherwise we could generate
2901		 * refill bouncing.
2902		 */
2903		batchcount = BATCHREFILL_LIMIT;
2904	}
2905	n = get_node(cachep, node);
2906
2907	BUG_ON(ac->avail > 0 || !n);
2908	shared = READ_ONCE(n->shared);
2909	if (!n->free_objects && (!shared || !shared->avail))
2910		goto direct_grow;
2911
2912	raw_spin_lock(&n->list_lock);
2913	shared = READ_ONCE(n->shared);
2914
2915	/* See if we can refill from the shared array */
2916	if (shared && transfer_objects(ac, shared, batchcount)) {
2917		shared->touched = 1;
2918		goto alloc_done;
2919	}
2920
2921	while (batchcount > 0) {
 
 
2922		/* Get slab alloc is to come from. */
2923		slab = get_first_slab(n, false);
2924		if (!slab)
2925			goto must_grow;
 
 
 
 
2926
 
 
2927		check_spinlock_acquired(cachep);
2928
2929		batchcount = alloc_block(cachep, ac, slab, batchcount);
2930		fixup_slab_list(cachep, n, slab, &list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931	}
2932
2933must_grow:
2934	n->free_objects -= ac->avail;
2935alloc_done:
2936	raw_spin_unlock(&n->list_lock);
2937	fixup_objfreelist_debug(cachep, &list);
2938
2939direct_grow:
2940	if (unlikely(!ac->avail)) {
2941		/* Check if we can use obj in pfmemalloc slab */
2942		if (sk_memalloc_socks()) {
2943			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2944
2945			if (obj)
2946				return obj;
2947		}
2948
2949		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2950
2951		/*
2952		 * cache_grow_begin() can reenable interrupts,
2953		 * then ac could change.
2954		 */
2955		ac = cpu_cache_get(cachep);
2956		if (!ac->avail && slab)
2957			alloc_block(cachep, ac, slab, batchcount);
2958		cache_grow_end(cachep, slab);
2959
2960		if (!ac->avail)
2961			return NULL;
 
 
 
2962	}
2963	ac->touched = 1;
2964
2965	return ac->entry[--ac->avail];
2966}
2967
 
 
 
 
 
 
 
 
 
2968#if DEBUG
2969static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2970				gfp_t flags, void *objp, unsigned long caller)
2971{
2972	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2973	if (!objp || is_kfence_address(objp))
2974		return objp;
2975	if (cachep->flags & SLAB_POISON) {
 
 
 
 
 
 
 
2976		check_poison_obj(cachep, objp);
2977		slab_kernel_map(cachep, objp, 1);
2978		poison_obj(cachep, objp, POISON_INUSE);
2979	}
2980	if (cachep->flags & SLAB_STORE_USER)
2981		*dbg_userword(cachep, objp) = (void *)caller;
2982
2983	if (cachep->flags & SLAB_RED_ZONE) {
2984		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2985				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2986			slab_error(cachep, "double free, or memory outside object was overwritten");
2987			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2988			       objp, *dbg_redzone1(cachep, objp),
2989			       *dbg_redzone2(cachep, objp));
 
 
2990		}
2991		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2992		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2993	}
 
 
 
 
2994
 
 
 
 
 
2995	objp += obj_offset(cachep);
2996	if (cachep->ctor && cachep->flags & SLAB_POISON)
2997		cachep->ctor(objp);
2998	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2999		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
3000		       arch_slab_minalign());
 
3001	}
3002	return objp;
3003}
3004#else
3005#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3006#endif
3007
 
 
 
 
 
 
 
 
3008static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3009{
3010	void *objp;
3011	struct array_cache *ac;
3012
3013	check_irq_off();
3014
3015	ac = cpu_cache_get(cachep);
3016	if (likely(ac->avail)) {
 
3017		ac->touched = 1;
3018		objp = ac->entry[--ac->avail];
3019
3020		STATS_INC_ALLOCHIT(cachep);
3021		goto out;
 
 
 
 
 
3022	}
3023
3024	STATS_INC_ALLOCMISS(cachep);
3025	objp = cache_alloc_refill(cachep, flags);
3026	/*
3027	 * the 'ac' may be updated by cache_alloc_refill(),
3028	 * and kmemleak_erase() requires its correct value.
3029	 */
3030	ac = cpu_cache_get(cachep);
3031
3032out:
3033	/*
3034	 * To avoid a false negative, if an object that is in one of the
3035	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3036	 * treat the array pointers as a reference to the object.
3037	 */
3038	if (objp)
3039		kmemleak_erase(&ac->entry[ac->avail]);
3040	return objp;
3041}
3042
3043#ifdef CONFIG_NUMA
3044static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3045
3046/*
3047 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3048 *
3049 * If we are in_interrupt, then process context, including cpusets and
3050 * mempolicy, may not apply and should not be used for allocation policy.
3051 */
3052static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3053{
3054	int nid_alloc, nid_here;
3055
3056	if (in_interrupt() || (flags & __GFP_THISNODE))
3057		return NULL;
3058	nid_alloc = nid_here = numa_mem_id();
3059	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3060		nid_alloc = cpuset_slab_spread_node();
3061	else if (current->mempolicy)
3062		nid_alloc = mempolicy_slab_node();
3063	if (nid_alloc != nid_here)
3064		return ____cache_alloc_node(cachep, flags, nid_alloc);
3065	return NULL;
3066}
3067
3068/*
3069 * Fallback function if there was no memory available and no objects on a
3070 * certain node and fall back is permitted. First we scan all the
3071 * available node for available objects. If that fails then we
3072 * perform an allocation without specifying a node. This allows the page
3073 * allocator to do its reclaim / fallback magic. We then insert the
3074 * slab into the proper nodelist and then allocate from it.
3075 */
3076static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3077{
3078	struct zonelist *zonelist;
 
3079	struct zoneref *z;
3080	struct zone *zone;
3081	enum zone_type highest_zoneidx = gfp_zone(flags);
3082	void *obj = NULL;
3083	struct slab *slab;
3084	int nid;
3085	unsigned int cpuset_mems_cookie;
3086
3087	if (flags & __GFP_THISNODE)
3088		return NULL;
3089
 
 
3090retry_cpuset:
3091	cpuset_mems_cookie = read_mems_allowed_begin();
3092	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3093
3094retry:
3095	/*
3096	 * Look through allowed nodes for objects available
3097	 * from existing per node queues.
3098	 */
3099	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3100		nid = zone_to_nid(zone);
3101
3102		if (cpuset_zone_allowed(zone, flags) &&
3103			get_node(cache, nid) &&
3104			get_node(cache, nid)->free_objects) {
3105				obj = ____cache_alloc_node(cache,
3106					gfp_exact_node(flags), nid);
3107				if (obj)
3108					break;
3109		}
3110	}
3111
3112	if (!obj) {
3113		/*
3114		 * This allocation will be performed within the constraints
3115		 * of the current cpuset / memory policy requirements.
3116		 * We may trigger various forms of reclaim on the allowed
3117		 * set and go into memory reserves if necessary.
3118		 */
3119		slab = cache_grow_begin(cache, flags, numa_mem_id());
3120		cache_grow_end(cache, slab);
3121		if (slab) {
3122			nid = slab_nid(slab);
3123			obj = ____cache_alloc_node(cache,
3124				gfp_exact_node(flags), nid);
3125
3126			/*
3127			 * Another processor may allocate the objects in
3128			 * the slab since we are not holding any locks.
3129			 */
3130			if (!obj)
3131				goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
3132		}
3133	}
3134
3135	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3136		goto retry_cpuset;
3137	return obj;
3138}
3139
3140/*
3141 * An interface to enable slab creation on nodeid
3142 */
3143static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3144				int nodeid)
3145{
3146	struct slab *slab;
3147	struct kmem_cache_node *n;
3148	void *obj = NULL;
3149	void *list = NULL;
 
3150
3151	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3152	n = get_node(cachep, nodeid);
3153	BUG_ON(!n);
3154
 
3155	check_irq_off();
3156	raw_spin_lock(&n->list_lock);
3157	slab = get_first_slab(n, false);
3158	if (!slab)
3159		goto must_grow;
 
 
 
 
3160
 
3161	check_spinlock_acquired_node(cachep, nodeid);
 
3162
3163	STATS_INC_NODEALLOCS(cachep);
3164	STATS_INC_ACTIVE(cachep);
3165	STATS_SET_HIGH(cachep);
3166
3167	BUG_ON(slab->active == cachep->num);
3168
3169	obj = slab_get_obj(cachep, slab);
3170	n->free_objects--;
 
 
 
3171
3172	fixup_slab_list(cachep, n, slab, &list);
 
 
 
3173
3174	raw_spin_unlock(&n->list_lock);
3175	fixup_objfreelist_debug(cachep, &list);
3176	return obj;
3177
3178must_grow:
3179	raw_spin_unlock(&n->list_lock);
3180	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3181	if (slab) {
3182		/* This slab isn't counted yet so don't update free_objects */
3183		obj = slab_get_obj(cachep, slab);
3184	}
3185	cache_grow_end(cachep, slab);
3186
3187	return obj ? obj : fallback_alloc(cachep, flags);
 
 
 
3188}
3189
 
 
 
 
 
 
 
 
 
 
 
 
3190static __always_inline void *
3191__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
3192{
3193	void *objp = NULL;
 
3194	int slab_node = numa_mem_id();
3195
3196	if (nodeid == NUMA_NO_NODE) {
3197		if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3198			objp = alternate_node_alloc(cachep, flags);
3199			if (objp)
3200				goto out;
3201		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3202		/*
3203		 * Use the locally cached objects if possible.
3204		 * However ____cache_alloc does not allow fallback
3205		 * to other nodes. It may fail while we still have
3206		 * objects on other nodes available.
3207		 */
3208		objp = ____cache_alloc(cachep, flags);
3209		nodeid = slab_node;
3210	} else if (nodeid == slab_node) {
3211		objp = ____cache_alloc(cachep, flags);
3212	} else if (!get_node(cachep, nodeid)) {
3213		/* Node not bootstrapped yet */
3214		objp = fallback_alloc(cachep, flags);
3215		goto out;
3216	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3217
3218	/*
3219	 * We may just have run out of memory on the local node.
3220	 * ____cache_alloc_node() knows how to locate memory on other nodes
3221	 */
3222	if (!objp)
3223		objp = ____cache_alloc_node(cachep, flags, nodeid);
3224out:
 
3225	return objp;
3226}
3227#else
3228
3229static __always_inline void *
3230__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
3231{
3232	return ____cache_alloc(cachep, flags);
3233}
3234
3235#endif /* CONFIG_NUMA */
3236
3237static __always_inline void *
3238slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3239		int nodeid, size_t orig_size, unsigned long caller)
3240{
3241	unsigned long save_flags;
3242	void *objp;
3243	struct obj_cgroup *objcg = NULL;
3244	bool init = false;
3245
3246	flags &= gfp_allowed_mask;
3247	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3248	if (unlikely(!cachep))
3249		return NULL;
3250
3251	objp = kfence_alloc(cachep, orig_size, flags);
3252	if (unlikely(objp))
3253		goto out;
3254
 
 
 
 
3255	local_irq_save(save_flags);
3256	objp = __do_cache_alloc(cachep, flags, nodeid);
3257	local_irq_restore(save_flags);
3258	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
 
 
3259	prefetchw(objp);
3260	init = slab_want_init_on_alloc(flags, cachep);
3261
3262out:
3263	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init,
3264				cachep->object_size);
3265	return objp;
3266}
3267
3268static __always_inline void *
3269slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3270	   size_t orig_size, unsigned long caller)
3271{
3272	return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
3273			       caller);
3274}
3275
3276/*
3277 * Caller needs to acquire correct kmem_cache_node's list_lock
3278 * @list: List of detached free slabs should be freed by caller
3279 */
3280static void free_block(struct kmem_cache *cachep, void **objpp,
3281			int nr_objects, int node, struct list_head *list)
3282{
3283	int i;
3284	struct kmem_cache_node *n = get_node(cachep, node);
3285	struct slab *slab;
3286
3287	n->free_objects += nr_objects;
3288
3289	for (i = 0; i < nr_objects; i++) {
3290		void *objp;
3291		struct slab *slab;
3292
3293		objp = objpp[i];
3294
3295		slab = virt_to_slab(objp);
3296		list_del(&slab->slab_list);
3297		check_spinlock_acquired_node(cachep, node);
3298		slab_put_obj(cachep, slab, objp);
 
3299		STATS_DEC_ACTIVE(cachep);
 
 
3300
3301		/* fixup slab chains */
3302		if (slab->active == 0) {
3303			list_add(&slab->slab_list, &n->slabs_free);
3304			n->free_slabs++;
 
 
 
 
 
 
 
 
 
 
3305		} else {
3306			/* Unconditionally move a slab to the end of the
3307			 * partial list on free - maximum time for the
3308			 * other objects to be freed, too.
3309			 */
3310			list_add_tail(&slab->slab_list, &n->slabs_partial);
3311		}
3312	}
3313
3314	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3315		n->free_objects -= cachep->num;
3316
3317		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3318		list_move(&slab->slab_list, list);
3319		n->free_slabs--;
3320		n->total_slabs--;
3321	}
3322}
3323
3324static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3325{
3326	int batchcount;
3327	struct kmem_cache_node *n;
3328	int node = numa_mem_id();
3329	LIST_HEAD(list);
3330
3331	batchcount = ac->batchcount;
3332
 
 
3333	check_irq_off();
3334	n = get_node(cachep, node);
3335	raw_spin_lock(&n->list_lock);
3336	if (n->shared) {
3337		struct array_cache *shared_array = n->shared;
3338		int max = shared_array->limit - shared_array->avail;
3339		if (max) {
3340			if (batchcount > max)
3341				batchcount = max;
3342			memcpy(&(shared_array->entry[shared_array->avail]),
3343			       ac->entry, sizeof(void *) * batchcount);
3344			shared_array->avail += batchcount;
3345			goto free_done;
3346		}
3347	}
3348
3349	free_block(cachep, ac->entry, batchcount, node, &list);
3350free_done:
3351#if STATS
3352	{
3353		int i = 0;
3354		struct slab *slab;
 
 
 
 
3355
3356		list_for_each_entry(slab, &n->slabs_free, slab_list) {
3357			BUG_ON(slab->active);
3358
3359			i++;
 
3360		}
3361		STATS_SET_FREEABLE(cachep, i);
3362	}
3363#endif
3364	raw_spin_unlock(&n->list_lock);
3365	ac->avail -= batchcount;
3366	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3367	slabs_destroy(cachep, &list);
3368}
3369
3370/*
3371 * Release an obj back to its cache. If the obj has a constructed state, it must
3372 * be in this state _before_ it is released.  Called with disabled ints.
3373 */
3374static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3375					 unsigned long caller)
3376{
3377	bool init;
3378
3379	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3380
3381	if (is_kfence_address(objp)) {
3382		kmemleak_free_recursive(objp, cachep->flags);
3383		__kfence_free(objp);
3384		return;
3385	}
3386
3387	/*
3388	 * As memory initialization might be integrated into KASAN,
3389	 * kasan_slab_free and initialization memset must be
3390	 * kept together to avoid discrepancies in behavior.
3391	 */
3392	init = slab_want_init_on_free(cachep);
3393	if (init && !kasan_has_integrated_init())
3394		memset(objp, 0, cachep->object_size);
3395	/* KASAN might put objp into memory quarantine, delaying its reuse. */
3396	if (kasan_slab_free(cachep, objp, init))
3397		return;
3398
3399	/* Use KCSAN to help debug racy use-after-free. */
3400	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3401		__kcsan_check_access(objp, cachep->object_size,
3402				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3403
3404	___cache_free(cachep, objp, caller);
3405}
3406
3407void ___cache_free(struct kmem_cache *cachep, void *objp,
3408		unsigned long caller)
3409{
3410	struct array_cache *ac = cpu_cache_get(cachep);
3411
3412	check_irq_off();
3413	kmemleak_free_recursive(objp, cachep->flags);
3414	objp = cache_free_debugcheck(cachep, objp, caller);
3415
 
 
3416	/*
3417	 * Skip calling cache_free_alien() when the platform is not numa.
3418	 * This will avoid cache misses that happen while accessing slabp (which
3419	 * is per page memory  reference) to get nodeid. Instead use a global
3420	 * variable to skip the call, which is mostly likely to be present in
3421	 * the cache.
3422	 */
3423	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3424		return;
3425
3426	if (ac->avail < ac->limit) {
3427		STATS_INC_FREEHIT(cachep);
3428	} else {
3429		STATS_INC_FREEMISS(cachep);
3430		cache_flusharray(cachep, ac);
3431	}
3432
3433	if (sk_memalloc_socks()) {
3434		struct slab *slab = virt_to_slab(objp);
3435
3436		if (unlikely(slab_test_pfmemalloc(slab))) {
3437			cache_free_pfmemalloc(cachep, slab, objp);
3438			return;
3439		}
3440	}
 
 
 
 
 
 
 
 
 
3441
3442	__free_one(ac, objp);
3443}
 
3444
3445static __always_inline
3446void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3447			     gfp_t flags)
3448{
3449	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3450
3451	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
3452
 
 
3453	return ret;
3454}
 
 
3455
3456void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 
3457{
3458	return __kmem_cache_alloc_lru(cachep, NULL, flags);
 
 
 
 
 
 
 
3459}
3460EXPORT_SYMBOL(kmem_cache_alloc);
3461
3462void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3463			   gfp_t flags)
3464{
3465	return __kmem_cache_alloc_lru(cachep, lru, flags);
 
 
 
 
 
 
 
 
 
 
3466}
3467EXPORT_SYMBOL(kmem_cache_alloc_lru);
 
3468
3469static __always_inline void
3470cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3471				  size_t size, void **p, unsigned long caller)
3472{
3473	size_t i;
3474
3475	for (i = 0; i < size; i++)
3476		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
 
 
3477}
3478
3479int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3480			  void **p)
3481{
3482	size_t i;
3483	struct obj_cgroup *objcg = NULL;
3484
3485	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3486	if (!s)
3487		return 0;
3488
3489	local_irq_disable();
3490	for (i = 0; i < size; i++) {
3491		void *objp = kfence_alloc(s, s->object_size, flags) ?:
3492			     __do_cache_alloc(s, flags, NUMA_NO_NODE);
3493
3494		if (unlikely(!objp))
3495			goto error;
3496		p[i] = objp;
3497	}
3498	local_irq_enable();
3499
3500	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3501
3502	/*
3503	 * memcg and kmem_cache debug support and memory initialization.
3504	 * Done outside of the IRQ disabled section.
3505	 */
3506	slab_post_alloc_hook(s, objcg, flags, size, p,
3507			slab_want_init_on_alloc(flags, s), s->object_size);
3508	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3509	return size;
3510error:
3511	local_irq_enable();
3512	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3513	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3514	kmem_cache_free_bulk(s, i, p);
3515	return 0;
3516}
3517EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 
 
3518
3519/**
3520 * kmem_cache_alloc_node - Allocate an object on the specified node
3521 * @cachep: The cache to allocate from.
3522 * @flags: See kmalloc().
3523 * @nodeid: node number of the target node.
3524 *
3525 * Identical to kmem_cache_alloc but it will allocate memory on the given
3526 * node, which can improve the performance for cpu bound structures.
3527 *
3528 * Fallback to other node is possible if __GFP_THISNODE is not set.
3529 *
3530 * Return: pointer to the new object or %NULL in case of error
3531 */
3532void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
3533{
3534	void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
 
3535
3536	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
 
 
 
 
 
 
 
 
 
 
 
3537
3538	return ret;
3539}
3540EXPORT_SYMBOL(kmem_cache_alloc_node);
3541
3542void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3543			     int nodeid, size_t orig_size,
3544			     unsigned long caller)
3545{
3546	return slab_alloc_node(cachep, NULL, flags, nodeid,
3547			       orig_size, caller);
3548}
3549
3550#ifdef CONFIG_PRINTK
3551void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
3552{
3553	struct kmem_cache *cachep;
3554	unsigned int objnr;
3555	void *objp;
3556
3557	kpp->kp_ptr = object;
3558	kpp->kp_slab = slab;
3559	cachep = slab->slab_cache;
3560	kpp->kp_slab_cache = cachep;
3561	objp = object - obj_offset(cachep);
3562	kpp->kp_data_offset = obj_offset(cachep);
3563	slab = virt_to_slab(objp);
3564	objnr = obj_to_index(cachep, slab, objp);
3565	objp = index_to_obj(cachep, slab, objnr);
3566	kpp->kp_objp = objp;
3567	if (DEBUG && cachep->flags & SLAB_STORE_USER)
3568		kpp->kp_ret = *dbg_userword(cachep, objp);
3569}
3570#endif
3571
3572static __always_inline
3573void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
3574			  unsigned long caller)
3575{
3576	unsigned long flags;
3577
3578	local_irq_save(flags);
3579	debug_check_no_locks_freed(objp, cachep->object_size);
3580	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3581		debug_check_no_obj_freed(objp, cachep->object_size);
3582	__cache_free(cachep, objp, caller);
3583	local_irq_restore(flags);
3584}
 
3585
3586void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
3587		       unsigned long caller)
3588{
3589	__do_kmem_cache_free(cachep, objp, caller);
3590}
 
 
3591
3592/**
3593 * kmem_cache_free - Deallocate an object
3594 * @cachep: The cache the allocation was from.
3595 * @objp: The previously allocated object.
3596 *
3597 * Free an object which was previously allocated from this
3598 * cache.
3599 */
3600void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3601{
3602	cachep = cache_from_obj(cachep, objp);
3603	if (!cachep)
3604		return;
 
 
 
 
 
3605
3606	trace_kmem_cache_free(_RET_IP_, objp, cachep);
3607	__do_kmem_cache_free(cachep, objp, _RET_IP_);
3608}
3609EXPORT_SYMBOL(kmem_cache_free);
3610
3611void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
 
 
 
 
 
 
 
 
 
3612{
 
 
3613
3614	local_irq_disable();
3615	for (int i = 0; i < size; i++) {
3616		void *objp = p[i];
3617		struct kmem_cache *s;
3618
3619		if (!orig_s) {
3620			struct folio *folio = virt_to_folio(objp);
3621
3622			/* called via kfree_bulk */
3623			if (!folio_test_slab(folio)) {
3624				local_irq_enable();
3625				free_large_kmalloc(folio, objp);
3626				local_irq_disable();
3627				continue;
3628			}
3629			s = folio_slab(folio)->slab_cache;
3630		} else {
3631			s = cache_from_obj(orig_s, objp);
3632		}
3633
3634		if (!s)
3635			continue;
3636
3637		debug_check_no_locks_freed(objp, s->object_size);
3638		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3639			debug_check_no_obj_freed(objp, s->object_size);
3640
3641		__cache_free(s, objp, _RET_IP_);
3642	}
3643	local_irq_enable();
 
 
 
 
 
 
 
 
3644
3645	/* FIXME: add tracing */
 
 
3646}
3647EXPORT_SYMBOL(kmem_cache_free_bulk);
3648
3649/*
3650 * This initializes kmem_cache_node or resizes various caches for all nodes.
3651 */
3652static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3653{
3654	int ret;
3655	int node;
3656	struct kmem_cache_node *n;
 
 
3657
3658	for_each_online_node(node) {
3659		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3660		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3661			goto fail;
 
3662
 
 
 
 
 
 
 
 
3663	}
3664
3665	return 0;
3666
3667fail:
3668	if (!cachep->list.next) {
3669		/* Cache is not active yet. Roll back what we did */
3670		node--;
3671		while (node >= 0) {
3672			n = get_node(cachep, node);
3673			if (n) {
3674				kfree(n->shared);
3675				free_alien_cache(n->alien);
3676				kfree(n);
3677				cachep->node[node] = NULL;
 
3678			}
3679			node--;
3680		}
3681	}
3682	return -ENOMEM;
3683}
3684
3685/* Always called with the slab_mutex held */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3687			    int batchcount, int shared, gfp_t gfp)
3688{
3689	struct array_cache __percpu *cpu_cache, *prev;
3690	int cpu;
3691
3692	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3693	if (!cpu_cache)
 
3694		return -ENOMEM;
3695
3696	prev = cachep->cpu_cache;
3697	cachep->cpu_cache = cpu_cache;
3698	/*
3699	 * Without a previous cpu_cache there's no need to synchronize remote
3700	 * cpus, so skip the IPIs.
3701	 */
3702	if (prev)
3703		kick_all_cpus_sync();
 
 
 
 
 
3704
3705	check_irq_on();
3706	cachep->batchcount = batchcount;
3707	cachep->limit = limit;
3708	cachep->shared = shared;
3709
3710	if (!prev)
3711		goto setup_node;
3712
3713	for_each_online_cpu(cpu) {
3714		LIST_HEAD(list);
3715		int node;
3716		struct kmem_cache_node *n;
3717		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3718
3719		node = cpu_to_mem(cpu);
3720		n = get_node(cachep, node);
3721		raw_spin_lock_irq(&n->list_lock);
3722		free_block(cachep, ac->entry, ac->avail, node, &list);
3723		raw_spin_unlock_irq(&n->list_lock);
3724		slabs_destroy(cachep, &list);
3725	}
3726	free_percpu(prev);
3727
3728setup_node:
3729	return setup_kmem_cache_nodes(cachep, gfp);
3730}
3731
3732/* Called with slab_mutex held always */
3733static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3734{
3735	int err;
3736	int limit = 0;
3737	int shared = 0;
3738	int batchcount = 0;
3739
3740	err = cache_random_seq_create(cachep, cachep->num, gfp);
3741	if (err)
3742		goto end;
3743
3744	/*
3745	 * The head array serves three purposes:
3746	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3747	 * - reduce the number of spinlock operations.
3748	 * - reduce the number of linked list operations on the slab and
3749	 *   bufctl chains: array operations are cheaper.
3750	 * The numbers are guessed, we should auto-tune as described by
3751	 * Bonwick.
3752	 */
3753	if (cachep->size > 131072)
3754		limit = 1;
3755	else if (cachep->size > PAGE_SIZE)
3756		limit = 8;
3757	else if (cachep->size > 1024)
3758		limit = 24;
3759	else if (cachep->size > 256)
3760		limit = 54;
3761	else
3762		limit = 120;
3763
3764	/*
3765	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3766	 * allocation behaviour: Most allocs on one cpu, most free operations
3767	 * on another cpu. For these cases, an efficient object passing between
3768	 * cpus is necessary. This is provided by a shared array. The array
3769	 * replaces Bonwick's magazine layer.
3770	 * On uniprocessor, it's functionally equivalent (but less efficient)
3771	 * to a larger limit. Thus disabled by default.
3772	 */
3773	shared = 0;
3774	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3775		shared = 8;
3776
3777#if DEBUG
3778	/*
3779	 * With debugging enabled, large batchcount lead to excessively long
3780	 * periods with disabled local interrupts. Limit the batchcount
3781	 */
3782	if (limit > 32)
3783		limit = 32;
3784#endif
3785	batchcount = (limit + 1) / 2;
3786	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3787end:
3788	if (err)
3789		pr_err("enable_cpucache failed for %s, error %d\n",
3790		       cachep->name, -err);
3791	return err;
3792}
3793
3794/*
3795 * Drain an array if it contains any elements taking the node lock only if
3796 * necessary. Note that the node listlock also protects the array_cache
3797 * if drain_array() is used on the shared array.
3798 */
3799static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3800			 struct array_cache *ac, int node)
3801{
3802	LIST_HEAD(list);
3803
3804	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3805	check_mutex_acquired();
3806
3807	if (!ac || !ac->avail)
3808		return;
3809
3810	if (ac->touched) {
3811		ac->touched = 0;
3812		return;
 
 
 
 
 
 
 
 
 
 
 
3813	}
3814
3815	raw_spin_lock_irq(&n->list_lock);
3816	drain_array_locked(cachep, ac, node, false, &list);
3817	raw_spin_unlock_irq(&n->list_lock);
3818
3819	slabs_destroy(cachep, &list);
3820}
3821
3822/**
3823 * cache_reap - Reclaim memory from caches.
3824 * @w: work descriptor
3825 *
3826 * Called from workqueue/eventd every few seconds.
3827 * Purpose:
3828 * - clear the per-cpu caches for this CPU.
3829 * - return freeable pages to the main free memory pool.
3830 *
3831 * If we cannot acquire the cache chain mutex then just give up - we'll try
3832 * again on the next iteration.
3833 */
3834static void cache_reap(struct work_struct *w)
3835{
3836	struct kmem_cache *searchp;
3837	struct kmem_cache_node *n;
3838	int node = numa_mem_id();
3839	struct delayed_work *work = to_delayed_work(w);
3840
3841	if (!mutex_trylock(&slab_mutex))
3842		/* Give up. Setup the next iteration. */
3843		goto out;
3844
3845	list_for_each_entry(searchp, &slab_caches, list) {
3846		check_irq_on();
3847
3848		/*
3849		 * We only take the node lock if absolutely necessary and we
3850		 * have established with reasonable certainty that
3851		 * we can do some work if the lock was obtained.
3852		 */
3853		n = get_node(searchp, node);
3854
3855		reap_alien(searchp, n);
3856
3857		drain_array(searchp, n, cpu_cache_get(searchp), node);
3858
3859		/*
3860		 * These are racy checks but it does not matter
3861		 * if we skip one check or scan twice.
3862		 */
3863		if (time_after(n->next_reap, jiffies))
3864			goto next;
3865
3866		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3867
3868		drain_array(searchp, n, n->shared, node);
3869
3870		if (n->free_touched)
3871			n->free_touched = 0;
3872		else {
3873			int freed;
3874
3875			freed = drain_freelist(searchp, n, (n->free_limit +
3876				5 * searchp->num - 1) / (5 * searchp->num));
3877			STATS_ADD_REAPED(searchp, freed);
3878		}
3879next:
3880		cond_resched();
3881	}
3882	check_irq_on();
3883	mutex_unlock(&slab_mutex);
3884	next_reap_node();
3885out:
3886	/* Set up the next iteration */
3887	schedule_delayed_work_on(smp_processor_id(), work,
3888				round_jiffies_relative(REAPTIMEOUT_AC));
3889}
3890
3891void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
 
 
3892{
3893	unsigned long active_objs, num_objs, active_slabs;
3894	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
3895	unsigned long free_slabs = 0;
3896	int node;
3897	struct kmem_cache_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898
3899	for_each_kmem_cache_node(cachep, node, n) {
3900		check_irq_on();
3901		raw_spin_lock_irq(&n->list_lock);
 
 
 
 
3902
3903		total_slabs += n->total_slabs;
3904		free_slabs += n->free_slabs;
3905		free_objs += n->free_objects;
3906
3907		if (n->shared)
3908			shared_avail += n->shared->avail;
3909
3910		raw_spin_unlock_irq(&n->list_lock);
3911	}
3912	num_objs = total_slabs * cachep->num;
3913	active_slabs = total_slabs - free_slabs;
3914	active_objs = num_objs - free_objs;
3915
3916	sinfo->active_objs = active_objs;
3917	sinfo->num_objs = num_objs;
3918	sinfo->active_slabs = active_slabs;
3919	sinfo->num_slabs = total_slabs;
3920	sinfo->shared_avail = shared_avail;
3921	sinfo->limit = cachep->limit;
3922	sinfo->batchcount = cachep->batchcount;
3923	sinfo->shared = cachep->shared;
3924	sinfo->objects_per_slab = cachep->num;
3925	sinfo->cache_order = cachep->gfporder;
3926}
3927
3928void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3929{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3930#if STATS
3931	{			/* node stats */
3932		unsigned long high = cachep->high_mark;
3933		unsigned long allocs = cachep->num_allocations;
3934		unsigned long grown = cachep->grown;
3935		unsigned long reaped = cachep->reaped;
3936		unsigned long errors = cachep->errors;
3937		unsigned long max_freeable = cachep->max_freeable;
3938		unsigned long node_allocs = cachep->node_allocs;
3939		unsigned long node_frees = cachep->node_frees;
3940		unsigned long overflows = cachep->node_overflow;
3941
3942		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
 
3943			   allocs, high, grown,
3944			   reaped, errors, max_freeable, node_allocs,
3945			   node_frees, overflows);
3946	}
3947	/* cpu stats */
3948	{
3949		unsigned long allochit = atomic_read(&cachep->allochit);
3950		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3951		unsigned long freehit = atomic_read(&cachep->freehit);
3952		unsigned long freemiss = atomic_read(&cachep->freemiss);
3953
3954		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3955			   allochit, allocmiss, freehit, freemiss);
3956	}
3957#endif
 
 
3958}
3959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3960#define MAX_SLABINFO_WRITE 128
3961/**
3962 * slabinfo_write - Tuning for the slab allocator
3963 * @file: unused
3964 * @buffer: user buffer
3965 * @count: data length
3966 * @ppos: unused
3967 *
3968 * Return: %0 on success, negative error code otherwise.
3969 */
3970ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3971		       size_t count, loff_t *ppos)
3972{
3973	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3974	int limit, batchcount, shared, res;
3975	struct kmem_cache *cachep;
3976
3977	if (count > MAX_SLABINFO_WRITE)
3978		return -EINVAL;
3979	if (copy_from_user(&kbuf, buffer, count))
3980		return -EFAULT;
3981	kbuf[MAX_SLABINFO_WRITE] = '\0';
3982
3983	tmp = strchr(kbuf, ' ');
3984	if (!tmp)
3985		return -EINVAL;
3986	*tmp = '\0';
3987	tmp++;
3988	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3989		return -EINVAL;
3990
3991	/* Find the cache in the chain of caches. */
3992	mutex_lock(&slab_mutex);
3993	res = -EINVAL;
3994	list_for_each_entry(cachep, &slab_caches, list) {
3995		if (!strcmp(cachep->name, kbuf)) {
3996			if (limit < 1 || batchcount < 1 ||
3997					batchcount > limit || shared < 0) {
3998				res = 0;
3999			} else {
4000				res = do_tune_cpucache(cachep, limit,
4001						       batchcount, shared,
4002						       GFP_KERNEL);
4003			}
4004			break;
4005		}
4006	}
4007	mutex_unlock(&slab_mutex);
4008	if (res >= 0)
4009		res = count;
4010	return res;
4011}
4012
4013#ifdef CONFIG_HARDENED_USERCOPY
4014/*
4015 * Rejects incorrectly sized objects and objects that are to be copied
4016 * to/from userspace but do not fall entirely within the containing slab
4017 * cache's usercopy region.
4018 *
4019 * Returns NULL if check passes, otherwise const char * to name of cache
4020 * to indicate an error.
4021 */
4022void __check_heap_object(const void *ptr, unsigned long n,
4023			 const struct slab *slab, bool to_user)
4024{
4025	struct kmem_cache *cachep;
4026	unsigned int objnr;
4027	unsigned long offset;
4028
4029	ptr = kasan_reset_tag(ptr);
 
 
 
 
 
 
4030
4031	/* Find and validate object. */
4032	cachep = slab->slab_cache;
4033	objnr = obj_to_index(cachep, slab, (void *)ptr);
4034	BUG_ON(objnr >= cachep->num);
4035
4036	/* Find offset within object. */
4037	if (is_kfence_address(ptr))
4038		offset = ptr - kfence_object_start(ptr);
4039	else
4040		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4041
4042	/* Allow address range falling entirely within usercopy region. */
4043	if (offset >= cachep->useroffset &&
4044	    offset - cachep->useroffset <= cachep->usersize &&
4045	    n <= cachep->useroffset - offset + cachep->usersize)
 
4046		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4047
4048	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4049}
4050#endif /* CONFIG_HARDENED_USERCOPY */
v3.5.6
 
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *	(c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 * 	(c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *	Jeff Bonwick (Sun Microsystems).
  20 *	Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *	are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *  	and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72 *	The sem is only needed when accessing/extending the cache-chain, which
  73 *	can never happen inside an interrupt (kmem_cache_create(),
  74 *	kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *	At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *	Shai Fultheim <shai@scalex86.org>.
  80 *	Shobhit Dayal <shobhit@calsoftinc.com>
  81 *	Alok N Kataria <alokk@calsoftinc.com>
  82 *	Christoph Lameter <christoph@lameter.com>
  83 *
  84 *	Modified the slab allocator to be node aware on NUMA systems.
  85 *	Each node has its own list of partial, free and full slabs.
  86 *	All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include	<linux/__KEEPIDENTS__B.h>
  90#include	<linux/__KEEPIDENTS__C.h>
  91#include	<linux/__KEEPIDENTS__D.h>
  92#include	<linux/__KEEPIDENTS__E.h>
  93#include	<linux/__KEEPIDENTS__F.h>
  94#include	<linux/__KEEPIDENTS__G.h>
  95#include	<linux/__KEEPIDENTS__H.h>
  96#include	<linux/__KEEPIDENTS__I.h>
  97#include	<linux/__KEEPIDENTS__J.h>
  98#include	<linux/proc_fs.h>
  99#include	<linux/__KEEPIDENTS__BA.h>
 100#include	<linux/__KEEPIDENTS__BB.h>
 101#include	<linux/__KEEPIDENTS__BC.h>
 
 102#include	<linux/cpu.h>
 103#include	<linux/__KEEPIDENTS__BD.h>
 104#include	<linux/__KEEPIDENTS__BE.h>
 105#include	<linux/rcupdate.h>
 106#include	<linux/__KEEPIDENTS__BF.h>
 107#include	<linux/__KEEPIDENTS__BG.h>
 108#include	<linux/__KEEPIDENTS__BH.h>
 109#include	<linux/kmemleak.h>
 110#include	<linux/__KEEPIDENTS__BI.h>
 111#include	<linux/__KEEPIDENTS__BJ.h>
 112#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 113#include	<linux/__KEEPIDENTS__CC.h>
 114#include	<linux/reciprocal_div.h>
 115#include	<linux/debugobjects.h>
 116#include	<linux/kmemcheck.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 
 
 
 119
 120#include	<asm/cacheflush.h>
 121#include	<asm/tlbflush.h>
 122#include	<asm/page.h>
 123
 124#include <trace/events/kmem.h>
 125
 
 
 
 
 126/*
 127 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 128 *		  0 for faster, smaller code (especially in the critical paths).
 129 *
 130 * STATS	- 1 to collect stats for /proc/slabinfo.
 131 *		  0 for faster, smaller code (especially in the critical paths).
 132 *
 133 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 134 */
 135
 136#ifdef CONFIG_DEBUG_SLAB
 137#define	DEBUG		1
 138#define	STATS		1
 139#define	FORCED_DEBUG	1
 140#else
 141#define	DEBUG		0
 142#define	STATS		0
 143#define	FORCED_DEBUG	0
 144#endif
 145
 146/* Shouldn't this be in a header file somewhere? */
 147#define	BYTES_PER_WORD		sizeof(void *)
 148#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 149
 150#ifndef ARCH_KMALLOC_FLAGS
 151#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 152#endif
 153
 154/* Legal flag mask for kmem_cache_create(). */
 155#if DEBUG
 156# define CREATE_MASK	(SLAB_RED_ZONE | \
 157			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
 158			 SLAB_CACHE_DMA | \
 159			 SLAB_STORE_USER | \
 160			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 161			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 162			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 163#else
 164# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
 165			 SLAB_CACHE_DMA | \
 166			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 167			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 168			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 169#endif
 170
 171/*
 172 * kmem_bufctl_t:
 173 *
 174 * Bufctl's are used for linking objs within a slab
 175 * linked offsets.
 176 *
 177 * This implementation relies on "struct page" for locating the cache &
 178 * slab an object belongs to.
 179 * This allows the bufctl structure to be small (one int), but limits
 180 * the number of objects a slab (not a cache) can contain when off-slab
 181 * bufctls are used. The limit is the size of the largest general cache
 182 * that does not use off-slab slabs.
 183 * For 32bit archs with 4 kB pages, is this 56.
 184 * This is not serious, as it is only for large objects, when it is unwise
 185 * to have too many per slab.
 186 * Note: This limit can be raised by introducing a general cache whose size
 187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 188 */
 189
 190typedef unsigned int kmem_bufctl_t;
 191#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
 192#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
 193#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
 194#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
 195
 196/*
 197 * struct slab_rcu
 198 *
 199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 200 * arrange for kmem_freepages to be called via RCU.  This is useful if
 201 * we need to approach a kernel structure obliquely, from its address
 202 * obtained without the usual locking.  We can lock the structure to
 203 * stabilize it and check it's still at the given address, only if we
 204 * can be sure that the memory has not been meanwhile reused for some
 205 * other kind of object (which our subsystem's lock might corrupt).
 206 *
 207 * rcu_read_lock before reading the address, then rcu_read_unlock after
 208 * taking the spinlock within the structure expected at that address.
 209 */
 210struct slab_rcu {
 211	struct rcu_head head;
 212	struct kmem_cache *cachep;
 213	void *addr;
 214};
 215
 216/*
 217 * struct slab
 218 *
 219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 220 * for a slab, or allocated from an general cache.
 221 * Slabs are chained into three list: fully used, partial, fully free slabs.
 222 */
 223struct slab {
 224	union {
 225		struct {
 226			struct list_head list;
 227			unsigned long colouroff;
 228			void *s_mem;		/* including colour offset */
 229			unsigned int inuse;	/* num of objs active in slab */
 230			kmem_bufctl_t free;
 231			unsigned short nodeid;
 232		};
 233		struct slab_rcu __slab_cover_slab_rcu;
 234	};
 235};
 236
 237/*
 238 * struct array_cache
 239 *
 240 * Purpose:
 241 * - LIFO ordering, to hand out cache-warm objects from _alloc
 242 * - reduce the number of linked list operations
 243 * - reduce spinlock operations
 244 *
 245 * The limit is stored in the per-cpu structure to reduce the data cache
 246 * footprint.
 247 *
 248 */
 249struct array_cache {
 250	unsigned int avail;
 251	unsigned int limit;
 252	unsigned int batchcount;
 253	unsigned int touched;
 254	spinlock_t lock;
 255	void *entry[];	/*
 256			 * Must have this definition in here for the proper
 257			 * alignment of array_cache. Also simplifies accessing
 258			 * the entries.
 259			 */
 260};
 261
 262/*
 263 * bootstrap: The caches do not work without cpuarrays anymore, but the
 264 * cpuarrays are allocated from the generic caches...
 265 */
 266#define BOOT_CPUCACHE_ENTRIES	1
 267struct arraycache_init {
 268	struct array_cache cache;
 269	void *entries[BOOT_CPUCACHE_ENTRIES];
 270};
 271
 272/*
 273 * The slab lists for all objects.
 274 */
 275struct kmem_list3 {
 276	struct list_head slabs_partial;	/* partial list first, better asm code */
 277	struct list_head slabs_full;
 278	struct list_head slabs_free;
 279	unsigned long free_objects;
 280	unsigned int free_limit;
 281	unsigned int colour_next;	/* Per-node cache coloring */
 282	spinlock_t list_lock;
 283	struct array_cache *shared;	/* shared per node */
 284	struct array_cache **alien;	/* on other nodes */
 285	unsigned long next_reap;	/* updated without locking */
 286	int free_touched;		/* updated without locking */
 287};
 288
 289/*
 290 * Need this for bootstrapping a per node allocator.
 291 */
 292#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
 293static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 294#define	CACHE_CACHE 0
 295#define	SIZE_AC MAX_NUMNODES
 296#define	SIZE_L3 (2 * MAX_NUMNODES)
 297
 298static int drain_freelist(struct kmem_cache *cache,
 299			struct kmem_list3 *l3, int tofree);
 300static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 301			int node);
 
 302static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 303static void cache_reap(struct work_struct *unused);
 304
 305/*
 306 * This function must be completely optimized away if a constant is passed to
 307 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
 308 */
 309static __always_inline int index_of(const size_t size)
 310{
 311	extern void __bad_size(void);
 312
 313	if (__builtin_constant_p(size)) {
 314		int i = 0;
 315
 316#define CACHE(x) \
 317	if (size <=x) \
 318		return i; \
 319	else \
 320		i++;
 321#include <linux/kmalloc_sizes.h>
 322#undef CACHE
 323		__bad_size();
 324	} else
 325		__bad_size();
 326	return 0;
 327}
 328
 329static int slab_early_init = 1;
 330
 331#define INDEX_AC index_of(sizeof(struct arraycache_init))
 332#define INDEX_L3 index_of(sizeof(struct kmem_list3))
 333
 334static void kmem_list3_init(struct kmem_list3 *parent)
 335{
 336	INIT_LIST_HEAD(&parent->slabs_full);
 337	INIT_LIST_HEAD(&parent->slabs_partial);
 338	INIT_LIST_HEAD(&parent->slabs_free);
 
 
 339	parent->shared = NULL;
 340	parent->alien = NULL;
 341	parent->colour_next = 0;
 342	spin_lock_init(&parent->list_lock);
 343	parent->free_objects = 0;
 344	parent->free_touched = 0;
 345}
 346
 347#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 348	do {								\
 349		INIT_LIST_HEAD(listp);					\
 350		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
 351	} while (0)
 352
 353#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 354	do {								\
 355	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 356	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 357	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 358	} while (0)
 359
 360#define CFLGS_OFF_SLAB		(0x80000000UL)
 
 
 361#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 362
 363#define BATCHREFILL_LIMIT	16
 364/*
 365 * Optimization question: fewer reaps means less probability for unnessary
 366 * cpucache drain/refill cycles.
 367 *
 368 * OTOH the cpuarrays can contain lots of objects,
 369 * which could lock up otherwise freeable slabs.
 370 */
 371#define REAPTIMEOUT_CPUC	(2*HZ)
 372#define REAPTIMEOUT_LIST3	(4*HZ)
 373
 374#if STATS
 375#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 376#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 377#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 378#define	STATS_INC_GROWN(x)	((x)->grown++)
 379#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 380#define	STATS_SET_HIGH(x)						\
 381	do {								\
 382		if ((x)->num_active > (x)->high_mark)			\
 383			(x)->high_mark = (x)->num_active;		\
 384	} while (0)
 385#define	STATS_INC_ERR(x)	((x)->errors++)
 386#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 387#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 388#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 389#define	STATS_SET_FREEABLE(x, i)					\
 390	do {								\
 391		if ((x)->max_freeable < i)				\
 392			(x)->max_freeable = i;				\
 393	} while (0)
 394#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 395#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 396#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 397#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 398#else
 399#define	STATS_INC_ACTIVE(x)	do { } while (0)
 400#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 401#define	STATS_INC_ALLOCED(x)	do { } while (0)
 402#define	STATS_INC_GROWN(x)	do { } while (0)
 403#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 404#define	STATS_SET_HIGH(x)	do { } while (0)
 405#define	STATS_INC_ERR(x)	do { } while (0)
 406#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 407#define	STATS_INC_NODEFREES(x)	do { } while (0)
 408#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 409#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 410#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 411#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 412#define STATS_INC_FREEHIT(x)	do { } while (0)
 413#define STATS_INC_FREEMISS(x)	do { } while (0)
 414#endif
 415
 416#if DEBUG
 417
 418/*
 419 * memory layout of objects:
 420 * 0		: objp
 421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 422 * 		the end of an object is aligned with the end of the real
 423 * 		allocation. Catches writes behind the end of the allocation.
 424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 425 * 		redzone word.
 426 * cachep->obj_offset: The real object.
 427 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 428 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 429 *					[BYTES_PER_WORD long]
 430 */
 431static int obj_offset(struct kmem_cache *cachep)
 432{
 433	return cachep->obj_offset;
 434}
 435
 436static int obj_size(struct kmem_cache *cachep)
 437{
 438	return cachep->obj_size;
 439}
 440
 441static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 442{
 443	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 444	return (unsigned long long*) (objp + obj_offset(cachep) -
 445				      sizeof(unsigned long long));
 446}
 447
 448static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 449{
 450	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 451	if (cachep->flags & SLAB_STORE_USER)
 452		return (unsigned long long *)(objp + cachep->buffer_size -
 453					      sizeof(unsigned long long) -
 454					      REDZONE_ALIGN);
 455	return (unsigned long long *) (objp + cachep->buffer_size -
 456				       sizeof(unsigned long long));
 457}
 458
 459static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 460{
 461	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 462	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
 463}
 464
 465#else
 466
 467#define obj_offset(x)			0
 468#define obj_size(cachep)		(cachep->buffer_size)
 469#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 470#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 471#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 472
 473#endif
 474
 475#ifdef CONFIG_TRACING
 476size_t slab_buffer_size(struct kmem_cache *cachep)
 477{
 478	return cachep->buffer_size;
 479}
 480EXPORT_SYMBOL(slab_buffer_size);
 481#endif
 482
 483/*
 484 * Do not go above this order unless 0 objects fit into the slab or
 485 * overridden on the command line.
 486 */
 487#define	SLAB_MAX_ORDER_HI	1
 488#define	SLAB_MAX_ORDER_LO	0
 489static int slab_max_order = SLAB_MAX_ORDER_LO;
 490static bool slab_max_order_set __initdata;
 491
 492/*
 493 * Functions for storing/retrieving the cachep and or slab from the page
 494 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 495 * these are used to find the cache which an obj belongs to.
 496 */
 497static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 498{
 499	page->lru.next = (struct list_head *)cache;
 500}
 501
 502static inline struct kmem_cache *page_get_cache(struct page *page)
 503{
 504	page = compound_head(page);
 505	BUG_ON(!PageSlab(page));
 506	return (struct kmem_cache *)page->lru.next;
 507}
 508
 509static inline void page_set_slab(struct page *page, struct slab *slab)
 510{
 511	page->lru.prev = (struct list_head *)slab;
 512}
 513
 514static inline struct slab *page_get_slab(struct page *page)
 515{
 516	BUG_ON(!PageSlab(page));
 517	return (struct slab *)page->lru.prev;
 518}
 519
 520static inline struct kmem_cache *virt_to_cache(const void *obj)
 521{
 522	struct page *page = virt_to_head_page(obj);
 523	return page_get_cache(page);
 524}
 525
 526static inline struct slab *virt_to_slab(const void *obj)
 527{
 528	struct page *page = virt_to_head_page(obj);
 529	return page_get_slab(page);
 530}
 531
 532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
 533				 unsigned int idx)
 534{
 535	return slab->s_mem + cache->buffer_size * idx;
 536}
 537
 538/*
 539 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 540 *   Using the fact that buffer_size is a constant for a particular cache,
 541 *   we can replace (offset / cache->buffer_size) by
 542 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 543 */
 544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 545					const struct slab *slab, void *obj)
 546{
 547	u32 offset = (obj - slab->s_mem);
 548	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 549}
 550
 551/*
 552 * These are the default caches for kmalloc. Custom caches can have other sizes.
 553 */
 554struct cache_sizes malloc_sizes[] = {
 555#define CACHE(x) { .cs_size = (x) },
 556#include <linux/kmalloc_sizes.h>
 557	CACHE(ULONG_MAX)
 558#undef CACHE
 559};
 560EXPORT_SYMBOL(malloc_sizes);
 561
 562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
 563struct cache_names {
 564	char *name;
 565	char *name_dma;
 566};
 567
 568static struct cache_names __initdata cache_names[] = {
 569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
 570#include <linux/kmalloc_sizes.h>
 571	{NULL,}
 572#undef CACHE
 573};
 574
 575static struct arraycache_init initarray_cache __initdata =
 576    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 577static struct arraycache_init initarray_generic =
 578    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 579
 580/* internal cache of cache description objs */
 581static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
 582static struct kmem_cache cache_cache = {
 583	.nodelists = cache_cache_nodelists,
 584	.batchcount = 1,
 585	.limit = BOOT_CPUCACHE_ENTRIES,
 586	.shared = 1,
 587	.buffer_size = sizeof(struct kmem_cache),
 588	.name = "kmem_cache",
 589};
 590
 591#define BAD_ALIEN_MAGIC 0x01020304ul
 592
 593/*
 594 * chicken and egg problem: delay the per-cpu array allocation
 595 * until the general caches are up.
 596 */
 597static enum {
 598	NONE,
 599	PARTIAL_AC,
 600	PARTIAL_L3,
 601	EARLY,
 602	LATE,
 603	FULL
 604} g_cpucache_up;
 605
 606/*
 607 * used by boot code to determine if it can use slab based allocator
 608 */
 609int slab_is_available(void)
 610{
 611	return g_cpucache_up >= EARLY;
 612}
 613
 614#ifdef CONFIG_LOCKDEP
 615
 616/*
 617 * Slab sometimes uses the kmalloc slabs to store the slab headers
 618 * for other slabs "off slab".
 619 * The locking for this is tricky in that it nests within the locks
 620 * of all other slabs in a few places; to deal with this special
 621 * locking we put on-slab caches into a separate lock-class.
 622 *
 623 * We set lock class for alien array caches which are up during init.
 624 * The lock annotation will be lost if all cpus of a node goes down and
 625 * then comes back up during hotplug
 626 */
 627static struct lock_class_key on_slab_l3_key;
 628static struct lock_class_key on_slab_alc_key;
 629
 630static struct lock_class_key debugobj_l3_key;
 631static struct lock_class_key debugobj_alc_key;
 632
 633static void slab_set_lock_classes(struct kmem_cache *cachep,
 634		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
 635		int q)
 636{
 637	struct array_cache **alc;
 638	struct kmem_list3 *l3;
 639	int r;
 640
 641	l3 = cachep->nodelists[q];
 642	if (!l3)
 643		return;
 644
 645	lockdep_set_class(&l3->list_lock, l3_key);
 646	alc = l3->alien;
 647	/*
 648	 * FIXME: This check for BAD_ALIEN_MAGIC
 649	 * should go away when common slab code is taught to
 650	 * work even without alien caches.
 651	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
 652	 * for alloc_alien_cache,
 653	 */
 654	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
 655		return;
 656	for_each_node(r) {
 657		if (alc[r])
 658			lockdep_set_class(&alc[r]->lock, alc_key);
 659	}
 660}
 661
 662static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 663{
 664	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
 665}
 666
 667static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 668{
 669	int node;
 670
 671	for_each_online_node(node)
 672		slab_set_debugobj_lock_classes_node(cachep, node);
 673}
 674
 675static void init_node_lock_keys(int q)
 676{
 677	struct cache_sizes *s = malloc_sizes;
 678
 679	if (g_cpucache_up < LATE)
 680		return;
 681
 682	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
 683		struct kmem_list3 *l3;
 684
 685		l3 = s->cs_cachep->nodelists[q];
 686		if (!l3 || OFF_SLAB(s->cs_cachep))
 687			continue;
 688
 689		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
 690				&on_slab_alc_key, q);
 691	}
 692}
 693
 694static inline void init_lock_keys(void)
 695{
 696	int node;
 697
 698	for_each_node(node)
 699		init_node_lock_keys(node);
 700}
 701#else
 702static void init_node_lock_keys(int q)
 703{
 704}
 705
 706static inline void init_lock_keys(void)
 707{
 708}
 709
 710static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 711{
 712}
 713
 714static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 715{
 716}
 717#endif
 718
 719/*
 720 * Guard access to the cache-chain.
 721 */
 722static DEFINE_MUTEX(cache_chain_mutex);
 723static struct list_head cache_chain;
 724
 725static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 726
 727static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 728{
 729	return cachep->array[smp_processor_id()];
 730}
 731
 732static inline struct kmem_cache *__find_general_cachep(size_t size,
 733							gfp_t gfpflags)
 734{
 735	struct cache_sizes *csizep = malloc_sizes;
 736
 737#if DEBUG
 738	/* This happens if someone tries to call
 739	 * kmem_cache_create(), or __kmalloc(), before
 740	 * the generic caches are initialized.
 741	 */
 742	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
 743#endif
 744	if (!size)
 745		return ZERO_SIZE_PTR;
 746
 747	while (size > csizep->cs_size)
 748		csizep++;
 749
 750	/*
 751	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
 752	 * has cs_{dma,}cachep==NULL. Thus no special case
 753	 * for large kmalloc calls required.
 754	 */
 755#ifdef CONFIG_ZONE_DMA
 756	if (unlikely(gfpflags & GFP_DMA))
 757		return csizep->cs_dmacachep;
 758#endif
 759	return csizep->cs_cachep;
 760}
 761
 762static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 763{
 764	return __find_general_cachep(size, gfpflags);
 765}
 766
 767static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 768{
 769	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
 770}
 771
 772/*
 773 * Calculate the number of objects and left-over bytes for a given buffer size.
 774 */
 775static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 776			   size_t align, int flags, size_t *left_over,
 777			   unsigned int *num)
 778{
 779	int nr_objs;
 780	size_t mgmt_size;
 781	size_t slab_size = PAGE_SIZE << gfporder;
 782
 783	/*
 784	 * The slab management structure can be either off the slab or
 785	 * on it. For the latter case, the memory allocated for a
 786	 * slab is used for:
 787	 *
 788	 * - The struct slab
 789	 * - One kmem_bufctl_t for each object
 790	 * - Padding to respect alignment of @align
 791	 * - @buffer_size bytes for each object
 
 
 
 
 
 792	 *
 793	 * If the slab management structure is off the slab, then the
 794	 * alignment will already be calculated into the size. Because
 795	 * the slabs are all pages aligned, the objects will be at the
 796	 * correct alignment when allocated.
 797	 */
 798	if (flags & CFLGS_OFF_SLAB) {
 799		mgmt_size = 0;
 800		nr_objs = slab_size / buffer_size;
 801
 802		if (nr_objs > SLAB_LIMIT)
 803			nr_objs = SLAB_LIMIT;
 804	} else {
 805		/*
 806		 * Ignore padding for the initial guess. The padding
 807		 * is at most @align-1 bytes, and @buffer_size is at
 808		 * least @align. In the worst case, this result will
 809		 * be one greater than the number of objects that fit
 810		 * into the memory allocation when taking the padding
 811		 * into account.
 812		 */
 813		nr_objs = (slab_size - sizeof(struct slab)) /
 814			  (buffer_size + sizeof(kmem_bufctl_t));
 815
 816		/*
 817		 * This calculated number will be either the right
 818		 * amount, or one greater than what we want.
 819		 */
 820		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
 821		       > slab_size)
 822			nr_objs--;
 823
 824		if (nr_objs > SLAB_LIMIT)
 825			nr_objs = SLAB_LIMIT;
 826
 827		mgmt_size = slab_mgmt_size(nr_objs, align);
 828	}
 829	*num = nr_objs;
 830	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 831}
 832
 
 833#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 834
 835static void __slab_error(const char *function, struct kmem_cache *cachep,
 836			char *msg)
 837{
 838	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 839	       function, cachep->name, msg);
 840	dump_stack();
 
 841}
 
 842
 843/*
 844 * By default on NUMA we use alien caches to stage the freeing of
 845 * objects allocated from other nodes. This causes massive memory
 846 * inefficiencies when using fake NUMA setup to split memory into a
 847 * large number of small nodes, so it can be disabled on the command
 848 * line
 849  */
 850
 851static int use_alien_caches __read_mostly = 1;
 852static int __init noaliencache_setup(char *s)
 853{
 854	use_alien_caches = 0;
 855	return 1;
 856}
 857__setup("noaliencache", noaliencache_setup);
 858
 859static int __init slab_max_order_setup(char *str)
 860{
 861	get_option(&str, &slab_max_order);
 862	slab_max_order = slab_max_order < 0 ? 0 :
 863				min(slab_max_order, MAX_ORDER - 1);
 864	slab_max_order_set = true;
 865
 866	return 1;
 867}
 868__setup("slab_max_order=", slab_max_order_setup);
 869
 870#ifdef CONFIG_NUMA
 871/*
 872 * Special reaping functions for NUMA systems called from cache_reap().
 873 * These take care of doing round robin flushing of alien caches (containing
 874 * objects freed on different nodes from which they were allocated) and the
 875 * flushing of remote pcps by calling drain_node_pages.
 876 */
 877static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 878
 879static void init_reap_node(int cpu)
 880{
 881	int node;
 882
 883	node = next_node(cpu_to_mem(cpu), node_online_map);
 884	if (node == MAX_NUMNODES)
 885		node = first_node(node_online_map);
 886
 887	per_cpu(slab_reap_node, cpu) = node;
 888}
 889
 890static void next_reap_node(void)
 891{
 892	int node = __this_cpu_read(slab_reap_node);
 893
 894	node = next_node(node, node_online_map);
 895	if (unlikely(node >= MAX_NUMNODES))
 896		node = first_node(node_online_map);
 897	__this_cpu_write(slab_reap_node, node);
 898}
 899
 900#else
 901#define init_reap_node(cpu) do { } while (0)
 902#define next_reap_node(void) do { } while (0)
 903#endif
 904
 905/*
 906 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 907 * via the workqueue/eventd.
 908 * Add the CPU number into the expiration time to minimize the possibility of
 909 * the CPUs getting into lockstep and contending for the global cache chain
 910 * lock.
 911 */
 912static void __cpuinit start_cpu_timer(int cpu)
 913{
 914	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 915
 916	/*
 917	 * When this gets called from do_initcalls via cpucache_init(),
 918	 * init_workqueues() has already run, so keventd will be setup
 919	 * at that time.
 920	 */
 921	if (keventd_up() && reap_work->work.func == NULL) {
 922		init_reap_node(cpu);
 923		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
 924		schedule_delayed_work_on(cpu, reap_work,
 925					__round_jiffies_relative(HZ, cpu));
 926	}
 927}
 928
 
 
 
 
 
 
 
 
 
 
 929static struct array_cache *alloc_arraycache(int node, int entries,
 930					    int batchcount, gfp_t gfp)
 931{
 932	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 933	struct array_cache *nc = NULL;
 934
 935	nc = kmalloc_node(memsize, gfp, node);
 936	/*
 937	 * The array_cache structures contain pointers to free object.
 938	 * However, when such objects are allocated or transferred to another
 939	 * cache the pointers are not cleared and they could be counted as
 940	 * valid references during a kmemleak scan. Therefore, kmemleak must
 941	 * not scan such objects.
 942	 */
 943	kmemleak_no_scan(nc);
 944	if (nc) {
 945		nc->avail = 0;
 946		nc->limit = entries;
 947		nc->batchcount = batchcount;
 948		nc->touched = 0;
 949		spin_lock_init(&nc->lock);
 950	}
 951	return nc;
 
 
 
 
 
 
 
 
 
 
 
 952}
 953
 954/*
 955 * Transfer objects in one arraycache to another.
 956 * Locking must be handled by the caller.
 957 *
 958 * Return the number of entries transferred.
 959 */
 960static int transfer_objects(struct array_cache *to,
 961		struct array_cache *from, unsigned int max)
 962{
 963	/* Figure out how many entries to transfer */
 964	int nr = min3(from->avail, max, to->limit - to->avail);
 965
 966	if (!nr)
 967		return 0;
 968
 969	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 970			sizeof(void *) *nr);
 971
 972	from->avail -= nr;
 973	to->avail += nr;
 974	return nr;
 975}
 976
 
 
 
 
 
 
 
 
 
 
 977#ifndef CONFIG_NUMA
 978
 979#define drain_alien_cache(cachep, alien) do { } while (0)
 980#define reap_alien(cachep, l3) do { } while (0)
 981
 982static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 
 983{
 984	return (struct array_cache **)BAD_ALIEN_MAGIC;
 985}
 986
 987static inline void free_alien_cache(struct array_cache **ac_ptr)
 988{
 989}
 990
 991static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 992{
 993	return 0;
 994}
 995
 996static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 997		gfp_t flags)
 998{
 999	return NULL;
1000}
1001
1002static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1003		 gfp_t flags, int nodeid)
1004{
1005	return NULL;
1006}
1007
1008#else	/* CONFIG_NUMA */
1009
1010static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1011static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1014{
1015	struct array_cache **ac_ptr;
1016	int memsize = sizeof(void *) * nr_node_ids;
1017	int i;
1018
1019	if (limit > 1)
1020		limit = 12;
1021	ac_ptr = kzalloc_node(memsize, gfp, node);
1022	if (ac_ptr) {
1023		for_each_node(i) {
1024			if (i == node || !node_online(i))
1025				continue;
1026			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1027			if (!ac_ptr[i]) {
1028				for (i--; i >= 0; i--)
1029					kfree(ac_ptr[i]);
1030				kfree(ac_ptr);
1031				return NULL;
1032			}
 
1033		}
1034	}
1035	return ac_ptr;
1036}
1037
1038static void free_alien_cache(struct array_cache **ac_ptr)
1039{
1040	int i;
1041
1042	if (!ac_ptr)
1043		return;
1044	for_each_node(i)
1045	    kfree(ac_ptr[i]);
1046	kfree(ac_ptr);
1047}
1048
1049static void __drain_alien_cache(struct kmem_cache *cachep,
1050				struct array_cache *ac, int node)
 
1051{
1052	struct kmem_list3 *rl3 = cachep->nodelists[node];
1053
1054	if (ac->avail) {
1055		spin_lock(&rl3->list_lock);
1056		/*
1057		 * Stuff objects into the remote nodes shared array first.
1058		 * That way we could avoid the overhead of putting the objects
1059		 * into the free lists and getting them back later.
1060		 */
1061		if (rl3->shared)
1062			transfer_objects(rl3->shared, ac, ac->limit);
1063
1064		free_block(cachep, ac->entry, ac->avail, node);
1065		ac->avail = 0;
1066		spin_unlock(&rl3->list_lock);
1067	}
1068}
1069
1070/*
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1072 */
1073static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1074{
1075	int node = __this_cpu_read(slab_reap_node);
1076
1077	if (l3->alien) {
1078		struct array_cache *ac = l3->alien[node];
1079
1080		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1081			__drain_alien_cache(cachep, ac, node);
1082			spin_unlock_irq(&ac->lock);
 
 
 
 
 
 
 
1083		}
1084	}
1085}
1086
1087static void drain_alien_cache(struct kmem_cache *cachep,
1088				struct array_cache **alien)
1089{
1090	int i = 0;
 
1091	struct array_cache *ac;
1092	unsigned long flags;
1093
1094	for_each_online_node(i) {
1095		ac = alien[i];
1096		if (ac) {
1097			spin_lock_irqsave(&ac->lock, flags);
1098			__drain_alien_cache(cachep, ac, i);
1099			spin_unlock_irqrestore(&ac->lock, flags);
 
 
 
 
1100		}
1101	}
1102}
1103
1104static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 
1105{
1106	struct slab *slabp = virt_to_slab(objp);
1107	int nodeid = slabp->nodeid;
1108	struct kmem_list3 *l3;
1109	struct array_cache *alien = NULL;
1110	int node;
1111
1112	node = numa_mem_id();
1113
1114	/*
1115	 * Make sure we are not freeing a object from another node to the array
1116	 * cache on this cpu.
1117	 */
1118	if (likely(slabp->nodeid == node))
1119		return 0;
1120
1121	l3 = cachep->nodelists[node];
1122	STATS_INC_NODEFREES(cachep);
1123	if (l3->alien && l3->alien[nodeid]) {
1124		alien = l3->alien[nodeid];
 
1125		spin_lock(&alien->lock);
1126		if (unlikely(alien->avail == alien->limit)) {
1127			STATS_INC_ACOVERFLOW(cachep);
1128			__drain_alien_cache(cachep, alien, nodeid);
1129		}
1130		alien->entry[alien->avail++] = objp;
1131		spin_unlock(&alien->lock);
 
1132	} else {
1133		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1134		free_block(cachep, &objp, 1, nodeid);
1135		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
 
 
1136	}
1137	return 1;
1138}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139#endif
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141/*
1142 * Allocates and initializes nodelists for a node on each slab cache, used for
1143 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1144 * will be allocated off-node since memory is not yet online for the new node.
1145 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1146 * already in use.
1147 *
1148 * Must hold cache_chain_mutex.
1149 */
1150static int init_cache_nodelists_node(int node)
1151{
 
1152	struct kmem_cache *cachep;
1153	struct kmem_list3 *l3;
1154	const int memsize = sizeof(struct kmem_list3);
1155
1156	list_for_each_entry(cachep, &cache_chain, next) {
1157		/*
1158		 * Set up the size64 kmemlist for cpu before we can
1159		 * begin anything. Make sure some other cpu on this
1160		 * node has not already allocated this
1161		 */
1162		if (!cachep->nodelists[node]) {
1163			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1164			if (!l3)
1165				return -ENOMEM;
1166			kmem_list3_init(l3);
1167			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1168			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169
1170			/*
1171			 * The l3s don't come and go as CPUs come and
1172			 * go.  cache_chain_mutex is sufficient
1173			 * protection here.
1174			 */
1175			cachep->nodelists[node] = l3;
1176		}
1177
1178		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1179		cachep->nodelists[node]->free_limit =
1180			(1 + nr_cpus_node(node)) *
1181			cachep->batchcount + cachep->num;
1182		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1183	}
1184	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
1186
1187static void __cpuinit cpuup_canceled(long cpu)
 
 
1188{
1189	struct kmem_cache *cachep;
1190	struct kmem_list3 *l3 = NULL;
1191	int node = cpu_to_mem(cpu);
1192	const struct cpumask *mask = cpumask_of_node(node);
1193
1194	list_for_each_entry(cachep, &cache_chain, next) {
1195		struct array_cache *nc;
1196		struct array_cache *shared;
1197		struct array_cache **alien;
 
 
 
 
 
 
 
 
 
 
1198
1199		/* cpu is dead; no one can alloc from it. */
1200		nc = cachep->array[cpu];
1201		cachep->array[cpu] = NULL;
1202		l3 = cachep->nodelists[node];
1203
1204		if (!l3)
1205			goto free_array_cache;
1206
1207		spin_lock_irq(&l3->list_lock);
1208
1209		/* Free limit for this kmem_list3 */
1210		l3->free_limit -= cachep->batchcount;
1211		if (nc)
1212			free_block(cachep, nc->entry, nc->avail, node);
1213
1214		if (!cpumask_empty(mask)) {
1215			spin_unlock_irq(&l3->list_lock);
1216			goto free_array_cache;
1217		}
1218
1219		shared = l3->shared;
1220		if (shared) {
1221			free_block(cachep, shared->entry,
1222				   shared->avail, node);
1223			l3->shared = NULL;
1224		}
1225
1226		alien = l3->alien;
1227		l3->alien = NULL;
1228
1229		spin_unlock_irq(&l3->list_lock);
1230
1231		kfree(shared);
1232		if (alien) {
1233			drain_alien_cache(cachep, alien);
1234			free_alien_cache(alien);
1235		}
1236free_array_cache:
1237		kfree(nc);
 
1238	}
1239	/*
1240	 * In the previous loop, all the objects were freed to
1241	 * the respective cache's slabs,  now we can go ahead and
1242	 * shrink each nodelist to its limit.
1243	 */
1244	list_for_each_entry(cachep, &cache_chain, next) {
1245		l3 = cachep->nodelists[node];
1246		if (!l3)
1247			continue;
1248		drain_freelist(cachep, l3, l3->free_objects);
1249	}
1250}
1251
1252static int __cpuinit cpuup_prepare(long cpu)
1253{
1254	struct kmem_cache *cachep;
1255	struct kmem_list3 *l3 = NULL;
1256	int node = cpu_to_mem(cpu);
1257	int err;
1258
1259	/*
1260	 * We need to do this right in the beginning since
1261	 * alloc_arraycache's are going to use this list.
1262	 * kmalloc_node allows us to add the slab to the right
1263	 * kmem_list3 and not this cpu's kmem_list3
1264	 */
1265	err = init_cache_nodelists_node(node);
1266	if (err < 0)
1267		goto bad;
1268
1269	/*
1270	 * Now we can go ahead with allocating the shared arrays and
1271	 * array caches
1272	 */
1273	list_for_each_entry(cachep, &cache_chain, next) {
1274		struct array_cache *nc;
1275		struct array_cache *shared = NULL;
1276		struct array_cache **alien = NULL;
1277
1278		nc = alloc_arraycache(node, cachep->limit,
1279					cachep->batchcount, GFP_KERNEL);
1280		if (!nc)
1281			goto bad;
1282		if (cachep->shared) {
1283			shared = alloc_arraycache(node,
1284				cachep->shared * cachep->batchcount,
1285				0xbaadf00d, GFP_KERNEL);
1286			if (!shared) {
1287				kfree(nc);
1288				goto bad;
1289			}
1290		}
1291		if (use_alien_caches) {
1292			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1293			if (!alien) {
1294				kfree(shared);
1295				kfree(nc);
1296				goto bad;
1297			}
1298		}
1299		cachep->array[cpu] = nc;
1300		l3 = cachep->nodelists[node];
1301		BUG_ON(!l3);
1302
1303		spin_lock_irq(&l3->list_lock);
1304		if (!l3->shared) {
1305			/*
1306			 * We are serialised from CPU_DEAD or
1307			 * CPU_UP_CANCELLED by the cpucontrol lock
1308			 */
1309			l3->shared = shared;
1310			shared = NULL;
1311		}
1312#ifdef CONFIG_NUMA
1313		if (!l3->alien) {
1314			l3->alien = alien;
1315			alien = NULL;
1316		}
1317#endif
1318		spin_unlock_irq(&l3->list_lock);
1319		kfree(shared);
1320		free_alien_cache(alien);
1321		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1322			slab_set_debugobj_lock_classes_node(cachep, node);
1323	}
1324	init_node_lock_keys(node);
1325
1326	return 0;
1327bad:
1328	cpuup_canceled(cpu);
1329	return -ENOMEM;
1330}
1331
1332static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1333				    unsigned long action, void *hcpu)
1334{
1335	long cpu = (long)hcpu;
1336	int err = 0;
 
 
 
 
 
1337
1338	switch (action) {
1339	case CPU_UP_PREPARE:
1340	case CPU_UP_PREPARE_FROZEN:
1341		mutex_lock(&cache_chain_mutex);
1342		err = cpuup_prepare(cpu);
1343		mutex_unlock(&cache_chain_mutex);
1344		break;
1345	case CPU_ONLINE:
1346	case CPU_ONLINE_FROZEN:
1347		start_cpu_timer(cpu);
1348		break;
1349#ifdef CONFIG_HOTPLUG_CPU
1350  	case CPU_DOWN_PREPARE:
1351  	case CPU_DOWN_PREPARE_FROZEN:
1352		/*
1353		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1354		 * held so that if cache_reap() is invoked it cannot do
1355		 * anything expensive but will only modify reap_work
1356		 * and reschedule the timer.
1357		*/
1358		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1359		/* Now the cache_reaper is guaranteed to be not running. */
1360		per_cpu(slab_reap_work, cpu).work.func = NULL;
1361  		break;
1362  	case CPU_DOWN_FAILED:
1363  	case CPU_DOWN_FAILED_FROZEN:
1364		start_cpu_timer(cpu);
1365  		break;
1366	case CPU_DEAD:
1367	case CPU_DEAD_FROZEN:
1368		/*
1369		 * Even if all the cpus of a node are down, we don't free the
1370		 * kmem_list3 of any cache. This to avoid a race between
1371		 * cpu_down, and a kmalloc allocation from another cpu for
1372		 * memory from the node of the cpu going down.  The list3
1373		 * structure is usually allocated from kmem_cache_create() and
1374		 * gets destroyed at kmem_cache_destroy().
1375		 */
1376		/* fall through */
1377#endif
1378	case CPU_UP_CANCELED:
1379	case CPU_UP_CANCELED_FROZEN:
1380		mutex_lock(&cache_chain_mutex);
1381		cpuup_canceled(cpu);
1382		mutex_unlock(&cache_chain_mutex);
1383		break;
1384	}
1385	return notifier_from_errno(err);
1386}
1387
1388static struct notifier_block __cpuinitdata cpucache_notifier = {
1389	&cpuup_callback, NULL, 0
1390};
 
 
 
 
 
 
 
 
 
 
1391
1392#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1393/*
1394 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1395 * Returns -EBUSY if all objects cannot be drained so that the node is not
1396 * removed.
1397 *
1398 * Must hold cache_chain_mutex.
1399 */
1400static int __meminit drain_cache_nodelists_node(int node)
1401{
1402	struct kmem_cache *cachep;
1403	int ret = 0;
1404
1405	list_for_each_entry(cachep, &cache_chain, next) {
1406		struct kmem_list3 *l3;
1407
1408		l3 = cachep->nodelists[node];
1409		if (!l3)
1410			continue;
1411
1412		drain_freelist(cachep, l3, l3->free_objects);
1413
1414		if (!list_empty(&l3->slabs_full) ||
1415		    !list_empty(&l3->slabs_partial)) {
1416			ret = -EBUSY;
1417			break;
1418		}
1419	}
1420	return ret;
1421}
1422
1423static int __meminit slab_memory_callback(struct notifier_block *self,
1424					unsigned long action, void *arg)
1425{
1426	struct memory_notify *mnb = arg;
1427	int ret = 0;
1428	int nid;
1429
1430	nid = mnb->status_change_nid;
1431	if (nid < 0)
1432		goto out;
1433
1434	switch (action) {
1435	case MEM_GOING_ONLINE:
1436		mutex_lock(&cache_chain_mutex);
1437		ret = init_cache_nodelists_node(nid);
1438		mutex_unlock(&cache_chain_mutex);
1439		break;
1440	case MEM_GOING_OFFLINE:
1441		mutex_lock(&cache_chain_mutex);
1442		ret = drain_cache_nodelists_node(nid);
1443		mutex_unlock(&cache_chain_mutex);
1444		break;
1445	case MEM_ONLINE:
1446	case MEM_OFFLINE:
1447	case MEM_CANCEL_ONLINE:
1448	case MEM_CANCEL_OFFLINE:
1449		break;
1450	}
1451out:
1452	return notifier_from_errno(ret);
1453}
1454#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1455
1456/*
1457 * swap the static kmem_list3 with kmalloced memory
1458 */
1459static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1460				int nodeid)
1461{
1462	struct kmem_list3 *ptr;
1463
1464	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1465	BUG_ON(!ptr);
1466
1467	memcpy(ptr, list, sizeof(struct kmem_list3));
1468	/*
1469	 * Do not assume that spinlocks can be initialized via memcpy:
1470	 */
1471	spin_lock_init(&ptr->list_lock);
1472
1473	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1474	cachep->nodelists[nodeid] = ptr;
1475}
1476
1477/*
1478 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1479 * size of kmem_list3.
1480 */
1481static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1482{
1483	int node;
1484
1485	for_each_online_node(node) {
1486		cachep->nodelists[node] = &initkmem_list3[index + node];
1487		cachep->nodelists[node]->next_reap = jiffies +
1488		    REAPTIMEOUT_LIST3 +
1489		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1490	}
1491}
1492
1493/*
1494 * Initialisation.  Called after the page allocator have been initialised and
1495 * before smp_init().
1496 */
1497void __init kmem_cache_init(void)
1498{
1499	size_t left_over;
1500	struct cache_sizes *sizes;
1501	struct cache_names *names;
1502	int i;
1503	int order;
1504	int node;
1505
1506	if (num_possible_nodes() == 1)
 
 
1507		use_alien_caches = 0;
1508
1509	for (i = 0; i < NUM_INIT_LISTS; i++) {
1510		kmem_list3_init(&initkmem_list3[i]);
1511		if (i < MAX_NUMNODES)
1512			cache_cache.nodelists[i] = NULL;
1513	}
1514	set_up_list3s(&cache_cache, CACHE_CACHE);
1515
1516	/*
1517	 * Fragmentation resistance on low memory - only use bigger
1518	 * page orders on machines with more than 32MB of memory if
1519	 * not overridden on the command line.
1520	 */
1521	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1522		slab_max_order = SLAB_MAX_ORDER_HI;
1523
1524	/* Bootstrap is tricky, because several objects are allocated
1525	 * from caches that do not exist yet:
1526	 * 1) initialize the cache_cache cache: it contains the struct
1527	 *    kmem_cache structures of all caches, except cache_cache itself:
1528	 *    cache_cache is statically allocated.
1529	 *    Initially an __init data area is used for the head array and the
1530	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1531	 *    array at the end of the bootstrap.
1532	 * 2) Create the first kmalloc cache.
1533	 *    The struct kmem_cache for the new cache is allocated normally.
1534	 *    An __init data area is used for the head array.
1535	 * 3) Create the remaining kmalloc caches, with minimally sized
1536	 *    head arrays.
1537	 * 4) Replace the __init data head arrays for cache_cache and the first
1538	 *    kmalloc cache with kmalloc allocated arrays.
1539	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1540	 *    the other cache's with kmalloc allocated memory.
1541	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1542	 */
1543
1544	node = numa_mem_id();
1545
1546	/* 1) create the cache_cache */
1547	INIT_LIST_HEAD(&cache_chain);
1548	list_add(&cache_cache.next, &cache_chain);
1549	cache_cache.colour_off = cache_line_size();
1550	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1551	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1552
1553	/*
1554	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1555	 */
1556	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1557				  nr_node_ids * sizeof(struct kmem_list3 *);
1558#if DEBUG
1559	cache_cache.obj_size = cache_cache.buffer_size;
1560#endif
1561	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1562					cache_line_size());
1563	cache_cache.reciprocal_buffer_size =
1564		reciprocal_value(cache_cache.buffer_size);
1565
1566	for (order = 0; order < MAX_ORDER; order++) {
1567		cache_estimate(order, cache_cache.buffer_size,
1568			cache_line_size(), 0, &left_over, &cache_cache.num);
1569		if (cache_cache.num)
1570			break;
1571	}
1572	BUG_ON(!cache_cache.num);
1573	cache_cache.gfporder = order;
1574	cache_cache.colour = left_over / cache_cache.colour_off;
1575	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1576				      sizeof(struct slab), cache_line_size());
1577
1578	/* 2+3) create the kmalloc caches */
1579	sizes = malloc_sizes;
1580	names = cache_names;
1581
1582	/*
1583	 * Initialize the caches that provide memory for the array cache and the
1584	 * kmem_list3 structures first.  Without this, further allocations will
1585	 * bug.
1586	 */
1587
1588	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1589					sizes[INDEX_AC].cs_size,
1590					ARCH_KMALLOC_MINALIGN,
1591					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1592					NULL);
1593
1594	if (INDEX_AC != INDEX_L3) {
1595		sizes[INDEX_L3].cs_cachep =
1596			kmem_cache_create(names[INDEX_L3].name,
1597				sizes[INDEX_L3].cs_size,
1598				ARCH_KMALLOC_MINALIGN,
1599				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1600				NULL);
1601	}
1602
1603	slab_early_init = 0;
1604
1605	while (sizes->cs_size != ULONG_MAX) {
1606		/*
1607		 * For performance, all the general caches are L1 aligned.
1608		 * This should be particularly beneficial on SMP boxes, as it
1609		 * eliminates "false sharing".
1610		 * Note for systems short on memory removing the alignment will
1611		 * allow tighter packing of the smaller caches.
1612		 */
1613		if (!sizes->cs_cachep) {
1614			sizes->cs_cachep = kmem_cache_create(names->name,
1615					sizes->cs_size,
1616					ARCH_KMALLOC_MINALIGN,
1617					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1618					NULL);
1619		}
1620#ifdef CONFIG_ZONE_DMA
1621		sizes->cs_dmacachep = kmem_cache_create(
1622					names->name_dma,
1623					sizes->cs_size,
1624					ARCH_KMALLOC_MINALIGN,
1625					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1626						SLAB_PANIC,
1627					NULL);
1628#endif
1629		sizes++;
1630		names++;
1631	}
1632	/* 4) Replace the bootstrap head arrays */
1633	{
1634		struct array_cache *ptr;
1635
1636		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1637
1638		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1639		memcpy(ptr, cpu_cache_get(&cache_cache),
1640		       sizeof(struct arraycache_init));
1641		/*
1642		 * Do not assume that spinlocks can be initialized via memcpy:
1643		 */
1644		spin_lock_init(&ptr->lock);
1645
1646		cache_cache.array[smp_processor_id()] = ptr;
1647
1648		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1649
1650		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1651		       != &initarray_generic.cache);
1652		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1653		       sizeof(struct arraycache_init));
1654		/*
1655		 * Do not assume that spinlocks can be initialized via memcpy:
1656		 */
1657		spin_lock_init(&ptr->lock);
1658
1659		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1660		    ptr;
1661	}
1662	/* 5) Replace the bootstrap kmem_list3's */
1663	{
1664		int nid;
1665
1666		for_each_online_node(nid) {
1667			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1668
1669			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1670				  &initkmem_list3[SIZE_AC + nid], nid);
1671
1672			if (INDEX_AC != INDEX_L3) {
1673				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1674					  &initkmem_list3[SIZE_L3 + nid], nid);
1675			}
1676		}
1677	}
1678
1679	g_cpucache_up = EARLY;
1680}
1681
1682void __init kmem_cache_init_late(void)
1683{
1684	struct kmem_cache *cachep;
1685
1686	g_cpucache_up = LATE;
1687
1688	/* Annotate slab for lockdep -- annotate the malloc caches */
1689	init_lock_keys();
1690
1691	/* 6) resize the head arrays to their final sizes */
1692	mutex_lock(&cache_chain_mutex);
1693	list_for_each_entry(cachep, &cache_chain, next)
1694		if (enable_cpucache(cachep, GFP_NOWAIT))
1695			BUG();
1696	mutex_unlock(&cache_chain_mutex);
1697
1698	/* Done! */
1699	g_cpucache_up = FULL;
1700
1701	/*
1702	 * Register a cpu startup notifier callback that initializes
1703	 * cpu_cache_get for all new cpus
1704	 */
1705	register_cpu_notifier(&cpucache_notifier);
1706
1707#ifdef CONFIG_NUMA
1708	/*
1709	 * Register a memory hotplug callback that initializes and frees
1710	 * nodelists.
1711	 */
1712	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1713#endif
1714
1715	/*
1716	 * The reap timers are started later, with a module init call: That part
1717	 * of the kernel is not yet operational.
1718	 */
1719}
1720
1721static int __init cpucache_init(void)
1722{
1723	int cpu;
1724
1725	/*
1726	 * Register the timers that return unneeded pages to the page allocator
1727	 */
1728	for_each_online_cpu(cpu)
1729		start_cpu_timer(cpu);
 
 
1730	return 0;
1731}
1732__initcall(cpucache_init);
1733
1734static noinline void
1735slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1736{
1737	struct kmem_list3 *l3;
1738	struct slab *slabp;
1739	unsigned long flags;
1740	int node;
 
 
 
 
 
1741
1742	printk(KERN_WARNING
1743		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1744		nodeid, gfpflags);
1745	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1746		cachep->name, cachep->buffer_size, cachep->gfporder);
1747
1748	for_each_online_node(node) {
1749		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1750		unsigned long active_slabs = 0, num_slabs = 0;
1751
1752		l3 = cachep->nodelists[node];
1753		if (!l3)
1754			continue;
 
 
1755
1756		spin_lock_irqsave(&l3->list_lock, flags);
1757		list_for_each_entry(slabp, &l3->slabs_full, list) {
1758			active_objs += cachep->num;
1759			active_slabs++;
1760		}
1761		list_for_each_entry(slabp, &l3->slabs_partial, list) {
1762			active_objs += slabp->inuse;
1763			active_slabs++;
1764		}
1765		list_for_each_entry(slabp, &l3->slabs_free, list)
1766			num_slabs++;
1767
1768		free_objects += l3->free_objects;
1769		spin_unlock_irqrestore(&l3->list_lock, flags);
1770
1771		num_slabs += active_slabs;
1772		num_objs = num_slabs * cachep->num;
1773		printk(KERN_WARNING
1774			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1775			node, active_slabs, num_slabs, active_objs, num_objs,
1776			free_objects);
1777	}
 
1778}
1779
1780/*
1781 * Interface to system's page allocator. No need to hold the cache-lock.
 
1782 *
1783 * If we requested dmaable memory, we will get it. Even if we
1784 * did not request dmaable memory, we might get it, but that
1785 * would be relatively rare and ignorable.
1786 */
1787static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
1788{
1789	struct page *page;
1790	int nr_pages;
1791	int i;
1792
1793#ifndef CONFIG_MMU
1794	/*
1795	 * Nommu uses slab's for process anonymous memory allocations, and thus
1796	 * requires __GFP_COMP to properly refcount higher order allocations
1797	 */
1798	flags |= __GFP_COMP;
1799#endif
1800
1801	flags |= cachep->gfpflags;
1802	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1803		flags |= __GFP_RECLAIMABLE;
1804
1805	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1806	if (!page) {
1807		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1808			slab_out_of_memory(cachep, flags, nodeid);
1809		return NULL;
1810	}
1811
1812	nr_pages = (1 << cachep->gfporder);
1813	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1814		add_zone_page_state(page_zone(page),
1815			NR_SLAB_RECLAIMABLE, nr_pages);
1816	else
1817		add_zone_page_state(page_zone(page),
1818			NR_SLAB_UNRECLAIMABLE, nr_pages);
1819	for (i = 0; i < nr_pages; i++)
1820		__SetPageSlab(page + i);
1821
1822	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1823		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1824
1825		if (cachep->ctor)
1826			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1827		else
1828			kmemcheck_mark_unallocated_pages(page, nr_pages);
1829	}
 
 
1830
1831	return page_address(page);
1832}
1833
1834/*
1835 * Interface to system's page release.
1836 */
1837static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1838{
1839	unsigned long i = (1 << cachep->gfporder);
1840	struct page *page = virt_to_page(addr);
1841	const unsigned long nr_freed = i;
1842
1843	kmemcheck_free_shadow(page, cachep->gfporder);
 
 
 
 
 
 
1844
1845	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1846		sub_zone_page_state(page_zone(page),
1847				NR_SLAB_RECLAIMABLE, nr_freed);
1848	else
1849		sub_zone_page_state(page_zone(page),
1850				NR_SLAB_UNRECLAIMABLE, nr_freed);
1851	while (i--) {
1852		BUG_ON(!PageSlab(page));
1853		__ClearPageSlab(page);
1854		page++;
1855	}
1856	if (current->reclaim_state)
1857		current->reclaim_state->reclaimed_slab += nr_freed;
1858	free_pages((unsigned long)addr, cachep->gfporder);
 
1859}
1860
1861static void kmem_rcu_free(struct rcu_head *head)
1862{
1863	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1864	struct kmem_cache *cachep = slab_rcu->cachep;
1865
1866	kmem_freepages(cachep, slab_rcu->addr);
1867	if (OFF_SLAB(cachep))
1868		kmem_cache_free(cachep->slabp_cache, slab_rcu);
 
1869}
1870
1871#if DEBUG
 
 
 
 
 
 
 
 
1872
1873#ifdef CONFIG_DEBUG_PAGEALLOC
1874static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1875			    unsigned long caller)
1876{
1877	int size = obj_size(cachep);
1878
1879	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1880
1881	if (size < 5 * sizeof(unsigned long))
1882		return;
1883
1884	*addr++ = 0x12345678;
1885	*addr++ = caller;
1886	*addr++ = smp_processor_id();
1887	size -= 3 * sizeof(unsigned long);
1888	{
1889		unsigned long *sptr = &caller;
1890		unsigned long svalue;
1891
1892		while (!kstack_end(sptr)) {
1893			svalue = *sptr++;
1894			if (kernel_text_address(svalue)) {
1895				*addr++ = svalue;
1896				size -= sizeof(unsigned long);
1897				if (size <= sizeof(unsigned long))
1898					break;
1899			}
1900		}
1901
1902	}
1903	*addr++ = 0x87654321;
1904}
1905#endif
1906
1907static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1908{
1909	int size = obj_size(cachep);
1910	addr = &((char *)addr)[obj_offset(cachep)];
1911
1912	memset(addr, val, size);
1913	*(unsigned char *)(addr + size - 1) = POISON_END;
1914}
1915
1916static void dump_line(char *data, int offset, int limit)
1917{
1918	int i;
1919	unsigned char error = 0;
1920	int bad_count = 0;
1921
1922	printk(KERN_ERR "%03x: ", offset);
1923	for (i = 0; i < limit; i++) {
1924		if (data[offset + i] != POISON_FREE) {
1925			error = data[offset + i];
1926			bad_count++;
1927		}
1928	}
1929	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1930			&data[offset], limit, 1);
1931
1932	if (bad_count == 1) {
1933		error ^= POISON_FREE;
1934		if (!(error & (error - 1))) {
1935			printk(KERN_ERR "Single bit error detected. Probably "
1936					"bad RAM.\n");
1937#ifdef CONFIG_X86
1938			printk(KERN_ERR "Run memtest86+ or a similar memory "
1939					"test tool.\n");
1940#else
1941			printk(KERN_ERR "Run a memory test tool.\n");
1942#endif
1943		}
1944	}
1945}
1946#endif
1947
1948#if DEBUG
1949
1950static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1951{
1952	int i, size;
1953	char *realobj;
1954
1955	if (cachep->flags & SLAB_RED_ZONE) {
1956		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1957			*dbg_redzone1(cachep, objp),
1958			*dbg_redzone2(cachep, objp));
1959	}
1960
1961	if (cachep->flags & SLAB_STORE_USER) {
1962		printk(KERN_ERR "Last user: [<%p>]",
1963			*dbg_userword(cachep, objp));
1964		print_symbol("(%s)",
1965				(unsigned long)*dbg_userword(cachep, objp));
1966		printk("\n");
1967	}
1968	realobj = (char *)objp + obj_offset(cachep);
1969	size = obj_size(cachep);
1970	for (i = 0; i < size && lines; i += 16, lines--) {
1971		int limit;
1972		limit = 16;
1973		if (i + limit > size)
1974			limit = size - i;
1975		dump_line(realobj, i, limit);
1976	}
1977}
1978
1979static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1980{
1981	char *realobj;
1982	int size, i;
1983	int lines = 0;
1984
 
 
 
1985	realobj = (char *)objp + obj_offset(cachep);
1986	size = obj_size(cachep);
1987
1988	for (i = 0; i < size; i++) {
1989		char exp = POISON_FREE;
1990		if (i == size - 1)
1991			exp = POISON_END;
1992		if (realobj[i] != exp) {
1993			int limit;
1994			/* Mismatch ! */
1995			/* Print header */
1996			if (lines == 0) {
1997				printk(KERN_ERR
1998					"Slab corruption (%s): %s start=%p, len=%d\n",
1999					print_tainted(), cachep->name, realobj, size);
2000				print_objinfo(cachep, objp, 0);
2001			}
2002			/* Hexdump the affected line */
2003			i = (i / 16) * 16;
2004			limit = 16;
2005			if (i + limit > size)
2006				limit = size - i;
2007			dump_line(realobj, i, limit);
2008			i += 16;
2009			lines++;
2010			/* Limit to 5 lines */
2011			if (lines > 5)
2012				break;
2013		}
2014	}
2015	if (lines != 0) {
2016		/* Print some data about the neighboring objects, if they
2017		 * exist:
2018		 */
2019		struct slab *slabp = virt_to_slab(objp);
2020		unsigned int objnr;
2021
2022		objnr = obj_to_index(cachep, slabp, objp);
2023		if (objnr) {
2024			objp = index_to_obj(cachep, slabp, objnr - 1);
2025			realobj = (char *)objp + obj_offset(cachep);
2026			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2027			       realobj, size);
2028			print_objinfo(cachep, objp, 2);
2029		}
2030		if (objnr + 1 < cachep->num) {
2031			objp = index_to_obj(cachep, slabp, objnr + 1);
2032			realobj = (char *)objp + obj_offset(cachep);
2033			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2034			       realobj, size);
2035			print_objinfo(cachep, objp, 2);
2036		}
2037	}
2038}
2039#endif
2040
2041#if DEBUG
2042static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
 
2043{
2044	int i;
 
 
 
 
 
 
2045	for (i = 0; i < cachep->num; i++) {
2046		void *objp = index_to_obj(cachep, slabp, i);
2047
2048		if (cachep->flags & SLAB_POISON) {
2049#ifdef CONFIG_DEBUG_PAGEALLOC
2050			if (cachep->buffer_size % PAGE_SIZE == 0 &&
2051					OFF_SLAB(cachep))
2052				kernel_map_pages(virt_to_page(objp),
2053					cachep->buffer_size / PAGE_SIZE, 1);
2054			else
2055				check_poison_obj(cachep, objp);
2056#else
2057			check_poison_obj(cachep, objp);
2058#endif
2059		}
2060		if (cachep->flags & SLAB_RED_ZONE) {
2061			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2062				slab_error(cachep, "start of a freed object "
2063					   "was overwritten");
2064			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2065				slab_error(cachep, "end of a freed object "
2066					   "was overwritten");
2067		}
2068	}
2069}
2070#else
2071static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
 
2072{
2073}
2074#endif
2075
2076/**
2077 * slab_destroy - destroy and release all objects in a slab
2078 * @cachep: cache pointer being destroyed
2079 * @slabp: slab pointer being destroyed
2080 *
2081 * Destroy all the objs in a slab, and release the mem back to the system.
2082 * Before calling the slab must have been unlinked from the cache.  The
2083 * cache-lock is not held/needed.
2084 */
2085static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2086{
2087	void *addr = slabp->s_mem - slabp->colouroff;
2088
2089	slab_destroy_debugcheck(cachep, slabp);
2090	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2091		struct slab_rcu *slab_rcu;
 
 
 
2092
2093		slab_rcu = (struct slab_rcu *)slabp;
2094		slab_rcu->cachep = cachep;
2095		slab_rcu->addr = addr;
2096		call_rcu(&slab_rcu->head, kmem_rcu_free);
2097	} else {
2098		kmem_freepages(cachep, addr);
2099		if (OFF_SLAB(cachep))
2100			kmem_cache_free(cachep->slabp_cache, slabp);
2101	}
2102}
2103
2104static void __kmem_cache_destroy(struct kmem_cache *cachep)
 
 
 
 
2105{
2106	int i;
2107	struct kmem_list3 *l3;
2108
2109	for_each_online_cpu(i)
2110	    kfree(cachep->array[i]);
2111
2112	/* NUMA: free the list3 structures */
2113	for_each_online_node(i) {
2114		l3 = cachep->nodelists[i];
2115		if (l3) {
2116			kfree(l3->shared);
2117			free_alien_cache(l3->alien);
2118			kfree(l3);
2119		}
2120	}
2121	kmem_cache_free(&cache_cache, cachep);
2122}
2123
2124
2125/**
2126 * calculate_slab_order - calculate size (page order) of slabs
2127 * @cachep: pointer to the cache that is being created
2128 * @size: size of objects to be created in this cache.
2129 * @align: required alignment for the objects.
2130 * @flags: slab allocation flags
2131 *
2132 * Also calculates the number of objects per slab.
2133 *
2134 * This could be made much more intelligent.  For now, try to avoid using
2135 * high order pages for slabs.  When the gfp() functions are more friendly
2136 * towards high-order requests, this should be changed.
 
 
2137 */
2138static size_t calculate_slab_order(struct kmem_cache *cachep,
2139			size_t size, size_t align, unsigned long flags)
2140{
2141	unsigned long offslab_limit;
2142	size_t left_over = 0;
2143	int gfporder;
2144
2145	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2146		unsigned int num;
2147		size_t remainder;
2148
2149		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2150		if (!num)
2151			continue;
2152
 
 
 
 
2153		if (flags & CFLGS_OFF_SLAB) {
2154			/*
2155			 * Max number of objs-per-slab for caches which
2156			 * use off-slab slabs. Needed to avoid a possible
2157			 * looping condition in cache_grow().
2158			 */
2159			offslab_limit = size - sizeof(struct slab);
2160			offslab_limit /= sizeof(kmem_bufctl_t);
 
 
 
 
 
 
 
 
 
 
 
 
 
2161
2162 			if (num > offslab_limit)
2163				break;
 
2164		}
2165
2166		/* Found something acceptable - save it away */
2167		cachep->num = num;
2168		cachep->gfporder = gfporder;
2169		left_over = remainder;
2170
2171		/*
2172		 * A VFS-reclaimable slab tends to have most allocations
2173		 * as GFP_NOFS and we really don't want to have to be allocating
2174		 * higher-order pages when we are unable to shrink dcache.
2175		 */
2176		if (flags & SLAB_RECLAIM_ACCOUNT)
2177			break;
2178
2179		/*
2180		 * Large number of objects is good, but very large slabs are
2181		 * currently bad for the gfp()s.
2182		 */
2183		if (gfporder >= slab_max_order)
2184			break;
2185
2186		/*
2187		 * Acceptable internal fragmentation?
2188		 */
2189		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2190			break;
2191	}
2192	return left_over;
2193}
2194
2195static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
 
2196{
2197	if (g_cpucache_up == FULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2198		return enable_cpucache(cachep, gfp);
2199
2200	if (g_cpucache_up == NONE) {
2201		/*
2202		 * Note: the first kmem_cache_create must create the cache
2203		 * that's used by kmalloc(24), otherwise the creation of
2204		 * further caches will BUG().
2205		 */
2206		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2207
2208		/*
2209		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2210		 * the first cache, then we need to set up all its list3s,
2211		 * otherwise the creation of further caches will BUG().
2212		 */
2213		set_up_list3s(cachep, SIZE_AC);
2214		if (INDEX_AC == INDEX_L3)
2215			g_cpucache_up = PARTIAL_L3;
2216		else
2217			g_cpucache_up = PARTIAL_AC;
2218	} else {
2219		cachep->array[smp_processor_id()] =
2220			kmalloc(sizeof(struct arraycache_init), gfp);
2221
2222		if (g_cpucache_up == PARTIAL_AC) {
2223			set_up_list3s(cachep, SIZE_L3);
2224			g_cpucache_up = PARTIAL_L3;
2225		} else {
2226			int node;
2227			for_each_online_node(node) {
2228				cachep->nodelists[node] =
2229				    kmalloc_node(sizeof(struct kmem_list3),
2230						gfp, node);
2231				BUG_ON(!cachep->nodelists[node]);
2232				kmem_list3_init(cachep->nodelists[node]);
2233			}
2234		}
2235	}
2236	cachep->nodelists[numa_mem_id()]->next_reap =
2237			jiffies + REAPTIMEOUT_LIST3 +
2238			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 
2239
2240	cpu_cache_get(cachep)->avail = 0;
2241	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2242	cpu_cache_get(cachep)->batchcount = 1;
2243	cpu_cache_get(cachep)->touched = 0;
2244	cachep->batchcount = 1;
2245	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2246	return 0;
2247}
2248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249/**
2250 * kmem_cache_create - Create a cache.
2251 * @name: A string which is used in /proc/slabinfo to identify this cache.
2252 * @size: The size of objects to be created in this cache.
2253 * @align: The required alignment for the objects.
2254 * @flags: SLAB flags
2255 * @ctor: A constructor for the objects.
2256 *
2257 * Returns a ptr to the cache on success, NULL on failure.
2258 * Cannot be called within a int, but can be interrupted.
2259 * The @ctor is run when new pages are allocated by the cache.
2260 *
2261 * @name must be valid until the cache is destroyed. This implies that
2262 * the module calling this has to destroy the cache before getting unloaded.
2263 *
2264 * The flags are
2265 *
2266 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2267 * to catch references to uninitialised memory.
2268 *
2269 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2270 * for buffer overruns.
2271 *
2272 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2273 * cacheline.  This can be beneficial if you're counting cycles as closely
2274 * as davem.
 
 
2275 */
2276struct kmem_cache *
2277kmem_cache_create (const char *name, size_t size, size_t align,
2278	unsigned long flags, void (*ctor)(void *))
2279{
2280	size_t left_over, slab_size, ralign;
2281	struct kmem_cache *cachep = NULL, *pc;
2282	gfp_t gfp;
2283
2284	/*
2285	 * Sanity checks... these are all serious usage bugs.
2286	 */
2287	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2288	    size > KMALLOC_MAX_SIZE) {
2289		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2290				name);
2291		BUG();
2292	}
2293
2294	/*
2295	 * We use cache_chain_mutex to ensure a consistent view of
2296	 * cpu_online_mask as well.  Please see cpuup_callback
2297	 */
2298	if (slab_is_available()) {
2299		get_online_cpus();
2300		mutex_lock(&cache_chain_mutex);
2301	}
2302
2303	list_for_each_entry(pc, &cache_chain, next) {
2304		char tmp;
2305		int res;
2306
2307		/*
2308		 * This happens when the module gets unloaded and doesn't
2309		 * destroy its slab cache and no-one else reuses the vmalloc
2310		 * area of the module.  Print a warning.
2311		 */
2312		res = probe_kernel_address(pc->name, tmp);
2313		if (res) {
2314			printk(KERN_ERR
2315			       "SLAB: cache with size %d has lost its name\n",
2316			       pc->buffer_size);
2317			continue;
2318		}
2319
2320		if (!strcmp(pc->name, name)) {
2321			printk(KERN_ERR
2322			       "kmem_cache_create: duplicate cache %s\n", name);
2323			dump_stack();
2324			goto oops;
2325		}
2326	}
2327
2328#if DEBUG
2329	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2330#if FORCED_DEBUG
2331	/*
2332	 * Enable redzoning and last user accounting, except for caches with
2333	 * large objects, if the increased size would increase the object size
2334	 * above the next power of two: caches with object sizes just above a
2335	 * power of two have a significant amount of internal fragmentation.
2336	 */
2337	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2338						2 * sizeof(unsigned long long)))
2339		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2340	if (!(flags & SLAB_DESTROY_BY_RCU))
2341		flags |= SLAB_POISON;
2342#endif
2343	if (flags & SLAB_DESTROY_BY_RCU)
2344		BUG_ON(flags & SLAB_POISON);
2345#endif
2346	/*
2347	 * Always checks flags, a caller might be expecting debug support which
2348	 * isn't available.
2349	 */
2350	BUG_ON(flags & ~CREATE_MASK);
2351
2352	/*
2353	 * Check that size is in terms of words.  This is needed to avoid
2354	 * unaligned accesses for some archs when redzoning is used, and makes
2355	 * sure any on-slab bufctl's are also correctly aligned.
2356	 */
2357	if (size & (BYTES_PER_WORD - 1)) {
2358		size += (BYTES_PER_WORD - 1);
2359		size &= ~(BYTES_PER_WORD - 1);
2360	}
2361
2362	/* calculate the final buffer alignment: */
2363
2364	/* 1) arch recommendation: can be overridden for debug */
2365	if (flags & SLAB_HWCACHE_ALIGN) {
2366		/*
2367		 * Default alignment: as specified by the arch code.  Except if
2368		 * an object is really small, then squeeze multiple objects into
2369		 * one cacheline.
2370		 */
2371		ralign = cache_line_size();
2372		while (size <= ralign / 2)
2373			ralign /= 2;
2374	} else {
2375		ralign = BYTES_PER_WORD;
2376	}
2377
2378	/*
2379	 * Redzoning and user store require word alignment or possibly larger.
2380	 * Note this will be overridden by architecture or caller mandated
2381	 * alignment if either is greater than BYTES_PER_WORD.
2382	 */
2383	if (flags & SLAB_STORE_USER)
2384		ralign = BYTES_PER_WORD;
2385
2386	if (flags & SLAB_RED_ZONE) {
2387		ralign = REDZONE_ALIGN;
2388		/* If redzoning, ensure that the second redzone is suitably
2389		 * aligned, by adjusting the object size accordingly. */
2390		size += REDZONE_ALIGN - 1;
2391		size &= ~(REDZONE_ALIGN - 1);
2392	}
2393
2394	/* 2) arch mandated alignment */
2395	if (ralign < ARCH_SLAB_MINALIGN) {
2396		ralign = ARCH_SLAB_MINALIGN;
2397	}
2398	/* 3) caller mandated alignment */
2399	if (ralign < align) {
2400		ralign = align;
2401	}
2402	/* disable debug if necessary */
2403	if (ralign > __alignof__(unsigned long long))
2404		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2405	/*
2406	 * 4) Store it.
2407	 */
2408	align = ralign;
 
 
 
 
2409
2410	if (slab_is_available())
2411		gfp = GFP_KERNEL;
2412	else
2413		gfp = GFP_NOWAIT;
2414
2415	/* Get cache's description obj. */
2416	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2417	if (!cachep)
2418		goto oops;
2419
2420	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2421#if DEBUG
2422	cachep->obj_size = size;
2423
2424	/*
2425	 * Both debugging options require word-alignment which is calculated
2426	 * into align above.
2427	 */
2428	if (flags & SLAB_RED_ZONE) {
2429		/* add space for red zone words */
2430		cachep->obj_offset += sizeof(unsigned long long);
2431		size += 2 * sizeof(unsigned long long);
2432	}
2433	if (flags & SLAB_STORE_USER) {
2434		/* user store requires one word storage behind the end of
2435		 * the real object. But if the second red zone needs to be
2436		 * aligned to 64 bits, we must allow that much space.
2437		 */
2438		if (flags & SLAB_RED_ZONE)
2439			size += REDZONE_ALIGN;
2440		else
2441			size += BYTES_PER_WORD;
2442	}
2443#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2444	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2445	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2446		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2447		size = PAGE_SIZE;
2448	}
2449#endif
2450#endif
2451
 
 
 
2452	/*
2453	 * Determine if the slab management is 'on' or 'off' slab.
2454	 * (bootstrapping cannot cope with offslab caches so don't do
2455	 * it too early on. Always use on-slab management when
2456	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2457	 */
2458	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2459	    !(flags & SLAB_NOLEAKTRACE))
2460		/*
2461		 * Size is large, assume best to place the slab management obj
2462		 * off-slab (should allow better packing of objs).
2463		 */
2464		flags |= CFLGS_OFF_SLAB;
2465
2466	size = ALIGN(size, align);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467
2468	left_over = calculate_slab_order(cachep, size, align, flags);
 
 
 
2469
2470	if (!cachep->num) {
2471		printk(KERN_ERR
2472		       "kmem_cache_create: couldn't create cache %s.\n", name);
2473		kmem_cache_free(&cache_cache, cachep);
2474		cachep = NULL;
2475		goto oops;
2476	}
2477	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2478			  + sizeof(struct slab), align);
2479
2480	/*
2481	 * If the slab has been placed off-slab, and we have enough space then
2482	 * move it on-slab. This is at the expense of any extra colouring.
2483	 */
2484	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2485		flags &= ~CFLGS_OFF_SLAB;
2486		left_over -= slab_size;
2487	}
2488
2489	if (flags & CFLGS_OFF_SLAB) {
2490		/* really off slab. No need for manual alignment */
2491		slab_size =
2492		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2493
2494#ifdef CONFIG_PAGE_POISONING
2495		/* If we're going to use the generic kernel_map_pages()
2496		 * poisoning, then it's going to smash the contents of
2497		 * the redzone and userword anyhow, so switch them off.
2498		 */
2499		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2500			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2501#endif
2502	}
2503
2504	cachep->colour_off = cache_line_size();
2505	/* Offset must be a multiple of the alignment. */
2506	if (cachep->colour_off < align)
2507		cachep->colour_off = align;
2508	cachep->colour = left_over / cachep->colour_off;
2509	cachep->slab_size = slab_size;
2510	cachep->flags = flags;
2511	cachep->gfpflags = 0;
2512	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2513		cachep->gfpflags |= GFP_DMA;
2514	cachep->buffer_size = size;
 
 
 
 
2515	cachep->reciprocal_buffer_size = reciprocal_value(size);
2516
2517	if (flags & CFLGS_OFF_SLAB) {
2518		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2519		/*
2520		 * This is a possibility for one of the malloc_sizes caches.
2521		 * But since we go off slab only for object size greater than
2522		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2523		 * this should not happen at all.
2524		 * But leave a BUG_ON for some lucky dude.
2525		 */
2526		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2527	}
2528	cachep->ctor = ctor;
2529	cachep->name = name;
2530
2531	if (setup_cpu_cache(cachep, gfp)) {
2532		__kmem_cache_destroy(cachep);
2533		cachep = NULL;
2534		goto oops;
2535	}
2536
2537	if (flags & SLAB_DEBUG_OBJECTS) {
2538		/*
2539		 * Would deadlock through slab_destroy()->call_rcu()->
2540		 * debug_object_activate()->kmem_cache_alloc().
2541		 */
2542		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2543
2544		slab_set_debugobj_lock_classes(cachep);
2545	}
2546
2547	/* cache setup completed, link it into the list */
2548	list_add(&cachep->next, &cache_chain);
2549oops:
2550	if (!cachep && (flags & SLAB_PANIC))
2551		panic("kmem_cache_create(): failed to create slab `%s'\n",
2552		      name);
2553	if (slab_is_available()) {
2554		mutex_unlock(&cache_chain_mutex);
2555		put_online_cpus();
2556	}
2557	return cachep;
2558}
2559EXPORT_SYMBOL(kmem_cache_create);
2560
2561#if DEBUG
2562static void check_irq_off(void)
2563{
2564	BUG_ON(!irqs_disabled());
2565}
2566
2567static void check_irq_on(void)
2568{
2569	BUG_ON(irqs_disabled());
2570}
2571
 
 
 
 
 
2572static void check_spinlock_acquired(struct kmem_cache *cachep)
2573{
2574#ifdef CONFIG_SMP
2575	check_irq_off();
2576	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2577#endif
2578}
2579
2580static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2581{
2582#ifdef CONFIG_SMP
2583	check_irq_off();
2584	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2585#endif
2586}
2587
2588#else
2589#define check_irq_off()	do { } while(0)
2590#define check_irq_on()	do { } while(0)
 
2591#define check_spinlock_acquired(x) do { } while(0)
2592#define check_spinlock_acquired_node(x, y) do { } while(0)
2593#endif
2594
2595static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2596			struct array_cache *ac,
2597			int force, int node);
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599static void do_drain(void *arg)
2600{
2601	struct kmem_cache *cachep = arg;
2602	struct array_cache *ac;
2603	int node = numa_mem_id();
 
 
2604
2605	check_irq_off();
2606	ac = cpu_cache_get(cachep);
2607	spin_lock(&cachep->nodelists[node]->list_lock);
2608	free_block(cachep, ac->entry, ac->avail, node);
2609	spin_unlock(&cachep->nodelists[node]->list_lock);
 
2610	ac->avail = 0;
 
2611}
2612
2613static void drain_cpu_caches(struct kmem_cache *cachep)
2614{
2615	struct kmem_list3 *l3;
2616	int node;
 
2617
2618	on_each_cpu(do_drain, cachep, 1);
2619	check_irq_on();
2620	for_each_online_node(node) {
2621		l3 = cachep->nodelists[node];
2622		if (l3 && l3->alien)
2623			drain_alien_cache(cachep, l3->alien);
2624	}
 
 
 
2625
2626	for_each_online_node(node) {
2627		l3 = cachep->nodelists[node];
2628		if (l3)
2629			drain_array(cachep, l3, l3->shared, 1, node);
2630	}
2631}
2632
2633/*
2634 * Remove slabs from the list of free slabs.
2635 * Specify the number of slabs to drain in tofree.
2636 *
2637 * Returns the actual number of slabs released.
2638 */
2639static int drain_freelist(struct kmem_cache *cache,
2640			struct kmem_list3 *l3, int tofree)
2641{
2642	struct list_head *p;
2643	int nr_freed;
2644	struct slab *slabp;
2645
2646	nr_freed = 0;
2647	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2648
2649		spin_lock_irq(&l3->list_lock);
2650		p = l3->slabs_free.prev;
2651		if (p == &l3->slabs_free) {
2652			spin_unlock_irq(&l3->list_lock);
2653			goto out;
2654		}
2655
2656		slabp = list_entry(p, struct slab, list);
2657#if DEBUG
2658		BUG_ON(slabp->inuse);
2659#endif
2660		list_del(&slabp->list);
2661		/*
2662		 * Safe to drop the lock. The slab is no longer linked
2663		 * to the cache.
2664		 */
2665		l3->free_objects -= cache->num;
2666		spin_unlock_irq(&l3->list_lock);
2667		slab_destroy(cache, slabp);
2668		nr_freed++;
 
 
2669	}
2670out:
2671	return nr_freed;
2672}
2673
2674/* Called with cache_chain_mutex held to protect against cpu hotplug */
2675static int __cache_shrink(struct kmem_cache *cachep)
2676{
2677	int ret = 0, i = 0;
2678	struct kmem_list3 *l3;
 
 
 
 
 
 
 
 
 
 
 
 
 
2679
2680	drain_cpu_caches(cachep);
2681
2682	check_irq_on();
2683	for_each_online_node(i) {
2684		l3 = cachep->nodelists[i];
2685		if (!l3)
2686			continue;
2687
2688		drain_freelist(cachep, l3, l3->free_objects);
2689
2690		ret += !list_empty(&l3->slabs_full) ||
2691			!list_empty(&l3->slabs_partial);
2692	}
2693	return (ret ? 1 : 0);
2694}
2695
2696/**
2697 * kmem_cache_shrink - Shrink a cache.
2698 * @cachep: The cache to shrink.
2699 *
2700 * Releases as many slabs as possible for a cache.
2701 * To help debugging, a zero exit status indicates all slabs were released.
2702 */
2703int kmem_cache_shrink(struct kmem_cache *cachep)
2704{
2705	int ret;
2706	BUG_ON(!cachep || in_interrupt());
2707
2708	get_online_cpus();
2709	mutex_lock(&cache_chain_mutex);
2710	ret = __cache_shrink(cachep);
2711	mutex_unlock(&cache_chain_mutex);
2712	put_online_cpus();
2713	return ret;
2714}
2715EXPORT_SYMBOL(kmem_cache_shrink);
2716
2717/**
2718 * kmem_cache_destroy - delete a cache
2719 * @cachep: the cache to destroy
2720 *
2721 * Remove a &struct kmem_cache object from the slab cache.
2722 *
2723 * It is expected this function will be called by a module when it is
2724 * unloaded.  This will remove the cache completely, and avoid a duplicate
2725 * cache being allocated each time a module is loaded and unloaded, if the
2726 * module doesn't have persistent in-kernel storage across loads and unloads.
2727 *
2728 * The cache must be empty before calling this function.
2729 *
2730 * The caller must guarantee that no one will allocate memory from the cache
2731 * during the kmem_cache_destroy().
2732 */
2733void kmem_cache_destroy(struct kmem_cache *cachep)
2734{
2735	BUG_ON(!cachep || in_interrupt());
 
2736
2737	/* Find the cache in the chain of caches. */
2738	get_online_cpus();
2739	mutex_lock(&cache_chain_mutex);
2740	/*
2741	 * the chain is never empty, cache_cache is never destroyed
2742	 */
2743	list_del(&cachep->next);
2744	if (__cache_shrink(cachep)) {
2745		slab_error(cachep, "Can't free all objects");
2746		list_add(&cachep->next, &cache_chain);
2747		mutex_unlock(&cache_chain_mutex);
2748		put_online_cpus();
2749		return;
2750	}
2751
2752	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2753		rcu_barrier();
2754
2755	__kmem_cache_destroy(cachep);
2756	mutex_unlock(&cache_chain_mutex);
2757	put_online_cpus();
 
 
 
 
2758}
2759EXPORT_SYMBOL(kmem_cache_destroy);
2760
2761/*
2762 * Get the memory for a slab management obj.
2763 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2764 * always come from malloc_sizes caches.  The slab descriptor cannot
2765 * come from the same cache which is getting created because,
2766 * when we are searching for an appropriate cache for these
2767 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2768 * If we are creating a malloc_sizes cache here it would not be visible to
2769 * kmem_find_general_cachep till the initialization is complete.
2770 * Hence we cannot have slabp_cache same as the original cache.
2771 */
2772static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2773				   int colour_off, gfp_t local_flags,
2774				   int nodeid)
2775{
2776	struct slab *slabp;
2777
2778	if (OFF_SLAB(cachep)) {
 
 
 
 
 
 
 
 
 
2779		/* Slab management obj is off-slab. */
2780		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2781					      local_flags, nodeid);
2782		/*
2783		 * If the first object in the slab is leaked (it's allocated
2784		 * but no one has a reference to it), we want to make sure
2785		 * kmemleak does not treat the ->s_mem pointer as a reference
2786		 * to the object. Otherwise we will not report the leak.
2787		 */
2788		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2789				   local_flags);
2790		if (!slabp)
2791			return NULL;
2792	} else {
2793		slabp = objp + colour_off;
2794		colour_off += cachep->slab_size;
 
2795	}
2796	slabp->inuse = 0;
2797	slabp->colouroff = colour_off;
2798	slabp->s_mem = objp + colour_off;
2799	slabp->nodeid = nodeid;
2800	slabp->free = 0;
2801	return slabp;
2802}
2803
2804static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2805{
2806	return (kmem_bufctl_t *) (slabp + 1);
2807}
2808
2809static void cache_init_objs(struct kmem_cache *cachep,
2810			    struct slab *slabp)
 
 
 
 
 
2811{
 
2812	int i;
2813
2814	for (i = 0; i < cachep->num; i++) {
2815		void *objp = index_to_obj(cachep, slabp, i);
2816#if DEBUG
2817		/* need to poison the objs? */
2818		if (cachep->flags & SLAB_POISON)
2819			poison_obj(cachep, objp, POISON_FREE);
2820		if (cachep->flags & SLAB_STORE_USER)
2821			*dbg_userword(cachep, objp) = NULL;
2822
2823		if (cachep->flags & SLAB_RED_ZONE) {
2824			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2825			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2826		}
2827		/*
2828		 * Constructors are not allowed to allocate memory from the same
2829		 * cache which they are a constructor for.  Otherwise, deadlock.
2830		 * They must also be threaded.
2831		 */
2832		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
 
 
2833			cachep->ctor(objp + obj_offset(cachep));
 
 
 
2834
2835		if (cachep->flags & SLAB_RED_ZONE) {
2836			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2837				slab_error(cachep, "constructor overwrote the"
2838					   " end of an object");
2839			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2840				slab_error(cachep, "constructor overwrote the"
2841					   " start of an object");
 
 
 
 
2842		}
2843		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2844			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2845			kernel_map_pages(virt_to_page(objp),
2846					 cachep->buffer_size / PAGE_SIZE, 0);
2847#else
2848		if (cachep->ctor)
2849			cachep->ctor(objp);
2850#endif
2851		slab_bufctl(slabp)[i] = i + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2852	}
2853	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2854}
2855
2856static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
 
2857{
2858	if (CONFIG_ZONE_DMA_FLAG) {
2859		if (flags & GFP_DMA)
2860			BUG_ON(!(cachep->gfpflags & GFP_DMA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861		else
2862			BUG_ON(cachep->gfpflags & GFP_DMA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863	}
2864}
2865
2866static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2867				int nodeid)
2868{
2869	void *objp = index_to_obj(cachep, slabp, slabp->free);
2870	kmem_bufctl_t next;
2871
2872	slabp->inuse++;
2873	next = slab_bufctl(slabp)[slabp->free];
2874#if DEBUG
2875	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2876	WARN_ON(slabp->nodeid != nodeid);
2877#endif
2878	slabp->free = next;
2879
2880	return objp;
2881}
2882
2883static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2884				void *objp, int nodeid)
2885{
2886	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2887
2888#if DEBUG
2889	/* Verify that the slab belongs to the intended node */
2890	WARN_ON(slabp->nodeid != nodeid);
2891
2892	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2893		printk(KERN_ERR "slab: double free detected in cache "
2894				"'%s', objp %p\n", cachep->name, objp);
2895		BUG();
 
 
 
2896	}
2897#endif
2898	slab_bufctl(slabp)[objnr] = slabp->free;
2899	slabp->free = objnr;
2900	slabp->inuse--;
2901}
2902
2903/*
2904 * Map pages beginning at addr to the given cache and slab. This is required
2905 * for the slab allocator to be able to lookup the cache and slab of a
2906 * virtual address for kfree, ksize, and slab debugging.
2907 */
2908static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2909			   void *addr)
2910{
2911	int nr_pages;
2912	struct page *page;
2913
2914	page = virt_to_page(addr);
2915
2916	nr_pages = 1;
2917	if (likely(!PageCompound(page)))
2918		nr_pages <<= cache->gfporder;
2919
2920	do {
2921		page_set_cache(page, cache);
2922		page_set_slab(page, slab);
2923		page++;
2924	} while (--nr_pages);
2925}
2926
2927/*
2928 * Grow (by 1) the number of slabs within a cache.  This is called by
2929 * kmem_cache_alloc() when there are no active objs left in a cache.
2930 */
2931static int cache_grow(struct kmem_cache *cachep,
2932		gfp_t flags, int nodeid, void *objp)
2933{
2934	struct slab *slabp;
2935	size_t offset;
2936	gfp_t local_flags;
2937	struct kmem_list3 *l3;
 
 
2938
2939	/*
2940	 * Be lazy and only check for valid flags here,  keeping it out of the
2941	 * critical path in kmem_cache_alloc().
2942	 */
2943	BUG_ON(flags & GFP_SLAB_BUG_MASK);
 
 
 
2944	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2945
2946	/* Take the l3 list lock to change the colour_next on this node */
2947	check_irq_off();
2948	l3 = cachep->nodelists[nodeid];
2949	spin_lock(&l3->list_lock);
 
 
 
 
 
 
 
 
 
 
 
2950
2951	/* Get colour for the slab, and cal the next value. */
2952	offset = l3->colour_next;
2953	l3->colour_next++;
2954	if (l3->colour_next >= cachep->colour)
2955		l3->colour_next = 0;
2956	spin_unlock(&l3->list_lock);
 
 
2957
2958	offset *= cachep->colour_off;
2959
2960	if (local_flags & __GFP_WAIT)
2961		local_irq_enable();
2962
2963	/*
2964	 * The test for missing atomic flag is performed here, rather than
2965	 * the more obvious place, simply to reduce the critical path length
2966	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2967	 * will eventually be caught here (where it matters).
2968	 */
2969	kmem_flagcheck(cachep, flags);
2970
2971	/*
2972	 * Get mem for the objs.  Attempt to allocate a physical page from
2973	 * 'nodeid'.
 
2974	 */
2975	if (!objp)
2976		objp = kmem_getpages(cachep, local_flags, nodeid);
2977	if (!objp)
2978		goto failed;
2979
2980	/* Get slab management. */
2981	slabp = alloc_slabmgmt(cachep, objp, offset,
2982			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2983	if (!slabp)
2984		goto opps1;
2985
2986	slab_map_pages(cachep, slabp, objp);
 
2987
2988	cache_init_objs(cachep, slabp);
2989
2990	if (local_flags & __GFP_WAIT)
2991		local_irq_disable();
2992	check_irq_off();
2993	spin_lock(&l3->list_lock);
2994
2995	/* Make slab active. */
2996	list_add_tail(&slabp->list, &(l3->slabs_free));
2997	STATS_INC_GROWN(cachep);
2998	l3->free_objects += cachep->num;
2999	spin_unlock(&l3->list_lock);
3000	return 1;
3001opps1:
3002	kmem_freepages(cachep, objp);
3003failed:
3004	if (local_flags & __GFP_WAIT)
3005		local_irq_disable();
3006	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007}
3008
3009#if DEBUG
3010
3011/*
3012 * Perform extra freeing checks:
3013 * - detect bad pointers.
3014 * - POISON/RED_ZONE checking
3015 */
3016static void kfree_debugcheck(const void *objp)
3017{
3018	if (!virt_addr_valid(objp)) {
3019		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3020		       (unsigned long)objp);
3021		BUG();
3022	}
3023}
3024
3025static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3026{
3027	unsigned long long redzone1, redzone2;
3028
3029	redzone1 = *dbg_redzone1(cache, obj);
3030	redzone2 = *dbg_redzone2(cache, obj);
3031
3032	/*
3033	 * Redzone is ok.
3034	 */
3035	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3036		return;
3037
3038	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3039		slab_error(cache, "double free detected");
3040	else
3041		slab_error(cache, "memory outside object was overwritten");
3042
3043	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3044			obj, redzone1, redzone2);
3045}
3046
3047static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3048				   void *caller)
3049{
3050	struct page *page;
3051	unsigned int objnr;
3052	struct slab *slabp;
3053
3054	BUG_ON(virt_to_cache(objp) != cachep);
3055
3056	objp -= obj_offset(cachep);
3057	kfree_debugcheck(objp);
3058	page = virt_to_head_page(objp);
3059
3060	slabp = page_get_slab(page);
3061
3062	if (cachep->flags & SLAB_RED_ZONE) {
3063		verify_redzone_free(cachep, objp);
3064		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
3065		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
3066	}
3067	if (cachep->flags & SLAB_STORE_USER)
3068		*dbg_userword(cachep, objp) = caller;
3069
3070	objnr = obj_to_index(cachep, slabp, objp);
3071
3072	BUG_ON(objnr >= cachep->num);
3073	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3074
3075#ifdef CONFIG_DEBUG_SLAB_LEAK
3076	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3077#endif
3078	if (cachep->flags & SLAB_POISON) {
3079#ifdef CONFIG_DEBUG_PAGEALLOC
3080		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3081			store_stackinfo(cachep, objp, (unsigned long)caller);
3082			kernel_map_pages(virt_to_page(objp),
3083					 cachep->buffer_size / PAGE_SIZE, 0);
3084		} else {
3085			poison_obj(cachep, objp, POISON_FREE);
3086		}
3087#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3088		poison_obj(cachep, objp, POISON_FREE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3090	}
3091	return objp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3092}
3093
3094static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
 
3095{
3096	kmem_bufctl_t i;
3097	int entries = 0;
 
3098
3099	/* Check slab's freelist to see if this obj is there. */
3100	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3101		entries++;
3102		if (entries > cachep->num || i >= cachep->num)
3103			goto bad;
 
 
 
3104	}
3105	if (entries != cachep->num - slabp->inuse) {
3106bad:
3107		printk(KERN_ERR "slab: Internal list corruption detected in "
3108			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3109			cachep->name, cachep->num, slabp, slabp->inuse,
3110			print_tainted());
3111		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3112			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3113			1);
3114		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3115	}
 
 
3116}
3117#else
3118#define kfree_debugcheck(x) do { } while(0)
3119#define cache_free_debugcheck(x,objp,z) (objp)
3120#define check_slabp(x,y) do { } while(0)
3121#endif
3122
3123static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3124{
3125	int batchcount;
3126	struct kmem_list3 *l3;
3127	struct array_cache *ac;
3128	int node;
 
 
3129
3130retry:
3131	check_irq_off();
3132	node = numa_mem_id();
 
3133	ac = cpu_cache_get(cachep);
3134	batchcount = ac->batchcount;
3135	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3136		/*
3137		 * If there was little recent activity on this cache, then
3138		 * perform only a partial refill.  Otherwise we could generate
3139		 * refill bouncing.
3140		 */
3141		batchcount = BATCHREFILL_LIMIT;
3142	}
3143	l3 = cachep->nodelists[node];
 
 
 
 
 
3144
3145	BUG_ON(ac->avail > 0 || !l3);
3146	spin_lock(&l3->list_lock);
3147
3148	/* See if we can refill from the shared array */
3149	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3150		l3->shared->touched = 1;
3151		goto alloc_done;
3152	}
3153
3154	while (batchcount > 0) {
3155		struct list_head *entry;
3156		struct slab *slabp;
3157		/* Get slab alloc is to come from. */
3158		entry = l3->slabs_partial.next;
3159		if (entry == &l3->slabs_partial) {
3160			l3->free_touched = 1;
3161			entry = l3->slabs_free.next;
3162			if (entry == &l3->slabs_free)
3163				goto must_grow;
3164		}
3165
3166		slabp = list_entry(entry, struct slab, list);
3167		check_slabp(cachep, slabp);
3168		check_spinlock_acquired(cachep);
3169
3170		/*
3171		 * The slab was either on partial or free list so
3172		 * there must be at least one object available for
3173		 * allocation.
3174		 */
3175		BUG_ON(slabp->inuse >= cachep->num);
3176
3177		while (slabp->inuse < cachep->num && batchcount--) {
3178			STATS_INC_ALLOCED(cachep);
3179			STATS_INC_ACTIVE(cachep);
3180			STATS_SET_HIGH(cachep);
3181
3182			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3183							    node);
3184		}
3185		check_slabp(cachep, slabp);
3186
3187		/* move slabp to correct slabp list: */
3188		list_del(&slabp->list);
3189		if (slabp->free == BUFCTL_END)
3190			list_add(&slabp->list, &l3->slabs_full);
3191		else
3192			list_add(&slabp->list, &l3->slabs_partial);
3193	}
3194
3195must_grow:
3196	l3->free_objects -= ac->avail;
3197alloc_done:
3198	spin_unlock(&l3->list_lock);
 
3199
 
3200	if (unlikely(!ac->avail)) {
3201		int x;
3202		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
 
3203
3204		/* cache_grow can reenable interrupts, then ac could change. */
 
 
 
 
 
 
 
 
 
3205		ac = cpu_cache_get(cachep);
3206		if (!x && ac->avail == 0)	/* no objects in sight? abort */
 
 
 
 
3207			return NULL;
3208
3209		if (!ac->avail)		/* objects refilled by interrupt? */
3210			goto retry;
3211	}
3212	ac->touched = 1;
 
3213	return ac->entry[--ac->avail];
3214}
3215
3216static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3217						gfp_t flags)
3218{
3219	might_sleep_if(flags & __GFP_WAIT);
3220#if DEBUG
3221	kmem_flagcheck(cachep, flags);
3222#endif
3223}
3224
3225#if DEBUG
3226static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3227				gfp_t flags, void *objp, void *caller)
3228{
3229	if (!objp)
 
3230		return objp;
3231	if (cachep->flags & SLAB_POISON) {
3232#ifdef CONFIG_DEBUG_PAGEALLOC
3233		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3234			kernel_map_pages(virt_to_page(objp),
3235					 cachep->buffer_size / PAGE_SIZE, 1);
3236		else
3237			check_poison_obj(cachep, objp);
3238#else
3239		check_poison_obj(cachep, objp);
3240#endif
3241		poison_obj(cachep, objp, POISON_INUSE);
3242	}
3243	if (cachep->flags & SLAB_STORE_USER)
3244		*dbg_userword(cachep, objp) = caller;
3245
3246	if (cachep->flags & SLAB_RED_ZONE) {
3247		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3248				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3249			slab_error(cachep, "double free, or memory outside"
3250						" object was overwritten");
3251			printk(KERN_ERR
3252				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3253				objp, *dbg_redzone1(cachep, objp),
3254				*dbg_redzone2(cachep, objp));
3255		}
3256		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3257		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3258	}
3259#ifdef CONFIG_DEBUG_SLAB_LEAK
3260	{
3261		struct slab *slabp;
3262		unsigned objnr;
3263
3264		slabp = page_get_slab(virt_to_head_page(objp));
3265		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3266		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3267	}
3268#endif
3269	objp += obj_offset(cachep);
3270	if (cachep->ctor && cachep->flags & SLAB_POISON)
3271		cachep->ctor(objp);
3272	if (ARCH_SLAB_MINALIGN &&
3273	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3274		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3275		       objp, (int)ARCH_SLAB_MINALIGN);
3276	}
3277	return objp;
3278}
3279#else
3280#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3281#endif
3282
3283static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3284{
3285	if (cachep == &cache_cache)
3286		return false;
3287
3288	return should_failslab(obj_size(cachep), flags, cachep->flags);
3289}
3290
3291static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3292{
3293	void *objp;
3294	struct array_cache *ac;
3295
3296	check_irq_off();
3297
3298	ac = cpu_cache_get(cachep);
3299	if (likely(ac->avail)) {
3300		STATS_INC_ALLOCHIT(cachep);
3301		ac->touched = 1;
3302		objp = ac->entry[--ac->avail];
3303	} else {
3304		STATS_INC_ALLOCMISS(cachep);
3305		objp = cache_alloc_refill(cachep, flags);
3306		/*
3307		 * the 'ac' may be updated by cache_alloc_refill(),
3308		 * and kmemleak_erase() requires its correct value.
3309		 */
3310		ac = cpu_cache_get(cachep);
3311	}
 
 
 
 
 
 
 
 
 
 
3312	/*
3313	 * To avoid a false negative, if an object that is in one of the
3314	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3315	 * treat the array pointers as a reference to the object.
3316	 */
3317	if (objp)
3318		kmemleak_erase(&ac->entry[ac->avail]);
3319	return objp;
3320}
3321
3322#ifdef CONFIG_NUMA
 
 
3323/*
3324 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3325 *
3326 * If we are in_interrupt, then process context, including cpusets and
3327 * mempolicy, may not apply and should not be used for allocation policy.
3328 */
3329static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3330{
3331	int nid_alloc, nid_here;
3332
3333	if (in_interrupt() || (flags & __GFP_THISNODE))
3334		return NULL;
3335	nid_alloc = nid_here = numa_mem_id();
3336	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3337		nid_alloc = cpuset_slab_spread_node();
3338	else if (current->mempolicy)
3339		nid_alloc = slab_node(current->mempolicy);
3340	if (nid_alloc != nid_here)
3341		return ____cache_alloc_node(cachep, flags, nid_alloc);
3342	return NULL;
3343}
3344
3345/*
3346 * Fallback function if there was no memory available and no objects on a
3347 * certain node and fall back is permitted. First we scan all the
3348 * available nodelists for available objects. If that fails then we
3349 * perform an allocation without specifying a node. This allows the page
3350 * allocator to do its reclaim / fallback magic. We then insert the
3351 * slab into the proper nodelist and then allocate from it.
3352 */
3353static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3354{
3355	struct zonelist *zonelist;
3356	gfp_t local_flags;
3357	struct zoneref *z;
3358	struct zone *zone;
3359	enum zone_type high_zoneidx = gfp_zone(flags);
3360	void *obj = NULL;
 
3361	int nid;
3362	unsigned int cpuset_mems_cookie;
3363
3364	if (flags & __GFP_THISNODE)
3365		return NULL;
3366
3367	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3368
3369retry_cpuset:
3370	cpuset_mems_cookie = get_mems_allowed();
3371	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3372
3373retry:
3374	/*
3375	 * Look through allowed nodes for objects available
3376	 * from existing per node queues.
3377	 */
3378	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3379		nid = zone_to_nid(zone);
3380
3381		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3382			cache->nodelists[nid] &&
3383			cache->nodelists[nid]->free_objects) {
3384				obj = ____cache_alloc_node(cache,
3385					flags | GFP_THISNODE, nid);
3386				if (obj)
3387					break;
3388		}
3389	}
3390
3391	if (!obj) {
3392		/*
3393		 * This allocation will be performed within the constraints
3394		 * of the current cpuset / memory policy requirements.
3395		 * We may trigger various forms of reclaim on the allowed
3396		 * set and go into memory reserves if necessary.
3397		 */
3398		if (local_flags & __GFP_WAIT)
3399			local_irq_enable();
3400		kmem_flagcheck(cache, flags);
3401		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3402		if (local_flags & __GFP_WAIT)
3403			local_irq_disable();
3404		if (obj) {
3405			/*
3406			 * Insert into the appropriate per node queues
 
3407			 */
3408			nid = page_to_nid(virt_to_page(obj));
3409			if (cache_grow(cache, flags, nid, obj)) {
3410				obj = ____cache_alloc_node(cache,
3411					flags | GFP_THISNODE, nid);
3412				if (!obj)
3413					/*
3414					 * Another processor may allocate the
3415					 * objects in the slab since we are
3416					 * not holding any locks.
3417					 */
3418					goto retry;
3419			} else {
3420				/* cache_grow already freed obj */
3421				obj = NULL;
3422			}
3423		}
3424	}
3425
3426	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3427		goto retry_cpuset;
3428	return obj;
3429}
3430
3431/*
3432 * A interface to enable slab creation on nodeid
3433 */
3434static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3435				int nodeid)
3436{
3437	struct list_head *entry;
3438	struct slab *slabp;
3439	struct kmem_list3 *l3;
3440	void *obj;
3441	int x;
3442
3443	l3 = cachep->nodelists[nodeid];
3444	BUG_ON(!l3);
 
3445
3446retry:
3447	check_irq_off();
3448	spin_lock(&l3->list_lock);
3449	entry = l3->slabs_partial.next;
3450	if (entry == &l3->slabs_partial) {
3451		l3->free_touched = 1;
3452		entry = l3->slabs_free.next;
3453		if (entry == &l3->slabs_free)
3454			goto must_grow;
3455	}
3456
3457	slabp = list_entry(entry, struct slab, list);
3458	check_spinlock_acquired_node(cachep, nodeid);
3459	check_slabp(cachep, slabp);
3460
3461	STATS_INC_NODEALLOCS(cachep);
3462	STATS_INC_ACTIVE(cachep);
3463	STATS_SET_HIGH(cachep);
3464
3465	BUG_ON(slabp->inuse == cachep->num);
3466
3467	obj = slab_get_obj(cachep, slabp, nodeid);
3468	check_slabp(cachep, slabp);
3469	l3->free_objects--;
3470	/* move slabp to correct slabp list: */
3471	list_del(&slabp->list);
3472
3473	if (slabp->free == BUFCTL_END)
3474		list_add(&slabp->list, &l3->slabs_full);
3475	else
3476		list_add(&slabp->list, &l3->slabs_partial);
3477
3478	spin_unlock(&l3->list_lock);
3479	goto done;
 
3480
3481must_grow:
3482	spin_unlock(&l3->list_lock);
3483	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3484	if (x)
3485		goto retry;
 
 
 
3486
3487	return fallback_alloc(cachep, flags);
3488
3489done:
3490	return obj;
3491}
3492
3493/**
3494 * kmem_cache_alloc_node - Allocate an object on the specified node
3495 * @cachep: The cache to allocate from.
3496 * @flags: See kmalloc().
3497 * @nodeid: node number of the target node.
3498 * @caller: return address of caller, used for debug information
3499 *
3500 * Identical to kmem_cache_alloc but it will allocate memory on the given
3501 * node, which can improve the performance for cpu bound structures.
3502 *
3503 * Fallback to other node is possible if __GFP_THISNODE is not set.
3504 */
3505static __always_inline void *
3506__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3507		   void *caller)
3508{
3509	unsigned long save_flags;
3510	void *ptr;
3511	int slab_node = numa_mem_id();
3512
3513	flags &= gfp_allowed_mask;
3514
3515	lockdep_trace_alloc(flags);
3516
3517	if (slab_should_failslab(cachep, flags))
3518		return NULL;
3519
3520	cache_alloc_debugcheck_before(cachep, flags);
3521	local_irq_save(save_flags);
3522
3523	if (nodeid == NUMA_NO_NODE)
3524		nodeid = slab_node;
3525
3526	if (unlikely(!cachep->nodelists[nodeid])) {
3527		/* Node not bootstrapped yet */
3528		ptr = fallback_alloc(cachep, flags);
3529		goto out;
3530	}
3531
3532	if (nodeid == slab_node) {
3533		/*
3534		 * Use the locally cached objects if possible.
3535		 * However ____cache_alloc does not allow fallback
3536		 * to other nodes. It may fail while we still have
3537		 * objects on other nodes available.
3538		 */
3539		ptr = ____cache_alloc(cachep, flags);
3540		if (ptr)
3541			goto out;
 
 
 
 
 
3542	}
3543	/* ___cache_alloc_node can fall back to other nodes */
3544	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3545  out:
3546	local_irq_restore(save_flags);
3547	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3548	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3549				 flags);
3550
3551	if (likely(ptr))
3552		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3553
3554	if (unlikely((flags & __GFP_ZERO) && ptr))
3555		memset(ptr, 0, obj_size(cachep));
3556
3557	return ptr;
3558}
3559
3560static __always_inline void *
3561__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3562{
3563	void *objp;
3564
3565	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3566		objp = alternate_node_alloc(cache, flags);
3567		if (objp)
3568			goto out;
3569	}
3570	objp = ____cache_alloc(cache, flags);
3571
3572	/*
3573	 * We may just have run out of memory on the local node.
3574	 * ____cache_alloc_node() knows how to locate memory on other nodes
3575	 */
3576	if (!objp)
3577		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3578
3579  out:
3580	return objp;
3581}
3582#else
3583
3584static __always_inline void *
3585__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3586{
3587	return ____cache_alloc(cachep, flags);
3588}
3589
3590#endif /* CONFIG_NUMA */
3591
3592static __always_inline void *
3593__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
 
3594{
3595	unsigned long save_flags;
3596	void *objp;
 
 
3597
3598	flags &= gfp_allowed_mask;
 
 
 
3599
3600	lockdep_trace_alloc(flags);
 
 
3601
3602	if (slab_should_failslab(cachep, flags))
3603		return NULL;
3604
3605	cache_alloc_debugcheck_before(cachep, flags);
3606	local_irq_save(save_flags);
3607	objp = __do_cache_alloc(cachep, flags);
3608	local_irq_restore(save_flags);
3609	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3610	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3611				 flags);
3612	prefetchw(objp);
 
3613
3614	if (likely(objp))
3615		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
 
 
 
3616
3617	if (unlikely((flags & __GFP_ZERO) && objp))
3618		memset(objp, 0, obj_size(cachep));
3619
3620	return objp;
 
 
3621}
3622
3623/*
3624 * Caller needs to acquire correct kmem_list's list_lock
 
3625 */
3626static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3627		       int node)
3628{
3629	int i;
3630	struct kmem_list3 *l3;
 
 
 
3631
3632	for (i = 0; i < nr_objects; i++) {
3633		void *objp = objpp[i];
3634		struct slab *slabp;
3635
3636		slabp = virt_to_slab(objp);
3637		l3 = cachep->nodelists[node];
3638		list_del(&slabp->list);
 
3639		check_spinlock_acquired_node(cachep, node);
3640		check_slabp(cachep, slabp);
3641		slab_put_obj(cachep, slabp, objp, node);
3642		STATS_DEC_ACTIVE(cachep);
3643		l3->free_objects++;
3644		check_slabp(cachep, slabp);
3645
3646		/* fixup slab chains */
3647		if (slabp->inuse == 0) {
3648			if (l3->free_objects > l3->free_limit) {
3649				l3->free_objects -= cachep->num;
3650				/* No need to drop any previously held
3651				 * lock here, even if we have a off-slab slab
3652				 * descriptor it is guaranteed to come from
3653				 * a different cache, refer to comments before
3654				 * alloc_slabmgmt.
3655				 */
3656				slab_destroy(cachep, slabp);
3657			} else {
3658				list_add(&slabp->list, &l3->slabs_free);
3659			}
3660		} else {
3661			/* Unconditionally move a slab to the end of the
3662			 * partial list on free - maximum time for the
3663			 * other objects to be freed, too.
3664			 */
3665			list_add_tail(&slabp->list, &l3->slabs_partial);
3666		}
3667	}
 
 
 
 
 
 
 
 
 
3668}
3669
3670static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3671{
3672	int batchcount;
3673	struct kmem_list3 *l3;
3674	int node = numa_mem_id();
 
3675
3676	batchcount = ac->batchcount;
3677#if DEBUG
3678	BUG_ON(!batchcount || batchcount > ac->avail);
3679#endif
3680	check_irq_off();
3681	l3 = cachep->nodelists[node];
3682	spin_lock(&l3->list_lock);
3683	if (l3->shared) {
3684		struct array_cache *shared_array = l3->shared;
3685		int max = shared_array->limit - shared_array->avail;
3686		if (max) {
3687			if (batchcount > max)
3688				batchcount = max;
3689			memcpy(&(shared_array->entry[shared_array->avail]),
3690			       ac->entry, sizeof(void *) * batchcount);
3691			shared_array->avail += batchcount;
3692			goto free_done;
3693		}
3694	}
3695
3696	free_block(cachep, ac->entry, batchcount, node);
3697free_done:
3698#if STATS
3699	{
3700		int i = 0;
3701		struct list_head *p;
3702
3703		p = l3->slabs_free.next;
3704		while (p != &(l3->slabs_free)) {
3705			struct slab *slabp;
3706
3707			slabp = list_entry(p, struct slab, list);
3708			BUG_ON(slabp->inuse);
3709
3710			i++;
3711			p = p->next;
3712		}
3713		STATS_SET_FREEABLE(cachep, i);
3714	}
3715#endif
3716	spin_unlock(&l3->list_lock);
3717	ac->avail -= batchcount;
3718	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 
3719}
3720
3721/*
3722 * Release an obj back to its cache. If the obj has a constructed state, it must
3723 * be in this state _before_ it is released.  Called with disabled ints.
3724 */
3725static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3726    void *caller)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3727{
3728	struct array_cache *ac = cpu_cache_get(cachep);
3729
3730	check_irq_off();
3731	kmemleak_free_recursive(objp, cachep->flags);
3732	objp = cache_free_debugcheck(cachep, objp, caller);
3733
3734	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3735
3736	/*
3737	 * Skip calling cache_free_alien() when the platform is not numa.
3738	 * This will avoid cache misses that happen while accessing slabp (which
3739	 * is per page memory  reference) to get nodeid. Instead use a global
3740	 * variable to skip the call, which is mostly likely to be present in
3741	 * the cache.
3742	 */
3743	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3744		return;
3745
3746	if (likely(ac->avail < ac->limit)) {
3747		STATS_INC_FREEHIT(cachep);
3748	} else {
3749		STATS_INC_FREEMISS(cachep);
3750		cache_flusharray(cachep, ac);
3751	}
3752
3753	ac->entry[ac->avail++] = objp;
3754}
3755
3756/**
3757 * kmem_cache_alloc - Allocate an object
3758 * @cachep: The cache to allocate from.
3759 * @flags: See kmalloc().
3760 *
3761 * Allocate an object from this cache.  The flags are only relevant
3762 * if the cache has no available objects.
3763 */
3764void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3765{
3766	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3767
3768	trace_kmem_cache_alloc(_RET_IP_, ret,
3769			       obj_size(cachep), cachep->buffer_size, flags);
3770
3771	return ret;
3772}
3773EXPORT_SYMBOL(kmem_cache_alloc);
3774
3775#ifdef CONFIG_TRACING
3776void *
3777kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3778{
3779	void *ret;
3780
3781	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3782
3783	trace_kmalloc(_RET_IP_, ret,
3784		      size, slab_buffer_size(cachep), flags);
3785	return ret;
3786}
3787EXPORT_SYMBOL(kmem_cache_alloc_trace);
3788#endif
3789
3790#ifdef CONFIG_NUMA
3791void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3792{
3793	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3794				       __builtin_return_address(0));
3795
3796	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3797				    obj_size(cachep), cachep->buffer_size,
3798				    flags, nodeid);
3799
3800	return ret;
3801}
3802EXPORT_SYMBOL(kmem_cache_alloc_node);
3803
3804#ifdef CONFIG_TRACING
3805void *kmem_cache_alloc_node_trace(size_t size,
3806				  struct kmem_cache *cachep,
3807				  gfp_t flags,
3808				  int nodeid)
3809{
3810	void *ret;
3811
3812	ret = __cache_alloc_node(cachep, flags, nodeid,
3813				  __builtin_return_address(0));
3814	trace_kmalloc_node(_RET_IP_, ret,
3815			   size, slab_buffer_size(cachep),
3816			   flags, nodeid);
3817	return ret;
3818}
3819EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3820#endif
3821
3822static __always_inline void *
3823__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
 
3824{
3825	struct kmem_cache *cachep;
3826
3827	cachep = kmem_find_general_cachep(size, flags);
3828	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3829		return cachep;
3830	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3831}
3832
3833#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3834void *__kmalloc_node(size_t size, gfp_t flags, int node)
3835{
3836	return __do_kmalloc_node(size, flags, node,
3837			__builtin_return_address(0));
3838}
3839EXPORT_SYMBOL(__kmalloc_node);
 
 
 
 
 
 
 
3840
3841void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3842		int node, unsigned long caller)
3843{
3844	return __do_kmalloc_node(size, flags, node, (void *)caller);
3845}
3846EXPORT_SYMBOL(__kmalloc_node_track_caller);
3847#else
3848void *__kmalloc_node(size_t size, gfp_t flags, int node)
3849{
3850	return __do_kmalloc_node(size, flags, node, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
3851}
3852EXPORT_SYMBOL(__kmalloc_node);
3853#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3854#endif /* CONFIG_NUMA */
3855
3856/**
3857 * __do_kmalloc - allocate memory
3858 * @size: how many bytes of memory are required.
3859 * @flags: the type of memory to allocate (see kmalloc).
3860 * @caller: function caller for debug tracking of the caller
 
 
 
 
 
 
 
3861 */
3862static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3863					  void *caller)
3864{
3865	struct kmem_cache *cachep;
3866	void *ret;
3867
3868	/* If you want to save a few bytes .text space: replace
3869	 * __ with kmem_.
3870	 * Then kmalloc uses the uninlined functions instead of the inline
3871	 * functions.
3872	 */
3873	cachep = __find_general_cachep(size, flags);
3874	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3875		return cachep;
3876	ret = __cache_alloc(cachep, flags, caller);
3877
3878	trace_kmalloc((unsigned long) caller, ret,
3879		      size, cachep->buffer_size, flags);
3880
3881	return ret;
3882}
 
3883
 
 
 
 
 
 
 
3884
3885#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3886void *__kmalloc(size_t size, gfp_t flags)
3887{
3888	return __do_kmalloc(size, flags, __builtin_return_address(0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3889}
3890EXPORT_SYMBOL(__kmalloc);
3891
3892void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
 
 
3893{
3894	return __do_kmalloc(size, flags, (void *)caller);
 
 
 
 
 
 
 
3895}
3896EXPORT_SYMBOL(__kmalloc_track_caller);
3897
3898#else
3899void *__kmalloc(size_t size, gfp_t flags)
3900{
3901	return __do_kmalloc(size, flags, NULL);
3902}
3903EXPORT_SYMBOL(__kmalloc);
3904#endif
3905
3906/**
3907 * kmem_cache_free - Deallocate an object
3908 * @cachep: The cache the allocation was from.
3909 * @objp: The previously allocated object.
3910 *
3911 * Free an object which was previously allocated from this
3912 * cache.
3913 */
3914void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3915{
3916	unsigned long flags;
3917
3918	local_irq_save(flags);
3919	debug_check_no_locks_freed(objp, obj_size(cachep));
3920	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3921		debug_check_no_obj_freed(objp, obj_size(cachep));
3922	__cache_free(cachep, objp, __builtin_return_address(0));
3923	local_irq_restore(flags);
3924
3925	trace_kmem_cache_free(_RET_IP_, objp);
 
3926}
3927EXPORT_SYMBOL(kmem_cache_free);
3928
3929/**
3930 * kfree - free previously allocated memory
3931 * @objp: pointer returned by kmalloc.
3932 *
3933 * If @objp is NULL, no operation is performed.
3934 *
3935 * Don't free memory not originally allocated by kmalloc()
3936 * or you will run into trouble.
3937 */
3938void kfree(const void *objp)
3939{
3940	struct kmem_cache *c;
3941	unsigned long flags;
3942
3943	trace_kfree(_RET_IP_, objp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3944
3945	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3946		return;
3947	local_irq_save(flags);
3948	kfree_debugcheck(objp);
3949	c = virt_to_cache(objp);
3950	debug_check_no_locks_freed(objp, obj_size(c));
3951	debug_check_no_obj_freed(objp, obj_size(c));
3952	__cache_free(c, (void *)objp, __builtin_return_address(0));
3953	local_irq_restore(flags);
3954}
3955EXPORT_SYMBOL(kfree);
3956
3957unsigned int kmem_cache_size(struct kmem_cache *cachep)
3958{
3959	return obj_size(cachep);
3960}
3961EXPORT_SYMBOL(kmem_cache_size);
3962
3963/*
3964 * This initializes kmem_list3 or resizes various caches for all nodes.
3965 */
3966static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3967{
 
3968	int node;
3969	struct kmem_list3 *l3;
3970	struct array_cache *new_shared;
3971	struct array_cache **new_alien = NULL;
3972
3973	for_each_online_node(node) {
3974
3975                if (use_alien_caches) {
3976                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3977                        if (!new_alien)
3978                                goto fail;
3979                }
3980
3981		new_shared = NULL;
3982		if (cachep->shared) {
3983			new_shared = alloc_arraycache(node,
3984				cachep->shared*cachep->batchcount,
3985					0xbaadf00d, gfp);
3986			if (!new_shared) {
3987				free_alien_cache(new_alien);
3988				goto fail;
3989			}
3990		}
3991
3992		l3 = cachep->nodelists[node];
3993		if (l3) {
3994			struct array_cache *shared = l3->shared;
3995
3996			spin_lock_irq(&l3->list_lock);
3997
3998			if (shared)
3999				free_block(cachep, shared->entry,
4000						shared->avail, node);
4001
4002			l3->shared = new_shared;
4003			if (!l3->alien) {
4004				l3->alien = new_alien;
4005				new_alien = NULL;
4006			}
4007			l3->free_limit = (1 + nr_cpus_node(node)) *
4008					cachep->batchcount + cachep->num;
4009			spin_unlock_irq(&l3->list_lock);
4010			kfree(shared);
4011			free_alien_cache(new_alien);
4012			continue;
4013		}
4014		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4015		if (!l3) {
4016			free_alien_cache(new_alien);
4017			kfree(new_shared);
4018			goto fail;
4019		}
4020
4021		kmem_list3_init(l3);
4022		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4023				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4024		l3->shared = new_shared;
4025		l3->alien = new_alien;
4026		l3->free_limit = (1 + nr_cpus_node(node)) *
4027					cachep->batchcount + cachep->num;
4028		cachep->nodelists[node] = l3;
4029	}
 
4030	return 0;
4031
4032fail:
4033	if (!cachep->next.next) {
4034		/* Cache is not active yet. Roll back what we did */
4035		node--;
4036		while (node >= 0) {
4037			if (cachep->nodelists[node]) {
4038				l3 = cachep->nodelists[node];
4039
4040				kfree(l3->shared);
4041				free_alien_cache(l3->alien);
4042				kfree(l3);
4043				cachep->nodelists[node] = NULL;
4044			}
4045			node--;
4046		}
4047	}
4048	return -ENOMEM;
4049}
4050
4051struct ccupdate_struct {
4052	struct kmem_cache *cachep;
4053	struct array_cache *new[0];
4054};
4055
4056static void do_ccupdate_local(void *info)
4057{
4058	struct ccupdate_struct *new = info;
4059	struct array_cache *old;
4060
4061	check_irq_off();
4062	old = cpu_cache_get(new->cachep);
4063
4064	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4065	new->new[smp_processor_id()] = old;
4066}
4067
4068/* Always called with the cache_chain_mutex held */
4069static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4070				int batchcount, int shared, gfp_t gfp)
4071{
4072	struct ccupdate_struct *new;
4073	int i;
4074
4075	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4076		      gfp);
4077	if (!new)
4078		return -ENOMEM;
4079
4080	for_each_online_cpu(i) {
4081		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4082						batchcount, gfp);
4083		if (!new->new[i]) {
4084			for (i--; i >= 0; i--)
4085				kfree(new->new[i]);
4086			kfree(new);
4087			return -ENOMEM;
4088		}
4089	}
4090	new->cachep = cachep;
4091
4092	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4093
4094	check_irq_on();
4095	cachep->batchcount = batchcount;
4096	cachep->limit = limit;
4097	cachep->shared = shared;
4098
4099	for_each_online_cpu(i) {
4100		struct array_cache *ccold = new->new[i];
4101		if (!ccold)
4102			continue;
4103		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4104		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4105		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4106		kfree(ccold);
 
 
 
 
 
 
 
4107	}
4108	kfree(new);
4109	return alloc_kmemlist(cachep, gfp);
 
 
4110}
4111
4112/* Called with cache_chain_mutex held always */
4113static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4114{
4115	int err;
4116	int limit, shared;
 
 
 
 
 
 
4117
4118	/*
4119	 * The head array serves three purposes:
4120	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4121	 * - reduce the number of spinlock operations.
4122	 * - reduce the number of linked list operations on the slab and
4123	 *   bufctl chains: array operations are cheaper.
4124	 * The numbers are guessed, we should auto-tune as described by
4125	 * Bonwick.
4126	 */
4127	if (cachep->buffer_size > 131072)
4128		limit = 1;
4129	else if (cachep->buffer_size > PAGE_SIZE)
4130		limit = 8;
4131	else if (cachep->buffer_size > 1024)
4132		limit = 24;
4133	else if (cachep->buffer_size > 256)
4134		limit = 54;
4135	else
4136		limit = 120;
4137
4138	/*
4139	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4140	 * allocation behaviour: Most allocs on one cpu, most free operations
4141	 * on another cpu. For these cases, an efficient object passing between
4142	 * cpus is necessary. This is provided by a shared array. The array
4143	 * replaces Bonwick's magazine layer.
4144	 * On uniprocessor, it's functionally equivalent (but less efficient)
4145	 * to a larger limit. Thus disabled by default.
4146	 */
4147	shared = 0;
4148	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4149		shared = 8;
4150
4151#if DEBUG
4152	/*
4153	 * With debugging enabled, large batchcount lead to excessively long
4154	 * periods with disabled local interrupts. Limit the batchcount
4155	 */
4156	if (limit > 32)
4157		limit = 32;
4158#endif
4159	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
 
 
4160	if (err)
4161		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4162		       cachep->name, -err);
4163	return err;
4164}
4165
4166/*
4167 * Drain an array if it contains any elements taking the l3 lock only if
4168 * necessary. Note that the l3 listlock also protects the array_cache
4169 * if drain_array() is used on the shared array.
4170 */
4171static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4172			 struct array_cache *ac, int force, int node)
4173{
4174	int tofree;
 
 
 
4175
4176	if (!ac || !ac->avail)
4177		return;
4178	if (ac->touched && !force) {
 
4179		ac->touched = 0;
4180	} else {
4181		spin_lock_irq(&l3->list_lock);
4182		if (ac->avail) {
4183			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4184			if (tofree > ac->avail)
4185				tofree = (ac->avail + 1) / 2;
4186			free_block(cachep, ac->entry, tofree, node);
4187			ac->avail -= tofree;
4188			memmove(ac->entry, &(ac->entry[tofree]),
4189				sizeof(void *) * ac->avail);
4190		}
4191		spin_unlock_irq(&l3->list_lock);
4192	}
 
 
 
 
 
 
4193}
4194
4195/**
4196 * cache_reap - Reclaim memory from caches.
4197 * @w: work descriptor
4198 *
4199 * Called from workqueue/eventd every few seconds.
4200 * Purpose:
4201 * - clear the per-cpu caches for this CPU.
4202 * - return freeable pages to the main free memory pool.
4203 *
4204 * If we cannot acquire the cache chain mutex then just give up - we'll try
4205 * again on the next iteration.
4206 */
4207static void cache_reap(struct work_struct *w)
4208{
4209	struct kmem_cache *searchp;
4210	struct kmem_list3 *l3;
4211	int node = numa_mem_id();
4212	struct delayed_work *work = to_delayed_work(w);
4213
4214	if (!mutex_trylock(&cache_chain_mutex))
4215		/* Give up. Setup the next iteration. */
4216		goto out;
4217
4218	list_for_each_entry(searchp, &cache_chain, next) {
4219		check_irq_on();
4220
4221		/*
4222		 * We only take the l3 lock if absolutely necessary and we
4223		 * have established with reasonable certainty that
4224		 * we can do some work if the lock was obtained.
4225		 */
4226		l3 = searchp->nodelists[node];
4227
4228		reap_alien(searchp, l3);
4229
4230		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4231
4232		/*
4233		 * These are racy checks but it does not matter
4234		 * if we skip one check or scan twice.
4235		 */
4236		if (time_after(l3->next_reap, jiffies))
4237			goto next;
4238
4239		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4240
4241		drain_array(searchp, l3, l3->shared, 0, node);
4242
4243		if (l3->free_touched)
4244			l3->free_touched = 0;
4245		else {
4246			int freed;
4247
4248			freed = drain_freelist(searchp, l3, (l3->free_limit +
4249				5 * searchp->num - 1) / (5 * searchp->num));
4250			STATS_ADD_REAPED(searchp, freed);
4251		}
4252next:
4253		cond_resched();
4254	}
4255	check_irq_on();
4256	mutex_unlock(&cache_chain_mutex);
4257	next_reap_node();
4258out:
4259	/* Set up the next iteration */
4260	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
 
4261}
4262
4263#ifdef CONFIG_SLABINFO
4264
4265static void print_slabinfo_header(struct seq_file *m)
4266{
4267	/*
4268	 * Output format version, so at least we can change it
4269	 * without _too_ many complaints.
4270	 */
4271#if STATS
4272	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4273#else
4274	seq_puts(m, "slabinfo - version: 2.1\n");
4275#endif
4276	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4277		 "<objperslab> <pagesperslab>");
4278	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4279	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4280#if STATS
4281	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4282		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4283	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4284#endif
4285	seq_putc(m, '\n');
4286}
4287
4288static void *s_start(struct seq_file *m, loff_t *pos)
4289{
4290	loff_t n = *pos;
4291
4292	mutex_lock(&cache_chain_mutex);
4293	if (!n)
4294		print_slabinfo_header(m);
4295
4296	return seq_list_start(&cache_chain, *pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4297}
4298
4299static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4300{
4301	return seq_list_next(p, &cache_chain, pos);
4302}
4303
4304static void s_stop(struct seq_file *m, void *p)
4305{
4306	mutex_unlock(&cache_chain_mutex);
4307}
4308
4309static int s_show(struct seq_file *m, void *p)
4310{
4311	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4312	struct slab *slabp;
4313	unsigned long active_objs;
4314	unsigned long num_objs;
4315	unsigned long active_slabs = 0;
4316	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4317	const char *name;
4318	char *error = NULL;
4319	int node;
4320	struct kmem_list3 *l3;
4321
4322	active_objs = 0;
4323	num_slabs = 0;
4324	for_each_online_node(node) {
4325		l3 = cachep->nodelists[node];
4326		if (!l3)
4327			continue;
4328
4329		check_irq_on();
4330		spin_lock_irq(&l3->list_lock);
4331
4332		list_for_each_entry(slabp, &l3->slabs_full, list) {
4333			if (slabp->inuse != cachep->num && !error)
4334				error = "slabs_full accounting error";
4335			active_objs += cachep->num;
4336			active_slabs++;
4337		}
4338		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4339			if (slabp->inuse == cachep->num && !error)
4340				error = "slabs_partial inuse accounting error";
4341			if (!slabp->inuse && !error)
4342				error = "slabs_partial/inuse accounting error";
4343			active_objs += slabp->inuse;
4344			active_slabs++;
4345		}
4346		list_for_each_entry(slabp, &l3->slabs_free, list) {
4347			if (slabp->inuse && !error)
4348				error = "slabs_free/inuse accounting error";
4349			num_slabs++;
4350		}
4351		free_objects += l3->free_objects;
4352		if (l3->shared)
4353			shared_avail += l3->shared->avail;
4354
4355		spin_unlock_irq(&l3->list_lock);
4356	}
4357	num_slabs += active_slabs;
4358	num_objs = num_slabs * cachep->num;
4359	if (num_objs - active_objs != free_objects && !error)
4360		error = "free_objects accounting error";
4361
4362	name = cachep->name;
4363	if (error)
4364		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4365
4366	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4367		   name, active_objs, num_objs, cachep->buffer_size,
4368		   cachep->num, (1 << cachep->gfporder));
4369	seq_printf(m, " : tunables %4u %4u %4u",
4370		   cachep->limit, cachep->batchcount, cachep->shared);
4371	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4372		   active_slabs, num_slabs, shared_avail);
4373#if STATS
4374	{			/* list3 stats */
4375		unsigned long high = cachep->high_mark;
4376		unsigned long allocs = cachep->num_allocations;
4377		unsigned long grown = cachep->grown;
4378		unsigned long reaped = cachep->reaped;
4379		unsigned long errors = cachep->errors;
4380		unsigned long max_freeable = cachep->max_freeable;
4381		unsigned long node_allocs = cachep->node_allocs;
4382		unsigned long node_frees = cachep->node_frees;
4383		unsigned long overflows = cachep->node_overflow;
4384
4385		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4386			   "%4lu %4lu %4lu %4lu %4lu",
4387			   allocs, high, grown,
4388			   reaped, errors, max_freeable, node_allocs,
4389			   node_frees, overflows);
4390	}
4391	/* cpu stats */
4392	{
4393		unsigned long allochit = atomic_read(&cachep->allochit);
4394		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4395		unsigned long freehit = atomic_read(&cachep->freehit);
4396		unsigned long freemiss = atomic_read(&cachep->freemiss);
4397
4398		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4399			   allochit, allocmiss, freehit, freemiss);
4400	}
4401#endif
4402	seq_putc(m, '\n');
4403	return 0;
4404}
4405
4406/*
4407 * slabinfo_op - iterator that generates /proc/slabinfo
4408 *
4409 * Output layout:
4410 * cache-name
4411 * num-active-objs
4412 * total-objs
4413 * object size
4414 * num-active-slabs
4415 * total-slabs
4416 * num-pages-per-slab
4417 * + further values on SMP and with statistics enabled
4418 */
4419
4420static const struct seq_operations slabinfo_op = {
4421	.start = s_start,
4422	.next = s_next,
4423	.stop = s_stop,
4424	.show = s_show,
4425};
4426
4427#define MAX_SLABINFO_WRITE 128
4428/**
4429 * slabinfo_write - Tuning for the slab allocator
4430 * @file: unused
4431 * @buffer: user buffer
4432 * @count: data length
4433 * @ppos: unused
 
 
4434 */
4435static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4436		       size_t count, loff_t *ppos)
4437{
4438	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4439	int limit, batchcount, shared, res;
4440	struct kmem_cache *cachep;
4441
4442	if (count > MAX_SLABINFO_WRITE)
4443		return -EINVAL;
4444	if (copy_from_user(&kbuf, buffer, count))
4445		return -EFAULT;
4446	kbuf[MAX_SLABINFO_WRITE] = '\0';
4447
4448	tmp = strchr(kbuf, ' ');
4449	if (!tmp)
4450		return -EINVAL;
4451	*tmp = '\0';
4452	tmp++;
4453	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4454		return -EINVAL;
4455
4456	/* Find the cache in the chain of caches. */
4457	mutex_lock(&cache_chain_mutex);
4458	res = -EINVAL;
4459	list_for_each_entry(cachep, &cache_chain, next) {
4460		if (!strcmp(cachep->name, kbuf)) {
4461			if (limit < 1 || batchcount < 1 ||
4462					batchcount > limit || shared < 0) {
4463				res = 0;
4464			} else {
4465				res = do_tune_cpucache(cachep, limit,
4466						       batchcount, shared,
4467						       GFP_KERNEL);
4468			}
4469			break;
4470		}
4471	}
4472	mutex_unlock(&cache_chain_mutex);
4473	if (res >= 0)
4474		res = count;
4475	return res;
4476}
4477
4478static int slabinfo_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
4479{
4480	return seq_open(file, &slabinfo_op);
4481}
 
4482
4483static const struct file_operations proc_slabinfo_operations = {
4484	.open		= slabinfo_open,
4485	.read		= seq_read,
4486	.write		= slabinfo_write,
4487	.llseek		= seq_lseek,
4488	.release	= seq_release,
4489};
4490
4491#ifdef CONFIG_DEBUG_SLAB_LEAK
 
 
 
4492
4493static void *leaks_start(struct seq_file *m, loff_t *pos)
4494{
4495	mutex_lock(&cache_chain_mutex);
4496	return seq_list_start(&cache_chain, *pos);
4497}
4498
4499static inline int add_caller(unsigned long *n, unsigned long v)
4500{
4501	unsigned long *p;
4502	int l;
4503	if (!v)
4504		return 1;
4505	l = n[1];
4506	p = n + 2;
4507	while (l) {
4508		int i = l/2;
4509		unsigned long *q = p + 2 * i;
4510		if (*q == v) {
4511			q[1]++;
4512			return 1;
4513		}
4514		if (*q > v) {
4515			l = i;
4516		} else {
4517			p = q + 2;
4518			l -= i + 1;
4519		}
4520	}
4521	if (++n[1] == n[0])
4522		return 0;
4523	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4524	p[0] = v;
4525	p[1] = 1;
4526	return 1;
4527}
4528
4529static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4530{
4531	void *p;
4532	int i;
4533	if (n[0] == n[1])
4534		return;
4535	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4536		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4537			continue;
4538		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4539			return;
4540	}
4541}
4542
4543static void show_symbol(struct seq_file *m, unsigned long address)
4544{
4545#ifdef CONFIG_KALLSYMS
4546	unsigned long offset, size;
4547	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4548
4549	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4550		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4551		if (modname[0])
4552			seq_printf(m, " [%s]", modname);
4553		return;
4554	}
4555#endif
4556	seq_printf(m, "%p", (void *)address);
4557}
4558
4559static int leaks_show(struct seq_file *m, void *p)
4560{
4561	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4562	struct slab *slabp;
4563	struct kmem_list3 *l3;
4564	const char *name;
4565	unsigned long *n = m->private;
4566	int node;
4567	int i;
4568
4569	if (!(cachep->flags & SLAB_STORE_USER))
4570		return 0;
4571	if (!(cachep->flags & SLAB_RED_ZONE))
4572		return 0;
4573
4574	/* OK, we can do it */
4575
4576	n[1] = 0;
4577
4578	for_each_online_node(node) {
4579		l3 = cachep->nodelists[node];
4580		if (!l3)
4581			continue;
4582
4583		check_irq_on();
4584		spin_lock_irq(&l3->list_lock);
4585
4586		list_for_each_entry(slabp, &l3->slabs_full, list)
4587			handle_slab(n, cachep, slabp);
4588		list_for_each_entry(slabp, &l3->slabs_partial, list)
4589			handle_slab(n, cachep, slabp);
4590		spin_unlock_irq(&l3->list_lock);
4591	}
4592	name = cachep->name;
4593	if (n[0] == n[1]) {
4594		/* Increase the buffer size */
4595		mutex_unlock(&cache_chain_mutex);
4596		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4597		if (!m->private) {
4598			/* Too bad, we are really out */
4599			m->private = n;
4600			mutex_lock(&cache_chain_mutex);
4601			return -ENOMEM;
4602		}
4603		*(unsigned long *)m->private = n[0] * 2;
4604		kfree(n);
4605		mutex_lock(&cache_chain_mutex);
4606		/* Now make sure this entry will be retried */
4607		m->count = m->size;
4608		return 0;
4609	}
4610	for (i = 0; i < n[1]; i++) {
4611		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4612		show_symbol(m, n[2*i+2]);
4613		seq_putc(m, '\n');
4614	}
4615
4616	return 0;
4617}
4618
4619static const struct seq_operations slabstats_op = {
4620	.start = leaks_start,
4621	.next = s_next,
4622	.stop = s_stop,
4623	.show = leaks_show,
4624};
4625
4626static int slabstats_open(struct inode *inode, struct file *file)
4627{
4628	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4629	int ret = -ENOMEM;
4630	if (n) {
4631		ret = seq_open(file, &slabstats_op);
4632		if (!ret) {
4633			struct seq_file *m = file->private_data;
4634			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4635			m->private = n;
4636			n = NULL;
4637		}
4638		kfree(n);
4639	}
4640	return ret;
4641}
4642
4643static const struct file_operations proc_slabstats_operations = {
4644	.open		= slabstats_open,
4645	.read		= seq_read,
4646	.llseek		= seq_lseek,
4647	.release	= seq_release_private,
4648};
4649#endif
4650
4651static int __init slab_proc_init(void)
4652{
4653	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4654#ifdef CONFIG_DEBUG_SLAB_LEAK
4655	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4656#endif
4657	return 0;
4658}
4659module_init(slab_proc_init);
4660#endif
4661
4662/**
4663 * ksize - get the actual amount of memory allocated for a given object
4664 * @objp: Pointer to the object
4665 *
4666 * kmalloc may internally round up allocations and return more memory
4667 * than requested. ksize() can be used to determine the actual amount of
4668 * memory allocated. The caller may use this additional memory, even though
4669 * a smaller amount of memory was initially specified with the kmalloc call.
4670 * The caller must guarantee that objp points to a valid object previously
4671 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4672 * must not be freed during the duration of the call.
4673 */
4674size_t ksize(const void *objp)
4675{
4676	BUG_ON(!objp);
4677	if (unlikely(objp == ZERO_SIZE_PTR))
4678		return 0;
4679
4680	return obj_size(virt_to_cache(objp));
4681}
4682EXPORT_SYMBOL(ksize);