Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_recursion.h>
   8#include <linux/trace_events.h>
   9#include <linux/ring_buffer.h>
  10#include <linux/trace_clock.h>
  11#include <linux/sched/clock.h>
  12#include <linux/trace_seq.h>
  13#include <linux/spinlock.h>
  14#include <linux/irq_work.h>
  15#include <linux/security.h>
  16#include <linux/uaccess.h>
  17#include <linux/hardirq.h>
  18#include <linux/kthread.h>	/* for self test */
  19#include <linux/module.h>
  20#include <linux/percpu.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/slab.h>
  24#include <linux/init.h>
  25#include <linux/hash.h>
  26#include <linux/list.h>
  27#include <linux/cpu.h>
  28#include <linux/oom.h>
  29
  30#include <asm/local.h>
  31
  32/*
  33 * The "absolute" timestamp in the buffer is only 59 bits.
  34 * If a clock has the 5 MSBs set, it needs to be saved and
  35 * reinserted.
  36 */
  37#define TS_MSB		(0xf8ULL << 56)
  38#define ABS_TS_MASK	(~TS_MSB)
  39
  40static void update_pages_handler(struct work_struct *work);
  41
  42/*
  43 * The ring buffer header is special. We must manually up keep it.
  44 */
  45int ring_buffer_print_entry_header(struct trace_seq *s)
  46{
  47	trace_seq_puts(s, "# compressed entry header\n");
  48	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  49	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  50	trace_seq_puts(s, "\tarray       :   32 bits\n");
  51	trace_seq_putc(s, '\n');
  52	trace_seq_printf(s, "\tpadding     : type == %d\n",
  53			 RINGBUF_TYPE_PADDING);
  54	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  55			 RINGBUF_TYPE_TIME_EXTEND);
  56	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  57			 RINGBUF_TYPE_TIME_STAMP);
  58	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  59			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  60
  61	return !trace_seq_has_overflowed(s);
  62}
  63
  64/*
  65 * The ring buffer is made up of a list of pages. A separate list of pages is
  66 * allocated for each CPU. A writer may only write to a buffer that is
  67 * associated with the CPU it is currently executing on.  A reader may read
  68 * from any per cpu buffer.
  69 *
  70 * The reader is special. For each per cpu buffer, the reader has its own
  71 * reader page. When a reader has read the entire reader page, this reader
  72 * page is swapped with another page in the ring buffer.
  73 *
  74 * Now, as long as the writer is off the reader page, the reader can do what
  75 * ever it wants with that page. The writer will never write to that page
  76 * again (as long as it is out of the ring buffer).
  77 *
  78 * Here's some silly ASCII art.
  79 *
  80 *   +------+
  81 *   |reader|          RING BUFFER
  82 *   |page  |
  83 *   +------+        +---+   +---+   +---+
  84 *                   |   |-->|   |-->|   |
  85 *                   +---+   +---+   +---+
  86 *                     ^               |
  87 *                     |               |
  88 *                     +---------------+
  89 *
  90 *
  91 *   +------+
  92 *   |reader|          RING BUFFER
  93 *   |page  |------------------v
  94 *   +------+        +---+   +---+   +---+
  95 *                   |   |-->|   |-->|   |
  96 *                   +---+   +---+   +---+
  97 *                     ^               |
  98 *                     |               |
  99 *                     +---------------+
 100 *
 101 *
 102 *   +------+
 103 *   |reader|          RING BUFFER
 104 *   |page  |------------------v
 105 *   +------+        +---+   +---+   +---+
 106 *      ^            |   |-->|   |-->|   |
 107 *      |            +---+   +---+   +---+
 108 *      |                              |
 109 *      |                              |
 110 *      +------------------------------+
 111 *
 112 *
 113 *   +------+
 114 *   |buffer|          RING BUFFER
 115 *   |page  |------------------v
 116 *   +------+        +---+   +---+   +---+
 117 *      ^            |   |   |   |-->|   |
 118 *      |   New      +---+   +---+   +---+
 119 *      |  Reader------^               |
 120 *      |   page                       |
 121 *      +------------------------------+
 122 *
 123 *
 124 * After we make this swap, the reader can hand this page off to the splice
 125 * code and be done with it. It can even allocate a new page if it needs to
 126 * and swap that into the ring buffer.
 127 *
 128 * We will be using cmpxchg soon to make all this lockless.
 129 *
 130 */
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132/* Used for individual buffers (after the counter) */
 133#define RB_BUFFER_OFF		(1 << 20)
 134
 135#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 136
 
 
 
 
 
 
 
 
 
 
 
 137#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 138#define RB_ALIGNMENT		4U
 139#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 140#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 141
 142#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 143# define RB_FORCE_8BYTE_ALIGNMENT	0
 144# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 145#else
 146# define RB_FORCE_8BYTE_ALIGNMENT	1
 147# define RB_ARCH_ALIGNMENT		8U
 148#endif
 149
 150#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 151
 152/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 153#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 154
 155enum {
 156	RB_LEN_TIME_EXTEND = 8,
 157	RB_LEN_TIME_STAMP =  8,
 158};
 159
 160#define skip_time_extend(event) \
 161	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 162
 163#define extended_time(event) \
 164	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 165
 166static inline int rb_null_event(struct ring_buffer_event *event)
 167{
 168	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 169}
 170
 171static void rb_event_set_padding(struct ring_buffer_event *event)
 172{
 173	/* padding has a NULL time_delta */
 174	event->type_len = RINGBUF_TYPE_PADDING;
 175	event->time_delta = 0;
 176}
 177
 178static unsigned
 179rb_event_data_length(struct ring_buffer_event *event)
 180{
 181	unsigned length;
 182
 183	if (event->type_len)
 184		length = event->type_len * RB_ALIGNMENT;
 185	else
 186		length = event->array[0];
 187	return length + RB_EVNT_HDR_SIZE;
 188}
 189
 190/*
 191 * Return the length of the given event. Will return
 192 * the length of the time extend if the event is a
 193 * time extend.
 194 */
 195static inline unsigned
 196rb_event_length(struct ring_buffer_event *event)
 197{
 198	switch (event->type_len) {
 199	case RINGBUF_TYPE_PADDING:
 200		if (rb_null_event(event))
 201			/* undefined */
 202			return -1;
 203		return  event->array[0] + RB_EVNT_HDR_SIZE;
 204
 205	case RINGBUF_TYPE_TIME_EXTEND:
 206		return RB_LEN_TIME_EXTEND;
 207
 208	case RINGBUF_TYPE_TIME_STAMP:
 209		return RB_LEN_TIME_STAMP;
 210
 211	case RINGBUF_TYPE_DATA:
 212		return rb_event_data_length(event);
 213	default:
 214		WARN_ON_ONCE(1);
 215	}
 216	/* not hit */
 217	return 0;
 218}
 219
 220/*
 221 * Return total length of time extend and data,
 222 *   or just the event length for all other events.
 223 */
 224static inline unsigned
 225rb_event_ts_length(struct ring_buffer_event *event)
 226{
 227	unsigned len = 0;
 228
 229	if (extended_time(event)) {
 230		/* time extends include the data event after it */
 231		len = RB_LEN_TIME_EXTEND;
 232		event = skip_time_extend(event);
 233	}
 234	return len + rb_event_length(event);
 235}
 236
 237/**
 238 * ring_buffer_event_length - return the length of the event
 239 * @event: the event to get the length of
 240 *
 241 * Returns the size of the data load of a data event.
 242 * If the event is something other than a data event, it
 243 * returns the size of the event itself. With the exception
 244 * of a TIME EXTEND, where it still returns the size of the
 245 * data load of the data event after it.
 246 */
 247unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 248{
 249	unsigned length;
 250
 251	if (extended_time(event))
 252		event = skip_time_extend(event);
 253
 254	length = rb_event_length(event);
 255	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 256		return length;
 257	length -= RB_EVNT_HDR_SIZE;
 258	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 259                length -= sizeof(event->array[0]);
 260	return length;
 261}
 262EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 263
 264/* inline for ring buffer fast paths */
 265static __always_inline void *
 266rb_event_data(struct ring_buffer_event *event)
 267{
 268	if (extended_time(event))
 269		event = skip_time_extend(event);
 270	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 271	/* If length is in len field, then array[0] has the data */
 272	if (event->type_len)
 273		return (void *)&event->array[0];
 274	/* Otherwise length is in array[0] and array[1] has the data */
 275	return (void *)&event->array[1];
 276}
 277
 278/**
 279 * ring_buffer_event_data - return the data of the event
 280 * @event: the event to get the data from
 281 */
 282void *ring_buffer_event_data(struct ring_buffer_event *event)
 283{
 284	return rb_event_data(event);
 285}
 286EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 287
 288#define for_each_buffer_cpu(buffer, cpu)		\
 289	for_each_cpu(cpu, buffer->cpumask)
 290
 291#define for_each_online_buffer_cpu(buffer, cpu)		\
 292	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 293
 294#define TS_SHIFT	27
 295#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 296#define TS_DELTA_TEST	(~TS_MASK)
 297
 298static u64 rb_event_time_stamp(struct ring_buffer_event *event)
 299{
 300	u64 ts;
 301
 302	ts = event->array[0];
 303	ts <<= TS_SHIFT;
 304	ts += event->time_delta;
 305
 306	return ts;
 307}
 308
 309/* Flag when events were overwritten */
 310#define RB_MISSED_EVENTS	(1 << 31)
 311/* Missed count stored at end */
 312#define RB_MISSED_STORED	(1 << 30)
 313
 314struct buffer_data_page {
 315	u64		 time_stamp;	/* page time stamp */
 316	local_t		 commit;	/* write committed index */
 317	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 318};
 319
 320/*
 321 * Note, the buffer_page list must be first. The buffer pages
 322 * are allocated in cache lines, which means that each buffer
 323 * page will be at the beginning of a cache line, and thus
 324 * the least significant bits will be zero. We use this to
 325 * add flags in the list struct pointers, to make the ring buffer
 326 * lockless.
 327 */
 328struct buffer_page {
 329	struct list_head list;		/* list of buffer pages */
 330	local_t		 write;		/* index for next write */
 331	unsigned	 read;		/* index for next read */
 332	local_t		 entries;	/* entries on this page */
 333	unsigned long	 real_end;	/* real end of data */
 334	struct buffer_data_page *page;	/* Actual data page */
 335};
 336
 337/*
 338 * The buffer page counters, write and entries, must be reset
 339 * atomically when crossing page boundaries. To synchronize this
 340 * update, two counters are inserted into the number. One is
 341 * the actual counter for the write position or count on the page.
 342 *
 343 * The other is a counter of updaters. Before an update happens
 344 * the update partition of the counter is incremented. This will
 345 * allow the updater to update the counter atomically.
 346 *
 347 * The counter is 20 bits, and the state data is 12.
 348 */
 349#define RB_WRITE_MASK		0xfffff
 350#define RB_WRITE_INTCNT		(1 << 20)
 351
 352static void rb_init_page(struct buffer_data_page *bpage)
 353{
 354	local_set(&bpage->commit, 0);
 355}
 356
 
 
 
 
 
 
 
 
 
 
 
 
 357/*
 358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 359 * this issue out.
 360 */
 361static void free_buffer_page(struct buffer_page *bpage)
 362{
 363	free_page((unsigned long)bpage->page);
 364	kfree(bpage);
 365}
 366
 367/*
 368 * We need to fit the time_stamp delta into 27 bits.
 369 */
 370static inline int test_time_stamp(u64 delta)
 371{
 372	if (delta & TS_DELTA_TEST)
 373		return 1;
 374	return 0;
 375}
 376
 377#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 378
 379/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 380#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 381
 382int ring_buffer_print_page_header(struct trace_seq *s)
 383{
 384	struct buffer_data_page field;
 
 385
 386	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 387			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 388			 (unsigned int)sizeof(field.time_stamp),
 389			 (unsigned int)is_signed_type(u64));
 390
 391	trace_seq_printf(s, "\tfield: local_t commit;\t"
 392			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 393			 (unsigned int)offsetof(typeof(field), commit),
 394			 (unsigned int)sizeof(field.commit),
 395			 (unsigned int)is_signed_type(long));
 396
 397	trace_seq_printf(s, "\tfield: int overwrite;\t"
 398			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 399			 (unsigned int)offsetof(typeof(field), commit),
 400			 1,
 401			 (unsigned int)is_signed_type(long));
 402
 403	trace_seq_printf(s, "\tfield: char data;\t"
 404			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 405			 (unsigned int)offsetof(typeof(field), data),
 406			 (unsigned int)BUF_PAGE_SIZE,
 407			 (unsigned int)is_signed_type(char));
 408
 409	return !trace_seq_has_overflowed(s);
 410}
 411
 412struct rb_irq_work {
 413	struct irq_work			work;
 414	wait_queue_head_t		waiters;
 415	wait_queue_head_t		full_waiters;
 416	long				wait_index;
 417	bool				waiters_pending;
 418	bool				full_waiters_pending;
 419	bool				wakeup_full;
 420};
 421
 422/*
 423 * Structure to hold event state and handle nested events.
 424 */
 425struct rb_event_info {
 426	u64			ts;
 427	u64			delta;
 428	u64			before;
 429	u64			after;
 430	unsigned long		length;
 431	struct buffer_page	*tail_page;
 432	int			add_timestamp;
 433};
 434
 435/*
 436 * Used for the add_timestamp
 437 *  NONE
 438 *  EXTEND - wants a time extend
 439 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 440 *  FORCE - force a full time stamp.
 441 */
 442enum {
 443	RB_ADD_STAMP_NONE		= 0,
 444	RB_ADD_STAMP_EXTEND		= BIT(1),
 445	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 446	RB_ADD_STAMP_FORCE		= BIT(3)
 447};
 448/*
 449 * Used for which event context the event is in.
 450 *  TRANSITION = 0
 451 *  NMI     = 1
 452 *  IRQ     = 2
 453 *  SOFTIRQ = 3
 454 *  NORMAL  = 4
 455 *
 456 * See trace_recursive_lock() comment below for more details.
 457 */
 458enum {
 459	RB_CTX_TRANSITION,
 460	RB_CTX_NMI,
 461	RB_CTX_IRQ,
 462	RB_CTX_SOFTIRQ,
 463	RB_CTX_NORMAL,
 464	RB_CTX_MAX
 465};
 466
 467#if BITS_PER_LONG == 32
 468#define RB_TIME_32
 469#endif
 470
 471/* To test on 64 bit machines */
 472//#define RB_TIME_32
 473
 474#ifdef RB_TIME_32
 475
 476struct rb_time_struct {
 477	local_t		cnt;
 478	local_t		top;
 479	local_t		bottom;
 480	local_t		msb;
 481};
 482#else
 483#include <asm/local64.h>
 484struct rb_time_struct {
 485	local64_t	time;
 486};
 487#endif
 488typedef struct rb_time_struct rb_time_t;
 489
 490#define MAX_NEST	5
 491
 492/*
 493 * head_page == tail_page && head == tail then buffer is empty.
 494 */
 495struct ring_buffer_per_cpu {
 496	int				cpu;
 497	atomic_t			record_disabled;
 498	atomic_t			resize_disabled;
 499	struct trace_buffer	*buffer;
 500	raw_spinlock_t			reader_lock;	/* serialize readers */
 501	arch_spinlock_t			lock;
 502	struct lock_class_key		lock_key;
 503	struct buffer_data_page		*free_page;
 504	unsigned long			nr_pages;
 505	unsigned int			current_context;
 506	struct list_head		*pages;
 507	struct buffer_page		*head_page;	/* read from head */
 508	struct buffer_page		*tail_page;	/* write to tail */
 509	struct buffer_page		*commit_page;	/* committed pages */
 510	struct buffer_page		*reader_page;
 511	unsigned long			lost_events;
 512	unsigned long			last_overrun;
 513	unsigned long			nest;
 514	local_t				entries_bytes;
 515	local_t				entries;
 516	local_t				overrun;
 517	local_t				commit_overrun;
 518	local_t				dropped_events;
 
 519	local_t				committing;
 520	local_t				commits;
 521	local_t				pages_touched;
 522	local_t				pages_lost;
 523	local_t				pages_read;
 524	long				last_pages_touch;
 525	size_t				shortest_full;
 526	unsigned long			read;
 527	unsigned long			read_bytes;
 528	rb_time_t			write_stamp;
 529	rb_time_t			before_stamp;
 530	u64				event_stamp[MAX_NEST];
 531	u64				read_stamp;
 532	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 533	long				nr_pages_to_update;
 534	struct list_head		new_pages; /* new pages to add */
 535	struct work_struct		update_pages_work;
 536	struct completion		update_done;
 537
 538	struct rb_irq_work		irq_work;
 539};
 540
 541struct trace_buffer {
 542	unsigned			flags;
 543	int				cpus;
 544	atomic_t			record_disabled;
 
 545	cpumask_var_t			cpumask;
 546
 547	struct lock_class_key		*reader_lock_key;
 548
 549	struct mutex			mutex;
 550
 551	struct ring_buffer_per_cpu	**buffers;
 552
 553	struct hlist_node		node;
 
 
 554	u64				(*clock)(void);
 555
 556	struct rb_irq_work		irq_work;
 557	bool				time_stamp_abs;
 558};
 559
 560struct ring_buffer_iter {
 561	struct ring_buffer_per_cpu	*cpu_buffer;
 562	unsigned long			head;
 563	unsigned long			next_event;
 564	struct buffer_page		*head_page;
 565	struct buffer_page		*cache_reader_page;
 566	unsigned long			cache_read;
 567	u64				read_stamp;
 568	u64				page_stamp;
 569	struct ring_buffer_event	*event;
 570	int				missed_events;
 571};
 572
 573#ifdef RB_TIME_32
 574
 575/*
 576 * On 32 bit machines, local64_t is very expensive. As the ring
 577 * buffer doesn't need all the features of a true 64 bit atomic,
 578 * on 32 bit, it uses these functions (64 still uses local64_t).
 579 *
 580 * For the ring buffer, 64 bit required operations for the time is
 581 * the following:
 582 *
 583 *  - Reads may fail if it interrupted a modification of the time stamp.
 584 *      It will succeed if it did not interrupt another write even if
 585 *      the read itself is interrupted by a write.
 586 *      It returns whether it was successful or not.
 587 *
 588 *  - Writes always succeed and will overwrite other writes and writes
 589 *      that were done by events interrupting the current write.
 590 *
 591 *  - A write followed by a read of the same time stamp will always succeed,
 592 *      but may not contain the same value.
 593 *
 594 *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
 595 *      Other than that, it acts like a normal cmpxchg.
 596 *
 597 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
 598 *  (bottom being the least significant 30 bits of the 60 bit time stamp).
 599 *
 600 * The two most significant bits of each half holds a 2 bit counter (0-3).
 601 * Each update will increment this counter by one.
 602 * When reading the top and bottom, if the two counter bits match then the
 603 *  top and bottom together make a valid 60 bit number.
 604 */
 605#define RB_TIME_SHIFT	30
 606#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
 607#define RB_TIME_MSB_SHIFT	 60
 608
 609static inline int rb_time_cnt(unsigned long val)
 610{
 611	return (val >> RB_TIME_SHIFT) & 3;
 612}
 613
 614static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
 615{
 616	u64 val;
 617
 618	val = top & RB_TIME_VAL_MASK;
 619	val <<= RB_TIME_SHIFT;
 620	val |= bottom & RB_TIME_VAL_MASK;
 621
 622	return val;
 623}
 624
 625static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
 626{
 627	unsigned long top, bottom, msb;
 628	unsigned long c;
 629
 630	/*
 631	 * If the read is interrupted by a write, then the cnt will
 632	 * be different. Loop until both top and bottom have been read
 633	 * without interruption.
 634	 */
 635	do {
 636		c = local_read(&t->cnt);
 637		top = local_read(&t->top);
 638		bottom = local_read(&t->bottom);
 639		msb = local_read(&t->msb);
 640	} while (c != local_read(&t->cnt));
 641
 642	*cnt = rb_time_cnt(top);
 643
 644	/* If top and bottom counts don't match, this interrupted a write */
 645	if (*cnt != rb_time_cnt(bottom))
 646		return false;
 647
 648	/* The shift to msb will lose its cnt bits */
 649	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
 650	return true;
 651}
 652
 653static bool rb_time_read(rb_time_t *t, u64 *ret)
 654{
 655	unsigned long cnt;
 656
 657	return __rb_time_read(t, ret, &cnt);
 658}
 659
 660static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
 661{
 662	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
 663}
 664
 665static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
 666				 unsigned long *msb)
 667{
 668	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
 669	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
 670	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
 671}
 672
 673static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
 674{
 675	val = rb_time_val_cnt(val, cnt);
 676	local_set(t, val);
 677}
 678
 679static void rb_time_set(rb_time_t *t, u64 val)
 680{
 681	unsigned long cnt, top, bottom, msb;
 682
 683	rb_time_split(val, &top, &bottom, &msb);
 684
 685	/* Writes always succeed with a valid number even if it gets interrupted. */
 686	do {
 687		cnt = local_inc_return(&t->cnt);
 688		rb_time_val_set(&t->top, top, cnt);
 689		rb_time_val_set(&t->bottom, bottom, cnt);
 690		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
 691	} while (cnt != local_read(&t->cnt));
 692}
 693
 694static inline bool
 695rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
 696{
 697	unsigned long ret;
 698
 699	ret = local_cmpxchg(l, expect, set);
 700	return ret == expect;
 701}
 702
 703static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 704{
 705	unsigned long cnt, top, bottom, msb;
 706	unsigned long cnt2, top2, bottom2, msb2;
 707	u64 val;
 708
 709	/* The cmpxchg always fails if it interrupted an update */
 710	 if (!__rb_time_read(t, &val, &cnt2))
 711		 return false;
 712
 713	 if (val != expect)
 714		 return false;
 715
 716	 cnt = local_read(&t->cnt);
 717	 if ((cnt & 3) != cnt2)
 718		 return false;
 719
 720	 cnt2 = cnt + 1;
 721
 722	 rb_time_split(val, &top, &bottom, &msb);
 723	 top = rb_time_val_cnt(top, cnt);
 724	 bottom = rb_time_val_cnt(bottom, cnt);
 725
 726	 rb_time_split(set, &top2, &bottom2, &msb2);
 727	 top2 = rb_time_val_cnt(top2, cnt2);
 728	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
 729
 730	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
 731		return false;
 732	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
 733		return false;
 734	if (!rb_time_read_cmpxchg(&t->top, top, top2))
 735		return false;
 736	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
 737		return false;
 738	return true;
 739}
 740
 741#else /* 64 bits */
 742
 743/* local64_t always succeeds */
 744
 745static inline bool rb_time_read(rb_time_t *t, u64 *ret)
 746{
 747	*ret = local64_read(&t->time);
 748	return true;
 749}
 750static void rb_time_set(rb_time_t *t, u64 val)
 751{
 752	local64_set(&t->time, val);
 753}
 754
 755static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 756{
 757	u64 val;
 758	val = local64_cmpxchg(&t->time, expect, set);
 759	return val == expect;
 760}
 761#endif
 762
 763/*
 764 * Enable this to make sure that the event passed to
 765 * ring_buffer_event_time_stamp() is not committed and also
 766 * is on the buffer that it passed in.
 767 */
 768//#define RB_VERIFY_EVENT
 769#ifdef RB_VERIFY_EVENT
 770static struct list_head *rb_list_head(struct list_head *list);
 771static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 772			 void *event)
 773{
 774	struct buffer_page *page = cpu_buffer->commit_page;
 775	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
 776	struct list_head *next;
 777	long commit, write;
 778	unsigned long addr = (unsigned long)event;
 779	bool done = false;
 780	int stop = 0;
 781
 782	/* Make sure the event exists and is not committed yet */
 783	do {
 784		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
 785			done = true;
 786		commit = local_read(&page->page->commit);
 787		write = local_read(&page->write);
 788		if (addr >= (unsigned long)&page->page->data[commit] &&
 789		    addr < (unsigned long)&page->page->data[write])
 790			return;
 791
 792		next = rb_list_head(page->list.next);
 793		page = list_entry(next, struct buffer_page, list);
 794	} while (!done);
 795	WARN_ON_ONCE(1);
 796}
 797#else
 798static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 799			 void *event)
 800{
 801}
 802#endif
 803
 804/*
 805 * The absolute time stamp drops the 5 MSBs and some clocks may
 806 * require them. The rb_fix_abs_ts() will take a previous full
 807 * time stamp, and add the 5 MSB of that time stamp on to the
 808 * saved absolute time stamp. Then they are compared in case of
 809 * the unlikely event that the latest time stamp incremented
 810 * the 5 MSB.
 811 */
 812static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
 813{
 814	if (save_ts & TS_MSB) {
 815		abs |= save_ts & TS_MSB;
 816		/* Check for overflow */
 817		if (unlikely(abs < save_ts))
 818			abs += 1ULL << 59;
 819	}
 820	return abs;
 821}
 822
 823static inline u64 rb_time_stamp(struct trace_buffer *buffer);
 824
 825/**
 826 * ring_buffer_event_time_stamp - return the event's current time stamp
 827 * @buffer: The buffer that the event is on
 828 * @event: the event to get the time stamp of
 829 *
 830 * Note, this must be called after @event is reserved, and before it is
 831 * committed to the ring buffer. And must be called from the same
 832 * context where the event was reserved (normal, softirq, irq, etc).
 833 *
 834 * Returns the time stamp associated with the current event.
 835 * If the event has an extended time stamp, then that is used as
 836 * the time stamp to return.
 837 * In the highly unlikely case that the event was nested more than
 838 * the max nesting, then the write_stamp of the buffer is returned,
 839 * otherwise  current time is returned, but that really neither of
 840 * the last two cases should ever happen.
 841 */
 842u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
 843				 struct ring_buffer_event *event)
 844{
 845	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
 846	unsigned int nest;
 847	u64 ts;
 848
 849	/* If the event includes an absolute time, then just use that */
 850	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
 851		ts = rb_event_time_stamp(event);
 852		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
 853	}
 854
 855	nest = local_read(&cpu_buffer->committing);
 856	verify_event(cpu_buffer, event);
 857	if (WARN_ON_ONCE(!nest))
 858		goto fail;
 859
 860	/* Read the current saved nesting level time stamp */
 861	if (likely(--nest < MAX_NEST))
 862		return cpu_buffer->event_stamp[nest];
 863
 864	/* Shouldn't happen, warn if it does */
 865	WARN_ONCE(1, "nest (%d) greater than max", nest);
 866
 867 fail:
 868	/* Can only fail on 32 bit */
 869	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
 870		/* Screw it, just read the current time */
 871		ts = rb_time_stamp(cpu_buffer->buffer);
 872
 873	return ts;
 874}
 875
 876/**
 877 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 878 * @buffer: The ring_buffer to get the number of pages from
 879 * @cpu: The cpu of the ring_buffer to get the number of pages from
 880 *
 881 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 882 */
 883size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 884{
 885	return buffer->buffers[cpu]->nr_pages;
 886}
 887
 888/**
 889 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
 890 * @buffer: The ring_buffer to get the number of pages from
 891 * @cpu: The cpu of the ring_buffer to get the number of pages from
 892 *
 893 * Returns the number of pages that have content in the ring buffer.
 894 */
 895size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 896{
 897	size_t read;
 898	size_t lost;
 899	size_t cnt;
 900
 901	read = local_read(&buffer->buffers[cpu]->pages_read);
 902	lost = local_read(&buffer->buffers[cpu]->pages_lost);
 903	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 904
 905	if (WARN_ON_ONCE(cnt < lost))
 906		return 0;
 907
 908	cnt -= lost;
 909
 910	/* The reader can read an empty page, but not more than that */
 911	if (cnt < read) {
 912		WARN_ON_ONCE(read > cnt + 1);
 913		return 0;
 914	}
 915
 916	return cnt - read;
 917}
 918
 919static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
 920{
 921	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 922	size_t nr_pages;
 923	size_t dirty;
 924
 925	nr_pages = cpu_buffer->nr_pages;
 926	if (!nr_pages || !full)
 927		return true;
 928
 929	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 930
 931	return (dirty * 100) > (full * nr_pages);
 932}
 933
 934/*
 935 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 936 *
 937 * Schedules a delayed work to wake up any task that is blocked on the
 938 * ring buffer waiters queue.
 939 */
 940static void rb_wake_up_waiters(struct irq_work *work)
 941{
 942	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 943
 944	wake_up_all(&rbwork->waiters);
 945	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
 946		rbwork->wakeup_full = false;
 947		rbwork->full_waiters_pending = false;
 948		wake_up_all(&rbwork->full_waiters);
 949	}
 950}
 951
 952/**
 953 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
 954 * @buffer: The ring buffer to wake waiters on
 955 *
 956 * In the case of a file that represents a ring buffer is closing,
 957 * it is prudent to wake up any waiters that are on this.
 958 */
 959void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
 960{
 961	struct ring_buffer_per_cpu *cpu_buffer;
 962	struct rb_irq_work *rbwork;
 963
 964	if (!buffer)
 965		return;
 966
 967	if (cpu == RING_BUFFER_ALL_CPUS) {
 968
 969		/* Wake up individual ones too. One level recursion */
 970		for_each_buffer_cpu(buffer, cpu)
 971			ring_buffer_wake_waiters(buffer, cpu);
 972
 973		rbwork = &buffer->irq_work;
 974	} else {
 975		if (WARN_ON_ONCE(!buffer->buffers))
 976			return;
 977		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 978			return;
 979
 980		cpu_buffer = buffer->buffers[cpu];
 981		/* The CPU buffer may not have been initialized yet */
 982		if (!cpu_buffer)
 983			return;
 984		rbwork = &cpu_buffer->irq_work;
 985	}
 986
 987	rbwork->wait_index++;
 988	/* make sure the waiters see the new index */
 989	smp_wmb();
 990
 991	rb_wake_up_waiters(&rbwork->work);
 992}
 993
 994/**
 995 * ring_buffer_wait - wait for input to the ring buffer
 996 * @buffer: buffer to wait on
 997 * @cpu: the cpu buffer to wait on
 998 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 999 *
1000 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1001 * as data is added to any of the @buffer's cpu buffers. Otherwise
1002 * it will wait for data to be added to a specific cpu buffer.
1003 */
1004int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1005{
1006	struct ring_buffer_per_cpu *cpu_buffer;
1007	DEFINE_WAIT(wait);
1008	struct rb_irq_work *work;
1009	long wait_index;
1010	int ret = 0;
1011
1012	/*
1013	 * Depending on what the caller is waiting for, either any
1014	 * data in any cpu buffer, or a specific buffer, put the
1015	 * caller on the appropriate wait queue.
1016	 */
1017	if (cpu == RING_BUFFER_ALL_CPUS) {
1018		work = &buffer->irq_work;
1019		/* Full only makes sense on per cpu reads */
1020		full = 0;
1021	} else {
1022		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1023			return -ENODEV;
1024		cpu_buffer = buffer->buffers[cpu];
1025		work = &cpu_buffer->irq_work;
1026	}
1027
1028	wait_index = READ_ONCE(work->wait_index);
1029
1030	while (true) {
1031		if (full)
1032			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1033		else
1034			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1035
1036		/*
1037		 * The events can happen in critical sections where
1038		 * checking a work queue can cause deadlocks.
1039		 * After adding a task to the queue, this flag is set
1040		 * only to notify events to try to wake up the queue
1041		 * using irq_work.
1042		 *
1043		 * We don't clear it even if the buffer is no longer
1044		 * empty. The flag only causes the next event to run
1045		 * irq_work to do the work queue wake up. The worse
1046		 * that can happen if we race with !trace_empty() is that
1047		 * an event will cause an irq_work to try to wake up
1048		 * an empty queue.
1049		 *
1050		 * There's no reason to protect this flag either, as
1051		 * the work queue and irq_work logic will do the necessary
1052		 * synchronization for the wake ups. The only thing
1053		 * that is necessary is that the wake up happens after
1054		 * a task has been queued. It's OK for spurious wake ups.
1055		 */
1056		if (full)
1057			work->full_waiters_pending = true;
1058		else
1059			work->waiters_pending = true;
1060
1061		if (signal_pending(current)) {
1062			ret = -EINTR;
1063			break;
1064		}
1065
1066		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1067			break;
1068
1069		if (cpu != RING_BUFFER_ALL_CPUS &&
1070		    !ring_buffer_empty_cpu(buffer, cpu)) {
1071			unsigned long flags;
1072			bool pagebusy;
1073			bool done;
1074
1075			if (!full)
1076				break;
1077
1078			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1079			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1080			done = !pagebusy && full_hit(buffer, cpu, full);
1081
1082			if (!cpu_buffer->shortest_full ||
1083			    cpu_buffer->shortest_full > full)
1084				cpu_buffer->shortest_full = full;
1085			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1086			if (done)
1087				break;
1088		}
1089
1090		schedule();
1091
1092		/* Make sure to see the new wait index */
1093		smp_rmb();
1094		if (wait_index != work->wait_index)
1095			break;
1096	}
1097
1098	if (full)
1099		finish_wait(&work->full_waiters, &wait);
1100	else
1101		finish_wait(&work->waiters, &wait);
1102
1103	return ret;
1104}
1105
1106/**
1107 * ring_buffer_poll_wait - poll on buffer input
1108 * @buffer: buffer to wait on
1109 * @cpu: the cpu buffer to wait on
1110 * @filp: the file descriptor
1111 * @poll_table: The poll descriptor
1112 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1113 *
1114 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1115 * as data is added to any of the @buffer's cpu buffers. Otherwise
1116 * it will wait for data to be added to a specific cpu buffer.
1117 *
1118 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1119 * zero otherwise.
1120 */
1121__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1122			  struct file *filp, poll_table *poll_table, int full)
1123{
1124	struct ring_buffer_per_cpu *cpu_buffer;
1125	struct rb_irq_work *work;
1126
1127	if (cpu == RING_BUFFER_ALL_CPUS) {
1128		work = &buffer->irq_work;
1129		full = 0;
1130	} else {
1131		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1132			return -EINVAL;
1133
1134		cpu_buffer = buffer->buffers[cpu];
1135		work = &cpu_buffer->irq_work;
1136	}
1137
1138	if (full) {
1139		poll_wait(filp, &work->full_waiters, poll_table);
1140		work->full_waiters_pending = true;
1141	} else {
1142		poll_wait(filp, &work->waiters, poll_table);
1143		work->waiters_pending = true;
1144	}
1145
1146	/*
1147	 * There's a tight race between setting the waiters_pending and
1148	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1149	 * is set, the next event will wake the task up, but we can get stuck
1150	 * if there's only a single event in.
1151	 *
1152	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1153	 * but adding a memory barrier to all events will cause too much of a
1154	 * performance hit in the fast path.  We only need a memory barrier when
1155	 * the buffer goes from empty to having content.  But as this race is
1156	 * extremely small, and it's not a problem if another event comes in, we
1157	 * will fix it later.
1158	 */
1159	smp_mb();
1160
1161	if (full)
1162		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1163
1164	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1165	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1166		return EPOLLIN | EPOLLRDNORM;
1167	return 0;
1168}
1169
1170/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1171#define RB_WARN_ON(b, cond)						\
1172	({								\
1173		int _____ret = unlikely(cond);				\
1174		if (_____ret) {						\
1175			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1176				struct ring_buffer_per_cpu *__b =	\
1177					(void *)b;			\
1178				atomic_inc(&__b->buffer->record_disabled); \
1179			} else						\
1180				atomic_inc(&b->record_disabled);	\
1181			WARN_ON(1);					\
1182		}							\
1183		_____ret;						\
1184	})
1185
1186/* Up this if you want to test the TIME_EXTENTS and normalization */
1187#define DEBUG_SHIFT 0
1188
1189static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1190{
1191	u64 ts;
1192
1193	/* Skip retpolines :-( */
1194	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1195		ts = trace_clock_local();
1196	else
1197		ts = buffer->clock();
1198
1199	/* shift to debug/test normalization and TIME_EXTENTS */
1200	return ts << DEBUG_SHIFT;
1201}
1202
1203u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1204{
1205	u64 time;
1206
1207	preempt_disable_notrace();
1208	time = rb_time_stamp(buffer);
1209	preempt_enable_notrace();
1210
1211	return time;
1212}
1213EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1214
1215void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1216				      int cpu, u64 *ts)
1217{
1218	/* Just stupid testing the normalize function and deltas */
1219	*ts >>= DEBUG_SHIFT;
1220}
1221EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1222
1223/*
1224 * Making the ring buffer lockless makes things tricky.
1225 * Although writes only happen on the CPU that they are on,
1226 * and they only need to worry about interrupts. Reads can
1227 * happen on any CPU.
1228 *
1229 * The reader page is always off the ring buffer, but when the
1230 * reader finishes with a page, it needs to swap its page with
1231 * a new one from the buffer. The reader needs to take from
1232 * the head (writes go to the tail). But if a writer is in overwrite
1233 * mode and wraps, it must push the head page forward.
1234 *
1235 * Here lies the problem.
1236 *
1237 * The reader must be careful to replace only the head page, and
1238 * not another one. As described at the top of the file in the
1239 * ASCII art, the reader sets its old page to point to the next
1240 * page after head. It then sets the page after head to point to
1241 * the old reader page. But if the writer moves the head page
1242 * during this operation, the reader could end up with the tail.
1243 *
1244 * We use cmpxchg to help prevent this race. We also do something
1245 * special with the page before head. We set the LSB to 1.
1246 *
1247 * When the writer must push the page forward, it will clear the
1248 * bit that points to the head page, move the head, and then set
1249 * the bit that points to the new head page.
1250 *
1251 * We also don't want an interrupt coming in and moving the head
1252 * page on another writer. Thus we use the second LSB to catch
1253 * that too. Thus:
1254 *
1255 * head->list->prev->next        bit 1          bit 0
1256 *                              -------        -------
1257 * Normal page                     0              0
1258 * Points to head page             0              1
1259 * New head page                   1              0
1260 *
1261 * Note we can not trust the prev pointer of the head page, because:
1262 *
1263 * +----+       +-----+        +-----+
1264 * |    |------>|  T  |---X--->|  N  |
1265 * |    |<------|     |        |     |
1266 * +----+       +-----+        +-----+
1267 *   ^                           ^ |
1268 *   |          +-----+          | |
1269 *   +----------|  R  |----------+ |
1270 *              |     |<-----------+
1271 *              +-----+
1272 *
1273 * Key:  ---X-->  HEAD flag set in pointer
1274 *         T      Tail page
1275 *         R      Reader page
1276 *         N      Next page
1277 *
1278 * (see __rb_reserve_next() to see where this happens)
1279 *
1280 *  What the above shows is that the reader just swapped out
1281 *  the reader page with a page in the buffer, but before it
1282 *  could make the new header point back to the new page added
1283 *  it was preempted by a writer. The writer moved forward onto
1284 *  the new page added by the reader and is about to move forward
1285 *  again.
1286 *
1287 *  You can see, it is legitimate for the previous pointer of
1288 *  the head (or any page) not to point back to itself. But only
1289 *  temporarily.
1290 */
1291
1292#define RB_PAGE_NORMAL		0UL
1293#define RB_PAGE_HEAD		1UL
1294#define RB_PAGE_UPDATE		2UL
1295
1296
1297#define RB_FLAG_MASK		3UL
1298
1299/* PAGE_MOVED is not part of the mask */
1300#define RB_PAGE_MOVED		4UL
1301
1302/*
1303 * rb_list_head - remove any bit
1304 */
1305static struct list_head *rb_list_head(struct list_head *list)
1306{
1307	unsigned long val = (unsigned long)list;
1308
1309	return (struct list_head *)(val & ~RB_FLAG_MASK);
1310}
1311
1312/*
1313 * rb_is_head_page - test if the given page is the head page
1314 *
1315 * Because the reader may move the head_page pointer, we can
1316 * not trust what the head page is (it may be pointing to
1317 * the reader page). But if the next page is a header page,
1318 * its flags will be non zero.
1319 */
1320static inline int
1321rb_is_head_page(struct buffer_page *page, struct list_head *list)
 
1322{
1323	unsigned long val;
1324
1325	val = (unsigned long)list->next;
1326
1327	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1328		return RB_PAGE_MOVED;
1329
1330	return val & RB_FLAG_MASK;
1331}
1332
1333/*
1334 * rb_is_reader_page
1335 *
1336 * The unique thing about the reader page, is that, if the
1337 * writer is ever on it, the previous pointer never points
1338 * back to the reader page.
1339 */
1340static bool rb_is_reader_page(struct buffer_page *page)
1341{
1342	struct list_head *list = page->list.prev;
1343
1344	return rb_list_head(list->next) != &page->list;
1345}
1346
1347/*
1348 * rb_set_list_to_head - set a list_head to be pointing to head.
1349 */
1350static void rb_set_list_to_head(struct list_head *list)
 
1351{
1352	unsigned long *ptr;
1353
1354	ptr = (unsigned long *)&list->next;
1355	*ptr |= RB_PAGE_HEAD;
1356	*ptr &= ~RB_PAGE_UPDATE;
1357}
1358
1359/*
1360 * rb_head_page_activate - sets up head page
1361 */
1362static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1363{
1364	struct buffer_page *head;
1365
1366	head = cpu_buffer->head_page;
1367	if (!head)
1368		return;
1369
1370	/*
1371	 * Set the previous list pointer to have the HEAD flag.
1372	 */
1373	rb_set_list_to_head(head->list.prev);
1374}
1375
1376static void rb_list_head_clear(struct list_head *list)
1377{
1378	unsigned long *ptr = (unsigned long *)&list->next;
1379
1380	*ptr &= ~RB_FLAG_MASK;
1381}
1382
1383/*
1384 * rb_head_page_deactivate - clears head page ptr (for free list)
1385 */
1386static void
1387rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1388{
1389	struct list_head *hd;
1390
1391	/* Go through the whole list and clear any pointers found. */
1392	rb_list_head_clear(cpu_buffer->pages);
1393
1394	list_for_each(hd, cpu_buffer->pages)
1395		rb_list_head_clear(hd);
1396}
1397
1398static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1399			    struct buffer_page *head,
1400			    struct buffer_page *prev,
1401			    int old_flag, int new_flag)
1402{
1403	struct list_head *list;
1404	unsigned long val = (unsigned long)&head->list;
1405	unsigned long ret;
1406
1407	list = &prev->list;
1408
1409	val &= ~RB_FLAG_MASK;
1410
1411	ret = cmpxchg((unsigned long *)&list->next,
1412		      val | old_flag, val | new_flag);
1413
1414	/* check if the reader took the page */
1415	if ((ret & ~RB_FLAG_MASK) != val)
1416		return RB_PAGE_MOVED;
1417
1418	return ret & RB_FLAG_MASK;
1419}
1420
1421static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1422				   struct buffer_page *head,
1423				   struct buffer_page *prev,
1424				   int old_flag)
1425{
1426	return rb_head_page_set(cpu_buffer, head, prev,
1427				old_flag, RB_PAGE_UPDATE);
1428}
1429
1430static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1431				 struct buffer_page *head,
1432				 struct buffer_page *prev,
1433				 int old_flag)
1434{
1435	return rb_head_page_set(cpu_buffer, head, prev,
1436				old_flag, RB_PAGE_HEAD);
1437}
1438
1439static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1440				   struct buffer_page *head,
1441				   struct buffer_page *prev,
1442				   int old_flag)
1443{
1444	return rb_head_page_set(cpu_buffer, head, prev,
1445				old_flag, RB_PAGE_NORMAL);
1446}
1447
1448static inline void rb_inc_page(struct buffer_page **bpage)
 
1449{
1450	struct list_head *p = rb_list_head((*bpage)->list.next);
1451
1452	*bpage = list_entry(p, struct buffer_page, list);
1453}
1454
1455static struct buffer_page *
1456rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1457{
1458	struct buffer_page *head;
1459	struct buffer_page *page;
1460	struct list_head *list;
1461	int i;
1462
1463	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1464		return NULL;
1465
1466	/* sanity check */
1467	list = cpu_buffer->pages;
1468	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1469		return NULL;
1470
1471	page = head = cpu_buffer->head_page;
1472	/*
1473	 * It is possible that the writer moves the header behind
1474	 * where we started, and we miss in one loop.
1475	 * A second loop should grab the header, but we'll do
1476	 * three loops just because I'm paranoid.
1477	 */
1478	for (i = 0; i < 3; i++) {
1479		do {
1480			if (rb_is_head_page(page, page->list.prev)) {
1481				cpu_buffer->head_page = page;
1482				return page;
1483			}
1484			rb_inc_page(&page);
1485		} while (page != head);
1486	}
1487
1488	RB_WARN_ON(cpu_buffer, 1);
1489
1490	return NULL;
1491}
1492
1493static int rb_head_page_replace(struct buffer_page *old,
1494				struct buffer_page *new)
1495{
1496	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1497	unsigned long val;
1498	unsigned long ret;
1499
1500	val = *ptr & ~RB_FLAG_MASK;
1501	val |= RB_PAGE_HEAD;
1502
1503	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1504
1505	return ret == val;
1506}
1507
1508/*
1509 * rb_tail_page_update - move the tail page forward
 
 
1510 */
1511static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1512			       struct buffer_page *tail_page,
1513			       struct buffer_page *next_page)
1514{
 
1515	unsigned long old_entries;
1516	unsigned long old_write;
 
1517
1518	/*
1519	 * The tail page now needs to be moved forward.
1520	 *
1521	 * We need to reset the tail page, but without messing
1522	 * with possible erasing of data brought in by interrupts
1523	 * that have moved the tail page and are currently on it.
1524	 *
1525	 * We add a counter to the write field to denote this.
1526	 */
1527	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1528	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1529
1530	local_inc(&cpu_buffer->pages_touched);
1531	/*
1532	 * Just make sure we have seen our old_write and synchronize
1533	 * with any interrupts that come in.
1534	 */
1535	barrier();
1536
1537	/*
1538	 * If the tail page is still the same as what we think
1539	 * it is, then it is up to us to update the tail
1540	 * pointer.
1541	 */
1542	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1543		/* Zero the write counter */
1544		unsigned long val = old_write & ~RB_WRITE_MASK;
1545		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1546
1547		/*
1548		 * This will only succeed if an interrupt did
1549		 * not come in and change it. In which case, we
1550		 * do not want to modify it.
1551		 *
1552		 * We add (void) to let the compiler know that we do not care
1553		 * about the return value of these functions. We use the
1554		 * cmpxchg to only update if an interrupt did not already
1555		 * do it for us. If the cmpxchg fails, we don't care.
1556		 */
1557		(void)local_cmpxchg(&next_page->write, old_write, val);
1558		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1559
1560		/*
1561		 * No need to worry about races with clearing out the commit.
1562		 * it only can increment when a commit takes place. But that
1563		 * only happens in the outer most nested commit.
1564		 */
1565		local_set(&next_page->page->commit, 0);
1566
1567		/* Again, either we update tail_page or an interrupt does */
1568		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
 
 
 
1569	}
 
 
1570}
1571
1572static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1573			  struct buffer_page *bpage)
1574{
1575	unsigned long val = (unsigned long)bpage;
1576
1577	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1578		return 1;
1579
1580	return 0;
1581}
1582
1583/**
1584 * rb_check_list - make sure a pointer to a list has the last bits zero
1585 */
1586static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1587			 struct list_head *list)
1588{
1589	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1590		return 1;
1591	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1592		return 1;
1593	return 0;
1594}
1595
1596/**
1597 * rb_check_pages - integrity check of buffer pages
1598 * @cpu_buffer: CPU buffer with pages to test
1599 *
1600 * As a safety measure we check to make sure the data pages have not
1601 * been corrupted.
1602 */
1603static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1604{
1605	struct list_head *head = cpu_buffer->pages;
1606	struct buffer_page *bpage, *tmp;
1607
1608	/* Reset the head page if it exists */
1609	if (cpu_buffer->head_page)
1610		rb_set_head_page(cpu_buffer);
1611
1612	rb_head_page_deactivate(cpu_buffer);
1613
1614	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1615		return -1;
1616	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1617		return -1;
1618
1619	if (rb_check_list(cpu_buffer, head))
1620		return -1;
1621
1622	list_for_each_entry_safe(bpage, tmp, head, list) {
1623		if (RB_WARN_ON(cpu_buffer,
1624			       bpage->list.next->prev != &bpage->list))
1625			return -1;
1626		if (RB_WARN_ON(cpu_buffer,
1627			       bpage->list.prev->next != &bpage->list))
1628			return -1;
1629		if (rb_check_list(cpu_buffer, &bpage->list))
1630			return -1;
1631	}
1632
1633	rb_head_page_activate(cpu_buffer);
1634
1635	return 0;
1636}
1637
1638static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1639		long nr_pages, struct list_head *pages)
1640{
 
1641	struct buffer_page *bpage, *tmp;
1642	bool user_thread = current->mm != NULL;
1643	gfp_t mflags;
1644	long i;
1645
1646	/*
1647	 * Check if the available memory is there first.
1648	 * Note, si_mem_available() only gives us a rough estimate of available
1649	 * memory. It may not be accurate. But we don't care, we just want
1650	 * to prevent doing any allocation when it is obvious that it is
1651	 * not going to succeed.
1652	 */
1653	i = si_mem_available();
1654	if (i < nr_pages)
1655		return -ENOMEM;
1656
1657	/*
1658	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1659	 * gracefully without invoking oom-killer and the system is not
1660	 * destabilized.
1661	 */
1662	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1663
1664	/*
1665	 * If a user thread allocates too much, and si_mem_available()
1666	 * reports there's enough memory, even though there is not.
1667	 * Make sure the OOM killer kills this thread. This can happen
1668	 * even with RETRY_MAYFAIL because another task may be doing
1669	 * an allocation after this task has taken all memory.
1670	 * This is the task the OOM killer needs to take out during this
1671	 * loop, even if it was triggered by an allocation somewhere else.
1672	 */
1673	if (user_thread)
1674		set_current_oom_origin();
1675	for (i = 0; i < nr_pages; i++) {
1676		struct page *page;
1677
 
 
 
 
1678		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1679				    mflags, cpu_to_node(cpu_buffer->cpu));
 
1680		if (!bpage)
1681			goto free_pages;
1682
1683		rb_check_bpage(cpu_buffer, bpage);
1684
1685		list_add(&bpage->list, pages);
1686
1687		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
 
1688		if (!page)
1689			goto free_pages;
1690		bpage->page = page_address(page);
1691		rb_init_page(bpage->page);
1692
1693		if (user_thread && fatal_signal_pending(current))
1694			goto free_pages;
1695	}
1696	if (user_thread)
1697		clear_current_oom_origin();
1698
1699	return 0;
1700
1701free_pages:
1702	list_for_each_entry_safe(bpage, tmp, pages, list) {
1703		list_del_init(&bpage->list);
1704		free_buffer_page(bpage);
1705	}
1706	if (user_thread)
1707		clear_current_oom_origin();
1708
1709	return -ENOMEM;
1710}
1711
1712static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1713			     unsigned long nr_pages)
1714{
1715	LIST_HEAD(pages);
1716
1717	WARN_ON(!nr_pages);
1718
1719	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1720		return -ENOMEM;
1721
1722	/*
1723	 * The ring buffer page list is a circular list that does not
1724	 * start and end with a list head. All page list items point to
1725	 * other pages.
1726	 */
1727	cpu_buffer->pages = pages.next;
1728	list_del(&pages);
1729
1730	cpu_buffer->nr_pages = nr_pages;
1731
1732	rb_check_pages(cpu_buffer);
1733
1734	return 0;
1735}
1736
1737static struct ring_buffer_per_cpu *
1738rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1739{
1740	struct ring_buffer_per_cpu *cpu_buffer;
1741	struct buffer_page *bpage;
1742	struct page *page;
1743	int ret;
1744
1745	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1746				  GFP_KERNEL, cpu_to_node(cpu));
1747	if (!cpu_buffer)
1748		return NULL;
1749
1750	cpu_buffer->cpu = cpu;
1751	cpu_buffer->buffer = buffer;
1752	raw_spin_lock_init(&cpu_buffer->reader_lock);
1753	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1754	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1755	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1756	init_completion(&cpu_buffer->update_done);
1757	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1758	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1759	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1760
1761	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1762			    GFP_KERNEL, cpu_to_node(cpu));
1763	if (!bpage)
1764		goto fail_free_buffer;
1765
1766	rb_check_bpage(cpu_buffer, bpage);
1767
1768	cpu_buffer->reader_page = bpage;
1769	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1770	if (!page)
1771		goto fail_free_reader;
1772	bpage->page = page_address(page);
1773	rb_init_page(bpage->page);
1774
1775	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1776	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1777
1778	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1779	if (ret < 0)
1780		goto fail_free_reader;
1781
1782	cpu_buffer->head_page
1783		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1784	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1785
1786	rb_head_page_activate(cpu_buffer);
1787
1788	return cpu_buffer;
1789
1790 fail_free_reader:
1791	free_buffer_page(cpu_buffer->reader_page);
1792
1793 fail_free_buffer:
1794	kfree(cpu_buffer);
1795	return NULL;
1796}
1797
1798static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1799{
1800	struct list_head *head = cpu_buffer->pages;
1801	struct buffer_page *bpage, *tmp;
1802
1803	free_buffer_page(cpu_buffer->reader_page);
1804
1805	if (head) {
1806		rb_head_page_deactivate(cpu_buffer);
1807
 
1808		list_for_each_entry_safe(bpage, tmp, head, list) {
1809			list_del_init(&bpage->list);
1810			free_buffer_page(bpage);
1811		}
1812		bpage = list_entry(head, struct buffer_page, list);
1813		free_buffer_page(bpage);
1814	}
1815
1816	kfree(cpu_buffer);
1817}
1818
 
 
 
 
 
1819/**
1820 * __ring_buffer_alloc - allocate a new ring_buffer
1821 * @size: the size in bytes per cpu that is needed.
1822 * @flags: attributes to set for the ring buffer.
1823 * @key: ring buffer reader_lock_key.
1824 *
1825 * Currently the only flag that is available is the RB_FL_OVERWRITE
1826 * flag. This flag means that the buffer will overwrite old data
1827 * when the buffer wraps. If this flag is not set, the buffer will
1828 * drop data when the tail hits the head.
1829 */
1830struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1831					struct lock_class_key *key)
1832{
1833	struct trace_buffer *buffer;
1834	long nr_pages;
1835	int bsize;
1836	int cpu;
1837	int ret;
1838
1839	/* keep it in its own cache line */
1840	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1841			 GFP_KERNEL);
1842	if (!buffer)
1843		return NULL;
1844
1845	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1846		goto fail_free_buffer;
1847
1848	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1849	buffer->flags = flags;
1850	buffer->clock = trace_clock_local;
1851	buffer->reader_lock_key = key;
1852
1853	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1854	init_waitqueue_head(&buffer->irq_work.waiters);
1855
1856	/* need at least two pages */
1857	if (nr_pages < 2)
1858		nr_pages = 2;
1859
 
 
 
 
 
 
 
 
 
 
 
1860	buffer->cpus = nr_cpu_ids;
1861
1862	bsize = sizeof(void *) * nr_cpu_ids;
1863	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1864				  GFP_KERNEL);
1865	if (!buffer->buffers)
1866		goto fail_free_cpumask;
1867
1868	cpu = raw_smp_processor_id();
1869	cpumask_set_cpu(cpu, buffer->cpumask);
1870	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1871	if (!buffer->buffers[cpu])
1872		goto fail_free_buffers;
 
1873
1874	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875	if (ret < 0)
1876		goto fail_free_buffers;
 
 
1877
 
1878	mutex_init(&buffer->mutex);
1879
1880	return buffer;
1881
1882 fail_free_buffers:
1883	for_each_buffer_cpu(buffer, cpu) {
1884		if (buffer->buffers[cpu])
1885			rb_free_cpu_buffer(buffer->buffers[cpu]);
1886	}
1887	kfree(buffer->buffers);
1888
1889 fail_free_cpumask:
1890	free_cpumask_var(buffer->cpumask);
 
1891
1892 fail_free_buffer:
1893	kfree(buffer);
1894	return NULL;
1895}
1896EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1897
1898/**
1899 * ring_buffer_free - free a ring buffer.
1900 * @buffer: the buffer to free.
1901 */
1902void
1903ring_buffer_free(struct trace_buffer *buffer)
1904{
1905	int cpu;
1906
1907	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
 
 
 
 
1908
1909	for_each_buffer_cpu(buffer, cpu)
1910		rb_free_cpu_buffer(buffer->buffers[cpu]);
1911
 
 
1912	kfree(buffer->buffers);
1913	free_cpumask_var(buffer->cpumask);
1914
1915	kfree(buffer);
1916}
1917EXPORT_SYMBOL_GPL(ring_buffer_free);
1918
1919void ring_buffer_set_clock(struct trace_buffer *buffer,
1920			   u64 (*clock)(void))
1921{
1922	buffer->clock = clock;
1923}
1924
1925void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1926{
1927	buffer->time_stamp_abs = abs;
1928}
1929
1930bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1931{
1932	return buffer->time_stamp_abs;
1933}
1934
1935static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1936
1937static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1938{
1939	return local_read(&bpage->entries) & RB_WRITE_MASK;
1940}
1941
1942static inline unsigned long rb_page_write(struct buffer_page *bpage)
1943{
1944	return local_read(&bpage->write) & RB_WRITE_MASK;
1945}
1946
1947static int
1948rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1949{
1950	struct list_head *tail_page, *to_remove, *next_page;
1951	struct buffer_page *to_remove_page, *tmp_iter_page;
1952	struct buffer_page *last_page, *first_page;
1953	unsigned long nr_removed;
1954	unsigned long head_bit;
1955	int page_entries;
1956
1957	head_bit = 0;
1958
1959	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1960	atomic_inc(&cpu_buffer->record_disabled);
1961	/*
1962	 * We don't race with the readers since we have acquired the reader
1963	 * lock. We also don't race with writers after disabling recording.
1964	 * This makes it easy to figure out the first and the last page to be
1965	 * removed from the list. We unlink all the pages in between including
1966	 * the first and last pages. This is done in a busy loop so that we
1967	 * lose the least number of traces.
1968	 * The pages are freed after we restart recording and unlock readers.
1969	 */
1970	tail_page = &cpu_buffer->tail_page->list;
1971
1972	/*
1973	 * tail page might be on reader page, we remove the next page
1974	 * from the ring buffer
1975	 */
1976	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1977		tail_page = rb_list_head(tail_page->next);
1978	to_remove = tail_page;
1979
1980	/* start of pages to remove */
1981	first_page = list_entry(rb_list_head(to_remove->next),
1982				struct buffer_page, list);
1983
1984	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1985		to_remove = rb_list_head(to_remove)->next;
1986		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1987	}
1988
1989	next_page = rb_list_head(to_remove)->next;
1990
1991	/*
1992	 * Now we remove all pages between tail_page and next_page.
1993	 * Make sure that we have head_bit value preserved for the
1994	 * next page
1995	 */
1996	tail_page->next = (struct list_head *)((unsigned long)next_page |
1997						head_bit);
1998	next_page = rb_list_head(next_page);
1999	next_page->prev = tail_page;
2000
2001	/* make sure pages points to a valid page in the ring buffer */
2002	cpu_buffer->pages = next_page;
2003
2004	/* update head page */
2005	if (head_bit)
2006		cpu_buffer->head_page = list_entry(next_page,
2007						struct buffer_page, list);
2008
2009	/*
2010	 * change read pointer to make sure any read iterators reset
2011	 * themselves
2012	 */
2013	cpu_buffer->read = 0;
2014
2015	/* pages are removed, resume tracing and then free the pages */
2016	atomic_dec(&cpu_buffer->record_disabled);
2017	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2018
2019	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2020
2021	/* last buffer page to remove */
2022	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2023				list);
2024	tmp_iter_page = first_page;
2025
2026	do {
2027		cond_resched();
2028
2029		to_remove_page = tmp_iter_page;
2030		rb_inc_page(&tmp_iter_page);
2031
2032		/* update the counters */
2033		page_entries = rb_page_entries(to_remove_page);
2034		if (page_entries) {
2035			/*
2036			 * If something was added to this page, it was full
2037			 * since it is not the tail page. So we deduct the
2038			 * bytes consumed in ring buffer from here.
2039			 * Increment overrun to account for the lost events.
2040			 */
2041			local_add(page_entries, &cpu_buffer->overrun);
2042			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2043			local_inc(&cpu_buffer->pages_lost);
2044		}
2045
2046		/*
2047		 * We have already removed references to this list item, just
2048		 * free up the buffer_page and its page
2049		 */
2050		free_buffer_page(to_remove_page);
2051		nr_removed--;
2052
2053	} while (to_remove_page != last_page);
2054
2055	RB_WARN_ON(cpu_buffer, nr_removed);
2056
2057	return nr_removed == 0;
2058}
2059
2060static int
2061rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2062{
2063	struct list_head *pages = &cpu_buffer->new_pages;
2064	int retries, success;
2065	unsigned long flags;
2066
2067	/* Can be called at early boot up, where interrupts must not been enabled */
2068	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2069	/*
2070	 * We are holding the reader lock, so the reader page won't be swapped
2071	 * in the ring buffer. Now we are racing with the writer trying to
2072	 * move head page and the tail page.
2073	 * We are going to adapt the reader page update process where:
2074	 * 1. We first splice the start and end of list of new pages between
2075	 *    the head page and its previous page.
2076	 * 2. We cmpxchg the prev_page->next to point from head page to the
2077	 *    start of new pages list.
2078	 * 3. Finally, we update the head->prev to the end of new list.
2079	 *
2080	 * We will try this process 10 times, to make sure that we don't keep
2081	 * spinning.
2082	 */
2083	retries = 10;
2084	success = 0;
2085	while (retries--) {
2086		struct list_head *head_page, *prev_page, *r;
2087		struct list_head *last_page, *first_page;
2088		struct list_head *head_page_with_bit;
2089
2090		head_page = &rb_set_head_page(cpu_buffer)->list;
2091		if (!head_page)
2092			break;
2093		prev_page = head_page->prev;
2094
2095		first_page = pages->next;
2096		last_page  = pages->prev;
2097
2098		head_page_with_bit = (struct list_head *)
2099				     ((unsigned long)head_page | RB_PAGE_HEAD);
2100
2101		last_page->next = head_page_with_bit;
2102		first_page->prev = prev_page;
2103
2104		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2105
2106		if (r == head_page_with_bit) {
2107			/*
2108			 * yay, we replaced the page pointer to our new list,
2109			 * now, we just have to update to head page's prev
2110			 * pointer to point to end of list
2111			 */
2112			head_page->prev = last_page;
2113			success = 1;
2114			break;
2115		}
2116	}
2117
2118	if (success)
2119		INIT_LIST_HEAD(pages);
2120	/*
2121	 * If we weren't successful in adding in new pages, warn and stop
2122	 * tracing
2123	 */
2124	RB_WARN_ON(cpu_buffer, !success);
2125	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2126
2127	/* free pages if they weren't inserted */
2128	if (!success) {
2129		struct buffer_page *bpage, *tmp;
2130		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2131					 list) {
2132			list_del_init(&bpage->list);
2133			free_buffer_page(bpage);
2134		}
2135	}
2136	return success;
2137}
2138
2139static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2140{
2141	int success;
2142
2143	if (cpu_buffer->nr_pages_to_update > 0)
2144		success = rb_insert_pages(cpu_buffer);
2145	else
2146		success = rb_remove_pages(cpu_buffer,
2147					-cpu_buffer->nr_pages_to_update);
2148
2149	if (success)
2150		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2151}
2152
2153static void update_pages_handler(struct work_struct *work)
2154{
2155	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2156			struct ring_buffer_per_cpu, update_pages_work);
2157	rb_update_pages(cpu_buffer);
2158	complete(&cpu_buffer->update_done);
2159}
2160
2161/**
2162 * ring_buffer_resize - resize the ring buffer
2163 * @buffer: the buffer to resize.
2164 * @size: the new size.
2165 * @cpu_id: the cpu buffer to resize
2166 *
2167 * Minimum size is 2 * BUF_PAGE_SIZE.
2168 *
2169 * Returns 0 on success and < 0 on failure.
2170 */
2171int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2172			int cpu_id)
2173{
2174	struct ring_buffer_per_cpu *cpu_buffer;
2175	unsigned long nr_pages;
2176	int cpu, err;
2177
2178	/*
2179	 * Always succeed at resizing a non-existent buffer:
2180	 */
2181	if (!buffer)
2182		return 0;
2183
2184	/* Make sure the requested buffer exists */
2185	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2186	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2187		return 0;
2188
2189	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
 
2190
2191	/* we need a minimum of two pages */
2192	if (nr_pages < 2)
2193		nr_pages = 2;
 
 
 
 
 
 
 
 
 
 
2194
2195	/* prevent another thread from changing buffer sizes */
2196	mutex_lock(&buffer->mutex);
2197
2198
2199	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2200		/*
2201		 * Don't succeed if resizing is disabled, as a reader might be
2202		 * manipulating the ring buffer and is expecting a sane state while
2203		 * this is true.
2204		 */
2205		for_each_buffer_cpu(buffer, cpu) {
2206			cpu_buffer = buffer->buffers[cpu];
2207			if (atomic_read(&cpu_buffer->resize_disabled)) {
2208				err = -EBUSY;
2209				goto out_err_unlock;
2210			}
2211		}
2212
2213		/* calculate the pages to update */
2214		for_each_buffer_cpu(buffer, cpu) {
2215			cpu_buffer = buffer->buffers[cpu];
2216
2217			cpu_buffer->nr_pages_to_update = nr_pages -
2218							cpu_buffer->nr_pages;
2219			/*
2220			 * nothing more to do for removing pages or no update
2221			 */
2222			if (cpu_buffer->nr_pages_to_update <= 0)
2223				continue;
2224			/*
2225			 * to add pages, make sure all new pages can be
2226			 * allocated without receiving ENOMEM
2227			 */
2228			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2229			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2230						&cpu_buffer->new_pages)) {
2231				/* not enough memory for new pages */
2232				err = -ENOMEM;
2233				goto out_err;
2234			}
2235		}
2236
2237		cpus_read_lock();
2238		/*
2239		 * Fire off all the required work handlers
2240		 * We can't schedule on offline CPUs, but it's not necessary
2241		 * since we can change their buffer sizes without any race.
2242		 */
2243		for_each_buffer_cpu(buffer, cpu) {
2244			cpu_buffer = buffer->buffers[cpu];
2245			if (!cpu_buffer->nr_pages_to_update)
2246				continue;
2247
2248			/* Can't run something on an offline CPU. */
2249			if (!cpu_online(cpu)) {
 
 
2250				rb_update_pages(cpu_buffer);
2251				cpu_buffer->nr_pages_to_update = 0;
2252			} else {
2253				/* Run directly if possible. */
2254				migrate_disable();
2255				if (cpu != smp_processor_id()) {
2256					migrate_enable();
2257					schedule_work_on(cpu,
2258							 &cpu_buffer->update_pages_work);
2259				} else {
2260					update_pages_handler(&cpu_buffer->update_pages_work);
2261					migrate_enable();
2262				}
2263			}
2264		}
2265
2266		/* wait for all the updates to complete */
2267		for_each_buffer_cpu(buffer, cpu) {
2268			cpu_buffer = buffer->buffers[cpu];
2269			if (!cpu_buffer->nr_pages_to_update)
2270				continue;
2271
2272			if (cpu_online(cpu))
2273				wait_for_completion(&cpu_buffer->update_done);
2274			cpu_buffer->nr_pages_to_update = 0;
2275		}
2276
2277		cpus_read_unlock();
2278	} else {
2279		cpu_buffer = buffer->buffers[cpu_id];
2280
2281		if (nr_pages == cpu_buffer->nr_pages)
2282			goto out;
2283
2284		/*
2285		 * Don't succeed if resizing is disabled, as a reader might be
2286		 * manipulating the ring buffer and is expecting a sane state while
2287		 * this is true.
2288		 */
2289		if (atomic_read(&cpu_buffer->resize_disabled)) {
2290			err = -EBUSY;
2291			goto out_err_unlock;
2292		}
2293
2294		cpu_buffer->nr_pages_to_update = nr_pages -
2295						cpu_buffer->nr_pages;
2296
2297		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2298		if (cpu_buffer->nr_pages_to_update > 0 &&
2299			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2300					    &cpu_buffer->new_pages)) {
2301			err = -ENOMEM;
2302			goto out_err;
2303		}
2304
2305		cpus_read_lock();
2306
2307		/* Can't run something on an offline CPU. */
2308		if (!cpu_online(cpu_id))
 
 
 
2309			rb_update_pages(cpu_buffer);
2310		else {
2311			/* Run directly if possible. */
2312			migrate_disable();
2313			if (cpu_id == smp_processor_id()) {
2314				rb_update_pages(cpu_buffer);
2315				migrate_enable();
2316			} else {
2317				migrate_enable();
2318				schedule_work_on(cpu_id,
2319						 &cpu_buffer->update_pages_work);
2320				wait_for_completion(&cpu_buffer->update_done);
2321			}
2322		}
2323
2324		cpu_buffer->nr_pages_to_update = 0;
2325		cpus_read_unlock();
2326	}
2327
2328 out:
2329	/*
2330	 * The ring buffer resize can happen with the ring buffer
2331	 * enabled, so that the update disturbs the tracing as little
2332	 * as possible. But if the buffer is disabled, we do not need
2333	 * to worry about that, and we can take the time to verify
2334	 * that the buffer is not corrupt.
2335	 */
2336	if (atomic_read(&buffer->record_disabled)) {
2337		atomic_inc(&buffer->record_disabled);
2338		/*
2339		 * Even though the buffer was disabled, we must make sure
2340		 * that it is truly disabled before calling rb_check_pages.
2341		 * There could have been a race between checking
2342		 * record_disable and incrementing it.
2343		 */
2344		synchronize_rcu();
2345		for_each_buffer_cpu(buffer, cpu) {
2346			cpu_buffer = buffer->buffers[cpu];
2347			rb_check_pages(cpu_buffer);
2348		}
2349		atomic_dec(&buffer->record_disabled);
2350	}
2351
2352	mutex_unlock(&buffer->mutex);
2353	return 0;
2354
2355 out_err:
2356	for_each_buffer_cpu(buffer, cpu) {
2357		struct buffer_page *bpage, *tmp;
2358
2359		cpu_buffer = buffer->buffers[cpu];
2360		cpu_buffer->nr_pages_to_update = 0;
2361
2362		if (list_empty(&cpu_buffer->new_pages))
2363			continue;
2364
2365		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2366					list) {
2367			list_del_init(&bpage->list);
2368			free_buffer_page(bpage);
2369		}
2370	}
2371 out_err_unlock:
2372	mutex_unlock(&buffer->mutex);
2373	return err;
2374}
2375EXPORT_SYMBOL_GPL(ring_buffer_resize);
2376
2377void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2378{
2379	mutex_lock(&buffer->mutex);
2380	if (val)
2381		buffer->flags |= RB_FL_OVERWRITE;
2382	else
2383		buffer->flags &= ~RB_FL_OVERWRITE;
2384	mutex_unlock(&buffer->mutex);
2385}
2386EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2387
2388static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
 
 
 
 
 
 
2389{
2390	return bpage->page->data + index;
2391}
2392
2393static __always_inline struct ring_buffer_event *
2394rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2395{
2396	return __rb_page_index(cpu_buffer->reader_page,
2397			       cpu_buffer->reader_page->read);
2398}
2399
2400static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
 
2401{
2402	return local_read(&bpage->page->commit);
2403}
2404
2405static struct ring_buffer_event *
2406rb_iter_head_event(struct ring_buffer_iter *iter)
2407{
2408	struct ring_buffer_event *event;
2409	struct buffer_page *iter_head_page = iter->head_page;
2410	unsigned long commit;
2411	unsigned length;
2412
2413	if (iter->head != iter->next_event)
2414		return iter->event;
2415
2416	/*
2417	 * When the writer goes across pages, it issues a cmpxchg which
2418	 * is a mb(), which will synchronize with the rmb here.
2419	 * (see rb_tail_page_update() and __rb_reserve_next())
2420	 */
2421	commit = rb_page_commit(iter_head_page);
2422	smp_rmb();
2423	event = __rb_page_index(iter_head_page, iter->head);
2424	length = rb_event_length(event);
2425
2426	/*
2427	 * READ_ONCE() doesn't work on functions and we don't want the
2428	 * compiler doing any crazy optimizations with length.
2429	 */
2430	barrier();
2431
2432	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2433		/* Writer corrupted the read? */
2434		goto reset;
2435
2436	memcpy(iter->event, event, length);
2437	/*
2438	 * If the page stamp is still the same after this rmb() then the
2439	 * event was safely copied without the writer entering the page.
2440	 */
2441	smp_rmb();
2442
2443	/* Make sure the page didn't change since we read this */
2444	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2445	    commit > rb_page_commit(iter_head_page))
2446		goto reset;
2447
2448	iter->next_event = iter->head + length;
2449	return iter->event;
2450 reset:
2451	/* Reset to the beginning */
2452	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2453	iter->head = 0;
2454	iter->next_event = 0;
2455	iter->missed_events = 1;
2456	return NULL;
2457}
2458
2459/* Size is determined by what has been committed */
2460static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2461{
2462	return rb_page_commit(bpage);
2463}
2464
2465static __always_inline unsigned
2466rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2467{
2468	return rb_page_commit(cpu_buffer->commit_page);
2469}
2470
2471static __always_inline unsigned
2472rb_event_index(struct ring_buffer_event *event)
2473{
2474	unsigned long addr = (unsigned long)event;
2475
2476	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2477}
2478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479static void rb_inc_iter(struct ring_buffer_iter *iter)
2480{
2481	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2482
2483	/*
2484	 * The iterator could be on the reader page (it starts there).
2485	 * But the head could have moved, since the reader was
2486	 * found. Check for this case and assign the iterator
2487	 * to the head page instead of next.
2488	 */
2489	if (iter->head_page == cpu_buffer->reader_page)
2490		iter->head_page = rb_set_head_page(cpu_buffer);
2491	else
2492		rb_inc_page(&iter->head_page);
2493
2494	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2495	iter->head = 0;
2496	iter->next_event = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497}
2498
2499/*
2500 * rb_handle_head_page - writer hit the head page
2501 *
2502 * Returns: +1 to retry page
2503 *           0 to continue
2504 *          -1 on error
2505 */
2506static int
2507rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2508		    struct buffer_page *tail_page,
2509		    struct buffer_page *next_page)
2510{
2511	struct buffer_page *new_head;
2512	int entries;
2513	int type;
2514	int ret;
2515
2516	entries = rb_page_entries(next_page);
2517
2518	/*
2519	 * The hard part is here. We need to move the head
2520	 * forward, and protect against both readers on
2521	 * other CPUs and writers coming in via interrupts.
2522	 */
2523	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2524				       RB_PAGE_HEAD);
2525
2526	/*
2527	 * type can be one of four:
2528	 *  NORMAL - an interrupt already moved it for us
2529	 *  HEAD   - we are the first to get here.
2530	 *  UPDATE - we are the interrupt interrupting
2531	 *           a current move.
2532	 *  MOVED  - a reader on another CPU moved the next
2533	 *           pointer to its reader page. Give up
2534	 *           and try again.
2535	 */
2536
2537	switch (type) {
2538	case RB_PAGE_HEAD:
2539		/*
2540		 * We changed the head to UPDATE, thus
2541		 * it is our responsibility to update
2542		 * the counters.
2543		 */
2544		local_add(entries, &cpu_buffer->overrun);
2545		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2546		local_inc(&cpu_buffer->pages_lost);
2547
2548		/*
2549		 * The entries will be zeroed out when we move the
2550		 * tail page.
2551		 */
2552
2553		/* still more to do */
2554		break;
2555
2556	case RB_PAGE_UPDATE:
2557		/*
2558		 * This is an interrupt that interrupt the
2559		 * previous update. Still more to do.
2560		 */
2561		break;
2562	case RB_PAGE_NORMAL:
2563		/*
2564		 * An interrupt came in before the update
2565		 * and processed this for us.
2566		 * Nothing left to do.
2567		 */
2568		return 1;
2569	case RB_PAGE_MOVED:
2570		/*
2571		 * The reader is on another CPU and just did
2572		 * a swap with our next_page.
2573		 * Try again.
2574		 */
2575		return 1;
2576	default:
2577		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2578		return -1;
2579	}
2580
2581	/*
2582	 * Now that we are here, the old head pointer is
2583	 * set to UPDATE. This will keep the reader from
2584	 * swapping the head page with the reader page.
2585	 * The reader (on another CPU) will spin till
2586	 * we are finished.
2587	 *
2588	 * We just need to protect against interrupts
2589	 * doing the job. We will set the next pointer
2590	 * to HEAD. After that, we set the old pointer
2591	 * to NORMAL, but only if it was HEAD before.
2592	 * otherwise we are an interrupt, and only
2593	 * want the outer most commit to reset it.
2594	 */
2595	new_head = next_page;
2596	rb_inc_page(&new_head);
2597
2598	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2599				    RB_PAGE_NORMAL);
2600
2601	/*
2602	 * Valid returns are:
2603	 *  HEAD   - an interrupt came in and already set it.
2604	 *  NORMAL - One of two things:
2605	 *            1) We really set it.
2606	 *            2) A bunch of interrupts came in and moved
2607	 *               the page forward again.
2608	 */
2609	switch (ret) {
2610	case RB_PAGE_HEAD:
2611	case RB_PAGE_NORMAL:
2612		/* OK */
2613		break;
2614	default:
2615		RB_WARN_ON(cpu_buffer, 1);
2616		return -1;
2617	}
2618
2619	/*
2620	 * It is possible that an interrupt came in,
2621	 * set the head up, then more interrupts came in
2622	 * and moved it again. When we get back here,
2623	 * the page would have been set to NORMAL but we
2624	 * just set it back to HEAD.
2625	 *
2626	 * How do you detect this? Well, if that happened
2627	 * the tail page would have moved.
2628	 */
2629	if (ret == RB_PAGE_NORMAL) {
2630		struct buffer_page *buffer_tail_page;
2631
2632		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2633		/*
2634		 * If the tail had moved passed next, then we need
2635		 * to reset the pointer.
2636		 */
2637		if (buffer_tail_page != tail_page &&
2638		    buffer_tail_page != next_page)
2639			rb_head_page_set_normal(cpu_buffer, new_head,
2640						next_page,
2641						RB_PAGE_HEAD);
2642	}
2643
2644	/*
2645	 * If this was the outer most commit (the one that
2646	 * changed the original pointer from HEAD to UPDATE),
2647	 * then it is up to us to reset it to NORMAL.
2648	 */
2649	if (type == RB_PAGE_HEAD) {
2650		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2651					      tail_page,
2652					      RB_PAGE_UPDATE);
2653		if (RB_WARN_ON(cpu_buffer,
2654			       ret != RB_PAGE_UPDATE))
2655			return -1;
2656	}
2657
2658	return 0;
2659}
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661static inline void
2662rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2663	      unsigned long tail, struct rb_event_info *info)
 
2664{
2665	struct buffer_page *tail_page = info->tail_page;
2666	struct ring_buffer_event *event;
2667	unsigned long length = info->length;
2668
2669	/*
2670	 * Only the event that crossed the page boundary
2671	 * must fill the old tail_page with padding.
2672	 */
2673	if (tail >= BUF_PAGE_SIZE) {
2674		/*
2675		 * If the page was filled, then we still need
2676		 * to update the real_end. Reset it to zero
2677		 * and the reader will ignore it.
2678		 */
2679		if (tail == BUF_PAGE_SIZE)
2680			tail_page->real_end = 0;
2681
2682		local_sub(length, &tail_page->write);
2683		return;
2684	}
2685
2686	event = __rb_page_index(tail_page, tail);
 
2687
2688	/* account for padding bytes */
2689	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2690
2691	/*
2692	 * Save the original length to the meta data.
2693	 * This will be used by the reader to add lost event
2694	 * counter.
2695	 */
2696	tail_page->real_end = tail;
2697
2698	/*
2699	 * If this event is bigger than the minimum size, then
2700	 * we need to be careful that we don't subtract the
2701	 * write counter enough to allow another writer to slip
2702	 * in on this page.
2703	 * We put in a discarded commit instead, to make sure
2704	 * that this space is not used again.
2705	 *
2706	 * If we are less than the minimum size, we don't need to
2707	 * worry about it.
2708	 */
2709	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2710		/* No room for any events */
2711
2712		/* Mark the rest of the page with padding */
2713		rb_event_set_padding(event);
2714
2715		/* Make sure the padding is visible before the write update */
2716		smp_wmb();
2717
2718		/* Set the write back to the previous setting */
2719		local_sub(length, &tail_page->write);
2720		return;
2721	}
2722
2723	/* Put in a discarded event */
2724	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2725	event->type_len = RINGBUF_TYPE_PADDING;
2726	/* time delta must be non zero */
2727	event->time_delta = 1;
2728
2729	/* Make sure the padding is visible before the tail_page->write update */
2730	smp_wmb();
2731
2732	/* Set write to end of buffer */
2733	length = (tail + length) - BUF_PAGE_SIZE;
2734	local_sub(length, &tail_page->write);
2735}
2736
2737static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2738
2739/*
2740 * This is the slow path, force gcc not to inline it.
2741 */
2742static noinline struct ring_buffer_event *
2743rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2744	     unsigned long tail, struct rb_event_info *info)
 
2745{
2746	struct buffer_page *tail_page = info->tail_page;
2747	struct buffer_page *commit_page = cpu_buffer->commit_page;
2748	struct trace_buffer *buffer = cpu_buffer->buffer;
2749	struct buffer_page *next_page;
2750	int ret;
2751
2752	next_page = tail_page;
2753
2754	rb_inc_page(&next_page);
2755
2756	/*
2757	 * If for some reason, we had an interrupt storm that made
2758	 * it all the way around the buffer, bail, and warn
2759	 * about it.
2760	 */
2761	if (unlikely(next_page == commit_page)) {
2762		local_inc(&cpu_buffer->commit_overrun);
2763		goto out_reset;
2764	}
2765
2766	/*
2767	 * This is where the fun begins!
2768	 *
2769	 * We are fighting against races between a reader that
2770	 * could be on another CPU trying to swap its reader
2771	 * page with the buffer head.
2772	 *
2773	 * We are also fighting against interrupts coming in and
2774	 * moving the head or tail on us as well.
2775	 *
2776	 * If the next page is the head page then we have filled
2777	 * the buffer, unless the commit page is still on the
2778	 * reader page.
2779	 */
2780	if (rb_is_head_page(next_page, &tail_page->list)) {
2781
2782		/*
2783		 * If the commit is not on the reader page, then
2784		 * move the header page.
2785		 */
2786		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2787			/*
2788			 * If we are not in overwrite mode,
2789			 * this is easy, just stop here.
2790			 */
2791			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2792				local_inc(&cpu_buffer->dropped_events);
2793				goto out_reset;
2794			}
2795
2796			ret = rb_handle_head_page(cpu_buffer,
2797						  tail_page,
2798						  next_page);
2799			if (ret < 0)
2800				goto out_reset;
2801			if (ret)
2802				goto out_again;
2803		} else {
2804			/*
2805			 * We need to be careful here too. The
2806			 * commit page could still be on the reader
2807			 * page. We could have a small buffer, and
2808			 * have filled up the buffer with events
2809			 * from interrupts and such, and wrapped.
2810			 *
2811			 * Note, if the tail page is also on the
2812			 * reader_page, we let it move out.
2813			 */
2814			if (unlikely((cpu_buffer->commit_page !=
2815				      cpu_buffer->tail_page) &&
2816				     (cpu_buffer->commit_page ==
2817				      cpu_buffer->reader_page))) {
2818				local_inc(&cpu_buffer->commit_overrun);
2819				goto out_reset;
2820			}
2821		}
2822	}
2823
2824	rb_tail_page_update(cpu_buffer, tail_page, next_page);
 
 
 
 
 
 
 
 
2825
2826 out_again:
2827
2828	rb_reset_tail(cpu_buffer, tail, info);
2829
2830	/* Commit what we have for now. */
2831	rb_end_commit(cpu_buffer);
2832	/* rb_end_commit() decs committing */
2833	local_inc(&cpu_buffer->committing);
2834
2835	/* fail and let the caller try again */
2836	return ERR_PTR(-EAGAIN);
2837
2838 out_reset:
2839	/* reset write */
2840	rb_reset_tail(cpu_buffer, tail, info);
2841
2842	return NULL;
2843}
2844
2845/* Slow path */
2846static struct ring_buffer_event *
2847rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2848{
2849	if (abs)
2850		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2851	else
2852		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2853
2854	/* Not the first event on the page, or not delta? */
2855	if (abs || rb_event_index(event)) {
2856		event->time_delta = delta & TS_MASK;
2857		event->array[0] = delta >> TS_SHIFT;
2858	} else {
2859		/* nope, just zero it */
2860		event->time_delta = 0;
2861		event->array[0] = 0;
2862	}
2863
2864	return skip_time_extend(event);
2865}
2866
2867#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2868static inline bool sched_clock_stable(void)
2869{
2870	return true;
2871}
2872#endif
2873
2874static void
2875rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2876		   struct rb_event_info *info)
2877{
2878	u64 write_stamp;
2879
2880	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2881		  (unsigned long long)info->delta,
2882		  (unsigned long long)info->ts,
2883		  (unsigned long long)info->before,
2884		  (unsigned long long)info->after,
2885		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2886		  sched_clock_stable() ? "" :
2887		  "If you just came from a suspend/resume,\n"
2888		  "please switch to the trace global clock:\n"
2889		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2890		  "or add trace_clock=global to the kernel command line\n");
2891}
2892
2893static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2894				      struct ring_buffer_event **event,
2895				      struct rb_event_info *info,
2896				      u64 *delta,
2897				      unsigned int *length)
2898{
2899	bool abs = info->add_timestamp &
2900		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2901
2902	if (unlikely(info->delta > (1ULL << 59))) {
2903		/*
2904		 * Some timers can use more than 59 bits, and when a timestamp
2905		 * is added to the buffer, it will lose those bits.
2906		 */
2907		if (abs && (info->ts & TS_MSB)) {
2908			info->delta &= ABS_TS_MASK;
2909
2910		/* did the clock go backwards */
2911		} else if (info->before == info->after && info->before > info->ts) {
2912			/* not interrupted */
2913			static int once;
2914
2915			/*
2916			 * This is possible with a recalibrating of the TSC.
2917			 * Do not produce a call stack, but just report it.
2918			 */
2919			if (!once) {
2920				once++;
2921				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2922					info->before, info->ts);
2923			}
2924		} else
2925			rb_check_timestamp(cpu_buffer, info);
2926		if (!abs)
2927			info->delta = 0;
2928	}
2929	*event = rb_add_time_stamp(*event, info->delta, abs);
2930	*length -= RB_LEN_TIME_EXTEND;
2931	*delta = 0;
2932}
2933
2934/**
2935 * rb_update_event - update event type and data
2936 * @cpu_buffer: The per cpu buffer of the @event
2937 * @event: the event to update
2938 * @info: The info to update the @event with (contains length and delta)
2939 *
2940 * Update the type and data fields of the @event. The length
2941 * is the actual size that is written to the ring buffer,
2942 * and with this, we can determine what to place into the
2943 * data field.
2944 */
2945static void
2946rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2947		struct ring_buffer_event *event,
2948		struct rb_event_info *info)
2949{
2950	unsigned length = info->length;
2951	u64 delta = info->delta;
2952	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2953
2954	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2955		cpu_buffer->event_stamp[nest] = info->ts;
2956
2957	/*
2958	 * If we need to add a timestamp, then we
2959	 * add it to the start of the reserved space.
 
2960	 */
2961	if (unlikely(info->add_timestamp))
2962		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2963
2964	event->time_delta = delta;
2965	length -= RB_EVNT_HDR_SIZE;
2966	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2967		event->type_len = 0;
2968		event->array[0] = length;
2969	} else
2970		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2971}
2972
2973static unsigned rb_calculate_event_length(unsigned length)
2974{
2975	struct ring_buffer_event event; /* Used only for sizeof array */
2976
2977	/* zero length can cause confusions */
2978	if (!length)
2979		length++;
 
2980
2981	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2982		length += sizeof(event.array[0]);
2983
2984	length += RB_EVNT_HDR_SIZE;
2985	length = ALIGN(length, RB_ARCH_ALIGNMENT);
 
 
 
2986
2987	/*
2988	 * In case the time delta is larger than the 27 bits for it
2989	 * in the header, we need to add a timestamp. If another
2990	 * event comes in when trying to discard this one to increase
2991	 * the length, then the timestamp will be added in the allocated
2992	 * space of this event. If length is bigger than the size needed
2993	 * for the TIME_EXTEND, then padding has to be used. The events
2994	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2995	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2996	 * As length is a multiple of 4, we only need to worry if it
2997	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2998	 */
2999	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3000		length += RB_ALIGNMENT;
3001
3002	return length;
3003}
3004
3005static u64 rb_time_delta(struct ring_buffer_event *event)
3006{
3007	switch (event->type_len) {
3008	case RINGBUF_TYPE_PADDING:
3009		return 0;
3010
3011	case RINGBUF_TYPE_TIME_EXTEND:
3012		return rb_event_time_stamp(event);
3013
3014	case RINGBUF_TYPE_TIME_STAMP:
3015		return 0;
3016
3017	case RINGBUF_TYPE_DATA:
3018		return event->time_delta;
3019	default:
3020		return 0;
3021	}
3022}
3023
3024static inline int
3025rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3026		  struct ring_buffer_event *event)
3027{
3028	unsigned long new_index, old_index;
3029	struct buffer_page *bpage;
3030	unsigned long index;
3031	unsigned long addr;
3032	u64 write_stamp;
3033	u64 delta;
3034
3035	new_index = rb_event_index(event);
3036	old_index = new_index + rb_event_ts_length(event);
3037	addr = (unsigned long)event;
3038	addr &= PAGE_MASK;
3039
3040	bpage = READ_ONCE(cpu_buffer->tail_page);
3041
3042	delta = rb_time_delta(event);
3043
3044	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3045		return 0;
3046
3047	/* Make sure the write stamp is read before testing the location */
3048	barrier();
3049
3050	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3051		unsigned long write_mask =
3052			local_read(&bpage->write) & ~RB_WRITE_MASK;
3053		unsigned long event_length = rb_event_length(event);
3054
3055		/* Something came in, can't discard */
3056		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3057				       write_stamp, write_stamp - delta))
3058			return 0;
3059
3060		/*
3061		 * It's possible that the event time delta is zero
3062		 * (has the same time stamp as the previous event)
3063		 * in which case write_stamp and before_stamp could
3064		 * be the same. In such a case, force before_stamp
3065		 * to be different than write_stamp. It doesn't
3066		 * matter what it is, as long as its different.
3067		 */
3068		if (!delta)
3069			rb_time_set(&cpu_buffer->before_stamp, 0);
3070
3071		/*
3072		 * If an event were to come in now, it would see that the
3073		 * write_stamp and the before_stamp are different, and assume
3074		 * that this event just added itself before updating
3075		 * the write stamp. The interrupting event will fix the
3076		 * write stamp for us, and use the before stamp as its delta.
3077		 */
3078
3079		/*
3080		 * This is on the tail page. It is possible that
3081		 * a write could come in and move the tail page
3082		 * and write to the next page. That is fine
3083		 * because we just shorten what is on this page.
3084		 */
3085		old_index += write_mask;
3086		new_index += write_mask;
3087		index = local_cmpxchg(&bpage->write, old_index, new_index);
3088		if (index == old_index) {
3089			/* update counters */
3090			local_sub(event_length, &cpu_buffer->entries_bytes);
3091			return 1;
3092		}
3093	}
3094
3095	/* could not discard */
3096	return 0;
3097}
3098
3099static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3100{
3101	local_inc(&cpu_buffer->committing);
3102	local_inc(&cpu_buffer->commits);
3103}
3104
3105static __always_inline void
3106rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3107{
3108	unsigned long max_count;
3109
3110	/*
3111	 * We only race with interrupts and NMIs on this CPU.
3112	 * If we own the commit event, then we can commit
3113	 * all others that interrupted us, since the interruptions
3114	 * are in stack format (they finish before they come
3115	 * back to us). This allows us to do a simple loop to
3116	 * assign the commit to the tail.
3117	 */
3118 again:
3119	max_count = cpu_buffer->nr_pages * 100;
3120
3121	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3122		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3123			return;
3124		if (RB_WARN_ON(cpu_buffer,
3125			       rb_is_reader_page(cpu_buffer->tail_page)))
3126			return;
3127		local_set(&cpu_buffer->commit_page->page->commit,
3128			  rb_page_write(cpu_buffer->commit_page));
3129		rb_inc_page(&cpu_buffer->commit_page);
3130		/* add barrier to keep gcc from optimizing too much */
3131		barrier();
3132	}
3133	while (rb_commit_index(cpu_buffer) !=
3134	       rb_page_write(cpu_buffer->commit_page)) {
3135
3136		local_set(&cpu_buffer->commit_page->page->commit,
3137			  rb_page_write(cpu_buffer->commit_page));
3138		RB_WARN_ON(cpu_buffer,
3139			   local_read(&cpu_buffer->commit_page->page->commit) &
3140			   ~RB_WRITE_MASK);
3141		barrier();
3142	}
3143
3144	/* again, keep gcc from optimizing */
3145	barrier();
3146
3147	/*
3148	 * If an interrupt came in just after the first while loop
3149	 * and pushed the tail page forward, we will be left with
3150	 * a dangling commit that will never go forward.
3151	 */
3152	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3153		goto again;
3154}
3155
3156static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3157{
3158	unsigned long commits;
3159
3160	if (RB_WARN_ON(cpu_buffer,
3161		       !local_read(&cpu_buffer->committing)))
3162		return;
3163
3164 again:
3165	commits = local_read(&cpu_buffer->commits);
3166	/* synchronize with interrupts */
3167	barrier();
3168	if (local_read(&cpu_buffer->committing) == 1)
3169		rb_set_commit_to_write(cpu_buffer);
3170
3171	local_dec(&cpu_buffer->committing);
3172
3173	/* synchronize with interrupts */
3174	barrier();
3175
3176	/*
3177	 * Need to account for interrupts coming in between the
3178	 * updating of the commit page and the clearing of the
3179	 * committing counter.
3180	 */
3181	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3182	    !local_read(&cpu_buffer->committing)) {
3183		local_inc(&cpu_buffer->committing);
3184		goto again;
3185	}
3186}
3187
3188static inline void rb_event_discard(struct ring_buffer_event *event)
3189{
3190	if (extended_time(event))
3191		event = skip_time_extend(event);
3192
3193	/* array[0] holds the actual length for the discarded event */
3194	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3195	event->type_len = RINGBUF_TYPE_PADDING;
3196	/* time delta must be non zero */
3197	if (!event->time_delta)
3198		event->time_delta = 1;
3199}
3200
3201static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3202{
3203	local_inc(&cpu_buffer->entries);
3204	rb_end_commit(cpu_buffer);
3205}
3206
3207static __always_inline void
3208rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3209{
3210	if (buffer->irq_work.waiters_pending) {
3211		buffer->irq_work.waiters_pending = false;
3212		/* irq_work_queue() supplies it's own memory barriers */
3213		irq_work_queue(&buffer->irq_work.work);
3214	}
3215
3216	if (cpu_buffer->irq_work.waiters_pending) {
3217		cpu_buffer->irq_work.waiters_pending = false;
3218		/* irq_work_queue() supplies it's own memory barriers */
3219		irq_work_queue(&cpu_buffer->irq_work.work);
3220	}
3221
3222	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3223		return;
3224
3225	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3226		return;
3227
3228	if (!cpu_buffer->irq_work.full_waiters_pending)
3229		return;
3230
3231	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3232
3233	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3234		return;
3235
3236	cpu_buffer->irq_work.wakeup_full = true;
3237	cpu_buffer->irq_work.full_waiters_pending = false;
3238	/* irq_work_queue() supplies it's own memory barriers */
3239	irq_work_queue(&cpu_buffer->irq_work.work);
3240}
3241
3242#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3243# define do_ring_buffer_record_recursion()	\
3244	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3245#else
3246# define do_ring_buffer_record_recursion() do { } while (0)
3247#endif
3248
3249/*
3250 * The lock and unlock are done within a preempt disable section.
3251 * The current_context per_cpu variable can only be modified
3252 * by the current task between lock and unlock. But it can
3253 * be modified more than once via an interrupt. To pass this
3254 * information from the lock to the unlock without having to
3255 * access the 'in_interrupt()' functions again (which do show
3256 * a bit of overhead in something as critical as function tracing,
3257 * we use a bitmask trick.
3258 *
3259 *  bit 1 =  NMI context
3260 *  bit 2 =  IRQ context
3261 *  bit 3 =  SoftIRQ context
3262 *  bit 4 =  normal context.
3263 *
3264 * This works because this is the order of contexts that can
3265 * preempt other contexts. A SoftIRQ never preempts an IRQ
3266 * context.
3267 *
3268 * When the context is determined, the corresponding bit is
3269 * checked and set (if it was set, then a recursion of that context
3270 * happened).
3271 *
3272 * On unlock, we need to clear this bit. To do so, just subtract
3273 * 1 from the current_context and AND it to itself.
3274 *
3275 * (binary)
3276 *  101 - 1 = 100
3277 *  101 & 100 = 100 (clearing bit zero)
3278 *
3279 *  1010 - 1 = 1001
3280 *  1010 & 1001 = 1000 (clearing bit 1)
3281 *
3282 * The least significant bit can be cleared this way, and it
3283 * just so happens that it is the same bit corresponding to
3284 * the current context.
3285 *
3286 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3287 * is set when a recursion is detected at the current context, and if
3288 * the TRANSITION bit is already set, it will fail the recursion.
3289 * This is needed because there's a lag between the changing of
3290 * interrupt context and updating the preempt count. In this case,
3291 * a false positive will be found. To handle this, one extra recursion
3292 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3293 * bit is already set, then it is considered a recursion and the function
3294 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3295 *
3296 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3297 * to be cleared. Even if it wasn't the context that set it. That is,
3298 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3299 * is called before preempt_count() is updated, since the check will
3300 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3301 * NMI then comes in, it will set the NMI bit, but when the NMI code
3302 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3303 * and leave the NMI bit set. But this is fine, because the interrupt
3304 * code that set the TRANSITION bit will then clear the NMI bit when it
3305 * calls trace_recursive_unlock(). If another NMI comes in, it will
3306 * set the TRANSITION bit and continue.
3307 *
3308 * Note: The TRANSITION bit only handles a single transition between context.
3309 */
3310
3311static __always_inline int
3312trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3313{
3314	unsigned int val = cpu_buffer->current_context;
3315	int bit = interrupt_context_level();
3316
3317	bit = RB_CTX_NORMAL - bit;
3318
3319	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3320		/*
3321		 * It is possible that this was called by transitioning
3322		 * between interrupt context, and preempt_count() has not
3323		 * been updated yet. In this case, use the TRANSITION bit.
3324		 */
3325		bit = RB_CTX_TRANSITION;
3326		if (val & (1 << (bit + cpu_buffer->nest))) {
3327			do_ring_buffer_record_recursion();
3328			return 1;
3329		}
3330	}
3331
3332	val |= (1 << (bit + cpu_buffer->nest));
3333	cpu_buffer->current_context = val;
3334
3335	return 0;
3336}
3337
3338static __always_inline void
3339trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3340{
3341	cpu_buffer->current_context &=
3342		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3343}
3344
3345/* The recursive locking above uses 5 bits */
3346#define NESTED_BITS 5
3347
3348/**
3349 * ring_buffer_nest_start - Allow to trace while nested
3350 * @buffer: The ring buffer to modify
3351 *
3352 * The ring buffer has a safety mechanism to prevent recursion.
3353 * But there may be a case where a trace needs to be done while
3354 * tracing something else. In this case, calling this function
3355 * will allow this function to nest within a currently active
3356 * ring_buffer_lock_reserve().
3357 *
3358 * Call this function before calling another ring_buffer_lock_reserve() and
3359 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3360 */
3361void ring_buffer_nest_start(struct trace_buffer *buffer)
3362{
3363	struct ring_buffer_per_cpu *cpu_buffer;
3364	int cpu;
3365
3366	/* Enabled by ring_buffer_nest_end() */
3367	preempt_disable_notrace();
3368	cpu = raw_smp_processor_id();
3369	cpu_buffer = buffer->buffers[cpu];
3370	/* This is the shift value for the above recursive locking */
3371	cpu_buffer->nest += NESTED_BITS;
3372}
3373
3374/**
3375 * ring_buffer_nest_end - Allow to trace while nested
3376 * @buffer: The ring buffer to modify
3377 *
3378 * Must be called after ring_buffer_nest_start() and after the
3379 * ring_buffer_unlock_commit().
3380 */
3381void ring_buffer_nest_end(struct trace_buffer *buffer)
3382{
3383	struct ring_buffer_per_cpu *cpu_buffer;
3384	int cpu;
3385
3386	/* disabled by ring_buffer_nest_start() */
3387	cpu = raw_smp_processor_id();
3388	cpu_buffer = buffer->buffers[cpu];
3389	/* This is the shift value for the above recursive locking */
3390	cpu_buffer->nest -= NESTED_BITS;
3391	preempt_enable_notrace();
3392}
3393
3394/**
3395 * ring_buffer_unlock_commit - commit a reserved
3396 * @buffer: The buffer to commit to
3397 * @event: The event pointer to commit.
3398 *
3399 * This commits the data to the ring buffer, and releases any locks held.
3400 *
3401 * Must be paired with ring_buffer_lock_reserve.
3402 */
3403int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3404{
3405	struct ring_buffer_per_cpu *cpu_buffer;
3406	int cpu = raw_smp_processor_id();
3407
3408	cpu_buffer = buffer->buffers[cpu];
3409
3410	rb_commit(cpu_buffer);
3411
3412	rb_wakeups(buffer, cpu_buffer);
3413
3414	trace_recursive_unlock(cpu_buffer);
3415
3416	preempt_enable_notrace();
3417
3418	return 0;
3419}
3420EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3421
3422/* Special value to validate all deltas on a page. */
3423#define CHECK_FULL_PAGE		1L
3424
3425#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3426static void dump_buffer_page(struct buffer_data_page *bpage,
3427			     struct rb_event_info *info,
3428			     unsigned long tail)
3429{
3430	struct ring_buffer_event *event;
3431	u64 ts, delta;
3432	int e;
3433
3434	ts = bpage->time_stamp;
3435	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3436
3437	for (e = 0; e < tail; e += rb_event_length(event)) {
3438
3439		event = (struct ring_buffer_event *)(bpage->data + e);
3440
3441		switch (event->type_len) {
3442
3443		case RINGBUF_TYPE_TIME_EXTEND:
3444			delta = rb_event_time_stamp(event);
3445			ts += delta;
3446			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3447			break;
3448
3449		case RINGBUF_TYPE_TIME_STAMP:
3450			delta = rb_event_time_stamp(event);
3451			ts = rb_fix_abs_ts(delta, ts);
3452			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3453			break;
3454
3455		case RINGBUF_TYPE_PADDING:
3456			ts += event->time_delta;
3457			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3458			break;
3459
3460		case RINGBUF_TYPE_DATA:
3461			ts += event->time_delta;
3462			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3463			break;
3464
3465		default:
3466			break;
3467		}
3468	}
3469}
3470
3471static DEFINE_PER_CPU(atomic_t, checking);
3472static atomic_t ts_dump;
3473
3474/*
3475 * Check if the current event time stamp matches the deltas on
3476 * the buffer page.
3477 */
3478static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3479			 struct rb_event_info *info,
3480			 unsigned long tail)
3481{
3482	struct ring_buffer_event *event;
3483	struct buffer_data_page *bpage;
3484	u64 ts, delta;
3485	bool full = false;
3486	int e;
3487
3488	bpage = info->tail_page->page;
3489
3490	if (tail == CHECK_FULL_PAGE) {
3491		full = true;
3492		tail = local_read(&bpage->commit);
3493	} else if (info->add_timestamp &
3494		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3495		/* Ignore events with absolute time stamps */
3496		return;
3497	}
3498
3499	/*
3500	 * Do not check the first event (skip possible extends too).
3501	 * Also do not check if previous events have not been committed.
3502	 */
3503	if (tail <= 8 || tail > local_read(&bpage->commit))
3504		return;
3505
3506	/*
3507	 * If this interrupted another event, 
3508	 */
3509	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3510		goto out;
3511
3512	ts = bpage->time_stamp;
3513
3514	for (e = 0; e < tail; e += rb_event_length(event)) {
3515
3516		event = (struct ring_buffer_event *)(bpage->data + e);
3517
3518		switch (event->type_len) {
3519
3520		case RINGBUF_TYPE_TIME_EXTEND:
3521			delta = rb_event_time_stamp(event);
3522			ts += delta;
3523			break;
3524
3525		case RINGBUF_TYPE_TIME_STAMP:
3526			delta = rb_event_time_stamp(event);
3527			ts = rb_fix_abs_ts(delta, ts);
3528			break;
3529
3530		case RINGBUF_TYPE_PADDING:
3531			if (event->time_delta == 1)
3532				break;
3533			fallthrough;
3534		case RINGBUF_TYPE_DATA:
3535			ts += event->time_delta;
3536			break;
3537
3538		default:
3539			RB_WARN_ON(cpu_buffer, 1);
3540		}
3541	}
3542	if ((full && ts > info->ts) ||
3543	    (!full && ts + info->delta != info->ts)) {
3544		/* If another report is happening, ignore this one */
3545		if (atomic_inc_return(&ts_dump) != 1) {
3546			atomic_dec(&ts_dump);
3547			goto out;
3548		}
3549		atomic_inc(&cpu_buffer->record_disabled);
3550		/* There's some cases in boot up that this can happen */
3551		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3552		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3553			cpu_buffer->cpu,
3554			ts + info->delta, info->ts, info->delta,
3555			info->before, info->after,
3556			full ? " (full)" : "");
3557		dump_buffer_page(bpage, info, tail);
3558		atomic_dec(&ts_dump);
3559		/* Do not re-enable checking */
3560		return;
3561	}
3562out:
3563	atomic_dec(this_cpu_ptr(&checking));
3564}
3565#else
3566static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3567			 struct rb_event_info *info,
3568			 unsigned long tail)
3569{
3570}
3571#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3572
3573static struct ring_buffer_event *
3574__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3575		  struct rb_event_info *info)
3576{
3577	struct ring_buffer_event *event;
3578	struct buffer_page *tail_page;
3579	unsigned long tail, write, w;
3580	bool a_ok;
3581	bool b_ok;
3582
3583	/* Don't let the compiler play games with cpu_buffer->tail_page */
3584	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3585
3586 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3587	barrier();
3588	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3589	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3590	barrier();
3591	info->ts = rb_time_stamp(cpu_buffer->buffer);
3592
3593	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3594		info->delta = info->ts;
3595	} else {
3596		/*
3597		 * If interrupting an event time update, we may need an
3598		 * absolute timestamp.
3599		 * Don't bother if this is the start of a new page (w == 0).
3600		 */
3601		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3602			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3603			info->length += RB_LEN_TIME_EXTEND;
3604		} else {
3605			info->delta = info->ts - info->after;
3606			if (unlikely(test_time_stamp(info->delta))) {
3607				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3608				info->length += RB_LEN_TIME_EXTEND;
3609			}
3610		}
3611	}
3612
3613 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3614
3615 /*C*/	write = local_add_return(info->length, &tail_page->write);
3616
3617	/* set write to only the index of the write */
3618	write &= RB_WRITE_MASK;
3619
3620	tail = write - info->length;
3621
3622	/* See if we shot pass the end of this buffer page */
3623	if (unlikely(write > BUF_PAGE_SIZE)) {
3624		/* before and after may now different, fix it up*/
3625		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3626		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3627		if (a_ok && b_ok && info->before != info->after)
3628			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3629					      info->before, info->after);
3630		if (a_ok && b_ok)
3631			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3632		return rb_move_tail(cpu_buffer, tail, info);
3633	}
3634
3635	if (likely(tail == w)) {
3636		u64 save_before;
3637		bool s_ok;
3638
3639		/* Nothing interrupted us between A and C */
3640 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3641		barrier();
3642 /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3643		RB_WARN_ON(cpu_buffer, !s_ok);
3644		if (likely(!(info->add_timestamp &
3645			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3646			/* This did not interrupt any time update */
3647			info->delta = info->ts - info->after;
3648		else
3649			/* Just use full timestamp for interrupting event */
3650			info->delta = info->ts;
3651		barrier();
3652		check_buffer(cpu_buffer, info, tail);
3653		if (unlikely(info->ts != save_before)) {
3654			/* SLOW PATH - Interrupted between C and E */
3655
3656			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3657			RB_WARN_ON(cpu_buffer, !a_ok);
3658
3659			/* Write stamp must only go forward */
3660			if (save_before > info->after) {
3661				/*
3662				 * We do not care about the result, only that
3663				 * it gets updated atomically.
3664				 */
3665				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3666						      info->after, save_before);
3667			}
3668		}
3669	} else {
3670		u64 ts;
3671		/* SLOW PATH - Interrupted between A and C */
3672		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3673		/* Was interrupted before here, write_stamp must be valid */
3674		RB_WARN_ON(cpu_buffer, !a_ok);
3675		ts = rb_time_stamp(cpu_buffer->buffer);
3676		barrier();
3677 /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3678		    info->after < ts &&
3679		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3680				    info->after, ts)) {
3681			/* Nothing came after this event between C and E */
3682			info->delta = ts - info->after;
3683		} else {
3684			/*
3685			 * Interrupted between C and E:
3686			 * Lost the previous events time stamp. Just set the
3687			 * delta to zero, and this will be the same time as
3688			 * the event this event interrupted. And the events that
3689			 * came after this will still be correct (as they would
3690			 * have built their delta on the previous event.
3691			 */
3692			info->delta = 0;
3693		}
3694		info->ts = ts;
3695		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3696	}
3697
3698	/*
3699	 * If this is the first commit on the page, then it has the same
3700	 * timestamp as the page itself.
3701	 */
3702	if (unlikely(!tail && !(info->add_timestamp &
3703				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3704		info->delta = 0;
3705
3706	/* We reserved something on the buffer */
3707
3708	event = __rb_page_index(tail_page, tail);
3709	rb_update_event(cpu_buffer, event, info);
3710
3711	local_inc(&tail_page->entries);
3712
3713	/*
3714	 * If this is the first commit on the page, then update
3715	 * its timestamp.
3716	 */
3717	if (unlikely(!tail))
3718		tail_page->page->time_stamp = info->ts;
3719
3720	/* account for these added bytes */
3721	local_add(info->length, &cpu_buffer->entries_bytes);
3722
3723	return event;
3724}
3725
3726static __always_inline struct ring_buffer_event *
3727rb_reserve_next_event(struct trace_buffer *buffer,
3728		      struct ring_buffer_per_cpu *cpu_buffer,
3729		      unsigned long length)
3730{
3731	struct ring_buffer_event *event;
3732	struct rb_event_info info;
3733	int nr_loops = 0;
3734	int add_ts_default;
 
3735
3736	rb_start_commit(cpu_buffer);
3737	/* The commit page can not change after this */
3738
3739#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3740	/*
3741	 * Due to the ability to swap a cpu buffer from a buffer
3742	 * it is possible it was swapped before we committed.
3743	 * (committing stops a swap). We check for it here and
3744	 * if it happened, we have to fail the write.
3745	 */
3746	barrier();
3747	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3748		local_dec(&cpu_buffer->committing);
3749		local_dec(&cpu_buffer->commits);
3750		return NULL;
3751	}
3752#endif
3753
3754	info.length = rb_calculate_event_length(length);
3755
3756	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3757		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3758		info.length += RB_LEN_TIME_EXTEND;
3759	} else {
3760		add_ts_default = RB_ADD_STAMP_NONE;
3761	}
3762
3763 again:
3764	info.add_timestamp = add_ts_default;
3765	info.delta = 0;
3766
3767	/*
3768	 * We allow for interrupts to reenter here and do a trace.
3769	 * If one does, it will cause this original code to loop
3770	 * back here. Even with heavy interrupts happening, this
3771	 * should only happen a few times in a row. If this happens
3772	 * 1000 times in a row, there must be either an interrupt
3773	 * storm or we have something buggy.
3774	 * Bail!
3775	 */
3776	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3777		goto out_fail;
3778
3779	event = __rb_reserve_next(cpu_buffer, &info);
 
3780
3781	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3782		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3783			info.length -= RB_LEN_TIME_EXTEND;
3784		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785	}
3786
3787	if (likely(event))
3788		return event;
 
 
 
 
 
 
 
 
3789 out_fail:
3790	rb_end_commit(cpu_buffer);
3791	return NULL;
3792}
3793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3794/**
3795 * ring_buffer_lock_reserve - reserve a part of the buffer
3796 * @buffer: the ring buffer to reserve from
3797 * @length: the length of the data to reserve (excluding event header)
3798 *
3799 * Returns a reserved event on the ring buffer to copy directly to.
3800 * The user of this interface will need to get the body to write into
3801 * and can use the ring_buffer_event_data() interface.
3802 *
3803 * The length is the length of the data needed, not the event length
3804 * which also includes the event header.
3805 *
3806 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3807 * If NULL is returned, then nothing has been allocated or locked.
3808 */
3809struct ring_buffer_event *
3810ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3811{
3812	struct ring_buffer_per_cpu *cpu_buffer;
3813	struct ring_buffer_event *event;
3814	int cpu;
3815
 
 
 
3816	/* If we are tracing schedule, we don't want to recurse */
3817	preempt_disable_notrace();
3818
3819	if (unlikely(atomic_read(&buffer->record_disabled)))
3820		goto out;
 
 
 
3821
3822	cpu = raw_smp_processor_id();
3823
3824	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3825		goto out;
3826
3827	cpu_buffer = buffer->buffers[cpu];
3828
3829	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3830		goto out;
3831
3832	if (unlikely(length > BUF_MAX_DATA_SIZE))
3833		goto out;
3834
3835	if (unlikely(trace_recursive_lock(cpu_buffer)))
3836		goto out;
3837
3838	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3839	if (!event)
3840		goto out_unlock;
3841
3842	return event;
3843
3844 out_unlock:
3845	trace_recursive_unlock(cpu_buffer);
3846 out:
 
 
 
3847	preempt_enable_notrace();
3848	return NULL;
3849}
3850EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3852/*
3853 * Decrement the entries to the page that an event is on.
3854 * The event does not even need to exist, only the pointer
3855 * to the page it is on. This may only be called before the commit
3856 * takes place.
3857 */
3858static inline void
3859rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3860		   struct ring_buffer_event *event)
3861{
3862	unsigned long addr = (unsigned long)event;
3863	struct buffer_page *bpage = cpu_buffer->commit_page;
3864	struct buffer_page *start;
3865
3866	addr &= PAGE_MASK;
3867
3868	/* Do the likely case first */
3869	if (likely(bpage->page == (void *)addr)) {
3870		local_dec(&bpage->entries);
3871		return;
3872	}
3873
3874	/*
3875	 * Because the commit page may be on the reader page we
3876	 * start with the next page and check the end loop there.
3877	 */
3878	rb_inc_page(&bpage);
3879	start = bpage;
3880	do {
3881		if (bpage->page == (void *)addr) {
3882			local_dec(&bpage->entries);
3883			return;
3884		}
3885		rb_inc_page(&bpage);
3886	} while (bpage != start);
3887
3888	/* commit not part of this buffer?? */
3889	RB_WARN_ON(cpu_buffer, 1);
3890}
3891
3892/**
3893 * ring_buffer_discard_commit - discard an event that has not been committed
3894 * @buffer: the ring buffer
3895 * @event: non committed event to discard
3896 *
3897 * Sometimes an event that is in the ring buffer needs to be ignored.
3898 * This function lets the user discard an event in the ring buffer
3899 * and then that event will not be read later.
3900 *
3901 * This function only works if it is called before the item has been
3902 * committed. It will try to free the event from the ring buffer
3903 * if another event has not been added behind it.
3904 *
3905 * If another event has been added behind it, it will set the event
3906 * up as discarded, and perform the commit.
3907 *
3908 * If this function is called, do not call ring_buffer_unlock_commit on
3909 * the event.
3910 */
3911void ring_buffer_discard_commit(struct trace_buffer *buffer,
3912				struct ring_buffer_event *event)
3913{
3914	struct ring_buffer_per_cpu *cpu_buffer;
3915	int cpu;
3916
3917	/* The event is discarded regardless */
3918	rb_event_discard(event);
3919
3920	cpu = smp_processor_id();
3921	cpu_buffer = buffer->buffers[cpu];
3922
3923	/*
3924	 * This must only be called if the event has not been
3925	 * committed yet. Thus we can assume that preemption
3926	 * is still disabled.
3927	 */
3928	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3929
3930	rb_decrement_entry(cpu_buffer, event);
3931	if (rb_try_to_discard(cpu_buffer, event))
3932		goto out;
3933
 
 
 
 
 
3934 out:
3935	rb_end_commit(cpu_buffer);
3936
3937	trace_recursive_unlock(cpu_buffer);
3938
3939	preempt_enable_notrace();
3940
3941}
3942EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3943
3944/**
3945 * ring_buffer_write - write data to the buffer without reserving
3946 * @buffer: The ring buffer to write to.
3947 * @length: The length of the data being written (excluding the event header)
3948 * @data: The data to write to the buffer.
3949 *
3950 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3951 * one function. If you already have the data to write to the buffer, it
3952 * may be easier to simply call this function.
3953 *
3954 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3955 * and not the length of the event which would hold the header.
3956 */
3957int ring_buffer_write(struct trace_buffer *buffer,
3958		      unsigned long length,
3959		      void *data)
3960{
3961	struct ring_buffer_per_cpu *cpu_buffer;
3962	struct ring_buffer_event *event;
3963	void *body;
3964	int ret = -EBUSY;
3965	int cpu;
3966
 
 
 
3967	preempt_disable_notrace();
3968
3969	if (atomic_read(&buffer->record_disabled))
3970		goto out;
3971
3972	cpu = raw_smp_processor_id();
3973
3974	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975		goto out;
3976
3977	cpu_buffer = buffer->buffers[cpu];
3978
3979	if (atomic_read(&cpu_buffer->record_disabled))
3980		goto out;
3981
3982	if (length > BUF_MAX_DATA_SIZE)
3983		goto out;
3984
3985	if (unlikely(trace_recursive_lock(cpu_buffer)))
3986		goto out;
3987
3988	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3989	if (!event)
3990		goto out_unlock;
3991
3992	body = rb_event_data(event);
3993
3994	memcpy(body, data, length);
3995
3996	rb_commit(cpu_buffer);
3997
3998	rb_wakeups(buffer, cpu_buffer);
3999
4000	ret = 0;
4001
4002 out_unlock:
4003	trace_recursive_unlock(cpu_buffer);
4004
4005 out:
4006	preempt_enable_notrace();
4007
4008	return ret;
4009}
4010EXPORT_SYMBOL_GPL(ring_buffer_write);
4011
4012static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4013{
4014	struct buffer_page *reader = cpu_buffer->reader_page;
4015	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4016	struct buffer_page *commit = cpu_buffer->commit_page;
4017
4018	/* In case of error, head will be NULL */
4019	if (unlikely(!head))
4020		return true;
4021
4022	/* Reader should exhaust content in reader page */
4023	if (reader->read != rb_page_commit(reader))
4024		return false;
4025
4026	/*
4027	 * If writers are committing on the reader page, knowing all
4028	 * committed content has been read, the ring buffer is empty.
4029	 */
4030	if (commit == reader)
4031		return true;
4032
4033	/*
4034	 * If writers are committing on a page other than reader page
4035	 * and head page, there should always be content to read.
4036	 */
4037	if (commit != head)
4038		return false;
4039
4040	/*
4041	 * Writers are committing on the head page, we just need
4042	 * to care about there're committed data, and the reader will
4043	 * swap reader page with head page when it is to read data.
4044	 */
4045	return rb_page_commit(commit) == 0;
4046}
4047
4048/**
4049 * ring_buffer_record_disable - stop all writes into the buffer
4050 * @buffer: The ring buffer to stop writes to.
4051 *
4052 * This prevents all writes to the buffer. Any attempt to write
4053 * to the buffer after this will fail and return NULL.
4054 *
4055 * The caller should call synchronize_rcu() after this.
4056 */
4057void ring_buffer_record_disable(struct trace_buffer *buffer)
4058{
4059	atomic_inc(&buffer->record_disabled);
4060}
4061EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4062
4063/**
4064 * ring_buffer_record_enable - enable writes to the buffer
4065 * @buffer: The ring buffer to enable writes
4066 *
4067 * Note, multiple disables will need the same number of enables
4068 * to truly enable the writing (much like preempt_disable).
4069 */
4070void ring_buffer_record_enable(struct trace_buffer *buffer)
4071{
4072	atomic_dec(&buffer->record_disabled);
4073}
4074EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4075
4076/**
4077 * ring_buffer_record_off - stop all writes into the buffer
4078 * @buffer: The ring buffer to stop writes to.
4079 *
4080 * This prevents all writes to the buffer. Any attempt to write
4081 * to the buffer after this will fail and return NULL.
4082 *
4083 * This is different than ring_buffer_record_disable() as
4084 * it works like an on/off switch, where as the disable() version
4085 * must be paired with a enable().
4086 */
4087void ring_buffer_record_off(struct trace_buffer *buffer)
4088{
4089	unsigned int rd;
4090	unsigned int new_rd;
4091
4092	do {
4093		rd = atomic_read(&buffer->record_disabled);
4094		new_rd = rd | RB_BUFFER_OFF;
4095	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4096}
4097EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4098
4099/**
4100 * ring_buffer_record_on - restart writes into the buffer
4101 * @buffer: The ring buffer to start writes to.
4102 *
4103 * This enables all writes to the buffer that was disabled by
4104 * ring_buffer_record_off().
4105 *
4106 * This is different than ring_buffer_record_enable() as
4107 * it works like an on/off switch, where as the enable() version
4108 * must be paired with a disable().
4109 */
4110void ring_buffer_record_on(struct trace_buffer *buffer)
4111{
4112	unsigned int rd;
4113	unsigned int new_rd;
4114
4115	do {
4116		rd = atomic_read(&buffer->record_disabled);
4117		new_rd = rd & ~RB_BUFFER_OFF;
4118	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4119}
4120EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4121
4122/**
4123 * ring_buffer_record_is_on - return true if the ring buffer can write
4124 * @buffer: The ring buffer to see if write is enabled
4125 *
4126 * Returns true if the ring buffer is in a state that it accepts writes.
4127 */
4128bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4129{
4130	return !atomic_read(&buffer->record_disabled);
4131}
4132
4133/**
4134 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4135 * @buffer: The ring buffer to see if write is set enabled
4136 *
4137 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4138 * Note that this does NOT mean it is in a writable state.
4139 *
4140 * It may return true when the ring buffer has been disabled by
4141 * ring_buffer_record_disable(), as that is a temporary disabling of
4142 * the ring buffer.
4143 */
4144bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4145{
4146	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4147}
4148
4149/**
4150 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4151 * @buffer: The ring buffer to stop writes to.
4152 * @cpu: The CPU buffer to stop
4153 *
4154 * This prevents all writes to the buffer. Any attempt to write
4155 * to the buffer after this will fail and return NULL.
4156 *
4157 * The caller should call synchronize_rcu() after this.
4158 */
4159void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4160{
4161	struct ring_buffer_per_cpu *cpu_buffer;
4162
4163	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164		return;
4165
4166	cpu_buffer = buffer->buffers[cpu];
4167	atomic_inc(&cpu_buffer->record_disabled);
4168}
4169EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4170
4171/**
4172 * ring_buffer_record_enable_cpu - enable writes to the buffer
4173 * @buffer: The ring buffer to enable writes
4174 * @cpu: The CPU to enable.
4175 *
4176 * Note, multiple disables will need the same number of enables
4177 * to truly enable the writing (much like preempt_disable).
4178 */
4179void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4180{
4181	struct ring_buffer_per_cpu *cpu_buffer;
4182
4183	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4184		return;
4185
4186	cpu_buffer = buffer->buffers[cpu];
4187	atomic_dec(&cpu_buffer->record_disabled);
4188}
4189EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4190
4191/*
4192 * The total entries in the ring buffer is the running counter
4193 * of entries entered into the ring buffer, minus the sum of
4194 * the entries read from the ring buffer and the number of
4195 * entries that were overwritten.
4196 */
4197static inline unsigned long
4198rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4199{
4200	return local_read(&cpu_buffer->entries) -
4201		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4202}
4203
4204/**
4205 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4206 * @buffer: The ring buffer
4207 * @cpu: The per CPU buffer to read from.
4208 */
4209u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4210{
4211	unsigned long flags;
4212	struct ring_buffer_per_cpu *cpu_buffer;
4213	struct buffer_page *bpage;
4214	u64 ret = 0;
4215
4216	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217		return 0;
4218
4219	cpu_buffer = buffer->buffers[cpu];
4220	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221	/*
4222	 * if the tail is on reader_page, oldest time stamp is on the reader
4223	 * page
4224	 */
4225	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4226		bpage = cpu_buffer->reader_page;
4227	else
4228		bpage = rb_set_head_page(cpu_buffer);
4229	if (bpage)
4230		ret = bpage->page->time_stamp;
4231	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4232
4233	return ret;
4234}
4235EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4236
4237/**
4238 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4239 * @buffer: The ring buffer
4240 * @cpu: The per CPU buffer to read from.
4241 */
4242unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4243{
4244	struct ring_buffer_per_cpu *cpu_buffer;
4245	unsigned long ret;
4246
4247	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4248		return 0;
4249
4250	cpu_buffer = buffer->buffers[cpu];
4251	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4252
4253	return ret;
4254}
4255EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4256
4257/**
4258 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4259 * @buffer: The ring buffer
4260 * @cpu: The per CPU buffer to get the entries from.
4261 */
4262unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4263{
4264	struct ring_buffer_per_cpu *cpu_buffer;
4265
4266	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4267		return 0;
4268
4269	cpu_buffer = buffer->buffers[cpu];
4270
4271	return rb_num_of_entries(cpu_buffer);
4272}
4273EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4274
4275/**
4276 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4277 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4278 * @buffer: The ring buffer
4279 * @cpu: The per CPU buffer to get the number of overruns from
4280 */
4281unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4282{
4283	struct ring_buffer_per_cpu *cpu_buffer;
4284	unsigned long ret;
4285
4286	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287		return 0;
4288
4289	cpu_buffer = buffer->buffers[cpu];
4290	ret = local_read(&cpu_buffer->overrun);
4291
4292	return ret;
4293}
4294EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4295
4296/**
4297 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4298 * commits failing due to the buffer wrapping around while there are uncommitted
4299 * events, such as during an interrupt storm.
4300 * @buffer: The ring buffer
4301 * @cpu: The per CPU buffer to get the number of overruns from
4302 */
4303unsigned long
4304ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4305{
4306	struct ring_buffer_per_cpu *cpu_buffer;
4307	unsigned long ret;
4308
4309	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4310		return 0;
4311
4312	cpu_buffer = buffer->buffers[cpu];
4313	ret = local_read(&cpu_buffer->commit_overrun);
4314
4315	return ret;
4316}
4317EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4318
4319/**
4320 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4321 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4322 * @buffer: The ring buffer
4323 * @cpu: The per CPU buffer to get the number of overruns from
4324 */
4325unsigned long
4326ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4327{
4328	struct ring_buffer_per_cpu *cpu_buffer;
4329	unsigned long ret;
4330
4331	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4332		return 0;
4333
4334	cpu_buffer = buffer->buffers[cpu];
4335	ret = local_read(&cpu_buffer->dropped_events);
4336
4337	return ret;
4338}
4339EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4340
4341/**
4342 * ring_buffer_read_events_cpu - get the number of events successfully read
4343 * @buffer: The ring buffer
4344 * @cpu: The per CPU buffer to get the number of events read
4345 */
4346unsigned long
4347ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4348{
4349	struct ring_buffer_per_cpu *cpu_buffer;
4350
4351	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4352		return 0;
4353
4354	cpu_buffer = buffer->buffers[cpu];
4355	return cpu_buffer->read;
4356}
4357EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4358
4359/**
4360 * ring_buffer_entries - get the number of entries in a buffer
4361 * @buffer: The ring buffer
4362 *
4363 * Returns the total number of entries in the ring buffer
4364 * (all CPU entries)
4365 */
4366unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4367{
4368	struct ring_buffer_per_cpu *cpu_buffer;
4369	unsigned long entries = 0;
4370	int cpu;
4371
4372	/* if you care about this being correct, lock the buffer */
4373	for_each_buffer_cpu(buffer, cpu) {
4374		cpu_buffer = buffer->buffers[cpu];
4375		entries += rb_num_of_entries(cpu_buffer);
4376	}
4377
4378	return entries;
4379}
4380EXPORT_SYMBOL_GPL(ring_buffer_entries);
4381
4382/**
4383 * ring_buffer_overruns - get the number of overruns in buffer
4384 * @buffer: The ring buffer
4385 *
4386 * Returns the total number of overruns in the ring buffer
4387 * (all CPU entries)
4388 */
4389unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4390{
4391	struct ring_buffer_per_cpu *cpu_buffer;
4392	unsigned long overruns = 0;
4393	int cpu;
4394
4395	/* if you care about this being correct, lock the buffer */
4396	for_each_buffer_cpu(buffer, cpu) {
4397		cpu_buffer = buffer->buffers[cpu];
4398		overruns += local_read(&cpu_buffer->overrun);
4399	}
4400
4401	return overruns;
4402}
4403EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4404
4405static void rb_iter_reset(struct ring_buffer_iter *iter)
4406{
4407	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4408
4409	/* Iterator usage is expected to have record disabled */
4410	iter->head_page = cpu_buffer->reader_page;
4411	iter->head = cpu_buffer->reader_page->read;
4412	iter->next_event = iter->head;
4413
4414	iter->cache_reader_page = iter->head_page;
4415	iter->cache_read = cpu_buffer->read;
4416
4417	if (iter->head) {
4418		iter->read_stamp = cpu_buffer->read_stamp;
4419		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4420	} else {
4421		iter->read_stamp = iter->head_page->page->time_stamp;
4422		iter->page_stamp = iter->read_stamp;
4423	}
 
 
 
 
 
 
4424}
4425
4426/**
4427 * ring_buffer_iter_reset - reset an iterator
4428 * @iter: The iterator to reset
4429 *
4430 * Resets the iterator, so that it will start from the beginning
4431 * again.
4432 */
4433void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4434{
4435	struct ring_buffer_per_cpu *cpu_buffer;
4436	unsigned long flags;
4437
4438	if (!iter)
4439		return;
4440
4441	cpu_buffer = iter->cpu_buffer;
4442
4443	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4444	rb_iter_reset(iter);
4445	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4446}
4447EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4448
4449/**
4450 * ring_buffer_iter_empty - check if an iterator has no more to read
4451 * @iter: The iterator to check
4452 */
4453int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4454{
4455	struct ring_buffer_per_cpu *cpu_buffer;
4456	struct buffer_page *reader;
4457	struct buffer_page *head_page;
4458	struct buffer_page *commit_page;
4459	struct buffer_page *curr_commit_page;
4460	unsigned commit;
4461	u64 curr_commit_ts;
4462	u64 commit_ts;
4463
4464	cpu_buffer = iter->cpu_buffer;
4465	reader = cpu_buffer->reader_page;
4466	head_page = cpu_buffer->head_page;
4467	commit_page = cpu_buffer->commit_page;
4468	commit_ts = commit_page->page->time_stamp;
4469
4470	/*
4471	 * When the writer goes across pages, it issues a cmpxchg which
4472	 * is a mb(), which will synchronize with the rmb here.
4473	 * (see rb_tail_page_update())
4474	 */
4475	smp_rmb();
4476	commit = rb_page_commit(commit_page);
4477	/* We want to make sure that the commit page doesn't change */
4478	smp_rmb();
4479
4480	/* Make sure commit page didn't change */
4481	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4482	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4483
4484	/* If the commit page changed, then there's more data */
4485	if (curr_commit_page != commit_page ||
4486	    curr_commit_ts != commit_ts)
4487		return 0;
4488
4489	/* Still racy, as it may return a false positive, but that's OK */
4490	return ((iter->head_page == commit_page && iter->head >= commit) ||
4491		(iter->head_page == reader && commit_page == head_page &&
4492		 head_page->read == commit &&
4493		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4494}
4495EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4496
4497static void
4498rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4499		     struct ring_buffer_event *event)
4500{
4501	u64 delta;
4502
4503	switch (event->type_len) {
4504	case RINGBUF_TYPE_PADDING:
4505		return;
4506
4507	case RINGBUF_TYPE_TIME_EXTEND:
4508		delta = rb_event_time_stamp(event);
 
 
4509		cpu_buffer->read_stamp += delta;
4510		return;
4511
4512	case RINGBUF_TYPE_TIME_STAMP:
4513		delta = rb_event_time_stamp(event);
4514		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4515		cpu_buffer->read_stamp = delta;
4516		return;
4517
4518	case RINGBUF_TYPE_DATA:
4519		cpu_buffer->read_stamp += event->time_delta;
4520		return;
4521
4522	default:
4523		RB_WARN_ON(cpu_buffer, 1);
4524	}
4525	return;
4526}
4527
4528static void
4529rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4530			  struct ring_buffer_event *event)
4531{
4532	u64 delta;
4533
4534	switch (event->type_len) {
4535	case RINGBUF_TYPE_PADDING:
4536		return;
4537
4538	case RINGBUF_TYPE_TIME_EXTEND:
4539		delta = rb_event_time_stamp(event);
 
 
4540		iter->read_stamp += delta;
4541		return;
4542
4543	case RINGBUF_TYPE_TIME_STAMP:
4544		delta = rb_event_time_stamp(event);
4545		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4546		iter->read_stamp = delta;
4547		return;
4548
4549	case RINGBUF_TYPE_DATA:
4550		iter->read_stamp += event->time_delta;
4551		return;
4552
4553	default:
4554		RB_WARN_ON(iter->cpu_buffer, 1);
4555	}
4556	return;
4557}
4558
4559static struct buffer_page *
4560rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4561{
4562	struct buffer_page *reader = NULL;
4563	unsigned long overwrite;
4564	unsigned long flags;
4565	int nr_loops = 0;
4566	int ret;
4567
4568	local_irq_save(flags);
4569	arch_spin_lock(&cpu_buffer->lock);
4570
4571 again:
4572	/*
4573	 * This should normally only loop twice. But because the
4574	 * start of the reader inserts an empty page, it causes
4575	 * a case where we will loop three times. There should be no
4576	 * reason to loop four times (that I know of).
4577	 */
4578	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4579		reader = NULL;
4580		goto out;
4581	}
4582
4583	reader = cpu_buffer->reader_page;
4584
4585	/* If there's more to read, return this page */
4586	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4587		goto out;
4588
4589	/* Never should we have an index greater than the size */
4590	if (RB_WARN_ON(cpu_buffer,
4591		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4592		goto out;
4593
4594	/* check if we caught up to the tail */
4595	reader = NULL;
4596	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4597		goto out;
4598
4599	/* Don't bother swapping if the ring buffer is empty */
4600	if (rb_num_of_entries(cpu_buffer) == 0)
4601		goto out;
4602
4603	/*
4604	 * Reset the reader page to size zero.
4605	 */
4606	local_set(&cpu_buffer->reader_page->write, 0);
4607	local_set(&cpu_buffer->reader_page->entries, 0);
4608	local_set(&cpu_buffer->reader_page->page->commit, 0);
4609	cpu_buffer->reader_page->real_end = 0;
4610
4611 spin:
4612	/*
4613	 * Splice the empty reader page into the list around the head.
4614	 */
4615	reader = rb_set_head_page(cpu_buffer);
4616	if (!reader)
4617		goto out;
4618	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4619	cpu_buffer->reader_page->list.prev = reader->list.prev;
4620
4621	/*
4622	 * cpu_buffer->pages just needs to point to the buffer, it
4623	 *  has no specific buffer page to point to. Lets move it out
4624	 *  of our way so we don't accidentally swap it.
4625	 */
4626	cpu_buffer->pages = reader->list.prev;
4627
4628	/* The reader page will be pointing to the new head */
4629	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4630
4631	/*
4632	 * We want to make sure we read the overruns after we set up our
4633	 * pointers to the next object. The writer side does a
4634	 * cmpxchg to cross pages which acts as the mb on the writer
4635	 * side. Note, the reader will constantly fail the swap
4636	 * while the writer is updating the pointers, so this
4637	 * guarantees that the overwrite recorded here is the one we
4638	 * want to compare with the last_overrun.
4639	 */
4640	smp_mb();
4641	overwrite = local_read(&(cpu_buffer->overrun));
4642
4643	/*
4644	 * Here's the tricky part.
4645	 *
4646	 * We need to move the pointer past the header page.
4647	 * But we can only do that if a writer is not currently
4648	 * moving it. The page before the header page has the
4649	 * flag bit '1' set if it is pointing to the page we want.
4650	 * but if the writer is in the process of moving it
4651	 * than it will be '2' or already moved '0'.
4652	 */
4653
4654	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4655
4656	/*
4657	 * If we did not convert it, then we must try again.
4658	 */
4659	if (!ret)
4660		goto spin;
4661
4662	/*
4663	 * Yay! We succeeded in replacing the page.
4664	 *
4665	 * Now make the new head point back to the reader page.
4666	 */
4667	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4668	rb_inc_page(&cpu_buffer->head_page);
4669
4670	local_inc(&cpu_buffer->pages_read);
4671
4672	/* Finally update the reader page to the new head */
4673	cpu_buffer->reader_page = reader;
4674	cpu_buffer->reader_page->read = 0;
4675
4676	if (overwrite != cpu_buffer->last_overrun) {
4677		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4678		cpu_buffer->last_overrun = overwrite;
4679	}
4680
4681	goto again;
4682
4683 out:
4684	/* Update the read_stamp on the first event */
4685	if (reader && reader->read == 0)
4686		cpu_buffer->read_stamp = reader->page->time_stamp;
4687
4688	arch_spin_unlock(&cpu_buffer->lock);
4689	local_irq_restore(flags);
4690
4691	/*
4692	 * The writer has preempt disable, wait for it. But not forever
4693	 * Although, 1 second is pretty much "forever"
4694	 */
4695#define USECS_WAIT	1000000
4696        for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4697		/* If the write is past the end of page, a writer is still updating it */
4698		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4699			break;
4700
4701		udelay(1);
4702
4703		/* Get the latest version of the reader write value */
4704		smp_rmb();
4705	}
4706
4707	/* The writer is not moving forward? Something is wrong */
4708	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4709		reader = NULL;
4710
4711	/*
4712	 * Make sure we see any padding after the write update
4713	 * (see rb_reset_tail())
4714	 */
4715	smp_rmb();
4716
4717
4718	return reader;
4719}
4720
4721static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4722{
4723	struct ring_buffer_event *event;
4724	struct buffer_page *reader;
4725	unsigned length;
4726
4727	reader = rb_get_reader_page(cpu_buffer);
4728
4729	/* This function should not be called when buffer is empty */
4730	if (RB_WARN_ON(cpu_buffer, !reader))
4731		return;
4732
4733	event = rb_reader_event(cpu_buffer);
4734
4735	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4736		cpu_buffer->read++;
4737
4738	rb_update_read_stamp(cpu_buffer, event);
4739
4740	length = rb_event_length(event);
4741	cpu_buffer->reader_page->read += length;
4742}
4743
4744static void rb_advance_iter(struct ring_buffer_iter *iter)
4745{
4746	struct ring_buffer_per_cpu *cpu_buffer;
 
 
4747
4748	cpu_buffer = iter->cpu_buffer;
4749
4750	/* If head == next_event then we need to jump to the next event */
4751	if (iter->head == iter->next_event) {
4752		/* If the event gets overwritten again, there's nothing to do */
4753		if (rb_iter_head_event(iter) == NULL)
4754			return;
4755	}
4756
4757	iter->head = iter->next_event;
4758
4759	/*
4760	 * Check if we are at the end of the buffer.
4761	 */
4762	if (iter->next_event >= rb_page_size(iter->head_page)) {
4763		/* discarded commits can make the page empty */
4764		if (iter->head_page == cpu_buffer->commit_page)
4765			return;
4766		rb_inc_iter(iter);
4767		return;
4768	}
4769
4770	rb_update_iter_read_stamp(iter, iter->event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4771}
4772
4773static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4774{
4775	return cpu_buffer->lost_events;
4776}
4777
4778static struct ring_buffer_event *
4779rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4780	       unsigned long *lost_events)
4781{
4782	struct ring_buffer_event *event;
4783	struct buffer_page *reader;
4784	int nr_loops = 0;
4785
4786	if (ts)
4787		*ts = 0;
4788 again:
4789	/*
4790	 * We repeat when a time extend is encountered.
4791	 * Since the time extend is always attached to a data event,
4792	 * we should never loop more than once.
4793	 * (We never hit the following condition more than twice).
4794	 */
4795	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4796		return NULL;
4797
4798	reader = rb_get_reader_page(cpu_buffer);
4799	if (!reader)
4800		return NULL;
4801
4802	event = rb_reader_event(cpu_buffer);
4803
4804	switch (event->type_len) {
4805	case RINGBUF_TYPE_PADDING:
4806		if (rb_null_event(event))
4807			RB_WARN_ON(cpu_buffer, 1);
4808		/*
4809		 * Because the writer could be discarding every
4810		 * event it creates (which would probably be bad)
4811		 * if we were to go back to "again" then we may never
4812		 * catch up, and will trigger the warn on, or lock
4813		 * the box. Return the padding, and we will release
4814		 * the current locks, and try again.
4815		 */
4816		return event;
4817
4818	case RINGBUF_TYPE_TIME_EXTEND:
4819		/* Internal data, OK to advance */
4820		rb_advance_reader(cpu_buffer);
4821		goto again;
4822
4823	case RINGBUF_TYPE_TIME_STAMP:
4824		if (ts) {
4825			*ts = rb_event_time_stamp(event);
4826			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4827			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4828							 cpu_buffer->cpu, ts);
4829		}
4830		/* Internal data, OK to advance */
4831		rb_advance_reader(cpu_buffer);
4832		goto again;
4833
4834	case RINGBUF_TYPE_DATA:
4835		if (ts && !(*ts)) {
4836			*ts = cpu_buffer->read_stamp + event->time_delta;
4837			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4838							 cpu_buffer->cpu, ts);
4839		}
4840		if (lost_events)
4841			*lost_events = rb_lost_events(cpu_buffer);
4842		return event;
4843
4844	default:
4845		RB_WARN_ON(cpu_buffer, 1);
4846	}
4847
4848	return NULL;
4849}
4850EXPORT_SYMBOL_GPL(ring_buffer_peek);
4851
4852static struct ring_buffer_event *
4853rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4854{
4855	struct trace_buffer *buffer;
4856	struct ring_buffer_per_cpu *cpu_buffer;
4857	struct ring_buffer_event *event;
4858	int nr_loops = 0;
4859
4860	if (ts)
4861		*ts = 0;
4862
4863	cpu_buffer = iter->cpu_buffer;
4864	buffer = cpu_buffer->buffer;
4865
4866	/*
4867	 * Check if someone performed a consuming read to
4868	 * the buffer. A consuming read invalidates the iterator
4869	 * and we need to reset the iterator in this case.
4870	 */
4871	if (unlikely(iter->cache_read != cpu_buffer->read ||
4872		     iter->cache_reader_page != cpu_buffer->reader_page))
4873		rb_iter_reset(iter);
4874
4875 again:
4876	if (ring_buffer_iter_empty(iter))
4877		return NULL;
4878
4879	/*
4880	 * As the writer can mess with what the iterator is trying
4881	 * to read, just give up if we fail to get an event after
4882	 * three tries. The iterator is not as reliable when reading
4883	 * the ring buffer with an active write as the consumer is.
4884	 * Do not warn if the three failures is reached.
4885	 */
4886	if (++nr_loops > 3)
4887		return NULL;
4888
4889	if (rb_per_cpu_empty(cpu_buffer))
4890		return NULL;
4891
4892	if (iter->head >= rb_page_size(iter->head_page)) {
4893		rb_inc_iter(iter);
4894		goto again;
4895	}
4896
4897	event = rb_iter_head_event(iter);
4898	if (!event)
4899		goto again;
4900
4901	switch (event->type_len) {
4902	case RINGBUF_TYPE_PADDING:
4903		if (rb_null_event(event)) {
4904			rb_inc_iter(iter);
4905			goto again;
4906		}
4907		rb_advance_iter(iter);
4908		return event;
4909
4910	case RINGBUF_TYPE_TIME_EXTEND:
4911		/* Internal data, OK to advance */
4912		rb_advance_iter(iter);
4913		goto again;
4914
4915	case RINGBUF_TYPE_TIME_STAMP:
4916		if (ts) {
4917			*ts = rb_event_time_stamp(event);
4918			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4919			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4920							 cpu_buffer->cpu, ts);
4921		}
4922		/* Internal data, OK to advance */
4923		rb_advance_iter(iter);
4924		goto again;
4925
4926	case RINGBUF_TYPE_DATA:
4927		if (ts && !(*ts)) {
4928			*ts = iter->read_stamp + event->time_delta;
4929			ring_buffer_normalize_time_stamp(buffer,
4930							 cpu_buffer->cpu, ts);
4931		}
4932		return event;
4933
4934	default:
4935		RB_WARN_ON(cpu_buffer, 1);
4936	}
4937
4938	return NULL;
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4941
4942static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4943{
4944	if (likely(!in_nmi())) {
4945		raw_spin_lock(&cpu_buffer->reader_lock);
4946		return true;
4947	}
4948
4949	/*
4950	 * If an NMI die dumps out the content of the ring buffer
4951	 * trylock must be used to prevent a deadlock if the NMI
4952	 * preempted a task that holds the ring buffer locks. If
4953	 * we get the lock then all is fine, if not, then continue
4954	 * to do the read, but this can corrupt the ring buffer,
4955	 * so it must be permanently disabled from future writes.
4956	 * Reading from NMI is a oneshot deal.
4957	 */
4958	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4959		return true;
4960
4961	/* Continue without locking, but disable the ring buffer */
4962	atomic_inc(&cpu_buffer->record_disabled);
4963	return false;
4964}
4965
4966static inline void
4967rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4968{
4969	if (likely(locked))
4970		raw_spin_unlock(&cpu_buffer->reader_lock);
4971	return;
4972}
4973
4974/**
4975 * ring_buffer_peek - peek at the next event to be read
4976 * @buffer: The ring buffer to read
4977 * @cpu: The cpu to peak at
4978 * @ts: The timestamp counter of this event.
4979 * @lost_events: a variable to store if events were lost (may be NULL)
4980 *
4981 * This will return the event that will be read next, but does
4982 * not consume the data.
4983 */
4984struct ring_buffer_event *
4985ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4986		 unsigned long *lost_events)
4987{
4988	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4989	struct ring_buffer_event *event;
4990	unsigned long flags;
4991	bool dolock;
4992
4993	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4994		return NULL;
4995
 
4996 again:
4997	local_irq_save(flags);
4998	dolock = rb_reader_lock(cpu_buffer);
 
4999	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5000	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5001		rb_advance_reader(cpu_buffer);
5002	rb_reader_unlock(cpu_buffer, dolock);
 
5003	local_irq_restore(flags);
5004
5005	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5006		goto again;
5007
5008	return event;
5009}
5010
5011/** ring_buffer_iter_dropped - report if there are dropped events
5012 * @iter: The ring buffer iterator
5013 *
5014 * Returns true if there was dropped events since the last peek.
5015 */
5016bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5017{
5018	bool ret = iter->missed_events != 0;
5019
5020	iter->missed_events = 0;
5021	return ret;
5022}
5023EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5024
5025/**
5026 * ring_buffer_iter_peek - peek at the next event to be read
5027 * @iter: The ring buffer iterator
5028 * @ts: The timestamp counter of this event.
5029 *
5030 * This will return the event that will be read next, but does
5031 * not increment the iterator.
5032 */
5033struct ring_buffer_event *
5034ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5035{
5036	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5037	struct ring_buffer_event *event;
5038	unsigned long flags;
5039
5040 again:
5041	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5042	event = rb_iter_peek(iter, ts);
5043	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5044
5045	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5046		goto again;
5047
5048	return event;
5049}
5050
5051/**
5052 * ring_buffer_consume - return an event and consume it
5053 * @buffer: The ring buffer to get the next event from
5054 * @cpu: the cpu to read the buffer from
5055 * @ts: a variable to store the timestamp (may be NULL)
5056 * @lost_events: a variable to store if events were lost (may be NULL)
5057 *
5058 * Returns the next event in the ring buffer, and that event is consumed.
5059 * Meaning, that sequential reads will keep returning a different event,
5060 * and eventually empty the ring buffer if the producer is slower.
5061 */
5062struct ring_buffer_event *
5063ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5064		    unsigned long *lost_events)
5065{
5066	struct ring_buffer_per_cpu *cpu_buffer;
5067	struct ring_buffer_event *event = NULL;
5068	unsigned long flags;
5069	bool dolock;
 
 
5070
5071 again:
5072	/* might be called in atomic */
5073	preempt_disable();
5074
5075	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5076		goto out;
5077
5078	cpu_buffer = buffer->buffers[cpu];
5079	local_irq_save(flags);
5080	dolock = rb_reader_lock(cpu_buffer);
 
5081
5082	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5083	if (event) {
5084		cpu_buffer->lost_events = 0;
5085		rb_advance_reader(cpu_buffer);
5086	}
5087
5088	rb_reader_unlock(cpu_buffer, dolock);
 
5089	local_irq_restore(flags);
5090
5091 out:
5092	preempt_enable();
5093
5094	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5095		goto again;
5096
5097	return event;
5098}
5099EXPORT_SYMBOL_GPL(ring_buffer_consume);
5100
5101/**
5102 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5103 * @buffer: The ring buffer to read from
5104 * @cpu: The cpu buffer to iterate over
5105 * @flags: gfp flags to use for memory allocation
5106 *
5107 * This performs the initial preparations necessary to iterate
5108 * through the buffer.  Memory is allocated, buffer recording
5109 * is disabled, and the iterator pointer is returned to the caller.
5110 *
5111 * Disabling buffer recording prevents the reading from being
5112 * corrupted. This is not a consuming read, so a producer is not
5113 * expected.
5114 *
5115 * After a sequence of ring_buffer_read_prepare calls, the user is
5116 * expected to make at least one call to ring_buffer_read_prepare_sync.
5117 * Afterwards, ring_buffer_read_start is invoked to get things going
5118 * for real.
5119 *
5120 * This overall must be paired with ring_buffer_read_finish.
5121 */
5122struct ring_buffer_iter *
5123ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5124{
5125	struct ring_buffer_per_cpu *cpu_buffer;
5126	struct ring_buffer_iter *iter;
5127
5128	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5129		return NULL;
5130
5131	iter = kzalloc(sizeof(*iter), flags);
5132	if (!iter)
5133		return NULL;
5134
5135	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5136	if (!iter->event) {
5137		kfree(iter);
5138		return NULL;
5139	}
5140
5141	cpu_buffer = buffer->buffers[cpu];
5142
5143	iter->cpu_buffer = cpu_buffer;
5144
5145	atomic_inc(&cpu_buffer->resize_disabled);
 
5146
5147	return iter;
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5150
5151/**
5152 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5153 *
5154 * All previously invoked ring_buffer_read_prepare calls to prepare
5155 * iterators will be synchronized.  Afterwards, read_buffer_read_start
5156 * calls on those iterators are allowed.
5157 */
5158void
5159ring_buffer_read_prepare_sync(void)
5160{
5161	synchronize_rcu();
5162}
5163EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5164
5165/**
5166 * ring_buffer_read_start - start a non consuming read of the buffer
5167 * @iter: The iterator returned by ring_buffer_read_prepare
5168 *
5169 * This finalizes the startup of an iteration through the buffer.
5170 * The iterator comes from a call to ring_buffer_read_prepare and
5171 * an intervening ring_buffer_read_prepare_sync must have been
5172 * performed.
5173 *
5174 * Must be paired with ring_buffer_read_finish.
5175 */
5176void
5177ring_buffer_read_start(struct ring_buffer_iter *iter)
5178{
5179	struct ring_buffer_per_cpu *cpu_buffer;
5180	unsigned long flags;
5181
5182	if (!iter)
5183		return;
5184
5185	cpu_buffer = iter->cpu_buffer;
5186
5187	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5188	arch_spin_lock(&cpu_buffer->lock);
5189	rb_iter_reset(iter);
5190	arch_spin_unlock(&cpu_buffer->lock);
5191	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5192}
5193EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5194
5195/**
5196 * ring_buffer_read_finish - finish reading the iterator of the buffer
5197 * @iter: The iterator retrieved by ring_buffer_start
5198 *
5199 * This re-enables the recording to the buffer, and frees the
5200 * iterator.
5201 */
5202void
5203ring_buffer_read_finish(struct ring_buffer_iter *iter)
5204{
5205	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5206	unsigned long flags;
5207
5208	/*
5209	 * Ring buffer is disabled from recording, here's a good place
5210	 * to check the integrity of the ring buffer.
5211	 * Must prevent readers from trying to read, as the check
5212	 * clears the HEAD page and readers require it.
5213	 */
5214	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5215	rb_check_pages(cpu_buffer);
5216	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5217
5218	atomic_dec(&cpu_buffer->resize_disabled);
5219	kfree(iter->event);
5220	kfree(iter);
5221}
5222EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5223
5224/**
5225 * ring_buffer_iter_advance - advance the iterator to the next location
5226 * @iter: The ring buffer iterator
 
5227 *
5228 * Move the location of the iterator such that the next read will
5229 * be the next location of the iterator.
5230 */
5231void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
 
5232{
 
5233	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5234	unsigned long flags;
5235
5236	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
 
 
5237
5238	rb_advance_iter(iter);
 
5239
 
 
5240	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
 
5241}
5242EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5243
5244/**
5245 * ring_buffer_size - return the size of the ring buffer (in bytes)
5246 * @buffer: The ring buffer.
5247 * @cpu: The CPU to get ring buffer size from.
5248 */
5249unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5250{
5251	/*
5252	 * Earlier, this method returned
5253	 *	BUF_PAGE_SIZE * buffer->nr_pages
5254	 * Since the nr_pages field is now removed, we have converted this to
5255	 * return the per cpu buffer value.
5256	 */
5257	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5258		return 0;
5259
5260	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5261}
5262EXPORT_SYMBOL_GPL(ring_buffer_size);
5263
5264static void
5265rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5266{
5267	rb_head_page_deactivate(cpu_buffer);
5268
5269	cpu_buffer->head_page
5270		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5271	local_set(&cpu_buffer->head_page->write, 0);
5272	local_set(&cpu_buffer->head_page->entries, 0);
5273	local_set(&cpu_buffer->head_page->page->commit, 0);
5274
5275	cpu_buffer->head_page->read = 0;
5276
5277	cpu_buffer->tail_page = cpu_buffer->head_page;
5278	cpu_buffer->commit_page = cpu_buffer->head_page;
5279
5280	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5281	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5282	local_set(&cpu_buffer->reader_page->write, 0);
5283	local_set(&cpu_buffer->reader_page->entries, 0);
5284	local_set(&cpu_buffer->reader_page->page->commit, 0);
5285	cpu_buffer->reader_page->read = 0;
5286
 
5287	local_set(&cpu_buffer->entries_bytes, 0);
5288	local_set(&cpu_buffer->overrun, 0);
5289	local_set(&cpu_buffer->commit_overrun, 0);
5290	local_set(&cpu_buffer->dropped_events, 0);
5291	local_set(&cpu_buffer->entries, 0);
5292	local_set(&cpu_buffer->committing, 0);
5293	local_set(&cpu_buffer->commits, 0);
5294	local_set(&cpu_buffer->pages_touched, 0);
5295	local_set(&cpu_buffer->pages_lost, 0);
5296	local_set(&cpu_buffer->pages_read, 0);
5297	cpu_buffer->last_pages_touch = 0;
5298	cpu_buffer->shortest_full = 0;
5299	cpu_buffer->read = 0;
5300	cpu_buffer->read_bytes = 0;
5301
5302	rb_time_set(&cpu_buffer->write_stamp, 0);
5303	rb_time_set(&cpu_buffer->before_stamp, 0);
5304
5305	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5306
5307	cpu_buffer->lost_events = 0;
5308	cpu_buffer->last_overrun = 0;
5309
5310	rb_head_page_activate(cpu_buffer);
5311}
5312
5313/* Must have disabled the cpu buffer then done a synchronize_rcu */
5314static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5315{
5316	unsigned long flags;
5317
5318	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5319
5320	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5321		goto out;
5322
5323	arch_spin_lock(&cpu_buffer->lock);
5324
5325	rb_reset_cpu(cpu_buffer);
5326
5327	arch_spin_unlock(&cpu_buffer->lock);
5328
5329 out:
5330	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5331}
5332
5333/**
5334 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5335 * @buffer: The ring buffer to reset a per cpu buffer of
5336 * @cpu: The CPU buffer to be reset
5337 */
5338void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5339{
5340	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 
5341
5342	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5343		return;
5344
5345	/* prevent another thread from changing buffer sizes */
5346	mutex_lock(&buffer->mutex);
5347
5348	atomic_inc(&cpu_buffer->resize_disabled);
5349	atomic_inc(&cpu_buffer->record_disabled);
5350
5351	/* Make sure all commits have finished */
5352	synchronize_rcu();
5353
5354	reset_disabled_cpu_buffer(cpu_buffer);
5355
5356	atomic_dec(&cpu_buffer->record_disabled);
5357	atomic_dec(&cpu_buffer->resize_disabled);
5358
5359	mutex_unlock(&buffer->mutex);
5360}
5361EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5362
5363/**
5364 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5365 * @buffer: The ring buffer to reset a per cpu buffer of
5366 * @cpu: The CPU buffer to be reset
5367 */
5368void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5369{
5370	struct ring_buffer_per_cpu *cpu_buffer;
5371	int cpu;
5372
5373	/* prevent another thread from changing buffer sizes */
5374	mutex_lock(&buffer->mutex);
5375
5376	for_each_online_buffer_cpu(buffer, cpu) {
5377		cpu_buffer = buffer->buffers[cpu];
5378
5379		atomic_inc(&cpu_buffer->resize_disabled);
5380		atomic_inc(&cpu_buffer->record_disabled);
5381	}
5382
5383	/* Make sure all commits have finished */
5384	synchronize_rcu();
5385
5386	for_each_online_buffer_cpu(buffer, cpu) {
5387		cpu_buffer = buffer->buffers[cpu];
5388
5389		reset_disabled_cpu_buffer(cpu_buffer);
5390
5391		atomic_dec(&cpu_buffer->record_disabled);
5392		atomic_dec(&cpu_buffer->resize_disabled);
5393	}
5394
5395	mutex_unlock(&buffer->mutex);
 
5396}
 
5397
5398/**
5399 * ring_buffer_reset - reset a ring buffer
5400 * @buffer: The ring buffer to reset all cpu buffers
5401 */
5402void ring_buffer_reset(struct trace_buffer *buffer)
5403{
5404	struct ring_buffer_per_cpu *cpu_buffer;
5405	int cpu;
5406
5407	/* prevent another thread from changing buffer sizes */
5408	mutex_lock(&buffer->mutex);
5409
5410	for_each_buffer_cpu(buffer, cpu) {
5411		cpu_buffer = buffer->buffers[cpu];
5412
5413		atomic_inc(&cpu_buffer->resize_disabled);
5414		atomic_inc(&cpu_buffer->record_disabled);
5415	}
5416
5417	/* Make sure all commits have finished */
5418	synchronize_rcu();
5419
5420	for_each_buffer_cpu(buffer, cpu) {
5421		cpu_buffer = buffer->buffers[cpu];
5422
5423		reset_disabled_cpu_buffer(cpu_buffer);
5424
5425		atomic_dec(&cpu_buffer->record_disabled);
5426		atomic_dec(&cpu_buffer->resize_disabled);
5427	}
5428
5429	mutex_unlock(&buffer->mutex);
5430}
5431EXPORT_SYMBOL_GPL(ring_buffer_reset);
5432
5433/**
5434 * ring_buffer_empty - is the ring buffer empty?
5435 * @buffer: The ring buffer to test
5436 */
5437bool ring_buffer_empty(struct trace_buffer *buffer)
5438{
5439	struct ring_buffer_per_cpu *cpu_buffer;
5440	unsigned long flags;
5441	bool dolock;
5442	int cpu;
5443	int ret;
5444
 
 
5445	/* yes this is racy, but if you don't like the race, lock the buffer */
5446	for_each_buffer_cpu(buffer, cpu) {
5447		cpu_buffer = buffer->buffers[cpu];
5448		local_irq_save(flags);
5449		dolock = rb_reader_lock(cpu_buffer);
 
5450		ret = rb_per_cpu_empty(cpu_buffer);
5451		rb_reader_unlock(cpu_buffer, dolock);
 
5452		local_irq_restore(flags);
5453
5454		if (!ret)
5455			return false;
5456	}
5457
5458	return true;
5459}
5460EXPORT_SYMBOL_GPL(ring_buffer_empty);
5461
5462/**
5463 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5464 * @buffer: The ring buffer
5465 * @cpu: The CPU buffer to test
5466 */
5467bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5468{
5469	struct ring_buffer_per_cpu *cpu_buffer;
5470	unsigned long flags;
5471	bool dolock;
5472	int ret;
5473
5474	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5475		return true;
 
 
5476
5477	cpu_buffer = buffer->buffers[cpu];
5478	local_irq_save(flags);
5479	dolock = rb_reader_lock(cpu_buffer);
 
5480	ret = rb_per_cpu_empty(cpu_buffer);
5481	rb_reader_unlock(cpu_buffer, dolock);
 
5482	local_irq_restore(flags);
5483
5484	return ret;
5485}
5486EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5487
5488#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5489/**
5490 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5491 * @buffer_a: One buffer to swap with
5492 * @buffer_b: The other buffer to swap with
5493 * @cpu: the CPU of the buffers to swap
5494 *
5495 * This function is useful for tracers that want to take a "snapshot"
5496 * of a CPU buffer and has another back up buffer lying around.
5497 * it is expected that the tracer handles the cpu buffer not being
5498 * used at the moment.
5499 */
5500int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5501			 struct trace_buffer *buffer_b, int cpu)
5502{
5503	struct ring_buffer_per_cpu *cpu_buffer_a;
5504	struct ring_buffer_per_cpu *cpu_buffer_b;
5505	int ret = -EINVAL;
5506
5507	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5508	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5509		goto out;
5510
5511	cpu_buffer_a = buffer_a->buffers[cpu];
5512	cpu_buffer_b = buffer_b->buffers[cpu];
5513
5514	/* At least make sure the two buffers are somewhat the same */
5515	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5516		goto out;
5517
5518	ret = -EAGAIN;
5519
 
 
 
5520	if (atomic_read(&buffer_a->record_disabled))
5521		goto out;
5522
5523	if (atomic_read(&buffer_b->record_disabled))
5524		goto out;
5525
5526	if (atomic_read(&cpu_buffer_a->record_disabled))
5527		goto out;
5528
5529	if (atomic_read(&cpu_buffer_b->record_disabled))
5530		goto out;
5531
5532	/*
5533	 * We can't do a synchronize_rcu here because this
5534	 * function can be called in atomic context.
5535	 * Normally this will be called from the same CPU as cpu.
5536	 * If not it's up to the caller to protect this.
5537	 */
5538	atomic_inc(&cpu_buffer_a->record_disabled);
5539	atomic_inc(&cpu_buffer_b->record_disabled);
5540
5541	ret = -EBUSY;
5542	if (local_read(&cpu_buffer_a->committing))
5543		goto out_dec;
5544	if (local_read(&cpu_buffer_b->committing))
5545		goto out_dec;
5546
5547	buffer_a->buffers[cpu] = cpu_buffer_b;
5548	buffer_b->buffers[cpu] = cpu_buffer_a;
5549
5550	cpu_buffer_b->buffer = buffer_a;
5551	cpu_buffer_a->buffer = buffer_b;
5552
5553	ret = 0;
5554
5555out_dec:
5556	atomic_dec(&cpu_buffer_a->record_disabled);
5557	atomic_dec(&cpu_buffer_b->record_disabled);
5558out:
5559	return ret;
5560}
5561EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5562#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5563
5564/**
5565 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5566 * @buffer: the buffer to allocate for.
5567 * @cpu: the cpu buffer to allocate.
5568 *
5569 * This function is used in conjunction with ring_buffer_read_page.
5570 * When reading a full page from the ring buffer, these functions
5571 * can be used to speed up the process. The calling function should
5572 * allocate a few pages first with this function. Then when it
5573 * needs to get pages from the ring buffer, it passes the result
5574 * of this function into ring_buffer_read_page, which will swap
5575 * the page that was allocated, with the read page of the buffer.
5576 *
5577 * Returns:
5578 *  The page allocated, or ERR_PTR
5579 */
5580void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5581{
5582	struct ring_buffer_per_cpu *cpu_buffer;
5583	struct buffer_data_page *bpage = NULL;
5584	unsigned long flags;
5585	struct page *page;
5586
5587	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5588		return ERR_PTR(-ENODEV);
5589
5590	cpu_buffer = buffer->buffers[cpu];
5591	local_irq_save(flags);
5592	arch_spin_lock(&cpu_buffer->lock);
5593
5594	if (cpu_buffer->free_page) {
5595		bpage = cpu_buffer->free_page;
5596		cpu_buffer->free_page = NULL;
5597	}
5598
5599	arch_spin_unlock(&cpu_buffer->lock);
5600	local_irq_restore(flags);
5601
5602	if (bpage)
5603		goto out;
5604
5605	page = alloc_pages_node(cpu_to_node(cpu),
5606				GFP_KERNEL | __GFP_NORETRY, 0);
5607	if (!page)
5608		return ERR_PTR(-ENOMEM);
5609
5610	bpage = page_address(page);
5611
5612 out:
5613	rb_init_page(bpage);
5614
5615	return bpage;
5616}
5617EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5618
5619/**
5620 * ring_buffer_free_read_page - free an allocated read page
5621 * @buffer: the buffer the page was allocate for
5622 * @cpu: the cpu buffer the page came from
5623 * @data: the page to free
5624 *
5625 * Free a page allocated from ring_buffer_alloc_read_page.
5626 */
5627void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5628{
5629	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5630	struct buffer_data_page *bpage = data;
5631	struct page *page = virt_to_page(bpage);
5632	unsigned long flags;
5633
5634	/* If the page is still in use someplace else, we can't reuse it */
5635	if (page_ref_count(page) > 1)
5636		goto out;
5637
5638	local_irq_save(flags);
5639	arch_spin_lock(&cpu_buffer->lock);
5640
5641	if (!cpu_buffer->free_page) {
5642		cpu_buffer->free_page = bpage;
5643		bpage = NULL;
5644	}
5645
5646	arch_spin_unlock(&cpu_buffer->lock);
5647	local_irq_restore(flags);
5648
5649 out:
5650	free_page((unsigned long)bpage);
5651}
5652EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5653
5654/**
5655 * ring_buffer_read_page - extract a page from the ring buffer
5656 * @buffer: buffer to extract from
5657 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5658 * @len: amount to extract
5659 * @cpu: the cpu of the buffer to extract
5660 * @full: should the extraction only happen when the page is full.
5661 *
5662 * This function will pull out a page from the ring buffer and consume it.
5663 * @data_page must be the address of the variable that was returned
5664 * from ring_buffer_alloc_read_page. This is because the page might be used
5665 * to swap with a page in the ring buffer.
5666 *
5667 * for example:
5668 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5669 *	if (IS_ERR(rpage))
5670 *		return PTR_ERR(rpage);
5671 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5672 *	if (ret >= 0)
5673 *		process_page(rpage, ret);
5674 *
5675 * When @full is set, the function will not return true unless
5676 * the writer is off the reader page.
5677 *
5678 * Note: it is up to the calling functions to handle sleeps and wakeups.
5679 *  The ring buffer can be used anywhere in the kernel and can not
5680 *  blindly call wake_up. The layer that uses the ring buffer must be
5681 *  responsible for that.
5682 *
5683 * Returns:
5684 *  >=0 if data has been transferred, returns the offset of consumed data.
5685 *  <0 if no data has been transferred.
5686 */
5687int ring_buffer_read_page(struct trace_buffer *buffer,
5688			  void **data_page, size_t len, int cpu, int full)
5689{
5690	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5691	struct ring_buffer_event *event;
5692	struct buffer_data_page *bpage;
5693	struct buffer_page *reader;
5694	unsigned long missed_events;
5695	unsigned long flags;
5696	unsigned int commit;
5697	unsigned int read;
5698	u64 save_timestamp;
5699	int ret = -1;
5700
5701	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5702		goto out;
5703
5704	/*
5705	 * If len is not big enough to hold the page header, then
5706	 * we can not copy anything.
5707	 */
5708	if (len <= BUF_PAGE_HDR_SIZE)
5709		goto out;
5710
5711	len -= BUF_PAGE_HDR_SIZE;
5712
5713	if (!data_page)
5714		goto out;
5715
5716	bpage = *data_page;
5717	if (!bpage)
5718		goto out;
5719
5720	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5721
5722	reader = rb_get_reader_page(cpu_buffer);
5723	if (!reader)
5724		goto out_unlock;
5725
5726	event = rb_reader_event(cpu_buffer);
5727
5728	read = reader->read;
5729	commit = rb_page_commit(reader);
5730
5731	/* Check if any events were dropped */
5732	missed_events = cpu_buffer->lost_events;
5733
5734	/*
5735	 * If this page has been partially read or
5736	 * if len is not big enough to read the rest of the page or
5737	 * a writer is still on the page, then
5738	 * we must copy the data from the page to the buffer.
5739	 * Otherwise, we can simply swap the page with the one passed in.
5740	 */
5741	if (read || (len < (commit - read)) ||
5742	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5743		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5744		unsigned int rpos = read;
5745		unsigned int pos = 0;
5746		unsigned int size;
5747
5748		/*
5749		 * If a full page is expected, this can still be returned
5750		 * if there's been a previous partial read and the
5751		 * rest of the page can be read and the commit page is off
5752		 * the reader page.
5753		 */
5754		if (full &&
5755		    (!read || (len < (commit - read)) ||
5756		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5757			goto out_unlock;
5758
5759		if (len > (commit - read))
5760			len = (commit - read);
5761
5762		/* Always keep the time extend and data together */
5763		size = rb_event_ts_length(event);
5764
5765		if (len < size)
5766			goto out_unlock;
5767
5768		/* save the current timestamp, since the user will need it */
5769		save_timestamp = cpu_buffer->read_stamp;
5770
5771		/* Need to copy one event at a time */
5772		do {
5773			/* We need the size of one event, because
5774			 * rb_advance_reader only advances by one event,
5775			 * whereas rb_event_ts_length may include the size of
5776			 * one or two events.
5777			 * We have already ensured there's enough space if this
5778			 * is a time extend. */
5779			size = rb_event_length(event);
5780			memcpy(bpage->data + pos, rpage->data + rpos, size);
5781
5782			len -= size;
5783
5784			rb_advance_reader(cpu_buffer);
5785			rpos = reader->read;
5786			pos += size;
5787
5788			if (rpos >= commit)
5789				break;
5790
5791			event = rb_reader_event(cpu_buffer);
5792			/* Always keep the time extend and data together */
5793			size = rb_event_ts_length(event);
5794		} while (len >= size);
5795
5796		/* update bpage */
5797		local_set(&bpage->commit, pos);
5798		bpage->time_stamp = save_timestamp;
5799
5800		/* we copied everything to the beginning */
5801		read = 0;
5802	} else {
5803		/* update the entry counter */
5804		cpu_buffer->read += rb_page_entries(reader);
5805		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5806
5807		/* swap the pages */
5808		rb_init_page(bpage);
5809		bpage = reader->page;
5810		reader->page = *data_page;
5811		local_set(&reader->write, 0);
5812		local_set(&reader->entries, 0);
5813		reader->read = 0;
5814		*data_page = bpage;
5815
5816		/*
5817		 * Use the real_end for the data size,
5818		 * This gives us a chance to store the lost events
5819		 * on the page.
5820		 */
5821		if (reader->real_end)
5822			local_set(&bpage->commit, reader->real_end);
5823	}
5824	ret = read;
5825
5826	cpu_buffer->lost_events = 0;
5827
5828	commit = local_read(&bpage->commit);
5829	/*
5830	 * Set a flag in the commit field if we lost events
5831	 */
5832	if (missed_events) {
5833		/* If there is room at the end of the page to save the
5834		 * missed events, then record it there.
5835		 */
5836		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5837			memcpy(&bpage->data[commit], &missed_events,
5838			       sizeof(missed_events));
5839			local_add(RB_MISSED_STORED, &bpage->commit);
5840			commit += sizeof(missed_events);
5841		}
5842		local_add(RB_MISSED_EVENTS, &bpage->commit);
5843	}
5844
5845	/*
5846	 * This page may be off to user land. Zero it out here.
5847	 */
5848	if (commit < BUF_PAGE_SIZE)
5849		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5850
5851 out_unlock:
5852	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5853
5854 out:
5855	return ret;
5856}
5857EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5858
5859/*
5860 * We only allocate new buffers, never free them if the CPU goes down.
5861 * If we were to free the buffer, then the user would lose any trace that was in
5862 * the buffer.
5863 */
5864int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5865{
5866	struct trace_buffer *buffer;
5867	long nr_pages_same;
5868	int cpu_i;
5869	unsigned long nr_pages;
5870
5871	buffer = container_of(node, struct trace_buffer, node);
5872	if (cpumask_test_cpu(cpu, buffer->cpumask))
5873		return 0;
5874
5875	nr_pages = 0;
5876	nr_pages_same = 1;
5877	/* check if all cpu sizes are same */
5878	for_each_buffer_cpu(buffer, cpu_i) {
5879		/* fill in the size from first enabled cpu */
5880		if (nr_pages == 0)
5881			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5882		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5883			nr_pages_same = 0;
5884			break;
5885		}
5886	}
5887	/* allocate minimum pages, user can later expand it */
5888	if (!nr_pages_same)
5889		nr_pages = 2;
5890	buffer->buffers[cpu] =
5891		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5892	if (!buffer->buffers[cpu]) {
5893		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5894		     cpu);
5895		return -ENOMEM;
5896	}
5897	smp_wmb();
5898	cpumask_set_cpu(cpu, buffer->cpumask);
5899	return 0;
5900}
5901
5902#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5903/*
5904 * This is a basic integrity check of the ring buffer.
5905 * Late in the boot cycle this test will run when configured in.
5906 * It will kick off a thread per CPU that will go into a loop
5907 * writing to the per cpu ring buffer various sizes of data.
5908 * Some of the data will be large items, some small.
5909 *
5910 * Another thread is created that goes into a spin, sending out
5911 * IPIs to the other CPUs to also write into the ring buffer.
5912 * this is to test the nesting ability of the buffer.
5913 *
5914 * Basic stats are recorded and reported. If something in the
5915 * ring buffer should happen that's not expected, a big warning
5916 * is displayed and all ring buffers are disabled.
5917 */
5918static struct task_struct *rb_threads[NR_CPUS] __initdata;
5919
5920struct rb_test_data {
5921	struct trace_buffer *buffer;
5922	unsigned long		events;
5923	unsigned long		bytes_written;
5924	unsigned long		bytes_alloc;
5925	unsigned long		bytes_dropped;
5926	unsigned long		events_nested;
5927	unsigned long		bytes_written_nested;
5928	unsigned long		bytes_alloc_nested;
5929	unsigned long		bytes_dropped_nested;
5930	int			min_size_nested;
5931	int			max_size_nested;
5932	int			max_size;
5933	int			min_size;
5934	int			cpu;
5935	int			cnt;
5936};
5937
5938static struct rb_test_data rb_data[NR_CPUS] __initdata;
5939
5940/* 1 meg per cpu */
5941#define RB_TEST_BUFFER_SIZE	1048576
5942
5943static char rb_string[] __initdata =
5944	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5945	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5946	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5947
5948static bool rb_test_started __initdata;
5949
5950struct rb_item {
5951	int size;
5952	char str[];
5953};
5954
5955static __init int rb_write_something(struct rb_test_data *data, bool nested)
5956{
5957	struct ring_buffer_event *event;
5958	struct rb_item *item;
5959	bool started;
5960	int event_len;
5961	int size;
5962	int len;
5963	int cnt;
5964
5965	/* Have nested writes different that what is written */
5966	cnt = data->cnt + (nested ? 27 : 0);
5967
5968	/* Multiply cnt by ~e, to make some unique increment */
5969	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5970
5971	len = size + sizeof(struct rb_item);
5972
5973	started = rb_test_started;
5974	/* read rb_test_started before checking buffer enabled */
5975	smp_rmb();
5976
5977	event = ring_buffer_lock_reserve(data->buffer, len);
5978	if (!event) {
5979		/* Ignore dropped events before test starts. */
5980		if (started) {
5981			if (nested)
5982				data->bytes_dropped += len;
5983			else
5984				data->bytes_dropped_nested += len;
5985		}
5986		return len;
5987	}
5988
5989	event_len = ring_buffer_event_length(event);
5990
5991	if (RB_WARN_ON(data->buffer, event_len < len))
5992		goto out;
5993
5994	item = ring_buffer_event_data(event);
5995	item->size = size;
5996	memcpy(item->str, rb_string, size);
5997
5998	if (nested) {
5999		data->bytes_alloc_nested += event_len;
6000		data->bytes_written_nested += len;
6001		data->events_nested++;
6002		if (!data->min_size_nested || len < data->min_size_nested)
6003			data->min_size_nested = len;
6004		if (len > data->max_size_nested)
6005			data->max_size_nested = len;
6006	} else {
6007		data->bytes_alloc += event_len;
6008		data->bytes_written += len;
6009		data->events++;
6010		if (!data->min_size || len < data->min_size)
6011			data->max_size = len;
6012		if (len > data->max_size)
6013			data->max_size = len;
6014	}
6015
6016 out:
6017	ring_buffer_unlock_commit(data->buffer);
6018
6019	return 0;
6020}
6021
6022static __init int rb_test(void *arg)
6023{
6024	struct rb_test_data *data = arg;
6025
6026	while (!kthread_should_stop()) {
6027		rb_write_something(data, false);
6028		data->cnt++;
6029
6030		set_current_state(TASK_INTERRUPTIBLE);
6031		/* Now sleep between a min of 100-300us and a max of 1ms */
6032		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6033	}
6034
6035	return 0;
6036}
6037
6038static __init void rb_ipi(void *ignore)
6039{
6040	struct rb_test_data *data;
6041	int cpu = smp_processor_id();
6042
6043	data = &rb_data[cpu];
6044	rb_write_something(data, true);
6045}
6046
6047static __init int rb_hammer_test(void *arg)
6048{
6049	while (!kthread_should_stop()) {
6050
6051		/* Send an IPI to all cpus to write data! */
6052		smp_call_function(rb_ipi, NULL, 1);
6053		/* No sleep, but for non preempt, let others run */
6054		schedule();
6055	}
6056
6057	return 0;
6058}
6059
6060static __init int test_ringbuffer(void)
6061{
6062	struct task_struct *rb_hammer;
6063	struct trace_buffer *buffer;
6064	int cpu;
6065	int ret = 0;
6066
6067	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6068		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6069		return 0;
6070	}
6071
6072	pr_info("Running ring buffer tests...\n");
6073
6074	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6075	if (WARN_ON(!buffer))
6076		return 0;
6077
6078	/* Disable buffer so that threads can't write to it yet */
6079	ring_buffer_record_off(buffer);
6080
6081	for_each_online_cpu(cpu) {
6082		rb_data[cpu].buffer = buffer;
6083		rb_data[cpu].cpu = cpu;
6084		rb_data[cpu].cnt = cpu;
6085		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6086						     cpu, "rbtester/%u");
6087		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6088			pr_cont("FAILED\n");
6089			ret = PTR_ERR(rb_threads[cpu]);
6090			goto out_free;
6091		}
6092	}
6093
6094	/* Now create the rb hammer! */
6095	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6096	if (WARN_ON(IS_ERR(rb_hammer))) {
6097		pr_cont("FAILED\n");
6098		ret = PTR_ERR(rb_hammer);
6099		goto out_free;
6100	}
6101
6102	ring_buffer_record_on(buffer);
6103	/*
6104	 * Show buffer is enabled before setting rb_test_started.
6105	 * Yes there's a small race window where events could be
6106	 * dropped and the thread wont catch it. But when a ring
6107	 * buffer gets enabled, there will always be some kind of
6108	 * delay before other CPUs see it. Thus, we don't care about
6109	 * those dropped events. We care about events dropped after
6110	 * the threads see that the buffer is active.
6111	 */
6112	smp_wmb();
6113	rb_test_started = true;
6114
6115	set_current_state(TASK_INTERRUPTIBLE);
6116	/* Just run for 10 seconds */;
6117	schedule_timeout(10 * HZ);
6118
6119	kthread_stop(rb_hammer);
6120
6121 out_free:
6122	for_each_online_cpu(cpu) {
6123		if (!rb_threads[cpu])
6124			break;
6125		kthread_stop(rb_threads[cpu]);
6126	}
6127	if (ret) {
6128		ring_buffer_free(buffer);
6129		return ret;
6130	}
6131
6132	/* Report! */
6133	pr_info("finished\n");
6134	for_each_online_cpu(cpu) {
6135		struct ring_buffer_event *event;
6136		struct rb_test_data *data = &rb_data[cpu];
6137		struct rb_item *item;
6138		unsigned long total_events;
6139		unsigned long total_dropped;
6140		unsigned long total_written;
6141		unsigned long total_alloc;
6142		unsigned long total_read = 0;
6143		unsigned long total_size = 0;
6144		unsigned long total_len = 0;
6145		unsigned long total_lost = 0;
6146		unsigned long lost;
6147		int big_event_size;
6148		int small_event_size;
6149
6150		ret = -1;
6151
6152		total_events = data->events + data->events_nested;
6153		total_written = data->bytes_written + data->bytes_written_nested;
6154		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6155		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6156
6157		big_event_size = data->max_size + data->max_size_nested;
6158		small_event_size = data->min_size + data->min_size_nested;
6159
6160		pr_info("CPU %d:\n", cpu);
6161		pr_info("              events:    %ld\n", total_events);
6162		pr_info("       dropped bytes:    %ld\n", total_dropped);
6163		pr_info("       alloced bytes:    %ld\n", total_alloc);
6164		pr_info("       written bytes:    %ld\n", total_written);
6165		pr_info("       biggest event:    %d\n", big_event_size);
6166		pr_info("      smallest event:    %d\n", small_event_size);
6167
6168		if (RB_WARN_ON(buffer, total_dropped))
6169			break;
6170
6171		ret = 0;
6172
6173		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6174			total_lost += lost;
6175			item = ring_buffer_event_data(event);
6176			total_len += ring_buffer_event_length(event);
6177			total_size += item->size + sizeof(struct rb_item);
6178			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6179				pr_info("FAILED!\n");
6180				pr_info("buffer had: %.*s\n", item->size, item->str);
6181				pr_info("expected:   %.*s\n", item->size, rb_string);
6182				RB_WARN_ON(buffer, 1);
6183				ret = -1;
6184				break;
6185			}
6186			total_read++;
6187		}
6188		if (ret)
6189			break;
6190
6191		ret = -1;
6192
6193		pr_info("         read events:   %ld\n", total_read);
6194		pr_info("         lost events:   %ld\n", total_lost);
6195		pr_info("        total events:   %ld\n", total_lost + total_read);
6196		pr_info("  recorded len bytes:   %ld\n", total_len);
6197		pr_info(" recorded size bytes:   %ld\n", total_size);
6198		if (total_lost) {
6199			pr_info(" With dropped events, record len and size may not match\n"
6200				" alloced and written from above\n");
6201		} else {
6202			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6203				       total_size != total_written))
6204				break;
6205		}
6206		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6207			break;
6208
6209		ret = 0;
 
 
 
 
 
 
 
 
 
6210	}
6211	if (!ret)
6212		pr_info("Ring buffer PASSED!\n");
6213
6214	ring_buffer_free(buffer);
6215	return 0;
6216}
6217
6218late_initcall(test_ringbuffer);
6219#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v3.5.6
 
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
 
 
   6#include <linux/ring_buffer.h>
   7#include <linux/trace_clock.h>
 
 
   8#include <linux/spinlock.h>
   9#include <linux/debugfs.h>
 
  10#include <linux/uaccess.h>
  11#include <linux/hardirq.h>
  12#include <linux/kmemcheck.h>
  13#include <linux/module.h>
  14#include <linux/percpu.h>
  15#include <linux/mutex.h>
 
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/hash.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/fs.h>
  22
  23#include <asm/local.h>
  24#include "trace.h"
 
 
 
 
 
 
 
  25
  26static void update_pages_handler(struct work_struct *work);
  27
  28/*
  29 * The ring buffer header is special. We must manually up keep it.
  30 */
  31int ring_buffer_print_entry_header(struct trace_seq *s)
  32{
  33	int ret;
  34
  35	ret = trace_seq_printf(s, "# compressed entry header\n");
  36	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
  37	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
  38	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
  39	ret = trace_seq_printf(s, "\n");
  40	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  41			       RINGBUF_TYPE_PADDING);
  42	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43			       RINGBUF_TYPE_TIME_EXTEND);
  44	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46
  47	return ret;
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 118/*
 119 * A fast way to enable or disable all ring buffers is to
 120 * call tracing_on or tracing_off. Turning off the ring buffers
 121 * prevents all ring buffers from being recorded to.
 122 * Turning this switch on, makes it OK to write to the
 123 * ring buffer, if the ring buffer is enabled itself.
 124 *
 125 * There's three layers that must be on in order to write
 126 * to the ring buffer.
 127 *
 128 * 1) This global flag must be set.
 129 * 2) The ring buffer must be enabled for recording.
 130 * 3) The per cpu buffer must be enabled for recording.
 131 *
 132 * In case of an anomaly, this global flag has a bit set that
 133 * will permantly disable all ring buffers.
 134 */
 135
 136/*
 137 * Global flag to disable all recording to ring buffers
 138 *  This has two bits: ON, DISABLED
 139 *
 140 *  ON   DISABLED
 141 * ---- ----------
 142 *   0      0        : ring buffers are off
 143 *   1      0        : ring buffers are on
 144 *   X      1        : ring buffers are permanently disabled
 145 */
 146
 147enum {
 148	RB_BUFFERS_ON_BIT	= 0,
 149	RB_BUFFERS_DISABLED_BIT	= 1,
 150};
 151
 152enum {
 153	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
 154	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
 155};
 156
 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 158
 159/* Used for individual buffers (after the counter) */
 160#define RB_BUFFER_OFF		(1 << 20)
 161
 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 163
 164/**
 165 * tracing_off_permanent - permanently disable ring buffers
 166 *
 167 * This function, once called, will disable all ring buffers
 168 * permanently.
 169 */
 170void tracing_off_permanent(void)
 171{
 172	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 173}
 174
 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 176#define RB_ALIGNMENT		4U
 177#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 178#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 179
 180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 181# define RB_FORCE_8BYTE_ALIGNMENT	0
 182# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 183#else
 184# define RB_FORCE_8BYTE_ALIGNMENT	1
 185# define RB_ARCH_ALIGNMENT		8U
 186#endif
 187
 
 
 188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 190
 191enum {
 192	RB_LEN_TIME_EXTEND = 8,
 193	RB_LEN_TIME_STAMP = 16,
 194};
 195
 196#define skip_time_extend(event) \
 197	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 198
 
 
 
 199static inline int rb_null_event(struct ring_buffer_event *event)
 200{
 201	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 202}
 203
 204static void rb_event_set_padding(struct ring_buffer_event *event)
 205{
 206	/* padding has a NULL time_delta */
 207	event->type_len = RINGBUF_TYPE_PADDING;
 208	event->time_delta = 0;
 209}
 210
 211static unsigned
 212rb_event_data_length(struct ring_buffer_event *event)
 213{
 214	unsigned length;
 215
 216	if (event->type_len)
 217		length = event->type_len * RB_ALIGNMENT;
 218	else
 219		length = event->array[0];
 220	return length + RB_EVNT_HDR_SIZE;
 221}
 222
 223/*
 224 * Return the length of the given event. Will return
 225 * the length of the time extend if the event is a
 226 * time extend.
 227 */
 228static inline unsigned
 229rb_event_length(struct ring_buffer_event *event)
 230{
 231	switch (event->type_len) {
 232	case RINGBUF_TYPE_PADDING:
 233		if (rb_null_event(event))
 234			/* undefined */
 235			return -1;
 236		return  event->array[0] + RB_EVNT_HDR_SIZE;
 237
 238	case RINGBUF_TYPE_TIME_EXTEND:
 239		return RB_LEN_TIME_EXTEND;
 240
 241	case RINGBUF_TYPE_TIME_STAMP:
 242		return RB_LEN_TIME_STAMP;
 243
 244	case RINGBUF_TYPE_DATA:
 245		return rb_event_data_length(event);
 246	default:
 247		BUG();
 248	}
 249	/* not hit */
 250	return 0;
 251}
 252
 253/*
 254 * Return total length of time extend and data,
 255 *   or just the event length for all other events.
 256 */
 257static inline unsigned
 258rb_event_ts_length(struct ring_buffer_event *event)
 259{
 260	unsigned len = 0;
 261
 262	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 263		/* time extends include the data event after it */
 264		len = RB_LEN_TIME_EXTEND;
 265		event = skip_time_extend(event);
 266	}
 267	return len + rb_event_length(event);
 268}
 269
 270/**
 271 * ring_buffer_event_length - return the length of the event
 272 * @event: the event to get the length of
 273 *
 274 * Returns the size of the data load of a data event.
 275 * If the event is something other than a data event, it
 276 * returns the size of the event itself. With the exception
 277 * of a TIME EXTEND, where it still returns the size of the
 278 * data load of the data event after it.
 279 */
 280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 281{
 282	unsigned length;
 283
 284	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 285		event = skip_time_extend(event);
 286
 287	length = rb_event_length(event);
 288	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 289		return length;
 290	length -= RB_EVNT_HDR_SIZE;
 291	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 292                length -= sizeof(event->array[0]);
 293	return length;
 294}
 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 296
 297/* inline for ring buffer fast paths */
 298static void *
 299rb_event_data(struct ring_buffer_event *event)
 300{
 301	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 302		event = skip_time_extend(event);
 303	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 304	/* If length is in len field, then array[0] has the data */
 305	if (event->type_len)
 306		return (void *)&event->array[0];
 307	/* Otherwise length is in array[0] and array[1] has the data */
 308	return (void *)&event->array[1];
 309}
 310
 311/**
 312 * ring_buffer_event_data - return the data of the event
 313 * @event: the event to get the data from
 314 */
 315void *ring_buffer_event_data(struct ring_buffer_event *event)
 316{
 317	return rb_event_data(event);
 318}
 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 320
 321#define for_each_buffer_cpu(buffer, cpu)		\
 322	for_each_cpu(cpu, buffer->cpumask)
 323
 
 
 
 324#define TS_SHIFT	27
 325#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 326#define TS_DELTA_TEST	(~TS_MASK)
 327
 
 
 
 
 
 
 
 
 
 
 
 328/* Flag when events were overwritten */
 329#define RB_MISSED_EVENTS	(1 << 31)
 330/* Missed count stored at end */
 331#define RB_MISSED_STORED	(1 << 30)
 332
 333struct buffer_data_page {
 334	u64		 time_stamp;	/* page time stamp */
 335	local_t		 commit;	/* write committed index */
 336	unsigned char	 data[];	/* data of buffer page */
 337};
 338
 339/*
 340 * Note, the buffer_page list must be first. The buffer pages
 341 * are allocated in cache lines, which means that each buffer
 342 * page will be at the beginning of a cache line, and thus
 343 * the least significant bits will be zero. We use this to
 344 * add flags in the list struct pointers, to make the ring buffer
 345 * lockless.
 346 */
 347struct buffer_page {
 348	struct list_head list;		/* list of buffer pages */
 349	local_t		 write;		/* index for next write */
 350	unsigned	 read;		/* index for next read */
 351	local_t		 entries;	/* entries on this page */
 352	unsigned long	 real_end;	/* real end of data */
 353	struct buffer_data_page *page;	/* Actual data page */
 354};
 355
 356/*
 357 * The buffer page counters, write and entries, must be reset
 358 * atomically when crossing page boundaries. To synchronize this
 359 * update, two counters are inserted into the number. One is
 360 * the actual counter for the write position or count on the page.
 361 *
 362 * The other is a counter of updaters. Before an update happens
 363 * the update partition of the counter is incremented. This will
 364 * allow the updater to update the counter atomically.
 365 *
 366 * The counter is 20 bits, and the state data is 12.
 367 */
 368#define RB_WRITE_MASK		0xfffff
 369#define RB_WRITE_INTCNT		(1 << 20)
 370
 371static void rb_init_page(struct buffer_data_page *bpage)
 372{
 373	local_set(&bpage->commit, 0);
 374}
 375
 376/**
 377 * ring_buffer_page_len - the size of data on the page.
 378 * @page: The page to read
 379 *
 380 * Returns the amount of data on the page, including buffer page header.
 381 */
 382size_t ring_buffer_page_len(void *page)
 383{
 384	return local_read(&((struct buffer_data_page *)page)->commit)
 385		+ BUF_PAGE_HDR_SIZE;
 386}
 387
 388/*
 389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 390 * this issue out.
 391 */
 392static void free_buffer_page(struct buffer_page *bpage)
 393{
 394	free_page((unsigned long)bpage->page);
 395	kfree(bpage);
 396}
 397
 398/*
 399 * We need to fit the time_stamp delta into 27 bits.
 400 */
 401static inline int test_time_stamp(u64 delta)
 402{
 403	if (delta & TS_DELTA_TEST)
 404		return 1;
 405	return 0;
 406}
 407
 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 409
 410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 412
 413int ring_buffer_print_page_header(struct trace_seq *s)
 414{
 415	struct buffer_data_page field;
 416	int ret;
 417
 418	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 419			       "offset:0;\tsize:%u;\tsigned:%u;\n",
 420			       (unsigned int)sizeof(field.time_stamp),
 421			       (unsigned int)is_signed_type(u64));
 422
 423	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 424			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 425			       (unsigned int)offsetof(typeof(field), commit),
 426			       (unsigned int)sizeof(field.commit),
 427			       (unsigned int)is_signed_type(long));
 428
 429	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 430			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 431			       (unsigned int)offsetof(typeof(field), commit),
 432			       1,
 433			       (unsigned int)is_signed_type(long));
 434
 435	ret = trace_seq_printf(s, "\tfield: char data;\t"
 436			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 437			       (unsigned int)offsetof(typeof(field), data),
 438			       (unsigned int)BUF_PAGE_SIZE,
 439			       (unsigned int)is_signed_type(char));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	return ret;
 442}
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444/*
 445 * head_page == tail_page && head == tail then buffer is empty.
 446 */
 447struct ring_buffer_per_cpu {
 448	int				cpu;
 449	atomic_t			record_disabled;
 450	struct ring_buffer		*buffer;
 
 451	raw_spinlock_t			reader_lock;	/* serialize readers */
 452	arch_spinlock_t			lock;
 453	struct lock_class_key		lock_key;
 454	unsigned int			nr_pages;
 
 
 455	struct list_head		*pages;
 456	struct buffer_page		*head_page;	/* read from head */
 457	struct buffer_page		*tail_page;	/* write to tail */
 458	struct buffer_page		*commit_page;	/* committed pages */
 459	struct buffer_page		*reader_page;
 460	unsigned long			lost_events;
 461	unsigned long			last_overrun;
 
 462	local_t				entries_bytes;
 
 
 463	local_t				commit_overrun;
 464	local_t				overrun;
 465	local_t				entries;
 466	local_t				committing;
 467	local_t				commits;
 
 
 
 
 
 468	unsigned long			read;
 469	unsigned long			read_bytes;
 470	u64				write_stamp;
 
 
 471	u64				read_stamp;
 472	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 473	int				nr_pages_to_update;
 474	struct list_head		new_pages; /* new pages to add */
 475	struct work_struct		update_pages_work;
 476	struct completion		update_done;
 
 
 477};
 478
 479struct ring_buffer {
 480	unsigned			flags;
 481	int				cpus;
 482	atomic_t			record_disabled;
 483	atomic_t			resize_disabled;
 484	cpumask_var_t			cpumask;
 485
 486	struct lock_class_key		*reader_lock_key;
 487
 488	struct mutex			mutex;
 489
 490	struct ring_buffer_per_cpu	**buffers;
 491
 492#ifdef CONFIG_HOTPLUG_CPU
 493	struct notifier_block		cpu_notify;
 494#endif
 495	u64				(*clock)(void);
 
 
 
 496};
 497
 498struct ring_buffer_iter {
 499	struct ring_buffer_per_cpu	*cpu_buffer;
 500	unsigned long			head;
 
 501	struct buffer_page		*head_page;
 502	struct buffer_page		*cache_reader_page;
 503	unsigned long			cache_read;
 504	u64				read_stamp;
 
 
 
 505};
 506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 508#define RB_WARN_ON(b, cond)						\
 509	({								\
 510		int _____ret = unlikely(cond);				\
 511		if (_____ret) {						\
 512			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 513				struct ring_buffer_per_cpu *__b =	\
 514					(void *)b;			\
 515				atomic_inc(&__b->buffer->record_disabled); \
 516			} else						\
 517				atomic_inc(&b->record_disabled);	\
 518			WARN_ON(1);					\
 519		}							\
 520		_____ret;						\
 521	})
 522
 523/* Up this if you want to test the TIME_EXTENTS and normalization */
 524#define DEBUG_SHIFT 0
 525
 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 527{
 
 
 
 
 
 
 
 
 528	/* shift to debug/test normalization and TIME_EXTENTS */
 529	return buffer->clock() << DEBUG_SHIFT;
 530}
 531
 532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 533{
 534	u64 time;
 535
 536	preempt_disable_notrace();
 537	time = rb_time_stamp(buffer);
 538	preempt_enable_no_resched_notrace();
 539
 540	return time;
 541}
 542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 543
 544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 545				      int cpu, u64 *ts)
 546{
 547	/* Just stupid testing the normalize function and deltas */
 548	*ts >>= DEBUG_SHIFT;
 549}
 550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 551
 552/*
 553 * Making the ring buffer lockless makes things tricky.
 554 * Although writes only happen on the CPU that they are on,
 555 * and they only need to worry about interrupts. Reads can
 556 * happen on any CPU.
 557 *
 558 * The reader page is always off the ring buffer, but when the
 559 * reader finishes with a page, it needs to swap its page with
 560 * a new one from the buffer. The reader needs to take from
 561 * the head (writes go to the tail). But if a writer is in overwrite
 562 * mode and wraps, it must push the head page forward.
 563 *
 564 * Here lies the problem.
 565 *
 566 * The reader must be careful to replace only the head page, and
 567 * not another one. As described at the top of the file in the
 568 * ASCII art, the reader sets its old page to point to the next
 569 * page after head. It then sets the page after head to point to
 570 * the old reader page. But if the writer moves the head page
 571 * during this operation, the reader could end up with the tail.
 572 *
 573 * We use cmpxchg to help prevent this race. We also do something
 574 * special with the page before head. We set the LSB to 1.
 575 *
 576 * When the writer must push the page forward, it will clear the
 577 * bit that points to the head page, move the head, and then set
 578 * the bit that points to the new head page.
 579 *
 580 * We also don't want an interrupt coming in and moving the head
 581 * page on another writer. Thus we use the second LSB to catch
 582 * that too. Thus:
 583 *
 584 * head->list->prev->next        bit 1          bit 0
 585 *                              -------        -------
 586 * Normal page                     0              0
 587 * Points to head page             0              1
 588 * New head page                   1              0
 589 *
 590 * Note we can not trust the prev pointer of the head page, because:
 591 *
 592 * +----+       +-----+        +-----+
 593 * |    |------>|  T  |---X--->|  N  |
 594 * |    |<------|     |        |     |
 595 * +----+       +-----+        +-----+
 596 *   ^                           ^ |
 597 *   |          +-----+          | |
 598 *   +----------|  R  |----------+ |
 599 *              |     |<-----------+
 600 *              +-----+
 601 *
 602 * Key:  ---X-->  HEAD flag set in pointer
 603 *         T      Tail page
 604 *         R      Reader page
 605 *         N      Next page
 606 *
 607 * (see __rb_reserve_next() to see where this happens)
 608 *
 609 *  What the above shows is that the reader just swapped out
 610 *  the reader page with a page in the buffer, but before it
 611 *  could make the new header point back to the new page added
 612 *  it was preempted by a writer. The writer moved forward onto
 613 *  the new page added by the reader and is about to move forward
 614 *  again.
 615 *
 616 *  You can see, it is legitimate for the previous pointer of
 617 *  the head (or any page) not to point back to itself. But only
 618 *  temporarially.
 619 */
 620
 621#define RB_PAGE_NORMAL		0UL
 622#define RB_PAGE_HEAD		1UL
 623#define RB_PAGE_UPDATE		2UL
 624
 625
 626#define RB_FLAG_MASK		3UL
 627
 628/* PAGE_MOVED is not part of the mask */
 629#define RB_PAGE_MOVED		4UL
 630
 631/*
 632 * rb_list_head - remove any bit
 633 */
 634static struct list_head *rb_list_head(struct list_head *list)
 635{
 636	unsigned long val = (unsigned long)list;
 637
 638	return (struct list_head *)(val & ~RB_FLAG_MASK);
 639}
 640
 641/*
 642 * rb_is_head_page - test if the given page is the head page
 643 *
 644 * Because the reader may move the head_page pointer, we can
 645 * not trust what the head page is (it may be pointing to
 646 * the reader page). But if the next page is a header page,
 647 * its flags will be non zero.
 648 */
 649static inline int
 650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 651		struct buffer_page *page, struct list_head *list)
 652{
 653	unsigned long val;
 654
 655	val = (unsigned long)list->next;
 656
 657	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 658		return RB_PAGE_MOVED;
 659
 660	return val & RB_FLAG_MASK;
 661}
 662
 663/*
 664 * rb_is_reader_page
 665 *
 666 * The unique thing about the reader page, is that, if the
 667 * writer is ever on it, the previous pointer never points
 668 * back to the reader page.
 669 */
 670static int rb_is_reader_page(struct buffer_page *page)
 671{
 672	struct list_head *list = page->list.prev;
 673
 674	return rb_list_head(list->next) != &page->list;
 675}
 676
 677/*
 678 * rb_set_list_to_head - set a list_head to be pointing to head.
 679 */
 680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 681				struct list_head *list)
 682{
 683	unsigned long *ptr;
 684
 685	ptr = (unsigned long *)&list->next;
 686	*ptr |= RB_PAGE_HEAD;
 687	*ptr &= ~RB_PAGE_UPDATE;
 688}
 689
 690/*
 691 * rb_head_page_activate - sets up head page
 692 */
 693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 694{
 695	struct buffer_page *head;
 696
 697	head = cpu_buffer->head_page;
 698	if (!head)
 699		return;
 700
 701	/*
 702	 * Set the previous list pointer to have the HEAD flag.
 703	 */
 704	rb_set_list_to_head(cpu_buffer, head->list.prev);
 705}
 706
 707static void rb_list_head_clear(struct list_head *list)
 708{
 709	unsigned long *ptr = (unsigned long *)&list->next;
 710
 711	*ptr &= ~RB_FLAG_MASK;
 712}
 713
 714/*
 715 * rb_head_page_dactivate - clears head page ptr (for free list)
 716 */
 717static void
 718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 719{
 720	struct list_head *hd;
 721
 722	/* Go through the whole list and clear any pointers found. */
 723	rb_list_head_clear(cpu_buffer->pages);
 724
 725	list_for_each(hd, cpu_buffer->pages)
 726		rb_list_head_clear(hd);
 727}
 728
 729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 730			    struct buffer_page *head,
 731			    struct buffer_page *prev,
 732			    int old_flag, int new_flag)
 733{
 734	struct list_head *list;
 735	unsigned long val = (unsigned long)&head->list;
 736	unsigned long ret;
 737
 738	list = &prev->list;
 739
 740	val &= ~RB_FLAG_MASK;
 741
 742	ret = cmpxchg((unsigned long *)&list->next,
 743		      val | old_flag, val | new_flag);
 744
 745	/* check if the reader took the page */
 746	if ((ret & ~RB_FLAG_MASK) != val)
 747		return RB_PAGE_MOVED;
 748
 749	return ret & RB_FLAG_MASK;
 750}
 751
 752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 753				   struct buffer_page *head,
 754				   struct buffer_page *prev,
 755				   int old_flag)
 756{
 757	return rb_head_page_set(cpu_buffer, head, prev,
 758				old_flag, RB_PAGE_UPDATE);
 759}
 760
 761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 762				 struct buffer_page *head,
 763				 struct buffer_page *prev,
 764				 int old_flag)
 765{
 766	return rb_head_page_set(cpu_buffer, head, prev,
 767				old_flag, RB_PAGE_HEAD);
 768}
 769
 770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 771				   struct buffer_page *head,
 772				   struct buffer_page *prev,
 773				   int old_flag)
 774{
 775	return rb_head_page_set(cpu_buffer, head, prev,
 776				old_flag, RB_PAGE_NORMAL);
 777}
 778
 779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 780			       struct buffer_page **bpage)
 781{
 782	struct list_head *p = rb_list_head((*bpage)->list.next);
 783
 784	*bpage = list_entry(p, struct buffer_page, list);
 785}
 786
 787static struct buffer_page *
 788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 789{
 790	struct buffer_page *head;
 791	struct buffer_page *page;
 792	struct list_head *list;
 793	int i;
 794
 795	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 796		return NULL;
 797
 798	/* sanity check */
 799	list = cpu_buffer->pages;
 800	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 801		return NULL;
 802
 803	page = head = cpu_buffer->head_page;
 804	/*
 805	 * It is possible that the writer moves the header behind
 806	 * where we started, and we miss in one loop.
 807	 * A second loop should grab the header, but we'll do
 808	 * three loops just because I'm paranoid.
 809	 */
 810	for (i = 0; i < 3; i++) {
 811		do {
 812			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 813				cpu_buffer->head_page = page;
 814				return page;
 815			}
 816			rb_inc_page(cpu_buffer, &page);
 817		} while (page != head);
 818	}
 819
 820	RB_WARN_ON(cpu_buffer, 1);
 821
 822	return NULL;
 823}
 824
 825static int rb_head_page_replace(struct buffer_page *old,
 826				struct buffer_page *new)
 827{
 828	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 829	unsigned long val;
 830	unsigned long ret;
 831
 832	val = *ptr & ~RB_FLAG_MASK;
 833	val |= RB_PAGE_HEAD;
 834
 835	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 836
 837	return ret == val;
 838}
 839
 840/*
 841 * rb_tail_page_update - move the tail page forward
 842 *
 843 * Returns 1 if moved tail page, 0 if someone else did.
 844 */
 845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 846			       struct buffer_page *tail_page,
 847			       struct buffer_page *next_page)
 848{
 849	struct buffer_page *old_tail;
 850	unsigned long old_entries;
 851	unsigned long old_write;
 852	int ret = 0;
 853
 854	/*
 855	 * The tail page now needs to be moved forward.
 856	 *
 857	 * We need to reset the tail page, but without messing
 858	 * with possible erasing of data brought in by interrupts
 859	 * that have moved the tail page and are currently on it.
 860	 *
 861	 * We add a counter to the write field to denote this.
 862	 */
 863	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 864	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 865
 
 866	/*
 867	 * Just make sure we have seen our old_write and synchronize
 868	 * with any interrupts that come in.
 869	 */
 870	barrier();
 871
 872	/*
 873	 * If the tail page is still the same as what we think
 874	 * it is, then it is up to us to update the tail
 875	 * pointer.
 876	 */
 877	if (tail_page == cpu_buffer->tail_page) {
 878		/* Zero the write counter */
 879		unsigned long val = old_write & ~RB_WRITE_MASK;
 880		unsigned long eval = old_entries & ~RB_WRITE_MASK;
 881
 882		/*
 883		 * This will only succeed if an interrupt did
 884		 * not come in and change it. In which case, we
 885		 * do not want to modify it.
 886		 *
 887		 * We add (void) to let the compiler know that we do not care
 888		 * about the return value of these functions. We use the
 889		 * cmpxchg to only update if an interrupt did not already
 890		 * do it for us. If the cmpxchg fails, we don't care.
 891		 */
 892		(void)local_cmpxchg(&next_page->write, old_write, val);
 893		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
 894
 895		/*
 896		 * No need to worry about races with clearing out the commit.
 897		 * it only can increment when a commit takes place. But that
 898		 * only happens in the outer most nested commit.
 899		 */
 900		local_set(&next_page->page->commit, 0);
 901
 902		old_tail = cmpxchg(&cpu_buffer->tail_page,
 903				   tail_page, next_page);
 904
 905		if (old_tail == tail_page)
 906			ret = 1;
 907	}
 908
 909	return ret;
 910}
 911
 912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
 913			  struct buffer_page *bpage)
 914{
 915	unsigned long val = (unsigned long)bpage;
 916
 917	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
 918		return 1;
 919
 920	return 0;
 921}
 922
 923/**
 924 * rb_check_list - make sure a pointer to a list has the last bits zero
 925 */
 926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
 927			 struct list_head *list)
 928{
 929	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
 930		return 1;
 931	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
 932		return 1;
 933	return 0;
 934}
 935
 936/**
 937 * check_pages - integrity check of buffer pages
 938 * @cpu_buffer: CPU buffer with pages to test
 939 *
 940 * As a safety measure we check to make sure the data pages have not
 941 * been corrupted.
 942 */
 943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
 944{
 945	struct list_head *head = cpu_buffer->pages;
 946	struct buffer_page *bpage, *tmp;
 947
 948	/* Reset the head page if it exists */
 949	if (cpu_buffer->head_page)
 950		rb_set_head_page(cpu_buffer);
 951
 952	rb_head_page_deactivate(cpu_buffer);
 953
 954	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
 955		return -1;
 956	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
 957		return -1;
 958
 959	if (rb_check_list(cpu_buffer, head))
 960		return -1;
 961
 962	list_for_each_entry_safe(bpage, tmp, head, list) {
 963		if (RB_WARN_ON(cpu_buffer,
 964			       bpage->list.next->prev != &bpage->list))
 965			return -1;
 966		if (RB_WARN_ON(cpu_buffer,
 967			       bpage->list.prev->next != &bpage->list))
 968			return -1;
 969		if (rb_check_list(cpu_buffer, &bpage->list))
 970			return -1;
 971	}
 972
 973	rb_head_page_activate(cpu_buffer);
 974
 975	return 0;
 976}
 977
 978static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
 
 979{
 980	int i;
 981	struct buffer_page *bpage, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983	for (i = 0; i < nr_pages; i++) {
 984		struct page *page;
 985		/*
 986		 * __GFP_NORETRY flag makes sure that the allocation fails
 987		 * gracefully without invoking oom-killer and the system is
 988		 * not destabilized.
 989		 */
 990		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
 991				    GFP_KERNEL | __GFP_NORETRY,
 992				    cpu_to_node(cpu));
 993		if (!bpage)
 994			goto free_pages;
 995
 
 
 996		list_add(&bpage->list, pages);
 997
 998		page = alloc_pages_node(cpu_to_node(cpu),
 999					GFP_KERNEL | __GFP_NORETRY, 0);
1000		if (!page)
1001			goto free_pages;
1002		bpage->page = page_address(page);
1003		rb_init_page(bpage->page);
 
 
 
1004	}
 
 
1005
1006	return 0;
1007
1008free_pages:
1009	list_for_each_entry_safe(bpage, tmp, pages, list) {
1010		list_del_init(&bpage->list);
1011		free_buffer_page(bpage);
1012	}
 
 
1013
1014	return -ENOMEM;
1015}
1016
1017static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018			     unsigned nr_pages)
1019{
1020	LIST_HEAD(pages);
1021
1022	WARN_ON(!nr_pages);
1023
1024	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025		return -ENOMEM;
1026
1027	/*
1028	 * The ring buffer page list is a circular list that does not
1029	 * start and end with a list head. All page list items point to
1030	 * other pages.
1031	 */
1032	cpu_buffer->pages = pages.next;
1033	list_del(&pages);
1034
1035	cpu_buffer->nr_pages = nr_pages;
1036
1037	rb_check_pages(cpu_buffer);
1038
1039	return 0;
1040}
1041
1042static struct ring_buffer_per_cpu *
1043rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044{
1045	struct ring_buffer_per_cpu *cpu_buffer;
1046	struct buffer_page *bpage;
1047	struct page *page;
1048	int ret;
1049
1050	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051				  GFP_KERNEL, cpu_to_node(cpu));
1052	if (!cpu_buffer)
1053		return NULL;
1054
1055	cpu_buffer->cpu = cpu;
1056	cpu_buffer->buffer = buffer;
1057	raw_spin_lock_init(&cpu_buffer->reader_lock);
1058	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061	init_completion(&cpu_buffer->update_done);
 
 
 
1062
1063	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064			    GFP_KERNEL, cpu_to_node(cpu));
1065	if (!bpage)
1066		goto fail_free_buffer;
1067
1068	rb_check_bpage(cpu_buffer, bpage);
1069
1070	cpu_buffer->reader_page = bpage;
1071	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072	if (!page)
1073		goto fail_free_reader;
1074	bpage->page = page_address(page);
1075	rb_init_page(bpage->page);
1076
1077	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079
1080	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081	if (ret < 0)
1082		goto fail_free_reader;
1083
1084	cpu_buffer->head_page
1085		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1086	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087
1088	rb_head_page_activate(cpu_buffer);
1089
1090	return cpu_buffer;
1091
1092 fail_free_reader:
1093	free_buffer_page(cpu_buffer->reader_page);
1094
1095 fail_free_buffer:
1096	kfree(cpu_buffer);
1097	return NULL;
1098}
1099
1100static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101{
1102	struct list_head *head = cpu_buffer->pages;
1103	struct buffer_page *bpage, *tmp;
1104
1105	free_buffer_page(cpu_buffer->reader_page);
1106
1107	rb_head_page_deactivate(cpu_buffer);
 
1108
1109	if (head) {
1110		list_for_each_entry_safe(bpage, tmp, head, list) {
1111			list_del_init(&bpage->list);
1112			free_buffer_page(bpage);
1113		}
1114		bpage = list_entry(head, struct buffer_page, list);
1115		free_buffer_page(bpage);
1116	}
1117
1118	kfree(cpu_buffer);
1119}
1120
1121#ifdef CONFIG_HOTPLUG_CPU
1122static int rb_cpu_notify(struct notifier_block *self,
1123			 unsigned long action, void *hcpu);
1124#endif
1125
1126/**
1127 * ring_buffer_alloc - allocate a new ring_buffer
1128 * @size: the size in bytes per cpu that is needed.
1129 * @flags: attributes to set for the ring buffer.
 
1130 *
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1135 */
1136struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137					struct lock_class_key *key)
1138{
1139	struct ring_buffer *buffer;
 
1140	int bsize;
1141	int cpu, nr_pages;
 
1142
1143	/* keep it in its own cache line */
1144	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145			 GFP_KERNEL);
1146	if (!buffer)
1147		return NULL;
1148
1149	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150		goto fail_free_buffer;
1151
1152	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153	buffer->flags = flags;
1154	buffer->clock = trace_clock_local;
1155	buffer->reader_lock_key = key;
1156
 
 
 
1157	/* need at least two pages */
1158	if (nr_pages < 2)
1159		nr_pages = 2;
1160
1161	/*
1162	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163	 * in early initcall, it will not be notified of secondary cpus.
1164	 * In that off case, we need to allocate for all possible cpus.
1165	 */
1166#ifdef CONFIG_HOTPLUG_CPU
1167	get_online_cpus();
1168	cpumask_copy(buffer->cpumask, cpu_online_mask);
1169#else
1170	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171#endif
1172	buffer->cpus = nr_cpu_ids;
1173
1174	bsize = sizeof(void *) * nr_cpu_ids;
1175	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176				  GFP_KERNEL);
1177	if (!buffer->buffers)
1178		goto fail_free_cpumask;
1179
1180	for_each_buffer_cpu(buffer, cpu) {
1181		buffer->buffers[cpu] =
1182			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183		if (!buffer->buffers[cpu])
1184			goto fail_free_buffers;
1185	}
1186
1187#ifdef CONFIG_HOTPLUG_CPU
1188	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189	buffer->cpu_notify.priority = 0;
1190	register_cpu_notifier(&buffer->cpu_notify);
1191#endif
1192
1193	put_online_cpus();
1194	mutex_init(&buffer->mutex);
1195
1196	return buffer;
1197
1198 fail_free_buffers:
1199	for_each_buffer_cpu(buffer, cpu) {
1200		if (buffer->buffers[cpu])
1201			rb_free_cpu_buffer(buffer->buffers[cpu]);
1202	}
1203	kfree(buffer->buffers);
1204
1205 fail_free_cpumask:
1206	free_cpumask_var(buffer->cpumask);
1207	put_online_cpus();
1208
1209 fail_free_buffer:
1210	kfree(buffer);
1211	return NULL;
1212}
1213EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214
1215/**
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1218 */
1219void
1220ring_buffer_free(struct ring_buffer *buffer)
1221{
1222	int cpu;
1223
1224	get_online_cpus();
1225
1226#ifdef CONFIG_HOTPLUG_CPU
1227	unregister_cpu_notifier(&buffer->cpu_notify);
1228#endif
1229
1230	for_each_buffer_cpu(buffer, cpu)
1231		rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
1233	put_online_cpus();
1234
1235	kfree(buffer->buffers);
1236	free_cpumask_var(buffer->cpumask);
1237
1238	kfree(buffer);
1239}
1240EXPORT_SYMBOL_GPL(ring_buffer_free);
1241
1242void ring_buffer_set_clock(struct ring_buffer *buffer,
1243			   u64 (*clock)(void))
1244{
1245	buffer->clock = clock;
1246}
1247
 
 
 
 
 
 
 
 
 
 
1248static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251{
1252	return local_read(&bpage->entries) & RB_WRITE_MASK;
1253}
1254
1255static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256{
1257	return local_read(&bpage->write) & RB_WRITE_MASK;
1258}
1259
1260static int
1261rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262{
1263	struct list_head *tail_page, *to_remove, *next_page;
1264	struct buffer_page *to_remove_page, *tmp_iter_page;
1265	struct buffer_page *last_page, *first_page;
1266	unsigned int nr_removed;
1267	unsigned long head_bit;
1268	int page_entries;
1269
1270	head_bit = 0;
1271
1272	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273	atomic_inc(&cpu_buffer->record_disabled);
1274	/*
1275	 * We don't race with the readers since we have acquired the reader
1276	 * lock. We also don't race with writers after disabling recording.
1277	 * This makes it easy to figure out the first and the last page to be
1278	 * removed from the list. We unlink all the pages in between including
1279	 * the first and last pages. This is done in a busy loop so that we
1280	 * lose the least number of traces.
1281	 * The pages are freed after we restart recording and unlock readers.
1282	 */
1283	tail_page = &cpu_buffer->tail_page->list;
1284
1285	/*
1286	 * tail page might be on reader page, we remove the next page
1287	 * from the ring buffer
1288	 */
1289	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290		tail_page = rb_list_head(tail_page->next);
1291	to_remove = tail_page;
1292
1293	/* start of pages to remove */
1294	first_page = list_entry(rb_list_head(to_remove->next),
1295				struct buffer_page, list);
1296
1297	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298		to_remove = rb_list_head(to_remove)->next;
1299		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300	}
1301
1302	next_page = rb_list_head(to_remove)->next;
1303
1304	/*
1305	 * Now we remove all pages between tail_page and next_page.
1306	 * Make sure that we have head_bit value preserved for the
1307	 * next page
1308	 */
1309	tail_page->next = (struct list_head *)((unsigned long)next_page |
1310						head_bit);
1311	next_page = rb_list_head(next_page);
1312	next_page->prev = tail_page;
1313
1314	/* make sure pages points to a valid page in the ring buffer */
1315	cpu_buffer->pages = next_page;
1316
1317	/* update head page */
1318	if (head_bit)
1319		cpu_buffer->head_page = list_entry(next_page,
1320						struct buffer_page, list);
1321
1322	/*
1323	 * change read pointer to make sure any read iterators reset
1324	 * themselves
1325	 */
1326	cpu_buffer->read = 0;
1327
1328	/* pages are removed, resume tracing and then free the pages */
1329	atomic_dec(&cpu_buffer->record_disabled);
1330	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331
1332	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334	/* last buffer page to remove */
1335	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336				list);
1337	tmp_iter_page = first_page;
1338
1339	do {
 
 
1340		to_remove_page = tmp_iter_page;
1341		rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343		/* update the counters */
1344		page_entries = rb_page_entries(to_remove_page);
1345		if (page_entries) {
1346			/*
1347			 * If something was added to this page, it was full
1348			 * since it is not the tail page. So we deduct the
1349			 * bytes consumed in ring buffer from here.
1350			 * Increment overrun to account for the lost events.
1351			 */
1352			local_add(page_entries, &cpu_buffer->overrun);
1353			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
1354		}
1355
1356		/*
1357		 * We have already removed references to this list item, just
1358		 * free up the buffer_page and its page
1359		 */
1360		free_buffer_page(to_remove_page);
1361		nr_removed--;
1362
1363	} while (to_remove_page != last_page);
1364
1365	RB_WARN_ON(cpu_buffer, nr_removed);
1366
1367	return nr_removed == 0;
1368}
1369
1370static int
1371rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372{
1373	struct list_head *pages = &cpu_buffer->new_pages;
1374	int retries, success;
 
1375
1376	raw_spin_lock_irq(&cpu_buffer->reader_lock);
 
1377	/*
1378	 * We are holding the reader lock, so the reader page won't be swapped
1379	 * in the ring buffer. Now we are racing with the writer trying to
1380	 * move head page and the tail page.
1381	 * We are going to adapt the reader page update process where:
1382	 * 1. We first splice the start and end of list of new pages between
1383	 *    the head page and its previous page.
1384	 * 2. We cmpxchg the prev_page->next to point from head page to the
1385	 *    start of new pages list.
1386	 * 3. Finally, we update the head->prev to the end of new list.
1387	 *
1388	 * We will try this process 10 times, to make sure that we don't keep
1389	 * spinning.
1390	 */
1391	retries = 10;
1392	success = 0;
1393	while (retries--) {
1394		struct list_head *head_page, *prev_page, *r;
1395		struct list_head *last_page, *first_page;
1396		struct list_head *head_page_with_bit;
1397
1398		head_page = &rb_set_head_page(cpu_buffer)->list;
 
 
1399		prev_page = head_page->prev;
1400
1401		first_page = pages->next;
1402		last_page  = pages->prev;
1403
1404		head_page_with_bit = (struct list_head *)
1405				     ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407		last_page->next = head_page_with_bit;
1408		first_page->prev = prev_page;
1409
1410		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412		if (r == head_page_with_bit) {
1413			/*
1414			 * yay, we replaced the page pointer to our new list,
1415			 * now, we just have to update to head page's prev
1416			 * pointer to point to end of list
1417			 */
1418			head_page->prev = last_page;
1419			success = 1;
1420			break;
1421		}
1422	}
1423
1424	if (success)
1425		INIT_LIST_HEAD(pages);
1426	/*
1427	 * If we weren't successful in adding in new pages, warn and stop
1428	 * tracing
1429	 */
1430	RB_WARN_ON(cpu_buffer, !success);
1431	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432
1433	/* free pages if they weren't inserted */
1434	if (!success) {
1435		struct buffer_page *bpage, *tmp;
1436		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437					 list) {
1438			list_del_init(&bpage->list);
1439			free_buffer_page(bpage);
1440		}
1441	}
1442	return success;
1443}
1444
1445static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446{
1447	int success;
1448
1449	if (cpu_buffer->nr_pages_to_update > 0)
1450		success = rb_insert_pages(cpu_buffer);
1451	else
1452		success = rb_remove_pages(cpu_buffer,
1453					-cpu_buffer->nr_pages_to_update);
1454
1455	if (success)
1456		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457}
1458
1459static void update_pages_handler(struct work_struct *work)
1460{
1461	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462			struct ring_buffer_per_cpu, update_pages_work);
1463	rb_update_pages(cpu_buffer);
1464	complete(&cpu_buffer->update_done);
1465}
1466
1467/**
1468 * ring_buffer_resize - resize the ring buffer
1469 * @buffer: the buffer to resize.
1470 * @size: the new size.
 
1471 *
1472 * Minimum size is 2 * BUF_PAGE_SIZE.
1473 *
1474 * Returns 0 on success and < 0 on failure.
1475 */
1476int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477			int cpu_id)
1478{
1479	struct ring_buffer_per_cpu *cpu_buffer;
1480	unsigned nr_pages;
1481	int cpu, err = 0;
1482
1483	/*
1484	 * Always succeed at resizing a non-existent buffer:
1485	 */
1486	if (!buffer)
1487		return size;
1488
1489	/* Make sure the requested buffer exists */
1490	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492		return size;
1493
1494	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495	size *= BUF_PAGE_SIZE;
1496
1497	/* we need a minimum of two pages */
1498	if (size < BUF_PAGE_SIZE * 2)
1499		size = BUF_PAGE_SIZE * 2;
1500
1501	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1502
1503	/*
1504	 * Don't succeed if resizing is disabled, as a reader might be
1505	 * manipulating the ring buffer and is expecting a sane state while
1506	 * this is true.
1507	 */
1508	if (atomic_read(&buffer->resize_disabled))
1509		return -EBUSY;
1510
1511	/* prevent another thread from changing buffer sizes */
1512	mutex_lock(&buffer->mutex);
1513
 
1514	if (cpu_id == RING_BUFFER_ALL_CPUS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1515		/* calculate the pages to update */
1516		for_each_buffer_cpu(buffer, cpu) {
1517			cpu_buffer = buffer->buffers[cpu];
1518
1519			cpu_buffer->nr_pages_to_update = nr_pages -
1520							cpu_buffer->nr_pages;
1521			/*
1522			 * nothing more to do for removing pages or no update
1523			 */
1524			if (cpu_buffer->nr_pages_to_update <= 0)
1525				continue;
1526			/*
1527			 * to add pages, make sure all new pages can be
1528			 * allocated without receiving ENOMEM
1529			 */
1530			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532						&cpu_buffer->new_pages, cpu)) {
1533				/* not enough memory for new pages */
1534				err = -ENOMEM;
1535				goto out_err;
1536			}
1537		}
1538
1539		get_online_cpus();
1540		/*
1541		 * Fire off all the required work handlers
1542		 * We can't schedule on offline CPUs, but it's not necessary
1543		 * since we can change their buffer sizes without any race.
1544		 */
1545		for_each_buffer_cpu(buffer, cpu) {
1546			cpu_buffer = buffer->buffers[cpu];
1547			if (!cpu_buffer->nr_pages_to_update)
1548				continue;
1549
1550			if (cpu_online(cpu))
1551				schedule_work_on(cpu,
1552						&cpu_buffer->update_pages_work);
1553			else
1554				rb_update_pages(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
1555		}
1556
1557		/* wait for all the updates to complete */
1558		for_each_buffer_cpu(buffer, cpu) {
1559			cpu_buffer = buffer->buffers[cpu];
1560			if (!cpu_buffer->nr_pages_to_update)
1561				continue;
1562
1563			if (cpu_online(cpu))
1564				wait_for_completion(&cpu_buffer->update_done);
1565			cpu_buffer->nr_pages_to_update = 0;
1566		}
1567
1568		put_online_cpus();
1569	} else {
1570		cpu_buffer = buffer->buffers[cpu_id];
1571
1572		if (nr_pages == cpu_buffer->nr_pages)
1573			goto out;
1574
 
 
 
 
 
 
 
 
 
 
1575		cpu_buffer->nr_pages_to_update = nr_pages -
1576						cpu_buffer->nr_pages;
1577
1578		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579		if (cpu_buffer->nr_pages_to_update > 0 &&
1580			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1581					    &cpu_buffer->new_pages, cpu_id)) {
1582			err = -ENOMEM;
1583			goto out_err;
1584		}
1585
1586		get_online_cpus();
1587
1588		if (cpu_online(cpu_id)) {
1589			schedule_work_on(cpu_id,
1590					 &cpu_buffer->update_pages_work);
1591			wait_for_completion(&cpu_buffer->update_done);
1592		} else
1593			rb_update_pages(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
1594
1595		cpu_buffer->nr_pages_to_update = 0;
1596		put_online_cpus();
1597	}
1598
1599 out:
1600	/*
1601	 * The ring buffer resize can happen with the ring buffer
1602	 * enabled, so that the update disturbs the tracing as little
1603	 * as possible. But if the buffer is disabled, we do not need
1604	 * to worry about that, and we can take the time to verify
1605	 * that the buffer is not corrupt.
1606	 */
1607	if (atomic_read(&buffer->record_disabled)) {
1608		atomic_inc(&buffer->record_disabled);
1609		/*
1610		 * Even though the buffer was disabled, we must make sure
1611		 * that it is truly disabled before calling rb_check_pages.
1612		 * There could have been a race between checking
1613		 * record_disable and incrementing it.
1614		 */
1615		synchronize_sched();
1616		for_each_buffer_cpu(buffer, cpu) {
1617			cpu_buffer = buffer->buffers[cpu];
1618			rb_check_pages(cpu_buffer);
1619		}
1620		atomic_dec(&buffer->record_disabled);
1621	}
1622
1623	mutex_unlock(&buffer->mutex);
1624	return size;
1625
1626 out_err:
1627	for_each_buffer_cpu(buffer, cpu) {
1628		struct buffer_page *bpage, *tmp;
1629
1630		cpu_buffer = buffer->buffers[cpu];
1631		cpu_buffer->nr_pages_to_update = 0;
1632
1633		if (list_empty(&cpu_buffer->new_pages))
1634			continue;
1635
1636		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637					list) {
1638			list_del_init(&bpage->list);
1639			free_buffer_page(bpage);
1640		}
1641	}
 
1642	mutex_unlock(&buffer->mutex);
1643	return err;
1644}
1645EXPORT_SYMBOL_GPL(ring_buffer_resize);
1646
1647void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1648{
1649	mutex_lock(&buffer->mutex);
1650	if (val)
1651		buffer->flags |= RB_FL_OVERWRITE;
1652	else
1653		buffer->flags &= ~RB_FL_OVERWRITE;
1654	mutex_unlock(&buffer->mutex);
1655}
1656EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1657
1658static inline void *
1659__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1660{
1661	return bpage->data + index;
1662}
1663
1664static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1665{
1666	return bpage->page->data + index;
1667}
1668
1669static inline struct ring_buffer_event *
1670rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1671{
1672	return __rb_page_index(cpu_buffer->reader_page,
1673			       cpu_buffer->reader_page->read);
1674}
1675
1676static inline struct ring_buffer_event *
1677rb_iter_head_event(struct ring_buffer_iter *iter)
1678{
1679	return __rb_page_index(iter->head_page, iter->head);
1680}
1681
1682static inline unsigned rb_page_commit(struct buffer_page *bpage)
 
1683{
1684	return local_read(&bpage->page->commit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685}
1686
1687/* Size is determined by what has been committed */
1688static inline unsigned rb_page_size(struct buffer_page *bpage)
1689{
1690	return rb_page_commit(bpage);
1691}
1692
1693static inline unsigned
1694rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1695{
1696	return rb_page_commit(cpu_buffer->commit_page);
1697}
1698
1699static inline unsigned
1700rb_event_index(struct ring_buffer_event *event)
1701{
1702	unsigned long addr = (unsigned long)event;
1703
1704	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1705}
1706
1707static inline int
1708rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709		   struct ring_buffer_event *event)
1710{
1711	unsigned long addr = (unsigned long)event;
1712	unsigned long index;
1713
1714	index = rb_event_index(event);
1715	addr &= PAGE_MASK;
1716
1717	return cpu_buffer->commit_page->page == (void *)addr &&
1718		rb_commit_index(cpu_buffer) == index;
1719}
1720
1721static void
1722rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1723{
1724	unsigned long max_count;
1725
1726	/*
1727	 * We only race with interrupts and NMIs on this CPU.
1728	 * If we own the commit event, then we can commit
1729	 * all others that interrupted us, since the interruptions
1730	 * are in stack format (they finish before they come
1731	 * back to us). This allows us to do a simple loop to
1732	 * assign the commit to the tail.
1733	 */
1734 again:
1735	max_count = cpu_buffer->nr_pages * 100;
1736
1737	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1738		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739			return;
1740		if (RB_WARN_ON(cpu_buffer,
1741			       rb_is_reader_page(cpu_buffer->tail_page)))
1742			return;
1743		local_set(&cpu_buffer->commit_page->page->commit,
1744			  rb_page_write(cpu_buffer->commit_page));
1745		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1746		cpu_buffer->write_stamp =
1747			cpu_buffer->commit_page->page->time_stamp;
1748		/* add barrier to keep gcc from optimizing too much */
1749		barrier();
1750	}
1751	while (rb_commit_index(cpu_buffer) !=
1752	       rb_page_write(cpu_buffer->commit_page)) {
1753
1754		local_set(&cpu_buffer->commit_page->page->commit,
1755			  rb_page_write(cpu_buffer->commit_page));
1756		RB_WARN_ON(cpu_buffer,
1757			   local_read(&cpu_buffer->commit_page->page->commit) &
1758			   ~RB_WRITE_MASK);
1759		barrier();
1760	}
1761
1762	/* again, keep gcc from optimizing */
1763	barrier();
1764
1765	/*
1766	 * If an interrupt came in just after the first while loop
1767	 * and pushed the tail page forward, we will be left with
1768	 * a dangling commit that will never go forward.
1769	 */
1770	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771		goto again;
1772}
1773
1774static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1775{
1776	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1777	cpu_buffer->reader_page->read = 0;
1778}
1779
1780static void rb_inc_iter(struct ring_buffer_iter *iter)
1781{
1782	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1783
1784	/*
1785	 * The iterator could be on the reader page (it starts there).
1786	 * But the head could have moved, since the reader was
1787	 * found. Check for this case and assign the iterator
1788	 * to the head page instead of next.
1789	 */
1790	if (iter->head_page == cpu_buffer->reader_page)
1791		iter->head_page = rb_set_head_page(cpu_buffer);
1792	else
1793		rb_inc_page(cpu_buffer, &iter->head_page);
1794
1795	iter->read_stamp = iter->head_page->page->time_stamp;
1796	iter->head = 0;
1797}
1798
1799/* Slow path, do not inline */
1800static noinline struct ring_buffer_event *
1801rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1802{
1803	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1804
1805	/* Not the first event on the page? */
1806	if (rb_event_index(event)) {
1807		event->time_delta = delta & TS_MASK;
1808		event->array[0] = delta >> TS_SHIFT;
1809	} else {
1810		/* nope, just zero it */
1811		event->time_delta = 0;
1812		event->array[0] = 0;
1813	}
1814
1815	return skip_time_extend(event);
1816}
1817
1818/**
1819 * ring_buffer_update_event - update event type and data
1820 * @event: the even to update
1821 * @type: the type of event
1822 * @length: the size of the event field in the ring buffer
1823 *
1824 * Update the type and data fields of the event. The length
1825 * is the actual size that is written to the ring buffer,
1826 * and with this, we can determine what to place into the
1827 * data field.
1828 */
1829static void
1830rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831		struct ring_buffer_event *event, unsigned length,
1832		int add_timestamp, u64 delta)
1833{
1834	/* Only a commit updates the timestamp */
1835	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836		delta = 0;
1837
1838	/*
1839	 * If we need to add a timestamp, then we
1840	 * add it to the start of the resevered space.
1841	 */
1842	if (unlikely(add_timestamp)) {
1843		event = rb_add_time_stamp(event, delta);
1844		length -= RB_LEN_TIME_EXTEND;
1845		delta = 0;
1846	}
1847
1848	event->time_delta = delta;
1849	length -= RB_EVNT_HDR_SIZE;
1850	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851		event->type_len = 0;
1852		event->array[0] = length;
1853	} else
1854		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1855}
1856
1857/*
1858 * rb_handle_head_page - writer hit the head page
1859 *
1860 * Returns: +1 to retry page
1861 *           0 to continue
1862 *          -1 on error
1863 */
1864static int
1865rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866		    struct buffer_page *tail_page,
1867		    struct buffer_page *next_page)
1868{
1869	struct buffer_page *new_head;
1870	int entries;
1871	int type;
1872	int ret;
1873
1874	entries = rb_page_entries(next_page);
1875
1876	/*
1877	 * The hard part is here. We need to move the head
1878	 * forward, and protect against both readers on
1879	 * other CPUs and writers coming in via interrupts.
1880	 */
1881	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882				       RB_PAGE_HEAD);
1883
1884	/*
1885	 * type can be one of four:
1886	 *  NORMAL - an interrupt already moved it for us
1887	 *  HEAD   - we are the first to get here.
1888	 *  UPDATE - we are the interrupt interrupting
1889	 *           a current move.
1890	 *  MOVED  - a reader on another CPU moved the next
1891	 *           pointer to its reader page. Give up
1892	 *           and try again.
1893	 */
1894
1895	switch (type) {
1896	case RB_PAGE_HEAD:
1897		/*
1898		 * We changed the head to UPDATE, thus
1899		 * it is our responsibility to update
1900		 * the counters.
1901		 */
1902		local_add(entries, &cpu_buffer->overrun);
1903		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
1904
1905		/*
1906		 * The entries will be zeroed out when we move the
1907		 * tail page.
1908		 */
1909
1910		/* still more to do */
1911		break;
1912
1913	case RB_PAGE_UPDATE:
1914		/*
1915		 * This is an interrupt that interrupt the
1916		 * previous update. Still more to do.
1917		 */
1918		break;
1919	case RB_PAGE_NORMAL:
1920		/*
1921		 * An interrupt came in before the update
1922		 * and processed this for us.
1923		 * Nothing left to do.
1924		 */
1925		return 1;
1926	case RB_PAGE_MOVED:
1927		/*
1928		 * The reader is on another CPU and just did
1929		 * a swap with our next_page.
1930		 * Try again.
1931		 */
1932		return 1;
1933	default:
1934		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935		return -1;
1936	}
1937
1938	/*
1939	 * Now that we are here, the old head pointer is
1940	 * set to UPDATE. This will keep the reader from
1941	 * swapping the head page with the reader page.
1942	 * The reader (on another CPU) will spin till
1943	 * we are finished.
1944	 *
1945	 * We just need to protect against interrupts
1946	 * doing the job. We will set the next pointer
1947	 * to HEAD. After that, we set the old pointer
1948	 * to NORMAL, but only if it was HEAD before.
1949	 * otherwise we are an interrupt, and only
1950	 * want the outer most commit to reset it.
1951	 */
1952	new_head = next_page;
1953	rb_inc_page(cpu_buffer, &new_head);
1954
1955	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956				    RB_PAGE_NORMAL);
1957
1958	/*
1959	 * Valid returns are:
1960	 *  HEAD   - an interrupt came in and already set it.
1961	 *  NORMAL - One of two things:
1962	 *            1) We really set it.
1963	 *            2) A bunch of interrupts came in and moved
1964	 *               the page forward again.
1965	 */
1966	switch (ret) {
1967	case RB_PAGE_HEAD:
1968	case RB_PAGE_NORMAL:
1969		/* OK */
1970		break;
1971	default:
1972		RB_WARN_ON(cpu_buffer, 1);
1973		return -1;
1974	}
1975
1976	/*
1977	 * It is possible that an interrupt came in,
1978	 * set the head up, then more interrupts came in
1979	 * and moved it again. When we get back here,
1980	 * the page would have been set to NORMAL but we
1981	 * just set it back to HEAD.
1982	 *
1983	 * How do you detect this? Well, if that happened
1984	 * the tail page would have moved.
1985	 */
1986	if (ret == RB_PAGE_NORMAL) {
 
 
 
1987		/*
1988		 * If the tail had moved passed next, then we need
1989		 * to reset the pointer.
1990		 */
1991		if (cpu_buffer->tail_page != tail_page &&
1992		    cpu_buffer->tail_page != next_page)
1993			rb_head_page_set_normal(cpu_buffer, new_head,
1994						next_page,
1995						RB_PAGE_HEAD);
1996	}
1997
1998	/*
1999	 * If this was the outer most commit (the one that
2000	 * changed the original pointer from HEAD to UPDATE),
2001	 * then it is up to us to reset it to NORMAL.
2002	 */
2003	if (type == RB_PAGE_HEAD) {
2004		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005					      tail_page,
2006					      RB_PAGE_UPDATE);
2007		if (RB_WARN_ON(cpu_buffer,
2008			       ret != RB_PAGE_UPDATE))
2009			return -1;
2010	}
2011
2012	return 0;
2013}
2014
2015static unsigned rb_calculate_event_length(unsigned length)
2016{
2017	struct ring_buffer_event event; /* Used only for sizeof array */
2018
2019	/* zero length can cause confusions */
2020	if (!length)
2021		length = 1;
2022
2023	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2024		length += sizeof(event.array[0]);
2025
2026	length += RB_EVNT_HDR_SIZE;
2027	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2028
2029	return length;
2030}
2031
2032static inline void
2033rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034	      struct buffer_page *tail_page,
2035	      unsigned long tail, unsigned long length)
2036{
 
2037	struct ring_buffer_event *event;
 
2038
2039	/*
2040	 * Only the event that crossed the page boundary
2041	 * must fill the old tail_page with padding.
2042	 */
2043	if (tail >= BUF_PAGE_SIZE) {
2044		/*
2045		 * If the page was filled, then we still need
2046		 * to update the real_end. Reset it to zero
2047		 * and the reader will ignore it.
2048		 */
2049		if (tail == BUF_PAGE_SIZE)
2050			tail_page->real_end = 0;
2051
2052		local_sub(length, &tail_page->write);
2053		return;
2054	}
2055
2056	event = __rb_page_index(tail_page, tail);
2057	kmemcheck_annotate_bitfield(event, bitfield);
2058
2059	/* account for padding bytes */
2060	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062	/*
2063	 * Save the original length to the meta data.
2064	 * This will be used by the reader to add lost event
2065	 * counter.
2066	 */
2067	tail_page->real_end = tail;
2068
2069	/*
2070	 * If this event is bigger than the minimum size, then
2071	 * we need to be careful that we don't subtract the
2072	 * write counter enough to allow another writer to slip
2073	 * in on this page.
2074	 * We put in a discarded commit instead, to make sure
2075	 * that this space is not used again.
2076	 *
2077	 * If we are less than the minimum size, we don't need to
2078	 * worry about it.
2079	 */
2080	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081		/* No room for any events */
2082
2083		/* Mark the rest of the page with padding */
2084		rb_event_set_padding(event);
2085
 
 
 
2086		/* Set the write back to the previous setting */
2087		local_sub(length, &tail_page->write);
2088		return;
2089	}
2090
2091	/* Put in a discarded event */
2092	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093	event->type_len = RINGBUF_TYPE_PADDING;
2094	/* time delta must be non zero */
2095	event->time_delta = 1;
2096
 
 
 
2097	/* Set write to end of buffer */
2098	length = (tail + length) - BUF_PAGE_SIZE;
2099	local_sub(length, &tail_page->write);
2100}
2101
 
 
2102/*
2103 * This is the slow path, force gcc not to inline it.
2104 */
2105static noinline struct ring_buffer_event *
2106rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107	     unsigned long length, unsigned long tail,
2108	     struct buffer_page *tail_page, u64 ts)
2109{
 
2110	struct buffer_page *commit_page = cpu_buffer->commit_page;
2111	struct ring_buffer *buffer = cpu_buffer->buffer;
2112	struct buffer_page *next_page;
2113	int ret;
2114
2115	next_page = tail_page;
2116
2117	rb_inc_page(cpu_buffer, &next_page);
2118
2119	/*
2120	 * If for some reason, we had an interrupt storm that made
2121	 * it all the way around the buffer, bail, and warn
2122	 * about it.
2123	 */
2124	if (unlikely(next_page == commit_page)) {
2125		local_inc(&cpu_buffer->commit_overrun);
2126		goto out_reset;
2127	}
2128
2129	/*
2130	 * This is where the fun begins!
2131	 *
2132	 * We are fighting against races between a reader that
2133	 * could be on another CPU trying to swap its reader
2134	 * page with the buffer head.
2135	 *
2136	 * We are also fighting against interrupts coming in and
2137	 * moving the head or tail on us as well.
2138	 *
2139	 * If the next page is the head page then we have filled
2140	 * the buffer, unless the commit page is still on the
2141	 * reader page.
2142	 */
2143	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2144
2145		/*
2146		 * If the commit is not on the reader page, then
2147		 * move the header page.
2148		 */
2149		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150			/*
2151			 * If we are not in overwrite mode,
2152			 * this is easy, just stop here.
2153			 */
2154			if (!(buffer->flags & RB_FL_OVERWRITE))
 
2155				goto out_reset;
 
2156
2157			ret = rb_handle_head_page(cpu_buffer,
2158						  tail_page,
2159						  next_page);
2160			if (ret < 0)
2161				goto out_reset;
2162			if (ret)
2163				goto out_again;
2164		} else {
2165			/*
2166			 * We need to be careful here too. The
2167			 * commit page could still be on the reader
2168			 * page. We could have a small buffer, and
2169			 * have filled up the buffer with events
2170			 * from interrupts and such, and wrapped.
2171			 *
2172			 * Note, if the tail page is also the on the
2173			 * reader_page, we let it move out.
2174			 */
2175			if (unlikely((cpu_buffer->commit_page !=
2176				      cpu_buffer->tail_page) &&
2177				     (cpu_buffer->commit_page ==
2178				      cpu_buffer->reader_page))) {
2179				local_inc(&cpu_buffer->commit_overrun);
2180				goto out_reset;
2181			}
2182		}
2183	}
2184
2185	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186	if (ret) {
2187		/*
2188		 * Nested commits always have zero deltas, so
2189		 * just reread the time stamp
2190		 */
2191		ts = rb_time_stamp(buffer);
2192		next_page->page->time_stamp = ts;
2193	}
2194
2195 out_again:
2196
2197	rb_reset_tail(cpu_buffer, tail_page, tail, length);
 
 
 
 
 
2198
2199	/* fail and let the caller try again */
2200	return ERR_PTR(-EAGAIN);
2201
2202 out_reset:
2203	/* reset write */
2204	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2205
2206	return NULL;
2207}
2208
 
2209static struct ring_buffer_event *
2210__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2211		  unsigned long length, u64 ts,
2212		  u64 delta, int add_timestamp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213{
2214	struct buffer_page *tail_page;
2215	struct ring_buffer_event *event;
2216	unsigned long tail, write;
 
 
 
2217
2218	/*
2219	 * If the time delta since the last event is too big to
2220	 * hold in the time field of the event, then we append a
2221	 * TIME EXTEND event ahead of the data event.
2222	 */
2223	if (unlikely(add_timestamp))
2224		length += RB_LEN_TIME_EXTEND;
2225
2226	tail_page = cpu_buffer->tail_page;
2227	write = local_add_return(length, &tail_page->write);
 
 
 
 
 
 
2228
2229	/* set write to only the index of the write */
2230	write &= RB_WRITE_MASK;
2231	tail = write - length;
2232
2233	/* See if we shot pass the end of this buffer page */
2234	if (unlikely(write > BUF_PAGE_SIZE))
2235		return rb_move_tail(cpu_buffer, length, tail,
2236				    tail_page, ts);
2237
2238	/* We reserved something on the buffer */
 
2239
2240	event = __rb_page_index(tail_page, tail);
2241	kmemcheck_annotate_bitfield(event, bitfield);
2242	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2243
2244	local_inc(&tail_page->entries);
2245
2246	/*
2247	 * If this is the first commit on the page, then update
2248	 * its timestamp.
 
 
 
 
 
 
 
 
2249	 */
2250	if (!tail)
2251		tail_page->page->time_stamp = ts;
 
 
 
 
 
 
 
 
 
 
 
 
2252
2253	/* account for these added bytes */
2254	local_add(length, &cpu_buffer->entries_bytes);
2255
2256	return event;
 
 
 
 
2257}
2258
2259static inline int
2260rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261		  struct ring_buffer_event *event)
2262{
2263	unsigned long new_index, old_index;
2264	struct buffer_page *bpage;
2265	unsigned long index;
2266	unsigned long addr;
 
 
2267
2268	new_index = rb_event_index(event);
2269	old_index = new_index + rb_event_ts_length(event);
2270	addr = (unsigned long)event;
2271	addr &= PAGE_MASK;
2272
2273	bpage = cpu_buffer->tail_page;
 
 
 
 
 
 
 
 
2274
2275	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2276		unsigned long write_mask =
2277			local_read(&bpage->write) & ~RB_WRITE_MASK;
2278		unsigned long event_length = rb_event_length(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279		/*
2280		 * This is on the tail page. It is possible that
2281		 * a write could come in and move the tail page
2282		 * and write to the next page. That is fine
2283		 * because we just shorten what is on this page.
2284		 */
2285		old_index += write_mask;
2286		new_index += write_mask;
2287		index = local_cmpxchg(&bpage->write, old_index, new_index);
2288		if (index == old_index) {
2289			/* update counters */
2290			local_sub(event_length, &cpu_buffer->entries_bytes);
2291			return 1;
2292		}
2293	}
2294
2295	/* could not discard */
2296	return 0;
2297}
2298
2299static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2300{
2301	local_inc(&cpu_buffer->committing);
2302	local_inc(&cpu_buffer->commits);
2303}
2304
2305static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306{
2307	unsigned long commits;
2308
2309	if (RB_WARN_ON(cpu_buffer,
2310		       !local_read(&cpu_buffer->committing)))
2311		return;
2312
2313 again:
2314	commits = local_read(&cpu_buffer->commits);
2315	/* synchronize with interrupts */
2316	barrier();
2317	if (local_read(&cpu_buffer->committing) == 1)
2318		rb_set_commit_to_write(cpu_buffer);
2319
2320	local_dec(&cpu_buffer->committing);
2321
2322	/* synchronize with interrupts */
2323	barrier();
2324
2325	/*
2326	 * Need to account for interrupts coming in between the
2327	 * updating of the commit page and the clearing of the
2328	 * committing counter.
2329	 */
2330	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331	    !local_read(&cpu_buffer->committing)) {
2332		local_inc(&cpu_buffer->committing);
2333		goto again;
2334	}
2335}
2336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337static struct ring_buffer_event *
2338rb_reserve_next_event(struct ring_buffer *buffer,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339		      struct ring_buffer_per_cpu *cpu_buffer,
2340		      unsigned long length)
2341{
2342	struct ring_buffer_event *event;
2343	u64 ts, delta;
2344	int nr_loops = 0;
2345	int add_timestamp;
2346	u64 diff;
2347
2348	rb_start_commit(cpu_buffer);
 
2349
2350#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2351	/*
2352	 * Due to the ability to swap a cpu buffer from a buffer
2353	 * it is possible it was swapped before we committed.
2354	 * (committing stops a swap). We check for it here and
2355	 * if it happened, we have to fail the write.
2356	 */
2357	barrier();
2358	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359		local_dec(&cpu_buffer->committing);
2360		local_dec(&cpu_buffer->commits);
2361		return NULL;
2362	}
2363#endif
2364
2365	length = rb_calculate_event_length(length);
 
 
 
 
 
 
 
 
2366 again:
2367	add_timestamp = 0;
2368	delta = 0;
2369
2370	/*
2371	 * We allow for interrupts to reenter here and do a trace.
2372	 * If one does, it will cause this original code to loop
2373	 * back here. Even with heavy interrupts happening, this
2374	 * should only happen a few times in a row. If this happens
2375	 * 1000 times in a row, there must be either an interrupt
2376	 * storm or we have something buggy.
2377	 * Bail!
2378	 */
2379	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2380		goto out_fail;
2381
2382	ts = rb_time_stamp(cpu_buffer->buffer);
2383	diff = ts - cpu_buffer->write_stamp;
2384
2385	/* make sure this diff is calculated here */
2386	barrier();
2387
2388	/* Did the write stamp get updated already? */
2389	if (likely(ts >= cpu_buffer->write_stamp)) {
2390		delta = diff;
2391		if (unlikely(test_time_stamp(delta))) {
2392			int local_clock_stable = 1;
2393#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394			local_clock_stable = sched_clock_stable;
2395#endif
2396			WARN_ONCE(delta > (1ULL << 59),
2397				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2398				  (unsigned long long)delta,
2399				  (unsigned long long)ts,
2400				  (unsigned long long)cpu_buffer->write_stamp,
2401				  local_clock_stable ? "" :
2402				  "If you just came from a suspend/resume,\n"
2403				  "please switch to the trace global clock:\n"
2404				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2405			add_timestamp = 1;
2406		}
2407	}
2408
2409	event = __rb_reserve_next(cpu_buffer, length, ts,
2410				  delta, add_timestamp);
2411	if (unlikely(PTR_ERR(event) == -EAGAIN))
2412		goto again;
2413
2414	if (!event)
2415		goto out_fail;
2416
2417	return event;
2418
2419 out_fail:
2420	rb_end_commit(cpu_buffer);
2421	return NULL;
2422}
2423
2424#ifdef CONFIG_TRACING
2425
2426#define TRACE_RECURSIVE_DEPTH 16
2427
2428/* Keep this code out of the fast path cache */
2429static noinline void trace_recursive_fail(void)
2430{
2431	/* Disable all tracing before we do anything else */
2432	tracing_off_permanent();
2433
2434	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2435		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2436		    trace_recursion_buffer(),
2437		    hardirq_count() >> HARDIRQ_SHIFT,
2438		    softirq_count() >> SOFTIRQ_SHIFT,
2439		    in_nmi());
2440
2441	WARN_ON_ONCE(1);
2442}
2443
2444static inline int trace_recursive_lock(void)
2445{
2446	trace_recursion_inc();
2447
2448	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2449		return 0;
2450
2451	trace_recursive_fail();
2452
2453	return -1;
2454}
2455
2456static inline void trace_recursive_unlock(void)
2457{
2458	WARN_ON_ONCE(!trace_recursion_buffer());
2459
2460	trace_recursion_dec();
2461}
2462
2463#else
2464
2465#define trace_recursive_lock()		(0)
2466#define trace_recursive_unlock()	do { } while (0)
2467
2468#endif
2469
2470/**
2471 * ring_buffer_lock_reserve - reserve a part of the buffer
2472 * @buffer: the ring buffer to reserve from
2473 * @length: the length of the data to reserve (excluding event header)
2474 *
2475 * Returns a reseverd event on the ring buffer to copy directly to.
2476 * The user of this interface will need to get the body to write into
2477 * and can use the ring_buffer_event_data() interface.
2478 *
2479 * The length is the length of the data needed, not the event length
2480 * which also includes the event header.
2481 *
2482 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483 * If NULL is returned, then nothing has been allocated or locked.
2484 */
2485struct ring_buffer_event *
2486ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2487{
2488	struct ring_buffer_per_cpu *cpu_buffer;
2489	struct ring_buffer_event *event;
2490	int cpu;
2491
2492	if (ring_buffer_flags != RB_BUFFERS_ON)
2493		return NULL;
2494
2495	/* If we are tracing schedule, we don't want to recurse */
2496	preempt_disable_notrace();
2497
2498	if (atomic_read(&buffer->record_disabled))
2499		goto out_nocheck;
2500
2501	if (trace_recursive_lock())
2502		goto out_nocheck;
2503
2504	cpu = raw_smp_processor_id();
2505
2506	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2507		goto out;
2508
2509	cpu_buffer = buffer->buffers[cpu];
2510
2511	if (atomic_read(&cpu_buffer->record_disabled))
 
 
 
2512		goto out;
2513
2514	if (length > BUF_MAX_DATA_SIZE)
2515		goto out;
2516
2517	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2518	if (!event)
2519		goto out;
2520
2521	return event;
2522
 
 
2523 out:
2524	trace_recursive_unlock();
2525
2526 out_nocheck:
2527	preempt_enable_notrace();
2528	return NULL;
2529}
2530EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2531
2532static void
2533rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2534		      struct ring_buffer_event *event)
2535{
2536	u64 delta;
2537
2538	/*
2539	 * The event first in the commit queue updates the
2540	 * time stamp.
2541	 */
2542	if (rb_event_is_commit(cpu_buffer, event)) {
2543		/*
2544		 * A commit event that is first on a page
2545		 * updates the write timestamp with the page stamp
2546		 */
2547		if (!rb_event_index(event))
2548			cpu_buffer->write_stamp =
2549				cpu_buffer->commit_page->page->time_stamp;
2550		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551			delta = event->array[0];
2552			delta <<= TS_SHIFT;
2553			delta += event->time_delta;
2554			cpu_buffer->write_stamp += delta;
2555		} else
2556			cpu_buffer->write_stamp += event->time_delta;
2557	}
2558}
2559
2560static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561		      struct ring_buffer_event *event)
2562{
2563	local_inc(&cpu_buffer->entries);
2564	rb_update_write_stamp(cpu_buffer, event);
2565	rb_end_commit(cpu_buffer);
2566}
2567
2568/**
2569 * ring_buffer_unlock_commit - commit a reserved
2570 * @buffer: The buffer to commit to
2571 * @event: The event pointer to commit.
2572 *
2573 * This commits the data to the ring buffer, and releases any locks held.
2574 *
2575 * Must be paired with ring_buffer_lock_reserve.
2576 */
2577int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578			      struct ring_buffer_event *event)
2579{
2580	struct ring_buffer_per_cpu *cpu_buffer;
2581	int cpu = raw_smp_processor_id();
2582
2583	cpu_buffer = buffer->buffers[cpu];
2584
2585	rb_commit(cpu_buffer, event);
2586
2587	trace_recursive_unlock();
2588
2589	preempt_enable_notrace();
2590
2591	return 0;
2592}
2593EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2594
2595static inline void rb_event_discard(struct ring_buffer_event *event)
2596{
2597	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598		event = skip_time_extend(event);
2599
2600	/* array[0] holds the actual length for the discarded event */
2601	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602	event->type_len = RINGBUF_TYPE_PADDING;
2603	/* time delta must be non zero */
2604	if (!event->time_delta)
2605		event->time_delta = 1;
2606}
2607
2608/*
2609 * Decrement the entries to the page that an event is on.
2610 * The event does not even need to exist, only the pointer
2611 * to the page it is on. This may only be called before the commit
2612 * takes place.
2613 */
2614static inline void
2615rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616		   struct ring_buffer_event *event)
2617{
2618	unsigned long addr = (unsigned long)event;
2619	struct buffer_page *bpage = cpu_buffer->commit_page;
2620	struct buffer_page *start;
2621
2622	addr &= PAGE_MASK;
2623
2624	/* Do the likely case first */
2625	if (likely(bpage->page == (void *)addr)) {
2626		local_dec(&bpage->entries);
2627		return;
2628	}
2629
2630	/*
2631	 * Because the commit page may be on the reader page we
2632	 * start with the next page and check the end loop there.
2633	 */
2634	rb_inc_page(cpu_buffer, &bpage);
2635	start = bpage;
2636	do {
2637		if (bpage->page == (void *)addr) {
2638			local_dec(&bpage->entries);
2639			return;
2640		}
2641		rb_inc_page(cpu_buffer, &bpage);
2642	} while (bpage != start);
2643
2644	/* commit not part of this buffer?? */
2645	RB_WARN_ON(cpu_buffer, 1);
2646}
2647
2648/**
2649 * ring_buffer_commit_discard - discard an event that has not been committed
2650 * @buffer: the ring buffer
2651 * @event: non committed event to discard
2652 *
2653 * Sometimes an event that is in the ring buffer needs to be ignored.
2654 * This function lets the user discard an event in the ring buffer
2655 * and then that event will not be read later.
2656 *
2657 * This function only works if it is called before the the item has been
2658 * committed. It will try to free the event from the ring buffer
2659 * if another event has not been added behind it.
2660 *
2661 * If another event has been added behind it, it will set the event
2662 * up as discarded, and perform the commit.
2663 *
2664 * If this function is called, do not call ring_buffer_unlock_commit on
2665 * the event.
2666 */
2667void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668				struct ring_buffer_event *event)
2669{
2670	struct ring_buffer_per_cpu *cpu_buffer;
2671	int cpu;
2672
2673	/* The event is discarded regardless */
2674	rb_event_discard(event);
2675
2676	cpu = smp_processor_id();
2677	cpu_buffer = buffer->buffers[cpu];
2678
2679	/*
2680	 * This must only be called if the event has not been
2681	 * committed yet. Thus we can assume that preemption
2682	 * is still disabled.
2683	 */
2684	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2685
2686	rb_decrement_entry(cpu_buffer, event);
2687	if (rb_try_to_discard(cpu_buffer, event))
2688		goto out;
2689
2690	/*
2691	 * The commit is still visible by the reader, so we
2692	 * must still update the timestamp.
2693	 */
2694	rb_update_write_stamp(cpu_buffer, event);
2695 out:
2696	rb_end_commit(cpu_buffer);
2697
2698	trace_recursive_unlock();
2699
2700	preempt_enable_notrace();
2701
2702}
2703EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2704
2705/**
2706 * ring_buffer_write - write data to the buffer without reserving
2707 * @buffer: The ring buffer to write to.
2708 * @length: The length of the data being written (excluding the event header)
2709 * @data: The data to write to the buffer.
2710 *
2711 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712 * one function. If you already have the data to write to the buffer, it
2713 * may be easier to simply call this function.
2714 *
2715 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716 * and not the length of the event which would hold the header.
2717 */
2718int ring_buffer_write(struct ring_buffer *buffer,
2719			unsigned long length,
2720			void *data)
2721{
2722	struct ring_buffer_per_cpu *cpu_buffer;
2723	struct ring_buffer_event *event;
2724	void *body;
2725	int ret = -EBUSY;
2726	int cpu;
2727
2728	if (ring_buffer_flags != RB_BUFFERS_ON)
2729		return -EBUSY;
2730
2731	preempt_disable_notrace();
2732
2733	if (atomic_read(&buffer->record_disabled))
2734		goto out;
2735
2736	cpu = raw_smp_processor_id();
2737
2738	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2739		goto out;
2740
2741	cpu_buffer = buffer->buffers[cpu];
2742
2743	if (atomic_read(&cpu_buffer->record_disabled))
2744		goto out;
2745
2746	if (length > BUF_MAX_DATA_SIZE)
2747		goto out;
2748
 
 
 
2749	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2750	if (!event)
2751		goto out;
2752
2753	body = rb_event_data(event);
2754
2755	memcpy(body, data, length);
2756
2757	rb_commit(cpu_buffer, event);
 
 
2758
2759	ret = 0;
 
 
 
 
2760 out:
2761	preempt_enable_notrace();
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(ring_buffer_write);
2766
2767static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2768{
2769	struct buffer_page *reader = cpu_buffer->reader_page;
2770	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2771	struct buffer_page *commit = cpu_buffer->commit_page;
2772
2773	/* In case of error, head will be NULL */
2774	if (unlikely(!head))
2775		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776
2777	return reader->read == rb_page_commit(reader) &&
2778		(commit == reader ||
2779		 (commit == head &&
2780		  head->read == rb_page_commit(commit)));
 
 
2781}
2782
2783/**
2784 * ring_buffer_record_disable - stop all writes into the buffer
2785 * @buffer: The ring buffer to stop writes to.
2786 *
2787 * This prevents all writes to the buffer. Any attempt to write
2788 * to the buffer after this will fail and return NULL.
2789 *
2790 * The caller should call synchronize_sched() after this.
2791 */
2792void ring_buffer_record_disable(struct ring_buffer *buffer)
2793{
2794	atomic_inc(&buffer->record_disabled);
2795}
2796EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2797
2798/**
2799 * ring_buffer_record_enable - enable writes to the buffer
2800 * @buffer: The ring buffer to enable writes
2801 *
2802 * Note, multiple disables will need the same number of enables
2803 * to truly enable the writing (much like preempt_disable).
2804 */
2805void ring_buffer_record_enable(struct ring_buffer *buffer)
2806{
2807	atomic_dec(&buffer->record_disabled);
2808}
2809EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2810
2811/**
2812 * ring_buffer_record_off - stop all writes into the buffer
2813 * @buffer: The ring buffer to stop writes to.
2814 *
2815 * This prevents all writes to the buffer. Any attempt to write
2816 * to the buffer after this will fail and return NULL.
2817 *
2818 * This is different than ring_buffer_record_disable() as
2819 * it works like an on/off switch, where as the disable() verison
2820 * must be paired with a enable().
2821 */
2822void ring_buffer_record_off(struct ring_buffer *buffer)
2823{
2824	unsigned int rd;
2825	unsigned int new_rd;
2826
2827	do {
2828		rd = atomic_read(&buffer->record_disabled);
2829		new_rd = rd | RB_BUFFER_OFF;
2830	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2831}
2832EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2833
2834/**
2835 * ring_buffer_record_on - restart writes into the buffer
2836 * @buffer: The ring buffer to start writes to.
2837 *
2838 * This enables all writes to the buffer that was disabled by
2839 * ring_buffer_record_off().
2840 *
2841 * This is different than ring_buffer_record_enable() as
2842 * it works like an on/off switch, where as the enable() verison
2843 * must be paired with a disable().
2844 */
2845void ring_buffer_record_on(struct ring_buffer *buffer)
2846{
2847	unsigned int rd;
2848	unsigned int new_rd;
2849
2850	do {
2851		rd = atomic_read(&buffer->record_disabled);
2852		new_rd = rd & ~RB_BUFFER_OFF;
2853	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2854}
2855EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2856
2857/**
2858 * ring_buffer_record_is_on - return true if the ring buffer can write
2859 * @buffer: The ring buffer to see if write is enabled
2860 *
2861 * Returns true if the ring buffer is in a state that it accepts writes.
2862 */
2863int ring_buffer_record_is_on(struct ring_buffer *buffer)
2864{
2865	return !atomic_read(&buffer->record_disabled);
2866}
2867
2868/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870 * @buffer: The ring buffer to stop writes to.
2871 * @cpu: The CPU buffer to stop
2872 *
2873 * This prevents all writes to the buffer. Any attempt to write
2874 * to the buffer after this will fail and return NULL.
2875 *
2876 * The caller should call synchronize_sched() after this.
2877 */
2878void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2879{
2880	struct ring_buffer_per_cpu *cpu_buffer;
2881
2882	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2883		return;
2884
2885	cpu_buffer = buffer->buffers[cpu];
2886	atomic_inc(&cpu_buffer->record_disabled);
2887}
2888EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2889
2890/**
2891 * ring_buffer_record_enable_cpu - enable writes to the buffer
2892 * @buffer: The ring buffer to enable writes
2893 * @cpu: The CPU to enable.
2894 *
2895 * Note, multiple disables will need the same number of enables
2896 * to truly enable the writing (much like preempt_disable).
2897 */
2898void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2899{
2900	struct ring_buffer_per_cpu *cpu_buffer;
2901
2902	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2903		return;
2904
2905	cpu_buffer = buffer->buffers[cpu];
2906	atomic_dec(&cpu_buffer->record_disabled);
2907}
2908EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2909
2910/*
2911 * The total entries in the ring buffer is the running counter
2912 * of entries entered into the ring buffer, minus the sum of
2913 * the entries read from the ring buffer and the number of
2914 * entries that were overwritten.
2915 */
2916static inline unsigned long
2917rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2918{
2919	return local_read(&cpu_buffer->entries) -
2920		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2921}
2922
2923/**
2924 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925 * @buffer: The ring buffer
2926 * @cpu: The per CPU buffer to read from.
2927 */
2928unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2929{
2930	unsigned long flags;
2931	struct ring_buffer_per_cpu *cpu_buffer;
2932	struct buffer_page *bpage;
2933	unsigned long ret;
2934
2935	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936		return 0;
2937
2938	cpu_buffer = buffer->buffers[cpu];
2939	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2940	/*
2941	 * if the tail is on reader_page, oldest time stamp is on the reader
2942	 * page
2943	 */
2944	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945		bpage = cpu_buffer->reader_page;
2946	else
2947		bpage = rb_set_head_page(cpu_buffer);
2948	ret = bpage->page->time_stamp;
 
2949	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2954
2955/**
2956 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957 * @buffer: The ring buffer
2958 * @cpu: The per CPU buffer to read from.
2959 */
2960unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2961{
2962	struct ring_buffer_per_cpu *cpu_buffer;
2963	unsigned long ret;
2964
2965	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966		return 0;
2967
2968	cpu_buffer = buffer->buffers[cpu];
2969	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2970
2971	return ret;
2972}
2973EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2974
2975/**
2976 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977 * @buffer: The ring buffer
2978 * @cpu: The per CPU buffer to get the entries from.
2979 */
2980unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2981{
2982	struct ring_buffer_per_cpu *cpu_buffer;
2983
2984	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2985		return 0;
2986
2987	cpu_buffer = buffer->buffers[cpu];
2988
2989	return rb_num_of_entries(cpu_buffer);
2990}
2991EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2992
2993/**
2994 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
 
2995 * @buffer: The ring buffer
2996 * @cpu: The per CPU buffer to get the number of overruns from
2997 */
2998unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999{
3000	struct ring_buffer_per_cpu *cpu_buffer;
3001	unsigned long ret;
3002
3003	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004		return 0;
3005
3006	cpu_buffer = buffer->buffers[cpu];
3007	ret = local_read(&cpu_buffer->overrun);
3008
3009	return ret;
3010}
3011EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3012
3013/**
3014 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
 
 
3015 * @buffer: The ring buffer
3016 * @cpu: The per CPU buffer to get the number of overruns from
3017 */
3018unsigned long
3019ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3020{
3021	struct ring_buffer_per_cpu *cpu_buffer;
3022	unsigned long ret;
3023
3024	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025		return 0;
3026
3027	cpu_buffer = buffer->buffers[cpu];
3028	ret = local_read(&cpu_buffer->commit_overrun);
3029
3030	return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3033
3034/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035 * ring_buffer_entries - get the number of entries in a buffer
3036 * @buffer: The ring buffer
3037 *
3038 * Returns the total number of entries in the ring buffer
3039 * (all CPU entries)
3040 */
3041unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3042{
3043	struct ring_buffer_per_cpu *cpu_buffer;
3044	unsigned long entries = 0;
3045	int cpu;
3046
3047	/* if you care about this being correct, lock the buffer */
3048	for_each_buffer_cpu(buffer, cpu) {
3049		cpu_buffer = buffer->buffers[cpu];
3050		entries += rb_num_of_entries(cpu_buffer);
3051	}
3052
3053	return entries;
3054}
3055EXPORT_SYMBOL_GPL(ring_buffer_entries);
3056
3057/**
3058 * ring_buffer_overruns - get the number of overruns in buffer
3059 * @buffer: The ring buffer
3060 *
3061 * Returns the total number of overruns in the ring buffer
3062 * (all CPU entries)
3063 */
3064unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3065{
3066	struct ring_buffer_per_cpu *cpu_buffer;
3067	unsigned long overruns = 0;
3068	int cpu;
3069
3070	/* if you care about this being correct, lock the buffer */
3071	for_each_buffer_cpu(buffer, cpu) {
3072		cpu_buffer = buffer->buffers[cpu];
3073		overruns += local_read(&cpu_buffer->overrun);
3074	}
3075
3076	return overruns;
3077}
3078EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3079
3080static void rb_iter_reset(struct ring_buffer_iter *iter)
3081{
3082	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3083
3084	/* Iterator usage is expected to have record disabled */
3085	if (list_empty(&cpu_buffer->reader_page->list)) {
3086		iter->head_page = rb_set_head_page(cpu_buffer);
3087		if (unlikely(!iter->head_page))
3088			return;
3089		iter->head = iter->head_page->read;
 
 
 
 
 
3090	} else {
3091		iter->head_page = cpu_buffer->reader_page;
3092		iter->head = cpu_buffer->reader_page->read;
3093	}
3094	if (iter->head)
3095		iter->read_stamp = cpu_buffer->read_stamp;
3096	else
3097		iter->read_stamp = iter->head_page->page->time_stamp;
3098	iter->cache_reader_page = cpu_buffer->reader_page;
3099	iter->cache_read = cpu_buffer->read;
3100}
3101
3102/**
3103 * ring_buffer_iter_reset - reset an iterator
3104 * @iter: The iterator to reset
3105 *
3106 * Resets the iterator, so that it will start from the beginning
3107 * again.
3108 */
3109void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3110{
3111	struct ring_buffer_per_cpu *cpu_buffer;
3112	unsigned long flags;
3113
3114	if (!iter)
3115		return;
3116
3117	cpu_buffer = iter->cpu_buffer;
3118
3119	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3120	rb_iter_reset(iter);
3121	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3122}
3123EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3124
3125/**
3126 * ring_buffer_iter_empty - check if an iterator has no more to read
3127 * @iter: The iterator to check
3128 */
3129int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3130{
3131	struct ring_buffer_per_cpu *cpu_buffer;
 
 
 
 
 
 
 
3132
3133	cpu_buffer = iter->cpu_buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3134
3135	return iter->head_page == cpu_buffer->commit_page &&
3136		iter->head == rb_commit_index(cpu_buffer);
 
 
 
3137}
3138EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3139
3140static void
3141rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142		     struct ring_buffer_event *event)
3143{
3144	u64 delta;
3145
3146	switch (event->type_len) {
3147	case RINGBUF_TYPE_PADDING:
3148		return;
3149
3150	case RINGBUF_TYPE_TIME_EXTEND:
3151		delta = event->array[0];
3152		delta <<= TS_SHIFT;
3153		delta += event->time_delta;
3154		cpu_buffer->read_stamp += delta;
3155		return;
3156
3157	case RINGBUF_TYPE_TIME_STAMP:
3158		/* FIXME: not implemented */
 
 
3159		return;
3160
3161	case RINGBUF_TYPE_DATA:
3162		cpu_buffer->read_stamp += event->time_delta;
3163		return;
3164
3165	default:
3166		BUG();
3167	}
3168	return;
3169}
3170
3171static void
3172rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173			  struct ring_buffer_event *event)
3174{
3175	u64 delta;
3176
3177	switch (event->type_len) {
3178	case RINGBUF_TYPE_PADDING:
3179		return;
3180
3181	case RINGBUF_TYPE_TIME_EXTEND:
3182		delta = event->array[0];
3183		delta <<= TS_SHIFT;
3184		delta += event->time_delta;
3185		iter->read_stamp += delta;
3186		return;
3187
3188	case RINGBUF_TYPE_TIME_STAMP:
3189		/* FIXME: not implemented */
 
 
3190		return;
3191
3192	case RINGBUF_TYPE_DATA:
3193		iter->read_stamp += event->time_delta;
3194		return;
3195
3196	default:
3197		BUG();
3198	}
3199	return;
3200}
3201
3202static struct buffer_page *
3203rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3204{
3205	struct buffer_page *reader = NULL;
3206	unsigned long overwrite;
3207	unsigned long flags;
3208	int nr_loops = 0;
3209	int ret;
3210
3211	local_irq_save(flags);
3212	arch_spin_lock(&cpu_buffer->lock);
3213
3214 again:
3215	/*
3216	 * This should normally only loop twice. But because the
3217	 * start of the reader inserts an empty page, it causes
3218	 * a case where we will loop three times. There should be no
3219	 * reason to loop four times (that I know of).
3220	 */
3221	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3222		reader = NULL;
3223		goto out;
3224	}
3225
3226	reader = cpu_buffer->reader_page;
3227
3228	/* If there's more to read, return this page */
3229	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3230		goto out;
3231
3232	/* Never should we have an index greater than the size */
3233	if (RB_WARN_ON(cpu_buffer,
3234		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3235		goto out;
3236
3237	/* check if we caught up to the tail */
3238	reader = NULL;
3239	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3240		goto out;
3241
 
 
 
 
3242	/*
3243	 * Reset the reader page to size zero.
3244	 */
3245	local_set(&cpu_buffer->reader_page->write, 0);
3246	local_set(&cpu_buffer->reader_page->entries, 0);
3247	local_set(&cpu_buffer->reader_page->page->commit, 0);
3248	cpu_buffer->reader_page->real_end = 0;
3249
3250 spin:
3251	/*
3252	 * Splice the empty reader page into the list around the head.
3253	 */
3254	reader = rb_set_head_page(cpu_buffer);
 
 
3255	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3256	cpu_buffer->reader_page->list.prev = reader->list.prev;
3257
3258	/*
3259	 * cpu_buffer->pages just needs to point to the buffer, it
3260	 *  has no specific buffer page to point to. Lets move it out
3261	 *  of our way so we don't accidentally swap it.
3262	 */
3263	cpu_buffer->pages = reader->list.prev;
3264
3265	/* The reader page will be pointing to the new head */
3266	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3267
3268	/*
3269	 * We want to make sure we read the overruns after we set up our
3270	 * pointers to the next object. The writer side does a
3271	 * cmpxchg to cross pages which acts as the mb on the writer
3272	 * side. Note, the reader will constantly fail the swap
3273	 * while the writer is updating the pointers, so this
3274	 * guarantees that the overwrite recorded here is the one we
3275	 * want to compare with the last_overrun.
3276	 */
3277	smp_mb();
3278	overwrite = local_read(&(cpu_buffer->overrun));
3279
3280	/*
3281	 * Here's the tricky part.
3282	 *
3283	 * We need to move the pointer past the header page.
3284	 * But we can only do that if a writer is not currently
3285	 * moving it. The page before the header page has the
3286	 * flag bit '1' set if it is pointing to the page we want.
3287	 * but if the writer is in the process of moving it
3288	 * than it will be '2' or already moved '0'.
3289	 */
3290
3291	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3292
3293	/*
3294	 * If we did not convert it, then we must try again.
3295	 */
3296	if (!ret)
3297		goto spin;
3298
3299	/*
3300	 * Yeah! We succeeded in replacing the page.
3301	 *
3302	 * Now make the new head point back to the reader page.
3303	 */
3304	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3305	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
 
 
3306
3307	/* Finally update the reader page to the new head */
3308	cpu_buffer->reader_page = reader;
3309	rb_reset_reader_page(cpu_buffer);
3310
3311	if (overwrite != cpu_buffer->last_overrun) {
3312		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3313		cpu_buffer->last_overrun = overwrite;
3314	}
3315
3316	goto again;
3317
3318 out:
 
 
 
 
3319	arch_spin_unlock(&cpu_buffer->lock);
3320	local_irq_restore(flags);
3321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3322	return reader;
3323}
3324
3325static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3326{
3327	struct ring_buffer_event *event;
3328	struct buffer_page *reader;
3329	unsigned length;
3330
3331	reader = rb_get_reader_page(cpu_buffer);
3332
3333	/* This function should not be called when buffer is empty */
3334	if (RB_WARN_ON(cpu_buffer, !reader))
3335		return;
3336
3337	event = rb_reader_event(cpu_buffer);
3338
3339	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3340		cpu_buffer->read++;
3341
3342	rb_update_read_stamp(cpu_buffer, event);
3343
3344	length = rb_event_length(event);
3345	cpu_buffer->reader_page->read += length;
3346}
3347
3348static void rb_advance_iter(struct ring_buffer_iter *iter)
3349{
3350	struct ring_buffer_per_cpu *cpu_buffer;
3351	struct ring_buffer_event *event;
3352	unsigned length;
3353
3354	cpu_buffer = iter->cpu_buffer;
3355
 
 
 
 
 
 
 
 
 
3356	/*
3357	 * Check if we are at the end of the buffer.
3358	 */
3359	if (iter->head >= rb_page_size(iter->head_page)) {
3360		/* discarded commits can make the page empty */
3361		if (iter->head_page == cpu_buffer->commit_page)
3362			return;
3363		rb_inc_iter(iter);
3364		return;
3365	}
3366
3367	event = rb_iter_head_event(iter);
3368
3369	length = rb_event_length(event);
3370
3371	/*
3372	 * This should not be called to advance the header if we are
3373	 * at the tail of the buffer.
3374	 */
3375	if (RB_WARN_ON(cpu_buffer,
3376		       (iter->head_page == cpu_buffer->commit_page) &&
3377		       (iter->head + length > rb_commit_index(cpu_buffer))))
3378		return;
3379
3380	rb_update_iter_read_stamp(iter, event);
3381
3382	iter->head += length;
3383
3384	/* check for end of page padding */
3385	if ((iter->head >= rb_page_size(iter->head_page)) &&
3386	    (iter->head_page != cpu_buffer->commit_page))
3387		rb_advance_iter(iter);
3388}
3389
3390static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3391{
3392	return cpu_buffer->lost_events;
3393}
3394
3395static struct ring_buffer_event *
3396rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3397	       unsigned long *lost_events)
3398{
3399	struct ring_buffer_event *event;
3400	struct buffer_page *reader;
3401	int nr_loops = 0;
3402
 
 
3403 again:
3404	/*
3405	 * We repeat when a time extend is encountered.
3406	 * Since the time extend is always attached to a data event,
3407	 * we should never loop more than once.
3408	 * (We never hit the following condition more than twice).
3409	 */
3410	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3411		return NULL;
3412
3413	reader = rb_get_reader_page(cpu_buffer);
3414	if (!reader)
3415		return NULL;
3416
3417	event = rb_reader_event(cpu_buffer);
3418
3419	switch (event->type_len) {
3420	case RINGBUF_TYPE_PADDING:
3421		if (rb_null_event(event))
3422			RB_WARN_ON(cpu_buffer, 1);
3423		/*
3424		 * Because the writer could be discarding every
3425		 * event it creates (which would probably be bad)
3426		 * if we were to go back to "again" then we may never
3427		 * catch up, and will trigger the warn on, or lock
3428		 * the box. Return the padding, and we will release
3429		 * the current locks, and try again.
3430		 */
3431		return event;
3432
3433	case RINGBUF_TYPE_TIME_EXTEND:
3434		/* Internal data, OK to advance */
3435		rb_advance_reader(cpu_buffer);
3436		goto again;
3437
3438	case RINGBUF_TYPE_TIME_STAMP:
3439		/* FIXME: not implemented */
 
 
 
 
 
 
3440		rb_advance_reader(cpu_buffer);
3441		goto again;
3442
3443	case RINGBUF_TYPE_DATA:
3444		if (ts) {
3445			*ts = cpu_buffer->read_stamp + event->time_delta;
3446			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3447							 cpu_buffer->cpu, ts);
3448		}
3449		if (lost_events)
3450			*lost_events = rb_lost_events(cpu_buffer);
3451		return event;
3452
3453	default:
3454		BUG();
3455	}
3456
3457	return NULL;
3458}
3459EXPORT_SYMBOL_GPL(ring_buffer_peek);
3460
3461static struct ring_buffer_event *
3462rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3463{
3464	struct ring_buffer *buffer;
3465	struct ring_buffer_per_cpu *cpu_buffer;
3466	struct ring_buffer_event *event;
3467	int nr_loops = 0;
3468
 
 
 
3469	cpu_buffer = iter->cpu_buffer;
3470	buffer = cpu_buffer->buffer;
3471
3472	/*
3473	 * Check if someone performed a consuming read to
3474	 * the buffer. A consuming read invalidates the iterator
3475	 * and we need to reset the iterator in this case.
3476	 */
3477	if (unlikely(iter->cache_read != cpu_buffer->read ||
3478		     iter->cache_reader_page != cpu_buffer->reader_page))
3479		rb_iter_reset(iter);
3480
3481 again:
3482	if (ring_buffer_iter_empty(iter))
3483		return NULL;
3484
3485	/*
3486	 * We repeat when a time extend is encountered.
3487	 * Since the time extend is always attached to a data event,
3488	 * we should never loop more than once.
3489	 * (We never hit the following condition more than twice).
 
3490	 */
3491	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3492		return NULL;
3493
3494	if (rb_per_cpu_empty(cpu_buffer))
3495		return NULL;
3496
3497	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3498		rb_inc_iter(iter);
3499		goto again;
3500	}
3501
3502	event = rb_iter_head_event(iter);
 
 
3503
3504	switch (event->type_len) {
3505	case RINGBUF_TYPE_PADDING:
3506		if (rb_null_event(event)) {
3507			rb_inc_iter(iter);
3508			goto again;
3509		}
3510		rb_advance_iter(iter);
3511		return event;
3512
3513	case RINGBUF_TYPE_TIME_EXTEND:
3514		/* Internal data, OK to advance */
3515		rb_advance_iter(iter);
3516		goto again;
3517
3518	case RINGBUF_TYPE_TIME_STAMP:
3519		/* FIXME: not implemented */
 
 
 
 
 
 
3520		rb_advance_iter(iter);
3521		goto again;
3522
3523	case RINGBUF_TYPE_DATA:
3524		if (ts) {
3525			*ts = iter->read_stamp + event->time_delta;
3526			ring_buffer_normalize_time_stamp(buffer,
3527							 cpu_buffer->cpu, ts);
3528		}
3529		return event;
3530
3531	default:
3532		BUG();
3533	}
3534
3535	return NULL;
3536}
3537EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3538
3539static inline int rb_ok_to_lock(void)
3540{
 
 
 
 
 
3541	/*
3542	 * If an NMI die dumps out the content of the ring buffer
3543	 * do not grab locks. We also permanently disable the ring
3544	 * buffer too. A one time deal is all you get from reading
3545	 * the ring buffer from an NMI.
 
 
 
3546	 */
3547	if (likely(!in_nmi()))
3548		return 1;
 
 
 
 
 
3549
3550	tracing_off_permanent();
3551	return 0;
 
 
 
 
3552}
3553
3554/**
3555 * ring_buffer_peek - peek at the next event to be read
3556 * @buffer: The ring buffer to read
3557 * @cpu: The cpu to peak at
3558 * @ts: The timestamp counter of this event.
3559 * @lost_events: a variable to store if events were lost (may be NULL)
3560 *
3561 * This will return the event that will be read next, but does
3562 * not consume the data.
3563 */
3564struct ring_buffer_event *
3565ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3566		 unsigned long *lost_events)
3567{
3568	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3569	struct ring_buffer_event *event;
3570	unsigned long flags;
3571	int dolock;
3572
3573	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3574		return NULL;
3575
3576	dolock = rb_ok_to_lock();
3577 again:
3578	local_irq_save(flags);
3579	if (dolock)
3580		raw_spin_lock(&cpu_buffer->reader_lock);
3581	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3582	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3583		rb_advance_reader(cpu_buffer);
3584	if (dolock)
3585		raw_spin_unlock(&cpu_buffer->reader_lock);
3586	local_irq_restore(flags);
3587
3588	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3589		goto again;
3590
3591	return event;
3592}
3593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3594/**
3595 * ring_buffer_iter_peek - peek at the next event to be read
3596 * @iter: The ring buffer iterator
3597 * @ts: The timestamp counter of this event.
3598 *
3599 * This will return the event that will be read next, but does
3600 * not increment the iterator.
3601 */
3602struct ring_buffer_event *
3603ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3604{
3605	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3606	struct ring_buffer_event *event;
3607	unsigned long flags;
3608
3609 again:
3610	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3611	event = rb_iter_peek(iter, ts);
3612	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3613
3614	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3615		goto again;
3616
3617	return event;
3618}
3619
3620/**
3621 * ring_buffer_consume - return an event and consume it
3622 * @buffer: The ring buffer to get the next event from
3623 * @cpu: the cpu to read the buffer from
3624 * @ts: a variable to store the timestamp (may be NULL)
3625 * @lost_events: a variable to store if events were lost (may be NULL)
3626 *
3627 * Returns the next event in the ring buffer, and that event is consumed.
3628 * Meaning, that sequential reads will keep returning a different event,
3629 * and eventually empty the ring buffer if the producer is slower.
3630 */
3631struct ring_buffer_event *
3632ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3633		    unsigned long *lost_events)
3634{
3635	struct ring_buffer_per_cpu *cpu_buffer;
3636	struct ring_buffer_event *event = NULL;
3637	unsigned long flags;
3638	int dolock;
3639
3640	dolock = rb_ok_to_lock();
3641
3642 again:
3643	/* might be called in atomic */
3644	preempt_disable();
3645
3646	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3647		goto out;
3648
3649	cpu_buffer = buffer->buffers[cpu];
3650	local_irq_save(flags);
3651	if (dolock)
3652		raw_spin_lock(&cpu_buffer->reader_lock);
3653
3654	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3655	if (event) {
3656		cpu_buffer->lost_events = 0;
3657		rb_advance_reader(cpu_buffer);
3658	}
3659
3660	if (dolock)
3661		raw_spin_unlock(&cpu_buffer->reader_lock);
3662	local_irq_restore(flags);
3663
3664 out:
3665	preempt_enable();
3666
3667	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3668		goto again;
3669
3670	return event;
3671}
3672EXPORT_SYMBOL_GPL(ring_buffer_consume);
3673
3674/**
3675 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3676 * @buffer: The ring buffer to read from
3677 * @cpu: The cpu buffer to iterate over
 
3678 *
3679 * This performs the initial preparations necessary to iterate
3680 * through the buffer.  Memory is allocated, buffer recording
3681 * is disabled, and the iterator pointer is returned to the caller.
3682 *
3683 * Disabling buffer recordng prevents the reading from being
3684 * corrupted. This is not a consuming read, so a producer is not
3685 * expected.
3686 *
3687 * After a sequence of ring_buffer_read_prepare calls, the user is
3688 * expected to make at least one call to ring_buffer_prepare_sync.
3689 * Afterwards, ring_buffer_read_start is invoked to get things going
3690 * for real.
3691 *
3692 * This overall must be paired with ring_buffer_finish.
3693 */
3694struct ring_buffer_iter *
3695ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3696{
3697	struct ring_buffer_per_cpu *cpu_buffer;
3698	struct ring_buffer_iter *iter;
3699
3700	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3701		return NULL;
3702
3703	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3704	if (!iter)
3705		return NULL;
3706
 
 
 
 
 
 
3707	cpu_buffer = buffer->buffers[cpu];
3708
3709	iter->cpu_buffer = cpu_buffer;
3710
3711	atomic_inc(&buffer->resize_disabled);
3712	atomic_inc(&cpu_buffer->record_disabled);
3713
3714	return iter;
3715}
3716EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3717
3718/**
3719 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3720 *
3721 * All previously invoked ring_buffer_read_prepare calls to prepare
3722 * iterators will be synchronized.  Afterwards, read_buffer_read_start
3723 * calls on those iterators are allowed.
3724 */
3725void
3726ring_buffer_read_prepare_sync(void)
3727{
3728	synchronize_sched();
3729}
3730EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3731
3732/**
3733 * ring_buffer_read_start - start a non consuming read of the buffer
3734 * @iter: The iterator returned by ring_buffer_read_prepare
3735 *
3736 * This finalizes the startup of an iteration through the buffer.
3737 * The iterator comes from a call to ring_buffer_read_prepare and
3738 * an intervening ring_buffer_read_prepare_sync must have been
3739 * performed.
3740 *
3741 * Must be paired with ring_buffer_finish.
3742 */
3743void
3744ring_buffer_read_start(struct ring_buffer_iter *iter)
3745{
3746	struct ring_buffer_per_cpu *cpu_buffer;
3747	unsigned long flags;
3748
3749	if (!iter)
3750		return;
3751
3752	cpu_buffer = iter->cpu_buffer;
3753
3754	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3755	arch_spin_lock(&cpu_buffer->lock);
3756	rb_iter_reset(iter);
3757	arch_spin_unlock(&cpu_buffer->lock);
3758	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3759}
3760EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3761
3762/**
3763 * ring_buffer_finish - finish reading the iterator of the buffer
3764 * @iter: The iterator retrieved by ring_buffer_start
3765 *
3766 * This re-enables the recording to the buffer, and frees the
3767 * iterator.
3768 */
3769void
3770ring_buffer_read_finish(struct ring_buffer_iter *iter)
3771{
3772	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
3773
3774	/*
3775	 * Ring buffer is disabled from recording, here's a good place
3776	 * to check the integrity of the ring buffer. 
 
 
3777	 */
 
3778	rb_check_pages(cpu_buffer);
 
3779
3780	atomic_dec(&cpu_buffer->record_disabled);
3781	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3782	kfree(iter);
3783}
3784EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3785
3786/**
3787 * ring_buffer_read - read the next item in the ring buffer by the iterator
3788 * @iter: The ring buffer iterator
3789 * @ts: The time stamp of the event read.
3790 *
3791 * This reads the next event in the ring buffer and increments the iterator.
 
3792 */
3793struct ring_buffer_event *
3794ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3795{
3796	struct ring_buffer_event *event;
3797	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3798	unsigned long flags;
3799
3800	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3801 again:
3802	event = rb_iter_peek(iter, ts);
3803	if (!event)
3804		goto out;
3805
3806	if (event->type_len == RINGBUF_TYPE_PADDING)
3807		goto again;
3808
3809	rb_advance_iter(iter);
3810 out:
3811	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3812
3813	return event;
3814}
3815EXPORT_SYMBOL_GPL(ring_buffer_read);
3816
3817/**
3818 * ring_buffer_size - return the size of the ring buffer (in bytes)
3819 * @buffer: The ring buffer.
 
3820 */
3821unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3822{
3823	/*
3824	 * Earlier, this method returned
3825	 *	BUF_PAGE_SIZE * buffer->nr_pages
3826	 * Since the nr_pages field is now removed, we have converted this to
3827	 * return the per cpu buffer value.
3828	 */
3829	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3830		return 0;
3831
3832	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3833}
3834EXPORT_SYMBOL_GPL(ring_buffer_size);
3835
3836static void
3837rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3838{
3839	rb_head_page_deactivate(cpu_buffer);
3840
3841	cpu_buffer->head_page
3842		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3843	local_set(&cpu_buffer->head_page->write, 0);
3844	local_set(&cpu_buffer->head_page->entries, 0);
3845	local_set(&cpu_buffer->head_page->page->commit, 0);
3846
3847	cpu_buffer->head_page->read = 0;
3848
3849	cpu_buffer->tail_page = cpu_buffer->head_page;
3850	cpu_buffer->commit_page = cpu_buffer->head_page;
3851
3852	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3853	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3854	local_set(&cpu_buffer->reader_page->write, 0);
3855	local_set(&cpu_buffer->reader_page->entries, 0);
3856	local_set(&cpu_buffer->reader_page->page->commit, 0);
3857	cpu_buffer->reader_page->read = 0;
3858
3859	local_set(&cpu_buffer->commit_overrun, 0);
3860	local_set(&cpu_buffer->entries_bytes, 0);
3861	local_set(&cpu_buffer->overrun, 0);
 
 
3862	local_set(&cpu_buffer->entries, 0);
3863	local_set(&cpu_buffer->committing, 0);
3864	local_set(&cpu_buffer->commits, 0);
 
 
 
 
 
3865	cpu_buffer->read = 0;
3866	cpu_buffer->read_bytes = 0;
3867
3868	cpu_buffer->write_stamp = 0;
3869	cpu_buffer->read_stamp = 0;
 
 
3870
3871	cpu_buffer->lost_events = 0;
3872	cpu_buffer->last_overrun = 0;
3873
3874	rb_head_page_activate(cpu_buffer);
3875}
3876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3877/**
3878 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3879 * @buffer: The ring buffer to reset a per cpu buffer of
3880 * @cpu: The CPU buffer to be reset
3881 */
3882void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3883{
3884	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885	unsigned long flags;
3886
3887	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3888		return;
3889
3890	atomic_inc(&buffer->resize_disabled);
 
 
 
3891	atomic_inc(&cpu_buffer->record_disabled);
3892
3893	/* Make sure all commits have finished */
3894	synchronize_sched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3895
3896	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
3897
3898	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3899		goto out;
 
3900
3901	arch_spin_lock(&cpu_buffer->lock);
 
3902
3903	rb_reset_cpu(cpu_buffer);
 
3904
3905	arch_spin_unlock(&cpu_buffer->lock);
3906
3907 out:
3908	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
3909
3910	atomic_dec(&cpu_buffer->record_disabled);
3911	atomic_dec(&buffer->resize_disabled);
3912}
3913EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3914
3915/**
3916 * ring_buffer_reset - reset a ring buffer
3917 * @buffer: The ring buffer to reset all cpu buffers
3918 */
3919void ring_buffer_reset(struct ring_buffer *buffer)
3920{
 
3921	int cpu;
3922
3923	for_each_buffer_cpu(buffer, cpu)
3924		ring_buffer_reset_cpu(buffer, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3925}
3926EXPORT_SYMBOL_GPL(ring_buffer_reset);
3927
3928/**
3929 * rind_buffer_empty - is the ring buffer empty?
3930 * @buffer: The ring buffer to test
3931 */
3932int ring_buffer_empty(struct ring_buffer *buffer)
3933{
3934	struct ring_buffer_per_cpu *cpu_buffer;
3935	unsigned long flags;
3936	int dolock;
3937	int cpu;
3938	int ret;
3939
3940	dolock = rb_ok_to_lock();
3941
3942	/* yes this is racy, but if you don't like the race, lock the buffer */
3943	for_each_buffer_cpu(buffer, cpu) {
3944		cpu_buffer = buffer->buffers[cpu];
3945		local_irq_save(flags);
3946		if (dolock)
3947			raw_spin_lock(&cpu_buffer->reader_lock);
3948		ret = rb_per_cpu_empty(cpu_buffer);
3949		if (dolock)
3950			raw_spin_unlock(&cpu_buffer->reader_lock);
3951		local_irq_restore(flags);
3952
3953		if (!ret)
3954			return 0;
3955	}
3956
3957	return 1;
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_empty);
3960
3961/**
3962 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3963 * @buffer: The ring buffer
3964 * @cpu: The CPU buffer to test
3965 */
3966int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3967{
3968	struct ring_buffer_per_cpu *cpu_buffer;
3969	unsigned long flags;
3970	int dolock;
3971	int ret;
3972
3973	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3974		return 1;
3975
3976	dolock = rb_ok_to_lock();
3977
3978	cpu_buffer = buffer->buffers[cpu];
3979	local_irq_save(flags);
3980	if (dolock)
3981		raw_spin_lock(&cpu_buffer->reader_lock);
3982	ret = rb_per_cpu_empty(cpu_buffer);
3983	if (dolock)
3984		raw_spin_unlock(&cpu_buffer->reader_lock);
3985	local_irq_restore(flags);
3986
3987	return ret;
3988}
3989EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3990
3991#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3992/**
3993 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3994 * @buffer_a: One buffer to swap with
3995 * @buffer_b: The other buffer to swap with
 
3996 *
3997 * This function is useful for tracers that want to take a "snapshot"
3998 * of a CPU buffer and has another back up buffer lying around.
3999 * it is expected that the tracer handles the cpu buffer not being
4000 * used at the moment.
4001 */
4002int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4003			 struct ring_buffer *buffer_b, int cpu)
4004{
4005	struct ring_buffer_per_cpu *cpu_buffer_a;
4006	struct ring_buffer_per_cpu *cpu_buffer_b;
4007	int ret = -EINVAL;
4008
4009	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4010	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4011		goto out;
4012
4013	cpu_buffer_a = buffer_a->buffers[cpu];
4014	cpu_buffer_b = buffer_b->buffers[cpu];
4015
4016	/* At least make sure the two buffers are somewhat the same */
4017	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4018		goto out;
4019
4020	ret = -EAGAIN;
4021
4022	if (ring_buffer_flags != RB_BUFFERS_ON)
4023		goto out;
4024
4025	if (atomic_read(&buffer_a->record_disabled))
4026		goto out;
4027
4028	if (atomic_read(&buffer_b->record_disabled))
4029		goto out;
4030
4031	if (atomic_read(&cpu_buffer_a->record_disabled))
4032		goto out;
4033
4034	if (atomic_read(&cpu_buffer_b->record_disabled))
4035		goto out;
4036
4037	/*
4038	 * We can't do a synchronize_sched here because this
4039	 * function can be called in atomic context.
4040	 * Normally this will be called from the same CPU as cpu.
4041	 * If not it's up to the caller to protect this.
4042	 */
4043	atomic_inc(&cpu_buffer_a->record_disabled);
4044	atomic_inc(&cpu_buffer_b->record_disabled);
4045
4046	ret = -EBUSY;
4047	if (local_read(&cpu_buffer_a->committing))
4048		goto out_dec;
4049	if (local_read(&cpu_buffer_b->committing))
4050		goto out_dec;
4051
4052	buffer_a->buffers[cpu] = cpu_buffer_b;
4053	buffer_b->buffers[cpu] = cpu_buffer_a;
4054
4055	cpu_buffer_b->buffer = buffer_a;
4056	cpu_buffer_a->buffer = buffer_b;
4057
4058	ret = 0;
4059
4060out_dec:
4061	atomic_dec(&cpu_buffer_a->record_disabled);
4062	atomic_dec(&cpu_buffer_b->record_disabled);
4063out:
4064	return ret;
4065}
4066EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4067#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4068
4069/**
4070 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4071 * @buffer: the buffer to allocate for.
 
4072 *
4073 * This function is used in conjunction with ring_buffer_read_page.
4074 * When reading a full page from the ring buffer, these functions
4075 * can be used to speed up the process. The calling function should
4076 * allocate a few pages first with this function. Then when it
4077 * needs to get pages from the ring buffer, it passes the result
4078 * of this function into ring_buffer_read_page, which will swap
4079 * the page that was allocated, with the read page of the buffer.
4080 *
4081 * Returns:
4082 *  The page allocated, or NULL on error.
4083 */
4084void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4085{
4086	struct buffer_data_page *bpage;
 
 
4087	struct page *page;
4088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4089	page = alloc_pages_node(cpu_to_node(cpu),
4090				GFP_KERNEL | __GFP_NORETRY, 0);
4091	if (!page)
4092		return NULL;
4093
4094	bpage = page_address(page);
4095
 
4096	rb_init_page(bpage);
4097
4098	return bpage;
4099}
4100EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4101
4102/**
4103 * ring_buffer_free_read_page - free an allocated read page
4104 * @buffer: the buffer the page was allocate for
 
4105 * @data: the page to free
4106 *
4107 * Free a page allocated from ring_buffer_alloc_read_page.
4108 */
4109void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4110{
4111	free_page((unsigned long)data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4112}
4113EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4114
4115/**
4116 * ring_buffer_read_page - extract a page from the ring buffer
4117 * @buffer: buffer to extract from
4118 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4119 * @len: amount to extract
4120 * @cpu: the cpu of the buffer to extract
4121 * @full: should the extraction only happen when the page is full.
4122 *
4123 * This function will pull out a page from the ring buffer and consume it.
4124 * @data_page must be the address of the variable that was returned
4125 * from ring_buffer_alloc_read_page. This is because the page might be used
4126 * to swap with a page in the ring buffer.
4127 *
4128 * for example:
4129 *	rpage = ring_buffer_alloc_read_page(buffer);
4130 *	if (!rpage)
4131 *		return error;
4132 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4133 *	if (ret >= 0)
4134 *		process_page(rpage, ret);
4135 *
4136 * When @full is set, the function will not return true unless
4137 * the writer is off the reader page.
4138 *
4139 * Note: it is up to the calling functions to handle sleeps and wakeups.
4140 *  The ring buffer can be used anywhere in the kernel and can not
4141 *  blindly call wake_up. The layer that uses the ring buffer must be
4142 *  responsible for that.
4143 *
4144 * Returns:
4145 *  >=0 if data has been transferred, returns the offset of consumed data.
4146 *  <0 if no data has been transferred.
4147 */
4148int ring_buffer_read_page(struct ring_buffer *buffer,
4149			  void **data_page, size_t len, int cpu, int full)
4150{
4151	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4152	struct ring_buffer_event *event;
4153	struct buffer_data_page *bpage;
4154	struct buffer_page *reader;
4155	unsigned long missed_events;
4156	unsigned long flags;
4157	unsigned int commit;
4158	unsigned int read;
4159	u64 save_timestamp;
4160	int ret = -1;
4161
4162	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163		goto out;
4164
4165	/*
4166	 * If len is not big enough to hold the page header, then
4167	 * we can not copy anything.
4168	 */
4169	if (len <= BUF_PAGE_HDR_SIZE)
4170		goto out;
4171
4172	len -= BUF_PAGE_HDR_SIZE;
4173
4174	if (!data_page)
4175		goto out;
4176
4177	bpage = *data_page;
4178	if (!bpage)
4179		goto out;
4180
4181	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4182
4183	reader = rb_get_reader_page(cpu_buffer);
4184	if (!reader)
4185		goto out_unlock;
4186
4187	event = rb_reader_event(cpu_buffer);
4188
4189	read = reader->read;
4190	commit = rb_page_commit(reader);
4191
4192	/* Check if any events were dropped */
4193	missed_events = cpu_buffer->lost_events;
4194
4195	/*
4196	 * If this page has been partially read or
4197	 * if len is not big enough to read the rest of the page or
4198	 * a writer is still on the page, then
4199	 * we must copy the data from the page to the buffer.
4200	 * Otherwise, we can simply swap the page with the one passed in.
4201	 */
4202	if (read || (len < (commit - read)) ||
4203	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4204		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4205		unsigned int rpos = read;
4206		unsigned int pos = 0;
4207		unsigned int size;
4208
4209		if (full)
 
 
 
 
 
 
 
 
4210			goto out_unlock;
4211
4212		if (len > (commit - read))
4213			len = (commit - read);
4214
4215		/* Always keep the time extend and data together */
4216		size = rb_event_ts_length(event);
4217
4218		if (len < size)
4219			goto out_unlock;
4220
4221		/* save the current timestamp, since the user will need it */
4222		save_timestamp = cpu_buffer->read_stamp;
4223
4224		/* Need to copy one event at a time */
4225		do {
4226			/* We need the size of one event, because
4227			 * rb_advance_reader only advances by one event,
4228			 * whereas rb_event_ts_length may include the size of
4229			 * one or two events.
4230			 * We have already ensured there's enough space if this
4231			 * is a time extend. */
4232			size = rb_event_length(event);
4233			memcpy(bpage->data + pos, rpage->data + rpos, size);
4234
4235			len -= size;
4236
4237			rb_advance_reader(cpu_buffer);
4238			rpos = reader->read;
4239			pos += size;
4240
4241			if (rpos >= commit)
4242				break;
4243
4244			event = rb_reader_event(cpu_buffer);
4245			/* Always keep the time extend and data together */
4246			size = rb_event_ts_length(event);
4247		} while (len >= size);
4248
4249		/* update bpage */
4250		local_set(&bpage->commit, pos);
4251		bpage->time_stamp = save_timestamp;
4252
4253		/* we copied everything to the beginning */
4254		read = 0;
4255	} else {
4256		/* update the entry counter */
4257		cpu_buffer->read += rb_page_entries(reader);
4258		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4259
4260		/* swap the pages */
4261		rb_init_page(bpage);
4262		bpage = reader->page;
4263		reader->page = *data_page;
4264		local_set(&reader->write, 0);
4265		local_set(&reader->entries, 0);
4266		reader->read = 0;
4267		*data_page = bpage;
4268
4269		/*
4270		 * Use the real_end for the data size,
4271		 * This gives us a chance to store the lost events
4272		 * on the page.
4273		 */
4274		if (reader->real_end)
4275			local_set(&bpage->commit, reader->real_end);
4276	}
4277	ret = read;
4278
4279	cpu_buffer->lost_events = 0;
4280
4281	commit = local_read(&bpage->commit);
4282	/*
4283	 * Set a flag in the commit field if we lost events
4284	 */
4285	if (missed_events) {
4286		/* If there is room at the end of the page to save the
4287		 * missed events, then record it there.
4288		 */
4289		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4290			memcpy(&bpage->data[commit], &missed_events,
4291			       sizeof(missed_events));
4292			local_add(RB_MISSED_STORED, &bpage->commit);
4293			commit += sizeof(missed_events);
4294		}
4295		local_add(RB_MISSED_EVENTS, &bpage->commit);
4296	}
4297
4298	/*
4299	 * This page may be off to user land. Zero it out here.
4300	 */
4301	if (commit < BUF_PAGE_SIZE)
4302		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4303
4304 out_unlock:
4305	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4306
4307 out:
4308	return ret;
4309}
4310EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4311
4312#ifdef CONFIG_HOTPLUG_CPU
4313static int rb_cpu_notify(struct notifier_block *self,
4314			 unsigned long action, void *hcpu)
4315{
4316	struct ring_buffer *buffer =
4317		container_of(self, struct ring_buffer, cpu_notify);
4318	long cpu = (long)hcpu;
4319	int cpu_i, nr_pages_same;
4320	unsigned int nr_pages;
4321
4322	switch (action) {
4323	case CPU_UP_PREPARE:
4324	case CPU_UP_PREPARE_FROZEN:
4325		if (cpumask_test_cpu(cpu, buffer->cpumask))
4326			return NOTIFY_OK;
4327
4328		nr_pages = 0;
4329		nr_pages_same = 1;
4330		/* check if all cpu sizes are same */
4331		for_each_buffer_cpu(buffer, cpu_i) {
4332			/* fill in the size from first enabled cpu */
4333			if (nr_pages == 0)
4334				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4335			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4336				nr_pages_same = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4337				break;
4338			}
 
4339		}
4340		/* allocate minimum pages, user can later expand it */
4341		if (!nr_pages_same)
4342			nr_pages = 2;
4343		buffer->buffers[cpu] =
4344			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4345		if (!buffer->buffers[cpu]) {
4346			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4347			     cpu);
4348			return NOTIFY_OK;
 
 
 
 
 
 
 
 
4349		}
4350		smp_wmb();
4351		cpumask_set_cpu(cpu, buffer->cpumask);
4352		break;
4353	case CPU_DOWN_PREPARE:
4354	case CPU_DOWN_PREPARE_FROZEN:
4355		/*
4356		 * Do nothing.
4357		 *  If we were to free the buffer, then the user would
4358		 *  lose any trace that was in the buffer.
4359		 */
4360		break;
4361	default:
4362		break;
4363	}
4364	return NOTIFY_OK;
 
 
 
 
4365}
4366#endif