Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * KCSAN core runtime.
   4 *
   5 * Copyright (C) 2019, Google LLC.
   6 */
   7
   8#define pr_fmt(fmt) "kcsan: " fmt
   9
  10#include <linux/atomic.h>
  11#include <linux/bug.h>
  12#include <linux/delay.h>
  13#include <linux/export.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/list.h>
  17#include <linux/minmax.h>
  18#include <linux/moduleparam.h>
  19#include <linux/percpu.h>
  20#include <linux/preempt.h>
  21#include <linux/sched.h>
  22#include <linux/string.h>
  23#include <linux/uaccess.h>
  24
  25#include "encoding.h"
  26#include "kcsan.h"
  27#include "permissive.h"
  28
  29static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
  30unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
  31unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
  32static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
  33static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
  34
  35#ifdef MODULE_PARAM_PREFIX
  36#undef MODULE_PARAM_PREFIX
  37#endif
  38#define MODULE_PARAM_PREFIX "kcsan."
  39module_param_named(early_enable, kcsan_early_enable, bool, 0);
  40module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
  41module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
  42module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
  43module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
  44
  45#ifdef CONFIG_KCSAN_WEAK_MEMORY
  46static bool kcsan_weak_memory = true;
  47module_param_named(weak_memory, kcsan_weak_memory, bool, 0644);
  48#else
  49#define kcsan_weak_memory false
  50#endif
  51
  52bool kcsan_enabled;
  53
  54/* Per-CPU kcsan_ctx for interrupts */
  55static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
  56	.scoped_accesses	= {LIST_POISON1, NULL},
  57};
  58
  59/*
  60 * Helper macros to index into adjacent slots, starting from address slot
  61 * itself, followed by the right and left slots.
  62 *
  63 * The purpose is 2-fold:
  64 *
  65 *	1. if during insertion the address slot is already occupied, check if
  66 *	   any adjacent slots are free;
  67 *	2. accesses that straddle a slot boundary due to size that exceeds a
  68 *	   slot's range may check adjacent slots if any watchpoint matches.
  69 *
  70 * Note that accesses with very large size may still miss a watchpoint; however,
  71 * given this should be rare, this is a reasonable trade-off to make, since this
  72 * will avoid:
  73 *
  74 *	1. excessive contention between watchpoint checks and setup;
  75 *	2. larger number of simultaneous watchpoints without sacrificing
  76 *	   performance.
  77 *
  78 * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
  79 *
  80 *   slot=0:  [ 1,  2,  0]
  81 *   slot=9:  [10, 11,  9]
  82 *   slot=63: [64, 65, 63]
  83 */
  84#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
  85
  86/*
  87 * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
  88 * slot (middle) is fine if we assume that races occur rarely. The set of
  89 * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
  90 * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
  91 */
  92#define SLOT_IDX_FAST(slot, i) (slot + i)
  93
  94/*
  95 * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
  96 * able to safely update and access a watchpoint without introducing locking
  97 * overhead, we encode each watchpoint as a single atomic long. The initial
  98 * zero-initialized state matches INVALID_WATCHPOINT.
  99 *
 100 * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
 101 * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
 102 */
 103static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
 104
 105/*
 106 * Instructions to skip watching counter, used in should_watch(). We use a
 107 * per-CPU counter to avoid excessive contention.
 108 */
 109static DEFINE_PER_CPU(long, kcsan_skip);
 110
 111/* For kcsan_prandom_u32_max(). */
 112static DEFINE_PER_CPU(u32, kcsan_rand_state);
 113
 114static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
 115						      size_t size,
 116						      bool expect_write,
 117						      long *encoded_watchpoint)
 118{
 119	const int slot = watchpoint_slot(addr);
 120	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
 121	atomic_long_t *watchpoint;
 122	unsigned long wp_addr_masked;
 123	size_t wp_size;
 124	bool is_write;
 125	int i;
 126
 127	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
 128
 129	for (i = 0; i < NUM_SLOTS; ++i) {
 130		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
 131		*encoded_watchpoint = atomic_long_read(watchpoint);
 132		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
 133				       &wp_size, &is_write))
 134			continue;
 135
 136		if (expect_write && !is_write)
 137			continue;
 138
 139		/* Check if the watchpoint matches the access. */
 140		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
 141			return watchpoint;
 142	}
 143
 144	return NULL;
 145}
 146
 147static inline atomic_long_t *
 148insert_watchpoint(unsigned long addr, size_t size, bool is_write)
 149{
 150	const int slot = watchpoint_slot(addr);
 151	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
 152	atomic_long_t *watchpoint;
 153	int i;
 154
 155	/* Check slot index logic, ensuring we stay within array bounds. */
 156	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
 157	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
 158	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
 159	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
 160
 161	for (i = 0; i < NUM_SLOTS; ++i) {
 162		long expect_val = INVALID_WATCHPOINT;
 163
 164		/* Try to acquire this slot. */
 165		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
 166		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
 167			return watchpoint;
 168	}
 169
 170	return NULL;
 171}
 172
 173/*
 174 * Return true if watchpoint was successfully consumed, false otherwise.
 175 *
 176 * This may return false if:
 177 *
 178 *	1. another thread already consumed the watchpoint;
 179 *	2. the thread that set up the watchpoint already removed it;
 180 *	3. the watchpoint was removed and then re-used.
 181 */
 182static __always_inline bool
 183try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
 184{
 185	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
 186}
 187
 188/* Return true if watchpoint was not touched, false if already consumed. */
 189static inline bool consume_watchpoint(atomic_long_t *watchpoint)
 190{
 191	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
 192}
 193
 194/* Remove the watchpoint -- its slot may be reused after. */
 195static inline void remove_watchpoint(atomic_long_t *watchpoint)
 196{
 197	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
 198}
 199
 200static __always_inline struct kcsan_ctx *get_ctx(void)
 201{
 202	/*
 203	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
 204	 * also result in calls that generate warnings in uaccess regions.
 205	 */
 206	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
 207}
 208
 209static __always_inline void
 210check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
 211
 212/* Check scoped accesses; never inline because this is a slow-path! */
 213static noinline void kcsan_check_scoped_accesses(void)
 214{
 215	struct kcsan_ctx *ctx = get_ctx();
 216	struct kcsan_scoped_access *scoped_access;
 217
 218	if (ctx->disable_scoped)
 219		return;
 220
 221	ctx->disable_scoped++;
 222	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
 223		check_access(scoped_access->ptr, scoped_access->size,
 224			     scoped_access->type, scoped_access->ip);
 225	}
 226	ctx->disable_scoped--;
 227}
 228
 229/* Rules for generic atomic accesses. Called from fast-path. */
 230static __always_inline bool
 231is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
 232{
 233	if (type & KCSAN_ACCESS_ATOMIC)
 234		return true;
 235
 236	/*
 237	 * Unless explicitly declared atomic, never consider an assertion access
 238	 * as atomic. This allows using them also in atomic regions, such as
 239	 * seqlocks, without implicitly changing their semantics.
 240	 */
 241	if (type & KCSAN_ACCESS_ASSERT)
 242		return false;
 243
 244	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
 245	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
 246	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
 247		return true; /* Assume aligned writes up to word size are atomic. */
 248
 249	if (ctx->atomic_next > 0) {
 250		/*
 251		 * Because we do not have separate contexts for nested
 252		 * interrupts, in case atomic_next is set, we simply assume that
 253		 * the outer interrupt set atomic_next. In the worst case, we
 254		 * will conservatively consider operations as atomic. This is a
 255		 * reasonable trade-off to make, since this case should be
 256		 * extremely rare; however, even if extremely rare, it could
 257		 * lead to false positives otherwise.
 258		 */
 259		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
 260			--ctx->atomic_next; /* in task, or outer interrupt */
 261		return true;
 262	}
 263
 264	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
 265}
 266
 267static __always_inline bool
 268should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
 269{
 270	/*
 271	 * Never set up watchpoints when memory operations are atomic.
 272	 *
 273	 * Need to check this first, before kcsan_skip check below: (1) atomics
 274	 * should not count towards skipped instructions, and (2) to actually
 275	 * decrement kcsan_atomic_next for consecutive instruction stream.
 276	 */
 277	if (is_atomic(ctx, ptr, size, type))
 278		return false;
 279
 280	if (this_cpu_dec_return(kcsan_skip) >= 0)
 281		return false;
 282
 283	/*
 284	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
 285	 * via reset_kcsan_skip() to avoid underflow.
 286	 */
 287
 288	/* this operation should be watched */
 289	return true;
 290}
 291
 292/*
 293 * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
 294 * congruential generator, using constants from "Numerical Recipes".
 295 */
 296static u32 kcsan_prandom_u32_max(u32 ep_ro)
 297{
 298	u32 state = this_cpu_read(kcsan_rand_state);
 299
 300	state = 1664525 * state + 1013904223;
 301	this_cpu_write(kcsan_rand_state, state);
 302
 303	return state % ep_ro;
 304}
 305
 306static inline void reset_kcsan_skip(void)
 307{
 308	long skip_count = kcsan_skip_watch -
 309			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
 310				   kcsan_prandom_u32_max(kcsan_skip_watch) :
 311				   0);
 312	this_cpu_write(kcsan_skip, skip_count);
 313}
 314
 315static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
 316{
 317	return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
 318}
 319
 320/* Introduce delay depending on context and configuration. */
 321static void delay_access(int type)
 322{
 323	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
 324	/* For certain access types, skew the random delay to be longer. */
 325	unsigned int skew_delay_order =
 326		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
 327
 328	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
 329			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
 330			       0;
 331	udelay(delay);
 332}
 333
 334/*
 335 * Reads the instrumented memory for value change detection; value change
 336 * detection is currently done for accesses up to a size of 8 bytes.
 337 */
 338static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size)
 339{
 340	switch (size) {
 341	case 1:  return READ_ONCE(*(const u8 *)ptr);
 342	case 2:  return READ_ONCE(*(const u16 *)ptr);
 343	case 4:  return READ_ONCE(*(const u32 *)ptr);
 344	case 8:  return READ_ONCE(*(const u64 *)ptr);
 345	default: return 0; /* Ignore; we do not diff the values. */
 346	}
 347}
 348
 349void kcsan_save_irqtrace(struct task_struct *task)
 350{
 351#ifdef CONFIG_TRACE_IRQFLAGS
 352	task->kcsan_save_irqtrace = task->irqtrace;
 353#endif
 354}
 355
 356void kcsan_restore_irqtrace(struct task_struct *task)
 357{
 358#ifdef CONFIG_TRACE_IRQFLAGS
 359	task->irqtrace = task->kcsan_save_irqtrace;
 360#endif
 361}
 362
 363static __always_inline int get_kcsan_stack_depth(void)
 364{
 365#ifdef CONFIG_KCSAN_WEAK_MEMORY
 366	return current->kcsan_stack_depth;
 367#else
 368	BUILD_BUG();
 369	return 0;
 370#endif
 371}
 372
 373static __always_inline void add_kcsan_stack_depth(int val)
 374{
 375#ifdef CONFIG_KCSAN_WEAK_MEMORY
 376	current->kcsan_stack_depth += val;
 377#else
 378	BUILD_BUG();
 379#endif
 380}
 381
 382static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx)
 383{
 384#ifdef CONFIG_KCSAN_WEAK_MEMORY
 385	return ctx->disable_scoped ? NULL : &ctx->reorder_access;
 386#else
 387	return NULL;
 388#endif
 389}
 390
 391static __always_inline bool
 392find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
 393		    int type, unsigned long ip)
 394{
 395	struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
 396
 397	if (!reorder_access)
 398		return false;
 399
 400	/*
 401	 * Note: If accesses are repeated while reorder_access is identical,
 402	 * never matches the new access, because !(type & KCSAN_ACCESS_SCOPED).
 403	 */
 404	return reorder_access->ptr == ptr && reorder_access->size == size &&
 405	       reorder_access->type == type && reorder_access->ip == ip;
 406}
 407
 408static inline void
 409set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
 410		   int type, unsigned long ip)
 411{
 412	struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
 413
 414	if (!reorder_access || !kcsan_weak_memory)
 415		return;
 416
 417	/*
 418	 * To avoid nested interrupts or scheduler (which share kcsan_ctx)
 419	 * reading an inconsistent reorder_access, ensure that the below has
 420	 * exclusive access to reorder_access by disallowing concurrent use.
 421	 */
 422	ctx->disable_scoped++;
 423	barrier();
 424	reorder_access->ptr		= ptr;
 425	reorder_access->size		= size;
 426	reorder_access->type		= type | KCSAN_ACCESS_SCOPED;
 427	reorder_access->ip		= ip;
 428	reorder_access->stack_depth	= get_kcsan_stack_depth();
 429	barrier();
 430	ctx->disable_scoped--;
 431}
 432
 433/*
 434 * Pull everything together: check_access() below contains the performance
 435 * critical operations; the fast-path (including check_access) functions should
 436 * all be inlinable by the instrumentation functions.
 437 *
 438 * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
 439 * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
 440 * be filtered from the stacktrace, as well as give them unique names for the
 441 * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
 442 * since they do not access any user memory, but instrumentation is still
 443 * emitted in UACCESS regions.
 444 */
 445
 446static noinline void kcsan_found_watchpoint(const volatile void *ptr,
 447					    size_t size,
 448					    int type,
 449					    unsigned long ip,
 450					    atomic_long_t *watchpoint,
 451					    long encoded_watchpoint)
 452{
 453	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
 454	struct kcsan_ctx *ctx = get_ctx();
 455	unsigned long flags;
 456	bool consumed;
 457
 458	/*
 459	 * We know a watchpoint exists. Let's try to keep the race-window
 460	 * between here and finally consuming the watchpoint below as small as
 461	 * possible -- avoid unneccessarily complex code until consumed.
 462	 */
 463
 464	if (!kcsan_is_enabled(ctx))
 465		return;
 466
 467	/*
 468	 * The access_mask check relies on value-change comparison. To avoid
 469	 * reporting a race where e.g. the writer set up the watchpoint, but the
 470	 * reader has access_mask!=0, we have to ignore the found watchpoint.
 471	 *
 472	 * reorder_access is never created from an access with access_mask set.
 473	 */
 474	if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip))
 475		return;
 476
 477	/*
 478	 * If the other thread does not want to ignore the access, and there was
 479	 * a value change as a result of this thread's operation, we will still
 480	 * generate a report of unknown origin.
 481	 *
 482	 * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
 483	 */
 484	if (!is_assert && kcsan_ignore_address(ptr))
 485		return;
 486
 487	/*
 488	 * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
 489	 * avoid erroneously triggering reports if the context is disabled.
 490	 */
 491	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
 492
 493	/* keep this after try_consume_watchpoint */
 494	flags = user_access_save();
 495
 496	if (consumed) {
 497		kcsan_save_irqtrace(current);
 498		kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
 499		kcsan_restore_irqtrace(current);
 500	} else {
 501		/*
 502		 * The other thread may not print any diagnostics, as it has
 503		 * already removed the watchpoint, or another thread consumed
 504		 * the watchpoint before this thread.
 505		 */
 506		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
 507	}
 508
 509	if (is_assert)
 510		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
 511	else
 512		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
 513
 514	user_access_restore(flags);
 515}
 516
 517static noinline void
 518kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
 519{
 520	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
 521	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
 522	atomic_long_t *watchpoint;
 523	u64 old, new, diff;
 524	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
 525	bool interrupt_watcher = kcsan_interrupt_watcher;
 526	unsigned long ua_flags = user_access_save();
 527	struct kcsan_ctx *ctx = get_ctx();
 528	unsigned long access_mask = ctx->access_mask;
 529	unsigned long irq_flags = 0;
 530	bool is_reorder_access;
 531
 532	/*
 533	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
 534	 * should_watch().
 535	 */
 536	reset_kcsan_skip();
 537
 538	if (!kcsan_is_enabled(ctx))
 539		goto out;
 540
 541	/*
 542	 * Check to-ignore addresses after kcsan_is_enabled(), as we may access
 543	 * memory that is not yet initialized during early boot.
 544	 */
 545	if (!is_assert && kcsan_ignore_address(ptr))
 546		goto out;
 547
 548	if (!check_encodable((unsigned long)ptr, size)) {
 549		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
 550		goto out;
 551	}
 552
 553	/*
 554	 * The local CPU cannot observe reordering of its own accesses, and
 555	 * therefore we need to take care of 2 cases to avoid false positives:
 556	 *
 557	 *	1. Races of the reordered access with interrupts. To avoid, if
 558	 *	   the current access is reorder_access, disable interrupts.
 559	 *	2. Avoid races of scoped accesses from nested interrupts (below).
 560	 */
 561	is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip);
 562	if (is_reorder_access)
 563		interrupt_watcher = false;
 564	/*
 565	 * Avoid races of scoped accesses from nested interrupts (or scheduler).
 566	 * Assume setting up a watchpoint for a non-scoped (normal) access that
 567	 * also conflicts with a current scoped access. In a nested interrupt,
 568	 * which shares the context, it would check a conflicting scoped access.
 569	 * To avoid, disable scoped access checking.
 570	 */
 571	ctx->disable_scoped++;
 572
 573	/*
 574	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
 575	 * runtime is entered for every memory access, and potentially useful
 576	 * information is lost if dirtied by KCSAN.
 577	 */
 578	kcsan_save_irqtrace(current);
 579	if (!interrupt_watcher)
 580		local_irq_save(irq_flags);
 581
 582	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
 583	if (watchpoint == NULL) {
 584		/*
 585		 * Out of capacity: the size of 'watchpoints', and the frequency
 586		 * with which should_watch() returns true should be tweaked so
 587		 * that this case happens very rarely.
 588		 */
 589		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
 590		goto out_unlock;
 591	}
 592
 593	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
 594	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
 595
 596	/*
 597	 * Read the current value, to later check and infer a race if the data
 598	 * was modified via a non-instrumented access, e.g. from a device.
 599	 */
 600	old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size);
 601
 602	/*
 603	 * Delay this thread, to increase probability of observing a racy
 604	 * conflicting access.
 605	 */
 606	delay_access(type);
 607
 608	/*
 609	 * Re-read value, and check if it is as expected; if not, we infer a
 610	 * racy access.
 611	 */
 612	if (!is_reorder_access) {
 613		new = read_instrumented_memory(ptr, size);
 614	} else {
 615		/*
 616		 * Reordered accesses cannot be used for value change detection,
 617		 * because the memory location may no longer be accessible and
 618		 * could result in a fault.
 619		 */
 620		new = 0;
 621		access_mask = 0;
 622	}
 623
 624	diff = old ^ new;
 625	if (access_mask)
 626		diff &= access_mask;
 627
 628	/*
 629	 * Check if we observed a value change.
 630	 *
 631	 * Also check if the data race should be ignored (the rules depend on
 632	 * non-zero diff); if it is to be ignored, the below rules for
 633	 * KCSAN_VALUE_CHANGE_MAYBE apply.
 634	 */
 635	if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
 636		value_change = KCSAN_VALUE_CHANGE_TRUE;
 637
 638	/* Check if this access raced with another. */
 639	if (!consume_watchpoint(watchpoint)) {
 640		/*
 641		 * Depending on the access type, map a value_change of MAYBE to
 642		 * TRUE (always report) or FALSE (never report).
 643		 */
 644		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
 645			if (access_mask != 0) {
 646				/*
 647				 * For access with access_mask, we require a
 648				 * value-change, as it is likely that races on
 649				 * ~access_mask bits are expected.
 650				 */
 651				value_change = KCSAN_VALUE_CHANGE_FALSE;
 652			} else if (size > 8 || is_assert) {
 653				/* Always assume a value-change. */
 654				value_change = KCSAN_VALUE_CHANGE_TRUE;
 655			}
 656		}
 657
 658		/*
 659		 * No need to increment 'data_races' counter, as the racing
 660		 * thread already did.
 661		 *
 662		 * Count 'assert_failures' for each failed ASSERT access,
 663		 * therefore both this thread and the racing thread may
 664		 * increment this counter.
 665		 */
 666		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
 667			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
 668
 669		kcsan_report_known_origin(ptr, size, type, ip,
 670					  value_change, watchpoint - watchpoints,
 671					  old, new, access_mask);
 672	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
 673		/* Inferring a race, since the value should not have changed. */
 674
 675		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
 676		if (is_assert)
 677			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
 678
 679		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
 680			kcsan_report_unknown_origin(ptr, size, type, ip,
 681						    old, new, access_mask);
 682		}
 683	}
 684
 685	/*
 686	 * Remove watchpoint; must be after reporting, since the slot may be
 687	 * reused after this point.
 688	 */
 689	remove_watchpoint(watchpoint);
 690	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
 691
 692out_unlock:
 693	if (!interrupt_watcher)
 694		local_irq_restore(irq_flags);
 695	kcsan_restore_irqtrace(current);
 696	ctx->disable_scoped--;
 697
 698	/*
 699	 * Reordered accesses cannot be used for value change detection,
 700	 * therefore never consider for reordering if access_mask is set.
 701	 * ASSERT_EXCLUSIVE are not real accesses, ignore them as well.
 702	 */
 703	if (!access_mask && !is_assert)
 704		set_reorder_access(ctx, ptr, size, type, ip);
 705out:
 706	user_access_restore(ua_flags);
 707}
 708
 709static __always_inline void
 710check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
 711{
 712	atomic_long_t *watchpoint;
 713	long encoded_watchpoint;
 714
 715	/*
 716	 * Do nothing for 0 sized check; this comparison will be optimized out
 717	 * for constant sized instrumentation (__tsan_{read,write}N).
 718	 */
 719	if (unlikely(size == 0))
 720		return;
 721
 722again:
 723	/*
 724	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
 725	 * user_access_save, as the address that ptr points to is only used to
 726	 * check if a watchpoint exists; ptr is never dereferenced.
 727	 */
 728	watchpoint = find_watchpoint((unsigned long)ptr, size,
 729				     !(type & KCSAN_ACCESS_WRITE),
 730				     &encoded_watchpoint);
 731	/*
 732	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
 733	 * slow-path, as long as no state changes that cause a race to be
 734	 * detected and reported have occurred until kcsan_is_enabled() is
 735	 * checked.
 736	 */
 737
 738	if (unlikely(watchpoint != NULL))
 739		kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
 740	else {
 741		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
 742
 743		if (unlikely(should_watch(ctx, ptr, size, type))) {
 744			kcsan_setup_watchpoint(ptr, size, type, ip);
 745			return;
 746		}
 747
 748		if (!(type & KCSAN_ACCESS_SCOPED)) {
 749			struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
 750
 751			if (reorder_access) {
 752				/*
 753				 * reorder_access check: simulates reordering of
 754				 * the access after subsequent operations.
 755				 */
 756				ptr = reorder_access->ptr;
 757				type = reorder_access->type;
 758				ip = reorder_access->ip;
 759				/*
 760				 * Upon a nested interrupt, this context's
 761				 * reorder_access can be modified (shared ctx).
 762				 * We know that upon return, reorder_access is
 763				 * always invalidated by setting size to 0 via
 764				 * __tsan_func_exit(). Therefore we must read
 765				 * and check size after the other fields.
 766				 */
 767				barrier();
 768				size = READ_ONCE(reorder_access->size);
 769				if (size)
 770					goto again;
 771			}
 772		}
 773
 774		/*
 775		 * Always checked last, right before returning from runtime;
 776		 * if reorder_access is valid, checked after it was checked.
 777		 */
 778		if (unlikely(ctx->scoped_accesses.prev))
 779			kcsan_check_scoped_accesses();
 780	}
 781}
 782
 783/* === Public interface ===================================================== */
 784
 785void __init kcsan_init(void)
 786{
 787	int cpu;
 788
 789	BUG_ON(!in_task());
 790
 791	for_each_possible_cpu(cpu)
 792		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
 793
 794	/*
 795	 * We are in the init task, and no other tasks should be running;
 796	 * WRITE_ONCE without memory barrier is sufficient.
 797	 */
 798	if (kcsan_early_enable) {
 799		pr_info("enabled early\n");
 800		WRITE_ONCE(kcsan_enabled, true);
 801	}
 802
 803	if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
 804	    IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
 805	    IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
 806	    IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
 807		pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
 808	} else {
 809		pr_info("strict mode configured\n");
 810	}
 811}
 812
 813/* === Exported interface =================================================== */
 814
 815void kcsan_disable_current(void)
 816{
 817	++get_ctx()->disable_count;
 818}
 819EXPORT_SYMBOL(kcsan_disable_current);
 820
 821void kcsan_enable_current(void)
 822{
 823	if (get_ctx()->disable_count-- == 0) {
 824		/*
 825		 * Warn if kcsan_enable_current() calls are unbalanced with
 826		 * kcsan_disable_current() calls, which causes disable_count to
 827		 * become negative and should not happen.
 828		 */
 829		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
 830		kcsan_disable_current(); /* disable to generate warning */
 831		WARN(1, "Unbalanced %s()", __func__);
 832		kcsan_enable_current();
 833	}
 834}
 835EXPORT_SYMBOL(kcsan_enable_current);
 836
 837void kcsan_enable_current_nowarn(void)
 838{
 839	if (get_ctx()->disable_count-- == 0)
 840		kcsan_disable_current();
 841}
 842EXPORT_SYMBOL(kcsan_enable_current_nowarn);
 843
 844void kcsan_nestable_atomic_begin(void)
 845{
 846	/*
 847	 * Do *not* check and warn if we are in a flat atomic region: nestable
 848	 * and flat atomic regions are independent from each other.
 849	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
 850	 * comments.
 851	 */
 852
 853	++get_ctx()->atomic_nest_count;
 854}
 855EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
 856
 857void kcsan_nestable_atomic_end(void)
 858{
 859	if (get_ctx()->atomic_nest_count-- == 0) {
 860		/*
 861		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
 862		 * kcsan_nestable_atomic_begin() calls, which causes
 863		 * atomic_nest_count to become negative and should not happen.
 864		 */
 865		kcsan_nestable_atomic_begin(); /* restore to 0 */
 866		kcsan_disable_current(); /* disable to generate warning */
 867		WARN(1, "Unbalanced %s()", __func__);
 868		kcsan_enable_current();
 869	}
 870}
 871EXPORT_SYMBOL(kcsan_nestable_atomic_end);
 872
 873void kcsan_flat_atomic_begin(void)
 874{
 875	get_ctx()->in_flat_atomic = true;
 876}
 877EXPORT_SYMBOL(kcsan_flat_atomic_begin);
 878
 879void kcsan_flat_atomic_end(void)
 880{
 881	get_ctx()->in_flat_atomic = false;
 882}
 883EXPORT_SYMBOL(kcsan_flat_atomic_end);
 884
 885void kcsan_atomic_next(int n)
 886{
 887	get_ctx()->atomic_next = n;
 888}
 889EXPORT_SYMBOL(kcsan_atomic_next);
 890
 891void kcsan_set_access_mask(unsigned long mask)
 892{
 893	get_ctx()->access_mask = mask;
 894}
 895EXPORT_SYMBOL(kcsan_set_access_mask);
 896
 897struct kcsan_scoped_access *
 898kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
 899			  struct kcsan_scoped_access *sa)
 900{
 901	struct kcsan_ctx *ctx = get_ctx();
 902
 903	check_access(ptr, size, type, _RET_IP_);
 904
 905	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
 906
 907	INIT_LIST_HEAD(&sa->list);
 908	sa->ptr = ptr;
 909	sa->size = size;
 910	sa->type = type;
 911	sa->ip = _RET_IP_;
 912
 913	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
 914		INIT_LIST_HEAD(&ctx->scoped_accesses);
 915	list_add(&sa->list, &ctx->scoped_accesses);
 916
 917	ctx->disable_count--;
 918	return sa;
 919}
 920EXPORT_SYMBOL(kcsan_begin_scoped_access);
 921
 922void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
 923{
 924	struct kcsan_ctx *ctx = get_ctx();
 925
 926	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
 927		return;
 928
 929	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
 930
 931	list_del(&sa->list);
 932	if (list_empty(&ctx->scoped_accesses))
 933		/*
 934		 * Ensure we do not enter kcsan_check_scoped_accesses()
 935		 * slow-path if unnecessary, and avoids requiring list_empty()
 936		 * in the fast-path (to avoid a READ_ONCE() and potential
 937		 * uaccess warning).
 938		 */
 939		ctx->scoped_accesses.prev = NULL;
 940
 941	ctx->disable_count--;
 942
 943	check_access(sa->ptr, sa->size, sa->type, sa->ip);
 944}
 945EXPORT_SYMBOL(kcsan_end_scoped_access);
 946
 947void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
 948{
 949	check_access(ptr, size, type, _RET_IP_);
 950}
 951EXPORT_SYMBOL(__kcsan_check_access);
 952
 953#define DEFINE_MEMORY_BARRIER(name, order_before_cond)				\
 954	void __kcsan_##name(void)						\
 955	{									\
 956		struct kcsan_scoped_access *sa = get_reorder_access(get_ctx());	\
 957		if (!sa)							\
 958			return;							\
 959		if (order_before_cond)						\
 960			sa->size = 0;						\
 961	}									\
 962	EXPORT_SYMBOL(__kcsan_##name)
 963
 964DEFINE_MEMORY_BARRIER(mb, true);
 965DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND));
 966DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND));
 967DEFINE_MEMORY_BARRIER(release, true);
 968
 969/*
 970 * KCSAN uses the same instrumentation that is emitted by supported compilers
 971 * for ThreadSanitizer (TSAN).
 972 *
 973 * When enabled, the compiler emits instrumentation calls (the functions
 974 * prefixed with "__tsan" below) for all loads and stores that it generated;
 975 * inline asm is not instrumented.
 976 *
 977 * Note that, not all supported compiler versions distinguish aligned/unaligned
 978 * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
 979 * version to the generic version, which can handle both.
 980 */
 981
 982#define DEFINE_TSAN_READ_WRITE(size)                                           \
 983	void __tsan_read##size(void *ptr);                                     \
 984	void __tsan_read##size(void *ptr)                                      \
 985	{                                                                      \
 986		check_access(ptr, size, 0, _RET_IP_);                          \
 987	}                                                                      \
 988	EXPORT_SYMBOL(__tsan_read##size);                                      \
 989	void __tsan_unaligned_read##size(void *ptr)                            \
 990		__alias(__tsan_read##size);                                    \
 991	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
 992	void __tsan_write##size(void *ptr);                                    \
 993	void __tsan_write##size(void *ptr)                                     \
 994	{                                                                      \
 995		check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);         \
 996	}                                                                      \
 997	EXPORT_SYMBOL(__tsan_write##size);                                     \
 998	void __tsan_unaligned_write##size(void *ptr)                           \
 999		__alias(__tsan_write##size);                                   \
1000	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
1001	void __tsan_read_write##size(void *ptr);                               \
1002	void __tsan_read_write##size(void *ptr)                                \
1003	{                                                                      \
1004		check_access(ptr, size,                                        \
1005			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE,       \
1006			     _RET_IP_);                                        \
1007	}                                                                      \
1008	EXPORT_SYMBOL(__tsan_read_write##size);                                \
1009	void __tsan_unaligned_read_write##size(void *ptr)                      \
1010		__alias(__tsan_read_write##size);                              \
1011	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
1012
1013DEFINE_TSAN_READ_WRITE(1);
1014DEFINE_TSAN_READ_WRITE(2);
1015DEFINE_TSAN_READ_WRITE(4);
1016DEFINE_TSAN_READ_WRITE(8);
1017DEFINE_TSAN_READ_WRITE(16);
1018
1019void __tsan_read_range(void *ptr, size_t size);
1020void __tsan_read_range(void *ptr, size_t size)
1021{
1022	check_access(ptr, size, 0, _RET_IP_);
1023}
1024EXPORT_SYMBOL(__tsan_read_range);
1025
1026void __tsan_write_range(void *ptr, size_t size);
1027void __tsan_write_range(void *ptr, size_t size)
1028{
1029	check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
1030}
1031EXPORT_SYMBOL(__tsan_write_range);
1032
1033/*
1034 * Use of explicit volatile is generally disallowed [1], however, volatile is
1035 * still used in various concurrent context, whether in low-level
1036 * synchronization primitives or for legacy reasons.
1037 * [1] https://lwn.net/Articles/233479/
1038 *
1039 * We only consider volatile accesses atomic if they are aligned and would pass
1040 * the size-check of compiletime_assert_rwonce_type().
1041 */
1042#define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
1043	void __tsan_volatile_read##size(void *ptr);                            \
1044	void __tsan_volatile_read##size(void *ptr)                             \
1045	{                                                                      \
1046		const bool is_atomic = size <= sizeof(long long) &&            \
1047				       IS_ALIGNED((unsigned long)ptr, size);   \
1048		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1049			return;                                                \
1050		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0,   \
1051			     _RET_IP_);                                        \
1052	}                                                                      \
1053	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
1054	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
1055		__alias(__tsan_volatile_read##size);                           \
1056	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
1057	void __tsan_volatile_write##size(void *ptr);                           \
1058	void __tsan_volatile_write##size(void *ptr)                            \
1059	{                                                                      \
1060		const bool is_atomic = size <= sizeof(long long) &&            \
1061				       IS_ALIGNED((unsigned long)ptr, size);   \
1062		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1063			return;                                                \
1064		check_access(ptr, size,                                        \
1065			     KCSAN_ACCESS_WRITE |                              \
1066				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0),    \
1067			     _RET_IP_);                                        \
1068	}                                                                      \
1069	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
1070	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
1071		__alias(__tsan_volatile_write##size);                          \
1072	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
1073
1074DEFINE_TSAN_VOLATILE_READ_WRITE(1);
1075DEFINE_TSAN_VOLATILE_READ_WRITE(2);
1076DEFINE_TSAN_VOLATILE_READ_WRITE(4);
1077DEFINE_TSAN_VOLATILE_READ_WRITE(8);
1078DEFINE_TSAN_VOLATILE_READ_WRITE(16);
1079
1080/*
1081 * Function entry and exit are used to determine the validty of reorder_access.
1082 * Reordering of the access ends at the end of the function scope where the
1083 * access happened. This is done for two reasons:
1084 *
1085 *	1. Artificially limits the scope where missing barriers are detected.
1086 *	   This minimizes false positives due to uninstrumented functions that
1087 *	   contain the required barriers but were missed.
1088 *
1089 *	2. Simplifies generating the stack trace of the access.
1090 */
1091void __tsan_func_entry(void *call_pc);
1092noinline void __tsan_func_entry(void *call_pc)
1093{
1094	if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1095		return;
1096
1097	add_kcsan_stack_depth(1);
1098}
1099EXPORT_SYMBOL(__tsan_func_entry);
1100
1101void __tsan_func_exit(void);
1102noinline void __tsan_func_exit(void)
1103{
1104	struct kcsan_scoped_access *reorder_access;
1105
1106	if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1107		return;
1108
1109	reorder_access = get_reorder_access(get_ctx());
1110	if (!reorder_access)
1111		goto out;
1112
1113	if (get_kcsan_stack_depth() <= reorder_access->stack_depth) {
1114		/*
1115		 * Access check to catch cases where write without a barrier
1116		 * (supposed release) was last access in function: because
1117		 * instrumentation is inserted before the real access, a data
1118		 * race due to the write giving up a c-s would only be caught if
1119		 * we do the conflicting access after.
1120		 */
1121		check_access(reorder_access->ptr, reorder_access->size,
1122			     reorder_access->type, reorder_access->ip);
1123		reorder_access->size = 0;
1124		reorder_access->stack_depth = INT_MIN;
1125	}
1126out:
1127	add_kcsan_stack_depth(-1);
1128}
1129EXPORT_SYMBOL(__tsan_func_exit);
1130
1131void __tsan_init(void);
1132void __tsan_init(void)
1133{
1134}
1135EXPORT_SYMBOL(__tsan_init);
1136
1137/*
1138 * Instrumentation for atomic builtins (__atomic_*, __sync_*).
1139 *
1140 * Normal kernel code _should not_ be using them directly, but some
1141 * architectures may implement some or all atomics using the compilers'
1142 * builtins.
1143 *
1144 * Note: If an architecture decides to fully implement atomics using the
1145 * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
1146 * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
1147 * atomic-instrumented) is no longer necessary.
1148 *
1149 * TSAN instrumentation replaces atomic accesses with calls to any of the below
1150 * functions, whose job is to also execute the operation itself.
1151 */
1152
1153static __always_inline void kcsan_atomic_builtin_memorder(int memorder)
1154{
1155	if (memorder == __ATOMIC_RELEASE ||
1156	    memorder == __ATOMIC_SEQ_CST ||
1157	    memorder == __ATOMIC_ACQ_REL)
1158		__kcsan_release();
1159}
1160
1161#define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
1162	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
1163	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
1164	{                                                                                          \
1165		kcsan_atomic_builtin_memorder(memorder);                                           \
1166		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1167			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_);    \
1168		}                                                                                  \
1169		return __atomic_load_n(ptr, memorder);                                             \
1170	}                                                                                          \
1171	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
1172	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
1173	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
1174	{                                                                                          \
1175		kcsan_atomic_builtin_memorder(memorder);                                           \
1176		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1177			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1178				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_);          \
1179		}                                                                                  \
1180		__atomic_store_n(ptr, v, memorder);                                                \
1181	}                                                                                          \
1182	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
1183
1184#define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
1185	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
1186	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
1187	{                                                                                          \
1188		kcsan_atomic_builtin_memorder(memorder);                                           \
1189		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1190			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1191				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1192					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1193		}                                                                                  \
1194		return __atomic_##op##suffix(ptr, v, memorder);                                    \
1195	}                                                                                          \
1196	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
1197
1198/*
1199 * Note: CAS operations are always classified as write, even in case they
1200 * fail. We cannot perform check_access() after a write, as it might lead to
1201 * false positives, in cases such as:
1202 *
1203 *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
1204 *
1205 *	T1: if (__atomic_load_n(&p->flag, ...)) {
1206 *		modify *p;
1207 *		p->flag = 0;
1208 *	    }
1209 *
1210 * The only downside is that, if there are 3 threads, with one CAS that
1211 * succeeds, another CAS that fails, and an unmarked racing operation, we may
1212 * point at the wrong CAS as the source of the race. However, if we assume that
1213 * all CAS can succeed in some other execution, the data race is still valid.
1214 */
1215#define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1216	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1217							      u##bits val, int mo, int fail_mo);   \
1218	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1219							      u##bits val, int mo, int fail_mo)    \
1220	{                                                                                          \
1221		kcsan_atomic_builtin_memorder(mo);                                                 \
1222		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1223			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1224				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1225					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1226		}                                                                                  \
1227		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1228	}                                                                                          \
1229	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1230
1231#define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1232	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1233							   int mo, int fail_mo);                   \
1234	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1235							   int mo, int fail_mo)                    \
1236	{                                                                                          \
1237		kcsan_atomic_builtin_memorder(mo);                                                 \
1238		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1239			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1240				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1241					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1242		}                                                                                  \
1243		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1244		return exp;                                                                        \
1245	}                                                                                          \
1246	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1247
1248#define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1249	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1250	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1251	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1252	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1253	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1254	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1255	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1256	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1257	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1258	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1259	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1260
1261DEFINE_TSAN_ATOMIC_OPS(8);
1262DEFINE_TSAN_ATOMIC_OPS(16);
1263DEFINE_TSAN_ATOMIC_OPS(32);
1264DEFINE_TSAN_ATOMIC_OPS(64);
1265
1266void __tsan_atomic_thread_fence(int memorder);
1267void __tsan_atomic_thread_fence(int memorder)
1268{
1269	kcsan_atomic_builtin_memorder(memorder);
1270	__atomic_thread_fence(memorder);
1271}
1272EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1273
1274/*
1275 * In instrumented files, we emit instrumentation for barriers by mapping the
1276 * kernel barriers to an __atomic_signal_fence(), which is interpreted specially
1277 * and otherwise has no relation to a real __atomic_signal_fence(). No known
1278 * kernel code uses __atomic_signal_fence().
1279 *
1280 * Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which
1281 * are turned into calls to __tsan_atomic_signal_fence(), such instrumentation
1282 * can be disabled via the __no_kcsan function attribute (vs. an explicit call
1283 * which could not). When __no_kcsan is requested, __atomic_signal_fence()
1284 * generates no code.
1285 *
1286 * Note: The result of using __atomic_signal_fence() with KCSAN enabled is
1287 * potentially limiting the compiler's ability to reorder operations; however,
1288 * if barriers were instrumented with explicit calls (without LTO), the compiler
1289 * couldn't optimize much anyway. The result of a hypothetical architecture
1290 * using __atomic_signal_fence() in normal code would be KCSAN false negatives.
1291 */
1292void __tsan_atomic_signal_fence(int memorder);
1293noinline void __tsan_atomic_signal_fence(int memorder)
1294{
1295	switch (memorder) {
1296	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb:
1297		__kcsan_mb();
1298		break;
1299	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb:
1300		__kcsan_wmb();
1301		break;
1302	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb:
1303		__kcsan_rmb();
1304		break;
1305	case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release:
1306		__kcsan_release();
1307		break;
1308	default:
1309		break;
1310	}
1311}
1312EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1313
1314#ifdef __HAVE_ARCH_MEMSET
1315void *__tsan_memset(void *s, int c, size_t count);
1316noinline void *__tsan_memset(void *s, int c, size_t count)
1317{
1318	/*
1319	 * Instead of not setting up watchpoints where accessed size is greater
1320	 * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE.
1321	 */
1322	size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE);
1323
1324	check_access(s, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1325	return memset(s, c, count);
1326}
1327#else
1328void *__tsan_memset(void *s, int c, size_t count) __alias(memset);
1329#endif
1330EXPORT_SYMBOL(__tsan_memset);
1331
1332#ifdef __HAVE_ARCH_MEMMOVE
1333void *__tsan_memmove(void *dst, const void *src, size_t len);
1334noinline void *__tsan_memmove(void *dst, const void *src, size_t len)
1335{
1336	size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1337
1338	check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1339	check_access(src, check_len, 0, _RET_IP_);
1340	return memmove(dst, src, len);
1341}
1342#else
1343void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove);
1344#endif
1345EXPORT_SYMBOL(__tsan_memmove);
1346
1347#ifdef __HAVE_ARCH_MEMCPY
1348void *__tsan_memcpy(void *dst, const void *src, size_t len);
1349noinline void *__tsan_memcpy(void *dst, const void *src, size_t len)
1350{
1351	size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1352
1353	check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1354	check_access(src, check_len, 0, _RET_IP_);
1355	return memcpy(dst, src, len);
1356}
1357#else
1358void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy);
1359#endif
1360EXPORT_SYMBOL(__tsan_memcpy);