Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/highmem.h>
9#include <linux/pagemap.h>
10#include <asm/byteorder.h>
11#include <linux/swap.h>
12#include <linux/mpage.h>
13#include <linux/quotaops.h>
14#include <linux/blkdev.h>
15#include <linux/uio.h>
16#include <linux/mm.h>
17
18#include <cluster/masklog.h>
19
20#include "ocfs2.h"
21
22#include "alloc.h"
23#include "aops.h"
24#include "dlmglue.h"
25#include "extent_map.h"
26#include "file.h"
27#include "inode.h"
28#include "journal.h"
29#include "suballoc.h"
30#include "super.h"
31#include "symlink.h"
32#include "refcounttree.h"
33#include "ocfs2_trace.h"
34
35#include "buffer_head_io.h"
36#include "dir.h"
37#include "namei.h"
38#include "sysfile.h"
39
40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42{
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
63 status = ocfs2_read_inode_block(inode, &bh);
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
72 err = -ENOMEM;
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
85 err = -ENOMEM;
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115bail:
116 brelse(bh);
117
118 return err;
119}
120
121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123{
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132}
133
134int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
136{
137 int err = 0;
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 &ext_flags);
158 if (err) {
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
162 goto bail;
163 }
164
165 if (max_blocks < count)
166 count = max_blocks;
167
168 /*
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
172 * allows __block_write_begin() to zero.
173 *
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
178 */
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
182 goto bail;
183 }
184
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 map_bh(bh_result, inode->i_sb, p_blkno);
188
189 bh_result->b_size = count << inode->i_blkbits;
190
191 if (!ocfs2_sparse_alloc(osb)) {
192 if (p_blkno == 0) {
193 err = -EIO;
194 mlog(ML_ERROR,
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 dump_stack();
201 goto bail;
202 }
203 }
204
205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
211
212bail:
213 if (err < 0)
214 err = -EIO;
215
216 return err;
217}
218
219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
221{
222 void *kaddr;
223 loff_t size;
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 return -EROFS;
230 }
231
232 size = i_size_read(inode);
233
234 if (size > PAGE_SIZE ||
235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 ocfs2_error(inode->i_sb,
237 "Inode %llu has with inline data has bad size: %Lu\n",
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
240 return -EROFS;
241 }
242
243 kaddr = kmap_atomic(page);
244 if (size)
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
247 memset(kaddr + size, 0, PAGE_SIZE - size);
248 flush_dcache_page(page);
249 kunmap_atomic(kaddr);
250
251 SetPageUptodate(page);
252
253 return 0;
254}
255
256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257{
258 int ret;
259 struct buffer_head *di_bh = NULL;
260
261 BUG_ON(!PageLocked(page));
262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264 ret = ocfs2_read_inode_block(inode, &di_bh);
265 if (ret) {
266 mlog_errno(ret);
267 goto out;
268 }
269
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
271out:
272 unlock_page(page);
273
274 brelse(di_bh);
275 return ret;
276}
277
278static int ocfs2_read_folio(struct file *file, struct folio *folio)
279{
280 struct inode *inode = folio->mapping->host;
281 struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 loff_t start = folio_pos(folio);
283 int ret, unlock = 1;
284
285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
286
287 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
288 if (ret != 0) {
289 if (ret == AOP_TRUNCATED_PAGE)
290 unlock = 0;
291 mlog_errno(ret);
292 goto out;
293 }
294
295 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296 /*
297 * Unlock the folio and cycle ip_alloc_sem so that we don't
298 * busyloop waiting for ip_alloc_sem to unlock
299 */
300 ret = AOP_TRUNCATED_PAGE;
301 folio_unlock(folio);
302 unlock = 0;
303 down_read(&oi->ip_alloc_sem);
304 up_read(&oi->ip_alloc_sem);
305 goto out_inode_unlock;
306 }
307
308 /*
309 * i_size might have just been updated as we grabed the meta lock. We
310 * might now be discovering a truncate that hit on another node.
311 * block_read_full_folio->get_block freaks out if it is asked to read
312 * beyond the end of a file, so we check here. Callers
313 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
314 * and notice that the folio they just read isn't needed.
315 *
316 * XXX sys_readahead() seems to get that wrong?
317 */
318 if (start >= i_size_read(inode)) {
319 folio_zero_segment(folio, 0, folio_size(folio));
320 folio_mark_uptodate(folio);
321 ret = 0;
322 goto out_alloc;
323 }
324
325 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
326 ret = ocfs2_readpage_inline(inode, &folio->page);
327 else
328 ret = block_read_full_folio(folio, ocfs2_get_block);
329 unlock = 0;
330
331out_alloc:
332 up_read(&oi->ip_alloc_sem);
333out_inode_unlock:
334 ocfs2_inode_unlock(inode, 0);
335out:
336 if (unlock)
337 folio_unlock(folio);
338 return ret;
339}
340
341/*
342 * This is used only for read-ahead. Failures or difficult to handle
343 * situations are safe to ignore.
344 *
345 * Right now, we don't bother with BH_Boundary - in-inode extent lists
346 * are quite large (243 extents on 4k blocks), so most inodes don't
347 * grow out to a tree. If need be, detecting boundary extents could
348 * trivially be added in a future version of ocfs2_get_block().
349 */
350static void ocfs2_readahead(struct readahead_control *rac)
351{
352 int ret;
353 struct inode *inode = rac->mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
365 goto out_unlock;
366
367 /*
368 * Don't bother with inline-data. There isn't anything
369 * to read-ahead in that case anyway...
370 */
371 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
372 goto out_up;
373
374 /*
375 * Check whether a remote node truncated this file - we just
376 * drop out in that case as it's not worth handling here.
377 */
378 if (readahead_pos(rac) >= i_size_read(inode))
379 goto out_up;
380
381 mpage_readahead(rac, ocfs2_get_block);
382
383out_up:
384 up_read(&oi->ip_alloc_sem);
385out_unlock:
386 ocfs2_inode_unlock(inode, 0);
387}
388
389/* Note: Because we don't support holes, our allocation has
390 * already happened (allocation writes zeros to the file data)
391 * so we don't have to worry about ordered writes in
392 * ocfs2_writepage.
393 *
394 * ->writepage is called during the process of invalidating the page cache
395 * during blocked lock processing. It can't block on any cluster locks
396 * to during block mapping. It's relying on the fact that the block
397 * mapping can't have disappeared under the dirty pages that it is
398 * being asked to write back.
399 */
400static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
401{
402 trace_ocfs2_writepage(
403 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
404 page->index);
405
406 return block_write_full_page(page, ocfs2_get_block, wbc);
407}
408
409/* Taken from ext3. We don't necessarily need the full blown
410 * functionality yet, but IMHO it's better to cut and paste the whole
411 * thing so we can avoid introducing our own bugs (and easily pick up
412 * their fixes when they happen) --Mark */
413int walk_page_buffers( handle_t *handle,
414 struct buffer_head *head,
415 unsigned from,
416 unsigned to,
417 int *partial,
418 int (*fn)( handle_t *handle,
419 struct buffer_head *bh))
420{
421 struct buffer_head *bh;
422 unsigned block_start, block_end;
423 unsigned blocksize = head->b_size;
424 int err, ret = 0;
425 struct buffer_head *next;
426
427 for ( bh = head, block_start = 0;
428 ret == 0 && (bh != head || !block_start);
429 block_start = block_end, bh = next)
430 {
431 next = bh->b_this_page;
432 block_end = block_start + blocksize;
433 if (block_end <= from || block_start >= to) {
434 if (partial && !buffer_uptodate(bh))
435 *partial = 1;
436 continue;
437 }
438 err = (*fn)(handle, bh);
439 if (!ret)
440 ret = err;
441 }
442 return ret;
443}
444
445static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
446{
447 sector_t status;
448 u64 p_blkno = 0;
449 int err = 0;
450 struct inode *inode = mapping->host;
451
452 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
453 (unsigned long long)block);
454
455 /*
456 * The swap code (ab-)uses ->bmap to get a block mapping and then
457 * bypasseѕ the file system for actual I/O. We really can't allow
458 * that on refcounted inodes, so we have to skip out here. And yes,
459 * 0 is the magic code for a bmap error..
460 */
461 if (ocfs2_is_refcount_inode(inode))
462 return 0;
463
464 /* We don't need to lock journal system files, since they aren't
465 * accessed concurrently from multiple nodes.
466 */
467 if (!INODE_JOURNAL(inode)) {
468 err = ocfs2_inode_lock(inode, NULL, 0);
469 if (err) {
470 if (err != -ENOENT)
471 mlog_errno(err);
472 goto bail;
473 }
474 down_read(&OCFS2_I(inode)->ip_alloc_sem);
475 }
476
477 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
478 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
479 NULL);
480
481 if (!INODE_JOURNAL(inode)) {
482 up_read(&OCFS2_I(inode)->ip_alloc_sem);
483 ocfs2_inode_unlock(inode, 0);
484 }
485
486 if (err) {
487 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
488 (unsigned long long)block);
489 mlog_errno(err);
490 goto bail;
491 }
492
493bail:
494 status = err ? 0 : p_blkno;
495
496 return status;
497}
498
499static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
500{
501 if (!folio_buffers(folio))
502 return false;
503 return try_to_free_buffers(folio);
504}
505
506static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
507 u32 cpos,
508 unsigned int *start,
509 unsigned int *end)
510{
511 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
512
513 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
514 unsigned int cpp;
515
516 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
517
518 cluster_start = cpos % cpp;
519 cluster_start = cluster_start << osb->s_clustersize_bits;
520
521 cluster_end = cluster_start + osb->s_clustersize;
522 }
523
524 BUG_ON(cluster_start > PAGE_SIZE);
525 BUG_ON(cluster_end > PAGE_SIZE);
526
527 if (start)
528 *start = cluster_start;
529 if (end)
530 *end = cluster_end;
531}
532
533/*
534 * 'from' and 'to' are the region in the page to avoid zeroing.
535 *
536 * If pagesize > clustersize, this function will avoid zeroing outside
537 * of the cluster boundary.
538 *
539 * from == to == 0 is code for "zero the entire cluster region"
540 */
541static void ocfs2_clear_page_regions(struct page *page,
542 struct ocfs2_super *osb, u32 cpos,
543 unsigned from, unsigned to)
544{
545 void *kaddr;
546 unsigned int cluster_start, cluster_end;
547
548 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
549
550 kaddr = kmap_atomic(page);
551
552 if (from || to) {
553 if (from > cluster_start)
554 memset(kaddr + cluster_start, 0, from - cluster_start);
555 if (to < cluster_end)
556 memset(kaddr + to, 0, cluster_end - to);
557 } else {
558 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
559 }
560
561 kunmap_atomic(kaddr);
562}
563
564/*
565 * Nonsparse file systems fully allocate before we get to the write
566 * code. This prevents ocfs2_write() from tagging the write as an
567 * allocating one, which means ocfs2_map_page_blocks() might try to
568 * read-in the blocks at the tail of our file. Avoid reading them by
569 * testing i_size against each block offset.
570 */
571static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
572 unsigned int block_start)
573{
574 u64 offset = page_offset(page) + block_start;
575
576 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
577 return 1;
578
579 if (i_size_read(inode) > offset)
580 return 1;
581
582 return 0;
583}
584
585/*
586 * Some of this taken from __block_write_begin(). We already have our
587 * mapping by now though, and the entire write will be allocating or
588 * it won't, so not much need to use BH_New.
589 *
590 * This will also skip zeroing, which is handled externally.
591 */
592int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
593 struct inode *inode, unsigned int from,
594 unsigned int to, int new)
595{
596 int ret = 0;
597 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
598 unsigned int block_end, block_start;
599 unsigned int bsize = i_blocksize(inode);
600
601 if (!page_has_buffers(page))
602 create_empty_buffers(page, bsize, 0);
603
604 head = page_buffers(page);
605 for (bh = head, block_start = 0; bh != head || !block_start;
606 bh = bh->b_this_page, block_start += bsize) {
607 block_end = block_start + bsize;
608
609 clear_buffer_new(bh);
610
611 /*
612 * Ignore blocks outside of our i/o range -
613 * they may belong to unallocated clusters.
614 */
615 if (block_start >= to || block_end <= from) {
616 if (PageUptodate(page))
617 set_buffer_uptodate(bh);
618 continue;
619 }
620
621 /*
622 * For an allocating write with cluster size >= page
623 * size, we always write the entire page.
624 */
625 if (new)
626 set_buffer_new(bh);
627
628 if (!buffer_mapped(bh)) {
629 map_bh(bh, inode->i_sb, *p_blkno);
630 clean_bdev_bh_alias(bh);
631 }
632
633 if (PageUptodate(page)) {
634 set_buffer_uptodate(bh);
635 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
636 !buffer_new(bh) &&
637 ocfs2_should_read_blk(inode, page, block_start) &&
638 (block_start < from || block_end > to)) {
639 bh_read_nowait(bh, 0);
640 *wait_bh++=bh;
641 }
642
643 *p_blkno = *p_blkno + 1;
644 }
645
646 /*
647 * If we issued read requests - let them complete.
648 */
649 while(wait_bh > wait) {
650 wait_on_buffer(*--wait_bh);
651 if (!buffer_uptodate(*wait_bh))
652 ret = -EIO;
653 }
654
655 if (ret == 0 || !new)
656 return ret;
657
658 /*
659 * If we get -EIO above, zero out any newly allocated blocks
660 * to avoid exposing stale data.
661 */
662 bh = head;
663 block_start = 0;
664 do {
665 block_end = block_start + bsize;
666 if (block_end <= from)
667 goto next_bh;
668 if (block_start >= to)
669 break;
670
671 zero_user(page, block_start, bh->b_size);
672 set_buffer_uptodate(bh);
673 mark_buffer_dirty(bh);
674
675next_bh:
676 block_start = block_end;
677 bh = bh->b_this_page;
678 } while (bh != head);
679
680 return ret;
681}
682
683#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
684#define OCFS2_MAX_CTXT_PAGES 1
685#else
686#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
687#endif
688
689#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
690
691struct ocfs2_unwritten_extent {
692 struct list_head ue_node;
693 struct list_head ue_ip_node;
694 u32 ue_cpos;
695 u32 ue_phys;
696};
697
698/*
699 * Describe the state of a single cluster to be written to.
700 */
701struct ocfs2_write_cluster_desc {
702 u32 c_cpos;
703 u32 c_phys;
704 /*
705 * Give this a unique field because c_phys eventually gets
706 * filled.
707 */
708 unsigned c_new;
709 unsigned c_clear_unwritten;
710 unsigned c_needs_zero;
711};
712
713struct ocfs2_write_ctxt {
714 /* Logical cluster position / len of write */
715 u32 w_cpos;
716 u32 w_clen;
717
718 /* First cluster allocated in a nonsparse extend */
719 u32 w_first_new_cpos;
720
721 /* Type of caller. Must be one of buffer, mmap, direct. */
722 ocfs2_write_type_t w_type;
723
724 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
725
726 /*
727 * This is true if page_size > cluster_size.
728 *
729 * It triggers a set of special cases during write which might
730 * have to deal with allocating writes to partial pages.
731 */
732 unsigned int w_large_pages;
733
734 /*
735 * Pages involved in this write.
736 *
737 * w_target_page is the page being written to by the user.
738 *
739 * w_pages is an array of pages which always contains
740 * w_target_page, and in the case of an allocating write with
741 * page_size < cluster size, it will contain zero'd and mapped
742 * pages adjacent to w_target_page which need to be written
743 * out in so that future reads from that region will get
744 * zero's.
745 */
746 unsigned int w_num_pages;
747 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
748 struct page *w_target_page;
749
750 /*
751 * w_target_locked is used for page_mkwrite path indicating no unlocking
752 * against w_target_page in ocfs2_write_end_nolock.
753 */
754 unsigned int w_target_locked:1;
755
756 /*
757 * ocfs2_write_end() uses this to know what the real range to
758 * write in the target should be.
759 */
760 unsigned int w_target_from;
761 unsigned int w_target_to;
762
763 /*
764 * We could use journal_current_handle() but this is cleaner,
765 * IMHO -Mark
766 */
767 handle_t *w_handle;
768
769 struct buffer_head *w_di_bh;
770
771 struct ocfs2_cached_dealloc_ctxt w_dealloc;
772
773 struct list_head w_unwritten_list;
774 unsigned int w_unwritten_count;
775};
776
777void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
778{
779 int i;
780
781 for(i = 0; i < num_pages; i++) {
782 if (pages[i]) {
783 unlock_page(pages[i]);
784 mark_page_accessed(pages[i]);
785 put_page(pages[i]);
786 }
787 }
788}
789
790static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
791{
792 int i;
793
794 /*
795 * w_target_locked is only set to true in the page_mkwrite() case.
796 * The intent is to allow us to lock the target page from write_begin()
797 * to write_end(). The caller must hold a ref on w_target_page.
798 */
799 if (wc->w_target_locked) {
800 BUG_ON(!wc->w_target_page);
801 for (i = 0; i < wc->w_num_pages; i++) {
802 if (wc->w_target_page == wc->w_pages[i]) {
803 wc->w_pages[i] = NULL;
804 break;
805 }
806 }
807 mark_page_accessed(wc->w_target_page);
808 put_page(wc->w_target_page);
809 }
810 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
811}
812
813static void ocfs2_free_unwritten_list(struct inode *inode,
814 struct list_head *head)
815{
816 struct ocfs2_inode_info *oi = OCFS2_I(inode);
817 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
818
819 list_for_each_entry_safe(ue, tmp, head, ue_node) {
820 list_del(&ue->ue_node);
821 spin_lock(&oi->ip_lock);
822 list_del(&ue->ue_ip_node);
823 spin_unlock(&oi->ip_lock);
824 kfree(ue);
825 }
826}
827
828static void ocfs2_free_write_ctxt(struct inode *inode,
829 struct ocfs2_write_ctxt *wc)
830{
831 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
832 ocfs2_unlock_pages(wc);
833 brelse(wc->w_di_bh);
834 kfree(wc);
835}
836
837static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
838 struct ocfs2_super *osb, loff_t pos,
839 unsigned len, ocfs2_write_type_t type,
840 struct buffer_head *di_bh)
841{
842 u32 cend;
843 struct ocfs2_write_ctxt *wc;
844
845 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
846 if (!wc)
847 return -ENOMEM;
848
849 wc->w_cpos = pos >> osb->s_clustersize_bits;
850 wc->w_first_new_cpos = UINT_MAX;
851 cend = (pos + len - 1) >> osb->s_clustersize_bits;
852 wc->w_clen = cend - wc->w_cpos + 1;
853 get_bh(di_bh);
854 wc->w_di_bh = di_bh;
855 wc->w_type = type;
856
857 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
858 wc->w_large_pages = 1;
859 else
860 wc->w_large_pages = 0;
861
862 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
863 INIT_LIST_HEAD(&wc->w_unwritten_list);
864
865 *wcp = wc;
866
867 return 0;
868}
869
870/*
871 * If a page has any new buffers, zero them out here, and mark them uptodate
872 * and dirty so they'll be written out (in order to prevent uninitialised
873 * block data from leaking). And clear the new bit.
874 */
875static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
876{
877 unsigned int block_start, block_end;
878 struct buffer_head *head, *bh;
879
880 BUG_ON(!PageLocked(page));
881 if (!page_has_buffers(page))
882 return;
883
884 bh = head = page_buffers(page);
885 block_start = 0;
886 do {
887 block_end = block_start + bh->b_size;
888
889 if (buffer_new(bh)) {
890 if (block_end > from && block_start < to) {
891 if (!PageUptodate(page)) {
892 unsigned start, end;
893
894 start = max(from, block_start);
895 end = min(to, block_end);
896
897 zero_user_segment(page, start, end);
898 set_buffer_uptodate(bh);
899 }
900
901 clear_buffer_new(bh);
902 mark_buffer_dirty(bh);
903 }
904 }
905
906 block_start = block_end;
907 bh = bh->b_this_page;
908 } while (bh != head);
909}
910
911/*
912 * Only called when we have a failure during allocating write to write
913 * zero's to the newly allocated region.
914 */
915static void ocfs2_write_failure(struct inode *inode,
916 struct ocfs2_write_ctxt *wc,
917 loff_t user_pos, unsigned user_len)
918{
919 int i;
920 unsigned from = user_pos & (PAGE_SIZE - 1),
921 to = user_pos + user_len;
922 struct page *tmppage;
923
924 if (wc->w_target_page)
925 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
926
927 for(i = 0; i < wc->w_num_pages; i++) {
928 tmppage = wc->w_pages[i];
929
930 if (tmppage && page_has_buffers(tmppage)) {
931 if (ocfs2_should_order_data(inode))
932 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
933 user_pos, user_len);
934
935 block_commit_write(tmppage, from, to);
936 }
937 }
938}
939
940static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
941 struct ocfs2_write_ctxt *wc,
942 struct page *page, u32 cpos,
943 loff_t user_pos, unsigned user_len,
944 int new)
945{
946 int ret;
947 unsigned int map_from = 0, map_to = 0;
948 unsigned int cluster_start, cluster_end;
949 unsigned int user_data_from = 0, user_data_to = 0;
950
951 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
952 &cluster_start, &cluster_end);
953
954 /* treat the write as new if the a hole/lseek spanned across
955 * the page boundary.
956 */
957 new = new | ((i_size_read(inode) <= page_offset(page)) &&
958 (page_offset(page) <= user_pos));
959
960 if (page == wc->w_target_page) {
961 map_from = user_pos & (PAGE_SIZE - 1);
962 map_to = map_from + user_len;
963
964 if (new)
965 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
966 cluster_start, cluster_end,
967 new);
968 else
969 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
970 map_from, map_to, new);
971 if (ret) {
972 mlog_errno(ret);
973 goto out;
974 }
975
976 user_data_from = map_from;
977 user_data_to = map_to;
978 if (new) {
979 map_from = cluster_start;
980 map_to = cluster_end;
981 }
982 } else {
983 /*
984 * If we haven't allocated the new page yet, we
985 * shouldn't be writing it out without copying user
986 * data. This is likely a math error from the caller.
987 */
988 BUG_ON(!new);
989
990 map_from = cluster_start;
991 map_to = cluster_end;
992
993 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
994 cluster_start, cluster_end, new);
995 if (ret) {
996 mlog_errno(ret);
997 goto out;
998 }
999 }
1000
1001 /*
1002 * Parts of newly allocated pages need to be zero'd.
1003 *
1004 * Above, we have also rewritten 'to' and 'from' - as far as
1005 * the rest of the function is concerned, the entire cluster
1006 * range inside of a page needs to be written.
1007 *
1008 * We can skip this if the page is up to date - it's already
1009 * been zero'd from being read in as a hole.
1010 */
1011 if (new && !PageUptodate(page))
1012 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1013 cpos, user_data_from, user_data_to);
1014
1015 flush_dcache_page(page);
1016
1017out:
1018 return ret;
1019}
1020
1021/*
1022 * This function will only grab one clusters worth of pages.
1023 */
1024static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1025 struct ocfs2_write_ctxt *wc,
1026 u32 cpos, loff_t user_pos,
1027 unsigned user_len, int new,
1028 struct page *mmap_page)
1029{
1030 int ret = 0, i;
1031 unsigned long start, target_index, end_index, index;
1032 struct inode *inode = mapping->host;
1033 loff_t last_byte;
1034
1035 target_index = user_pos >> PAGE_SHIFT;
1036
1037 /*
1038 * Figure out how many pages we'll be manipulating here. For
1039 * non allocating write, we just change the one
1040 * page. Otherwise, we'll need a whole clusters worth. If we're
1041 * writing past i_size, we only need enough pages to cover the
1042 * last page of the write.
1043 */
1044 if (new) {
1045 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1046 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1047 /*
1048 * We need the index *past* the last page we could possibly
1049 * touch. This is the page past the end of the write or
1050 * i_size, whichever is greater.
1051 */
1052 last_byte = max(user_pos + user_len, i_size_read(inode));
1053 BUG_ON(last_byte < 1);
1054 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1055 if ((start + wc->w_num_pages) > end_index)
1056 wc->w_num_pages = end_index - start;
1057 } else {
1058 wc->w_num_pages = 1;
1059 start = target_index;
1060 }
1061 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1062
1063 for(i = 0; i < wc->w_num_pages; i++) {
1064 index = start + i;
1065
1066 if (index >= target_index && index <= end_index &&
1067 wc->w_type == OCFS2_WRITE_MMAP) {
1068 /*
1069 * ocfs2_pagemkwrite() is a little different
1070 * and wants us to directly use the page
1071 * passed in.
1072 */
1073 lock_page(mmap_page);
1074
1075 /* Exit and let the caller retry */
1076 if (mmap_page->mapping != mapping) {
1077 WARN_ON(mmap_page->mapping);
1078 unlock_page(mmap_page);
1079 ret = -EAGAIN;
1080 goto out;
1081 }
1082
1083 get_page(mmap_page);
1084 wc->w_pages[i] = mmap_page;
1085 wc->w_target_locked = true;
1086 } else if (index >= target_index && index <= end_index &&
1087 wc->w_type == OCFS2_WRITE_DIRECT) {
1088 /* Direct write has no mapping page. */
1089 wc->w_pages[i] = NULL;
1090 continue;
1091 } else {
1092 wc->w_pages[i] = find_or_create_page(mapping, index,
1093 GFP_NOFS);
1094 if (!wc->w_pages[i]) {
1095 ret = -ENOMEM;
1096 mlog_errno(ret);
1097 goto out;
1098 }
1099 }
1100 wait_for_stable_page(wc->w_pages[i]);
1101
1102 if (index == target_index)
1103 wc->w_target_page = wc->w_pages[i];
1104 }
1105out:
1106 if (ret)
1107 wc->w_target_locked = false;
1108 return ret;
1109}
1110
1111/*
1112 * Prepare a single cluster for write one cluster into the file.
1113 */
1114static int ocfs2_write_cluster(struct address_space *mapping,
1115 u32 *phys, unsigned int new,
1116 unsigned int clear_unwritten,
1117 unsigned int should_zero,
1118 struct ocfs2_alloc_context *data_ac,
1119 struct ocfs2_alloc_context *meta_ac,
1120 struct ocfs2_write_ctxt *wc, u32 cpos,
1121 loff_t user_pos, unsigned user_len)
1122{
1123 int ret, i;
1124 u64 p_blkno;
1125 struct inode *inode = mapping->host;
1126 struct ocfs2_extent_tree et;
1127 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1128
1129 if (new) {
1130 u32 tmp_pos;
1131
1132 /*
1133 * This is safe to call with the page locks - it won't take
1134 * any additional semaphores or cluster locks.
1135 */
1136 tmp_pos = cpos;
1137 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1138 &tmp_pos, 1, !clear_unwritten,
1139 wc->w_di_bh, wc->w_handle,
1140 data_ac, meta_ac, NULL);
1141 /*
1142 * This shouldn't happen because we must have already
1143 * calculated the correct meta data allocation required. The
1144 * internal tree allocation code should know how to increase
1145 * transaction credits itself.
1146 *
1147 * If need be, we could handle -EAGAIN for a
1148 * RESTART_TRANS here.
1149 */
1150 mlog_bug_on_msg(ret == -EAGAIN,
1151 "Inode %llu: EAGAIN return during allocation.\n",
1152 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1153 if (ret < 0) {
1154 mlog_errno(ret);
1155 goto out;
1156 }
1157 } else if (clear_unwritten) {
1158 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1159 wc->w_di_bh);
1160 ret = ocfs2_mark_extent_written(inode, &et,
1161 wc->w_handle, cpos, 1, *phys,
1162 meta_ac, &wc->w_dealloc);
1163 if (ret < 0) {
1164 mlog_errno(ret);
1165 goto out;
1166 }
1167 }
1168
1169 /*
1170 * The only reason this should fail is due to an inability to
1171 * find the extent added.
1172 */
1173 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1174 if (ret < 0) {
1175 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1176 "at logical cluster %u",
1177 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1178 goto out;
1179 }
1180
1181 BUG_ON(*phys == 0);
1182
1183 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1184 if (!should_zero)
1185 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1186
1187 for(i = 0; i < wc->w_num_pages; i++) {
1188 int tmpret;
1189
1190 /* This is the direct io target page. */
1191 if (wc->w_pages[i] == NULL) {
1192 p_blkno++;
1193 continue;
1194 }
1195
1196 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1197 wc->w_pages[i], cpos,
1198 user_pos, user_len,
1199 should_zero);
1200 if (tmpret) {
1201 mlog_errno(tmpret);
1202 if (ret == 0)
1203 ret = tmpret;
1204 }
1205 }
1206
1207 /*
1208 * We only have cleanup to do in case of allocating write.
1209 */
1210 if (ret && new)
1211 ocfs2_write_failure(inode, wc, user_pos, user_len);
1212
1213out:
1214
1215 return ret;
1216}
1217
1218static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1219 struct ocfs2_alloc_context *data_ac,
1220 struct ocfs2_alloc_context *meta_ac,
1221 struct ocfs2_write_ctxt *wc,
1222 loff_t pos, unsigned len)
1223{
1224 int ret, i;
1225 loff_t cluster_off;
1226 unsigned int local_len = len;
1227 struct ocfs2_write_cluster_desc *desc;
1228 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1229
1230 for (i = 0; i < wc->w_clen; i++) {
1231 desc = &wc->w_desc[i];
1232
1233 /*
1234 * We have to make sure that the total write passed in
1235 * doesn't extend past a single cluster.
1236 */
1237 local_len = len;
1238 cluster_off = pos & (osb->s_clustersize - 1);
1239 if ((cluster_off + local_len) > osb->s_clustersize)
1240 local_len = osb->s_clustersize - cluster_off;
1241
1242 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1243 desc->c_new,
1244 desc->c_clear_unwritten,
1245 desc->c_needs_zero,
1246 data_ac, meta_ac,
1247 wc, desc->c_cpos, pos, local_len);
1248 if (ret) {
1249 mlog_errno(ret);
1250 goto out;
1251 }
1252
1253 len -= local_len;
1254 pos += local_len;
1255 }
1256
1257 ret = 0;
1258out:
1259 return ret;
1260}
1261
1262/*
1263 * ocfs2_write_end() wants to know which parts of the target page it
1264 * should complete the write on. It's easiest to compute them ahead of
1265 * time when a more complete view of the write is available.
1266 */
1267static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1268 struct ocfs2_write_ctxt *wc,
1269 loff_t pos, unsigned len, int alloc)
1270{
1271 struct ocfs2_write_cluster_desc *desc;
1272
1273 wc->w_target_from = pos & (PAGE_SIZE - 1);
1274 wc->w_target_to = wc->w_target_from + len;
1275
1276 if (alloc == 0)
1277 return;
1278
1279 /*
1280 * Allocating write - we may have different boundaries based
1281 * on page size and cluster size.
1282 *
1283 * NOTE: We can no longer compute one value from the other as
1284 * the actual write length and user provided length may be
1285 * different.
1286 */
1287
1288 if (wc->w_large_pages) {
1289 /*
1290 * We only care about the 1st and last cluster within
1291 * our range and whether they should be zero'd or not. Either
1292 * value may be extended out to the start/end of a
1293 * newly allocated cluster.
1294 */
1295 desc = &wc->w_desc[0];
1296 if (desc->c_needs_zero)
1297 ocfs2_figure_cluster_boundaries(osb,
1298 desc->c_cpos,
1299 &wc->w_target_from,
1300 NULL);
1301
1302 desc = &wc->w_desc[wc->w_clen - 1];
1303 if (desc->c_needs_zero)
1304 ocfs2_figure_cluster_boundaries(osb,
1305 desc->c_cpos,
1306 NULL,
1307 &wc->w_target_to);
1308 } else {
1309 wc->w_target_from = 0;
1310 wc->w_target_to = PAGE_SIZE;
1311 }
1312}
1313
1314/*
1315 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1316 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1317 * by the direct io procedure.
1318 * If this is a new extent that allocated by direct io, we should mark it in
1319 * the ip_unwritten_list.
1320 */
1321static int ocfs2_unwritten_check(struct inode *inode,
1322 struct ocfs2_write_ctxt *wc,
1323 struct ocfs2_write_cluster_desc *desc)
1324{
1325 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1326 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1327 int ret = 0;
1328
1329 if (!desc->c_needs_zero)
1330 return 0;
1331
1332retry:
1333 spin_lock(&oi->ip_lock);
1334 /* Needs not to zero no metter buffer or direct. The one who is zero
1335 * the cluster is doing zero. And he will clear unwritten after all
1336 * cluster io finished. */
1337 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1338 if (desc->c_cpos == ue->ue_cpos) {
1339 BUG_ON(desc->c_new);
1340 desc->c_needs_zero = 0;
1341 desc->c_clear_unwritten = 0;
1342 goto unlock;
1343 }
1344 }
1345
1346 if (wc->w_type != OCFS2_WRITE_DIRECT)
1347 goto unlock;
1348
1349 if (new == NULL) {
1350 spin_unlock(&oi->ip_lock);
1351 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1352 GFP_NOFS);
1353 if (new == NULL) {
1354 ret = -ENOMEM;
1355 goto out;
1356 }
1357 goto retry;
1358 }
1359 /* This direct write will doing zero. */
1360 new->ue_cpos = desc->c_cpos;
1361 new->ue_phys = desc->c_phys;
1362 desc->c_clear_unwritten = 0;
1363 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1364 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1365 wc->w_unwritten_count++;
1366 new = NULL;
1367unlock:
1368 spin_unlock(&oi->ip_lock);
1369out:
1370 kfree(new);
1371 return ret;
1372}
1373
1374/*
1375 * Populate each single-cluster write descriptor in the write context
1376 * with information about the i/o to be done.
1377 *
1378 * Returns the number of clusters that will have to be allocated, as
1379 * well as a worst case estimate of the number of extent records that
1380 * would have to be created during a write to an unwritten region.
1381 */
1382static int ocfs2_populate_write_desc(struct inode *inode,
1383 struct ocfs2_write_ctxt *wc,
1384 unsigned int *clusters_to_alloc,
1385 unsigned int *extents_to_split)
1386{
1387 int ret;
1388 struct ocfs2_write_cluster_desc *desc;
1389 unsigned int num_clusters = 0;
1390 unsigned int ext_flags = 0;
1391 u32 phys = 0;
1392 int i;
1393
1394 *clusters_to_alloc = 0;
1395 *extents_to_split = 0;
1396
1397 for (i = 0; i < wc->w_clen; i++) {
1398 desc = &wc->w_desc[i];
1399 desc->c_cpos = wc->w_cpos + i;
1400
1401 if (num_clusters == 0) {
1402 /*
1403 * Need to look up the next extent record.
1404 */
1405 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1406 &num_clusters, &ext_flags);
1407 if (ret) {
1408 mlog_errno(ret);
1409 goto out;
1410 }
1411
1412 /* We should already CoW the refcountd extent. */
1413 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1414
1415 /*
1416 * Assume worst case - that we're writing in
1417 * the middle of the extent.
1418 *
1419 * We can assume that the write proceeds from
1420 * left to right, in which case the extent
1421 * insert code is smart enough to coalesce the
1422 * next splits into the previous records created.
1423 */
1424 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425 *extents_to_split = *extents_to_split + 2;
1426 } else if (phys) {
1427 /*
1428 * Only increment phys if it doesn't describe
1429 * a hole.
1430 */
1431 phys++;
1432 }
1433
1434 /*
1435 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1436 * file that got extended. w_first_new_cpos tells us
1437 * where the newly allocated clusters are so we can
1438 * zero them.
1439 */
1440 if (desc->c_cpos >= wc->w_first_new_cpos) {
1441 BUG_ON(phys == 0);
1442 desc->c_needs_zero = 1;
1443 }
1444
1445 desc->c_phys = phys;
1446 if (phys == 0) {
1447 desc->c_new = 1;
1448 desc->c_needs_zero = 1;
1449 desc->c_clear_unwritten = 1;
1450 *clusters_to_alloc = *clusters_to_alloc + 1;
1451 }
1452
1453 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1454 desc->c_clear_unwritten = 1;
1455 desc->c_needs_zero = 1;
1456 }
1457
1458 ret = ocfs2_unwritten_check(inode, wc, desc);
1459 if (ret) {
1460 mlog_errno(ret);
1461 goto out;
1462 }
1463
1464 num_clusters--;
1465 }
1466
1467 ret = 0;
1468out:
1469 return ret;
1470}
1471
1472static int ocfs2_write_begin_inline(struct address_space *mapping,
1473 struct inode *inode,
1474 struct ocfs2_write_ctxt *wc)
1475{
1476 int ret;
1477 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1478 struct page *page;
1479 handle_t *handle;
1480 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1481
1482 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1483 if (IS_ERR(handle)) {
1484 ret = PTR_ERR(handle);
1485 mlog_errno(ret);
1486 goto out;
1487 }
1488
1489 page = find_or_create_page(mapping, 0, GFP_NOFS);
1490 if (!page) {
1491 ocfs2_commit_trans(osb, handle);
1492 ret = -ENOMEM;
1493 mlog_errno(ret);
1494 goto out;
1495 }
1496 /*
1497 * If we don't set w_num_pages then this page won't get unlocked
1498 * and freed on cleanup of the write context.
1499 */
1500 wc->w_pages[0] = wc->w_target_page = page;
1501 wc->w_num_pages = 1;
1502
1503 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1504 OCFS2_JOURNAL_ACCESS_WRITE);
1505 if (ret) {
1506 ocfs2_commit_trans(osb, handle);
1507
1508 mlog_errno(ret);
1509 goto out;
1510 }
1511
1512 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1513 ocfs2_set_inode_data_inline(inode, di);
1514
1515 if (!PageUptodate(page)) {
1516 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1517 if (ret) {
1518 ocfs2_commit_trans(osb, handle);
1519
1520 goto out;
1521 }
1522 }
1523
1524 wc->w_handle = handle;
1525out:
1526 return ret;
1527}
1528
1529int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1530{
1531 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1532
1533 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1534 return 1;
1535 return 0;
1536}
1537
1538static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1539 struct inode *inode, loff_t pos,
1540 unsigned len, struct page *mmap_page,
1541 struct ocfs2_write_ctxt *wc)
1542{
1543 int ret, written = 0;
1544 loff_t end = pos + len;
1545 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1546 struct ocfs2_dinode *di = NULL;
1547
1548 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1549 len, (unsigned long long)pos,
1550 oi->ip_dyn_features);
1551
1552 /*
1553 * Handle inodes which already have inline data 1st.
1554 */
1555 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1556 if (mmap_page == NULL &&
1557 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1558 goto do_inline_write;
1559
1560 /*
1561 * The write won't fit - we have to give this inode an
1562 * inline extent list now.
1563 */
1564 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1565 if (ret)
1566 mlog_errno(ret);
1567 goto out;
1568 }
1569
1570 /*
1571 * Check whether the inode can accept inline data.
1572 */
1573 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1574 return 0;
1575
1576 /*
1577 * Check whether the write can fit.
1578 */
1579 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1580 if (mmap_page ||
1581 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1582 return 0;
1583
1584do_inline_write:
1585 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1586 if (ret) {
1587 mlog_errno(ret);
1588 goto out;
1589 }
1590
1591 /*
1592 * This signals to the caller that the data can be written
1593 * inline.
1594 */
1595 written = 1;
1596out:
1597 return written ? written : ret;
1598}
1599
1600/*
1601 * This function only does anything for file systems which can't
1602 * handle sparse files.
1603 *
1604 * What we want to do here is fill in any hole between the current end
1605 * of allocation and the end of our write. That way the rest of the
1606 * write path can treat it as an non-allocating write, which has no
1607 * special case code for sparse/nonsparse files.
1608 */
1609static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1610 struct buffer_head *di_bh,
1611 loff_t pos, unsigned len,
1612 struct ocfs2_write_ctxt *wc)
1613{
1614 int ret;
1615 loff_t newsize = pos + len;
1616
1617 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1618
1619 if (newsize <= i_size_read(inode))
1620 return 0;
1621
1622 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1623 if (ret)
1624 mlog_errno(ret);
1625
1626 /* There is no wc if this is call from direct. */
1627 if (wc)
1628 wc->w_first_new_cpos =
1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630
1631 return ret;
1632}
1633
1634static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635 loff_t pos)
1636{
1637 int ret = 0;
1638
1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640 if (pos > i_size_read(inode))
1641 ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643 return ret;
1644}
1645
1646int ocfs2_write_begin_nolock(struct address_space *mapping,
1647 loff_t pos, unsigned len, ocfs2_write_type_t type,
1648 struct page **pagep, void **fsdata,
1649 struct buffer_head *di_bh, struct page *mmap_page)
1650{
1651 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1653 struct ocfs2_write_ctxt *wc;
1654 struct inode *inode = mapping->host;
1655 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656 struct ocfs2_dinode *di;
1657 struct ocfs2_alloc_context *data_ac = NULL;
1658 struct ocfs2_alloc_context *meta_ac = NULL;
1659 handle_t *handle;
1660 struct ocfs2_extent_tree et;
1661 int try_free = 1, ret1;
1662
1663try_again:
1664 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1665 if (ret) {
1666 mlog_errno(ret);
1667 return ret;
1668 }
1669
1670 if (ocfs2_supports_inline_data(osb)) {
1671 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1672 mmap_page, wc);
1673 if (ret == 1) {
1674 ret = 0;
1675 goto success;
1676 }
1677 if (ret < 0) {
1678 mlog_errno(ret);
1679 goto out;
1680 }
1681 }
1682
1683 /* Direct io change i_size late, should not zero tail here. */
1684 if (type != OCFS2_WRITE_DIRECT) {
1685 if (ocfs2_sparse_alloc(osb))
1686 ret = ocfs2_zero_tail(inode, di_bh, pos);
1687 else
1688 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1689 len, wc);
1690 if (ret) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
1696 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1697 if (ret < 0) {
1698 mlog_errno(ret);
1699 goto out;
1700 } else if (ret == 1) {
1701 clusters_need = wc->w_clen;
1702 ret = ocfs2_refcount_cow(inode, di_bh,
1703 wc->w_cpos, wc->w_clen, UINT_MAX);
1704 if (ret) {
1705 mlog_errno(ret);
1706 goto out;
1707 }
1708 }
1709
1710 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1711 &extents_to_split);
1712 if (ret) {
1713 mlog_errno(ret);
1714 goto out;
1715 }
1716 clusters_need += clusters_to_alloc;
1717
1718 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1719
1720 trace_ocfs2_write_begin_nolock(
1721 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1722 (long long)i_size_read(inode),
1723 le32_to_cpu(di->i_clusters),
1724 pos, len, type, mmap_page,
1725 clusters_to_alloc, extents_to_split);
1726
1727 /*
1728 * We set w_target_from, w_target_to here so that
1729 * ocfs2_write_end() knows which range in the target page to
1730 * write out. An allocation requires that we write the entire
1731 * cluster range.
1732 */
1733 if (clusters_to_alloc || extents_to_split) {
1734 /*
1735 * XXX: We are stretching the limits of
1736 * ocfs2_lock_allocators(). It greatly over-estimates
1737 * the work to be done.
1738 */
1739 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1740 wc->w_di_bh);
1741 ret = ocfs2_lock_allocators(inode, &et,
1742 clusters_to_alloc, extents_to_split,
1743 &data_ac, &meta_ac);
1744 if (ret) {
1745 mlog_errno(ret);
1746 goto out;
1747 }
1748
1749 if (data_ac)
1750 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1751
1752 credits = ocfs2_calc_extend_credits(inode->i_sb,
1753 &di->id2.i_list);
1754 } else if (type == OCFS2_WRITE_DIRECT)
1755 /* direct write needs not to start trans if no extents alloc. */
1756 goto success;
1757
1758 /*
1759 * We have to zero sparse allocated clusters, unwritten extent clusters,
1760 * and non-sparse clusters we just extended. For non-sparse writes,
1761 * we know zeros will only be needed in the first and/or last cluster.
1762 */
1763 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1764 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1765 cluster_of_pages = 1;
1766 else
1767 cluster_of_pages = 0;
1768
1769 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1770
1771 handle = ocfs2_start_trans(osb, credits);
1772 if (IS_ERR(handle)) {
1773 ret = PTR_ERR(handle);
1774 mlog_errno(ret);
1775 goto out;
1776 }
1777
1778 wc->w_handle = handle;
1779
1780 if (clusters_to_alloc) {
1781 ret = dquot_alloc_space_nodirty(inode,
1782 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1783 if (ret)
1784 goto out_commit;
1785 }
1786
1787 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1788 OCFS2_JOURNAL_ACCESS_WRITE);
1789 if (ret) {
1790 mlog_errno(ret);
1791 goto out_quota;
1792 }
1793
1794 /*
1795 * Fill our page array first. That way we've grabbed enough so
1796 * that we can zero and flush if we error after adding the
1797 * extent.
1798 */
1799 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1800 cluster_of_pages, mmap_page);
1801 if (ret) {
1802 /*
1803 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1804 * the target page. In this case, we exit with no error and no target
1805 * page. This will trigger the caller, page_mkwrite(), to re-try
1806 * the operation.
1807 */
1808 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1809 BUG_ON(wc->w_target_page);
1810 ret = 0;
1811 goto out_quota;
1812 }
1813
1814 mlog_errno(ret);
1815 goto out_quota;
1816 }
1817
1818 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819 len);
1820 if (ret) {
1821 mlog_errno(ret);
1822 goto out_quota;
1823 }
1824
1825 if (data_ac)
1826 ocfs2_free_alloc_context(data_ac);
1827 if (meta_ac)
1828 ocfs2_free_alloc_context(meta_ac);
1829
1830success:
1831 if (pagep)
1832 *pagep = wc->w_target_page;
1833 *fsdata = wc;
1834 return 0;
1835out_quota:
1836 if (clusters_to_alloc)
1837 dquot_free_space(inode,
1838 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1839out_commit:
1840 ocfs2_commit_trans(osb, handle);
1841
1842out:
1843 /*
1844 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1845 * even in case of error here like ENOSPC and ENOMEM. So, we need
1846 * to unlock the target page manually to prevent deadlocks when
1847 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1848 * to VM code.
1849 */
1850 if (wc->w_target_locked)
1851 unlock_page(mmap_page);
1852
1853 ocfs2_free_write_ctxt(inode, wc);
1854
1855 if (data_ac) {
1856 ocfs2_free_alloc_context(data_ac);
1857 data_ac = NULL;
1858 }
1859 if (meta_ac) {
1860 ocfs2_free_alloc_context(meta_ac);
1861 meta_ac = NULL;
1862 }
1863
1864 if (ret == -ENOSPC && try_free) {
1865 /*
1866 * Try to free some truncate log so that we can have enough
1867 * clusters to allocate.
1868 */
1869 try_free = 0;
1870
1871 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1872 if (ret1 == 1)
1873 goto try_again;
1874
1875 if (ret1 < 0)
1876 mlog_errno(ret1);
1877 }
1878
1879 return ret;
1880}
1881
1882static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1883 loff_t pos, unsigned len,
1884 struct page **pagep, void **fsdata)
1885{
1886 int ret;
1887 struct buffer_head *di_bh = NULL;
1888 struct inode *inode = mapping->host;
1889
1890 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1891 if (ret) {
1892 mlog_errno(ret);
1893 return ret;
1894 }
1895
1896 /*
1897 * Take alloc sem here to prevent concurrent lookups. That way
1898 * the mapping, zeroing and tree manipulation within
1899 * ocfs2_write() will be safe against ->read_folio(). This
1900 * should also serve to lock out allocation from a shared
1901 * writeable region.
1902 */
1903 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1904
1905 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1906 pagep, fsdata, di_bh, NULL);
1907 if (ret) {
1908 mlog_errno(ret);
1909 goto out_fail;
1910 }
1911
1912 brelse(di_bh);
1913
1914 return 0;
1915
1916out_fail:
1917 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1918
1919 brelse(di_bh);
1920 ocfs2_inode_unlock(inode, 1);
1921
1922 return ret;
1923}
1924
1925static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1926 unsigned len, unsigned *copied,
1927 struct ocfs2_dinode *di,
1928 struct ocfs2_write_ctxt *wc)
1929{
1930 void *kaddr;
1931
1932 if (unlikely(*copied < len)) {
1933 if (!PageUptodate(wc->w_target_page)) {
1934 *copied = 0;
1935 return;
1936 }
1937 }
1938
1939 kaddr = kmap_atomic(wc->w_target_page);
1940 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1941 kunmap_atomic(kaddr);
1942
1943 trace_ocfs2_write_end_inline(
1944 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1945 (unsigned long long)pos, *copied,
1946 le16_to_cpu(di->id2.i_data.id_count),
1947 le16_to_cpu(di->i_dyn_features));
1948}
1949
1950int ocfs2_write_end_nolock(struct address_space *mapping,
1951 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1952{
1953 int i, ret;
1954 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1955 struct inode *inode = mapping->host;
1956 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957 struct ocfs2_write_ctxt *wc = fsdata;
1958 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1959 handle_t *handle = wc->w_handle;
1960 struct page *tmppage;
1961
1962 BUG_ON(!list_empty(&wc->w_unwritten_list));
1963
1964 if (handle) {
1965 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1966 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1967 if (ret) {
1968 copied = ret;
1969 mlog_errno(ret);
1970 goto out;
1971 }
1972 }
1973
1974 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1975 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1976 goto out_write_size;
1977 }
1978
1979 if (unlikely(copied < len) && wc->w_target_page) {
1980 if (!PageUptodate(wc->w_target_page))
1981 copied = 0;
1982
1983 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1984 start+len);
1985 }
1986 if (wc->w_target_page)
1987 flush_dcache_page(wc->w_target_page);
1988
1989 for(i = 0; i < wc->w_num_pages; i++) {
1990 tmppage = wc->w_pages[i];
1991
1992 /* This is the direct io target page. */
1993 if (tmppage == NULL)
1994 continue;
1995
1996 if (tmppage == wc->w_target_page) {
1997 from = wc->w_target_from;
1998 to = wc->w_target_to;
1999
2000 BUG_ON(from > PAGE_SIZE ||
2001 to > PAGE_SIZE ||
2002 to < from);
2003 } else {
2004 /*
2005 * Pages adjacent to the target (if any) imply
2006 * a hole-filling write in which case we want
2007 * to flush their entire range.
2008 */
2009 from = 0;
2010 to = PAGE_SIZE;
2011 }
2012
2013 if (page_has_buffers(tmppage)) {
2014 if (handle && ocfs2_should_order_data(inode)) {
2015 loff_t start_byte =
2016 ((loff_t)tmppage->index << PAGE_SHIFT) +
2017 from;
2018 loff_t length = to - from;
2019 ocfs2_jbd2_inode_add_write(handle, inode,
2020 start_byte, length);
2021 }
2022 block_commit_write(tmppage, from, to);
2023 }
2024 }
2025
2026out_write_size:
2027 /* Direct io do not update i_size here. */
2028 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2029 pos += copied;
2030 if (pos > i_size_read(inode)) {
2031 i_size_write(inode, pos);
2032 mark_inode_dirty(inode);
2033 }
2034 inode->i_blocks = ocfs2_inode_sector_count(inode);
2035 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2036 inode->i_mtime = inode->i_ctime = current_time(inode);
2037 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2038 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2039 if (handle)
2040 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2041 }
2042 if (handle)
2043 ocfs2_journal_dirty(handle, wc->w_di_bh);
2044
2045out:
2046 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2047 * lock, or it will cause a deadlock since journal commit threads holds
2048 * this lock and will ask for the page lock when flushing the data.
2049 * put it here to preserve the unlock order.
2050 */
2051 ocfs2_unlock_pages(wc);
2052
2053 if (handle)
2054 ocfs2_commit_trans(osb, handle);
2055
2056 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2057
2058 brelse(wc->w_di_bh);
2059 kfree(wc);
2060
2061 return copied;
2062}
2063
2064static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2065 loff_t pos, unsigned len, unsigned copied,
2066 struct page *page, void *fsdata)
2067{
2068 int ret;
2069 struct inode *inode = mapping->host;
2070
2071 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2072
2073 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2074 ocfs2_inode_unlock(inode, 1);
2075
2076 return ret;
2077}
2078
2079struct ocfs2_dio_write_ctxt {
2080 struct list_head dw_zero_list;
2081 unsigned dw_zero_count;
2082 int dw_orphaned;
2083 pid_t dw_writer_pid;
2084};
2085
2086static struct ocfs2_dio_write_ctxt *
2087ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2088{
2089 struct ocfs2_dio_write_ctxt *dwc = NULL;
2090
2091 if (bh->b_private)
2092 return bh->b_private;
2093
2094 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2095 if (dwc == NULL)
2096 return NULL;
2097 INIT_LIST_HEAD(&dwc->dw_zero_list);
2098 dwc->dw_zero_count = 0;
2099 dwc->dw_orphaned = 0;
2100 dwc->dw_writer_pid = task_pid_nr(current);
2101 bh->b_private = dwc;
2102 *alloc = 1;
2103
2104 return dwc;
2105}
2106
2107static void ocfs2_dio_free_write_ctx(struct inode *inode,
2108 struct ocfs2_dio_write_ctxt *dwc)
2109{
2110 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2111 kfree(dwc);
2112}
2113
2114/*
2115 * TODO: Make this into a generic get_blocks function.
2116 *
2117 * From do_direct_io in direct-io.c:
2118 * "So what we do is to permit the ->get_blocks function to populate
2119 * bh.b_size with the size of IO which is permitted at this offset and
2120 * this i_blkbits."
2121 *
2122 * This function is called directly from get_more_blocks in direct-io.c.
2123 *
2124 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2125 * fs_count, map_bh, dio->rw == WRITE);
2126 */
2127static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2128 struct buffer_head *bh_result, int create)
2129{
2130 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2131 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2132 struct ocfs2_write_ctxt *wc;
2133 struct ocfs2_write_cluster_desc *desc = NULL;
2134 struct ocfs2_dio_write_ctxt *dwc = NULL;
2135 struct buffer_head *di_bh = NULL;
2136 u64 p_blkno;
2137 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2138 loff_t pos = iblock << i_blkbits;
2139 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2140 unsigned len, total_len = bh_result->b_size;
2141 int ret = 0, first_get_block = 0;
2142
2143 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2144 len = min(total_len, len);
2145
2146 /*
2147 * bh_result->b_size is count in get_more_blocks according to write
2148 * "pos" and "end", we need map twice to return different buffer state:
2149 * 1. area in file size, not set NEW;
2150 * 2. area out file size, set NEW.
2151 *
2152 * iblock endblk
2153 * |--------|---------|---------|---------
2154 * |<-------area in file------->|
2155 */
2156
2157 if ((iblock <= endblk) &&
2158 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2159 len = (endblk - iblock + 1) << i_blkbits;
2160
2161 mlog(0, "get block of %lu at %llu:%u req %u\n",
2162 inode->i_ino, pos, len, total_len);
2163
2164 /*
2165 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2166 * we may need to add it to orphan dir. So can not fall to fast path
2167 * while file size will be changed.
2168 */
2169 if (pos + total_len <= i_size_read(inode)) {
2170
2171 /* This is the fast path for re-write. */
2172 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2173 if (buffer_mapped(bh_result) &&
2174 !buffer_new(bh_result) &&
2175 ret == 0)
2176 goto out;
2177
2178 /* Clear state set by ocfs2_get_block. */
2179 bh_result->b_state = 0;
2180 }
2181
2182 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2183 if (unlikely(dwc == NULL)) {
2184 ret = -ENOMEM;
2185 mlog_errno(ret);
2186 goto out;
2187 }
2188
2189 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2190 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2191 !dwc->dw_orphaned) {
2192 /*
2193 * when we are going to alloc extents beyond file size, add the
2194 * inode to orphan dir, so we can recall those spaces when
2195 * system crashed during write.
2196 */
2197 ret = ocfs2_add_inode_to_orphan(osb, inode);
2198 if (ret < 0) {
2199 mlog_errno(ret);
2200 goto out;
2201 }
2202 dwc->dw_orphaned = 1;
2203 }
2204
2205 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2206 if (ret) {
2207 mlog_errno(ret);
2208 goto out;
2209 }
2210
2211 down_write(&oi->ip_alloc_sem);
2212
2213 if (first_get_block) {
2214 if (ocfs2_sparse_alloc(osb))
2215 ret = ocfs2_zero_tail(inode, di_bh, pos);
2216 else
2217 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2218 total_len, NULL);
2219 if (ret < 0) {
2220 mlog_errno(ret);
2221 goto unlock;
2222 }
2223 }
2224
2225 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2226 OCFS2_WRITE_DIRECT, NULL,
2227 (void **)&wc, di_bh, NULL);
2228 if (ret) {
2229 mlog_errno(ret);
2230 goto unlock;
2231 }
2232
2233 desc = &wc->w_desc[0];
2234
2235 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2236 BUG_ON(p_blkno == 0);
2237 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2238
2239 map_bh(bh_result, inode->i_sb, p_blkno);
2240 bh_result->b_size = len;
2241 if (desc->c_needs_zero)
2242 set_buffer_new(bh_result);
2243
2244 if (iblock > endblk)
2245 set_buffer_new(bh_result);
2246
2247 /* May sleep in end_io. It should not happen in a irq context. So defer
2248 * it to dio work queue. */
2249 set_buffer_defer_completion(bh_result);
2250
2251 if (!list_empty(&wc->w_unwritten_list)) {
2252 struct ocfs2_unwritten_extent *ue = NULL;
2253
2254 ue = list_first_entry(&wc->w_unwritten_list,
2255 struct ocfs2_unwritten_extent,
2256 ue_node);
2257 BUG_ON(ue->ue_cpos != desc->c_cpos);
2258 /* The physical address may be 0, fill it. */
2259 ue->ue_phys = desc->c_phys;
2260
2261 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2262 dwc->dw_zero_count += wc->w_unwritten_count;
2263 }
2264
2265 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2266 BUG_ON(ret != len);
2267 ret = 0;
2268unlock:
2269 up_write(&oi->ip_alloc_sem);
2270 ocfs2_inode_unlock(inode, 1);
2271 brelse(di_bh);
2272out:
2273 if (ret < 0)
2274 ret = -EIO;
2275 return ret;
2276}
2277
2278static int ocfs2_dio_end_io_write(struct inode *inode,
2279 struct ocfs2_dio_write_ctxt *dwc,
2280 loff_t offset,
2281 ssize_t bytes)
2282{
2283 struct ocfs2_cached_dealloc_ctxt dealloc;
2284 struct ocfs2_extent_tree et;
2285 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2286 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2287 struct ocfs2_unwritten_extent *ue = NULL;
2288 struct buffer_head *di_bh = NULL;
2289 struct ocfs2_dinode *di;
2290 struct ocfs2_alloc_context *data_ac = NULL;
2291 struct ocfs2_alloc_context *meta_ac = NULL;
2292 handle_t *handle = NULL;
2293 loff_t end = offset + bytes;
2294 int ret = 0, credits = 0;
2295
2296 ocfs2_init_dealloc_ctxt(&dealloc);
2297
2298 /* We do clear unwritten, delete orphan, change i_size here. If neither
2299 * of these happen, we can skip all this. */
2300 if (list_empty(&dwc->dw_zero_list) &&
2301 end <= i_size_read(inode) &&
2302 !dwc->dw_orphaned)
2303 goto out;
2304
2305 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2306 if (ret < 0) {
2307 mlog_errno(ret);
2308 goto out;
2309 }
2310
2311 down_write(&oi->ip_alloc_sem);
2312
2313 /* Delete orphan before acquire i_rwsem. */
2314 if (dwc->dw_orphaned) {
2315 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2316
2317 end = end > i_size_read(inode) ? end : 0;
2318
2319 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2320 !!end, end);
2321 if (ret < 0)
2322 mlog_errno(ret);
2323 }
2324
2325 di = (struct ocfs2_dinode *)di_bh->b_data;
2326
2327 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2328
2329 /* Attach dealloc with extent tree in case that we may reuse extents
2330 * which are already unlinked from current extent tree due to extent
2331 * rotation and merging.
2332 */
2333 et.et_dealloc = &dealloc;
2334
2335 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2336 &data_ac, &meta_ac);
2337 if (ret) {
2338 mlog_errno(ret);
2339 goto unlock;
2340 }
2341
2342 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2343
2344 handle = ocfs2_start_trans(osb, credits);
2345 if (IS_ERR(handle)) {
2346 ret = PTR_ERR(handle);
2347 mlog_errno(ret);
2348 goto unlock;
2349 }
2350 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2351 OCFS2_JOURNAL_ACCESS_WRITE);
2352 if (ret) {
2353 mlog_errno(ret);
2354 goto commit;
2355 }
2356
2357 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2358 ret = ocfs2_mark_extent_written(inode, &et, handle,
2359 ue->ue_cpos, 1,
2360 ue->ue_phys,
2361 meta_ac, &dealloc);
2362 if (ret < 0) {
2363 mlog_errno(ret);
2364 break;
2365 }
2366 }
2367
2368 if (end > i_size_read(inode)) {
2369 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2370 if (ret < 0)
2371 mlog_errno(ret);
2372 }
2373commit:
2374 ocfs2_commit_trans(osb, handle);
2375unlock:
2376 up_write(&oi->ip_alloc_sem);
2377 ocfs2_inode_unlock(inode, 1);
2378 brelse(di_bh);
2379out:
2380 if (data_ac)
2381 ocfs2_free_alloc_context(data_ac);
2382 if (meta_ac)
2383 ocfs2_free_alloc_context(meta_ac);
2384 ocfs2_run_deallocs(osb, &dealloc);
2385 ocfs2_dio_free_write_ctx(inode, dwc);
2386
2387 return ret;
2388}
2389
2390/*
2391 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2392 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2393 * to protect io on one node from truncation on another.
2394 */
2395static int ocfs2_dio_end_io(struct kiocb *iocb,
2396 loff_t offset,
2397 ssize_t bytes,
2398 void *private)
2399{
2400 struct inode *inode = file_inode(iocb->ki_filp);
2401 int level;
2402 int ret = 0;
2403
2404 /* this io's submitter should not have unlocked this before we could */
2405 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2406
2407 if (bytes <= 0)
2408 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2409 (long long)bytes);
2410 if (private) {
2411 if (bytes > 0)
2412 ret = ocfs2_dio_end_io_write(inode, private, offset,
2413 bytes);
2414 else
2415 ocfs2_dio_free_write_ctx(inode, private);
2416 }
2417
2418 ocfs2_iocb_clear_rw_locked(iocb);
2419
2420 level = ocfs2_iocb_rw_locked_level(iocb);
2421 ocfs2_rw_unlock(inode, level);
2422 return ret;
2423}
2424
2425static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426{
2427 struct file *file = iocb->ki_filp;
2428 struct inode *inode = file->f_mapping->host;
2429 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430 get_block_t *get_block;
2431
2432 /*
2433 * Fallback to buffered I/O if we see an inode without
2434 * extents.
2435 */
2436 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437 return 0;
2438
2439 /* Fallback to buffered I/O if we do not support append dio. */
2440 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441 !ocfs2_supports_append_dio(osb))
2442 return 0;
2443
2444 if (iov_iter_rw(iter) == READ)
2445 get_block = ocfs2_lock_get_block;
2446 else
2447 get_block = ocfs2_dio_wr_get_block;
2448
2449 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450 iter, get_block,
2451 ocfs2_dio_end_io, NULL, 0);
2452}
2453
2454const struct address_space_operations ocfs2_aops = {
2455 .dirty_folio = block_dirty_folio,
2456 .read_folio = ocfs2_read_folio,
2457 .readahead = ocfs2_readahead,
2458 .writepage = ocfs2_writepage,
2459 .write_begin = ocfs2_write_begin,
2460 .write_end = ocfs2_write_end,
2461 .bmap = ocfs2_bmap,
2462 .direct_IO = ocfs2_direct_IO,
2463 .invalidate_folio = block_invalidate_folio,
2464 .release_folio = ocfs2_release_folio,
2465 .migrate_folio = buffer_migrate_folio,
2466 .is_partially_uptodate = block_is_partially_uptodate,
2467 .error_remove_page = generic_error_remove_page,
2468};
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
125 brelse(bh);
126
127 return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132{
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213}
214
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217{
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
297 ret = AOP_TRUNCATED_PAGE;
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
302 goto out_inode_unlock;
303 }
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
316 zero_user(page, 0, PAGE_SIZE);
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
326 unlock = 0;
327
328out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
330out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
332out:
333 if (unlock)
334 unlock_page(page);
335 return ret;
336}
337
338/*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349{
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392}
393
394/* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406{
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
410
411 return block_write_full_page(page, ocfs2_get_block, wbc);
412}
413
414/* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
425{
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448}
449
450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451{
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
464 err = ocfs2_inode_lock(inode, NULL, 0);
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_inode_unlock(inode, 0);
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
489bail:
490 status = err ? 0 : p_blkno;
491
492 return status;
493}
494
495/*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
510 */
511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 struct buffer_head *bh_result, int create)
513{
514 int ret;
515 u64 p_blkno, inode_blocks, contig_blocks;
516 unsigned int ext_flags;
517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 &contig_blocks, &ext_flags);
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
543 *
544 * Consider an unwritten extent as a hole.
545 */
546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 map_bh(bh_result, inode->i_sb, p_blkno);
548 else
549 clear_buffer_mapped(bh_result);
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556bail:
557 return ret;
558}
559
560/*
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
564 */
565static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
568 void *private,
569 int ret,
570 bool is_async)
571{
572 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
573 int level;
574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578
579 if (ocfs2_iocb_is_sem_locked(iocb))
580 ocfs2_iocb_clear_sem_locked(iocb);
581
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
591 ocfs2_iocb_clear_rw_locked(iocb);
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
594 ocfs2_rw_unlock(inode, level);
595
596 if (is_async)
597 aio_complete(iocb, ret, 0);
598 inode_dio_done(inode);
599}
600
601/*
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
605 */
606static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607{
608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609
610 jbd2_journal_invalidatepage(journal, page, offset);
611}
612
613static int ocfs2_releasepage(struct page *page, gfp_t wait)
614{
615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616
617 if (!page_has_buffers(page))
618 return 0;
619 return jbd2_journal_try_to_free_buffers(journal, page, wait);
620}
621
622static ssize_t ocfs2_direct_IO(int rw,
623 struct kiocb *iocb,
624 const struct iovec *iov,
625 loff_t offset,
626 unsigned long nr_segs)
627{
628 struct file *file = iocb->ki_filp;
629 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
630
631 /*
632 * Fallback to buffered I/O if we see an inode without
633 * extents.
634 */
635 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636 return 0;
637
638 /* Fallback to buffered I/O if we are appending. */
639 if (i_size_read(inode) <= offset)
640 return 0;
641
642 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
643 iov, offset, nr_segs,
644 ocfs2_direct_IO_get_blocks,
645 ocfs2_dio_end_io, NULL, 0);
646}
647
648static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
649 u32 cpos,
650 unsigned int *start,
651 unsigned int *end)
652{
653 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
654
655 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
656 unsigned int cpp;
657
658 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
659
660 cluster_start = cpos % cpp;
661 cluster_start = cluster_start << osb->s_clustersize_bits;
662
663 cluster_end = cluster_start + osb->s_clustersize;
664 }
665
666 BUG_ON(cluster_start > PAGE_SIZE);
667 BUG_ON(cluster_end > PAGE_SIZE);
668
669 if (start)
670 *start = cluster_start;
671 if (end)
672 *end = cluster_end;
673}
674
675/*
676 * 'from' and 'to' are the region in the page to avoid zeroing.
677 *
678 * If pagesize > clustersize, this function will avoid zeroing outside
679 * of the cluster boundary.
680 *
681 * from == to == 0 is code for "zero the entire cluster region"
682 */
683static void ocfs2_clear_page_regions(struct page *page,
684 struct ocfs2_super *osb, u32 cpos,
685 unsigned from, unsigned to)
686{
687 void *kaddr;
688 unsigned int cluster_start, cluster_end;
689
690 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
691
692 kaddr = kmap_atomic(page);
693
694 if (from || to) {
695 if (from > cluster_start)
696 memset(kaddr + cluster_start, 0, from - cluster_start);
697 if (to < cluster_end)
698 memset(kaddr + to, 0, cluster_end - to);
699 } else {
700 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
701 }
702
703 kunmap_atomic(kaddr);
704}
705
706/*
707 * Nonsparse file systems fully allocate before we get to the write
708 * code. This prevents ocfs2_write() from tagging the write as an
709 * allocating one, which means ocfs2_map_page_blocks() might try to
710 * read-in the blocks at the tail of our file. Avoid reading them by
711 * testing i_size against each block offset.
712 */
713static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
714 unsigned int block_start)
715{
716 u64 offset = page_offset(page) + block_start;
717
718 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
719 return 1;
720
721 if (i_size_read(inode) > offset)
722 return 1;
723
724 return 0;
725}
726
727/*
728 * Some of this taken from __block_write_begin(). We already have our
729 * mapping by now though, and the entire write will be allocating or
730 * it won't, so not much need to use BH_New.
731 *
732 * This will also skip zeroing, which is handled externally.
733 */
734int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
735 struct inode *inode, unsigned int from,
736 unsigned int to, int new)
737{
738 int ret = 0;
739 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
740 unsigned int block_end, block_start;
741 unsigned int bsize = 1 << inode->i_blkbits;
742
743 if (!page_has_buffers(page))
744 create_empty_buffers(page, bsize, 0);
745
746 head = page_buffers(page);
747 for (bh = head, block_start = 0; bh != head || !block_start;
748 bh = bh->b_this_page, block_start += bsize) {
749 block_end = block_start + bsize;
750
751 clear_buffer_new(bh);
752
753 /*
754 * Ignore blocks outside of our i/o range -
755 * they may belong to unallocated clusters.
756 */
757 if (block_start >= to || block_end <= from) {
758 if (PageUptodate(page))
759 set_buffer_uptodate(bh);
760 continue;
761 }
762
763 /*
764 * For an allocating write with cluster size >= page
765 * size, we always write the entire page.
766 */
767 if (new)
768 set_buffer_new(bh);
769
770 if (!buffer_mapped(bh)) {
771 map_bh(bh, inode->i_sb, *p_blkno);
772 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
773 }
774
775 if (PageUptodate(page)) {
776 if (!buffer_uptodate(bh))
777 set_buffer_uptodate(bh);
778 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
779 !buffer_new(bh) &&
780 ocfs2_should_read_blk(inode, page, block_start) &&
781 (block_start < from || block_end > to)) {
782 ll_rw_block(READ, 1, &bh);
783 *wait_bh++=bh;
784 }
785
786 *p_blkno = *p_blkno + 1;
787 }
788
789 /*
790 * If we issued read requests - let them complete.
791 */
792 while(wait_bh > wait) {
793 wait_on_buffer(*--wait_bh);
794 if (!buffer_uptodate(*wait_bh))
795 ret = -EIO;
796 }
797
798 if (ret == 0 || !new)
799 return ret;
800
801 /*
802 * If we get -EIO above, zero out any newly allocated blocks
803 * to avoid exposing stale data.
804 */
805 bh = head;
806 block_start = 0;
807 do {
808 block_end = block_start + bsize;
809 if (block_end <= from)
810 goto next_bh;
811 if (block_start >= to)
812 break;
813
814 zero_user(page, block_start, bh->b_size);
815 set_buffer_uptodate(bh);
816 mark_buffer_dirty(bh);
817
818next_bh:
819 block_start = block_end;
820 bh = bh->b_this_page;
821 } while (bh != head);
822
823 return ret;
824}
825
826#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
827#define OCFS2_MAX_CTXT_PAGES 1
828#else
829#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
830#endif
831
832#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
833
834/*
835 * Describe the state of a single cluster to be written to.
836 */
837struct ocfs2_write_cluster_desc {
838 u32 c_cpos;
839 u32 c_phys;
840 /*
841 * Give this a unique field because c_phys eventually gets
842 * filled.
843 */
844 unsigned c_new;
845 unsigned c_unwritten;
846 unsigned c_needs_zero;
847};
848
849struct ocfs2_write_ctxt {
850 /* Logical cluster position / len of write */
851 u32 w_cpos;
852 u32 w_clen;
853
854 /* First cluster allocated in a nonsparse extend */
855 u32 w_first_new_cpos;
856
857 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
858
859 /*
860 * This is true if page_size > cluster_size.
861 *
862 * It triggers a set of special cases during write which might
863 * have to deal with allocating writes to partial pages.
864 */
865 unsigned int w_large_pages;
866
867 /*
868 * Pages involved in this write.
869 *
870 * w_target_page is the page being written to by the user.
871 *
872 * w_pages is an array of pages which always contains
873 * w_target_page, and in the case of an allocating write with
874 * page_size < cluster size, it will contain zero'd and mapped
875 * pages adjacent to w_target_page which need to be written
876 * out in so that future reads from that region will get
877 * zero's.
878 */
879 unsigned int w_num_pages;
880 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
881 struct page *w_target_page;
882
883 /*
884 * w_target_locked is used for page_mkwrite path indicating no unlocking
885 * against w_target_page in ocfs2_write_end_nolock.
886 */
887 unsigned int w_target_locked:1;
888
889 /*
890 * ocfs2_write_end() uses this to know what the real range to
891 * write in the target should be.
892 */
893 unsigned int w_target_from;
894 unsigned int w_target_to;
895
896 /*
897 * We could use journal_current_handle() but this is cleaner,
898 * IMHO -Mark
899 */
900 handle_t *w_handle;
901
902 struct buffer_head *w_di_bh;
903
904 struct ocfs2_cached_dealloc_ctxt w_dealloc;
905};
906
907void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
908{
909 int i;
910
911 for(i = 0; i < num_pages; i++) {
912 if (pages[i]) {
913 unlock_page(pages[i]);
914 mark_page_accessed(pages[i]);
915 page_cache_release(pages[i]);
916 }
917 }
918}
919
920static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
921{
922 int i;
923
924 /*
925 * w_target_locked is only set to true in the page_mkwrite() case.
926 * The intent is to allow us to lock the target page from write_begin()
927 * to write_end(). The caller must hold a ref on w_target_page.
928 */
929 if (wc->w_target_locked) {
930 BUG_ON(!wc->w_target_page);
931 for (i = 0; i < wc->w_num_pages; i++) {
932 if (wc->w_target_page == wc->w_pages[i]) {
933 wc->w_pages[i] = NULL;
934 break;
935 }
936 }
937 mark_page_accessed(wc->w_target_page);
938 page_cache_release(wc->w_target_page);
939 }
940 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
941
942 brelse(wc->w_di_bh);
943 kfree(wc);
944}
945
946static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
947 struct ocfs2_super *osb, loff_t pos,
948 unsigned len, struct buffer_head *di_bh)
949{
950 u32 cend;
951 struct ocfs2_write_ctxt *wc;
952
953 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
954 if (!wc)
955 return -ENOMEM;
956
957 wc->w_cpos = pos >> osb->s_clustersize_bits;
958 wc->w_first_new_cpos = UINT_MAX;
959 cend = (pos + len - 1) >> osb->s_clustersize_bits;
960 wc->w_clen = cend - wc->w_cpos + 1;
961 get_bh(di_bh);
962 wc->w_di_bh = di_bh;
963
964 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
965 wc->w_large_pages = 1;
966 else
967 wc->w_large_pages = 0;
968
969 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
970
971 *wcp = wc;
972
973 return 0;
974}
975
976/*
977 * If a page has any new buffers, zero them out here, and mark them uptodate
978 * and dirty so they'll be written out (in order to prevent uninitialised
979 * block data from leaking). And clear the new bit.
980 */
981static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
982{
983 unsigned int block_start, block_end;
984 struct buffer_head *head, *bh;
985
986 BUG_ON(!PageLocked(page));
987 if (!page_has_buffers(page))
988 return;
989
990 bh = head = page_buffers(page);
991 block_start = 0;
992 do {
993 block_end = block_start + bh->b_size;
994
995 if (buffer_new(bh)) {
996 if (block_end > from && block_start < to) {
997 if (!PageUptodate(page)) {
998 unsigned start, end;
999
1000 start = max(from, block_start);
1001 end = min(to, block_end);
1002
1003 zero_user_segment(page, start, end);
1004 set_buffer_uptodate(bh);
1005 }
1006
1007 clear_buffer_new(bh);
1008 mark_buffer_dirty(bh);
1009 }
1010 }
1011
1012 block_start = block_end;
1013 bh = bh->b_this_page;
1014 } while (bh != head);
1015}
1016
1017/*
1018 * Only called when we have a failure during allocating write to write
1019 * zero's to the newly allocated region.
1020 */
1021static void ocfs2_write_failure(struct inode *inode,
1022 struct ocfs2_write_ctxt *wc,
1023 loff_t user_pos, unsigned user_len)
1024{
1025 int i;
1026 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027 to = user_pos + user_len;
1028 struct page *tmppage;
1029
1030 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1031
1032 for(i = 0; i < wc->w_num_pages; i++) {
1033 tmppage = wc->w_pages[i];
1034
1035 if (page_has_buffers(tmppage)) {
1036 if (ocfs2_should_order_data(inode))
1037 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1038
1039 block_commit_write(tmppage, from, to);
1040 }
1041 }
1042}
1043
1044static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045 struct ocfs2_write_ctxt *wc,
1046 struct page *page, u32 cpos,
1047 loff_t user_pos, unsigned user_len,
1048 int new)
1049{
1050 int ret;
1051 unsigned int map_from = 0, map_to = 0;
1052 unsigned int cluster_start, cluster_end;
1053 unsigned int user_data_from = 0, user_data_to = 0;
1054
1055 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056 &cluster_start, &cluster_end);
1057
1058 /* treat the write as new if the a hole/lseek spanned across
1059 * the page boundary.
1060 */
1061 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062 (page_offset(page) <= user_pos));
1063
1064 if (page == wc->w_target_page) {
1065 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066 map_to = map_from + user_len;
1067
1068 if (new)
1069 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070 cluster_start, cluster_end,
1071 new);
1072 else
1073 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 map_from, map_to, new);
1075 if (ret) {
1076 mlog_errno(ret);
1077 goto out;
1078 }
1079
1080 user_data_from = map_from;
1081 user_data_to = map_to;
1082 if (new) {
1083 map_from = cluster_start;
1084 map_to = cluster_end;
1085 }
1086 } else {
1087 /*
1088 * If we haven't allocated the new page yet, we
1089 * shouldn't be writing it out without copying user
1090 * data. This is likely a math error from the caller.
1091 */
1092 BUG_ON(!new);
1093
1094 map_from = cluster_start;
1095 map_to = cluster_end;
1096
1097 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098 cluster_start, cluster_end, new);
1099 if (ret) {
1100 mlog_errno(ret);
1101 goto out;
1102 }
1103 }
1104
1105 /*
1106 * Parts of newly allocated pages need to be zero'd.
1107 *
1108 * Above, we have also rewritten 'to' and 'from' - as far as
1109 * the rest of the function is concerned, the entire cluster
1110 * range inside of a page needs to be written.
1111 *
1112 * We can skip this if the page is up to date - it's already
1113 * been zero'd from being read in as a hole.
1114 */
1115 if (new && !PageUptodate(page))
1116 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117 cpos, user_data_from, user_data_to);
1118
1119 flush_dcache_page(page);
1120
1121out:
1122 return ret;
1123}
1124
1125/*
1126 * This function will only grab one clusters worth of pages.
1127 */
1128static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129 struct ocfs2_write_ctxt *wc,
1130 u32 cpos, loff_t user_pos,
1131 unsigned user_len, int new,
1132 struct page *mmap_page)
1133{
1134 int ret = 0, i;
1135 unsigned long start, target_index, end_index, index;
1136 struct inode *inode = mapping->host;
1137 loff_t last_byte;
1138
1139 target_index = user_pos >> PAGE_CACHE_SHIFT;
1140
1141 /*
1142 * Figure out how many pages we'll be manipulating here. For
1143 * non allocating write, we just change the one
1144 * page. Otherwise, we'll need a whole clusters worth. If we're
1145 * writing past i_size, we only need enough pages to cover the
1146 * last page of the write.
1147 */
1148 if (new) {
1149 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151 /*
1152 * We need the index *past* the last page we could possibly
1153 * touch. This is the page past the end of the write or
1154 * i_size, whichever is greater.
1155 */
1156 last_byte = max(user_pos + user_len, i_size_read(inode));
1157 BUG_ON(last_byte < 1);
1158 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159 if ((start + wc->w_num_pages) > end_index)
1160 wc->w_num_pages = end_index - start;
1161 } else {
1162 wc->w_num_pages = 1;
1163 start = target_index;
1164 }
1165
1166 for(i = 0; i < wc->w_num_pages; i++) {
1167 index = start + i;
1168
1169 if (index == target_index && mmap_page) {
1170 /*
1171 * ocfs2_pagemkwrite() is a little different
1172 * and wants us to directly use the page
1173 * passed in.
1174 */
1175 lock_page(mmap_page);
1176
1177 /* Exit and let the caller retry */
1178 if (mmap_page->mapping != mapping) {
1179 WARN_ON(mmap_page->mapping);
1180 unlock_page(mmap_page);
1181 ret = -EAGAIN;
1182 goto out;
1183 }
1184
1185 page_cache_get(mmap_page);
1186 wc->w_pages[i] = mmap_page;
1187 wc->w_target_locked = true;
1188 } else {
1189 wc->w_pages[i] = find_or_create_page(mapping, index,
1190 GFP_NOFS);
1191 if (!wc->w_pages[i]) {
1192 ret = -ENOMEM;
1193 mlog_errno(ret);
1194 goto out;
1195 }
1196 }
1197
1198 if (index == target_index)
1199 wc->w_target_page = wc->w_pages[i];
1200 }
1201out:
1202 if (ret)
1203 wc->w_target_locked = false;
1204 return ret;
1205}
1206
1207/*
1208 * Prepare a single cluster for write one cluster into the file.
1209 */
1210static int ocfs2_write_cluster(struct address_space *mapping,
1211 u32 phys, unsigned int unwritten,
1212 unsigned int should_zero,
1213 struct ocfs2_alloc_context *data_ac,
1214 struct ocfs2_alloc_context *meta_ac,
1215 struct ocfs2_write_ctxt *wc, u32 cpos,
1216 loff_t user_pos, unsigned user_len)
1217{
1218 int ret, i, new;
1219 u64 v_blkno, p_blkno;
1220 struct inode *inode = mapping->host;
1221 struct ocfs2_extent_tree et;
1222
1223 new = phys == 0 ? 1 : 0;
1224 if (new) {
1225 u32 tmp_pos;
1226
1227 /*
1228 * This is safe to call with the page locks - it won't take
1229 * any additional semaphores or cluster locks.
1230 */
1231 tmp_pos = cpos;
1232 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1233 &tmp_pos, 1, 0, wc->w_di_bh,
1234 wc->w_handle, data_ac,
1235 meta_ac, NULL);
1236 /*
1237 * This shouldn't happen because we must have already
1238 * calculated the correct meta data allocation required. The
1239 * internal tree allocation code should know how to increase
1240 * transaction credits itself.
1241 *
1242 * If need be, we could handle -EAGAIN for a
1243 * RESTART_TRANS here.
1244 */
1245 mlog_bug_on_msg(ret == -EAGAIN,
1246 "Inode %llu: EAGAIN return during allocation.\n",
1247 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1248 if (ret < 0) {
1249 mlog_errno(ret);
1250 goto out;
1251 }
1252 } else if (unwritten) {
1253 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1254 wc->w_di_bh);
1255 ret = ocfs2_mark_extent_written(inode, &et,
1256 wc->w_handle, cpos, 1, phys,
1257 meta_ac, &wc->w_dealloc);
1258 if (ret < 0) {
1259 mlog_errno(ret);
1260 goto out;
1261 }
1262 }
1263
1264 if (should_zero)
1265 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1266 else
1267 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1268
1269 /*
1270 * The only reason this should fail is due to an inability to
1271 * find the extent added.
1272 */
1273 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1274 NULL);
1275 if (ret < 0) {
1276 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1277 "at logical block %llu",
1278 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1279 (unsigned long long)v_blkno);
1280 goto out;
1281 }
1282
1283 BUG_ON(p_blkno == 0);
1284
1285 for(i = 0; i < wc->w_num_pages; i++) {
1286 int tmpret;
1287
1288 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1289 wc->w_pages[i], cpos,
1290 user_pos, user_len,
1291 should_zero);
1292 if (tmpret) {
1293 mlog_errno(tmpret);
1294 if (ret == 0)
1295 ret = tmpret;
1296 }
1297 }
1298
1299 /*
1300 * We only have cleanup to do in case of allocating write.
1301 */
1302 if (ret && new)
1303 ocfs2_write_failure(inode, wc, user_pos, user_len);
1304
1305out:
1306
1307 return ret;
1308}
1309
1310static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1311 struct ocfs2_alloc_context *data_ac,
1312 struct ocfs2_alloc_context *meta_ac,
1313 struct ocfs2_write_ctxt *wc,
1314 loff_t pos, unsigned len)
1315{
1316 int ret, i;
1317 loff_t cluster_off;
1318 unsigned int local_len = len;
1319 struct ocfs2_write_cluster_desc *desc;
1320 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1321
1322 for (i = 0; i < wc->w_clen; i++) {
1323 desc = &wc->w_desc[i];
1324
1325 /*
1326 * We have to make sure that the total write passed in
1327 * doesn't extend past a single cluster.
1328 */
1329 local_len = len;
1330 cluster_off = pos & (osb->s_clustersize - 1);
1331 if ((cluster_off + local_len) > osb->s_clustersize)
1332 local_len = osb->s_clustersize - cluster_off;
1333
1334 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1335 desc->c_unwritten,
1336 desc->c_needs_zero,
1337 data_ac, meta_ac,
1338 wc, desc->c_cpos, pos, local_len);
1339 if (ret) {
1340 mlog_errno(ret);
1341 goto out;
1342 }
1343
1344 len -= local_len;
1345 pos += local_len;
1346 }
1347
1348 ret = 0;
1349out:
1350 return ret;
1351}
1352
1353/*
1354 * ocfs2_write_end() wants to know which parts of the target page it
1355 * should complete the write on. It's easiest to compute them ahead of
1356 * time when a more complete view of the write is available.
1357 */
1358static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1359 struct ocfs2_write_ctxt *wc,
1360 loff_t pos, unsigned len, int alloc)
1361{
1362 struct ocfs2_write_cluster_desc *desc;
1363
1364 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1365 wc->w_target_to = wc->w_target_from + len;
1366
1367 if (alloc == 0)
1368 return;
1369
1370 /*
1371 * Allocating write - we may have different boundaries based
1372 * on page size and cluster size.
1373 *
1374 * NOTE: We can no longer compute one value from the other as
1375 * the actual write length and user provided length may be
1376 * different.
1377 */
1378
1379 if (wc->w_large_pages) {
1380 /*
1381 * We only care about the 1st and last cluster within
1382 * our range and whether they should be zero'd or not. Either
1383 * value may be extended out to the start/end of a
1384 * newly allocated cluster.
1385 */
1386 desc = &wc->w_desc[0];
1387 if (desc->c_needs_zero)
1388 ocfs2_figure_cluster_boundaries(osb,
1389 desc->c_cpos,
1390 &wc->w_target_from,
1391 NULL);
1392
1393 desc = &wc->w_desc[wc->w_clen - 1];
1394 if (desc->c_needs_zero)
1395 ocfs2_figure_cluster_boundaries(osb,
1396 desc->c_cpos,
1397 NULL,
1398 &wc->w_target_to);
1399 } else {
1400 wc->w_target_from = 0;
1401 wc->w_target_to = PAGE_CACHE_SIZE;
1402 }
1403}
1404
1405/*
1406 * Populate each single-cluster write descriptor in the write context
1407 * with information about the i/o to be done.
1408 *
1409 * Returns the number of clusters that will have to be allocated, as
1410 * well as a worst case estimate of the number of extent records that
1411 * would have to be created during a write to an unwritten region.
1412 */
1413static int ocfs2_populate_write_desc(struct inode *inode,
1414 struct ocfs2_write_ctxt *wc,
1415 unsigned int *clusters_to_alloc,
1416 unsigned int *extents_to_split)
1417{
1418 int ret;
1419 struct ocfs2_write_cluster_desc *desc;
1420 unsigned int num_clusters = 0;
1421 unsigned int ext_flags = 0;
1422 u32 phys = 0;
1423 int i;
1424
1425 *clusters_to_alloc = 0;
1426 *extents_to_split = 0;
1427
1428 for (i = 0; i < wc->w_clen; i++) {
1429 desc = &wc->w_desc[i];
1430 desc->c_cpos = wc->w_cpos + i;
1431
1432 if (num_clusters == 0) {
1433 /*
1434 * Need to look up the next extent record.
1435 */
1436 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1437 &num_clusters, &ext_flags);
1438 if (ret) {
1439 mlog_errno(ret);
1440 goto out;
1441 }
1442
1443 /* We should already CoW the refcountd extent. */
1444 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1445
1446 /*
1447 * Assume worst case - that we're writing in
1448 * the middle of the extent.
1449 *
1450 * We can assume that the write proceeds from
1451 * left to right, in which case the extent
1452 * insert code is smart enough to coalesce the
1453 * next splits into the previous records created.
1454 */
1455 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1456 *extents_to_split = *extents_to_split + 2;
1457 } else if (phys) {
1458 /*
1459 * Only increment phys if it doesn't describe
1460 * a hole.
1461 */
1462 phys++;
1463 }
1464
1465 /*
1466 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1467 * file that got extended. w_first_new_cpos tells us
1468 * where the newly allocated clusters are so we can
1469 * zero them.
1470 */
1471 if (desc->c_cpos >= wc->w_first_new_cpos) {
1472 BUG_ON(phys == 0);
1473 desc->c_needs_zero = 1;
1474 }
1475
1476 desc->c_phys = phys;
1477 if (phys == 0) {
1478 desc->c_new = 1;
1479 desc->c_needs_zero = 1;
1480 *clusters_to_alloc = *clusters_to_alloc + 1;
1481 }
1482
1483 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1484 desc->c_unwritten = 1;
1485 desc->c_needs_zero = 1;
1486 }
1487
1488 num_clusters--;
1489 }
1490
1491 ret = 0;
1492out:
1493 return ret;
1494}
1495
1496static int ocfs2_write_begin_inline(struct address_space *mapping,
1497 struct inode *inode,
1498 struct ocfs2_write_ctxt *wc)
1499{
1500 int ret;
1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 struct page *page;
1503 handle_t *handle;
1504 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1505
1506 page = find_or_create_page(mapping, 0, GFP_NOFS);
1507 if (!page) {
1508 ret = -ENOMEM;
1509 mlog_errno(ret);
1510 goto out;
1511 }
1512 /*
1513 * If we don't set w_num_pages then this page won't get unlocked
1514 * and freed on cleanup of the write context.
1515 */
1516 wc->w_pages[0] = wc->w_target_page = page;
1517 wc->w_num_pages = 1;
1518
1519 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1520 if (IS_ERR(handle)) {
1521 ret = PTR_ERR(handle);
1522 mlog_errno(ret);
1523 goto out;
1524 }
1525
1526 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1527 OCFS2_JOURNAL_ACCESS_WRITE);
1528 if (ret) {
1529 ocfs2_commit_trans(osb, handle);
1530
1531 mlog_errno(ret);
1532 goto out;
1533 }
1534
1535 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1536 ocfs2_set_inode_data_inline(inode, di);
1537
1538 if (!PageUptodate(page)) {
1539 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1540 if (ret) {
1541 ocfs2_commit_trans(osb, handle);
1542
1543 goto out;
1544 }
1545 }
1546
1547 wc->w_handle = handle;
1548out:
1549 return ret;
1550}
1551
1552int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1553{
1554 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1555
1556 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1557 return 1;
1558 return 0;
1559}
1560
1561static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1562 struct inode *inode, loff_t pos,
1563 unsigned len, struct page *mmap_page,
1564 struct ocfs2_write_ctxt *wc)
1565{
1566 int ret, written = 0;
1567 loff_t end = pos + len;
1568 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1569 struct ocfs2_dinode *di = NULL;
1570
1571 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1572 len, (unsigned long long)pos,
1573 oi->ip_dyn_features);
1574
1575 /*
1576 * Handle inodes which already have inline data 1st.
1577 */
1578 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579 if (mmap_page == NULL &&
1580 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581 goto do_inline_write;
1582
1583 /*
1584 * The write won't fit - we have to give this inode an
1585 * inline extent list now.
1586 */
1587 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588 if (ret)
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * Check whether the inode can accept inline data.
1595 */
1596 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597 return 0;
1598
1599 /*
1600 * Check whether the write can fit.
1601 */
1602 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1603 if (mmap_page ||
1604 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1605 return 0;
1606
1607do_inline_write:
1608 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1609 if (ret) {
1610 mlog_errno(ret);
1611 goto out;
1612 }
1613
1614 /*
1615 * This signals to the caller that the data can be written
1616 * inline.
1617 */
1618 written = 1;
1619out:
1620 return written ? written : ret;
1621}
1622
1623/*
1624 * This function only does anything for file systems which can't
1625 * handle sparse files.
1626 *
1627 * What we want to do here is fill in any hole between the current end
1628 * of allocation and the end of our write. That way the rest of the
1629 * write path can treat it as an non-allocating write, which has no
1630 * special case code for sparse/nonsparse files.
1631 */
1632static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1633 struct buffer_head *di_bh,
1634 loff_t pos, unsigned len,
1635 struct ocfs2_write_ctxt *wc)
1636{
1637 int ret;
1638 loff_t newsize = pos + len;
1639
1640 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641
1642 if (newsize <= i_size_read(inode))
1643 return 0;
1644
1645 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1646 if (ret)
1647 mlog_errno(ret);
1648
1649 wc->w_first_new_cpos =
1650 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1651
1652 return ret;
1653}
1654
1655static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1656 loff_t pos)
1657{
1658 int ret = 0;
1659
1660 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1661 if (pos > i_size_read(inode))
1662 ret = ocfs2_zero_extend(inode, di_bh, pos);
1663
1664 return ret;
1665}
1666
1667/*
1668 * Try to flush truncate logs if we can free enough clusters from it.
1669 * As for return value, "< 0" means error, "0" no space and "1" means
1670 * we have freed enough spaces and let the caller try to allocate again.
1671 */
1672static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1673 unsigned int needed)
1674{
1675 tid_t target;
1676 int ret = 0;
1677 unsigned int truncated_clusters;
1678
1679 mutex_lock(&osb->osb_tl_inode->i_mutex);
1680 truncated_clusters = osb->truncated_clusters;
1681 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1682
1683 /*
1684 * Check whether we can succeed in allocating if we free
1685 * the truncate log.
1686 */
1687 if (truncated_clusters < needed)
1688 goto out;
1689
1690 ret = ocfs2_flush_truncate_log(osb);
1691 if (ret) {
1692 mlog_errno(ret);
1693 goto out;
1694 }
1695
1696 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1697 jbd2_log_wait_commit(osb->journal->j_journal, target);
1698 ret = 1;
1699 }
1700out:
1701 return ret;
1702}
1703
1704int ocfs2_write_begin_nolock(struct file *filp,
1705 struct address_space *mapping,
1706 loff_t pos, unsigned len, unsigned flags,
1707 struct page **pagep, void **fsdata,
1708 struct buffer_head *di_bh, struct page *mmap_page)
1709{
1710 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1711 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1712 struct ocfs2_write_ctxt *wc;
1713 struct inode *inode = mapping->host;
1714 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715 struct ocfs2_dinode *di;
1716 struct ocfs2_alloc_context *data_ac = NULL;
1717 struct ocfs2_alloc_context *meta_ac = NULL;
1718 handle_t *handle;
1719 struct ocfs2_extent_tree et;
1720 int try_free = 1, ret1;
1721
1722try_again:
1723 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1724 if (ret) {
1725 mlog_errno(ret);
1726 return ret;
1727 }
1728
1729 if (ocfs2_supports_inline_data(osb)) {
1730 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1731 mmap_page, wc);
1732 if (ret == 1) {
1733 ret = 0;
1734 goto success;
1735 }
1736 if (ret < 0) {
1737 mlog_errno(ret);
1738 goto out;
1739 }
1740 }
1741
1742 if (ocfs2_sparse_alloc(osb))
1743 ret = ocfs2_zero_tail(inode, di_bh, pos);
1744 else
1745 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1746 wc);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1750 }
1751
1752 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1753 if (ret < 0) {
1754 mlog_errno(ret);
1755 goto out;
1756 } else if (ret == 1) {
1757 clusters_need = wc->w_clen;
1758 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1759 wc->w_cpos, wc->w_clen, UINT_MAX);
1760 if (ret) {
1761 mlog_errno(ret);
1762 goto out;
1763 }
1764 }
1765
1766 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1767 &extents_to_split);
1768 if (ret) {
1769 mlog_errno(ret);
1770 goto out;
1771 }
1772 clusters_need += clusters_to_alloc;
1773
1774 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1775
1776 trace_ocfs2_write_begin_nolock(
1777 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1778 (long long)i_size_read(inode),
1779 le32_to_cpu(di->i_clusters),
1780 pos, len, flags, mmap_page,
1781 clusters_to_alloc, extents_to_split);
1782
1783 /*
1784 * We set w_target_from, w_target_to here so that
1785 * ocfs2_write_end() knows which range in the target page to
1786 * write out. An allocation requires that we write the entire
1787 * cluster range.
1788 */
1789 if (clusters_to_alloc || extents_to_split) {
1790 /*
1791 * XXX: We are stretching the limits of
1792 * ocfs2_lock_allocators(). It greatly over-estimates
1793 * the work to be done.
1794 */
1795 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1796 wc->w_di_bh);
1797 ret = ocfs2_lock_allocators(inode, &et,
1798 clusters_to_alloc, extents_to_split,
1799 &data_ac, &meta_ac);
1800 if (ret) {
1801 mlog_errno(ret);
1802 goto out;
1803 }
1804
1805 if (data_ac)
1806 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1807
1808 credits = ocfs2_calc_extend_credits(inode->i_sb,
1809 &di->id2.i_list,
1810 clusters_to_alloc);
1811
1812 }
1813
1814 /*
1815 * We have to zero sparse allocated clusters, unwritten extent clusters,
1816 * and non-sparse clusters we just extended. For non-sparse writes,
1817 * we know zeros will only be needed in the first and/or last cluster.
1818 */
1819 if (clusters_to_alloc || extents_to_split ||
1820 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1821 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1822 cluster_of_pages = 1;
1823 else
1824 cluster_of_pages = 0;
1825
1826 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1827
1828 handle = ocfs2_start_trans(osb, credits);
1829 if (IS_ERR(handle)) {
1830 ret = PTR_ERR(handle);
1831 mlog_errno(ret);
1832 goto out;
1833 }
1834
1835 wc->w_handle = handle;
1836
1837 if (clusters_to_alloc) {
1838 ret = dquot_alloc_space_nodirty(inode,
1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840 if (ret)
1841 goto out_commit;
1842 }
1843 /*
1844 * We don't want this to fail in ocfs2_write_end(), so do it
1845 * here.
1846 */
1847 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1848 OCFS2_JOURNAL_ACCESS_WRITE);
1849 if (ret) {
1850 mlog_errno(ret);
1851 goto out_quota;
1852 }
1853
1854 /*
1855 * Fill our page array first. That way we've grabbed enough so
1856 * that we can zero and flush if we error after adding the
1857 * extent.
1858 */
1859 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1860 cluster_of_pages, mmap_page);
1861 if (ret && ret != -EAGAIN) {
1862 mlog_errno(ret);
1863 goto out_quota;
1864 }
1865
1866 /*
1867 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1868 * the target page. In this case, we exit with no error and no target
1869 * page. This will trigger the caller, page_mkwrite(), to re-try
1870 * the operation.
1871 */
1872 if (ret == -EAGAIN) {
1873 BUG_ON(wc->w_target_page);
1874 ret = 0;
1875 goto out_quota;
1876 }
1877
1878 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1879 len);
1880 if (ret) {
1881 mlog_errno(ret);
1882 goto out_quota;
1883 }
1884
1885 if (data_ac)
1886 ocfs2_free_alloc_context(data_ac);
1887 if (meta_ac)
1888 ocfs2_free_alloc_context(meta_ac);
1889
1890success:
1891 *pagep = wc->w_target_page;
1892 *fsdata = wc;
1893 return 0;
1894out_quota:
1895 if (clusters_to_alloc)
1896 dquot_free_space(inode,
1897 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1898out_commit:
1899 ocfs2_commit_trans(osb, handle);
1900
1901out:
1902 ocfs2_free_write_ctxt(wc);
1903
1904 if (data_ac)
1905 ocfs2_free_alloc_context(data_ac);
1906 if (meta_ac)
1907 ocfs2_free_alloc_context(meta_ac);
1908
1909 if (ret == -ENOSPC && try_free) {
1910 /*
1911 * Try to free some truncate log so that we can have enough
1912 * clusters to allocate.
1913 */
1914 try_free = 0;
1915
1916 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1917 if (ret1 == 1)
1918 goto try_again;
1919
1920 if (ret1 < 0)
1921 mlog_errno(ret1);
1922 }
1923
1924 return ret;
1925}
1926
1927static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1928 loff_t pos, unsigned len, unsigned flags,
1929 struct page **pagep, void **fsdata)
1930{
1931 int ret;
1932 struct buffer_head *di_bh = NULL;
1933 struct inode *inode = mapping->host;
1934
1935 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1936 if (ret) {
1937 mlog_errno(ret);
1938 return ret;
1939 }
1940
1941 /*
1942 * Take alloc sem here to prevent concurrent lookups. That way
1943 * the mapping, zeroing and tree manipulation within
1944 * ocfs2_write() will be safe against ->readpage(). This
1945 * should also serve to lock out allocation from a shared
1946 * writeable region.
1947 */
1948 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1949
1950 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1951 fsdata, di_bh, NULL);
1952 if (ret) {
1953 mlog_errno(ret);
1954 goto out_fail;
1955 }
1956
1957 brelse(di_bh);
1958
1959 return 0;
1960
1961out_fail:
1962 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1963
1964 brelse(di_bh);
1965 ocfs2_inode_unlock(inode, 1);
1966
1967 return ret;
1968}
1969
1970static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1971 unsigned len, unsigned *copied,
1972 struct ocfs2_dinode *di,
1973 struct ocfs2_write_ctxt *wc)
1974{
1975 void *kaddr;
1976
1977 if (unlikely(*copied < len)) {
1978 if (!PageUptodate(wc->w_target_page)) {
1979 *copied = 0;
1980 return;
1981 }
1982 }
1983
1984 kaddr = kmap_atomic(wc->w_target_page);
1985 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1986 kunmap_atomic(kaddr);
1987
1988 trace_ocfs2_write_end_inline(
1989 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990 (unsigned long long)pos, *copied,
1991 le16_to_cpu(di->id2.i_data.id_count),
1992 le16_to_cpu(di->i_dyn_features));
1993}
1994
1995int ocfs2_write_end_nolock(struct address_space *mapping,
1996 loff_t pos, unsigned len, unsigned copied,
1997 struct page *page, void *fsdata)
1998{
1999 int i;
2000 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2001 struct inode *inode = mapping->host;
2002 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003 struct ocfs2_write_ctxt *wc = fsdata;
2004 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2005 handle_t *handle = wc->w_handle;
2006 struct page *tmppage;
2007
2008 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2009 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2010 goto out_write_size;
2011 }
2012
2013 if (unlikely(copied < len)) {
2014 if (!PageUptodate(wc->w_target_page))
2015 copied = 0;
2016
2017 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2018 start+len);
2019 }
2020 flush_dcache_page(wc->w_target_page);
2021
2022 for(i = 0; i < wc->w_num_pages; i++) {
2023 tmppage = wc->w_pages[i];
2024
2025 if (tmppage == wc->w_target_page) {
2026 from = wc->w_target_from;
2027 to = wc->w_target_to;
2028
2029 BUG_ON(from > PAGE_CACHE_SIZE ||
2030 to > PAGE_CACHE_SIZE ||
2031 to < from);
2032 } else {
2033 /*
2034 * Pages adjacent to the target (if any) imply
2035 * a hole-filling write in which case we want
2036 * to flush their entire range.
2037 */
2038 from = 0;
2039 to = PAGE_CACHE_SIZE;
2040 }
2041
2042 if (page_has_buffers(tmppage)) {
2043 if (ocfs2_should_order_data(inode))
2044 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2045 block_commit_write(tmppage, from, to);
2046 }
2047 }
2048
2049out_write_size:
2050 pos += copied;
2051 if (pos > inode->i_size) {
2052 i_size_write(inode, pos);
2053 mark_inode_dirty(inode);
2054 }
2055 inode->i_blocks = ocfs2_inode_sector_count(inode);
2056 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2057 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2058 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2059 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2060 ocfs2_journal_dirty(handle, wc->w_di_bh);
2061
2062 ocfs2_commit_trans(osb, handle);
2063
2064 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2065
2066 ocfs2_free_write_ctxt(wc);
2067
2068 return copied;
2069}
2070
2071static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2072 loff_t pos, unsigned len, unsigned copied,
2073 struct page *page, void *fsdata)
2074{
2075 int ret;
2076 struct inode *inode = mapping->host;
2077
2078 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2079
2080 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2081 ocfs2_inode_unlock(inode, 1);
2082
2083 return ret;
2084}
2085
2086const struct address_space_operations ocfs2_aops = {
2087 .readpage = ocfs2_readpage,
2088 .readpages = ocfs2_readpages,
2089 .writepage = ocfs2_writepage,
2090 .write_begin = ocfs2_write_begin,
2091 .write_end = ocfs2_write_end,
2092 .bmap = ocfs2_bmap,
2093 .direct_IO = ocfs2_direct_IO,
2094 .invalidatepage = ocfs2_invalidatepage,
2095 .releasepage = ocfs2_releasepage,
2096 .migratepage = buffer_migrate_page,
2097 .is_partially_uptodate = block_is_partially_uptodate,
2098 .error_remove_page = generic_error_remove_page,
2099};