Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
   3 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/highmem.h>
   9#include <linux/pagemap.h>
  10#include <asm/byteorder.h>
  11#include <linux/swap.h>
 
  12#include <linux/mpage.h>
  13#include <linux/quotaops.h>
  14#include <linux/blkdev.h>
  15#include <linux/uio.h>
  16#include <linux/mm.h>
  17
  18#include <cluster/masklog.h>
  19
  20#include "ocfs2.h"
  21
  22#include "alloc.h"
  23#include "aops.h"
  24#include "dlmglue.h"
  25#include "extent_map.h"
  26#include "file.h"
  27#include "inode.h"
  28#include "journal.h"
  29#include "suballoc.h"
  30#include "super.h"
  31#include "symlink.h"
  32#include "refcounttree.h"
  33#include "ocfs2_trace.h"
  34
  35#include "buffer_head_io.h"
  36#include "dir.h"
  37#include "namei.h"
  38#include "sysfile.h"
  39
  40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  41				   struct buffer_head *bh_result, int create)
  42{
  43	int err = -EIO;
  44	int status;
  45	struct ocfs2_dinode *fe = NULL;
  46	struct buffer_head *bh = NULL;
  47	struct buffer_head *buffer_cache_bh = NULL;
  48	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  49	void *kaddr;
  50
  51	trace_ocfs2_symlink_get_block(
  52			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  53			(unsigned long long)iblock, bh_result, create);
  54
  55	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  56
  57	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  58		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  59		     (unsigned long long)iblock);
  60		goto bail;
  61	}
  62
  63	status = ocfs2_read_inode_block(inode, &bh);
  64	if (status < 0) {
  65		mlog_errno(status);
  66		goto bail;
  67	}
  68	fe = (struct ocfs2_dinode *) bh->b_data;
  69
  70	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  71						    le32_to_cpu(fe->i_clusters))) {
  72		err = -ENOMEM;
  73		mlog(ML_ERROR, "block offset is outside the allocated size: "
  74		     "%llu\n", (unsigned long long)iblock);
  75		goto bail;
  76	}
  77
  78	/* We don't use the page cache to create symlink data, so if
  79	 * need be, copy it over from the buffer cache. */
  80	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  81		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  82			    iblock;
  83		buffer_cache_bh = sb_getblk(osb->sb, blkno);
  84		if (!buffer_cache_bh) {
  85			err = -ENOMEM;
  86			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  87			goto bail;
  88		}
  89
  90		/* we haven't locked out transactions, so a commit
  91		 * could've happened. Since we've got a reference on
  92		 * the bh, even if it commits while we're doing the
  93		 * copy, the data is still good. */
  94		if (buffer_jbd(buffer_cache_bh)
  95		    && ocfs2_inode_is_new(inode)) {
  96			kaddr = kmap_atomic(bh_result->b_page);
  97			if (!kaddr) {
  98				mlog(ML_ERROR, "couldn't kmap!\n");
  99				goto bail;
 100			}
 101			memcpy(kaddr + (bh_result->b_size * iblock),
 102			       buffer_cache_bh->b_data,
 103			       bh_result->b_size);
 104			kunmap_atomic(kaddr);
 105			set_buffer_uptodate(bh_result);
 106		}
 107		brelse(buffer_cache_bh);
 108	}
 109
 110	map_bh(bh_result, inode->i_sb,
 111	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 112
 113	err = 0;
 114
 115bail:
 116	brelse(bh);
 117
 118	return err;
 119}
 120
 121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 122		    struct buffer_head *bh_result, int create)
 123{
 124	int ret = 0;
 125	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 126
 127	down_read(&oi->ip_alloc_sem);
 128	ret = ocfs2_get_block(inode, iblock, bh_result, create);
 129	up_read(&oi->ip_alloc_sem);
 130
 131	return ret;
 132}
 133
 134int ocfs2_get_block(struct inode *inode, sector_t iblock,
 135		    struct buffer_head *bh_result, int create)
 136{
 137	int err = 0;
 138	unsigned int ext_flags;
 139	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 140	u64 p_blkno, count, past_eof;
 141	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 142
 143	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 144			      (unsigned long long)iblock, bh_result, create);
 145
 146	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 147		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 148		     inode, inode->i_ino);
 149
 150	if (S_ISLNK(inode->i_mode)) {
 151		/* this always does I/O for some reason. */
 152		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 153		goto bail;
 154	}
 155
 156	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 157					  &ext_flags);
 158	if (err) {
 159		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 160		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 161		     (unsigned long long)p_blkno);
 162		goto bail;
 163	}
 164
 165	if (max_blocks < count)
 166		count = max_blocks;
 167
 168	/*
 169	 * ocfs2 never allocates in this function - the only time we
 170	 * need to use BH_New is when we're extending i_size on a file
 171	 * system which doesn't support holes, in which case BH_New
 172	 * allows __block_write_begin() to zero.
 173	 *
 174	 * If we see this on a sparse file system, then a truncate has
 175	 * raced us and removed the cluster. In this case, we clear
 176	 * the buffers dirty and uptodate bits and let the buffer code
 177	 * ignore it as a hole.
 178	 */
 179	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 180		clear_buffer_dirty(bh_result);
 181		clear_buffer_uptodate(bh_result);
 182		goto bail;
 183	}
 184
 185	/* Treat the unwritten extent as a hole for zeroing purposes. */
 186	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 187		map_bh(bh_result, inode->i_sb, p_blkno);
 188
 189	bh_result->b_size = count << inode->i_blkbits;
 190
 191	if (!ocfs2_sparse_alloc(osb)) {
 192		if (p_blkno == 0) {
 193			err = -EIO;
 194			mlog(ML_ERROR,
 195			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 196			     (unsigned long long)iblock,
 197			     (unsigned long long)p_blkno,
 198			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 199			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 200			dump_stack();
 201			goto bail;
 202		}
 203	}
 204
 205	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 206
 207	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 208				  (unsigned long long)past_eof);
 209	if (create && (iblock >= past_eof))
 210		set_buffer_new(bh_result);
 211
 212bail:
 213	if (err < 0)
 214		err = -EIO;
 215
 216	return err;
 217}
 218
 219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 220			   struct buffer_head *di_bh)
 221{
 222	void *kaddr;
 223	loff_t size;
 224	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 225
 226	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 227		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 228			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 229		return -EROFS;
 230	}
 231
 232	size = i_size_read(inode);
 233
 234	if (size > PAGE_SIZE ||
 235	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 236		ocfs2_error(inode->i_sb,
 237			    "Inode %llu has with inline data has bad size: %Lu\n",
 238			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 239			    (unsigned long long)size);
 240		return -EROFS;
 241	}
 242
 243	kaddr = kmap_atomic(page);
 244	if (size)
 245		memcpy(kaddr, di->id2.i_data.id_data, size);
 246	/* Clear the remaining part of the page */
 247	memset(kaddr + size, 0, PAGE_SIZE - size);
 248	flush_dcache_page(page);
 249	kunmap_atomic(kaddr);
 250
 251	SetPageUptodate(page);
 252
 253	return 0;
 254}
 255
 256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 257{
 258	int ret;
 259	struct buffer_head *di_bh = NULL;
 260
 261	BUG_ON(!PageLocked(page));
 262	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 263
 264	ret = ocfs2_read_inode_block(inode, &di_bh);
 265	if (ret) {
 266		mlog_errno(ret);
 267		goto out;
 268	}
 269
 270	ret = ocfs2_read_inline_data(inode, page, di_bh);
 271out:
 272	unlock_page(page);
 273
 274	brelse(di_bh);
 275	return ret;
 276}
 277
 278static int ocfs2_read_folio(struct file *file, struct folio *folio)
 279{
 280	struct inode *inode = folio->mapping->host;
 281	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 282	loff_t start = folio_pos(folio);
 283	int ret, unlock = 1;
 284
 285	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
 
 286
 287	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
 288	if (ret != 0) {
 289		if (ret == AOP_TRUNCATED_PAGE)
 290			unlock = 0;
 291		mlog_errno(ret);
 292		goto out;
 293	}
 294
 295	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 296		/*
 297		 * Unlock the folio and cycle ip_alloc_sem so that we don't
 298		 * busyloop waiting for ip_alloc_sem to unlock
 299		 */
 300		ret = AOP_TRUNCATED_PAGE;
 301		folio_unlock(folio);
 302		unlock = 0;
 303		down_read(&oi->ip_alloc_sem);
 304		up_read(&oi->ip_alloc_sem);
 305		goto out_inode_unlock;
 306	}
 307
 308	/*
 309	 * i_size might have just been updated as we grabed the meta lock.  We
 310	 * might now be discovering a truncate that hit on another node.
 311	 * block_read_full_folio->get_block freaks out if it is asked to read
 312	 * beyond the end of a file, so we check here.  Callers
 313	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 314	 * and notice that the folio they just read isn't needed.
 315	 *
 316	 * XXX sys_readahead() seems to get that wrong?
 317	 */
 318	if (start >= i_size_read(inode)) {
 319		folio_zero_segment(folio, 0, folio_size(folio));
 320		folio_mark_uptodate(folio);
 321		ret = 0;
 322		goto out_alloc;
 323	}
 324
 325	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 326		ret = ocfs2_readpage_inline(inode, &folio->page);
 327	else
 328		ret = block_read_full_folio(folio, ocfs2_get_block);
 329	unlock = 0;
 330
 331out_alloc:
 332	up_read(&oi->ip_alloc_sem);
 333out_inode_unlock:
 334	ocfs2_inode_unlock(inode, 0);
 335out:
 336	if (unlock)
 337		folio_unlock(folio);
 338	return ret;
 339}
 340
 341/*
 342 * This is used only for read-ahead. Failures or difficult to handle
 343 * situations are safe to ignore.
 344 *
 345 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 346 * are quite large (243 extents on 4k blocks), so most inodes don't
 347 * grow out to a tree. If need be, detecting boundary extents could
 348 * trivially be added in a future version of ocfs2_get_block().
 349 */
 350static void ocfs2_readahead(struct readahead_control *rac)
 
 351{
 352	int ret;
 353	struct inode *inode = rac->mapping->host;
 354	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 
 
 355
 356	/*
 357	 * Use the nonblocking flag for the dlm code to avoid page
 358	 * lock inversion, but don't bother with retrying.
 359	 */
 360	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 361	if (ret)
 362		return;
 363
 364	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
 365		goto out_unlock;
 
 
 366
 367	/*
 368	 * Don't bother with inline-data. There isn't anything
 369	 * to read-ahead in that case anyway...
 370	 */
 371	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 372		goto out_up;
 373
 374	/*
 375	 * Check whether a remote node truncated this file - we just
 376	 * drop out in that case as it's not worth handling here.
 377	 */
 378	if (readahead_pos(rac) >= i_size_read(inode))
 379		goto out_up;
 
 
 380
 381	mpage_readahead(rac, ocfs2_get_block);
 382
 383out_up:
 384	up_read(&oi->ip_alloc_sem);
 385out_unlock:
 
 386	ocfs2_inode_unlock(inode, 0);
 
 
 387}
 388
 389/* Note: Because we don't support holes, our allocation has
 390 * already happened (allocation writes zeros to the file data)
 391 * so we don't have to worry about ordered writes in
 392 * ocfs2_writepage.
 393 *
 394 * ->writepage is called during the process of invalidating the page cache
 395 * during blocked lock processing.  It can't block on any cluster locks
 396 * to during block mapping.  It's relying on the fact that the block
 397 * mapping can't have disappeared under the dirty pages that it is
 398 * being asked to write back.
 399 */
 400static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 401{
 402	trace_ocfs2_writepage(
 403		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 404		page->index);
 405
 406	return block_write_full_page(page, ocfs2_get_block, wbc);
 407}
 408
 409/* Taken from ext3. We don't necessarily need the full blown
 410 * functionality yet, but IMHO it's better to cut and paste the whole
 411 * thing so we can avoid introducing our own bugs (and easily pick up
 412 * their fixes when they happen) --Mark */
 413int walk_page_buffers(	handle_t *handle,
 414			struct buffer_head *head,
 415			unsigned from,
 416			unsigned to,
 417			int *partial,
 418			int (*fn)(	handle_t *handle,
 419					struct buffer_head *bh))
 420{
 421	struct buffer_head *bh;
 422	unsigned block_start, block_end;
 423	unsigned blocksize = head->b_size;
 424	int err, ret = 0;
 425	struct buffer_head *next;
 426
 427	for (	bh = head, block_start = 0;
 428		ret == 0 && (bh != head || !block_start);
 429	    	block_start = block_end, bh = next)
 430	{
 431		next = bh->b_this_page;
 432		block_end = block_start + blocksize;
 433		if (block_end <= from || block_start >= to) {
 434			if (partial && !buffer_uptodate(bh))
 435				*partial = 1;
 436			continue;
 437		}
 438		err = (*fn)(handle, bh);
 439		if (!ret)
 440			ret = err;
 441	}
 442	return ret;
 443}
 444
 445static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 446{
 447	sector_t status;
 448	u64 p_blkno = 0;
 449	int err = 0;
 450	struct inode *inode = mapping->host;
 451
 452	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 453			 (unsigned long long)block);
 454
 455	/*
 456	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 457	 * bypasseѕ the file system for actual I/O.  We really can't allow
 458	 * that on refcounted inodes, so we have to skip out here.  And yes,
 459	 * 0 is the magic code for a bmap error..
 460	 */
 461	if (ocfs2_is_refcount_inode(inode))
 462		return 0;
 463
 464	/* We don't need to lock journal system files, since they aren't
 465	 * accessed concurrently from multiple nodes.
 466	 */
 467	if (!INODE_JOURNAL(inode)) {
 468		err = ocfs2_inode_lock(inode, NULL, 0);
 469		if (err) {
 470			if (err != -ENOENT)
 471				mlog_errno(err);
 472			goto bail;
 473		}
 474		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 475	}
 476
 477	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 478		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 479						  NULL);
 480
 481	if (!INODE_JOURNAL(inode)) {
 482		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 483		ocfs2_inode_unlock(inode, 0);
 484	}
 485
 486	if (err) {
 487		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 488		     (unsigned long long)block);
 489		mlog_errno(err);
 490		goto bail;
 491	}
 492
 493bail:
 494	status = err ? 0 : p_blkno;
 495
 496	return status;
 497}
 498
 499static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500{
 501	if (!folio_buffers(folio))
 502		return false;
 503	return try_to_free_buffers(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504}
 505
 506static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 507					    u32 cpos,
 508					    unsigned int *start,
 509					    unsigned int *end)
 510{
 511	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 512
 513	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 514		unsigned int cpp;
 515
 516		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 517
 518		cluster_start = cpos % cpp;
 519		cluster_start = cluster_start << osb->s_clustersize_bits;
 520
 521		cluster_end = cluster_start + osb->s_clustersize;
 522	}
 523
 524	BUG_ON(cluster_start > PAGE_SIZE);
 525	BUG_ON(cluster_end > PAGE_SIZE);
 526
 527	if (start)
 528		*start = cluster_start;
 529	if (end)
 530		*end = cluster_end;
 531}
 532
 533/*
 534 * 'from' and 'to' are the region in the page to avoid zeroing.
 535 *
 536 * If pagesize > clustersize, this function will avoid zeroing outside
 537 * of the cluster boundary.
 538 *
 539 * from == to == 0 is code for "zero the entire cluster region"
 540 */
 541static void ocfs2_clear_page_regions(struct page *page,
 542				     struct ocfs2_super *osb, u32 cpos,
 543				     unsigned from, unsigned to)
 544{
 545	void *kaddr;
 546	unsigned int cluster_start, cluster_end;
 547
 548	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 549
 550	kaddr = kmap_atomic(page);
 551
 552	if (from || to) {
 553		if (from > cluster_start)
 554			memset(kaddr + cluster_start, 0, from - cluster_start);
 555		if (to < cluster_end)
 556			memset(kaddr + to, 0, cluster_end - to);
 557	} else {
 558		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 559	}
 560
 561	kunmap_atomic(kaddr);
 562}
 563
 564/*
 565 * Nonsparse file systems fully allocate before we get to the write
 566 * code. This prevents ocfs2_write() from tagging the write as an
 567 * allocating one, which means ocfs2_map_page_blocks() might try to
 568 * read-in the blocks at the tail of our file. Avoid reading them by
 569 * testing i_size against each block offset.
 570 */
 571static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 572				 unsigned int block_start)
 573{
 574	u64 offset = page_offset(page) + block_start;
 575
 576	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 577		return 1;
 578
 579	if (i_size_read(inode) > offset)
 580		return 1;
 581
 582	return 0;
 583}
 584
 585/*
 586 * Some of this taken from __block_write_begin(). We already have our
 587 * mapping by now though, and the entire write will be allocating or
 588 * it won't, so not much need to use BH_New.
 589 *
 590 * This will also skip zeroing, which is handled externally.
 591 */
 592int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 593			  struct inode *inode, unsigned int from,
 594			  unsigned int to, int new)
 595{
 596	int ret = 0;
 597	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 598	unsigned int block_end, block_start;
 599	unsigned int bsize = i_blocksize(inode);
 600
 601	if (!page_has_buffers(page))
 602		create_empty_buffers(page, bsize, 0);
 603
 604	head = page_buffers(page);
 605	for (bh = head, block_start = 0; bh != head || !block_start;
 606	     bh = bh->b_this_page, block_start += bsize) {
 607		block_end = block_start + bsize;
 608
 609		clear_buffer_new(bh);
 610
 611		/*
 612		 * Ignore blocks outside of our i/o range -
 613		 * they may belong to unallocated clusters.
 614		 */
 615		if (block_start >= to || block_end <= from) {
 616			if (PageUptodate(page))
 617				set_buffer_uptodate(bh);
 618			continue;
 619		}
 620
 621		/*
 622		 * For an allocating write with cluster size >= page
 623		 * size, we always write the entire page.
 624		 */
 625		if (new)
 626			set_buffer_new(bh);
 627
 628		if (!buffer_mapped(bh)) {
 629			map_bh(bh, inode->i_sb, *p_blkno);
 630			clean_bdev_bh_alias(bh);
 631		}
 632
 633		if (PageUptodate(page)) {
 634			set_buffer_uptodate(bh);
 
 635		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 636			   !buffer_new(bh) &&
 637			   ocfs2_should_read_blk(inode, page, block_start) &&
 638			   (block_start < from || block_end > to)) {
 639			bh_read_nowait(bh, 0);
 640			*wait_bh++=bh;
 641		}
 642
 643		*p_blkno = *p_blkno + 1;
 644	}
 645
 646	/*
 647	 * If we issued read requests - let them complete.
 648	 */
 649	while(wait_bh > wait) {
 650		wait_on_buffer(*--wait_bh);
 651		if (!buffer_uptodate(*wait_bh))
 652			ret = -EIO;
 653	}
 654
 655	if (ret == 0 || !new)
 656		return ret;
 657
 658	/*
 659	 * If we get -EIO above, zero out any newly allocated blocks
 660	 * to avoid exposing stale data.
 661	 */
 662	bh = head;
 663	block_start = 0;
 664	do {
 665		block_end = block_start + bsize;
 666		if (block_end <= from)
 667			goto next_bh;
 668		if (block_start >= to)
 669			break;
 670
 671		zero_user(page, block_start, bh->b_size);
 672		set_buffer_uptodate(bh);
 673		mark_buffer_dirty(bh);
 674
 675next_bh:
 676		block_start = block_end;
 677		bh = bh->b_this_page;
 678	} while (bh != head);
 679
 680	return ret;
 681}
 682
 683#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 684#define OCFS2_MAX_CTXT_PAGES	1
 685#else
 686#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 687#endif
 688
 689#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 690
 691struct ocfs2_unwritten_extent {
 692	struct list_head	ue_node;
 693	struct list_head	ue_ip_node;
 694	u32			ue_cpos;
 695	u32			ue_phys;
 696};
 697
 698/*
 699 * Describe the state of a single cluster to be written to.
 700 */
 701struct ocfs2_write_cluster_desc {
 702	u32		c_cpos;
 703	u32		c_phys;
 704	/*
 705	 * Give this a unique field because c_phys eventually gets
 706	 * filled.
 707	 */
 708	unsigned	c_new;
 709	unsigned	c_clear_unwritten;
 710	unsigned	c_needs_zero;
 711};
 712
 713struct ocfs2_write_ctxt {
 714	/* Logical cluster position / len of write */
 715	u32				w_cpos;
 716	u32				w_clen;
 717
 718	/* First cluster allocated in a nonsparse extend */
 719	u32				w_first_new_cpos;
 720
 721	/* Type of caller. Must be one of buffer, mmap, direct.  */
 722	ocfs2_write_type_t		w_type;
 723
 724	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 725
 726	/*
 727	 * This is true if page_size > cluster_size.
 728	 *
 729	 * It triggers a set of special cases during write which might
 730	 * have to deal with allocating writes to partial pages.
 731	 */
 732	unsigned int			w_large_pages;
 733
 734	/*
 735	 * Pages involved in this write.
 736	 *
 737	 * w_target_page is the page being written to by the user.
 738	 *
 739	 * w_pages is an array of pages which always contains
 740	 * w_target_page, and in the case of an allocating write with
 741	 * page_size < cluster size, it will contain zero'd and mapped
 742	 * pages adjacent to w_target_page which need to be written
 743	 * out in so that future reads from that region will get
 744	 * zero's.
 745	 */
 746	unsigned int			w_num_pages;
 747	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 748	struct page			*w_target_page;
 749
 750	/*
 751	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 752	 * against w_target_page in ocfs2_write_end_nolock.
 753	 */
 754	unsigned int			w_target_locked:1;
 755
 756	/*
 757	 * ocfs2_write_end() uses this to know what the real range to
 758	 * write in the target should be.
 759	 */
 760	unsigned int			w_target_from;
 761	unsigned int			w_target_to;
 762
 763	/*
 764	 * We could use journal_current_handle() but this is cleaner,
 765	 * IMHO -Mark
 766	 */
 767	handle_t			*w_handle;
 768
 769	struct buffer_head		*w_di_bh;
 770
 771	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 772
 773	struct list_head		w_unwritten_list;
 774	unsigned int			w_unwritten_count;
 775};
 776
 777void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 778{
 779	int i;
 780
 781	for(i = 0; i < num_pages; i++) {
 782		if (pages[i]) {
 783			unlock_page(pages[i]);
 784			mark_page_accessed(pages[i]);
 785			put_page(pages[i]);
 786		}
 787	}
 788}
 789
 790static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 791{
 792	int i;
 793
 794	/*
 795	 * w_target_locked is only set to true in the page_mkwrite() case.
 796	 * The intent is to allow us to lock the target page from write_begin()
 797	 * to write_end(). The caller must hold a ref on w_target_page.
 798	 */
 799	if (wc->w_target_locked) {
 800		BUG_ON(!wc->w_target_page);
 801		for (i = 0; i < wc->w_num_pages; i++) {
 802			if (wc->w_target_page == wc->w_pages[i]) {
 803				wc->w_pages[i] = NULL;
 804				break;
 805			}
 806		}
 807		mark_page_accessed(wc->w_target_page);
 808		put_page(wc->w_target_page);
 809	}
 810	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 811}
 812
 813static void ocfs2_free_unwritten_list(struct inode *inode,
 814				 struct list_head *head)
 815{
 816	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 817	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 818
 819	list_for_each_entry_safe(ue, tmp, head, ue_node) {
 820		list_del(&ue->ue_node);
 821		spin_lock(&oi->ip_lock);
 822		list_del(&ue->ue_ip_node);
 823		spin_unlock(&oi->ip_lock);
 824		kfree(ue);
 825	}
 826}
 827
 828static void ocfs2_free_write_ctxt(struct inode *inode,
 829				  struct ocfs2_write_ctxt *wc)
 830{
 831	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 832	ocfs2_unlock_pages(wc);
 833	brelse(wc->w_di_bh);
 834	kfree(wc);
 835}
 836
 837static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 838				  struct ocfs2_super *osb, loff_t pos,
 839				  unsigned len, ocfs2_write_type_t type,
 840				  struct buffer_head *di_bh)
 841{
 842	u32 cend;
 843	struct ocfs2_write_ctxt *wc;
 844
 845	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 846	if (!wc)
 847		return -ENOMEM;
 848
 849	wc->w_cpos = pos >> osb->s_clustersize_bits;
 850	wc->w_first_new_cpos = UINT_MAX;
 851	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 852	wc->w_clen = cend - wc->w_cpos + 1;
 853	get_bh(di_bh);
 854	wc->w_di_bh = di_bh;
 855	wc->w_type = type;
 856
 857	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 858		wc->w_large_pages = 1;
 859	else
 860		wc->w_large_pages = 0;
 861
 862	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 863	INIT_LIST_HEAD(&wc->w_unwritten_list);
 864
 865	*wcp = wc;
 866
 867	return 0;
 868}
 869
 870/*
 871 * If a page has any new buffers, zero them out here, and mark them uptodate
 872 * and dirty so they'll be written out (in order to prevent uninitialised
 873 * block data from leaking). And clear the new bit.
 874 */
 875static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 876{
 877	unsigned int block_start, block_end;
 878	struct buffer_head *head, *bh;
 879
 880	BUG_ON(!PageLocked(page));
 881	if (!page_has_buffers(page))
 882		return;
 883
 884	bh = head = page_buffers(page);
 885	block_start = 0;
 886	do {
 887		block_end = block_start + bh->b_size;
 888
 889		if (buffer_new(bh)) {
 890			if (block_end > from && block_start < to) {
 891				if (!PageUptodate(page)) {
 892					unsigned start, end;
 893
 894					start = max(from, block_start);
 895					end = min(to, block_end);
 896
 897					zero_user_segment(page, start, end);
 898					set_buffer_uptodate(bh);
 899				}
 900
 901				clear_buffer_new(bh);
 902				mark_buffer_dirty(bh);
 903			}
 904		}
 905
 906		block_start = block_end;
 907		bh = bh->b_this_page;
 908	} while (bh != head);
 909}
 910
 911/*
 912 * Only called when we have a failure during allocating write to write
 913 * zero's to the newly allocated region.
 914 */
 915static void ocfs2_write_failure(struct inode *inode,
 916				struct ocfs2_write_ctxt *wc,
 917				loff_t user_pos, unsigned user_len)
 918{
 919	int i;
 920	unsigned from = user_pos & (PAGE_SIZE - 1),
 921		to = user_pos + user_len;
 922	struct page *tmppage;
 923
 924	if (wc->w_target_page)
 925		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 926
 927	for(i = 0; i < wc->w_num_pages; i++) {
 928		tmppage = wc->w_pages[i];
 929
 930		if (tmppage && page_has_buffers(tmppage)) {
 931			if (ocfs2_should_order_data(inode))
 932				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 933							   user_pos, user_len);
 934
 935			block_commit_write(tmppage, from, to);
 936		}
 937	}
 938}
 939
 940static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 941					struct ocfs2_write_ctxt *wc,
 942					struct page *page, u32 cpos,
 943					loff_t user_pos, unsigned user_len,
 944					int new)
 945{
 946	int ret;
 947	unsigned int map_from = 0, map_to = 0;
 948	unsigned int cluster_start, cluster_end;
 949	unsigned int user_data_from = 0, user_data_to = 0;
 950
 951	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 952					&cluster_start, &cluster_end);
 953
 954	/* treat the write as new if the a hole/lseek spanned across
 955	 * the page boundary.
 956	 */
 957	new = new | ((i_size_read(inode) <= page_offset(page)) &&
 958			(page_offset(page) <= user_pos));
 959
 960	if (page == wc->w_target_page) {
 961		map_from = user_pos & (PAGE_SIZE - 1);
 962		map_to = map_from + user_len;
 963
 964		if (new)
 965			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 966						    cluster_start, cluster_end,
 967						    new);
 968		else
 969			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 970						    map_from, map_to, new);
 971		if (ret) {
 972			mlog_errno(ret);
 973			goto out;
 974		}
 975
 976		user_data_from = map_from;
 977		user_data_to = map_to;
 978		if (new) {
 979			map_from = cluster_start;
 980			map_to = cluster_end;
 981		}
 982	} else {
 983		/*
 984		 * If we haven't allocated the new page yet, we
 985		 * shouldn't be writing it out without copying user
 986		 * data. This is likely a math error from the caller.
 987		 */
 988		BUG_ON(!new);
 989
 990		map_from = cluster_start;
 991		map_to = cluster_end;
 992
 993		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 994					    cluster_start, cluster_end, new);
 995		if (ret) {
 996			mlog_errno(ret);
 997			goto out;
 998		}
 999	}
1000
1001	/*
1002	 * Parts of newly allocated pages need to be zero'd.
1003	 *
1004	 * Above, we have also rewritten 'to' and 'from' - as far as
1005	 * the rest of the function is concerned, the entire cluster
1006	 * range inside of a page needs to be written.
1007	 *
1008	 * We can skip this if the page is up to date - it's already
1009	 * been zero'd from being read in as a hole.
1010	 */
1011	if (new && !PageUptodate(page))
1012		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1013					 cpos, user_data_from, user_data_to);
1014
1015	flush_dcache_page(page);
1016
1017out:
1018	return ret;
1019}
1020
1021/*
1022 * This function will only grab one clusters worth of pages.
1023 */
1024static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1025				      struct ocfs2_write_ctxt *wc,
1026				      u32 cpos, loff_t user_pos,
1027				      unsigned user_len, int new,
1028				      struct page *mmap_page)
1029{
1030	int ret = 0, i;
1031	unsigned long start, target_index, end_index, index;
1032	struct inode *inode = mapping->host;
1033	loff_t last_byte;
1034
1035	target_index = user_pos >> PAGE_SHIFT;
1036
1037	/*
1038	 * Figure out how many pages we'll be manipulating here. For
1039	 * non allocating write, we just change the one
1040	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1041	 * writing past i_size, we only need enough pages to cover the
1042	 * last page of the write.
1043	 */
1044	if (new) {
1045		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1046		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1047		/*
1048		 * We need the index *past* the last page we could possibly
1049		 * touch.  This is the page past the end of the write or
1050		 * i_size, whichever is greater.
1051		 */
1052		last_byte = max(user_pos + user_len, i_size_read(inode));
1053		BUG_ON(last_byte < 1);
1054		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1055		if ((start + wc->w_num_pages) > end_index)
1056			wc->w_num_pages = end_index - start;
1057	} else {
1058		wc->w_num_pages = 1;
1059		start = target_index;
1060	}
1061	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1062
1063	for(i = 0; i < wc->w_num_pages; i++) {
1064		index = start + i;
1065
1066		if (index >= target_index && index <= end_index &&
1067		    wc->w_type == OCFS2_WRITE_MMAP) {
1068			/*
1069			 * ocfs2_pagemkwrite() is a little different
1070			 * and wants us to directly use the page
1071			 * passed in.
1072			 */
1073			lock_page(mmap_page);
1074
1075			/* Exit and let the caller retry */
1076			if (mmap_page->mapping != mapping) {
1077				WARN_ON(mmap_page->mapping);
1078				unlock_page(mmap_page);
1079				ret = -EAGAIN;
1080				goto out;
1081			}
1082
1083			get_page(mmap_page);
1084			wc->w_pages[i] = mmap_page;
1085			wc->w_target_locked = true;
1086		} else if (index >= target_index && index <= end_index &&
1087			   wc->w_type == OCFS2_WRITE_DIRECT) {
1088			/* Direct write has no mapping page. */
1089			wc->w_pages[i] = NULL;
1090			continue;
1091		} else {
1092			wc->w_pages[i] = find_or_create_page(mapping, index,
1093							     GFP_NOFS);
1094			if (!wc->w_pages[i]) {
1095				ret = -ENOMEM;
1096				mlog_errno(ret);
1097				goto out;
1098			}
1099		}
1100		wait_for_stable_page(wc->w_pages[i]);
1101
1102		if (index == target_index)
1103			wc->w_target_page = wc->w_pages[i];
1104	}
1105out:
1106	if (ret)
1107		wc->w_target_locked = false;
1108	return ret;
1109}
1110
1111/*
1112 * Prepare a single cluster for write one cluster into the file.
1113 */
1114static int ocfs2_write_cluster(struct address_space *mapping,
1115			       u32 *phys, unsigned int new,
1116			       unsigned int clear_unwritten,
1117			       unsigned int should_zero,
1118			       struct ocfs2_alloc_context *data_ac,
1119			       struct ocfs2_alloc_context *meta_ac,
1120			       struct ocfs2_write_ctxt *wc, u32 cpos,
1121			       loff_t user_pos, unsigned user_len)
1122{
1123	int ret, i;
1124	u64 p_blkno;
1125	struct inode *inode = mapping->host;
1126	struct ocfs2_extent_tree et;
1127	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1128
 
1129	if (new) {
1130		u32 tmp_pos;
1131
1132		/*
1133		 * This is safe to call with the page locks - it won't take
1134		 * any additional semaphores or cluster locks.
1135		 */
1136		tmp_pos = cpos;
1137		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1138					   &tmp_pos, 1, !clear_unwritten,
1139					   wc->w_di_bh, wc->w_handle,
1140					   data_ac, meta_ac, NULL);
1141		/*
1142		 * This shouldn't happen because we must have already
1143		 * calculated the correct meta data allocation required. The
1144		 * internal tree allocation code should know how to increase
1145		 * transaction credits itself.
1146		 *
1147		 * If need be, we could handle -EAGAIN for a
1148		 * RESTART_TRANS here.
1149		 */
1150		mlog_bug_on_msg(ret == -EAGAIN,
1151				"Inode %llu: EAGAIN return during allocation.\n",
1152				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1153		if (ret < 0) {
1154			mlog_errno(ret);
1155			goto out;
1156		}
1157	} else if (clear_unwritten) {
1158		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1159					      wc->w_di_bh);
1160		ret = ocfs2_mark_extent_written(inode, &et,
1161						wc->w_handle, cpos, 1, *phys,
1162						meta_ac, &wc->w_dealloc);
1163		if (ret < 0) {
1164			mlog_errno(ret);
1165			goto out;
1166		}
1167	}
1168
 
 
 
 
 
1169	/*
1170	 * The only reason this should fail is due to an inability to
1171	 * find the extent added.
1172	 */
1173	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
 
1174	if (ret < 0) {
1175		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1176			    "at logical cluster %u",
1177			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
 
1178		goto out;
1179	}
1180
1181	BUG_ON(*phys == 0);
1182
1183	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1184	if (!should_zero)
1185		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1186
1187	for(i = 0; i < wc->w_num_pages; i++) {
1188		int tmpret;
1189
1190		/* This is the direct io target page. */
1191		if (wc->w_pages[i] == NULL) {
1192			p_blkno++;
1193			continue;
1194		}
1195
1196		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1197						      wc->w_pages[i], cpos,
1198						      user_pos, user_len,
1199						      should_zero);
1200		if (tmpret) {
1201			mlog_errno(tmpret);
1202			if (ret == 0)
1203				ret = tmpret;
1204		}
1205	}
1206
1207	/*
1208	 * We only have cleanup to do in case of allocating write.
1209	 */
1210	if (ret && new)
1211		ocfs2_write_failure(inode, wc, user_pos, user_len);
1212
1213out:
1214
1215	return ret;
1216}
1217
1218static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1219				       struct ocfs2_alloc_context *data_ac,
1220				       struct ocfs2_alloc_context *meta_ac,
1221				       struct ocfs2_write_ctxt *wc,
1222				       loff_t pos, unsigned len)
1223{
1224	int ret, i;
1225	loff_t cluster_off;
1226	unsigned int local_len = len;
1227	struct ocfs2_write_cluster_desc *desc;
1228	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1229
1230	for (i = 0; i < wc->w_clen; i++) {
1231		desc = &wc->w_desc[i];
1232
1233		/*
1234		 * We have to make sure that the total write passed in
1235		 * doesn't extend past a single cluster.
1236		 */
1237		local_len = len;
1238		cluster_off = pos & (osb->s_clustersize - 1);
1239		if ((cluster_off + local_len) > osb->s_clustersize)
1240			local_len = osb->s_clustersize - cluster_off;
1241
1242		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1243					  desc->c_new,
1244					  desc->c_clear_unwritten,
1245					  desc->c_needs_zero,
1246					  data_ac, meta_ac,
1247					  wc, desc->c_cpos, pos, local_len);
1248		if (ret) {
1249			mlog_errno(ret);
1250			goto out;
1251		}
1252
1253		len -= local_len;
1254		pos += local_len;
1255	}
1256
1257	ret = 0;
1258out:
1259	return ret;
1260}
1261
1262/*
1263 * ocfs2_write_end() wants to know which parts of the target page it
1264 * should complete the write on. It's easiest to compute them ahead of
1265 * time when a more complete view of the write is available.
1266 */
1267static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1268					struct ocfs2_write_ctxt *wc,
1269					loff_t pos, unsigned len, int alloc)
1270{
1271	struct ocfs2_write_cluster_desc *desc;
1272
1273	wc->w_target_from = pos & (PAGE_SIZE - 1);
1274	wc->w_target_to = wc->w_target_from + len;
1275
1276	if (alloc == 0)
1277		return;
1278
1279	/*
1280	 * Allocating write - we may have different boundaries based
1281	 * on page size and cluster size.
1282	 *
1283	 * NOTE: We can no longer compute one value from the other as
1284	 * the actual write length and user provided length may be
1285	 * different.
1286	 */
1287
1288	if (wc->w_large_pages) {
1289		/*
1290		 * We only care about the 1st and last cluster within
1291		 * our range and whether they should be zero'd or not. Either
1292		 * value may be extended out to the start/end of a
1293		 * newly allocated cluster.
1294		 */
1295		desc = &wc->w_desc[0];
1296		if (desc->c_needs_zero)
1297			ocfs2_figure_cluster_boundaries(osb,
1298							desc->c_cpos,
1299							&wc->w_target_from,
1300							NULL);
1301
1302		desc = &wc->w_desc[wc->w_clen - 1];
1303		if (desc->c_needs_zero)
1304			ocfs2_figure_cluster_boundaries(osb,
1305							desc->c_cpos,
1306							NULL,
1307							&wc->w_target_to);
1308	} else {
1309		wc->w_target_from = 0;
1310		wc->w_target_to = PAGE_SIZE;
1311	}
1312}
1313
1314/*
1315 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1316 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1317 * by the direct io procedure.
1318 * If this is a new extent that allocated by direct io, we should mark it in
1319 * the ip_unwritten_list.
1320 */
1321static int ocfs2_unwritten_check(struct inode *inode,
1322				 struct ocfs2_write_ctxt *wc,
1323				 struct ocfs2_write_cluster_desc *desc)
1324{
1325	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1326	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1327	int ret = 0;
1328
1329	if (!desc->c_needs_zero)
1330		return 0;
1331
1332retry:
1333	spin_lock(&oi->ip_lock);
1334	/* Needs not to zero no metter buffer or direct. The one who is zero
1335	 * the cluster is doing zero. And he will clear unwritten after all
1336	 * cluster io finished. */
1337	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1338		if (desc->c_cpos == ue->ue_cpos) {
1339			BUG_ON(desc->c_new);
1340			desc->c_needs_zero = 0;
1341			desc->c_clear_unwritten = 0;
1342			goto unlock;
1343		}
1344	}
1345
1346	if (wc->w_type != OCFS2_WRITE_DIRECT)
1347		goto unlock;
1348
1349	if (new == NULL) {
1350		spin_unlock(&oi->ip_lock);
1351		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1352			     GFP_NOFS);
1353		if (new == NULL) {
1354			ret = -ENOMEM;
1355			goto out;
1356		}
1357		goto retry;
1358	}
1359	/* This direct write will doing zero. */
1360	new->ue_cpos = desc->c_cpos;
1361	new->ue_phys = desc->c_phys;
1362	desc->c_clear_unwritten = 0;
1363	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1364	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1365	wc->w_unwritten_count++;
1366	new = NULL;
1367unlock:
1368	spin_unlock(&oi->ip_lock);
1369out:
1370	kfree(new);
1371	return ret;
1372}
1373
1374/*
1375 * Populate each single-cluster write descriptor in the write context
1376 * with information about the i/o to be done.
1377 *
1378 * Returns the number of clusters that will have to be allocated, as
1379 * well as a worst case estimate of the number of extent records that
1380 * would have to be created during a write to an unwritten region.
1381 */
1382static int ocfs2_populate_write_desc(struct inode *inode,
1383				     struct ocfs2_write_ctxt *wc,
1384				     unsigned int *clusters_to_alloc,
1385				     unsigned int *extents_to_split)
1386{
1387	int ret;
1388	struct ocfs2_write_cluster_desc *desc;
1389	unsigned int num_clusters = 0;
1390	unsigned int ext_flags = 0;
1391	u32 phys = 0;
1392	int i;
1393
1394	*clusters_to_alloc = 0;
1395	*extents_to_split = 0;
1396
1397	for (i = 0; i < wc->w_clen; i++) {
1398		desc = &wc->w_desc[i];
1399		desc->c_cpos = wc->w_cpos + i;
1400
1401		if (num_clusters == 0) {
1402			/*
1403			 * Need to look up the next extent record.
1404			 */
1405			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1406						 &num_clusters, &ext_flags);
1407			if (ret) {
1408				mlog_errno(ret);
1409				goto out;
1410			}
1411
1412			/* We should already CoW the refcountd extent. */
1413			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1414
1415			/*
1416			 * Assume worst case - that we're writing in
1417			 * the middle of the extent.
1418			 *
1419			 * We can assume that the write proceeds from
1420			 * left to right, in which case the extent
1421			 * insert code is smart enough to coalesce the
1422			 * next splits into the previous records created.
1423			 */
1424			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425				*extents_to_split = *extents_to_split + 2;
1426		} else if (phys) {
1427			/*
1428			 * Only increment phys if it doesn't describe
1429			 * a hole.
1430			 */
1431			phys++;
1432		}
1433
1434		/*
1435		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1436		 * file that got extended.  w_first_new_cpos tells us
1437		 * where the newly allocated clusters are so we can
1438		 * zero them.
1439		 */
1440		if (desc->c_cpos >= wc->w_first_new_cpos) {
1441			BUG_ON(phys == 0);
1442			desc->c_needs_zero = 1;
1443		}
1444
1445		desc->c_phys = phys;
1446		if (phys == 0) {
1447			desc->c_new = 1;
1448			desc->c_needs_zero = 1;
1449			desc->c_clear_unwritten = 1;
1450			*clusters_to_alloc = *clusters_to_alloc + 1;
1451		}
1452
1453		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1454			desc->c_clear_unwritten = 1;
1455			desc->c_needs_zero = 1;
1456		}
1457
1458		ret = ocfs2_unwritten_check(inode, wc, desc);
1459		if (ret) {
1460			mlog_errno(ret);
1461			goto out;
1462		}
1463
1464		num_clusters--;
1465	}
1466
1467	ret = 0;
1468out:
1469	return ret;
1470}
1471
1472static int ocfs2_write_begin_inline(struct address_space *mapping,
1473				    struct inode *inode,
1474				    struct ocfs2_write_ctxt *wc)
1475{
1476	int ret;
1477	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1478	struct page *page;
1479	handle_t *handle;
1480	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1481
1482	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1483	if (IS_ERR(handle)) {
1484		ret = PTR_ERR(handle);
1485		mlog_errno(ret);
1486		goto out;
1487	}
1488
1489	page = find_or_create_page(mapping, 0, GFP_NOFS);
1490	if (!page) {
1491		ocfs2_commit_trans(osb, handle);
1492		ret = -ENOMEM;
1493		mlog_errno(ret);
1494		goto out;
1495	}
1496	/*
1497	 * If we don't set w_num_pages then this page won't get unlocked
1498	 * and freed on cleanup of the write context.
1499	 */
1500	wc->w_pages[0] = wc->w_target_page = page;
1501	wc->w_num_pages = 1;
1502
 
 
 
 
 
 
 
1503	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1504				      OCFS2_JOURNAL_ACCESS_WRITE);
1505	if (ret) {
1506		ocfs2_commit_trans(osb, handle);
1507
1508		mlog_errno(ret);
1509		goto out;
1510	}
1511
1512	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1513		ocfs2_set_inode_data_inline(inode, di);
1514
1515	if (!PageUptodate(page)) {
1516		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1517		if (ret) {
1518			ocfs2_commit_trans(osb, handle);
1519
1520			goto out;
1521		}
1522	}
1523
1524	wc->w_handle = handle;
1525out:
1526	return ret;
1527}
1528
1529int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1530{
1531	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1532
1533	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1534		return 1;
1535	return 0;
1536}
1537
1538static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1539					  struct inode *inode, loff_t pos,
1540					  unsigned len, struct page *mmap_page,
1541					  struct ocfs2_write_ctxt *wc)
1542{
1543	int ret, written = 0;
1544	loff_t end = pos + len;
1545	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1546	struct ocfs2_dinode *di = NULL;
1547
1548	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1549					     len, (unsigned long long)pos,
1550					     oi->ip_dyn_features);
1551
1552	/*
1553	 * Handle inodes which already have inline data 1st.
1554	 */
1555	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1556		if (mmap_page == NULL &&
1557		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1558			goto do_inline_write;
1559
1560		/*
1561		 * The write won't fit - we have to give this inode an
1562		 * inline extent list now.
1563		 */
1564		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1565		if (ret)
1566			mlog_errno(ret);
1567		goto out;
1568	}
1569
1570	/*
1571	 * Check whether the inode can accept inline data.
1572	 */
1573	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1574		return 0;
1575
1576	/*
1577	 * Check whether the write can fit.
1578	 */
1579	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1580	if (mmap_page ||
1581	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1582		return 0;
1583
1584do_inline_write:
1585	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1586	if (ret) {
1587		mlog_errno(ret);
1588		goto out;
1589	}
1590
1591	/*
1592	 * This signals to the caller that the data can be written
1593	 * inline.
1594	 */
1595	written = 1;
1596out:
1597	return written ? written : ret;
1598}
1599
1600/*
1601 * This function only does anything for file systems which can't
1602 * handle sparse files.
1603 *
1604 * What we want to do here is fill in any hole between the current end
1605 * of allocation and the end of our write. That way the rest of the
1606 * write path can treat it as an non-allocating write, which has no
1607 * special case code for sparse/nonsparse files.
1608 */
1609static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1610					struct buffer_head *di_bh,
1611					loff_t pos, unsigned len,
1612					struct ocfs2_write_ctxt *wc)
1613{
1614	int ret;
1615	loff_t newsize = pos + len;
1616
1617	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1618
1619	if (newsize <= i_size_read(inode))
1620		return 0;
1621
1622	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1623	if (ret)
1624		mlog_errno(ret);
1625
1626	/* There is no wc if this is call from direct. */
1627	if (wc)
1628		wc->w_first_new_cpos =
1629			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630
1631	return ret;
1632}
1633
1634static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635			   loff_t pos)
1636{
1637	int ret = 0;
1638
1639	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640	if (pos > i_size_read(inode))
1641		ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643	return ret;
1644}
1645
1646int ocfs2_write_begin_nolock(struct address_space *mapping,
1647			     loff_t pos, unsigned len, ocfs2_write_type_t type,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1648			     struct page **pagep, void **fsdata,
1649			     struct buffer_head *di_bh, struct page *mmap_page)
1650{
1651	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1653	struct ocfs2_write_ctxt *wc;
1654	struct inode *inode = mapping->host;
1655	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656	struct ocfs2_dinode *di;
1657	struct ocfs2_alloc_context *data_ac = NULL;
1658	struct ocfs2_alloc_context *meta_ac = NULL;
1659	handle_t *handle;
1660	struct ocfs2_extent_tree et;
1661	int try_free = 1, ret1;
1662
1663try_again:
1664	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1665	if (ret) {
1666		mlog_errno(ret);
1667		return ret;
1668	}
1669
1670	if (ocfs2_supports_inline_data(osb)) {
1671		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1672						     mmap_page, wc);
1673		if (ret == 1) {
1674			ret = 0;
1675			goto success;
1676		}
1677		if (ret < 0) {
1678			mlog_errno(ret);
1679			goto out;
1680		}
1681	}
1682
1683	/* Direct io change i_size late, should not zero tail here. */
1684	if (type != OCFS2_WRITE_DIRECT) {
1685		if (ocfs2_sparse_alloc(osb))
1686			ret = ocfs2_zero_tail(inode, di_bh, pos);
1687		else
1688			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1689							   len, wc);
1690		if (ret) {
1691			mlog_errno(ret);
1692			goto out;
1693		}
1694	}
1695
1696	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1697	if (ret < 0) {
1698		mlog_errno(ret);
1699		goto out;
1700	} else if (ret == 1) {
1701		clusters_need = wc->w_clen;
1702		ret = ocfs2_refcount_cow(inode, di_bh,
1703					 wc->w_cpos, wc->w_clen, UINT_MAX);
1704		if (ret) {
1705			mlog_errno(ret);
1706			goto out;
1707		}
1708	}
1709
1710	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1711					&extents_to_split);
1712	if (ret) {
1713		mlog_errno(ret);
1714		goto out;
1715	}
1716	clusters_need += clusters_to_alloc;
1717
1718	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1719
1720	trace_ocfs2_write_begin_nolock(
1721			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1722			(long long)i_size_read(inode),
1723			le32_to_cpu(di->i_clusters),
1724			pos, len, type, mmap_page,
1725			clusters_to_alloc, extents_to_split);
1726
1727	/*
1728	 * We set w_target_from, w_target_to here so that
1729	 * ocfs2_write_end() knows which range in the target page to
1730	 * write out. An allocation requires that we write the entire
1731	 * cluster range.
1732	 */
1733	if (clusters_to_alloc || extents_to_split) {
1734		/*
1735		 * XXX: We are stretching the limits of
1736		 * ocfs2_lock_allocators(). It greatly over-estimates
1737		 * the work to be done.
1738		 */
1739		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1740					      wc->w_di_bh);
1741		ret = ocfs2_lock_allocators(inode, &et,
1742					    clusters_to_alloc, extents_to_split,
1743					    &data_ac, &meta_ac);
1744		if (ret) {
1745			mlog_errno(ret);
1746			goto out;
1747		}
1748
1749		if (data_ac)
1750			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1751
1752		credits = ocfs2_calc_extend_credits(inode->i_sb,
1753						    &di->id2.i_list);
1754	} else if (type == OCFS2_WRITE_DIRECT)
1755		/* direct write needs not to start trans if no extents alloc. */
1756		goto success;
1757
1758	/*
1759	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1760	 * and non-sparse clusters we just extended.  For non-sparse writes,
1761	 * we know zeros will only be needed in the first and/or last cluster.
1762	 */
1763	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1764			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
 
1765		cluster_of_pages = 1;
1766	else
1767		cluster_of_pages = 0;
1768
1769	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1770
1771	handle = ocfs2_start_trans(osb, credits);
1772	if (IS_ERR(handle)) {
1773		ret = PTR_ERR(handle);
1774		mlog_errno(ret);
1775		goto out;
1776	}
1777
1778	wc->w_handle = handle;
1779
1780	if (clusters_to_alloc) {
1781		ret = dquot_alloc_space_nodirty(inode,
1782			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1783		if (ret)
1784			goto out_commit;
1785	}
1786
 
 
 
1787	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1788				      OCFS2_JOURNAL_ACCESS_WRITE);
1789	if (ret) {
1790		mlog_errno(ret);
1791		goto out_quota;
1792	}
1793
1794	/*
1795	 * Fill our page array first. That way we've grabbed enough so
1796	 * that we can zero and flush if we error after adding the
1797	 * extent.
1798	 */
1799	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1800					 cluster_of_pages, mmap_page);
1801	if (ret) {
1802		/*
1803		 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1804		 * the target page. In this case, we exit with no error and no target
1805		 * page. This will trigger the caller, page_mkwrite(), to re-try
1806		 * the operation.
1807		 */
1808		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1809			BUG_ON(wc->w_target_page);
1810			ret = 0;
1811			goto out_quota;
1812		}
1813
1814		mlog_errno(ret);
1815		goto out_quota;
1816	}
1817
 
 
 
 
 
 
 
 
 
 
 
 
1818	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819					  len);
1820	if (ret) {
1821		mlog_errno(ret);
1822		goto out_quota;
1823	}
1824
1825	if (data_ac)
1826		ocfs2_free_alloc_context(data_ac);
1827	if (meta_ac)
1828		ocfs2_free_alloc_context(meta_ac);
1829
1830success:
1831	if (pagep)
1832		*pagep = wc->w_target_page;
1833	*fsdata = wc;
1834	return 0;
1835out_quota:
1836	if (clusters_to_alloc)
1837		dquot_free_space(inode,
1838			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1839out_commit:
1840	ocfs2_commit_trans(osb, handle);
1841
1842out:
1843	/*
1844	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1845	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1846	 * to unlock the target page manually to prevent deadlocks when
1847	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1848	 * to VM code.
1849	 */
1850	if (wc->w_target_locked)
1851		unlock_page(mmap_page);
1852
1853	ocfs2_free_write_ctxt(inode, wc);
1854
1855	if (data_ac) {
1856		ocfs2_free_alloc_context(data_ac);
1857		data_ac = NULL;
1858	}
1859	if (meta_ac) {
1860		ocfs2_free_alloc_context(meta_ac);
1861		meta_ac = NULL;
1862	}
1863
1864	if (ret == -ENOSPC && try_free) {
1865		/*
1866		 * Try to free some truncate log so that we can have enough
1867		 * clusters to allocate.
1868		 */
1869		try_free = 0;
1870
1871		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1872		if (ret1 == 1)
1873			goto try_again;
1874
1875		if (ret1 < 0)
1876			mlog_errno(ret1);
1877	}
1878
1879	return ret;
1880}
1881
1882static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1883			     loff_t pos, unsigned len,
1884			     struct page **pagep, void **fsdata)
1885{
1886	int ret;
1887	struct buffer_head *di_bh = NULL;
1888	struct inode *inode = mapping->host;
1889
1890	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1891	if (ret) {
1892		mlog_errno(ret);
1893		return ret;
1894	}
1895
1896	/*
1897	 * Take alloc sem here to prevent concurrent lookups. That way
1898	 * the mapping, zeroing and tree manipulation within
1899	 * ocfs2_write() will be safe against ->read_folio(). This
1900	 * should also serve to lock out allocation from a shared
1901	 * writeable region.
1902	 */
1903	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1904
1905	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1906				       pagep, fsdata, di_bh, NULL);
1907	if (ret) {
1908		mlog_errno(ret);
1909		goto out_fail;
1910	}
1911
1912	brelse(di_bh);
1913
1914	return 0;
1915
1916out_fail:
1917	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1918
1919	brelse(di_bh);
1920	ocfs2_inode_unlock(inode, 1);
1921
1922	return ret;
1923}
1924
1925static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1926				   unsigned len, unsigned *copied,
1927				   struct ocfs2_dinode *di,
1928				   struct ocfs2_write_ctxt *wc)
1929{
1930	void *kaddr;
1931
1932	if (unlikely(*copied < len)) {
1933		if (!PageUptodate(wc->w_target_page)) {
1934			*copied = 0;
1935			return;
1936		}
1937	}
1938
1939	kaddr = kmap_atomic(wc->w_target_page);
1940	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1941	kunmap_atomic(kaddr);
1942
1943	trace_ocfs2_write_end_inline(
1944	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1945	     (unsigned long long)pos, *copied,
1946	     le16_to_cpu(di->id2.i_data.id_count),
1947	     le16_to_cpu(di->i_dyn_features));
1948}
1949
1950int ocfs2_write_end_nolock(struct address_space *mapping,
1951			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
 
1952{
1953	int i, ret;
1954	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1955	struct inode *inode = mapping->host;
1956	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957	struct ocfs2_write_ctxt *wc = fsdata;
1958	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1959	handle_t *handle = wc->w_handle;
1960	struct page *tmppage;
1961
1962	BUG_ON(!list_empty(&wc->w_unwritten_list));
1963
1964	if (handle) {
1965		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1966				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1967		if (ret) {
1968			copied = ret;
1969			mlog_errno(ret);
1970			goto out;
1971		}
1972	}
1973
1974	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1975		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1976		goto out_write_size;
1977	}
1978
1979	if (unlikely(copied < len) && wc->w_target_page) {
1980		if (!PageUptodate(wc->w_target_page))
1981			copied = 0;
1982
1983		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1984				       start+len);
1985	}
1986	if (wc->w_target_page)
1987		flush_dcache_page(wc->w_target_page);
1988
1989	for(i = 0; i < wc->w_num_pages; i++) {
1990		tmppage = wc->w_pages[i];
1991
1992		/* This is the direct io target page. */
1993		if (tmppage == NULL)
1994			continue;
1995
1996		if (tmppage == wc->w_target_page) {
1997			from = wc->w_target_from;
1998			to = wc->w_target_to;
1999
2000			BUG_ON(from > PAGE_SIZE ||
2001			       to > PAGE_SIZE ||
2002			       to < from);
2003		} else {
2004			/*
2005			 * Pages adjacent to the target (if any) imply
2006			 * a hole-filling write in which case we want
2007			 * to flush their entire range.
2008			 */
2009			from = 0;
2010			to = PAGE_SIZE;
2011		}
2012
2013		if (page_has_buffers(tmppage)) {
2014			if (handle && ocfs2_should_order_data(inode)) {
2015				loff_t start_byte =
2016					((loff_t)tmppage->index << PAGE_SHIFT) +
2017					from;
2018				loff_t length = to - from;
2019				ocfs2_jbd2_inode_add_write(handle, inode,
2020							   start_byte, length);
2021			}
2022			block_commit_write(tmppage, from, to);
2023		}
2024	}
2025
2026out_write_size:
2027	/* Direct io do not update i_size here. */
2028	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2029		pos += copied;
2030		if (pos > i_size_read(inode)) {
2031			i_size_write(inode, pos);
2032			mark_inode_dirty(inode);
2033		}
2034		inode->i_blocks = ocfs2_inode_sector_count(inode);
2035		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2036		inode->i_mtime = inode->i_ctime = current_time(inode);
2037		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2038		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2039		if (handle)
2040			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2041	}
2042	if (handle)
2043		ocfs2_journal_dirty(handle, wc->w_di_bh);
2044
2045out:
2046	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2047	 * lock, or it will cause a deadlock since journal commit threads holds
2048	 * this lock and will ask for the page lock when flushing the data.
2049	 * put it here to preserve the unlock order.
2050	 */
2051	ocfs2_unlock_pages(wc);
2052
2053	if (handle)
2054		ocfs2_commit_trans(osb, handle);
2055
2056	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2057
2058	brelse(wc->w_di_bh);
2059	kfree(wc);
2060
2061	return copied;
2062}
2063
2064static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2065			   loff_t pos, unsigned len, unsigned copied,
2066			   struct page *page, void *fsdata)
2067{
2068	int ret;
2069	struct inode *inode = mapping->host;
2070
2071	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2072
2073	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2074	ocfs2_inode_unlock(inode, 1);
2075
2076	return ret;
2077}
2078
2079struct ocfs2_dio_write_ctxt {
2080	struct list_head	dw_zero_list;
2081	unsigned		dw_zero_count;
2082	int			dw_orphaned;
2083	pid_t			dw_writer_pid;
2084};
2085
2086static struct ocfs2_dio_write_ctxt *
2087ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2088{
2089	struct ocfs2_dio_write_ctxt *dwc = NULL;
2090
2091	if (bh->b_private)
2092		return bh->b_private;
2093
2094	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2095	if (dwc == NULL)
2096		return NULL;
2097	INIT_LIST_HEAD(&dwc->dw_zero_list);
2098	dwc->dw_zero_count = 0;
2099	dwc->dw_orphaned = 0;
2100	dwc->dw_writer_pid = task_pid_nr(current);
2101	bh->b_private = dwc;
2102	*alloc = 1;
2103
2104	return dwc;
2105}
2106
2107static void ocfs2_dio_free_write_ctx(struct inode *inode,
2108				     struct ocfs2_dio_write_ctxt *dwc)
2109{
2110	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2111	kfree(dwc);
2112}
2113
2114/*
2115 * TODO: Make this into a generic get_blocks function.
2116 *
2117 * From do_direct_io in direct-io.c:
2118 *  "So what we do is to permit the ->get_blocks function to populate
2119 *   bh.b_size with the size of IO which is permitted at this offset and
2120 *   this i_blkbits."
2121 *
2122 * This function is called directly from get_more_blocks in direct-io.c.
2123 *
2124 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2125 * 					fs_count, map_bh, dio->rw == WRITE);
2126 */
2127static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2128			       struct buffer_head *bh_result, int create)
2129{
2130	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2131	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2132	struct ocfs2_write_ctxt *wc;
2133	struct ocfs2_write_cluster_desc *desc = NULL;
2134	struct ocfs2_dio_write_ctxt *dwc = NULL;
2135	struct buffer_head *di_bh = NULL;
2136	u64 p_blkno;
2137	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2138	loff_t pos = iblock << i_blkbits;
2139	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2140	unsigned len, total_len = bh_result->b_size;
2141	int ret = 0, first_get_block = 0;
2142
2143	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2144	len = min(total_len, len);
2145
2146	/*
2147	 * bh_result->b_size is count in get_more_blocks according to write
2148	 * "pos" and "end", we need map twice to return different buffer state:
2149	 * 1. area in file size, not set NEW;
2150	 * 2. area out file size, set  NEW.
2151	 *
2152	 *		   iblock    endblk
2153	 * |--------|---------|---------|---------
2154	 * |<-------area in file------->|
2155	 */
2156
2157	if ((iblock <= endblk) &&
2158	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2159		len = (endblk - iblock + 1) << i_blkbits;
2160
2161	mlog(0, "get block of %lu at %llu:%u req %u\n",
2162			inode->i_ino, pos, len, total_len);
2163
2164	/*
2165	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2166	 * we may need to add it to orphan dir. So can not fall to fast path
2167	 * while file size will be changed.
2168	 */
2169	if (pos + total_len <= i_size_read(inode)) {
2170
2171		/* This is the fast path for re-write. */
2172		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2173		if (buffer_mapped(bh_result) &&
2174		    !buffer_new(bh_result) &&
2175		    ret == 0)
2176			goto out;
2177
2178		/* Clear state set by ocfs2_get_block. */
2179		bh_result->b_state = 0;
2180	}
2181
2182	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2183	if (unlikely(dwc == NULL)) {
2184		ret = -ENOMEM;
2185		mlog_errno(ret);
2186		goto out;
2187	}
2188
2189	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2190	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2191	    !dwc->dw_orphaned) {
2192		/*
2193		 * when we are going to alloc extents beyond file size, add the
2194		 * inode to orphan dir, so we can recall those spaces when
2195		 * system crashed during write.
2196		 */
2197		ret = ocfs2_add_inode_to_orphan(osb, inode);
2198		if (ret < 0) {
2199			mlog_errno(ret);
2200			goto out;
2201		}
2202		dwc->dw_orphaned = 1;
2203	}
2204
2205	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2206	if (ret) {
2207		mlog_errno(ret);
2208		goto out;
2209	}
2210
2211	down_write(&oi->ip_alloc_sem);
2212
2213	if (first_get_block) {
2214		if (ocfs2_sparse_alloc(osb))
2215			ret = ocfs2_zero_tail(inode, di_bh, pos);
2216		else
2217			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2218							   total_len, NULL);
2219		if (ret < 0) {
2220			mlog_errno(ret);
2221			goto unlock;
2222		}
2223	}
2224
2225	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2226				       OCFS2_WRITE_DIRECT, NULL,
2227				       (void **)&wc, di_bh, NULL);
2228	if (ret) {
2229		mlog_errno(ret);
2230		goto unlock;
2231	}
2232
2233	desc = &wc->w_desc[0];
2234
2235	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2236	BUG_ON(p_blkno == 0);
2237	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2238
2239	map_bh(bh_result, inode->i_sb, p_blkno);
2240	bh_result->b_size = len;
2241	if (desc->c_needs_zero)
2242		set_buffer_new(bh_result);
2243
2244	if (iblock > endblk)
2245		set_buffer_new(bh_result);
2246
2247	/* May sleep in end_io. It should not happen in a irq context. So defer
2248	 * it to dio work queue. */
2249	set_buffer_defer_completion(bh_result);
2250
2251	if (!list_empty(&wc->w_unwritten_list)) {
2252		struct ocfs2_unwritten_extent *ue = NULL;
2253
2254		ue = list_first_entry(&wc->w_unwritten_list,
2255				      struct ocfs2_unwritten_extent,
2256				      ue_node);
2257		BUG_ON(ue->ue_cpos != desc->c_cpos);
2258		/* The physical address may be 0, fill it. */
2259		ue->ue_phys = desc->c_phys;
2260
2261		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2262		dwc->dw_zero_count += wc->w_unwritten_count;
2263	}
2264
2265	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2266	BUG_ON(ret != len);
2267	ret = 0;
2268unlock:
2269	up_write(&oi->ip_alloc_sem);
2270	ocfs2_inode_unlock(inode, 1);
2271	brelse(di_bh);
2272out:
2273	if (ret < 0)
2274		ret = -EIO;
2275	return ret;
2276}
2277
2278static int ocfs2_dio_end_io_write(struct inode *inode,
2279				  struct ocfs2_dio_write_ctxt *dwc,
2280				  loff_t offset,
2281				  ssize_t bytes)
2282{
2283	struct ocfs2_cached_dealloc_ctxt dealloc;
2284	struct ocfs2_extent_tree et;
2285	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2286	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2287	struct ocfs2_unwritten_extent *ue = NULL;
2288	struct buffer_head *di_bh = NULL;
2289	struct ocfs2_dinode *di;
2290	struct ocfs2_alloc_context *data_ac = NULL;
2291	struct ocfs2_alloc_context *meta_ac = NULL;
2292	handle_t *handle = NULL;
2293	loff_t end = offset + bytes;
2294	int ret = 0, credits = 0;
2295
2296	ocfs2_init_dealloc_ctxt(&dealloc);
2297
2298	/* We do clear unwritten, delete orphan, change i_size here. If neither
2299	 * of these happen, we can skip all this. */
2300	if (list_empty(&dwc->dw_zero_list) &&
2301	    end <= i_size_read(inode) &&
2302	    !dwc->dw_orphaned)
2303		goto out;
2304
2305	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2306	if (ret < 0) {
2307		mlog_errno(ret);
2308		goto out;
2309	}
2310
2311	down_write(&oi->ip_alloc_sem);
2312
2313	/* Delete orphan before acquire i_rwsem. */
2314	if (dwc->dw_orphaned) {
2315		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2316
2317		end = end > i_size_read(inode) ? end : 0;
2318
2319		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2320				!!end, end);
2321		if (ret < 0)
2322			mlog_errno(ret);
2323	}
2324
2325	di = (struct ocfs2_dinode *)di_bh->b_data;
2326
2327	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2328
2329	/* Attach dealloc with extent tree in case that we may reuse extents
2330	 * which are already unlinked from current extent tree due to extent
2331	 * rotation and merging.
2332	 */
2333	et.et_dealloc = &dealloc;
2334
2335	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2336				    &data_ac, &meta_ac);
2337	if (ret) {
2338		mlog_errno(ret);
2339		goto unlock;
2340	}
2341
2342	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2343
2344	handle = ocfs2_start_trans(osb, credits);
2345	if (IS_ERR(handle)) {
2346		ret = PTR_ERR(handle);
2347		mlog_errno(ret);
2348		goto unlock;
2349	}
2350	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2351				      OCFS2_JOURNAL_ACCESS_WRITE);
2352	if (ret) {
2353		mlog_errno(ret);
2354		goto commit;
2355	}
2356
2357	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2358		ret = ocfs2_mark_extent_written(inode, &et, handle,
2359						ue->ue_cpos, 1,
2360						ue->ue_phys,
2361						meta_ac, &dealloc);
2362		if (ret < 0) {
2363			mlog_errno(ret);
2364			break;
2365		}
2366	}
2367
2368	if (end > i_size_read(inode)) {
2369		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2370		if (ret < 0)
2371			mlog_errno(ret);
2372	}
2373commit:
2374	ocfs2_commit_trans(osb, handle);
2375unlock:
2376	up_write(&oi->ip_alloc_sem);
2377	ocfs2_inode_unlock(inode, 1);
2378	brelse(di_bh);
2379out:
2380	if (data_ac)
2381		ocfs2_free_alloc_context(data_ac);
2382	if (meta_ac)
2383		ocfs2_free_alloc_context(meta_ac);
2384	ocfs2_run_deallocs(osb, &dealloc);
2385	ocfs2_dio_free_write_ctx(inode, dwc);
2386
2387	return ret;
2388}
2389
2390/*
2391 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2392 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2393 * to protect io on one node from truncation on another.
2394 */
2395static int ocfs2_dio_end_io(struct kiocb *iocb,
2396			    loff_t offset,
2397			    ssize_t bytes,
2398			    void *private)
2399{
2400	struct inode *inode = file_inode(iocb->ki_filp);
2401	int level;
2402	int ret = 0;
2403
2404	/* this io's submitter should not have unlocked this before we could */
2405	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2406
2407	if (bytes <= 0)
2408		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2409				 (long long)bytes);
2410	if (private) {
2411		if (bytes > 0)
2412			ret = ocfs2_dio_end_io_write(inode, private, offset,
2413						     bytes);
2414		else
2415			ocfs2_dio_free_write_ctx(inode, private);
2416	}
2417
2418	ocfs2_iocb_clear_rw_locked(iocb);
2419
2420	level = ocfs2_iocb_rw_locked_level(iocb);
2421	ocfs2_rw_unlock(inode, level);
2422	return ret;
2423}
2424
2425static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426{
2427	struct file *file = iocb->ki_filp;
2428	struct inode *inode = file->f_mapping->host;
2429	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430	get_block_t *get_block;
2431
2432	/*
2433	 * Fallback to buffered I/O if we see an inode without
2434	 * extents.
2435	 */
2436	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437		return 0;
2438
2439	/* Fallback to buffered I/O if we do not support append dio. */
2440	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441	    !ocfs2_supports_append_dio(osb))
2442		return 0;
2443
2444	if (iov_iter_rw(iter) == READ)
2445		get_block = ocfs2_lock_get_block;
2446	else
2447		get_block = ocfs2_dio_wr_get_block;
2448
2449	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450				    iter, get_block,
2451				    ocfs2_dio_end_io, NULL, 0);
2452}
2453
2454const struct address_space_operations ocfs2_aops = {
2455	.dirty_folio		= block_dirty_folio,
2456	.read_folio		= ocfs2_read_folio,
2457	.readahead		= ocfs2_readahead,
2458	.writepage		= ocfs2_writepage,
2459	.write_begin		= ocfs2_write_begin,
2460	.write_end		= ocfs2_write_end,
2461	.bmap			= ocfs2_bmap,
2462	.direct_IO		= ocfs2_direct_IO,
2463	.invalidate_folio	= block_invalidate_folio,
2464	.release_folio		= ocfs2_release_folio,
2465	.migrate_folio		= buffer_migrate_folio,
2466	.is_partially_uptodate	= block_is_partially_uptodate,
2467	.error_remove_page	= generic_error_remove_page,
2468};
v3.5.6
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
 
 
 
  31
  32#include <cluster/masklog.h>
  33
  34#include "ocfs2.h"
  35
  36#include "alloc.h"
  37#include "aops.h"
  38#include "dlmglue.h"
  39#include "extent_map.h"
  40#include "file.h"
  41#include "inode.h"
  42#include "journal.h"
  43#include "suballoc.h"
  44#include "super.h"
  45#include "symlink.h"
  46#include "refcounttree.h"
  47#include "ocfs2_trace.h"
  48
  49#include "buffer_head_io.h"
 
 
 
  50
  51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  52				   struct buffer_head *bh_result, int create)
  53{
  54	int err = -EIO;
  55	int status;
  56	struct ocfs2_dinode *fe = NULL;
  57	struct buffer_head *bh = NULL;
  58	struct buffer_head *buffer_cache_bh = NULL;
  59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  60	void *kaddr;
  61
  62	trace_ocfs2_symlink_get_block(
  63			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  64			(unsigned long long)iblock, bh_result, create);
  65
  66	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  67
  68	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  69		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  70		     (unsigned long long)iblock);
  71		goto bail;
  72	}
  73
  74	status = ocfs2_read_inode_block(inode, &bh);
  75	if (status < 0) {
  76		mlog_errno(status);
  77		goto bail;
  78	}
  79	fe = (struct ocfs2_dinode *) bh->b_data;
  80
  81	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  82						    le32_to_cpu(fe->i_clusters))) {
 
  83		mlog(ML_ERROR, "block offset is outside the allocated size: "
  84		     "%llu\n", (unsigned long long)iblock);
  85		goto bail;
  86	}
  87
  88	/* We don't use the page cache to create symlink data, so if
  89	 * need be, copy it over from the buffer cache. */
  90	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  91		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  92			    iblock;
  93		buffer_cache_bh = sb_getblk(osb->sb, blkno);
  94		if (!buffer_cache_bh) {
 
  95			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  96			goto bail;
  97		}
  98
  99		/* we haven't locked out transactions, so a commit
 100		 * could've happened. Since we've got a reference on
 101		 * the bh, even if it commits while we're doing the
 102		 * copy, the data is still good. */
 103		if (buffer_jbd(buffer_cache_bh)
 104		    && ocfs2_inode_is_new(inode)) {
 105			kaddr = kmap_atomic(bh_result->b_page);
 106			if (!kaddr) {
 107				mlog(ML_ERROR, "couldn't kmap!\n");
 108				goto bail;
 109			}
 110			memcpy(kaddr + (bh_result->b_size * iblock),
 111			       buffer_cache_bh->b_data,
 112			       bh_result->b_size);
 113			kunmap_atomic(kaddr);
 114			set_buffer_uptodate(bh_result);
 115		}
 116		brelse(buffer_cache_bh);
 117	}
 118
 119	map_bh(bh_result, inode->i_sb,
 120	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 121
 122	err = 0;
 123
 124bail:
 125	brelse(bh);
 126
 127	return err;
 128}
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 130int ocfs2_get_block(struct inode *inode, sector_t iblock,
 131		    struct buffer_head *bh_result, int create)
 132{
 133	int err = 0;
 134	unsigned int ext_flags;
 135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 136	u64 p_blkno, count, past_eof;
 137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 138
 139	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 140			      (unsigned long long)iblock, bh_result, create);
 141
 142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 144		     inode, inode->i_ino);
 145
 146	if (S_ISLNK(inode->i_mode)) {
 147		/* this always does I/O for some reason. */
 148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 149		goto bail;
 150	}
 151
 152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 153					  &ext_flags);
 154	if (err) {
 155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 157		     (unsigned long long)p_blkno);
 158		goto bail;
 159	}
 160
 161	if (max_blocks < count)
 162		count = max_blocks;
 163
 164	/*
 165	 * ocfs2 never allocates in this function - the only time we
 166	 * need to use BH_New is when we're extending i_size on a file
 167	 * system which doesn't support holes, in which case BH_New
 168	 * allows __block_write_begin() to zero.
 169	 *
 170	 * If we see this on a sparse file system, then a truncate has
 171	 * raced us and removed the cluster. In this case, we clear
 172	 * the buffers dirty and uptodate bits and let the buffer code
 173	 * ignore it as a hole.
 174	 */
 175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 176		clear_buffer_dirty(bh_result);
 177		clear_buffer_uptodate(bh_result);
 178		goto bail;
 179	}
 180
 181	/* Treat the unwritten extent as a hole for zeroing purposes. */
 182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 183		map_bh(bh_result, inode->i_sb, p_blkno);
 184
 185	bh_result->b_size = count << inode->i_blkbits;
 186
 187	if (!ocfs2_sparse_alloc(osb)) {
 188		if (p_blkno == 0) {
 189			err = -EIO;
 190			mlog(ML_ERROR,
 191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 192			     (unsigned long long)iblock,
 193			     (unsigned long long)p_blkno,
 194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 196			dump_stack();
 197			goto bail;
 198		}
 199	}
 200
 201	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 202
 203	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 204				  (unsigned long long)past_eof);
 205	if (create && (iblock >= past_eof))
 206		set_buffer_new(bh_result);
 207
 208bail:
 209	if (err < 0)
 210		err = -EIO;
 211
 212	return err;
 213}
 214
 215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 216			   struct buffer_head *di_bh)
 217{
 218	void *kaddr;
 219	loff_t size;
 220	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 221
 222	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 223		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 224			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 225		return -EROFS;
 226	}
 227
 228	size = i_size_read(inode);
 229
 230	if (size > PAGE_CACHE_SIZE ||
 231	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 232		ocfs2_error(inode->i_sb,
 233			    "Inode %llu has with inline data has bad size: %Lu",
 234			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 235			    (unsigned long long)size);
 236		return -EROFS;
 237	}
 238
 239	kaddr = kmap_atomic(page);
 240	if (size)
 241		memcpy(kaddr, di->id2.i_data.id_data, size);
 242	/* Clear the remaining part of the page */
 243	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 244	flush_dcache_page(page);
 245	kunmap_atomic(kaddr);
 246
 247	SetPageUptodate(page);
 248
 249	return 0;
 250}
 251
 252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 253{
 254	int ret;
 255	struct buffer_head *di_bh = NULL;
 256
 257	BUG_ON(!PageLocked(page));
 258	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 259
 260	ret = ocfs2_read_inode_block(inode, &di_bh);
 261	if (ret) {
 262		mlog_errno(ret);
 263		goto out;
 264	}
 265
 266	ret = ocfs2_read_inline_data(inode, page, di_bh);
 267out:
 268	unlock_page(page);
 269
 270	brelse(di_bh);
 271	return ret;
 272}
 273
 274static int ocfs2_readpage(struct file *file, struct page *page)
 275{
 276	struct inode *inode = page->mapping->host;
 277	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 278	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 279	int ret, unlock = 1;
 280
 281	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 282			     (page ? page->index : 0));
 283
 284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 285	if (ret != 0) {
 286		if (ret == AOP_TRUNCATED_PAGE)
 287			unlock = 0;
 288		mlog_errno(ret);
 289		goto out;
 290	}
 291
 292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 293		/*
 294		 * Unlock the page and cycle ip_alloc_sem so that we don't
 295		 * busyloop waiting for ip_alloc_sem to unlock
 296		 */
 297		ret = AOP_TRUNCATED_PAGE;
 298		unlock_page(page);
 299		unlock = 0;
 300		down_read(&oi->ip_alloc_sem);
 301		up_read(&oi->ip_alloc_sem);
 302		goto out_inode_unlock;
 303	}
 304
 305	/*
 306	 * i_size might have just been updated as we grabed the meta lock.  We
 307	 * might now be discovering a truncate that hit on another node.
 308	 * block_read_full_page->get_block freaks out if it is asked to read
 309	 * beyond the end of a file, so we check here.  Callers
 310	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 311	 * and notice that the page they just read isn't needed.
 312	 *
 313	 * XXX sys_readahead() seems to get that wrong?
 314	 */
 315	if (start >= i_size_read(inode)) {
 316		zero_user(page, 0, PAGE_SIZE);
 317		SetPageUptodate(page);
 318		ret = 0;
 319		goto out_alloc;
 320	}
 321
 322	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 323		ret = ocfs2_readpage_inline(inode, page);
 324	else
 325		ret = block_read_full_page(page, ocfs2_get_block);
 326	unlock = 0;
 327
 328out_alloc:
 329	up_read(&OCFS2_I(inode)->ip_alloc_sem);
 330out_inode_unlock:
 331	ocfs2_inode_unlock(inode, 0);
 332out:
 333	if (unlock)
 334		unlock_page(page);
 335	return ret;
 336}
 337
 338/*
 339 * This is used only for read-ahead. Failures or difficult to handle
 340 * situations are safe to ignore.
 341 *
 342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 343 * are quite large (243 extents on 4k blocks), so most inodes don't
 344 * grow out to a tree. If need be, detecting boundary extents could
 345 * trivially be added in a future version of ocfs2_get_block().
 346 */
 347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 348			   struct list_head *pages, unsigned nr_pages)
 349{
 350	int ret, err = -EIO;
 351	struct inode *inode = mapping->host;
 352	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 353	loff_t start;
 354	struct page *last;
 355
 356	/*
 357	 * Use the nonblocking flag for the dlm code to avoid page
 358	 * lock inversion, but don't bother with retrying.
 359	 */
 360	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 361	if (ret)
 362		return err;
 363
 364	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 365		ocfs2_inode_unlock(inode, 0);
 366		return err;
 367	}
 368
 369	/*
 370	 * Don't bother with inline-data. There isn't anything
 371	 * to read-ahead in that case anyway...
 372	 */
 373	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 374		goto out_unlock;
 375
 376	/*
 377	 * Check whether a remote node truncated this file - we just
 378	 * drop out in that case as it's not worth handling here.
 379	 */
 380	last = list_entry(pages->prev, struct page, lru);
 381	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 382	if (start >= i_size_read(inode))
 383		goto out_unlock;
 384
 385	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 386
 
 
 387out_unlock:
 388	up_read(&oi->ip_alloc_sem);
 389	ocfs2_inode_unlock(inode, 0);
 390
 391	return err;
 392}
 393
 394/* Note: Because we don't support holes, our allocation has
 395 * already happened (allocation writes zeros to the file data)
 396 * so we don't have to worry about ordered writes in
 397 * ocfs2_writepage.
 398 *
 399 * ->writepage is called during the process of invalidating the page cache
 400 * during blocked lock processing.  It can't block on any cluster locks
 401 * to during block mapping.  It's relying on the fact that the block
 402 * mapping can't have disappeared under the dirty pages that it is
 403 * being asked to write back.
 404 */
 405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 406{
 407	trace_ocfs2_writepage(
 408		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 409		page->index);
 410
 411	return block_write_full_page(page, ocfs2_get_block, wbc);
 412}
 413
 414/* Taken from ext3. We don't necessarily need the full blown
 415 * functionality yet, but IMHO it's better to cut and paste the whole
 416 * thing so we can avoid introducing our own bugs (and easily pick up
 417 * their fixes when they happen) --Mark */
 418int walk_page_buffers(	handle_t *handle,
 419			struct buffer_head *head,
 420			unsigned from,
 421			unsigned to,
 422			int *partial,
 423			int (*fn)(	handle_t *handle,
 424					struct buffer_head *bh))
 425{
 426	struct buffer_head *bh;
 427	unsigned block_start, block_end;
 428	unsigned blocksize = head->b_size;
 429	int err, ret = 0;
 430	struct buffer_head *next;
 431
 432	for (	bh = head, block_start = 0;
 433		ret == 0 && (bh != head || !block_start);
 434	    	block_start = block_end, bh = next)
 435	{
 436		next = bh->b_this_page;
 437		block_end = block_start + blocksize;
 438		if (block_end <= from || block_start >= to) {
 439			if (partial && !buffer_uptodate(bh))
 440				*partial = 1;
 441			continue;
 442		}
 443		err = (*fn)(handle, bh);
 444		if (!ret)
 445			ret = err;
 446	}
 447	return ret;
 448}
 449
 450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 451{
 452	sector_t status;
 453	u64 p_blkno = 0;
 454	int err = 0;
 455	struct inode *inode = mapping->host;
 456
 457	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 458			 (unsigned long long)block);
 459
 
 
 
 
 
 
 
 
 
 460	/* We don't need to lock journal system files, since they aren't
 461	 * accessed concurrently from multiple nodes.
 462	 */
 463	if (!INODE_JOURNAL(inode)) {
 464		err = ocfs2_inode_lock(inode, NULL, 0);
 465		if (err) {
 466			if (err != -ENOENT)
 467				mlog_errno(err);
 468			goto bail;
 469		}
 470		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 471	}
 472
 473	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 474		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 475						  NULL);
 476
 477	if (!INODE_JOURNAL(inode)) {
 478		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 479		ocfs2_inode_unlock(inode, 0);
 480	}
 481
 482	if (err) {
 483		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 484		     (unsigned long long)block);
 485		mlog_errno(err);
 486		goto bail;
 487	}
 488
 489bail:
 490	status = err ? 0 : p_blkno;
 491
 492	return status;
 493}
 494
 495/*
 496 * TODO: Make this into a generic get_blocks function.
 497 *
 498 * From do_direct_io in direct-io.c:
 499 *  "So what we do is to permit the ->get_blocks function to populate
 500 *   bh.b_size with the size of IO which is permitted at this offset and
 501 *   this i_blkbits."
 502 *
 503 * This function is called directly from get_more_blocks in direct-io.c.
 504 *
 505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 506 * 					fs_count, map_bh, dio->rw == WRITE);
 507 *
 508 * Note that we never bother to allocate blocks here, and thus ignore the
 509 * create argument.
 510 */
 511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 512				     struct buffer_head *bh_result, int create)
 513{
 514	int ret;
 515	u64 p_blkno, inode_blocks, contig_blocks;
 516	unsigned int ext_flags;
 517	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 518	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 519
 520	/* This function won't even be called if the request isn't all
 521	 * nicely aligned and of the right size, so there's no need
 522	 * for us to check any of that. */
 523
 524	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 525
 526	/* This figures out the size of the next contiguous block, and
 527	 * our logical offset */
 528	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 529					  &contig_blocks, &ext_flags);
 530	if (ret) {
 531		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 532		     (unsigned long long)iblock);
 533		ret = -EIO;
 534		goto bail;
 535	}
 536
 537	/* We should already CoW the refcounted extent in case of create. */
 538	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 539
 540	/*
 541	 * get_more_blocks() expects us to describe a hole by clearing
 542	 * the mapped bit on bh_result().
 543	 *
 544	 * Consider an unwritten extent as a hole.
 545	 */
 546	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 547		map_bh(bh_result, inode->i_sb, p_blkno);
 548	else
 549		clear_buffer_mapped(bh_result);
 550
 551	/* make sure we don't map more than max_blocks blocks here as
 552	   that's all the kernel will handle at this point. */
 553	if (max_blocks < contig_blocks)
 554		contig_blocks = max_blocks;
 555	bh_result->b_size = contig_blocks << blocksize_bits;
 556bail:
 557	return ret;
 558}
 559
 560/*
 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 562 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 563 * to protect io on one node from truncation on another.
 564 */
 565static void ocfs2_dio_end_io(struct kiocb *iocb,
 566			     loff_t offset,
 567			     ssize_t bytes,
 568			     void *private,
 569			     int ret,
 570			     bool is_async)
 571{
 572	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
 573	int level;
 574	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
 575
 576	/* this io's submitter should not have unlocked this before we could */
 577	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 578
 579	if (ocfs2_iocb_is_sem_locked(iocb))
 580		ocfs2_iocb_clear_sem_locked(iocb);
 581
 582	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 583		ocfs2_iocb_clear_unaligned_aio(iocb);
 584
 585		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
 586		    waitqueue_active(wq)) {
 587			wake_up_all(wq);
 588		}
 589	}
 590
 591	ocfs2_iocb_clear_rw_locked(iocb);
 592
 593	level = ocfs2_iocb_rw_locked_level(iocb);
 594	ocfs2_rw_unlock(inode, level);
 595
 596	if (is_async)
 597		aio_complete(iocb, ret, 0);
 598	inode_dio_done(inode);
 599}
 600
 601/*
 602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 603 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 604 * do journalled data.
 605 */
 606static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
 607{
 608	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 609
 610	jbd2_journal_invalidatepage(journal, page, offset);
 611}
 612
 613static int ocfs2_releasepage(struct page *page, gfp_t wait)
 614{
 615	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 616
 617	if (!page_has_buffers(page))
 618		return 0;
 619	return jbd2_journal_try_to_free_buffers(journal, page, wait);
 620}
 621
 622static ssize_t ocfs2_direct_IO(int rw,
 623			       struct kiocb *iocb,
 624			       const struct iovec *iov,
 625			       loff_t offset,
 626			       unsigned long nr_segs)
 627{
 628	struct file *file = iocb->ki_filp;
 629	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
 630
 631	/*
 632	 * Fallback to buffered I/O if we see an inode without
 633	 * extents.
 634	 */
 635	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 636		return 0;
 637
 638	/* Fallback to buffered I/O if we are appending. */
 639	if (i_size_read(inode) <= offset)
 640		return 0;
 641
 642	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 643				    iov, offset, nr_segs,
 644				    ocfs2_direct_IO_get_blocks,
 645				    ocfs2_dio_end_io, NULL, 0);
 646}
 647
 648static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 649					    u32 cpos,
 650					    unsigned int *start,
 651					    unsigned int *end)
 652{
 653	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 654
 655	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 656		unsigned int cpp;
 657
 658		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 659
 660		cluster_start = cpos % cpp;
 661		cluster_start = cluster_start << osb->s_clustersize_bits;
 662
 663		cluster_end = cluster_start + osb->s_clustersize;
 664	}
 665
 666	BUG_ON(cluster_start > PAGE_SIZE);
 667	BUG_ON(cluster_end > PAGE_SIZE);
 668
 669	if (start)
 670		*start = cluster_start;
 671	if (end)
 672		*end = cluster_end;
 673}
 674
 675/*
 676 * 'from' and 'to' are the region in the page to avoid zeroing.
 677 *
 678 * If pagesize > clustersize, this function will avoid zeroing outside
 679 * of the cluster boundary.
 680 *
 681 * from == to == 0 is code for "zero the entire cluster region"
 682 */
 683static void ocfs2_clear_page_regions(struct page *page,
 684				     struct ocfs2_super *osb, u32 cpos,
 685				     unsigned from, unsigned to)
 686{
 687	void *kaddr;
 688	unsigned int cluster_start, cluster_end;
 689
 690	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 691
 692	kaddr = kmap_atomic(page);
 693
 694	if (from || to) {
 695		if (from > cluster_start)
 696			memset(kaddr + cluster_start, 0, from - cluster_start);
 697		if (to < cluster_end)
 698			memset(kaddr + to, 0, cluster_end - to);
 699	} else {
 700		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 701	}
 702
 703	kunmap_atomic(kaddr);
 704}
 705
 706/*
 707 * Nonsparse file systems fully allocate before we get to the write
 708 * code. This prevents ocfs2_write() from tagging the write as an
 709 * allocating one, which means ocfs2_map_page_blocks() might try to
 710 * read-in the blocks at the tail of our file. Avoid reading them by
 711 * testing i_size against each block offset.
 712 */
 713static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 714				 unsigned int block_start)
 715{
 716	u64 offset = page_offset(page) + block_start;
 717
 718	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 719		return 1;
 720
 721	if (i_size_read(inode) > offset)
 722		return 1;
 723
 724	return 0;
 725}
 726
 727/*
 728 * Some of this taken from __block_write_begin(). We already have our
 729 * mapping by now though, and the entire write will be allocating or
 730 * it won't, so not much need to use BH_New.
 731 *
 732 * This will also skip zeroing, which is handled externally.
 733 */
 734int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 735			  struct inode *inode, unsigned int from,
 736			  unsigned int to, int new)
 737{
 738	int ret = 0;
 739	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 740	unsigned int block_end, block_start;
 741	unsigned int bsize = 1 << inode->i_blkbits;
 742
 743	if (!page_has_buffers(page))
 744		create_empty_buffers(page, bsize, 0);
 745
 746	head = page_buffers(page);
 747	for (bh = head, block_start = 0; bh != head || !block_start;
 748	     bh = bh->b_this_page, block_start += bsize) {
 749		block_end = block_start + bsize;
 750
 751		clear_buffer_new(bh);
 752
 753		/*
 754		 * Ignore blocks outside of our i/o range -
 755		 * they may belong to unallocated clusters.
 756		 */
 757		if (block_start >= to || block_end <= from) {
 758			if (PageUptodate(page))
 759				set_buffer_uptodate(bh);
 760			continue;
 761		}
 762
 763		/*
 764		 * For an allocating write with cluster size >= page
 765		 * size, we always write the entire page.
 766		 */
 767		if (new)
 768			set_buffer_new(bh);
 769
 770		if (!buffer_mapped(bh)) {
 771			map_bh(bh, inode->i_sb, *p_blkno);
 772			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 773		}
 774
 775		if (PageUptodate(page)) {
 776			if (!buffer_uptodate(bh))
 777				set_buffer_uptodate(bh);
 778		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 779			   !buffer_new(bh) &&
 780			   ocfs2_should_read_blk(inode, page, block_start) &&
 781			   (block_start < from || block_end > to)) {
 782			ll_rw_block(READ, 1, &bh);
 783			*wait_bh++=bh;
 784		}
 785
 786		*p_blkno = *p_blkno + 1;
 787	}
 788
 789	/*
 790	 * If we issued read requests - let them complete.
 791	 */
 792	while(wait_bh > wait) {
 793		wait_on_buffer(*--wait_bh);
 794		if (!buffer_uptodate(*wait_bh))
 795			ret = -EIO;
 796	}
 797
 798	if (ret == 0 || !new)
 799		return ret;
 800
 801	/*
 802	 * If we get -EIO above, zero out any newly allocated blocks
 803	 * to avoid exposing stale data.
 804	 */
 805	bh = head;
 806	block_start = 0;
 807	do {
 808		block_end = block_start + bsize;
 809		if (block_end <= from)
 810			goto next_bh;
 811		if (block_start >= to)
 812			break;
 813
 814		zero_user(page, block_start, bh->b_size);
 815		set_buffer_uptodate(bh);
 816		mark_buffer_dirty(bh);
 817
 818next_bh:
 819		block_start = block_end;
 820		bh = bh->b_this_page;
 821	} while (bh != head);
 822
 823	return ret;
 824}
 825
 826#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 827#define OCFS2_MAX_CTXT_PAGES	1
 828#else
 829#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 830#endif
 831
 832#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 
 
 
 
 
 
 
 833
 834/*
 835 * Describe the state of a single cluster to be written to.
 836 */
 837struct ocfs2_write_cluster_desc {
 838	u32		c_cpos;
 839	u32		c_phys;
 840	/*
 841	 * Give this a unique field because c_phys eventually gets
 842	 * filled.
 843	 */
 844	unsigned	c_new;
 845	unsigned	c_unwritten;
 846	unsigned	c_needs_zero;
 847};
 848
 849struct ocfs2_write_ctxt {
 850	/* Logical cluster position / len of write */
 851	u32				w_cpos;
 852	u32				w_clen;
 853
 854	/* First cluster allocated in a nonsparse extend */
 855	u32				w_first_new_cpos;
 856
 
 
 
 857	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 858
 859	/*
 860	 * This is true if page_size > cluster_size.
 861	 *
 862	 * It triggers a set of special cases during write which might
 863	 * have to deal with allocating writes to partial pages.
 864	 */
 865	unsigned int			w_large_pages;
 866
 867	/*
 868	 * Pages involved in this write.
 869	 *
 870	 * w_target_page is the page being written to by the user.
 871	 *
 872	 * w_pages is an array of pages which always contains
 873	 * w_target_page, and in the case of an allocating write with
 874	 * page_size < cluster size, it will contain zero'd and mapped
 875	 * pages adjacent to w_target_page which need to be written
 876	 * out in so that future reads from that region will get
 877	 * zero's.
 878	 */
 879	unsigned int			w_num_pages;
 880	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 881	struct page			*w_target_page;
 882
 883	/*
 884	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 885	 * against w_target_page in ocfs2_write_end_nolock.
 886	 */
 887	unsigned int			w_target_locked:1;
 888
 889	/*
 890	 * ocfs2_write_end() uses this to know what the real range to
 891	 * write in the target should be.
 892	 */
 893	unsigned int			w_target_from;
 894	unsigned int			w_target_to;
 895
 896	/*
 897	 * We could use journal_current_handle() but this is cleaner,
 898	 * IMHO -Mark
 899	 */
 900	handle_t			*w_handle;
 901
 902	struct buffer_head		*w_di_bh;
 903
 904	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 
 
 
 905};
 906
 907void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 908{
 909	int i;
 910
 911	for(i = 0; i < num_pages; i++) {
 912		if (pages[i]) {
 913			unlock_page(pages[i]);
 914			mark_page_accessed(pages[i]);
 915			page_cache_release(pages[i]);
 916		}
 917	}
 918}
 919
 920static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 921{
 922	int i;
 923
 924	/*
 925	 * w_target_locked is only set to true in the page_mkwrite() case.
 926	 * The intent is to allow us to lock the target page from write_begin()
 927	 * to write_end(). The caller must hold a ref on w_target_page.
 928	 */
 929	if (wc->w_target_locked) {
 930		BUG_ON(!wc->w_target_page);
 931		for (i = 0; i < wc->w_num_pages; i++) {
 932			if (wc->w_target_page == wc->w_pages[i]) {
 933				wc->w_pages[i] = NULL;
 934				break;
 935			}
 936		}
 937		mark_page_accessed(wc->w_target_page);
 938		page_cache_release(wc->w_target_page);
 939	}
 940	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 
 
 
 
 
 942	brelse(wc->w_di_bh);
 943	kfree(wc);
 944}
 945
 946static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 947				  struct ocfs2_super *osb, loff_t pos,
 948				  unsigned len, struct buffer_head *di_bh)
 
 949{
 950	u32 cend;
 951	struct ocfs2_write_ctxt *wc;
 952
 953	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 954	if (!wc)
 955		return -ENOMEM;
 956
 957	wc->w_cpos = pos >> osb->s_clustersize_bits;
 958	wc->w_first_new_cpos = UINT_MAX;
 959	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 960	wc->w_clen = cend - wc->w_cpos + 1;
 961	get_bh(di_bh);
 962	wc->w_di_bh = di_bh;
 
 963
 964	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
 965		wc->w_large_pages = 1;
 966	else
 967		wc->w_large_pages = 0;
 968
 969	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 
 970
 971	*wcp = wc;
 972
 973	return 0;
 974}
 975
 976/*
 977 * If a page has any new buffers, zero them out here, and mark them uptodate
 978 * and dirty so they'll be written out (in order to prevent uninitialised
 979 * block data from leaking). And clear the new bit.
 980 */
 981static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 982{
 983	unsigned int block_start, block_end;
 984	struct buffer_head *head, *bh;
 985
 986	BUG_ON(!PageLocked(page));
 987	if (!page_has_buffers(page))
 988		return;
 989
 990	bh = head = page_buffers(page);
 991	block_start = 0;
 992	do {
 993		block_end = block_start + bh->b_size;
 994
 995		if (buffer_new(bh)) {
 996			if (block_end > from && block_start < to) {
 997				if (!PageUptodate(page)) {
 998					unsigned start, end;
 999
1000					start = max(from, block_start);
1001					end = min(to, block_end);
1002
1003					zero_user_segment(page, start, end);
1004					set_buffer_uptodate(bh);
1005				}
1006
1007				clear_buffer_new(bh);
1008				mark_buffer_dirty(bh);
1009			}
1010		}
1011
1012		block_start = block_end;
1013		bh = bh->b_this_page;
1014	} while (bh != head);
1015}
1016
1017/*
1018 * Only called when we have a failure during allocating write to write
1019 * zero's to the newly allocated region.
1020 */
1021static void ocfs2_write_failure(struct inode *inode,
1022				struct ocfs2_write_ctxt *wc,
1023				loff_t user_pos, unsigned user_len)
1024{
1025	int i;
1026	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027		to = user_pos + user_len;
1028	struct page *tmppage;
1029
1030	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 
1031
1032	for(i = 0; i < wc->w_num_pages; i++) {
1033		tmppage = wc->w_pages[i];
1034
1035		if (page_has_buffers(tmppage)) {
1036			if (ocfs2_should_order_data(inode))
1037				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 
1038
1039			block_commit_write(tmppage, from, to);
1040		}
1041	}
1042}
1043
1044static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045					struct ocfs2_write_ctxt *wc,
1046					struct page *page, u32 cpos,
1047					loff_t user_pos, unsigned user_len,
1048					int new)
1049{
1050	int ret;
1051	unsigned int map_from = 0, map_to = 0;
1052	unsigned int cluster_start, cluster_end;
1053	unsigned int user_data_from = 0, user_data_to = 0;
1054
1055	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056					&cluster_start, &cluster_end);
1057
1058	/* treat the write as new if the a hole/lseek spanned across
1059	 * the page boundary.
1060	 */
1061	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062			(page_offset(page) <= user_pos));
1063
1064	if (page == wc->w_target_page) {
1065		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066		map_to = map_from + user_len;
1067
1068		if (new)
1069			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070						    cluster_start, cluster_end,
1071						    new);
1072		else
1073			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074						    map_from, map_to, new);
1075		if (ret) {
1076			mlog_errno(ret);
1077			goto out;
1078		}
1079
1080		user_data_from = map_from;
1081		user_data_to = map_to;
1082		if (new) {
1083			map_from = cluster_start;
1084			map_to = cluster_end;
1085		}
1086	} else {
1087		/*
1088		 * If we haven't allocated the new page yet, we
1089		 * shouldn't be writing it out without copying user
1090		 * data. This is likely a math error from the caller.
1091		 */
1092		BUG_ON(!new);
1093
1094		map_from = cluster_start;
1095		map_to = cluster_end;
1096
1097		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098					    cluster_start, cluster_end, new);
1099		if (ret) {
1100			mlog_errno(ret);
1101			goto out;
1102		}
1103	}
1104
1105	/*
1106	 * Parts of newly allocated pages need to be zero'd.
1107	 *
1108	 * Above, we have also rewritten 'to' and 'from' - as far as
1109	 * the rest of the function is concerned, the entire cluster
1110	 * range inside of a page needs to be written.
1111	 *
1112	 * We can skip this if the page is up to date - it's already
1113	 * been zero'd from being read in as a hole.
1114	 */
1115	if (new && !PageUptodate(page))
1116		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117					 cpos, user_data_from, user_data_to);
1118
1119	flush_dcache_page(page);
1120
1121out:
1122	return ret;
1123}
1124
1125/*
1126 * This function will only grab one clusters worth of pages.
1127 */
1128static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129				      struct ocfs2_write_ctxt *wc,
1130				      u32 cpos, loff_t user_pos,
1131				      unsigned user_len, int new,
1132				      struct page *mmap_page)
1133{
1134	int ret = 0, i;
1135	unsigned long start, target_index, end_index, index;
1136	struct inode *inode = mapping->host;
1137	loff_t last_byte;
1138
1139	target_index = user_pos >> PAGE_CACHE_SHIFT;
1140
1141	/*
1142	 * Figure out how many pages we'll be manipulating here. For
1143	 * non allocating write, we just change the one
1144	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1145	 * writing past i_size, we only need enough pages to cover the
1146	 * last page of the write.
1147	 */
1148	if (new) {
1149		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151		/*
1152		 * We need the index *past* the last page we could possibly
1153		 * touch.  This is the page past the end of the write or
1154		 * i_size, whichever is greater.
1155		 */
1156		last_byte = max(user_pos + user_len, i_size_read(inode));
1157		BUG_ON(last_byte < 1);
1158		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159		if ((start + wc->w_num_pages) > end_index)
1160			wc->w_num_pages = end_index - start;
1161	} else {
1162		wc->w_num_pages = 1;
1163		start = target_index;
1164	}
 
1165
1166	for(i = 0; i < wc->w_num_pages; i++) {
1167		index = start + i;
1168
1169		if (index == target_index && mmap_page) {
 
1170			/*
1171			 * ocfs2_pagemkwrite() is a little different
1172			 * and wants us to directly use the page
1173			 * passed in.
1174			 */
1175			lock_page(mmap_page);
1176
1177			/* Exit and let the caller retry */
1178			if (mmap_page->mapping != mapping) {
1179				WARN_ON(mmap_page->mapping);
1180				unlock_page(mmap_page);
1181				ret = -EAGAIN;
1182				goto out;
1183			}
1184
1185			page_cache_get(mmap_page);
1186			wc->w_pages[i] = mmap_page;
1187			wc->w_target_locked = true;
 
 
 
 
 
1188		} else {
1189			wc->w_pages[i] = find_or_create_page(mapping, index,
1190							     GFP_NOFS);
1191			if (!wc->w_pages[i]) {
1192				ret = -ENOMEM;
1193				mlog_errno(ret);
1194				goto out;
1195			}
1196		}
 
1197
1198		if (index == target_index)
1199			wc->w_target_page = wc->w_pages[i];
1200	}
1201out:
1202	if (ret)
1203		wc->w_target_locked = false;
1204	return ret;
1205}
1206
1207/*
1208 * Prepare a single cluster for write one cluster into the file.
1209 */
1210static int ocfs2_write_cluster(struct address_space *mapping,
1211			       u32 phys, unsigned int unwritten,
 
1212			       unsigned int should_zero,
1213			       struct ocfs2_alloc_context *data_ac,
1214			       struct ocfs2_alloc_context *meta_ac,
1215			       struct ocfs2_write_ctxt *wc, u32 cpos,
1216			       loff_t user_pos, unsigned user_len)
1217{
1218	int ret, i, new;
1219	u64 v_blkno, p_blkno;
1220	struct inode *inode = mapping->host;
1221	struct ocfs2_extent_tree et;
 
1222
1223	new = phys == 0 ? 1 : 0;
1224	if (new) {
1225		u32 tmp_pos;
1226
1227		/*
1228		 * This is safe to call with the page locks - it won't take
1229		 * any additional semaphores or cluster locks.
1230		 */
1231		tmp_pos = cpos;
1232		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1233					   &tmp_pos, 1, 0, wc->w_di_bh,
1234					   wc->w_handle, data_ac,
1235					   meta_ac, NULL);
1236		/*
1237		 * This shouldn't happen because we must have already
1238		 * calculated the correct meta data allocation required. The
1239		 * internal tree allocation code should know how to increase
1240		 * transaction credits itself.
1241		 *
1242		 * If need be, we could handle -EAGAIN for a
1243		 * RESTART_TRANS here.
1244		 */
1245		mlog_bug_on_msg(ret == -EAGAIN,
1246				"Inode %llu: EAGAIN return during allocation.\n",
1247				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1248		if (ret < 0) {
1249			mlog_errno(ret);
1250			goto out;
1251		}
1252	} else if (unwritten) {
1253		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1254					      wc->w_di_bh);
1255		ret = ocfs2_mark_extent_written(inode, &et,
1256						wc->w_handle, cpos, 1, phys,
1257						meta_ac, &wc->w_dealloc);
1258		if (ret < 0) {
1259			mlog_errno(ret);
1260			goto out;
1261		}
1262	}
1263
1264	if (should_zero)
1265		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1266	else
1267		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1268
1269	/*
1270	 * The only reason this should fail is due to an inability to
1271	 * find the extent added.
1272	 */
1273	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1274					  NULL);
1275	if (ret < 0) {
1276		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1277			    "at logical block %llu",
1278			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1279			    (unsigned long long)v_blkno);
1280		goto out;
1281	}
1282
1283	BUG_ON(p_blkno == 0);
 
 
 
 
1284
1285	for(i = 0; i < wc->w_num_pages; i++) {
1286		int tmpret;
1287
 
 
 
 
 
 
1288		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1289						      wc->w_pages[i], cpos,
1290						      user_pos, user_len,
1291						      should_zero);
1292		if (tmpret) {
1293			mlog_errno(tmpret);
1294			if (ret == 0)
1295				ret = tmpret;
1296		}
1297	}
1298
1299	/*
1300	 * We only have cleanup to do in case of allocating write.
1301	 */
1302	if (ret && new)
1303		ocfs2_write_failure(inode, wc, user_pos, user_len);
1304
1305out:
1306
1307	return ret;
1308}
1309
1310static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1311				       struct ocfs2_alloc_context *data_ac,
1312				       struct ocfs2_alloc_context *meta_ac,
1313				       struct ocfs2_write_ctxt *wc,
1314				       loff_t pos, unsigned len)
1315{
1316	int ret, i;
1317	loff_t cluster_off;
1318	unsigned int local_len = len;
1319	struct ocfs2_write_cluster_desc *desc;
1320	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1321
1322	for (i = 0; i < wc->w_clen; i++) {
1323		desc = &wc->w_desc[i];
1324
1325		/*
1326		 * We have to make sure that the total write passed in
1327		 * doesn't extend past a single cluster.
1328		 */
1329		local_len = len;
1330		cluster_off = pos & (osb->s_clustersize - 1);
1331		if ((cluster_off + local_len) > osb->s_clustersize)
1332			local_len = osb->s_clustersize - cluster_off;
1333
1334		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1335					  desc->c_unwritten,
 
1336					  desc->c_needs_zero,
1337					  data_ac, meta_ac,
1338					  wc, desc->c_cpos, pos, local_len);
1339		if (ret) {
1340			mlog_errno(ret);
1341			goto out;
1342		}
1343
1344		len -= local_len;
1345		pos += local_len;
1346	}
1347
1348	ret = 0;
1349out:
1350	return ret;
1351}
1352
1353/*
1354 * ocfs2_write_end() wants to know which parts of the target page it
1355 * should complete the write on. It's easiest to compute them ahead of
1356 * time when a more complete view of the write is available.
1357 */
1358static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1359					struct ocfs2_write_ctxt *wc,
1360					loff_t pos, unsigned len, int alloc)
1361{
1362	struct ocfs2_write_cluster_desc *desc;
1363
1364	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1365	wc->w_target_to = wc->w_target_from + len;
1366
1367	if (alloc == 0)
1368		return;
1369
1370	/*
1371	 * Allocating write - we may have different boundaries based
1372	 * on page size and cluster size.
1373	 *
1374	 * NOTE: We can no longer compute one value from the other as
1375	 * the actual write length and user provided length may be
1376	 * different.
1377	 */
1378
1379	if (wc->w_large_pages) {
1380		/*
1381		 * We only care about the 1st and last cluster within
1382		 * our range and whether they should be zero'd or not. Either
1383		 * value may be extended out to the start/end of a
1384		 * newly allocated cluster.
1385		 */
1386		desc = &wc->w_desc[0];
1387		if (desc->c_needs_zero)
1388			ocfs2_figure_cluster_boundaries(osb,
1389							desc->c_cpos,
1390							&wc->w_target_from,
1391							NULL);
1392
1393		desc = &wc->w_desc[wc->w_clen - 1];
1394		if (desc->c_needs_zero)
1395			ocfs2_figure_cluster_boundaries(osb,
1396							desc->c_cpos,
1397							NULL,
1398							&wc->w_target_to);
1399	} else {
1400		wc->w_target_from = 0;
1401		wc->w_target_to = PAGE_CACHE_SIZE;
1402	}
1403}
1404
1405/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406 * Populate each single-cluster write descriptor in the write context
1407 * with information about the i/o to be done.
1408 *
1409 * Returns the number of clusters that will have to be allocated, as
1410 * well as a worst case estimate of the number of extent records that
1411 * would have to be created during a write to an unwritten region.
1412 */
1413static int ocfs2_populate_write_desc(struct inode *inode,
1414				     struct ocfs2_write_ctxt *wc,
1415				     unsigned int *clusters_to_alloc,
1416				     unsigned int *extents_to_split)
1417{
1418	int ret;
1419	struct ocfs2_write_cluster_desc *desc;
1420	unsigned int num_clusters = 0;
1421	unsigned int ext_flags = 0;
1422	u32 phys = 0;
1423	int i;
1424
1425	*clusters_to_alloc = 0;
1426	*extents_to_split = 0;
1427
1428	for (i = 0; i < wc->w_clen; i++) {
1429		desc = &wc->w_desc[i];
1430		desc->c_cpos = wc->w_cpos + i;
1431
1432		if (num_clusters == 0) {
1433			/*
1434			 * Need to look up the next extent record.
1435			 */
1436			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1437						 &num_clusters, &ext_flags);
1438			if (ret) {
1439				mlog_errno(ret);
1440				goto out;
1441			}
1442
1443			/* We should already CoW the refcountd extent. */
1444			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1445
1446			/*
1447			 * Assume worst case - that we're writing in
1448			 * the middle of the extent.
1449			 *
1450			 * We can assume that the write proceeds from
1451			 * left to right, in which case the extent
1452			 * insert code is smart enough to coalesce the
1453			 * next splits into the previous records created.
1454			 */
1455			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1456				*extents_to_split = *extents_to_split + 2;
1457		} else if (phys) {
1458			/*
1459			 * Only increment phys if it doesn't describe
1460			 * a hole.
1461			 */
1462			phys++;
1463		}
1464
1465		/*
1466		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1467		 * file that got extended.  w_first_new_cpos tells us
1468		 * where the newly allocated clusters are so we can
1469		 * zero them.
1470		 */
1471		if (desc->c_cpos >= wc->w_first_new_cpos) {
1472			BUG_ON(phys == 0);
1473			desc->c_needs_zero = 1;
1474		}
1475
1476		desc->c_phys = phys;
1477		if (phys == 0) {
1478			desc->c_new = 1;
1479			desc->c_needs_zero = 1;
 
1480			*clusters_to_alloc = *clusters_to_alloc + 1;
1481		}
1482
1483		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1484			desc->c_unwritten = 1;
1485			desc->c_needs_zero = 1;
1486		}
1487
 
 
 
 
 
 
1488		num_clusters--;
1489	}
1490
1491	ret = 0;
1492out:
1493	return ret;
1494}
1495
1496static int ocfs2_write_begin_inline(struct address_space *mapping,
1497				    struct inode *inode,
1498				    struct ocfs2_write_ctxt *wc)
1499{
1500	int ret;
1501	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502	struct page *page;
1503	handle_t *handle;
1504	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1505
 
 
 
 
 
 
 
1506	page = find_or_create_page(mapping, 0, GFP_NOFS);
1507	if (!page) {
 
1508		ret = -ENOMEM;
1509		mlog_errno(ret);
1510		goto out;
1511	}
1512	/*
1513	 * If we don't set w_num_pages then this page won't get unlocked
1514	 * and freed on cleanup of the write context.
1515	 */
1516	wc->w_pages[0] = wc->w_target_page = page;
1517	wc->w_num_pages = 1;
1518
1519	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1520	if (IS_ERR(handle)) {
1521		ret = PTR_ERR(handle);
1522		mlog_errno(ret);
1523		goto out;
1524	}
1525
1526	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1527				      OCFS2_JOURNAL_ACCESS_WRITE);
1528	if (ret) {
1529		ocfs2_commit_trans(osb, handle);
1530
1531		mlog_errno(ret);
1532		goto out;
1533	}
1534
1535	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1536		ocfs2_set_inode_data_inline(inode, di);
1537
1538	if (!PageUptodate(page)) {
1539		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1540		if (ret) {
1541			ocfs2_commit_trans(osb, handle);
1542
1543			goto out;
1544		}
1545	}
1546
1547	wc->w_handle = handle;
1548out:
1549	return ret;
1550}
1551
1552int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1553{
1554	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1555
1556	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1557		return 1;
1558	return 0;
1559}
1560
1561static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1562					  struct inode *inode, loff_t pos,
1563					  unsigned len, struct page *mmap_page,
1564					  struct ocfs2_write_ctxt *wc)
1565{
1566	int ret, written = 0;
1567	loff_t end = pos + len;
1568	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1569	struct ocfs2_dinode *di = NULL;
1570
1571	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1572					     len, (unsigned long long)pos,
1573					     oi->ip_dyn_features);
1574
1575	/*
1576	 * Handle inodes which already have inline data 1st.
1577	 */
1578	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579		if (mmap_page == NULL &&
1580		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581			goto do_inline_write;
1582
1583		/*
1584		 * The write won't fit - we have to give this inode an
1585		 * inline extent list now.
1586		 */
1587		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588		if (ret)
1589			mlog_errno(ret);
1590		goto out;
1591	}
1592
1593	/*
1594	 * Check whether the inode can accept inline data.
1595	 */
1596	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597		return 0;
1598
1599	/*
1600	 * Check whether the write can fit.
1601	 */
1602	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1603	if (mmap_page ||
1604	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1605		return 0;
1606
1607do_inline_write:
1608	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1609	if (ret) {
1610		mlog_errno(ret);
1611		goto out;
1612	}
1613
1614	/*
1615	 * This signals to the caller that the data can be written
1616	 * inline.
1617	 */
1618	written = 1;
1619out:
1620	return written ? written : ret;
1621}
1622
1623/*
1624 * This function only does anything for file systems which can't
1625 * handle sparse files.
1626 *
1627 * What we want to do here is fill in any hole between the current end
1628 * of allocation and the end of our write. That way the rest of the
1629 * write path can treat it as an non-allocating write, which has no
1630 * special case code for sparse/nonsparse files.
1631 */
1632static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1633					struct buffer_head *di_bh,
1634					loff_t pos, unsigned len,
1635					struct ocfs2_write_ctxt *wc)
1636{
1637	int ret;
1638	loff_t newsize = pos + len;
1639
1640	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641
1642	if (newsize <= i_size_read(inode))
1643		return 0;
1644
1645	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1646	if (ret)
1647		mlog_errno(ret);
1648
1649	wc->w_first_new_cpos =
1650		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
 
 
1651
1652	return ret;
1653}
1654
1655static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1656			   loff_t pos)
1657{
1658	int ret = 0;
1659
1660	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1661	if (pos > i_size_read(inode))
1662		ret = ocfs2_zero_extend(inode, di_bh, pos);
1663
1664	return ret;
1665}
1666
1667/*
1668 * Try to flush truncate logs if we can free enough clusters from it.
1669 * As for return value, "< 0" means error, "0" no space and "1" means
1670 * we have freed enough spaces and let the caller try to allocate again.
1671 */
1672static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1673					  unsigned int needed)
1674{
1675	tid_t target;
1676	int ret = 0;
1677	unsigned int truncated_clusters;
1678
1679	mutex_lock(&osb->osb_tl_inode->i_mutex);
1680	truncated_clusters = osb->truncated_clusters;
1681	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1682
1683	/*
1684	 * Check whether we can succeed in allocating if we free
1685	 * the truncate log.
1686	 */
1687	if (truncated_clusters < needed)
1688		goto out;
1689
1690	ret = ocfs2_flush_truncate_log(osb);
1691	if (ret) {
1692		mlog_errno(ret);
1693		goto out;
1694	}
1695
1696	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1697		jbd2_log_wait_commit(osb->journal->j_journal, target);
1698		ret = 1;
1699	}
1700out:
1701	return ret;
1702}
1703
1704int ocfs2_write_begin_nolock(struct file *filp,
1705			     struct address_space *mapping,
1706			     loff_t pos, unsigned len, unsigned flags,
1707			     struct page **pagep, void **fsdata,
1708			     struct buffer_head *di_bh, struct page *mmap_page)
1709{
1710	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1711	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1712	struct ocfs2_write_ctxt *wc;
1713	struct inode *inode = mapping->host;
1714	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715	struct ocfs2_dinode *di;
1716	struct ocfs2_alloc_context *data_ac = NULL;
1717	struct ocfs2_alloc_context *meta_ac = NULL;
1718	handle_t *handle;
1719	struct ocfs2_extent_tree et;
1720	int try_free = 1, ret1;
1721
1722try_again:
1723	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1724	if (ret) {
1725		mlog_errno(ret);
1726		return ret;
1727	}
1728
1729	if (ocfs2_supports_inline_data(osb)) {
1730		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1731						     mmap_page, wc);
1732		if (ret == 1) {
1733			ret = 0;
1734			goto success;
1735		}
1736		if (ret < 0) {
1737			mlog_errno(ret);
1738			goto out;
1739		}
1740	}
1741
1742	if (ocfs2_sparse_alloc(osb))
1743		ret = ocfs2_zero_tail(inode, di_bh, pos);
1744	else
1745		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1746						   wc);
1747	if (ret) {
1748		mlog_errno(ret);
1749		goto out;
 
 
 
1750	}
1751
1752	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1753	if (ret < 0) {
1754		mlog_errno(ret);
1755		goto out;
1756	} else if (ret == 1) {
1757		clusters_need = wc->w_clen;
1758		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1759					 wc->w_cpos, wc->w_clen, UINT_MAX);
1760		if (ret) {
1761			mlog_errno(ret);
1762			goto out;
1763		}
1764	}
1765
1766	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1767					&extents_to_split);
1768	if (ret) {
1769		mlog_errno(ret);
1770		goto out;
1771	}
1772	clusters_need += clusters_to_alloc;
1773
1774	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1775
1776	trace_ocfs2_write_begin_nolock(
1777			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1778			(long long)i_size_read(inode),
1779			le32_to_cpu(di->i_clusters),
1780			pos, len, flags, mmap_page,
1781			clusters_to_alloc, extents_to_split);
1782
1783	/*
1784	 * We set w_target_from, w_target_to here so that
1785	 * ocfs2_write_end() knows which range in the target page to
1786	 * write out. An allocation requires that we write the entire
1787	 * cluster range.
1788	 */
1789	if (clusters_to_alloc || extents_to_split) {
1790		/*
1791		 * XXX: We are stretching the limits of
1792		 * ocfs2_lock_allocators(). It greatly over-estimates
1793		 * the work to be done.
1794		 */
1795		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1796					      wc->w_di_bh);
1797		ret = ocfs2_lock_allocators(inode, &et,
1798					    clusters_to_alloc, extents_to_split,
1799					    &data_ac, &meta_ac);
1800		if (ret) {
1801			mlog_errno(ret);
1802			goto out;
1803		}
1804
1805		if (data_ac)
1806			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1807
1808		credits = ocfs2_calc_extend_credits(inode->i_sb,
1809						    &di->id2.i_list,
1810						    clusters_to_alloc);
1811
1812	}
1813
1814	/*
1815	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1816	 * and non-sparse clusters we just extended.  For non-sparse writes,
1817	 * we know zeros will only be needed in the first and/or last cluster.
1818	 */
1819	if (clusters_to_alloc || extents_to_split ||
1820	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1821			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1822		cluster_of_pages = 1;
1823	else
1824		cluster_of_pages = 0;
1825
1826	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1827
1828	handle = ocfs2_start_trans(osb, credits);
1829	if (IS_ERR(handle)) {
1830		ret = PTR_ERR(handle);
1831		mlog_errno(ret);
1832		goto out;
1833	}
1834
1835	wc->w_handle = handle;
1836
1837	if (clusters_to_alloc) {
1838		ret = dquot_alloc_space_nodirty(inode,
1839			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840		if (ret)
1841			goto out_commit;
1842	}
1843	/*
1844	 * We don't want this to fail in ocfs2_write_end(), so do it
1845	 * here.
1846	 */
1847	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1848				      OCFS2_JOURNAL_ACCESS_WRITE);
1849	if (ret) {
1850		mlog_errno(ret);
1851		goto out_quota;
1852	}
1853
1854	/*
1855	 * Fill our page array first. That way we've grabbed enough so
1856	 * that we can zero and flush if we error after adding the
1857	 * extent.
1858	 */
1859	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1860					 cluster_of_pages, mmap_page);
1861	if (ret && ret != -EAGAIN) {
 
 
 
 
 
 
 
 
 
 
 
 
1862		mlog_errno(ret);
1863		goto out_quota;
1864	}
1865
1866	/*
1867	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1868	 * the target page. In this case, we exit with no error and no target
1869	 * page. This will trigger the caller, page_mkwrite(), to re-try
1870	 * the operation.
1871	 */
1872	if (ret == -EAGAIN) {
1873		BUG_ON(wc->w_target_page);
1874		ret = 0;
1875		goto out_quota;
1876	}
1877
1878	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1879					  len);
1880	if (ret) {
1881		mlog_errno(ret);
1882		goto out_quota;
1883	}
1884
1885	if (data_ac)
1886		ocfs2_free_alloc_context(data_ac);
1887	if (meta_ac)
1888		ocfs2_free_alloc_context(meta_ac);
1889
1890success:
1891	*pagep = wc->w_target_page;
 
1892	*fsdata = wc;
1893	return 0;
1894out_quota:
1895	if (clusters_to_alloc)
1896		dquot_free_space(inode,
1897			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1898out_commit:
1899	ocfs2_commit_trans(osb, handle);
1900
1901out:
1902	ocfs2_free_write_ctxt(wc);
 
 
 
 
 
 
 
 
 
 
1903
1904	if (data_ac)
1905		ocfs2_free_alloc_context(data_ac);
1906	if (meta_ac)
 
 
1907		ocfs2_free_alloc_context(meta_ac);
 
 
1908
1909	if (ret == -ENOSPC && try_free) {
1910		/*
1911		 * Try to free some truncate log so that we can have enough
1912		 * clusters to allocate.
1913		 */
1914		try_free = 0;
1915
1916		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1917		if (ret1 == 1)
1918			goto try_again;
1919
1920		if (ret1 < 0)
1921			mlog_errno(ret1);
1922	}
1923
1924	return ret;
1925}
1926
1927static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1928			     loff_t pos, unsigned len, unsigned flags,
1929			     struct page **pagep, void **fsdata)
1930{
1931	int ret;
1932	struct buffer_head *di_bh = NULL;
1933	struct inode *inode = mapping->host;
1934
1935	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1936	if (ret) {
1937		mlog_errno(ret);
1938		return ret;
1939	}
1940
1941	/*
1942	 * Take alloc sem here to prevent concurrent lookups. That way
1943	 * the mapping, zeroing and tree manipulation within
1944	 * ocfs2_write() will be safe against ->readpage(). This
1945	 * should also serve to lock out allocation from a shared
1946	 * writeable region.
1947	 */
1948	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1949
1950	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1951				       fsdata, di_bh, NULL);
1952	if (ret) {
1953		mlog_errno(ret);
1954		goto out_fail;
1955	}
1956
1957	brelse(di_bh);
1958
1959	return 0;
1960
1961out_fail:
1962	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1963
1964	brelse(di_bh);
1965	ocfs2_inode_unlock(inode, 1);
1966
1967	return ret;
1968}
1969
1970static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1971				   unsigned len, unsigned *copied,
1972				   struct ocfs2_dinode *di,
1973				   struct ocfs2_write_ctxt *wc)
1974{
1975	void *kaddr;
1976
1977	if (unlikely(*copied < len)) {
1978		if (!PageUptodate(wc->w_target_page)) {
1979			*copied = 0;
1980			return;
1981		}
1982	}
1983
1984	kaddr = kmap_atomic(wc->w_target_page);
1985	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1986	kunmap_atomic(kaddr);
1987
1988	trace_ocfs2_write_end_inline(
1989	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990	     (unsigned long long)pos, *copied,
1991	     le16_to_cpu(di->id2.i_data.id_count),
1992	     le16_to_cpu(di->i_dyn_features));
1993}
1994
1995int ocfs2_write_end_nolock(struct address_space *mapping,
1996			   loff_t pos, unsigned len, unsigned copied,
1997			   struct page *page, void *fsdata)
1998{
1999	int i;
2000	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2001	struct inode *inode = mapping->host;
2002	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003	struct ocfs2_write_ctxt *wc = fsdata;
2004	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2005	handle_t *handle = wc->w_handle;
2006	struct page *tmppage;
2007
 
 
 
 
 
 
 
 
 
 
 
 
2008	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2009		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2010		goto out_write_size;
2011	}
2012
2013	if (unlikely(copied < len)) {
2014		if (!PageUptodate(wc->w_target_page))
2015			copied = 0;
2016
2017		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2018				       start+len);
2019	}
2020	flush_dcache_page(wc->w_target_page);
 
2021
2022	for(i = 0; i < wc->w_num_pages; i++) {
2023		tmppage = wc->w_pages[i];
2024
 
 
 
 
2025		if (tmppage == wc->w_target_page) {
2026			from = wc->w_target_from;
2027			to = wc->w_target_to;
2028
2029			BUG_ON(from > PAGE_CACHE_SIZE ||
2030			       to > PAGE_CACHE_SIZE ||
2031			       to < from);
2032		} else {
2033			/*
2034			 * Pages adjacent to the target (if any) imply
2035			 * a hole-filling write in which case we want
2036			 * to flush their entire range.
2037			 */
2038			from = 0;
2039			to = PAGE_CACHE_SIZE;
2040		}
2041
2042		if (page_has_buffers(tmppage)) {
2043			if (ocfs2_should_order_data(inode))
2044				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 
 
 
 
 
 
2045			block_commit_write(tmppage, from, to);
2046		}
2047	}
2048
2049out_write_size:
2050	pos += copied;
2051	if (pos > inode->i_size) {
2052		i_size_write(inode, pos);
2053		mark_inode_dirty(inode);
2054	}
2055	inode->i_blocks = ocfs2_inode_sector_count(inode);
2056	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2057	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2058	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2059	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2060	ocfs2_journal_dirty(handle, wc->w_di_bh);
 
 
 
 
 
 
2061
2062	ocfs2_commit_trans(osb, handle);
 
 
 
 
 
 
 
 
 
2063
2064	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2065
2066	ocfs2_free_write_ctxt(wc);
 
2067
2068	return copied;
2069}
2070
2071static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2072			   loff_t pos, unsigned len, unsigned copied,
2073			   struct page *page, void *fsdata)
2074{
2075	int ret;
2076	struct inode *inode = mapping->host;
2077
2078	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2079
2080	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2081	ocfs2_inode_unlock(inode, 1);
2082
2083	return ret;
2084}
2085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086const struct address_space_operations ocfs2_aops = {
2087	.readpage		= ocfs2_readpage,
2088	.readpages		= ocfs2_readpages,
 
2089	.writepage		= ocfs2_writepage,
2090	.write_begin		= ocfs2_write_begin,
2091	.write_end		= ocfs2_write_end,
2092	.bmap			= ocfs2_bmap,
2093	.direct_IO		= ocfs2_direct_IO,
2094	.invalidatepage		= ocfs2_invalidatepage,
2095	.releasepage		= ocfs2_releasepage,
2096	.migratepage		= buffer_migrate_page,
2097	.is_partially_uptodate	= block_is_partially_uptodate,
2098	.error_remove_page	= generic_error_remove_page,
2099};