Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * JFFS2 -- Journalling Flash File System, Version 2.
   3 *
   4 * Copyright © 2001-2007 Red Hat, Inc.
   5 * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
   6 *
   7 * Created by David Woodhouse <dwmw2@infradead.org>
   8 *
   9 * For licensing information, see the file 'LICENCE' in this directory.
  10 *
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/slab.h>
  18#include <linux/pagemap.h>
  19#include <linux/crc32.h>
  20#include <linux/compiler.h>
  21#include <linux/stat.h>
  22#include "nodelist.h"
  23#include "compr.h"
  24
  25static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
  26					  struct jffs2_inode_cache *ic,
  27					  struct jffs2_raw_node_ref *raw);
  28static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  29					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
  30static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  31					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
  32static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  33					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
  34static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  35				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
  36				      uint32_t start, uint32_t end);
  37static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  38				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
  39				       uint32_t start, uint32_t end);
  40static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
  41			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
  42
  43/* Called with erase_completion_lock held */
  44static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
  45{
  46	struct jffs2_eraseblock *ret;
  47	struct list_head *nextlist = NULL;
  48	int n = jiffies % 128;
  49
  50	/* Pick an eraseblock to garbage collect next. This is where we'll
  51	   put the clever wear-levelling algorithms. Eventually.  */
  52	/* We possibly want to favour the dirtier blocks more when the
  53	   number of free blocks is low. */
  54again:
  55	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
  56		jffs2_dbg(1, "Picking block from bad_used_list to GC next\n");
  57		nextlist = &c->bad_used_list;
  58	} else if (n < 50 && !list_empty(&c->erasable_list)) {
  59		/* Note that most of them will have gone directly to be erased.
  60		   So don't favour the erasable_list _too_ much. */
  61		jffs2_dbg(1, "Picking block from erasable_list to GC next\n");
  62		nextlist = &c->erasable_list;
  63	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
  64		/* Most of the time, pick one off the very_dirty list */
  65		jffs2_dbg(1, "Picking block from very_dirty_list to GC next\n");
  66		nextlist = &c->very_dirty_list;
  67	} else if (n < 126 && !list_empty(&c->dirty_list)) {
  68		jffs2_dbg(1, "Picking block from dirty_list to GC next\n");
  69		nextlist = &c->dirty_list;
  70	} else if (!list_empty(&c->clean_list)) {
  71		jffs2_dbg(1, "Picking block from clean_list to GC next\n");
  72		nextlist = &c->clean_list;
  73	} else if (!list_empty(&c->dirty_list)) {
  74		jffs2_dbg(1, "Picking block from dirty_list to GC next (clean_list was empty)\n");
  75
  76		nextlist = &c->dirty_list;
  77	} else if (!list_empty(&c->very_dirty_list)) {
  78		jffs2_dbg(1, "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n");
  79		nextlist = &c->very_dirty_list;
  80	} else if (!list_empty(&c->erasable_list)) {
  81		jffs2_dbg(1, "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n");
  82
  83		nextlist = &c->erasable_list;
  84	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
  85		/* There are blocks are wating for the wbuf sync */
  86		jffs2_dbg(1, "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n");
  87		spin_unlock(&c->erase_completion_lock);
  88		jffs2_flush_wbuf_pad(c);
  89		spin_lock(&c->erase_completion_lock);
  90		goto again;
  91	} else {
  92		/* Eep. All were empty */
  93		jffs2_dbg(1, "No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n");
  94		return NULL;
  95	}
  96
  97	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
  98	list_del(&ret->list);
  99	c->gcblock = ret;
 100	ret->gc_node = ret->first_node;
 101	if (!ret->gc_node) {
 102		pr_warn("Eep. ret->gc_node for block at 0x%08x is NULL\n",
 103			ret->offset);
 104		BUG();
 105	}
 106
 107	/* Have we accidentally picked a clean block with wasted space ? */
 108	if (ret->wasted_size) {
 109		jffs2_dbg(1, "Converting wasted_size %08x to dirty_size\n",
 110			  ret->wasted_size);
 111		ret->dirty_size += ret->wasted_size;
 112		c->wasted_size -= ret->wasted_size;
 113		c->dirty_size += ret->wasted_size;
 114		ret->wasted_size = 0;
 115	}
 116
 117	return ret;
 118}
 119
 120/* jffs2_garbage_collect_pass
 121 * Make a single attempt to progress GC. Move one node, and possibly
 122 * start erasing one eraseblock.
 123 */
 124int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
 125{
 126	struct jffs2_inode_info *f;
 127	struct jffs2_inode_cache *ic;
 128	struct jffs2_eraseblock *jeb;
 129	struct jffs2_raw_node_ref *raw;
 130	uint32_t gcblock_dirty;
 131	int ret = 0, inum, nlink;
 132	int xattr = 0;
 133
 134	if (mutex_lock_interruptible(&c->alloc_sem))
 135		return -EINTR;
 136
 137
 138	for (;;) {
 139		/* We can't start doing GC until we've finished checking
 140		   the node CRCs etc. */
 141		int bucket, want_ino;
 142
 143		spin_lock(&c->erase_completion_lock);
 144		if (!c->unchecked_size)
 145			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146		spin_unlock(&c->erase_completion_lock);
 147
 148		if (!xattr)
 149			xattr = jffs2_verify_xattr(c);
 150
 151		spin_lock(&c->inocache_lock);
 152		/* Instead of doing the inodes in numeric order, doing a lookup
 153		 * in the hash for each possible number, just walk the hash
 154		 * buckets of *existing* inodes. This means that we process
 155		 * them out-of-order, but it can be a lot faster if there's
 156		 * a sparse inode# space. Which there often is. */
 157		want_ino = c->check_ino;
 158		for (bucket = c->check_ino % c->inocache_hashsize ; bucket < c->inocache_hashsize; bucket++) {
 159			for (ic = c->inocache_list[bucket]; ic; ic = ic->next) {
 160				if (ic->ino < want_ino)
 161					continue;
 162
 163				if (ic->state != INO_STATE_CHECKEDABSENT &&
 164				    ic->state != INO_STATE_PRESENT)
 165					goto got_next; /* with inocache_lock held */
 166
 167				jffs2_dbg(1, "Skipping ino #%u already checked\n",
 168					  ic->ino);
 169			}
 170			want_ino = 0;
 171		}
 172
 173		/* Point c->check_ino past the end of the last bucket. */
 174		c->check_ino = ((c->highest_ino + c->inocache_hashsize + 1) &
 175				~c->inocache_hashsize) - 1;
 176
 177		spin_unlock(&c->inocache_lock);
 178
 179		pr_crit("Checked all inodes but still 0x%x bytes of unchecked space?\n",
 180			c->unchecked_size);
 181		jffs2_dbg_dump_block_lists_nolock(c);
 182		mutex_unlock(&c->alloc_sem);
 183		return -ENOSPC;
 184
 185	got_next:
 186		/* For next time round the loop, we want c->checked_ino to indicate
 187		 * the *next* one we want to check. And since we're walking the
 188		 * buckets rather than doing it sequentially, it's: */
 189		c->check_ino = ic->ino + c->inocache_hashsize;
 190
 191		if (!ic->pino_nlink) {
 192			jffs2_dbg(1, "Skipping check of ino #%d with nlink/pino zero\n",
 193				  ic->ino);
 194			spin_unlock(&c->inocache_lock);
 195			jffs2_xattr_delete_inode(c, ic);
 196			continue;
 197		}
 198		switch(ic->state) {
 199		case INO_STATE_CHECKEDABSENT:
 200		case INO_STATE_PRESENT:
 
 
 201			spin_unlock(&c->inocache_lock);
 202			continue;
 203
 204		case INO_STATE_GC:
 205		case INO_STATE_CHECKING:
 206			pr_warn("Inode #%u is in state %d during CRC check phase!\n",
 207				ic->ino, ic->state);
 208			spin_unlock(&c->inocache_lock);
 209			BUG();
 210
 211		case INO_STATE_READING:
 212			/* We need to wait for it to finish, lest we move on
 213			   and trigger the BUG() above while we haven't yet
 214			   finished checking all its nodes */
 215			jffs2_dbg(1, "Waiting for ino #%u to finish reading\n",
 216				  ic->ino);
 217			/* We need to come back again for the _same_ inode. We've
 218			 made no progress in this case, but that should be OK */
 219			c->check_ino = ic->ino;
 220
 221			mutex_unlock(&c->alloc_sem);
 222			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 223			return 0;
 224
 225		default:
 226			BUG();
 227
 228		case INO_STATE_UNCHECKED:
 229			;
 230		}
 231		ic->state = INO_STATE_CHECKING;
 232		spin_unlock(&c->inocache_lock);
 233
 234		jffs2_dbg(1, "%s(): triggering inode scan of ino#%u\n",
 235			  __func__, ic->ino);
 236
 237		ret = jffs2_do_crccheck_inode(c, ic);
 238		if (ret)
 239			pr_warn("Returned error for crccheck of ino #%u. Expect badness...\n",
 240				ic->ino);
 241
 242		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
 243		mutex_unlock(&c->alloc_sem);
 244		return ret;
 245	}
 246
 247	/* If there are any blocks which need erasing, erase them now */
 248	if (!list_empty(&c->erase_complete_list) ||
 249	    !list_empty(&c->erase_pending_list)) {
 250		spin_unlock(&c->erase_completion_lock);
 251		mutex_unlock(&c->alloc_sem);
 252		jffs2_dbg(1, "%s(): erasing pending blocks\n", __func__);
 253		if (jffs2_erase_pending_blocks(c, 1))
 254			return 0;
 255
 256		jffs2_dbg(1, "No progress from erasing block; doing GC anyway\n");
 257		mutex_lock(&c->alloc_sem);
 258		spin_lock(&c->erase_completion_lock);
 259	}
 260
 261	/* First, work out which block we're garbage-collecting */
 262	jeb = c->gcblock;
 263
 264	if (!jeb)
 265		jeb = jffs2_find_gc_block(c);
 266
 267	if (!jeb) {
 268		/* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
 269		if (c->nr_erasing_blocks) {
 270			spin_unlock(&c->erase_completion_lock);
 271			mutex_unlock(&c->alloc_sem);
 272			return -EAGAIN;
 273		}
 274		jffs2_dbg(1, "Couldn't find erase block to garbage collect!\n");
 275		spin_unlock(&c->erase_completion_lock);
 276		mutex_unlock(&c->alloc_sem);
 277		return -EIO;
 278	}
 279
 280	jffs2_dbg(1, "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n",
 281		  jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size);
 282	D1(if (c->nextblock)
 283	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
 284
 285	if (!jeb->used_size) {
 286		mutex_unlock(&c->alloc_sem);
 287		goto eraseit;
 288	}
 289
 290	raw = jeb->gc_node;
 291	gcblock_dirty = jeb->dirty_size;
 292
 293	while(ref_obsolete(raw)) {
 294		jffs2_dbg(1, "Node at 0x%08x is obsolete... skipping\n",
 295			  ref_offset(raw));
 296		raw = ref_next(raw);
 297		if (unlikely(!raw)) {
 298			pr_warn("eep. End of raw list while still supposedly nodes to GC\n");
 299			pr_warn("erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
 300				jeb->offset, jeb->free_size,
 301				jeb->dirty_size, jeb->used_size);
 302			jeb->gc_node = raw;
 303			spin_unlock(&c->erase_completion_lock);
 304			mutex_unlock(&c->alloc_sem);
 305			BUG();
 306		}
 307	}
 308	jeb->gc_node = raw;
 309
 310	jffs2_dbg(1, "Going to garbage collect node at 0x%08x\n",
 311		  ref_offset(raw));
 312
 313	if (!raw->next_in_ino) {
 314		/* Inode-less node. Clean marker, snapshot or something like that */
 315		spin_unlock(&c->erase_completion_lock);
 316		if (ref_flags(raw) == REF_PRISTINE) {
 317			/* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
 318			jffs2_garbage_collect_pristine(c, NULL, raw);
 319		} else {
 320			/* Just mark it obsolete */
 321			jffs2_mark_node_obsolete(c, raw);
 322		}
 323		mutex_unlock(&c->alloc_sem);
 324		goto eraseit_lock;
 325	}
 326
 327	ic = jffs2_raw_ref_to_ic(raw);
 328
 329#ifdef CONFIG_JFFS2_FS_XATTR
 330	/* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
 331	 * We can decide whether this node is inode or xattr by ic->class.     */
 332	if (ic->class == RAWNODE_CLASS_XATTR_DATUM
 333	    || ic->class == RAWNODE_CLASS_XATTR_REF) {
 334		spin_unlock(&c->erase_completion_lock);
 335
 336		if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 337			ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
 338		} else {
 339			ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
 340		}
 341		goto test_gcnode;
 342	}
 343#endif
 344
 345	/* We need to hold the inocache. Either the erase_completion_lock or
 346	   the inocache_lock are sufficient; we trade down since the inocache_lock
 347	   causes less contention. */
 348	spin_lock(&c->inocache_lock);
 349
 350	spin_unlock(&c->erase_completion_lock);
 351
 352	jffs2_dbg(1, "%s(): collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n",
 353		  __func__, jeb->offset, ref_offset(raw), ref_flags(raw),
 354		  ic->ino);
 355
 356	/* Three possibilities:
 357	   1. Inode is already in-core. We must iget it and do proper
 358	      updating to its fragtree, etc.
 359	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
 360	      inocache to prevent a read_inode(), copy the node intact.
 361	   3. Inode is not in-core, node is not pristine. We must iget()
 362	      and take the slow path.
 363	*/
 364
 365	switch(ic->state) {
 366	case INO_STATE_CHECKEDABSENT:
 367		/* It's been checked, but it's not currently in-core.
 368		   We can just copy any pristine nodes, but have
 369		   to prevent anyone else from doing read_inode() while
 370		   we're at it, so we set the state accordingly */
 371		if (ref_flags(raw) == REF_PRISTINE)
 372			ic->state = INO_STATE_GC;
 373		else {
 374			jffs2_dbg(1, "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
 375				  ic->ino);
 376		}
 377		break;
 378
 379	case INO_STATE_PRESENT:
 380		/* It's in-core. GC must iget() it. */
 381		break;
 382
 383	case INO_STATE_UNCHECKED:
 384	case INO_STATE_CHECKING:
 385	case INO_STATE_GC:
 386		/* Should never happen. We should have finished checking
 387		   by the time we actually start doing any GC, and since
 388		   we're holding the alloc_sem, no other garbage collection
 389		   can happen.
 390		*/
 391		pr_crit("Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
 392			ic->ino, ic->state);
 393		mutex_unlock(&c->alloc_sem);
 394		spin_unlock(&c->inocache_lock);
 395		BUG();
 396
 397	case INO_STATE_READING:
 398		/* Someone's currently trying to read it. We must wait for
 399		   them to finish and then go through the full iget() route
 400		   to do the GC. However, sometimes read_inode() needs to get
 401		   the alloc_sem() (for marking nodes invalid) so we must
 402		   drop the alloc_sem before sleeping. */
 403
 404		mutex_unlock(&c->alloc_sem);
 405		jffs2_dbg(1, "%s(): waiting for ino #%u in state %d\n",
 406			  __func__, ic->ino, ic->state);
 407		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 408		/* And because we dropped the alloc_sem we must start again from the
 409		   beginning. Ponder chance of livelock here -- we're returning success
 410		   without actually making any progress.
 411
 412		   Q: What are the chances that the inode is back in INO_STATE_READING
 413		   again by the time we next enter this function? And that this happens
 414		   enough times to cause a real delay?
 415
 416		   A: Small enough that I don't care :)
 417		*/
 418		return 0;
 419	}
 420
 421	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
 422	   node intact, and we don't have to muck about with the fragtree etc.
 423	   because we know it's not in-core. If it _was_ in-core, we go through
 424	   all the iget() crap anyway */
 425
 426	if (ic->state == INO_STATE_GC) {
 427		spin_unlock(&c->inocache_lock);
 428
 429		ret = jffs2_garbage_collect_pristine(c, ic, raw);
 430
 431		spin_lock(&c->inocache_lock);
 432		ic->state = INO_STATE_CHECKEDABSENT;
 433		wake_up(&c->inocache_wq);
 434
 435		if (ret != -EBADFD) {
 436			spin_unlock(&c->inocache_lock);
 437			goto test_gcnode;
 438		}
 439
 440		/* Fall through if it wanted us to, with inocache_lock held */
 441	}
 442
 443	/* Prevent the fairly unlikely race where the gcblock is
 444	   entirely obsoleted by the final close of a file which had
 445	   the only valid nodes in the block, followed by erasure,
 446	   followed by freeing of the ic because the erased block(s)
 447	   held _all_ the nodes of that inode.... never been seen but
 448	   it's vaguely possible. */
 449
 450	inum = ic->ino;
 451	nlink = ic->pino_nlink;
 452	spin_unlock(&c->inocache_lock);
 453
 454	f = jffs2_gc_fetch_inode(c, inum, !nlink);
 455	if (IS_ERR(f)) {
 456		ret = PTR_ERR(f);
 457		goto release_sem;
 458	}
 459	if (!f) {
 460		ret = 0;
 461		goto release_sem;
 462	}
 463
 464	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
 465
 466	jffs2_gc_release_inode(c, f);
 467
 468 test_gcnode:
 469	if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
 470		/* Eep. This really should never happen. GC is broken */
 471		pr_err("Error garbage collecting node at %08x!\n",
 472		       ref_offset(jeb->gc_node));
 473		ret = -ENOSPC;
 474	}
 475 release_sem:
 476	mutex_unlock(&c->alloc_sem);
 477
 478 eraseit_lock:
 479	/* If we've finished this block, start it erasing */
 480	spin_lock(&c->erase_completion_lock);
 481
 482 eraseit:
 483	if (c->gcblock && !c->gcblock->used_size) {
 484		jffs2_dbg(1, "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n",
 485			  c->gcblock->offset);
 486		/* We're GC'ing an empty block? */
 487		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
 488		c->gcblock = NULL;
 489		c->nr_erasing_blocks++;
 490		jffs2_garbage_collect_trigger(c);
 491	}
 492	spin_unlock(&c->erase_completion_lock);
 493
 494	return ret;
 495}
 496
 497static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
 498				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
 499{
 500	struct jffs2_node_frag *frag;
 501	struct jffs2_full_dnode *fn = NULL;
 502	struct jffs2_full_dirent *fd;
 503	uint32_t start = 0, end = 0, nrfrags = 0;
 504	int ret = 0;
 505
 506	mutex_lock(&f->sem);
 507
 508	/* Now we have the lock for this inode. Check that it's still the one at the head
 509	   of the list. */
 510
 511	spin_lock(&c->erase_completion_lock);
 512
 513	if (c->gcblock != jeb) {
 514		spin_unlock(&c->erase_completion_lock);
 515		jffs2_dbg(1, "GC block is no longer gcblock. Restart\n");
 516		goto upnout;
 517	}
 518	if (ref_obsolete(raw)) {
 519		spin_unlock(&c->erase_completion_lock);
 520		jffs2_dbg(1, "node to be GC'd was obsoleted in the meantime.\n");
 521		/* They'll call again */
 522		goto upnout;
 523	}
 524	spin_unlock(&c->erase_completion_lock);
 525
 526	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
 527	if (f->metadata && f->metadata->raw == raw) {
 528		fn = f->metadata;
 529		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
 530		goto upnout;
 531	}
 532
 533	/* FIXME. Read node and do lookup? */
 534	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
 535		if (frag->node && frag->node->raw == raw) {
 536			fn = frag->node;
 537			end = frag->ofs + frag->size;
 538			if (!nrfrags++)
 539				start = frag->ofs;
 540			if (nrfrags == frag->node->frags)
 541				break; /* We've found them all */
 542		}
 543	}
 544	if (fn) {
 545		if (ref_flags(raw) == REF_PRISTINE) {
 546			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
 547			if (!ret) {
 548				/* Urgh. Return it sensibly. */
 549				frag->node->raw = f->inocache->nodes;
 550			}
 551			if (ret != -EBADFD)
 552				goto upnout;
 553		}
 554		/* We found a datanode. Do the GC */
 555		if((start >> PAGE_SHIFT) < ((end-1) >> PAGE_SHIFT)) {
 556			/* It crosses a page boundary. Therefore, it must be a hole. */
 557			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
 558		} else {
 559			/* It could still be a hole. But we GC the page this way anyway */
 560			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
 561		}
 562		goto upnout;
 563	}
 564
 565	/* Wasn't a dnode. Try dirent */
 566	for (fd = f->dents; fd; fd=fd->next) {
 567		if (fd->raw == raw)
 568			break;
 569	}
 570
 571	if (fd && fd->ino) {
 572		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
 573	} else if (fd) {
 574		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
 575	} else {
 576		pr_warn("Raw node at 0x%08x wasn't in node lists for ino #%u\n",
 577			ref_offset(raw), f->inocache->ino);
 578		if (ref_obsolete(raw)) {
 579			pr_warn("But it's obsolete so we don't mind too much\n");
 580		} else {
 581			jffs2_dbg_dump_node(c, ref_offset(raw));
 582			BUG();
 583		}
 584	}
 585 upnout:
 586	mutex_unlock(&f->sem);
 587
 588	return ret;
 589}
 590
 591static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
 592					  struct jffs2_inode_cache *ic,
 593					  struct jffs2_raw_node_ref *raw)
 594{
 595	union jffs2_node_union *node;
 596	size_t retlen;
 597	int ret;
 598	uint32_t phys_ofs, alloclen;
 599	uint32_t crc, rawlen;
 600	int retried = 0;
 601
 602	jffs2_dbg(1, "Going to GC REF_PRISTINE node at 0x%08x\n",
 603		  ref_offset(raw));
 604
 605	alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
 606
 607	/* Ask for a small amount of space (or the totlen if smaller) because we
 608	   don't want to force wastage of the end of a block if splitting would
 609	   work. */
 610	if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
 611		alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
 612
 613	ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
 614	/* 'rawlen' is not the exact summary size; it is only an upper estimation */
 615
 616	if (ret)
 617		return ret;
 618
 619	if (alloclen < rawlen) {
 620		/* Doesn't fit untouched. We'll go the old route and split it */
 621		return -EBADFD;
 622	}
 623
 624	node = kmalloc(rawlen, GFP_KERNEL);
 625	if (!node)
 626		return -ENOMEM;
 627
 628	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
 629	if (!ret && retlen != rawlen)
 630		ret = -EIO;
 631	if (ret)
 632		goto out_node;
 633
 634	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
 635	if (je32_to_cpu(node->u.hdr_crc) != crc) {
 636		pr_warn("Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 637			ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
 638		goto bail;
 639	}
 640
 641	switch(je16_to_cpu(node->u.nodetype)) {
 642	case JFFS2_NODETYPE_INODE:
 643		crc = crc32(0, node, sizeof(node->i)-8);
 644		if (je32_to_cpu(node->i.node_crc) != crc) {
 645			pr_warn("Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 646				ref_offset(raw), je32_to_cpu(node->i.node_crc),
 647				crc);
 648			goto bail;
 649		}
 650
 651		if (je32_to_cpu(node->i.dsize)) {
 652			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
 653			if (je32_to_cpu(node->i.data_crc) != crc) {
 654				pr_warn("Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 655					ref_offset(raw),
 656					je32_to_cpu(node->i.data_crc), crc);
 657				goto bail;
 658			}
 659		}
 660		break;
 661
 662	case JFFS2_NODETYPE_DIRENT:
 663		crc = crc32(0, node, sizeof(node->d)-8);
 664		if (je32_to_cpu(node->d.node_crc) != crc) {
 665			pr_warn("Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 666				ref_offset(raw),
 667				je32_to_cpu(node->d.node_crc), crc);
 668			goto bail;
 669		}
 670
 671		if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
 672			pr_warn("Name in dirent node at 0x%08x contains zeroes\n",
 673				ref_offset(raw));
 674			goto bail;
 675		}
 676
 677		if (node->d.nsize) {
 678			crc = crc32(0, node->d.name, node->d.nsize);
 679			if (je32_to_cpu(node->d.name_crc) != crc) {
 680				pr_warn("Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 681					ref_offset(raw),
 682					je32_to_cpu(node->d.name_crc), crc);
 683				goto bail;
 684			}
 685		}
 686		break;
 687	default:
 688		/* If it's inode-less, we don't _know_ what it is. Just copy it intact */
 689		if (ic) {
 690			pr_warn("Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
 691				ref_offset(raw), je16_to_cpu(node->u.nodetype));
 692			goto bail;
 693		}
 694	}
 695
 696	/* OK, all the CRCs are good; this node can just be copied as-is. */
 697 retry:
 698	phys_ofs = write_ofs(c);
 699
 700	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
 701
 702	if (ret || (retlen != rawlen)) {
 703		pr_notice("Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
 704			  rawlen, phys_ofs, ret, retlen);
 705		if (retlen) {
 706			jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
 707		} else {
 708			pr_notice("Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n",
 709				  phys_ofs);
 710		}
 711		if (!retried) {
 712			/* Try to reallocate space and retry */
 713			uint32_t dummy;
 714			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
 715
 716			retried = 1;
 717
 718			jffs2_dbg(1, "Retrying failed write of REF_PRISTINE node.\n");
 719
 720			jffs2_dbg_acct_sanity_check(c,jeb);
 721			jffs2_dbg_acct_paranoia_check(c, jeb);
 722
 723			ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
 724						/* this is not the exact summary size of it,
 725							it is only an upper estimation */
 726
 727			if (!ret) {
 728				jffs2_dbg(1, "Allocated space at 0x%08x to retry failed write.\n",
 729					  phys_ofs);
 730
 731				jffs2_dbg_acct_sanity_check(c,jeb);
 732				jffs2_dbg_acct_paranoia_check(c, jeb);
 733
 734				goto retry;
 735			}
 736			jffs2_dbg(1, "Failed to allocate space to retry failed write: %d!\n",
 737				  ret);
 738		}
 739
 740		if (!ret)
 741			ret = -EIO;
 742		goto out_node;
 743	}
 744	jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
 745
 746	jffs2_mark_node_obsolete(c, raw);
 747	jffs2_dbg(1, "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n",
 748		  ref_offset(raw));
 749
 750 out_node:
 751	kfree(node);
 752	return ret;
 753 bail:
 754	ret = -EBADFD;
 755	goto out_node;
 756}
 757
 758static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 759					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
 760{
 761	struct jffs2_full_dnode *new_fn;
 762	struct jffs2_raw_inode ri;
 763	struct jffs2_node_frag *last_frag;
 764	union jffs2_device_node dev;
 765	char *mdata = NULL;
 766	int mdatalen = 0;
 767	uint32_t alloclen, ilen;
 768	int ret;
 769
 770	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
 771	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
 772		/* For these, we don't actually need to read the old node */
 773		mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
 774		mdata = (char *)&dev;
 775		jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
 776			  __func__, mdatalen);
 777	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
 778		mdatalen = fn->size;
 779		mdata = kmalloc(fn->size, GFP_KERNEL);
 780		if (!mdata) {
 781			pr_warn("kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
 782			return -ENOMEM;
 783		}
 784		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
 785		if (ret) {
 786			pr_warn("read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n",
 787				ret);
 788			kfree(mdata);
 789			return ret;
 790		}
 791		jffs2_dbg(1, "%s(): Writing %d bites of symlink target\n",
 792			  __func__, mdatalen);
 793
 794	}
 795
 796	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
 797				JFFS2_SUMMARY_INODE_SIZE);
 798	if (ret) {
 799		pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
 800			sizeof(ri) + mdatalen, ret);
 801		goto out;
 802	}
 803
 804	last_frag = frag_last(&f->fragtree);
 805	if (last_frag)
 806		/* Fetch the inode length from the fragtree rather then
 807		 * from i_size since i_size may have not been updated yet */
 808		ilen = last_frag->ofs + last_frag->size;
 809	else
 810		ilen = JFFS2_F_I_SIZE(f);
 811
 812	memset(&ri, 0, sizeof(ri));
 813	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 814	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
 815	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
 816	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
 817
 818	ri.ino = cpu_to_je32(f->inocache->ino);
 819	ri.version = cpu_to_je32(++f->highest_version);
 820	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
 821	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
 822	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
 823	ri.isize = cpu_to_je32(ilen);
 824	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
 825	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
 826	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 827	ri.offset = cpu_to_je32(0);
 828	ri.csize = cpu_to_je32(mdatalen);
 829	ri.dsize = cpu_to_je32(mdatalen);
 830	ri.compr = JFFS2_COMPR_NONE;
 831	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
 832	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
 833
 834	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
 835
 836	if (IS_ERR(new_fn)) {
 837		pr_warn("Error writing new dnode: %ld\n", PTR_ERR(new_fn));
 838		ret = PTR_ERR(new_fn);
 839		goto out;
 840	}
 841	jffs2_mark_node_obsolete(c, fn->raw);
 842	jffs2_free_full_dnode(fn);
 843	f->metadata = new_fn;
 844 out:
 845	if (S_ISLNK(JFFS2_F_I_MODE(f)))
 846		kfree(mdata);
 847	return ret;
 848}
 849
 850static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 851					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 852{
 853	struct jffs2_full_dirent *new_fd;
 854	struct jffs2_raw_dirent rd;
 855	uint32_t alloclen;
 856	int ret;
 857
 858	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 859	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
 860	rd.nsize = strlen(fd->name);
 861	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
 862	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
 863
 864	rd.pino = cpu_to_je32(f->inocache->ino);
 865	rd.version = cpu_to_je32(++f->highest_version);
 866	rd.ino = cpu_to_je32(fd->ino);
 867	/* If the times on this inode were set by explicit utime() they can be different,
 868	   so refrain from splatting them. */
 869	if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
 870		rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 871	else
 872		rd.mctime = cpu_to_je32(0);
 873	rd.type = fd->type;
 874	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
 875	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
 876
 877	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
 878				JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
 879	if (ret) {
 880		pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
 881			sizeof(rd)+rd.nsize, ret);
 882		return ret;
 883	}
 884	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
 885
 886	if (IS_ERR(new_fd)) {
 887		pr_warn("jffs2_write_dirent in garbage_collect_dirent failed: %ld\n",
 888			PTR_ERR(new_fd));
 889		return PTR_ERR(new_fd);
 890	}
 891	jffs2_add_fd_to_list(c, new_fd, &f->dents);
 892	return 0;
 893}
 894
 895static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 896					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 897{
 898	struct jffs2_full_dirent **fdp = &f->dents;
 899	int found = 0;
 900
 901	/* On a medium where we can't actually mark nodes obsolete
 902	   pernamently, such as NAND flash, we need to work out
 903	   whether this deletion dirent is still needed to actively
 904	   delete a 'real' dirent with the same name that's still
 905	   somewhere else on the flash. */
 906	if (!jffs2_can_mark_obsolete(c)) {
 907		struct jffs2_raw_dirent *rd;
 908		struct jffs2_raw_node_ref *raw;
 909		int ret;
 910		size_t retlen;
 911		int name_len = strlen(fd->name);
 912		uint32_t name_crc = crc32(0, fd->name, name_len);
 913		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
 914
 915		rd = kmalloc(rawlen, GFP_KERNEL);
 916		if (!rd)
 917			return -ENOMEM;
 918
 919		/* Prevent the erase code from nicking the obsolete node refs while
 920		   we're looking at them. I really don't like this extra lock but
 921		   can't see any alternative. Suggestions on a postcard to... */
 922		mutex_lock(&c->erase_free_sem);
 923
 924		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
 925
 926			cond_resched();
 927
 928			/* We only care about obsolete ones */
 929			if (!(ref_obsolete(raw)))
 930				continue;
 931
 932			/* Any dirent with the same name is going to have the same length... */
 933			if (ref_totlen(c, NULL, raw) != rawlen)
 934				continue;
 935
 936			/* Doesn't matter if there's one in the same erase block. We're going to
 937			   delete it too at the same time. */
 938			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
 939				continue;
 940
 941			jffs2_dbg(1, "Check potential deletion dirent at %08x\n",
 942				  ref_offset(raw));
 943
 944			/* This is an obsolete node belonging to the same directory, and it's of the right
 945			   length. We need to take a closer look...*/
 946			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
 947			if (ret) {
 948				pr_warn("%s(): Read error (%d) reading obsolete node at %08x\n",
 949					__func__, ret, ref_offset(raw));
 950				/* If we can't read it, we don't need to continue to obsolete it. Continue */
 951				continue;
 952			}
 953			if (retlen != rawlen) {
 954				pr_warn("%s(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
 955					__func__, retlen, rawlen,
 956					ref_offset(raw));
 957				continue;
 958			}
 959
 960			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
 961				continue;
 962
 963			/* If the name CRC doesn't match, skip */
 964			if (je32_to_cpu(rd->name_crc) != name_crc)
 965				continue;
 966
 967			/* If the name length doesn't match, or it's another deletion dirent, skip */
 968			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
 969				continue;
 970
 971			/* OK, check the actual name now */
 972			if (memcmp(rd->name, fd->name, name_len))
 973				continue;
 974
 975			/* OK. The name really does match. There really is still an older node on
 976			   the flash which our deletion dirent obsoletes. So we have to write out
 977			   a new deletion dirent to replace it */
 978			mutex_unlock(&c->erase_free_sem);
 979
 980			jffs2_dbg(1, "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
 981				  ref_offset(fd->raw), fd->name,
 982				  ref_offset(raw), je32_to_cpu(rd->ino));
 983			kfree(rd);
 984
 985			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
 986		}
 987
 988		mutex_unlock(&c->erase_free_sem);
 989		kfree(rd);
 990	}
 991
 992	/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
 993	   we should update the metadata node with those times accordingly */
 994
 995	/* No need for it any more. Just mark it obsolete and remove it from the list */
 996	while (*fdp) {
 997		if ((*fdp) == fd) {
 998			found = 1;
 999			*fdp = fd->next;
1000			break;
1001		}
1002		fdp = &(*fdp)->next;
1003	}
1004	if (!found) {
1005		pr_warn("Deletion dirent \"%s\" not found in list for ino #%u\n",
1006			fd->name, f->inocache->ino);
1007	}
1008	jffs2_mark_node_obsolete(c, fd->raw);
1009	jffs2_free_full_dirent(fd);
1010	return 0;
1011}
1012
1013static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1014				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1015				      uint32_t start, uint32_t end)
1016{
1017	struct jffs2_raw_inode ri;
1018	struct jffs2_node_frag *frag;
1019	struct jffs2_full_dnode *new_fn;
1020	uint32_t alloclen, ilen;
1021	int ret;
1022
1023	jffs2_dbg(1, "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
1024		  f->inocache->ino, start, end);
1025
1026	memset(&ri, 0, sizeof(ri));
1027
1028	if(fn->frags > 1) {
1029		size_t readlen;
1030		uint32_t crc;
1031		/* It's partially obsoleted by a later write. So we have to
1032		   write it out again with the _same_ version as before */
1033		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
1034		if (readlen != sizeof(ri) || ret) {
1035			pr_warn("Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n",
1036				ret, readlen);
1037			goto fill;
1038		}
1039		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
1040			pr_warn("%s(): Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
1041				__func__, ref_offset(fn->raw),
1042				je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
1043			return -EIO;
1044		}
1045		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
1046			pr_warn("%s(): Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
1047				__func__, ref_offset(fn->raw),
1048				je32_to_cpu(ri.totlen), sizeof(ri));
1049			return -EIO;
1050		}
1051		crc = crc32(0, &ri, sizeof(ri)-8);
1052		if (crc != je32_to_cpu(ri.node_crc)) {
1053			pr_warn("%s: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
1054				__func__, ref_offset(fn->raw),
1055				je32_to_cpu(ri.node_crc), crc);
1056			/* FIXME: We could possibly deal with this by writing new holes for each frag */
1057			pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1058				start, end, f->inocache->ino);
1059			goto fill;
1060		}
1061		if (ri.compr != JFFS2_COMPR_ZERO) {
1062			pr_warn("%s(): Node 0x%08x wasn't a hole node!\n",
1063				__func__, ref_offset(fn->raw));
1064			pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1065				start, end, f->inocache->ino);
1066			goto fill;
1067		}
1068	} else {
1069	fill:
1070		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1071		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1072		ri.totlen = cpu_to_je32(sizeof(ri));
1073		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1074
1075		ri.ino = cpu_to_je32(f->inocache->ino);
1076		ri.version = cpu_to_je32(++f->highest_version);
1077		ri.offset = cpu_to_je32(start);
1078		ri.dsize = cpu_to_je32(end - start);
1079		ri.csize = cpu_to_je32(0);
1080		ri.compr = JFFS2_COMPR_ZERO;
1081	}
1082
1083	frag = frag_last(&f->fragtree);
1084	if (frag)
1085		/* Fetch the inode length from the fragtree rather then
1086		 * from i_size since i_size may have not been updated yet */
1087		ilen = frag->ofs + frag->size;
1088	else
1089		ilen = JFFS2_F_I_SIZE(f);
1090
1091	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1092	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1093	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1094	ri.isize = cpu_to_je32(ilen);
1095	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1096	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1097	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1098	ri.data_crc = cpu_to_je32(0);
1099	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1100
1101	ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1102				     JFFS2_SUMMARY_INODE_SIZE);
1103	if (ret) {
1104		pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1105			sizeof(ri), ret);
1106		return ret;
1107	}
1108	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1109
1110	if (IS_ERR(new_fn)) {
1111		pr_warn("Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1112		return PTR_ERR(new_fn);
1113	}
1114	if (je32_to_cpu(ri.version) == f->highest_version) {
1115		jffs2_add_full_dnode_to_inode(c, f, new_fn);
1116		if (f->metadata) {
1117			jffs2_mark_node_obsolete(c, f->metadata->raw);
1118			jffs2_free_full_dnode(f->metadata);
1119			f->metadata = NULL;
1120		}
1121		return 0;
1122	}
1123
1124	/*
1125	 * We should only get here in the case where the node we are
1126	 * replacing had more than one frag, so we kept the same version
1127	 * number as before. (Except in case of error -- see 'goto fill;'
1128	 * above.)
1129	 */
1130	D1(if(unlikely(fn->frags <= 1)) {
1131			pr_warn("%s(): Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1132				__func__, fn->frags, je32_to_cpu(ri.version),
1133				f->highest_version, je32_to_cpu(ri.ino));
1134	});
1135
1136	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1137	mark_ref_normal(new_fn->raw);
1138
1139	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1140	     frag; frag = frag_next(frag)) {
1141		if (frag->ofs > fn->size + fn->ofs)
1142			break;
1143		if (frag->node == fn) {
1144			frag->node = new_fn;
1145			new_fn->frags++;
1146			fn->frags--;
1147		}
1148	}
1149	if (fn->frags) {
1150		pr_warn("%s(): Old node still has frags!\n", __func__);
1151		BUG();
1152	}
1153	if (!new_fn->frags) {
1154		pr_warn("%s(): New node has no frags!\n", __func__);
1155		BUG();
1156	}
1157
1158	jffs2_mark_node_obsolete(c, fn->raw);
1159	jffs2_free_full_dnode(fn);
1160
1161	return 0;
1162}
1163
1164static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1165				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1166				       uint32_t start, uint32_t end)
1167{
1168	struct inode *inode = OFNI_EDONI_2SFFJ(f);
1169	struct jffs2_full_dnode *new_fn;
1170	struct jffs2_raw_inode ri;
1171	uint32_t alloclen, offset, orig_end, orig_start;
1172	int ret = 0;
1173	unsigned char *comprbuf = NULL, *writebuf;
1174	struct page *page;
1175	unsigned char *pg_ptr;
1176
1177	memset(&ri, 0, sizeof(ri));
1178
1179	jffs2_dbg(1, "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1180		  f->inocache->ino, start, end);
1181
1182	orig_end = end;
1183	orig_start = start;
1184
1185	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1186		/* Attempt to do some merging. But only expand to cover logically
1187		   adjacent frags if the block containing them is already considered
1188		   to be dirty. Otherwise we end up with GC just going round in
1189		   circles dirtying the nodes it already wrote out, especially
1190		   on NAND where we have small eraseblocks and hence a much higher
1191		   chance of nodes having to be split to cross boundaries. */
1192
1193		struct jffs2_node_frag *frag;
1194		uint32_t min, max;
1195
1196		min = start & ~(PAGE_SIZE-1);
1197		max = min + PAGE_SIZE;
1198
1199		frag = jffs2_lookup_node_frag(&f->fragtree, start);
1200
1201		/* BUG_ON(!frag) but that'll happen anyway... */
1202
1203		BUG_ON(frag->ofs != start);
1204
1205		/* First grow down... */
1206		while((frag = frag_prev(frag)) && frag->ofs >= min) {
1207
1208			/* If the previous frag doesn't even reach the beginning, there's
1209			   excessive fragmentation. Just merge. */
1210			if (frag->ofs > min) {
1211				jffs2_dbg(1, "Expanding down to cover partial frag (0x%x-0x%x)\n",
1212					  frag->ofs, frag->ofs+frag->size);
1213				start = frag->ofs;
1214				continue;
1215			}
1216			/* OK. This frag holds the first byte of the page. */
1217			if (!frag->node || !frag->node->raw) {
1218				jffs2_dbg(1, "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1219					  frag->ofs, frag->ofs+frag->size);
1220				break;
1221			} else {
1222
1223				/* OK, it's a frag which extends to the beginning of the page. Does it live
1224				   in a block which is still considered clean? If so, don't obsolete it.
1225				   If not, cover it anyway. */
1226
1227				struct jffs2_raw_node_ref *raw = frag->node->raw;
1228				struct jffs2_eraseblock *jeb;
1229
1230				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1231
1232				if (jeb == c->gcblock) {
1233					jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1234						  frag->ofs,
1235						  frag->ofs + frag->size,
1236						  ref_offset(raw));
1237					start = frag->ofs;
1238					break;
1239				}
1240				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1241					jffs2_dbg(1, "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1242						  frag->ofs,
1243						  frag->ofs + frag->size,
1244						  jeb->offset);
1245					break;
1246				}
1247
1248				jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1249					  frag->ofs,
1250					  frag->ofs + frag->size,
1251					  jeb->offset);
1252				start = frag->ofs;
1253				break;
1254			}
1255		}
1256
1257		/* ... then up */
1258
1259		/* Find last frag which is actually part of the node we're to GC. */
1260		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1261
1262		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1263
1264			/* If the previous frag doesn't even reach the beginning, there's lots
1265			   of fragmentation. Just merge. */
1266			if (frag->ofs+frag->size < max) {
1267				jffs2_dbg(1, "Expanding up to cover partial frag (0x%x-0x%x)\n",
1268					  frag->ofs, frag->ofs+frag->size);
1269				end = frag->ofs + frag->size;
1270				continue;
1271			}
1272
1273			if (!frag->node || !frag->node->raw) {
1274				jffs2_dbg(1, "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1275					  frag->ofs, frag->ofs+frag->size);
1276				break;
1277			} else {
1278
1279				/* OK, it's a frag which extends to the beginning of the page. Does it live
1280				   in a block which is still considered clean? If so, don't obsolete it.
1281				   If not, cover it anyway. */
1282
1283				struct jffs2_raw_node_ref *raw = frag->node->raw;
1284				struct jffs2_eraseblock *jeb;
1285
1286				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1287
1288				if (jeb == c->gcblock) {
1289					jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1290						  frag->ofs,
1291						  frag->ofs + frag->size,
1292						  ref_offset(raw));
1293					end = frag->ofs + frag->size;
1294					break;
1295				}
1296				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1297					jffs2_dbg(1, "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1298						  frag->ofs,
1299						  frag->ofs + frag->size,
1300						  jeb->offset);
1301					break;
1302				}
1303
1304				jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1305					  frag->ofs,
1306					  frag->ofs + frag->size,
1307					  jeb->offset);
1308				end = frag->ofs + frag->size;
1309				break;
1310			}
1311		}
1312		jffs2_dbg(1, "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1313			  orig_start, orig_end, start, end);
1314
1315		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1316		BUG_ON(end < orig_end);
1317		BUG_ON(start > orig_start);
1318	}
1319
1320	/* The rules state that we must obtain the page lock *before* f->sem, so
1321	 * drop f->sem temporarily. Since we also hold c->alloc_sem, nothing's
1322	 * actually going to *change* so we're safe; we only allow reading.
1323	 *
1324	 * It is important to note that jffs2_write_begin() will ensure that its
1325	 * page is marked Uptodate before allocating space. That means that if we
1326	 * end up here trying to GC the *same* page that jffs2_write_begin() is
1327	 * trying to write out, read_cache_page() will not deadlock. */
1328	mutex_unlock(&f->sem);
1329	page = read_cache_page(inode->i_mapping, start >> PAGE_SHIFT,
1330			       __jffs2_read_folio, NULL);
1331	if (IS_ERR(page)) {
1332		pr_warn("read_cache_page() returned error: %ld\n",
1333			PTR_ERR(page));
1334		mutex_lock(&f->sem);
1335		return PTR_ERR(page);
1336	}
1337
1338	pg_ptr = kmap(page);
1339	mutex_lock(&f->sem);
1340
1341	offset = start;
1342	while(offset < orig_end) {
1343		uint32_t datalen;
1344		uint32_t cdatalen;
1345		uint16_t comprtype = JFFS2_COMPR_NONE;
1346
1347		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1348					&alloclen, JFFS2_SUMMARY_INODE_SIZE);
1349
1350		if (ret) {
1351			pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1352				sizeof(ri) + JFFS2_MIN_DATA_LEN, ret);
1353			break;
1354		}
1355		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1356		datalen = end - offset;
1357
1358		writebuf = pg_ptr + (offset & (PAGE_SIZE -1));
1359
1360		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1361
1362		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1363		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1364		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1365		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1366
1367		ri.ino = cpu_to_je32(f->inocache->ino);
1368		ri.version = cpu_to_je32(++f->highest_version);
1369		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1370		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1371		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1372		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1373		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1374		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1375		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1376		ri.offset = cpu_to_je32(offset);
1377		ri.csize = cpu_to_je32(cdatalen);
1378		ri.dsize = cpu_to_je32(datalen);
1379		ri.compr = comprtype & 0xff;
1380		ri.usercompr = (comprtype >> 8) & 0xff;
1381		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1382		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1383
1384		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1385
1386		jffs2_free_comprbuf(comprbuf, writebuf);
1387
1388		if (IS_ERR(new_fn)) {
1389			pr_warn("Error writing new dnode: %ld\n",
1390				PTR_ERR(new_fn));
1391			ret = PTR_ERR(new_fn);
1392			break;
1393		}
1394		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1395		offset += datalen;
1396		if (f->metadata) {
1397			jffs2_mark_node_obsolete(c, f->metadata->raw);
1398			jffs2_free_full_dnode(f->metadata);
1399			f->metadata = NULL;
1400		}
1401	}
1402
1403	kunmap(page);
1404	put_page(page);
1405	return ret;
1406}
v3.5.6
   1/*
   2 * JFFS2 -- Journalling Flash File System, Version 2.
   3 *
   4 * Copyright © 2001-2007 Red Hat, Inc.
   5 * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
   6 *
   7 * Created by David Woodhouse <dwmw2@infradead.org>
   8 *
   9 * For licensing information, see the file 'LICENCE' in this directory.
  10 *
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/slab.h>
  18#include <linux/pagemap.h>
  19#include <linux/crc32.h>
  20#include <linux/compiler.h>
  21#include <linux/stat.h>
  22#include "nodelist.h"
  23#include "compr.h"
  24
  25static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
  26					  struct jffs2_inode_cache *ic,
  27					  struct jffs2_raw_node_ref *raw);
  28static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  29					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
  30static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  31					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
  32static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  33					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
  34static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  35				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
  36				      uint32_t start, uint32_t end);
  37static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  38				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
  39				       uint32_t start, uint32_t end);
  40static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
  41			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
  42
  43/* Called with erase_completion_lock held */
  44static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
  45{
  46	struct jffs2_eraseblock *ret;
  47	struct list_head *nextlist = NULL;
  48	int n = jiffies % 128;
  49
  50	/* Pick an eraseblock to garbage collect next. This is where we'll
  51	   put the clever wear-levelling algorithms. Eventually.  */
  52	/* We possibly want to favour the dirtier blocks more when the
  53	   number of free blocks is low. */
  54again:
  55	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
  56		jffs2_dbg(1, "Picking block from bad_used_list to GC next\n");
  57		nextlist = &c->bad_used_list;
  58	} else if (n < 50 && !list_empty(&c->erasable_list)) {
  59		/* Note that most of them will have gone directly to be erased.
  60		   So don't favour the erasable_list _too_ much. */
  61		jffs2_dbg(1, "Picking block from erasable_list to GC next\n");
  62		nextlist = &c->erasable_list;
  63	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
  64		/* Most of the time, pick one off the very_dirty list */
  65		jffs2_dbg(1, "Picking block from very_dirty_list to GC next\n");
  66		nextlist = &c->very_dirty_list;
  67	} else if (n < 126 && !list_empty(&c->dirty_list)) {
  68		jffs2_dbg(1, "Picking block from dirty_list to GC next\n");
  69		nextlist = &c->dirty_list;
  70	} else if (!list_empty(&c->clean_list)) {
  71		jffs2_dbg(1, "Picking block from clean_list to GC next\n");
  72		nextlist = &c->clean_list;
  73	} else if (!list_empty(&c->dirty_list)) {
  74		jffs2_dbg(1, "Picking block from dirty_list to GC next (clean_list was empty)\n");
  75
  76		nextlist = &c->dirty_list;
  77	} else if (!list_empty(&c->very_dirty_list)) {
  78		jffs2_dbg(1, "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n");
  79		nextlist = &c->very_dirty_list;
  80	} else if (!list_empty(&c->erasable_list)) {
  81		jffs2_dbg(1, "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n");
  82
  83		nextlist = &c->erasable_list;
  84	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
  85		/* There are blocks are wating for the wbuf sync */
  86		jffs2_dbg(1, "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n");
  87		spin_unlock(&c->erase_completion_lock);
  88		jffs2_flush_wbuf_pad(c);
  89		spin_lock(&c->erase_completion_lock);
  90		goto again;
  91	} else {
  92		/* Eep. All were empty */
  93		jffs2_dbg(1, "No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n");
  94		return NULL;
  95	}
  96
  97	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
  98	list_del(&ret->list);
  99	c->gcblock = ret;
 100	ret->gc_node = ret->first_node;
 101	if (!ret->gc_node) {
 102		pr_warn("Eep. ret->gc_node for block at 0x%08x is NULL\n",
 103			ret->offset);
 104		BUG();
 105	}
 106
 107	/* Have we accidentally picked a clean block with wasted space ? */
 108	if (ret->wasted_size) {
 109		jffs2_dbg(1, "Converting wasted_size %08x to dirty_size\n",
 110			  ret->wasted_size);
 111		ret->dirty_size += ret->wasted_size;
 112		c->wasted_size -= ret->wasted_size;
 113		c->dirty_size += ret->wasted_size;
 114		ret->wasted_size = 0;
 115	}
 116
 117	return ret;
 118}
 119
 120/* jffs2_garbage_collect_pass
 121 * Make a single attempt to progress GC. Move one node, and possibly
 122 * start erasing one eraseblock.
 123 */
 124int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
 125{
 126	struct jffs2_inode_info *f;
 127	struct jffs2_inode_cache *ic;
 128	struct jffs2_eraseblock *jeb;
 129	struct jffs2_raw_node_ref *raw;
 130	uint32_t gcblock_dirty;
 131	int ret = 0, inum, nlink;
 132	int xattr = 0;
 133
 134	if (mutex_lock_interruptible(&c->alloc_sem))
 135		return -EINTR;
 136
 
 137	for (;;) {
 
 
 
 
 138		spin_lock(&c->erase_completion_lock);
 139		if (!c->unchecked_size)
 140			break;
 141
 142		/* We can't start doing GC yet. We haven't finished checking
 143		   the node CRCs etc. Do it now. */
 144
 145		/* checked_ino is protected by the alloc_sem */
 146		if (c->checked_ino > c->highest_ino && xattr) {
 147			pr_crit("Checked all inodes but still 0x%x bytes of unchecked space?\n",
 148				c->unchecked_size);
 149			jffs2_dbg_dump_block_lists_nolock(c);
 150			spin_unlock(&c->erase_completion_lock);
 151			mutex_unlock(&c->alloc_sem);
 152			return -ENOSPC;
 153		}
 154
 155		spin_unlock(&c->erase_completion_lock);
 156
 157		if (!xattr)
 158			xattr = jffs2_verify_xattr(c);
 159
 160		spin_lock(&c->inocache_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161
 162		ic = jffs2_get_ino_cache(c, c->checked_ino++);
 
 
 
 
 
 
 163
 164		if (!ic) {
 165			spin_unlock(&c->inocache_lock);
 166			continue;
 167		}
 
 168
 169		if (!ic->pino_nlink) {
 170			jffs2_dbg(1, "Skipping check of ino #%d with nlink/pino zero\n",
 171				  ic->ino);
 172			spin_unlock(&c->inocache_lock);
 173			jffs2_xattr_delete_inode(c, ic);
 174			continue;
 175		}
 176		switch(ic->state) {
 177		case INO_STATE_CHECKEDABSENT:
 178		case INO_STATE_PRESENT:
 179			jffs2_dbg(1, "Skipping ino #%u already checked\n",
 180				  ic->ino);
 181			spin_unlock(&c->inocache_lock);
 182			continue;
 183
 184		case INO_STATE_GC:
 185		case INO_STATE_CHECKING:
 186			pr_warn("Inode #%u is in state %d during CRC check phase!\n",
 187				ic->ino, ic->state);
 188			spin_unlock(&c->inocache_lock);
 189			BUG();
 190
 191		case INO_STATE_READING:
 192			/* We need to wait for it to finish, lest we move on
 193			   and trigger the BUG() above while we haven't yet
 194			   finished checking all its nodes */
 195			jffs2_dbg(1, "Waiting for ino #%u to finish reading\n",
 196				  ic->ino);
 197			/* We need to come back again for the _same_ inode. We've
 198			 made no progress in this case, but that should be OK */
 199			c->checked_ino--;
 200
 201			mutex_unlock(&c->alloc_sem);
 202			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 203			return 0;
 204
 205		default:
 206			BUG();
 207
 208		case INO_STATE_UNCHECKED:
 209			;
 210		}
 211		ic->state = INO_STATE_CHECKING;
 212		spin_unlock(&c->inocache_lock);
 213
 214		jffs2_dbg(1, "%s(): triggering inode scan of ino#%u\n",
 215			  __func__, ic->ino);
 216
 217		ret = jffs2_do_crccheck_inode(c, ic);
 218		if (ret)
 219			pr_warn("Returned error for crccheck of ino #%u. Expect badness...\n",
 220				ic->ino);
 221
 222		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
 223		mutex_unlock(&c->alloc_sem);
 224		return ret;
 225	}
 226
 227	/* If there are any blocks which need erasing, erase them now */
 228	if (!list_empty(&c->erase_complete_list) ||
 229	    !list_empty(&c->erase_pending_list)) {
 230		spin_unlock(&c->erase_completion_lock);
 231		mutex_unlock(&c->alloc_sem);
 232		jffs2_dbg(1, "%s(): erasing pending blocks\n", __func__);
 233		if (jffs2_erase_pending_blocks(c, 1))
 234			return 0;
 235
 236		jffs2_dbg(1, "No progress from erasing block; doing GC anyway\n");
 237		mutex_lock(&c->alloc_sem);
 238		spin_lock(&c->erase_completion_lock);
 239	}
 240
 241	/* First, work out which block we're garbage-collecting */
 242	jeb = c->gcblock;
 243
 244	if (!jeb)
 245		jeb = jffs2_find_gc_block(c);
 246
 247	if (!jeb) {
 248		/* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
 249		if (c->nr_erasing_blocks) {
 250			spin_unlock(&c->erase_completion_lock);
 251			mutex_unlock(&c->alloc_sem);
 252			return -EAGAIN;
 253		}
 254		jffs2_dbg(1, "Couldn't find erase block to garbage collect!\n");
 255		spin_unlock(&c->erase_completion_lock);
 256		mutex_unlock(&c->alloc_sem);
 257		return -EIO;
 258	}
 259
 260	jffs2_dbg(1, "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n",
 261		  jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size);
 262	D1(if (c->nextblock)
 263	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
 264
 265	if (!jeb->used_size) {
 266		mutex_unlock(&c->alloc_sem);
 267		goto eraseit;
 268	}
 269
 270	raw = jeb->gc_node;
 271	gcblock_dirty = jeb->dirty_size;
 272
 273	while(ref_obsolete(raw)) {
 274		jffs2_dbg(1, "Node at 0x%08x is obsolete... skipping\n",
 275			  ref_offset(raw));
 276		raw = ref_next(raw);
 277		if (unlikely(!raw)) {
 278			pr_warn("eep. End of raw list while still supposedly nodes to GC\n");
 279			pr_warn("erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
 280				jeb->offset, jeb->free_size,
 281				jeb->dirty_size, jeb->used_size);
 282			jeb->gc_node = raw;
 283			spin_unlock(&c->erase_completion_lock);
 284			mutex_unlock(&c->alloc_sem);
 285			BUG();
 286		}
 287	}
 288	jeb->gc_node = raw;
 289
 290	jffs2_dbg(1, "Going to garbage collect node at 0x%08x\n",
 291		  ref_offset(raw));
 292
 293	if (!raw->next_in_ino) {
 294		/* Inode-less node. Clean marker, snapshot or something like that */
 295		spin_unlock(&c->erase_completion_lock);
 296		if (ref_flags(raw) == REF_PRISTINE) {
 297			/* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
 298			jffs2_garbage_collect_pristine(c, NULL, raw);
 299		} else {
 300			/* Just mark it obsolete */
 301			jffs2_mark_node_obsolete(c, raw);
 302		}
 303		mutex_unlock(&c->alloc_sem);
 304		goto eraseit_lock;
 305	}
 306
 307	ic = jffs2_raw_ref_to_ic(raw);
 308
 309#ifdef CONFIG_JFFS2_FS_XATTR
 310	/* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
 311	 * We can decide whether this node is inode or xattr by ic->class.     */
 312	if (ic->class == RAWNODE_CLASS_XATTR_DATUM
 313	    || ic->class == RAWNODE_CLASS_XATTR_REF) {
 314		spin_unlock(&c->erase_completion_lock);
 315
 316		if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 317			ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
 318		} else {
 319			ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
 320		}
 321		goto test_gcnode;
 322	}
 323#endif
 324
 325	/* We need to hold the inocache. Either the erase_completion_lock or
 326	   the inocache_lock are sufficient; we trade down since the inocache_lock
 327	   causes less contention. */
 328	spin_lock(&c->inocache_lock);
 329
 330	spin_unlock(&c->erase_completion_lock);
 331
 332	jffs2_dbg(1, "%s(): collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n",
 333		  __func__, jeb->offset, ref_offset(raw), ref_flags(raw),
 334		  ic->ino);
 335
 336	/* Three possibilities:
 337	   1. Inode is already in-core. We must iget it and do proper
 338	      updating to its fragtree, etc.
 339	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
 340	      inocache to prevent a read_inode(), copy the node intact.
 341	   3. Inode is not in-core, node is not pristine. We must iget()
 342	      and take the slow path.
 343	*/
 344
 345	switch(ic->state) {
 346	case INO_STATE_CHECKEDABSENT:
 347		/* It's been checked, but it's not currently in-core.
 348		   We can just copy any pristine nodes, but have
 349		   to prevent anyone else from doing read_inode() while
 350		   we're at it, so we set the state accordingly */
 351		if (ref_flags(raw) == REF_PRISTINE)
 352			ic->state = INO_STATE_GC;
 353		else {
 354			jffs2_dbg(1, "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
 355				  ic->ino);
 356		}
 357		break;
 358
 359	case INO_STATE_PRESENT:
 360		/* It's in-core. GC must iget() it. */
 361		break;
 362
 363	case INO_STATE_UNCHECKED:
 364	case INO_STATE_CHECKING:
 365	case INO_STATE_GC:
 366		/* Should never happen. We should have finished checking
 367		   by the time we actually start doing any GC, and since
 368		   we're holding the alloc_sem, no other garbage collection
 369		   can happen.
 370		*/
 371		pr_crit("Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
 372			ic->ino, ic->state);
 373		mutex_unlock(&c->alloc_sem);
 374		spin_unlock(&c->inocache_lock);
 375		BUG();
 376
 377	case INO_STATE_READING:
 378		/* Someone's currently trying to read it. We must wait for
 379		   them to finish and then go through the full iget() route
 380		   to do the GC. However, sometimes read_inode() needs to get
 381		   the alloc_sem() (for marking nodes invalid) so we must
 382		   drop the alloc_sem before sleeping. */
 383
 384		mutex_unlock(&c->alloc_sem);
 385		jffs2_dbg(1, "%s(): waiting for ino #%u in state %d\n",
 386			  __func__, ic->ino, ic->state);
 387		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 388		/* And because we dropped the alloc_sem we must start again from the
 389		   beginning. Ponder chance of livelock here -- we're returning success
 390		   without actually making any progress.
 391
 392		   Q: What are the chances that the inode is back in INO_STATE_READING
 393		   again by the time we next enter this function? And that this happens
 394		   enough times to cause a real delay?
 395
 396		   A: Small enough that I don't care :)
 397		*/
 398		return 0;
 399	}
 400
 401	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
 402	   node intact, and we don't have to muck about with the fragtree etc.
 403	   because we know it's not in-core. If it _was_ in-core, we go through
 404	   all the iget() crap anyway */
 405
 406	if (ic->state == INO_STATE_GC) {
 407		spin_unlock(&c->inocache_lock);
 408
 409		ret = jffs2_garbage_collect_pristine(c, ic, raw);
 410
 411		spin_lock(&c->inocache_lock);
 412		ic->state = INO_STATE_CHECKEDABSENT;
 413		wake_up(&c->inocache_wq);
 414
 415		if (ret != -EBADFD) {
 416			spin_unlock(&c->inocache_lock);
 417			goto test_gcnode;
 418		}
 419
 420		/* Fall through if it wanted us to, with inocache_lock held */
 421	}
 422
 423	/* Prevent the fairly unlikely race where the gcblock is
 424	   entirely obsoleted by the final close of a file which had
 425	   the only valid nodes in the block, followed by erasure,
 426	   followed by freeing of the ic because the erased block(s)
 427	   held _all_ the nodes of that inode.... never been seen but
 428	   it's vaguely possible. */
 429
 430	inum = ic->ino;
 431	nlink = ic->pino_nlink;
 432	spin_unlock(&c->inocache_lock);
 433
 434	f = jffs2_gc_fetch_inode(c, inum, !nlink);
 435	if (IS_ERR(f)) {
 436		ret = PTR_ERR(f);
 437		goto release_sem;
 438	}
 439	if (!f) {
 440		ret = 0;
 441		goto release_sem;
 442	}
 443
 444	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
 445
 446	jffs2_gc_release_inode(c, f);
 447
 448 test_gcnode:
 449	if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
 450		/* Eep. This really should never happen. GC is broken */
 451		pr_err("Error garbage collecting node at %08x!\n",
 452		       ref_offset(jeb->gc_node));
 453		ret = -ENOSPC;
 454	}
 455 release_sem:
 456	mutex_unlock(&c->alloc_sem);
 457
 458 eraseit_lock:
 459	/* If we've finished this block, start it erasing */
 460	spin_lock(&c->erase_completion_lock);
 461
 462 eraseit:
 463	if (c->gcblock && !c->gcblock->used_size) {
 464		jffs2_dbg(1, "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n",
 465			  c->gcblock->offset);
 466		/* We're GC'ing an empty block? */
 467		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
 468		c->gcblock = NULL;
 469		c->nr_erasing_blocks++;
 470		jffs2_garbage_collect_trigger(c);
 471	}
 472	spin_unlock(&c->erase_completion_lock);
 473
 474	return ret;
 475}
 476
 477static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
 478				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
 479{
 480	struct jffs2_node_frag *frag;
 481	struct jffs2_full_dnode *fn = NULL;
 482	struct jffs2_full_dirent *fd;
 483	uint32_t start = 0, end = 0, nrfrags = 0;
 484	int ret = 0;
 485
 486	mutex_lock(&f->sem);
 487
 488	/* Now we have the lock for this inode. Check that it's still the one at the head
 489	   of the list. */
 490
 491	spin_lock(&c->erase_completion_lock);
 492
 493	if (c->gcblock != jeb) {
 494		spin_unlock(&c->erase_completion_lock);
 495		jffs2_dbg(1, "GC block is no longer gcblock. Restart\n");
 496		goto upnout;
 497	}
 498	if (ref_obsolete(raw)) {
 499		spin_unlock(&c->erase_completion_lock);
 500		jffs2_dbg(1, "node to be GC'd was obsoleted in the meantime.\n");
 501		/* They'll call again */
 502		goto upnout;
 503	}
 504	spin_unlock(&c->erase_completion_lock);
 505
 506	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
 507	if (f->metadata && f->metadata->raw == raw) {
 508		fn = f->metadata;
 509		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
 510		goto upnout;
 511	}
 512
 513	/* FIXME. Read node and do lookup? */
 514	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
 515		if (frag->node && frag->node->raw == raw) {
 516			fn = frag->node;
 517			end = frag->ofs + frag->size;
 518			if (!nrfrags++)
 519				start = frag->ofs;
 520			if (nrfrags == frag->node->frags)
 521				break; /* We've found them all */
 522		}
 523	}
 524	if (fn) {
 525		if (ref_flags(raw) == REF_PRISTINE) {
 526			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
 527			if (!ret) {
 528				/* Urgh. Return it sensibly. */
 529				frag->node->raw = f->inocache->nodes;
 530			}
 531			if (ret != -EBADFD)
 532				goto upnout;
 533		}
 534		/* We found a datanode. Do the GC */
 535		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
 536			/* It crosses a page boundary. Therefore, it must be a hole. */
 537			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
 538		} else {
 539			/* It could still be a hole. But we GC the page this way anyway */
 540			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
 541		}
 542		goto upnout;
 543	}
 544
 545	/* Wasn't a dnode. Try dirent */
 546	for (fd = f->dents; fd; fd=fd->next) {
 547		if (fd->raw == raw)
 548			break;
 549	}
 550
 551	if (fd && fd->ino) {
 552		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
 553	} else if (fd) {
 554		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
 555	} else {
 556		pr_warn("Raw node at 0x%08x wasn't in node lists for ino #%u\n",
 557			ref_offset(raw), f->inocache->ino);
 558		if (ref_obsolete(raw)) {
 559			pr_warn("But it's obsolete so we don't mind too much\n");
 560		} else {
 561			jffs2_dbg_dump_node(c, ref_offset(raw));
 562			BUG();
 563		}
 564	}
 565 upnout:
 566	mutex_unlock(&f->sem);
 567
 568	return ret;
 569}
 570
 571static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
 572					  struct jffs2_inode_cache *ic,
 573					  struct jffs2_raw_node_ref *raw)
 574{
 575	union jffs2_node_union *node;
 576	size_t retlen;
 577	int ret;
 578	uint32_t phys_ofs, alloclen;
 579	uint32_t crc, rawlen;
 580	int retried = 0;
 581
 582	jffs2_dbg(1, "Going to GC REF_PRISTINE node at 0x%08x\n",
 583		  ref_offset(raw));
 584
 585	alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
 586
 587	/* Ask for a small amount of space (or the totlen if smaller) because we
 588	   don't want to force wastage of the end of a block if splitting would
 589	   work. */
 590	if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
 591		alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
 592
 593	ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
 594	/* 'rawlen' is not the exact summary size; it is only an upper estimation */
 595
 596	if (ret)
 597		return ret;
 598
 599	if (alloclen < rawlen) {
 600		/* Doesn't fit untouched. We'll go the old route and split it */
 601		return -EBADFD;
 602	}
 603
 604	node = kmalloc(rawlen, GFP_KERNEL);
 605	if (!node)
 606		return -ENOMEM;
 607
 608	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
 609	if (!ret && retlen != rawlen)
 610		ret = -EIO;
 611	if (ret)
 612		goto out_node;
 613
 614	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
 615	if (je32_to_cpu(node->u.hdr_crc) != crc) {
 616		pr_warn("Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 617			ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
 618		goto bail;
 619	}
 620
 621	switch(je16_to_cpu(node->u.nodetype)) {
 622	case JFFS2_NODETYPE_INODE:
 623		crc = crc32(0, node, sizeof(node->i)-8);
 624		if (je32_to_cpu(node->i.node_crc) != crc) {
 625			pr_warn("Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 626				ref_offset(raw), je32_to_cpu(node->i.node_crc),
 627				crc);
 628			goto bail;
 629		}
 630
 631		if (je32_to_cpu(node->i.dsize)) {
 632			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
 633			if (je32_to_cpu(node->i.data_crc) != crc) {
 634				pr_warn("Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 635					ref_offset(raw),
 636					je32_to_cpu(node->i.data_crc), crc);
 637				goto bail;
 638			}
 639		}
 640		break;
 641
 642	case JFFS2_NODETYPE_DIRENT:
 643		crc = crc32(0, node, sizeof(node->d)-8);
 644		if (je32_to_cpu(node->d.node_crc) != crc) {
 645			pr_warn("Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 646				ref_offset(raw),
 647				je32_to_cpu(node->d.node_crc), crc);
 648			goto bail;
 649		}
 650
 651		if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
 652			pr_warn("Name in dirent node at 0x%08x contains zeroes\n",
 653				ref_offset(raw));
 654			goto bail;
 655		}
 656
 657		if (node->d.nsize) {
 658			crc = crc32(0, node->d.name, node->d.nsize);
 659			if (je32_to_cpu(node->d.name_crc) != crc) {
 660				pr_warn("Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 661					ref_offset(raw),
 662					je32_to_cpu(node->d.name_crc), crc);
 663				goto bail;
 664			}
 665		}
 666		break;
 667	default:
 668		/* If it's inode-less, we don't _know_ what it is. Just copy it intact */
 669		if (ic) {
 670			pr_warn("Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
 671				ref_offset(raw), je16_to_cpu(node->u.nodetype));
 672			goto bail;
 673		}
 674	}
 675
 676	/* OK, all the CRCs are good; this node can just be copied as-is. */
 677 retry:
 678	phys_ofs = write_ofs(c);
 679
 680	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
 681
 682	if (ret || (retlen != rawlen)) {
 683		pr_notice("Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
 684			  rawlen, phys_ofs, ret, retlen);
 685		if (retlen) {
 686			jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
 687		} else {
 688			pr_notice("Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n",
 689				  phys_ofs);
 690		}
 691		if (!retried) {
 692			/* Try to reallocate space and retry */
 693			uint32_t dummy;
 694			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
 695
 696			retried = 1;
 697
 698			jffs2_dbg(1, "Retrying failed write of REF_PRISTINE node.\n");
 699
 700			jffs2_dbg_acct_sanity_check(c,jeb);
 701			jffs2_dbg_acct_paranoia_check(c, jeb);
 702
 703			ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
 704						/* this is not the exact summary size of it,
 705							it is only an upper estimation */
 706
 707			if (!ret) {
 708				jffs2_dbg(1, "Allocated space at 0x%08x to retry failed write.\n",
 709					  phys_ofs);
 710
 711				jffs2_dbg_acct_sanity_check(c,jeb);
 712				jffs2_dbg_acct_paranoia_check(c, jeb);
 713
 714				goto retry;
 715			}
 716			jffs2_dbg(1, "Failed to allocate space to retry failed write: %d!\n",
 717				  ret);
 718		}
 719
 720		if (!ret)
 721			ret = -EIO;
 722		goto out_node;
 723	}
 724	jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
 725
 726	jffs2_mark_node_obsolete(c, raw);
 727	jffs2_dbg(1, "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n",
 728		  ref_offset(raw));
 729
 730 out_node:
 731	kfree(node);
 732	return ret;
 733 bail:
 734	ret = -EBADFD;
 735	goto out_node;
 736}
 737
 738static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 739					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
 740{
 741	struct jffs2_full_dnode *new_fn;
 742	struct jffs2_raw_inode ri;
 743	struct jffs2_node_frag *last_frag;
 744	union jffs2_device_node dev;
 745	char *mdata = NULL;
 746	int mdatalen = 0;
 747	uint32_t alloclen, ilen;
 748	int ret;
 749
 750	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
 751	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
 752		/* For these, we don't actually need to read the old node */
 753		mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
 754		mdata = (char *)&dev;
 755		jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
 756			  __func__, mdatalen);
 757	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
 758		mdatalen = fn->size;
 759		mdata = kmalloc(fn->size, GFP_KERNEL);
 760		if (!mdata) {
 761			pr_warn("kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
 762			return -ENOMEM;
 763		}
 764		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
 765		if (ret) {
 766			pr_warn("read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n",
 767				ret);
 768			kfree(mdata);
 769			return ret;
 770		}
 771		jffs2_dbg(1, "%s(): Writing %d bites of symlink target\n",
 772			  __func__, mdatalen);
 773
 774	}
 775
 776	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
 777				JFFS2_SUMMARY_INODE_SIZE);
 778	if (ret) {
 779		pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
 780			sizeof(ri) + mdatalen, ret);
 781		goto out;
 782	}
 783
 784	last_frag = frag_last(&f->fragtree);
 785	if (last_frag)
 786		/* Fetch the inode length from the fragtree rather then
 787		 * from i_size since i_size may have not been updated yet */
 788		ilen = last_frag->ofs + last_frag->size;
 789	else
 790		ilen = JFFS2_F_I_SIZE(f);
 791
 792	memset(&ri, 0, sizeof(ri));
 793	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 794	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
 795	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
 796	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
 797
 798	ri.ino = cpu_to_je32(f->inocache->ino);
 799	ri.version = cpu_to_je32(++f->highest_version);
 800	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
 801	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
 802	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
 803	ri.isize = cpu_to_je32(ilen);
 804	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
 805	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
 806	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 807	ri.offset = cpu_to_je32(0);
 808	ri.csize = cpu_to_je32(mdatalen);
 809	ri.dsize = cpu_to_je32(mdatalen);
 810	ri.compr = JFFS2_COMPR_NONE;
 811	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
 812	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
 813
 814	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
 815
 816	if (IS_ERR(new_fn)) {
 817		pr_warn("Error writing new dnode: %ld\n", PTR_ERR(new_fn));
 818		ret = PTR_ERR(new_fn);
 819		goto out;
 820	}
 821	jffs2_mark_node_obsolete(c, fn->raw);
 822	jffs2_free_full_dnode(fn);
 823	f->metadata = new_fn;
 824 out:
 825	if (S_ISLNK(JFFS2_F_I_MODE(f)))
 826		kfree(mdata);
 827	return ret;
 828}
 829
 830static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 831					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 832{
 833	struct jffs2_full_dirent *new_fd;
 834	struct jffs2_raw_dirent rd;
 835	uint32_t alloclen;
 836	int ret;
 837
 838	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 839	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
 840	rd.nsize = strlen(fd->name);
 841	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
 842	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
 843
 844	rd.pino = cpu_to_je32(f->inocache->ino);
 845	rd.version = cpu_to_je32(++f->highest_version);
 846	rd.ino = cpu_to_je32(fd->ino);
 847	/* If the times on this inode were set by explicit utime() they can be different,
 848	   so refrain from splatting them. */
 849	if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
 850		rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 851	else
 852		rd.mctime = cpu_to_je32(0);
 853	rd.type = fd->type;
 854	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
 855	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
 856
 857	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
 858				JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
 859	if (ret) {
 860		pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
 861			sizeof(rd)+rd.nsize, ret);
 862		return ret;
 863	}
 864	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
 865
 866	if (IS_ERR(new_fd)) {
 867		pr_warn("jffs2_write_dirent in garbage_collect_dirent failed: %ld\n",
 868			PTR_ERR(new_fd));
 869		return PTR_ERR(new_fd);
 870	}
 871	jffs2_add_fd_to_list(c, new_fd, &f->dents);
 872	return 0;
 873}
 874
 875static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 876					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 877{
 878	struct jffs2_full_dirent **fdp = &f->dents;
 879	int found = 0;
 880
 881	/* On a medium where we can't actually mark nodes obsolete
 882	   pernamently, such as NAND flash, we need to work out
 883	   whether this deletion dirent is still needed to actively
 884	   delete a 'real' dirent with the same name that's still
 885	   somewhere else on the flash. */
 886	if (!jffs2_can_mark_obsolete(c)) {
 887		struct jffs2_raw_dirent *rd;
 888		struct jffs2_raw_node_ref *raw;
 889		int ret;
 890		size_t retlen;
 891		int name_len = strlen(fd->name);
 892		uint32_t name_crc = crc32(0, fd->name, name_len);
 893		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
 894
 895		rd = kmalloc(rawlen, GFP_KERNEL);
 896		if (!rd)
 897			return -ENOMEM;
 898
 899		/* Prevent the erase code from nicking the obsolete node refs while
 900		   we're looking at them. I really don't like this extra lock but
 901		   can't see any alternative. Suggestions on a postcard to... */
 902		mutex_lock(&c->erase_free_sem);
 903
 904		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
 905
 906			cond_resched();
 907
 908			/* We only care about obsolete ones */
 909			if (!(ref_obsolete(raw)))
 910				continue;
 911
 912			/* Any dirent with the same name is going to have the same length... */
 913			if (ref_totlen(c, NULL, raw) != rawlen)
 914				continue;
 915
 916			/* Doesn't matter if there's one in the same erase block. We're going to
 917			   delete it too at the same time. */
 918			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
 919				continue;
 920
 921			jffs2_dbg(1, "Check potential deletion dirent at %08x\n",
 922				  ref_offset(raw));
 923
 924			/* This is an obsolete node belonging to the same directory, and it's of the right
 925			   length. We need to take a closer look...*/
 926			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
 927			if (ret) {
 928				pr_warn("%s(): Read error (%d) reading obsolete node at %08x\n",
 929					__func__, ret, ref_offset(raw));
 930				/* If we can't read it, we don't need to continue to obsolete it. Continue */
 931				continue;
 932			}
 933			if (retlen != rawlen) {
 934				pr_warn("%s(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
 935					__func__, retlen, rawlen,
 936					ref_offset(raw));
 937				continue;
 938			}
 939
 940			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
 941				continue;
 942
 943			/* If the name CRC doesn't match, skip */
 944			if (je32_to_cpu(rd->name_crc) != name_crc)
 945				continue;
 946
 947			/* If the name length doesn't match, or it's another deletion dirent, skip */
 948			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
 949				continue;
 950
 951			/* OK, check the actual name now */
 952			if (memcmp(rd->name, fd->name, name_len))
 953				continue;
 954
 955			/* OK. The name really does match. There really is still an older node on
 956			   the flash which our deletion dirent obsoletes. So we have to write out
 957			   a new deletion dirent to replace it */
 958			mutex_unlock(&c->erase_free_sem);
 959
 960			jffs2_dbg(1, "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
 961				  ref_offset(fd->raw), fd->name,
 962				  ref_offset(raw), je32_to_cpu(rd->ino));
 963			kfree(rd);
 964
 965			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
 966		}
 967
 968		mutex_unlock(&c->erase_free_sem);
 969		kfree(rd);
 970	}
 971
 972	/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
 973	   we should update the metadata node with those times accordingly */
 974
 975	/* No need for it any more. Just mark it obsolete and remove it from the list */
 976	while (*fdp) {
 977		if ((*fdp) == fd) {
 978			found = 1;
 979			*fdp = fd->next;
 980			break;
 981		}
 982		fdp = &(*fdp)->next;
 983	}
 984	if (!found) {
 985		pr_warn("Deletion dirent \"%s\" not found in list for ino #%u\n",
 986			fd->name, f->inocache->ino);
 987	}
 988	jffs2_mark_node_obsolete(c, fd->raw);
 989	jffs2_free_full_dirent(fd);
 990	return 0;
 991}
 992
 993static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 994				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
 995				      uint32_t start, uint32_t end)
 996{
 997	struct jffs2_raw_inode ri;
 998	struct jffs2_node_frag *frag;
 999	struct jffs2_full_dnode *new_fn;
1000	uint32_t alloclen, ilen;
1001	int ret;
1002
1003	jffs2_dbg(1, "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
1004		  f->inocache->ino, start, end);
1005
1006	memset(&ri, 0, sizeof(ri));
1007
1008	if(fn->frags > 1) {
1009		size_t readlen;
1010		uint32_t crc;
1011		/* It's partially obsoleted by a later write. So we have to
1012		   write it out again with the _same_ version as before */
1013		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
1014		if (readlen != sizeof(ri) || ret) {
1015			pr_warn("Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n",
1016				ret, readlen);
1017			goto fill;
1018		}
1019		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
1020			pr_warn("%s(): Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
1021				__func__, ref_offset(fn->raw),
1022				je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
1023			return -EIO;
1024		}
1025		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
1026			pr_warn("%s(): Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
1027				__func__, ref_offset(fn->raw),
1028				je32_to_cpu(ri.totlen), sizeof(ri));
1029			return -EIO;
1030		}
1031		crc = crc32(0, &ri, sizeof(ri)-8);
1032		if (crc != je32_to_cpu(ri.node_crc)) {
1033			pr_warn("%s: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
1034				__func__, ref_offset(fn->raw),
1035				je32_to_cpu(ri.node_crc), crc);
1036			/* FIXME: We could possibly deal with this by writing new holes for each frag */
1037			pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1038				start, end, f->inocache->ino);
1039			goto fill;
1040		}
1041		if (ri.compr != JFFS2_COMPR_ZERO) {
1042			pr_warn("%s(): Node 0x%08x wasn't a hole node!\n",
1043				__func__, ref_offset(fn->raw));
1044			pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1045				start, end, f->inocache->ino);
1046			goto fill;
1047		}
1048	} else {
1049	fill:
1050		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1051		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1052		ri.totlen = cpu_to_je32(sizeof(ri));
1053		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1054
1055		ri.ino = cpu_to_je32(f->inocache->ino);
1056		ri.version = cpu_to_je32(++f->highest_version);
1057		ri.offset = cpu_to_je32(start);
1058		ri.dsize = cpu_to_je32(end - start);
1059		ri.csize = cpu_to_je32(0);
1060		ri.compr = JFFS2_COMPR_ZERO;
1061	}
1062
1063	frag = frag_last(&f->fragtree);
1064	if (frag)
1065		/* Fetch the inode length from the fragtree rather then
1066		 * from i_size since i_size may have not been updated yet */
1067		ilen = frag->ofs + frag->size;
1068	else
1069		ilen = JFFS2_F_I_SIZE(f);
1070
1071	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1072	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1073	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1074	ri.isize = cpu_to_je32(ilen);
1075	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1076	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1077	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1078	ri.data_crc = cpu_to_je32(0);
1079	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1080
1081	ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1082				     JFFS2_SUMMARY_INODE_SIZE);
1083	if (ret) {
1084		pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1085			sizeof(ri), ret);
1086		return ret;
1087	}
1088	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1089
1090	if (IS_ERR(new_fn)) {
1091		pr_warn("Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1092		return PTR_ERR(new_fn);
1093	}
1094	if (je32_to_cpu(ri.version) == f->highest_version) {
1095		jffs2_add_full_dnode_to_inode(c, f, new_fn);
1096		if (f->metadata) {
1097			jffs2_mark_node_obsolete(c, f->metadata->raw);
1098			jffs2_free_full_dnode(f->metadata);
1099			f->metadata = NULL;
1100		}
1101		return 0;
1102	}
1103
1104	/*
1105	 * We should only get here in the case where the node we are
1106	 * replacing had more than one frag, so we kept the same version
1107	 * number as before. (Except in case of error -- see 'goto fill;'
1108	 * above.)
1109	 */
1110	D1(if(unlikely(fn->frags <= 1)) {
1111			pr_warn("%s(): Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1112				__func__, fn->frags, je32_to_cpu(ri.version),
1113				f->highest_version, je32_to_cpu(ri.ino));
1114	});
1115
1116	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1117	mark_ref_normal(new_fn->raw);
1118
1119	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1120	     frag; frag = frag_next(frag)) {
1121		if (frag->ofs > fn->size + fn->ofs)
1122			break;
1123		if (frag->node == fn) {
1124			frag->node = new_fn;
1125			new_fn->frags++;
1126			fn->frags--;
1127		}
1128	}
1129	if (fn->frags) {
1130		pr_warn("%s(): Old node still has frags!\n", __func__);
1131		BUG();
1132	}
1133	if (!new_fn->frags) {
1134		pr_warn("%s(): New node has no frags!\n", __func__);
1135		BUG();
1136	}
1137
1138	jffs2_mark_node_obsolete(c, fn->raw);
1139	jffs2_free_full_dnode(fn);
1140
1141	return 0;
1142}
1143
1144static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1145				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1146				       uint32_t start, uint32_t end)
1147{
 
1148	struct jffs2_full_dnode *new_fn;
1149	struct jffs2_raw_inode ri;
1150	uint32_t alloclen, offset, orig_end, orig_start;
1151	int ret = 0;
1152	unsigned char *comprbuf = NULL, *writebuf;
1153	unsigned long pg;
1154	unsigned char *pg_ptr;
1155
1156	memset(&ri, 0, sizeof(ri));
1157
1158	jffs2_dbg(1, "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1159		  f->inocache->ino, start, end);
1160
1161	orig_end = end;
1162	orig_start = start;
1163
1164	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1165		/* Attempt to do some merging. But only expand to cover logically
1166		   adjacent frags if the block containing them is already considered
1167		   to be dirty. Otherwise we end up with GC just going round in
1168		   circles dirtying the nodes it already wrote out, especially
1169		   on NAND where we have small eraseblocks and hence a much higher
1170		   chance of nodes having to be split to cross boundaries. */
1171
1172		struct jffs2_node_frag *frag;
1173		uint32_t min, max;
1174
1175		min = start & ~(PAGE_CACHE_SIZE-1);
1176		max = min + PAGE_CACHE_SIZE;
1177
1178		frag = jffs2_lookup_node_frag(&f->fragtree, start);
1179
1180		/* BUG_ON(!frag) but that'll happen anyway... */
1181
1182		BUG_ON(frag->ofs != start);
1183
1184		/* First grow down... */
1185		while((frag = frag_prev(frag)) && frag->ofs >= min) {
1186
1187			/* If the previous frag doesn't even reach the beginning, there's
1188			   excessive fragmentation. Just merge. */
1189			if (frag->ofs > min) {
1190				jffs2_dbg(1, "Expanding down to cover partial frag (0x%x-0x%x)\n",
1191					  frag->ofs, frag->ofs+frag->size);
1192				start = frag->ofs;
1193				continue;
1194			}
1195			/* OK. This frag holds the first byte of the page. */
1196			if (!frag->node || !frag->node->raw) {
1197				jffs2_dbg(1, "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1198					  frag->ofs, frag->ofs+frag->size);
1199				break;
1200			} else {
1201
1202				/* OK, it's a frag which extends to the beginning of the page. Does it live
1203				   in a block which is still considered clean? If so, don't obsolete it.
1204				   If not, cover it anyway. */
1205
1206				struct jffs2_raw_node_ref *raw = frag->node->raw;
1207				struct jffs2_eraseblock *jeb;
1208
1209				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1210
1211				if (jeb == c->gcblock) {
1212					jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1213						  frag->ofs,
1214						  frag->ofs + frag->size,
1215						  ref_offset(raw));
1216					start = frag->ofs;
1217					break;
1218				}
1219				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1220					jffs2_dbg(1, "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1221						  frag->ofs,
1222						  frag->ofs + frag->size,
1223						  jeb->offset);
1224					break;
1225				}
1226
1227				jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1228					  frag->ofs,
1229					  frag->ofs + frag->size,
1230					  jeb->offset);
1231				start = frag->ofs;
1232				break;
1233			}
1234		}
1235
1236		/* ... then up */
1237
1238		/* Find last frag which is actually part of the node we're to GC. */
1239		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1240
1241		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1242
1243			/* If the previous frag doesn't even reach the beginning, there's lots
1244			   of fragmentation. Just merge. */
1245			if (frag->ofs+frag->size < max) {
1246				jffs2_dbg(1, "Expanding up to cover partial frag (0x%x-0x%x)\n",
1247					  frag->ofs, frag->ofs+frag->size);
1248				end = frag->ofs + frag->size;
1249				continue;
1250			}
1251
1252			if (!frag->node || !frag->node->raw) {
1253				jffs2_dbg(1, "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1254					  frag->ofs, frag->ofs+frag->size);
1255				break;
1256			} else {
1257
1258				/* OK, it's a frag which extends to the beginning of the page. Does it live
1259				   in a block which is still considered clean? If so, don't obsolete it.
1260				   If not, cover it anyway. */
1261
1262				struct jffs2_raw_node_ref *raw = frag->node->raw;
1263				struct jffs2_eraseblock *jeb;
1264
1265				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1266
1267				if (jeb == c->gcblock) {
1268					jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1269						  frag->ofs,
1270						  frag->ofs + frag->size,
1271						  ref_offset(raw));
1272					end = frag->ofs + frag->size;
1273					break;
1274				}
1275				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1276					jffs2_dbg(1, "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1277						  frag->ofs,
1278						  frag->ofs + frag->size,
1279						  jeb->offset);
1280					break;
1281				}
1282
1283				jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1284					  frag->ofs,
1285					  frag->ofs + frag->size,
1286					  jeb->offset);
1287				end = frag->ofs + frag->size;
1288				break;
1289			}
1290		}
1291		jffs2_dbg(1, "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1292			  orig_start, orig_end, start, end);
1293
1294		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1295		BUG_ON(end < orig_end);
1296		BUG_ON(start > orig_start);
1297	}
1298
1299	/* First, use readpage() to read the appropriate page into the page cache */
1300	/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1301	 *    triggered garbage collection in the first place?
1302	 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1303	 *    page OK. We'll actually write it out again in commit_write, which is a little
1304	 *    suboptimal, but at least we're correct.
1305	 */
1306	pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1307
1308	if (IS_ERR(pg_ptr)) {
 
 
1309		pr_warn("read_cache_page() returned error: %ld\n",
1310			PTR_ERR(pg_ptr));
1311		return PTR_ERR(pg_ptr);
 
1312	}
1313
 
 
 
1314	offset = start;
1315	while(offset < orig_end) {
1316		uint32_t datalen;
1317		uint32_t cdatalen;
1318		uint16_t comprtype = JFFS2_COMPR_NONE;
1319
1320		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1321					&alloclen, JFFS2_SUMMARY_INODE_SIZE);
1322
1323		if (ret) {
1324			pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1325				sizeof(ri) + JFFS2_MIN_DATA_LEN, ret);
1326			break;
1327		}
1328		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1329		datalen = end - offset;
1330
1331		writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1332
1333		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1334
1335		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1336		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1337		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1338		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1339
1340		ri.ino = cpu_to_je32(f->inocache->ino);
1341		ri.version = cpu_to_je32(++f->highest_version);
1342		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1343		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1344		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1345		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1346		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1347		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1348		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1349		ri.offset = cpu_to_je32(offset);
1350		ri.csize = cpu_to_je32(cdatalen);
1351		ri.dsize = cpu_to_je32(datalen);
1352		ri.compr = comprtype & 0xff;
1353		ri.usercompr = (comprtype >> 8) & 0xff;
1354		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1355		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1356
1357		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1358
1359		jffs2_free_comprbuf(comprbuf, writebuf);
1360
1361		if (IS_ERR(new_fn)) {
1362			pr_warn("Error writing new dnode: %ld\n",
1363				PTR_ERR(new_fn));
1364			ret = PTR_ERR(new_fn);
1365			break;
1366		}
1367		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1368		offset += datalen;
1369		if (f->metadata) {
1370			jffs2_mark_node_obsolete(c, f->metadata->raw);
1371			jffs2_free_full_dnode(f->metadata);
1372			f->metadata = NULL;
1373		}
1374	}
1375
1376	jffs2_gc_release_page(c, pg_ptr, &pg);
 
1377	return ret;
1378}