Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
 
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
 
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
 
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include "messages.h"
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
 
  35#include "print-tree.h"
  36#include "props.h"
  37#include "xattr.h"
  38#include "bio.h"
 
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "zoned.h"
  48#include "tests/btrfs-tests.h"
  49#include "block-group.h"
  50#include "discard.h"
  51#include "qgroup.h"
  52#include "raid56.h"
  53#include "fs.h"
  54#include "accessors.h"
  55#include "defrag.h"
  56#include "dir-item.h"
  57#include "ioctl.h"
  58#include "scrub.h"
  59#include "verity.h"
  60#include "super.h"
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/btrfs.h>
  63
  64static const struct super_operations btrfs_super_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65
  66/*
  67 * Types for mounting the default subvolume and a subvolume explicitly
  68 * requested by subvol=/path. That way the callchain is straightforward and we
  69 * don't have to play tricks with the mount options and recursive calls to
  70 * btrfs_mount.
  71 *
  72 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  73 */
  74static struct file_system_type btrfs_fs_type;
  75static struct file_system_type btrfs_root_fs_type;
 
 
 
 
 
 
  76
  77static int btrfs_remount(struct super_block *sb, int *flags, char *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78
  79static void btrfs_put_super(struct super_block *sb)
  80{
  81	close_ctree(btrfs_sb(sb));
 
 
 
 
 
 
  82}
  83
  84enum {
  85	Opt_acl, Opt_noacl,
  86	Opt_clear_cache,
  87	Opt_commit_interval,
  88	Opt_compress,
  89	Opt_compress_force,
  90	Opt_compress_force_type,
  91	Opt_compress_type,
  92	Opt_degraded,
  93	Opt_device,
  94	Opt_fatal_errors,
  95	Opt_flushoncommit, Opt_noflushoncommit,
  96	Opt_max_inline,
  97	Opt_barrier, Opt_nobarrier,
  98	Opt_datacow, Opt_nodatacow,
  99	Opt_datasum, Opt_nodatasum,
 100	Opt_defrag, Opt_nodefrag,
 101	Opt_discard, Opt_nodiscard,
 102	Opt_discard_mode,
 103	Opt_norecovery,
 104	Opt_ratio,
 105	Opt_rescan_uuid_tree,
 106	Opt_skip_balance,
 107	Opt_space_cache, Opt_no_space_cache,
 108	Opt_space_cache_version,
 109	Opt_ssd, Opt_nossd,
 110	Opt_ssd_spread, Opt_nossd_spread,
 111	Opt_subvol,
 112	Opt_subvol_empty,
 113	Opt_subvolid,
 114	Opt_thread_pool,
 115	Opt_treelog, Opt_notreelog,
 116	Opt_user_subvol_rm_allowed,
 117
 118	/* Rescue options */
 119	Opt_rescue,
 120	Opt_usebackuproot,
 121	Opt_nologreplay,
 122	Opt_ignorebadroots,
 123	Opt_ignoredatacsums,
 124	Opt_rescue_all,
 125
 126	/* Deprecated options */
 127	Opt_recovery,
 128	Opt_inode_cache, Opt_noinode_cache,
 129
 130	/* Debugging options */
 131	Opt_check_integrity,
 132	Opt_check_integrity_including_extent_data,
 133	Opt_check_integrity_print_mask,
 134	Opt_enospc_debug, Opt_noenospc_debug,
 135#ifdef CONFIG_BTRFS_DEBUG
 136	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 137#endif
 138#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 139	Opt_ref_verify,
 140#endif
 141	Opt_err,
 142};
 143
 144static const match_table_t tokens = {
 145	{Opt_acl, "acl"},
 146	{Opt_noacl, "noacl"},
 147	{Opt_clear_cache, "clear_cache"},
 148	{Opt_commit_interval, "commit=%u"},
 
 
 
 
 
 
 149	{Opt_compress, "compress"},
 150	{Opt_compress_type, "compress=%s"},
 151	{Opt_compress_force, "compress-force"},
 152	{Opt_compress_force_type, "compress-force=%s"},
 153	{Opt_degraded, "degraded"},
 154	{Opt_device, "device=%s"},
 155	{Opt_fatal_errors, "fatal_errors=%s"},
 156	{Opt_flushoncommit, "flushoncommit"},
 157	{Opt_noflushoncommit, "noflushoncommit"},
 158	{Opt_inode_cache, "inode_cache"},
 159	{Opt_noinode_cache, "noinode_cache"},
 160	{Opt_max_inline, "max_inline=%s"},
 161	{Opt_barrier, "barrier"},
 162	{Opt_nobarrier, "nobarrier"},
 163	{Opt_datacow, "datacow"},
 164	{Opt_nodatacow, "nodatacow"},
 165	{Opt_datasum, "datasum"},
 166	{Opt_nodatasum, "nodatasum"},
 167	{Opt_defrag, "autodefrag"},
 168	{Opt_nodefrag, "noautodefrag"},
 169	{Opt_discard, "discard"},
 170	{Opt_discard_mode, "discard=%s"},
 171	{Opt_nodiscard, "nodiscard"},
 172	{Opt_norecovery, "norecovery"},
 173	{Opt_ratio, "metadata_ratio=%u"},
 174	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 175	{Opt_skip_balance, "skip_balance"},
 176	{Opt_space_cache, "space_cache"},
 177	{Opt_no_space_cache, "nospace_cache"},
 178	{Opt_space_cache_version, "space_cache=%s"},
 179	{Opt_ssd, "ssd"},
 180	{Opt_nossd, "nossd"},
 181	{Opt_ssd_spread, "ssd_spread"},
 182	{Opt_nossd_spread, "nossd_spread"},
 183	{Opt_subvol, "subvol=%s"},
 184	{Opt_subvol_empty, "subvol="},
 185	{Opt_subvolid, "subvolid=%s"},
 186	{Opt_thread_pool, "thread_pool=%u"},
 187	{Opt_treelog, "treelog"},
 188	{Opt_notreelog, "notreelog"},
 
 
 
 
 
 189	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 190
 191	/* Rescue options */
 192	{Opt_rescue, "rescue=%s"},
 193	/* Deprecated, with alias rescue=nologreplay */
 194	{Opt_nologreplay, "nologreplay"},
 195	/* Deprecated, with alias rescue=usebackuproot */
 196	{Opt_usebackuproot, "usebackuproot"},
 197
 198	/* Deprecated options */
 199	{Opt_recovery, "recovery"},
 200
 201	/* Debugging options */
 202	{Opt_check_integrity, "check_int"},
 203	{Opt_check_integrity_including_extent_data, "check_int_data"},
 204	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 205	{Opt_enospc_debug, "enospc_debug"},
 206	{Opt_noenospc_debug, "noenospc_debug"},
 207#ifdef CONFIG_BTRFS_DEBUG
 208	{Opt_fragment_data, "fragment=data"},
 209	{Opt_fragment_metadata, "fragment=metadata"},
 210	{Opt_fragment_all, "fragment=all"},
 211#endif
 212#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 213	{Opt_ref_verify, "ref_verify"},
 214#endif
 215	{Opt_err, NULL},
 216};
 217
 218static const match_table_t rescue_tokens = {
 219	{Opt_usebackuproot, "usebackuproot"},
 220	{Opt_nologreplay, "nologreplay"},
 221	{Opt_ignorebadroots, "ignorebadroots"},
 222	{Opt_ignorebadroots, "ibadroots"},
 223	{Opt_ignoredatacsums, "ignoredatacsums"},
 224	{Opt_ignoredatacsums, "idatacsums"},
 225	{Opt_rescue_all, "all"},
 226	{Opt_err, NULL},
 227};
 228
 229static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
 230			    const char *opt_name)
 231{
 232	if (fs_info->mount_opt & opt) {
 233		btrfs_err(fs_info, "%s must be used with ro mount option",
 234			  opt_name);
 235		return true;
 236	}
 237	return false;
 238}
 239
 240static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
 241{
 242	char *opts;
 243	char *orig;
 244	char *p;
 245	substring_t args[MAX_OPT_ARGS];
 246	int ret = 0;
 247
 248	opts = kstrdup(options, GFP_KERNEL);
 249	if (!opts)
 250		return -ENOMEM;
 251	orig = opts;
 252
 253	while ((p = strsep(&opts, ":")) != NULL) {
 254		int token;
 255
 256		if (!*p)
 257			continue;
 258		token = match_token(p, rescue_tokens, args);
 259		switch (token){
 260		case Opt_usebackuproot:
 261			btrfs_info(info,
 262				   "trying to use backup root at mount time");
 263			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 264			break;
 265		case Opt_nologreplay:
 266			btrfs_set_and_info(info, NOLOGREPLAY,
 267					   "disabling log replay at mount time");
 268			break;
 269		case Opt_ignorebadroots:
 270			btrfs_set_and_info(info, IGNOREBADROOTS,
 271					   "ignoring bad roots");
 272			break;
 273		case Opt_ignoredatacsums:
 274			btrfs_set_and_info(info, IGNOREDATACSUMS,
 275					   "ignoring data csums");
 276			break;
 277		case Opt_rescue_all:
 278			btrfs_info(info, "enabling all of the rescue options");
 279			btrfs_set_and_info(info, IGNOREDATACSUMS,
 280					   "ignoring data csums");
 281			btrfs_set_and_info(info, IGNOREBADROOTS,
 282					   "ignoring bad roots");
 283			btrfs_set_and_info(info, NOLOGREPLAY,
 284					   "disabling log replay at mount time");
 285			break;
 286		case Opt_err:
 287			btrfs_info(info, "unrecognized rescue option '%s'", p);
 288			ret = -EINVAL;
 289			goto out;
 290		default:
 291			break;
 292		}
 293
 294	}
 295out:
 296	kfree(orig);
 297	return ret;
 298}
 299
 300/*
 301 * Regular mount options parser.  Everything that is needed only when
 302 * reading in a new superblock is parsed here.
 303 * XXX JDM: This needs to be cleaned up for remount.
 304 */
 305int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 306			unsigned long new_flags)
 307{
 
 308	substring_t args[MAX_OPT_ARGS];
 309	char *p, *num;
 
 310	int intarg;
 311	int ret = 0;
 312	char *compress_type;
 313	bool compress_force = false;
 314	enum btrfs_compression_type saved_compress_type;
 315	int saved_compress_level;
 316	bool saved_compress_force;
 317	int no_compress = 0;
 318	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
 319
 320	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 321		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 322	else if (btrfs_free_space_cache_v1_active(info)) {
 323		if (btrfs_is_zoned(info)) {
 324			btrfs_info(info,
 325			"zoned: clearing existing space cache");
 326			btrfs_set_super_cache_generation(info->super_copy, 0);
 327		} else {
 328			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 329		}
 330	}
 331
 332	/*
 333	 * Even the options are empty, we still need to do extra check
 334	 * against new flags
 335	 */
 
 336	if (!options)
 337		goto check;
 
 
 338
 339	while ((p = strsep(&options, ",")) != NULL) {
 340		int token;
 341		if (!*p)
 342			continue;
 343
 344		token = match_token(p, tokens, args);
 345		switch (token) {
 346		case Opt_degraded:
 347			btrfs_info(info, "allowing degraded mounts");
 348			btrfs_set_opt(info->mount_opt, DEGRADED);
 349			break;
 350		case Opt_subvol:
 351		case Opt_subvol_empty:
 352		case Opt_subvolid:
 
 353		case Opt_device:
 354			/*
 355			 * These are parsed by btrfs_parse_subvol_options or
 356			 * btrfs_parse_device_options and can be ignored here.
 357			 */
 358			break;
 359		case Opt_nodatasum:
 360			btrfs_set_and_info(info, NODATASUM,
 361					   "setting nodatasum");
 362			break;
 363		case Opt_datasum:
 364			if (btrfs_test_opt(info, NODATASUM)) {
 365				if (btrfs_test_opt(info, NODATACOW))
 366					btrfs_info(info,
 367						   "setting datasum, datacow enabled");
 368				else
 369					btrfs_info(info, "setting datasum");
 370			}
 371			btrfs_clear_opt(info->mount_opt, NODATACOW);
 372			btrfs_clear_opt(info->mount_opt, NODATASUM);
 373			break;
 374		case Opt_nodatacow:
 375			if (!btrfs_test_opt(info, NODATACOW)) {
 376				if (!btrfs_test_opt(info, COMPRESS) ||
 377				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 378					btrfs_info(info,
 379						   "setting nodatacow, compression disabled");
 380				} else {
 381					btrfs_info(info, "setting nodatacow");
 382				}
 383			}
 384			btrfs_clear_opt(info->mount_opt, COMPRESS);
 385			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 386			btrfs_set_opt(info->mount_opt, NODATACOW);
 387			btrfs_set_opt(info->mount_opt, NODATASUM);
 388			break;
 389		case Opt_datacow:
 390			btrfs_clear_and_info(info, NODATACOW,
 391					     "setting datacow");
 392			break;
 393		case Opt_compress_force:
 394		case Opt_compress_force_type:
 395			compress_force = true;
 396			fallthrough;
 397		case Opt_compress:
 398		case Opt_compress_type:
 399			saved_compress_type = btrfs_test_opt(info,
 400							     COMPRESS) ?
 401				info->compress_type : BTRFS_COMPRESS_NONE;
 402			saved_compress_force =
 403				btrfs_test_opt(info, FORCE_COMPRESS);
 404			saved_compress_level = info->compress_level;
 405			if (token == Opt_compress ||
 406			    token == Opt_compress_force ||
 407			    strncmp(args[0].from, "zlib", 4) == 0) {
 408				compress_type = "zlib";
 409
 410				info->compress_type = BTRFS_COMPRESS_ZLIB;
 411				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 412				/*
 413				 * args[0] contains uninitialized data since
 414				 * for these tokens we don't expect any
 415				 * parameter.
 416				 */
 417				if (token != Opt_compress &&
 418				    token != Opt_compress_force)
 419					info->compress_level =
 420					  btrfs_compress_str2level(
 421							BTRFS_COMPRESS_ZLIB,
 422							args[0].from + 4);
 423				btrfs_set_opt(info->mount_opt, COMPRESS);
 424				btrfs_clear_opt(info->mount_opt, NODATACOW);
 425				btrfs_clear_opt(info->mount_opt, NODATASUM);
 426				no_compress = 0;
 427			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 428				compress_type = "lzo";
 429				info->compress_type = BTRFS_COMPRESS_LZO;
 430				info->compress_level = 0;
 431				btrfs_set_opt(info->mount_opt, COMPRESS);
 432				btrfs_clear_opt(info->mount_opt, NODATACOW);
 433				btrfs_clear_opt(info->mount_opt, NODATASUM);
 434				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 435				no_compress = 0;
 436			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 437				compress_type = "zstd";
 438				info->compress_type = BTRFS_COMPRESS_ZSTD;
 439				info->compress_level =
 440					btrfs_compress_str2level(
 441							 BTRFS_COMPRESS_ZSTD,
 442							 args[0].from + 4);
 443				btrfs_set_opt(info->mount_opt, COMPRESS);
 444				btrfs_clear_opt(info->mount_opt, NODATACOW);
 445				btrfs_clear_opt(info->mount_opt, NODATASUM);
 446				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 447				no_compress = 0;
 448			} else if (strncmp(args[0].from, "no", 2) == 0) {
 449				compress_type = "no";
 450				info->compress_level = 0;
 451				info->compress_type = 0;
 452				btrfs_clear_opt(info->mount_opt, COMPRESS);
 453				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 454				compress_force = false;
 455				no_compress++;
 456			} else {
 457				btrfs_err(info, "unrecognized compression value %s",
 458					  args[0].from);
 459				ret = -EINVAL;
 460				goto out;
 461			}
 462
 
 463			if (compress_force) {
 464				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 465			} else {
 466				/*
 467				 * If we remount from compress-force=xxx to
 468				 * compress=xxx, we need clear FORCE_COMPRESS
 469				 * flag, otherwise, there is no way for users
 470				 * to disable forcible compression separately.
 471				 */
 472				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 473			}
 474			if (no_compress == 1) {
 475				btrfs_info(info, "use no compression");
 476			} else if ((info->compress_type != saved_compress_type) ||
 477				   (compress_force != saved_compress_force) ||
 478				   (info->compress_level != saved_compress_level)) {
 479				btrfs_info(info, "%s %s compression, level %d",
 480					   (compress_force) ? "force" : "use",
 481					   compress_type, info->compress_level);
 482			}
 483			compress_force = false;
 484			break;
 485		case Opt_ssd:
 486			btrfs_set_and_info(info, SSD,
 487					   "enabling ssd optimizations");
 488			btrfs_clear_opt(info->mount_opt, NOSSD);
 489			break;
 490		case Opt_ssd_spread:
 491			btrfs_set_and_info(info, SSD,
 492					   "enabling ssd optimizations");
 493			btrfs_set_and_info(info, SSD_SPREAD,
 494					   "using spread ssd allocation scheme");
 495			btrfs_clear_opt(info->mount_opt, NOSSD);
 496			break;
 497		case Opt_nossd:
 
 
 498			btrfs_set_opt(info->mount_opt, NOSSD);
 499			btrfs_clear_and_info(info, SSD,
 500					     "not using ssd optimizations");
 501			fallthrough;
 502		case Opt_nossd_spread:
 503			btrfs_clear_and_info(info, SSD_SPREAD,
 504					     "not using spread ssd allocation scheme");
 505			break;
 506		case Opt_barrier:
 507			btrfs_clear_and_info(info, NOBARRIER,
 508					     "turning on barriers");
 509			break;
 510		case Opt_nobarrier:
 511			btrfs_set_and_info(info, NOBARRIER,
 512					   "turning off barriers");
 513			break;
 514		case Opt_thread_pool:
 515			ret = match_int(&args[0], &intarg);
 516			if (ret) {
 517				btrfs_err(info, "unrecognized thread_pool value %s",
 518					  args[0].from);
 519				goto out;
 520			} else if (intarg == 0) {
 521				btrfs_err(info, "invalid value 0 for thread_pool");
 522				ret = -EINVAL;
 523				goto out;
 524			}
 525			info->thread_pool_size = intarg;
 526			break;
 527		case Opt_max_inline:
 528			num = match_strdup(&args[0]);
 529			if (num) {
 530				info->max_inline = memparse(num, NULL);
 531				kfree(num);
 532
 533				if (info->max_inline) {
 534					info->max_inline = min_t(u64,
 535						info->max_inline,
 536						info->sectorsize);
 537				}
 538				btrfs_info(info, "max_inline at %llu",
 539					   info->max_inline);
 540			} else {
 541				ret = -ENOMEM;
 542				goto out;
 543			}
 544			break;
 545		case Opt_acl:
 546#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 547			info->sb->s_flags |= SB_POSIXACL;
 
 
 
 
 
 
 548			break;
 549#else
 550			btrfs_err(info, "support for ACL not compiled in!");
 551			ret = -EINVAL;
 552			goto out;
 553#endif
 554		case Opt_noacl:
 555			info->sb->s_flags &= ~SB_POSIXACL;
 556			break;
 557		case Opt_notreelog:
 558			btrfs_set_and_info(info, NOTREELOG,
 559					   "disabling tree log");
 560			break;
 561		case Opt_treelog:
 562			btrfs_clear_and_info(info, NOTREELOG,
 563					     "enabling tree log");
 564			break;
 565		case Opt_norecovery:
 566		case Opt_nologreplay:
 567			btrfs_warn(info,
 568		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 569			btrfs_set_and_info(info, NOLOGREPLAY,
 570					   "disabling log replay at mount time");
 571			break;
 572		case Opt_flushoncommit:
 573			btrfs_set_and_info(info, FLUSHONCOMMIT,
 574					   "turning on flush-on-commit");
 575			break;
 576		case Opt_noflushoncommit:
 577			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 578					     "turning off flush-on-commit");
 579			break;
 580		case Opt_ratio:
 581			ret = match_int(&args[0], &intarg);
 582			if (ret) {
 583				btrfs_err(info, "unrecognized metadata_ratio value %s",
 584					  args[0].from);
 585				goto out;
 
 586			}
 587			info->metadata_ratio = intarg;
 588			btrfs_info(info, "metadata ratio %u",
 589				   info->metadata_ratio);
 590			break;
 591		case Opt_discard:
 592		case Opt_discard_mode:
 593			if (token == Opt_discard ||
 594			    strcmp(args[0].from, "sync") == 0) {
 595				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
 596				btrfs_set_and_info(info, DISCARD_SYNC,
 597						   "turning on sync discard");
 598			} else if (strcmp(args[0].from, "async") == 0) {
 599				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
 600				btrfs_set_and_info(info, DISCARD_ASYNC,
 601						   "turning on async discard");
 602			} else {
 603				btrfs_err(info, "unrecognized discard mode value %s",
 604					  args[0].from);
 605				ret = -EINVAL;
 606				goto out;
 607			}
 608			btrfs_clear_opt(info->mount_opt, NODISCARD);
 609			break;
 610		case Opt_nodiscard:
 611			btrfs_clear_and_info(info, DISCARD_SYNC,
 612					     "turning off discard");
 613			btrfs_clear_and_info(info, DISCARD_ASYNC,
 614					     "turning off async discard");
 615			btrfs_set_opt(info->mount_opt, NODISCARD);
 616			break;
 617		case Opt_space_cache:
 618		case Opt_space_cache_version:
 619			/*
 620			 * We already set FREE_SPACE_TREE above because we have
 621			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
 622			 * to allow v1 to be set for extent tree v2, simply
 623			 * ignore this setting if we're extent tree v2.
 624			 */
 625			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
 626				break;
 627			if (token == Opt_space_cache ||
 628			    strcmp(args[0].from, "v1") == 0) {
 629				btrfs_clear_opt(info->mount_opt,
 630						FREE_SPACE_TREE);
 631				btrfs_set_and_info(info, SPACE_CACHE,
 632					   "enabling disk space caching");
 633			} else if (strcmp(args[0].from, "v2") == 0) {
 634				btrfs_clear_opt(info->mount_opt,
 635						SPACE_CACHE);
 636				btrfs_set_and_info(info, FREE_SPACE_TREE,
 637						   "enabling free space tree");
 638			} else {
 639				btrfs_err(info, "unrecognized space_cache value %s",
 640					  args[0].from);
 641				ret = -EINVAL;
 642				goto out;
 643			}
 644			break;
 645		case Opt_rescan_uuid_tree:
 646			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 647			break;
 648		case Opt_no_space_cache:
 649			/*
 650			 * We cannot operate without the free space tree with
 651			 * extent tree v2, ignore this option.
 652			 */
 653			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
 654				break;
 655			if (btrfs_test_opt(info, SPACE_CACHE)) {
 656				btrfs_clear_and_info(info, SPACE_CACHE,
 657					     "disabling disk space caching");
 658			}
 659			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 660				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 661					     "disabling free space tree");
 662			}
 663			break;
 664		case Opt_inode_cache:
 665		case Opt_noinode_cache:
 666			btrfs_warn(info,
 667	"the 'inode_cache' option is deprecated and has no effect since 5.11");
 668			break;
 669		case Opt_clear_cache:
 670			/*
 671			 * We cannot clear the free space tree with extent tree
 672			 * v2, ignore this option.
 673			 */
 674			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
 675				break;
 676			btrfs_set_and_info(info, CLEAR_CACHE,
 677					   "force clearing of disk cache");
 678			break;
 679		case Opt_user_subvol_rm_allowed:
 680			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 681			break;
 682		case Opt_enospc_debug:
 683			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 684			break;
 685		case Opt_noenospc_debug:
 686			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 687			break;
 688		case Opt_defrag:
 689			btrfs_set_and_info(info, AUTO_DEFRAG,
 690					   "enabling auto defrag");
 691			break;
 692		case Opt_nodefrag:
 693			btrfs_clear_and_info(info, AUTO_DEFRAG,
 694					     "disabling auto defrag");
 695			break;
 696		case Opt_recovery:
 697		case Opt_usebackuproot:
 698			btrfs_warn(info,
 699			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
 700				   token == Opt_recovery ? "recovery" :
 701				   "usebackuproot");
 702			btrfs_info(info,
 703				   "trying to use backup root at mount time");
 704			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 705			break;
 706		case Opt_skip_balance:
 707			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 708			break;
 709#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 710		case Opt_check_integrity_including_extent_data:
 711			btrfs_info(info,
 712				   "enabling check integrity including extent data");
 713			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
 
 714			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 715			break;
 716		case Opt_check_integrity:
 717			btrfs_info(info, "enabling check integrity");
 718			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 719			break;
 720		case Opt_check_integrity_print_mask:
 721			ret = match_int(&args[0], &intarg);
 722			if (ret) {
 723				btrfs_err(info,
 724				"unrecognized check_integrity_print_mask value %s",
 725					args[0].from);
 726				goto out;
 
 727			}
 728			info->check_integrity_print_mask = intarg;
 729			btrfs_info(info, "check_integrity_print_mask 0x%x",
 730				   info->check_integrity_print_mask);
 731			break;
 732#else
 733		case Opt_check_integrity_including_extent_data:
 734		case Opt_check_integrity:
 735		case Opt_check_integrity_print_mask:
 736			btrfs_err(info,
 737				  "support for check_integrity* not compiled in!");
 738			ret = -EINVAL;
 739			goto out;
 740#endif
 741		case Opt_fatal_errors:
 742			if (strcmp(args[0].from, "panic") == 0) {
 743				btrfs_set_opt(info->mount_opt,
 744					      PANIC_ON_FATAL_ERROR);
 745			} else if (strcmp(args[0].from, "bug") == 0) {
 746				btrfs_clear_opt(info->mount_opt,
 747					      PANIC_ON_FATAL_ERROR);
 748			} else {
 749				btrfs_err(info, "unrecognized fatal_errors value %s",
 750					  args[0].from);
 751				ret = -EINVAL;
 752				goto out;
 753			}
 754			break;
 755		case Opt_commit_interval:
 756			intarg = 0;
 757			ret = match_int(&args[0], &intarg);
 758			if (ret) {
 759				btrfs_err(info, "unrecognized commit_interval value %s",
 760					  args[0].from);
 761				ret = -EINVAL;
 762				goto out;
 763			}
 764			if (intarg == 0) {
 765				btrfs_info(info,
 766					   "using default commit interval %us",
 767					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 768				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 769			} else if (intarg > 300) {
 770				btrfs_warn(info, "excessive commit interval %d",
 771					   intarg);
 772			}
 773			info->commit_interval = intarg;
 774			break;
 775		case Opt_rescue:
 776			ret = parse_rescue_options(info, args[0].from);
 777			if (ret < 0) {
 778				btrfs_err(info, "unrecognized rescue value %s",
 779					  args[0].from);
 780				goto out;
 781			}
 782			break;
 783#ifdef CONFIG_BTRFS_DEBUG
 784		case Opt_fragment_all:
 785			btrfs_info(info, "fragmenting all space");
 786			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 787			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 788			break;
 789		case Opt_fragment_metadata:
 790			btrfs_info(info, "fragmenting metadata");
 791			btrfs_set_opt(info->mount_opt,
 792				      FRAGMENT_METADATA);
 793			break;
 794		case Opt_fragment_data:
 795			btrfs_info(info, "fragmenting data");
 796			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 797			break;
 798#endif
 799#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 800		case Opt_ref_verify:
 801			btrfs_info(info, "doing ref verification");
 802			btrfs_set_opt(info->mount_opt, REF_VERIFY);
 803			break;
 804#endif
 805		case Opt_err:
 806			btrfs_err(info, "unrecognized mount option '%s'", p);
 
 807			ret = -EINVAL;
 808			goto out;
 809		default:
 810			break;
 811		}
 812	}
 813check:
 814	/* We're read-only, don't have to check. */
 815	if (new_flags & SB_RDONLY)
 816		goto out;
 817
 818	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 819	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 820	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
 821		ret = -EINVAL;
 822out:
 823	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 824	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 825	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 826		btrfs_err(info, "cannot disable free space tree");
 827		ret = -EINVAL;
 828
 829	}
 830	if (!ret)
 831		ret = btrfs_check_mountopts_zoned(info);
 832	if (!ret && !remounting) {
 833		if (btrfs_test_opt(info, SPACE_CACHE))
 834			btrfs_info(info, "disk space caching is enabled");
 835		if (btrfs_test_opt(info, FREE_SPACE_TREE))
 836			btrfs_info(info, "using free space tree");
 837	}
 838	return ret;
 839}
 840
 841/*
 842 * Parse mount options that are required early in the mount process.
 843 *
 844 * All other options will be parsed on much later in the mount process and
 845 * only when we need to allocate a new super block.
 846 */
 847static int btrfs_parse_device_options(const char *options, fmode_t flags,
 848				      void *holder)
 
 849{
 850	substring_t args[MAX_OPT_ARGS];
 851	char *device_name, *opts, *orig, *p;
 852	struct btrfs_device *device = NULL;
 853	int error = 0;
 854
 855	lockdep_assert_held(&uuid_mutex);
 856
 857	if (!options)
 858		return 0;
 859
 860	/*
 861	 * strsep changes the string, duplicate it because btrfs_parse_options
 862	 * gets called later
 863	 */
 864	opts = kstrdup(options, GFP_KERNEL);
 865	if (!opts)
 866		return -ENOMEM;
 867	orig = opts;
 868
 869	while ((p = strsep(&opts, ",")) != NULL) {
 870		int token;
 871
 872		if (!*p)
 873			continue;
 874
 875		token = match_token(p, tokens, args);
 876		if (token == Opt_device) {
 877			device_name = match_strdup(&args[0]);
 878			if (!device_name) {
 879				error = -ENOMEM;
 880				goto out;
 881			}
 882			device = btrfs_scan_one_device(device_name, flags,
 883					holder);
 884			kfree(device_name);
 885			if (IS_ERR(device)) {
 886				error = PTR_ERR(device);
 887				goto out;
 888			}
 889		}
 890	}
 891
 892out:
 893	kfree(orig);
 894	return error;
 895}
 896
 897/*
 898 * Parse mount options that are related to subvolume id
 899 *
 900 * The value is later passed to mount_subvol()
 901 */
 902static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
 903		u64 *subvol_objectid)
 904{
 905	substring_t args[MAX_OPT_ARGS];
 906	char *opts, *orig, *p;
 907	int error = 0;
 908	u64 subvolid;
 909
 910	if (!options)
 911		return 0;
 912
 913	/*
 914	 * strsep changes the string, duplicate it because
 915	 * btrfs_parse_device_options gets called later
 916	 */
 917	opts = kstrdup(options, GFP_KERNEL);
 918	if (!opts)
 919		return -ENOMEM;
 920	orig = opts;
 921
 922	while ((p = strsep(&opts, ",")) != NULL) {
 923		int token;
 924		if (!*p)
 925			continue;
 926
 927		token = match_token(p, tokens, args);
 928		switch (token) {
 929		case Opt_subvol:
 930			kfree(*subvol_name);
 931			*subvol_name = match_strdup(&args[0]);
 932			if (!*subvol_name) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933				error = -ENOMEM;
 934				goto out;
 935			}
 936			break;
 937		case Opt_subvolid:
 938			error = match_u64(&args[0], &subvolid);
 939			if (error)
 940				goto out;
 941
 942			/* we want the original fs_tree */
 943			if (subvolid == 0)
 944				subvolid = BTRFS_FS_TREE_OBJECTID;
 945
 946			*subvol_objectid = subvolid;
 947			break;
 948		default:
 949			break;
 950		}
 951	}
 952
 953out:
 954	kfree(orig);
 955	return error;
 956}
 957
 958char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 959					  u64 subvol_objectid)
 960{
 961	struct btrfs_root *root = fs_info->tree_root;
 962	struct btrfs_root *fs_root = NULL;
 963	struct btrfs_root_ref *root_ref;
 964	struct btrfs_inode_ref *inode_ref;
 965	struct btrfs_key key;
 966	struct btrfs_path *path = NULL;
 967	char *name = NULL, *ptr;
 968	u64 dirid;
 969	int len;
 970	int ret;
 971
 972	path = btrfs_alloc_path();
 973	if (!path) {
 974		ret = -ENOMEM;
 975		goto err;
 976	}
 977
 978	name = kmalloc(PATH_MAX, GFP_KERNEL);
 979	if (!name) {
 980		ret = -ENOMEM;
 981		goto err;
 982	}
 983	ptr = name + PATH_MAX - 1;
 984	ptr[0] = '\0';
 985
 986	/*
 987	 * Walk up the subvolume trees in the tree of tree roots by root
 988	 * backrefs until we hit the top-level subvolume.
 989	 */
 990	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 991		key.objectid = subvol_objectid;
 992		key.type = BTRFS_ROOT_BACKREF_KEY;
 993		key.offset = (u64)-1;
 994
 995		ret = btrfs_search_backwards(root, &key, path);
 996		if (ret < 0) {
 997			goto err;
 998		} else if (ret > 0) {
 999			ret = -ENOENT;
1000			goto err;
1001		}
1002
1003		subvol_objectid = key.offset;
1004
1005		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1006					  struct btrfs_root_ref);
1007		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1008		ptr -= len + 1;
1009		if (ptr < name) {
1010			ret = -ENAMETOOLONG;
1011			goto err;
1012		}
1013		read_extent_buffer(path->nodes[0], ptr + 1,
1014				   (unsigned long)(root_ref + 1), len);
1015		ptr[0] = '/';
1016		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1017		btrfs_release_path(path);
1018
1019		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1020		if (IS_ERR(fs_root)) {
1021			ret = PTR_ERR(fs_root);
1022			fs_root = NULL;
1023			goto err;
1024		}
1025
1026		/*
1027		 * Walk up the filesystem tree by inode refs until we hit the
1028		 * root directory.
1029		 */
1030		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1031			key.objectid = dirid;
1032			key.type = BTRFS_INODE_REF_KEY;
1033			key.offset = (u64)-1;
1034
1035			ret = btrfs_search_backwards(fs_root, &key, path);
1036			if (ret < 0) {
1037				goto err;
1038			} else if (ret > 0) {
1039				ret = -ENOENT;
1040				goto err;
1041			}
1042
1043			dirid = key.offset;
1044
1045			inode_ref = btrfs_item_ptr(path->nodes[0],
1046						   path->slots[0],
1047						   struct btrfs_inode_ref);
1048			len = btrfs_inode_ref_name_len(path->nodes[0],
1049						       inode_ref);
1050			ptr -= len + 1;
1051			if (ptr < name) {
1052				ret = -ENAMETOOLONG;
1053				goto err;
1054			}
1055			read_extent_buffer(path->nodes[0], ptr + 1,
1056					   (unsigned long)(inode_ref + 1), len);
1057			ptr[0] = '/';
1058			btrfs_release_path(path);
1059		}
1060		btrfs_put_root(fs_root);
1061		fs_root = NULL;
1062	}
1063
1064	btrfs_free_path(path);
1065	if (ptr == name + PATH_MAX - 1) {
1066		name[0] = '/';
1067		name[1] = '\0';
1068	} else {
1069		memmove(name, ptr, name + PATH_MAX - ptr);
1070	}
1071	return name;
1072
1073err:
1074	btrfs_put_root(fs_root);
1075	btrfs_free_path(path);
1076	kfree(name);
1077	return ERR_PTR(ret);
1078}
1079
1080static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1081{
 
1082	struct btrfs_root *root = fs_info->tree_root;
 
1083	struct btrfs_dir_item *di;
1084	struct btrfs_path *path;
1085	struct btrfs_key location;
1086	struct fscrypt_str name = FSTR_INIT("default", 7);
1087	u64 dir_id;
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	path = btrfs_alloc_path();
1090	if (!path)
1091		return -ENOMEM;
 
1092
1093	/*
1094	 * Find the "default" dir item which points to the root item that we
1095	 * will mount by default if we haven't been given a specific subvolume
1096	 * to mount.
1097	 */
1098	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1099	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1100	if (IS_ERR(di)) {
1101		btrfs_free_path(path);
1102		return PTR_ERR(di);
1103	}
1104	if (!di) {
1105		/*
1106		 * Ok the default dir item isn't there.  This is weird since
1107		 * it's always been there, but don't freak out, just try and
1108		 * mount the top-level subvolume.
1109		 */
1110		btrfs_free_path(path);
1111		*objectid = BTRFS_FS_TREE_OBJECTID;
1112		return 0;
 
1113	}
1114
1115	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1116	btrfs_free_path(path);
1117	*objectid = location.objectid;
1118	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119}
1120
1121static int btrfs_fill_super(struct super_block *sb,
1122			    struct btrfs_fs_devices *fs_devices,
1123			    void *data)
1124{
1125	struct inode *inode;
1126	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
1127	int err;
1128
1129	sb->s_maxbytes = MAX_LFS_FILESIZE;
1130	sb->s_magic = BTRFS_SUPER_MAGIC;
1131	sb->s_op = &btrfs_super_ops;
1132	sb->s_d_op = &btrfs_dentry_operations;
1133	sb->s_export_op = &btrfs_export_ops;
1134#ifdef CONFIG_FS_VERITY
1135	sb->s_vop = &btrfs_verityops;
1136#endif
1137	sb->s_xattr = btrfs_xattr_handlers;
1138	sb->s_time_gran = 1;
1139#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1140	sb->s_flags |= SB_POSIXACL;
1141#endif
1142	sb->s_flags |= SB_I_VERSION;
1143	sb->s_iflags |= SB_I_CGROUPWB;
1144
1145	err = super_setup_bdi(sb);
1146	if (err) {
1147		btrfs_err(fs_info, "super_setup_bdi failed");
1148		return err;
1149	}
1150
1151	err = open_ctree(sb, fs_devices, (char *)data);
1152	if (err) {
1153		btrfs_err(fs_info, "open_ctree failed");
1154		return err;
1155	}
1156
1157	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 
 
 
1158	if (IS_ERR(inode)) {
1159		err = PTR_ERR(inode);
1160		goto fail_close;
1161	}
1162
1163	sb->s_root = d_make_root(inode);
1164	if (!sb->s_root) {
1165		err = -ENOMEM;
1166		goto fail_close;
1167	}
1168
1169	sb->s_flags |= SB_ACTIVE;
 
 
1170	return 0;
1171
1172fail_close:
1173	close_ctree(fs_info);
1174	return err;
1175}
1176
1177int btrfs_sync_fs(struct super_block *sb, int wait)
1178{
1179	struct btrfs_trans_handle *trans;
1180	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1181	struct btrfs_root *root = fs_info->tree_root;
 
1182
1183	trace_btrfs_sync_fs(fs_info, wait);
1184
1185	if (!wait) {
1186		filemap_flush(fs_info->btree_inode->i_mapping);
1187		return 0;
1188	}
1189
1190	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1191
1192	trans = btrfs_attach_transaction_barrier(root);
1193	if (IS_ERR(trans)) {
1194		/* no transaction, don't bother */
1195		if (PTR_ERR(trans) == -ENOENT) {
1196			/*
1197			 * Exit unless we have some pending changes
1198			 * that need to go through commit
1199			 */
1200			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1201				      &fs_info->flags))
1202				return 0;
1203			/*
1204			 * A non-blocking test if the fs is frozen. We must not
1205			 * start a new transaction here otherwise a deadlock
1206			 * happens. The pending operations are delayed to the
1207			 * next commit after thawing.
1208			 */
1209			if (sb_start_write_trylock(sb))
1210				sb_end_write(sb);
1211			else
1212				return 0;
1213			trans = btrfs_start_transaction(root, 0);
1214		}
1215		if (IS_ERR(trans))
1216			return PTR_ERR(trans);
1217	}
1218	return btrfs_commit_transaction(trans);
1219}
1220
1221static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1222{
1223	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1224	*printed = true;
 
1225}
1226
1227static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1228{
1229	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1230	const char *compress_type;
1231	const char *subvol_name;
1232	bool printed = false;
1233
1234	if (btrfs_test_opt(info, DEGRADED))
1235		seq_puts(seq, ",degraded");
1236	if (btrfs_test_opt(info, NODATASUM))
1237		seq_puts(seq, ",nodatasum");
1238	if (btrfs_test_opt(info, NODATACOW))
1239		seq_puts(seq, ",nodatacow");
1240	if (btrfs_test_opt(info, NOBARRIER))
1241		seq_puts(seq, ",nobarrier");
1242	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1243		seq_printf(seq, ",max_inline=%llu", info->max_inline);
 
 
 
 
1244	if (info->thread_pool_size !=  min_t(unsigned long,
1245					     num_online_cpus() + 2, 8))
1246		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1247	if (btrfs_test_opt(info, COMPRESS)) {
1248		compress_type = btrfs_compress_type2str(info->compress_type);
1249		if (btrfs_test_opt(info, FORCE_COMPRESS))
 
 
 
1250			seq_printf(seq, ",compress-force=%s", compress_type);
1251		else
1252			seq_printf(seq, ",compress=%s", compress_type);
1253		if (info->compress_level)
1254			seq_printf(seq, ":%d", info->compress_level);
1255	}
1256	if (btrfs_test_opt(info, NOSSD))
1257		seq_puts(seq, ",nossd");
1258	if (btrfs_test_opt(info, SSD_SPREAD))
1259		seq_puts(seq, ",ssd_spread");
1260	else if (btrfs_test_opt(info, SSD))
1261		seq_puts(seq, ",ssd");
1262	if (btrfs_test_opt(info, NOTREELOG))
1263		seq_puts(seq, ",notreelog");
1264	if (btrfs_test_opt(info, NOLOGREPLAY))
1265		print_rescue_option(seq, "nologreplay", &printed);
1266	if (btrfs_test_opt(info, USEBACKUPROOT))
1267		print_rescue_option(seq, "usebackuproot", &printed);
1268	if (btrfs_test_opt(info, IGNOREBADROOTS))
1269		print_rescue_option(seq, "ignorebadroots", &printed);
1270	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1271		print_rescue_option(seq, "ignoredatacsums", &printed);
1272	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1273		seq_puts(seq, ",flushoncommit");
1274	if (btrfs_test_opt(info, DISCARD_SYNC))
1275		seq_puts(seq, ",discard");
1276	if (btrfs_test_opt(info, DISCARD_ASYNC))
1277		seq_puts(seq, ",discard=async");
1278	if (!(info->sb->s_flags & SB_POSIXACL))
1279		seq_puts(seq, ",noacl");
1280	if (btrfs_free_space_cache_v1_active(info))
1281		seq_puts(seq, ",space_cache");
1282	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1283		seq_puts(seq, ",space_cache=v2");
1284	else
1285		seq_puts(seq, ",nospace_cache");
1286	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1287		seq_puts(seq, ",rescan_uuid_tree");
1288	if (btrfs_test_opt(info, CLEAR_CACHE))
1289		seq_puts(seq, ",clear_cache");
1290	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1291		seq_puts(seq, ",user_subvol_rm_allowed");
1292	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1293		seq_puts(seq, ",enospc_debug");
1294	if (btrfs_test_opt(info, AUTO_DEFRAG))
1295		seq_puts(seq, ",autodefrag");
1296	if (btrfs_test_opt(info, SKIP_BALANCE))
 
 
1297		seq_puts(seq, ",skip_balance");
1298#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1299	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1300		seq_puts(seq, ",check_int_data");
1301	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1302		seq_puts(seq, ",check_int");
1303	if (info->check_integrity_print_mask)
1304		seq_printf(seq, ",check_int_print_mask=%d",
1305				info->check_integrity_print_mask);
1306#endif
1307	if (info->metadata_ratio)
1308		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1309	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1310		seq_puts(seq, ",fatal_errors=panic");
1311	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1312		seq_printf(seq, ",commit=%u", info->commit_interval);
1313#ifdef CONFIG_BTRFS_DEBUG
1314	if (btrfs_test_opt(info, FRAGMENT_DATA))
1315		seq_puts(seq, ",fragment=data");
1316	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1317		seq_puts(seq, ",fragment=metadata");
1318#endif
1319	if (btrfs_test_opt(info, REF_VERIFY))
1320		seq_puts(seq, ",ref_verify");
1321	seq_printf(seq, ",subvolid=%llu",
1322		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1323	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1324			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1325	if (!IS_ERR(subvol_name)) {
1326		seq_puts(seq, ",subvol=");
1327		seq_escape(seq, subvol_name, " \t\n\\");
1328		kfree(subvol_name);
1329	}
1330	return 0;
1331}
1332
1333static int btrfs_test_super(struct super_block *s, void *data)
1334{
1335	struct btrfs_fs_info *p = data;
1336	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1337
1338	return fs_info->fs_devices == p->fs_devices;
1339}
1340
1341static int btrfs_set_super(struct super_block *s, void *data)
1342{
1343	int err = set_anon_super(s, data);
1344	if (!err)
1345		s->s_fs_info = data;
1346	return err;
1347}
1348
1349/*
1350 * subvolumes are identified by ino 256
1351 */
1352static inline int is_subvolume_inode(struct inode *inode)
1353{
1354	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1355		return 1;
1356	return 0;
1357}
1358
1359static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1360				   struct vfsmount *mnt)
 
 
 
 
1361{
1362	struct dentry *root;
1363	int ret;
1364
1365	if (!subvol_name) {
1366		if (!subvol_objectid) {
1367			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1368							  &subvol_objectid);
1369			if (ret) {
1370				root = ERR_PTR(ret);
1371				goto out;
1372			}
1373		}
1374		subvol_name = btrfs_get_subvol_name_from_objectid(
1375					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1376		if (IS_ERR(subvol_name)) {
1377			root = ERR_CAST(subvol_name);
1378			subvol_name = NULL;
1379			goto out;
1380		}
1381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382	}
1383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384	root = mount_subtree(mnt, subvol_name);
1385	/* mount_subtree() drops our reference on the vfsmount. */
1386	mnt = NULL;
1387
1388	if (!IS_ERR(root)) {
1389		struct super_block *s = root->d_sb;
1390		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1391		struct inode *root_inode = d_inode(root);
1392		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1393
1394		ret = 0;
1395		if (!is_subvolume_inode(root_inode)) {
1396			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1397			       subvol_name);
1398			ret = -EINVAL;
1399		}
1400		if (subvol_objectid && root_objectid != subvol_objectid) {
1401			/*
1402			 * This will also catch a race condition where a
1403			 * subvolume which was passed by ID is renamed and
1404			 * another subvolume is renamed over the old location.
1405			 */
1406			btrfs_err(fs_info,
1407				  "subvol '%s' does not match subvolid %llu",
1408				  subvol_name, subvol_objectid);
1409			ret = -EINVAL;
1410		}
1411		if (ret) {
1412			dput(root);
1413			root = ERR_PTR(ret);
1414			deactivate_locked_super(s);
1415		}
1416	}
1417
1418out:
1419	mntput(mnt);
1420	kfree(subvol_name);
1421	return root;
1422}
1423
1424/*
1425 * Find a superblock for the given device / mount point.
1426 *
1427 * Note: This is based on mount_bdev from fs/super.c with a few additions
1428 *       for multiple device setup.  Make sure to keep it in sync.
1429 */
1430static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1431		int flags, const char *device_name, void *data)
1432{
1433	struct block_device *bdev = NULL;
1434	struct super_block *s;
1435	struct btrfs_device *device = NULL;
1436	struct btrfs_fs_devices *fs_devices = NULL;
1437	struct btrfs_fs_info *fs_info = NULL;
1438	void *new_sec_opts = NULL;
1439	fmode_t mode = FMODE_READ;
 
 
 
1440	int error = 0;
1441
1442	if (!(flags & SB_RDONLY))
1443		mode |= FMODE_WRITE;
1444
1445	if (data) {
1446		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1447		if (error)
1448			return ERR_PTR(error);
 
 
 
 
 
 
 
 
1449	}
1450
 
 
 
 
1451	/*
1452	 * Setup a dummy root and fs_info for test/set super.  This is because
1453	 * we don't actually fill this stuff out until open_ctree, but we need
1454	 * then open_ctree will properly initialize the file system specific
1455	 * settings later.  btrfs_init_fs_info initializes the static elements
1456	 * of the fs_info (locks and such) to make cleanup easier if we find a
1457	 * superblock with our given fs_devices later on at sget() time.
1458	 */
1459	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1460	if (!fs_info) {
1461		error = -ENOMEM;
1462		goto error_sec_opts;
1463	}
1464	btrfs_init_fs_info(fs_info);
1465
1466	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1467	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1468	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1469		error = -ENOMEM;
1470		goto error_fs_info;
1471	}
1472
1473	mutex_lock(&uuid_mutex);
1474	error = btrfs_parse_device_options(data, mode, fs_type);
1475	if (error) {
1476		mutex_unlock(&uuid_mutex);
1477		goto error_fs_info;
1478	}
1479
1480	device = btrfs_scan_one_device(device_name, mode, fs_type);
1481	if (IS_ERR(device)) {
1482		mutex_unlock(&uuid_mutex);
1483		error = PTR_ERR(device);
1484		goto error_fs_info;
1485	}
1486
1487	fs_devices = device->fs_devices;
1488	fs_info->fs_devices = fs_devices;
1489
1490	error = btrfs_open_devices(fs_devices, mode, fs_type);
1491	mutex_unlock(&uuid_mutex);
1492	if (error)
1493		goto error_fs_info;
1494
1495	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1496		error = -EACCES;
1497		goto error_close_devices;
1498	}
1499
1500	bdev = fs_devices->latest_dev->bdev;
1501	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1502		 fs_info);
1503	if (IS_ERR(s)) {
1504		error = PTR_ERR(s);
1505		goto error_close_devices;
1506	}
1507
1508	if (s->s_root) {
1509		btrfs_close_devices(fs_devices);
1510		btrfs_free_fs_info(fs_info);
1511		if ((flags ^ s->s_flags) & SB_RDONLY)
1512			error = -EBUSY;
1513	} else {
1514		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1515		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1516					s->s_id);
 
1517		btrfs_sb(s)->bdev_holder = fs_type;
1518		if (!strstr(crc32c_impl(), "generic"))
1519			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1520		error = btrfs_fill_super(s, fs_devices, data);
1521	}
1522	if (!error)
1523		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1524	security_free_mnt_opts(&new_sec_opts);
1525	if (error) {
1526		deactivate_locked_super(s);
1527		return ERR_PTR(error);
1528	}
1529
1530	return dget(s->s_root);
 
 
 
 
1531
1532error_close_devices:
1533	btrfs_close_devices(fs_devices);
1534error_fs_info:
1535	btrfs_free_fs_info(fs_info);
1536error_sec_opts:
1537	security_free_mnt_opts(&new_sec_opts);
1538	return ERR_PTR(error);
1539}
1540
1541/*
1542 * Mount function which is called by VFS layer.
1543 *
1544 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1545 * which needs vfsmount* of device's root (/).  This means device's root has to
1546 * be mounted internally in any case.
1547 *
1548 * Operation flow:
1549 *   1. Parse subvol id related options for later use in mount_subvol().
1550 *
1551 *   2. Mount device's root (/) by calling vfs_kern_mount().
1552 *
1553 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1554 *      first place. In order to avoid calling btrfs_mount() again, we use
1555 *      different file_system_type which is not registered to VFS by
1556 *      register_filesystem() (btrfs_root_fs_type). As a result,
1557 *      btrfs_mount_root() is called. The return value will be used by
1558 *      mount_subtree() in mount_subvol().
1559 *
1560 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1561 *      "btrfs subvolume set-default", mount_subvol() is called always.
1562 */
1563static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1564		const char *device_name, void *data)
1565{
1566	struct vfsmount *mnt_root;
1567	struct dentry *root;
1568	char *subvol_name = NULL;
1569	u64 subvol_objectid = 0;
1570	int error = 0;
1571
1572	error = btrfs_parse_subvol_options(data, &subvol_name,
1573					&subvol_objectid);
1574	if (error) {
1575		kfree(subvol_name);
1576		return ERR_PTR(error);
1577	}
1578
1579	/* mount device's root (/) */
1580	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1581	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1582		if (flags & SB_RDONLY) {
1583			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1584				flags & ~SB_RDONLY, device_name, data);
1585		} else {
1586			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1587				flags | SB_RDONLY, device_name, data);
1588			if (IS_ERR(mnt_root)) {
1589				root = ERR_CAST(mnt_root);
1590				kfree(subvol_name);
1591				goto out;
1592			}
1593
1594			down_write(&mnt_root->mnt_sb->s_umount);
1595			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1596			up_write(&mnt_root->mnt_sb->s_umount);
1597			if (error < 0) {
1598				root = ERR_PTR(error);
1599				mntput(mnt_root);
1600				kfree(subvol_name);
1601				goto out;
1602			}
1603		}
1604	}
1605	if (IS_ERR(mnt_root)) {
1606		root = ERR_CAST(mnt_root);
1607		kfree(subvol_name);
1608		goto out;
1609	}
1610
1611	/* mount_subvol() will free subvol_name and mnt_root */
1612	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1613
1614out:
1615	return root;
1616}
1617
1618static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1619				     u32 new_pool_size, u32 old_pool_size)
1620{
1621	if (new_pool_size == old_pool_size)
1622		return;
1623
1624	fs_info->thread_pool_size = new_pool_size;
1625
1626	btrfs_info(fs_info, "resize thread pool %d -> %d",
1627	       old_pool_size, new_pool_size);
1628
1629	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1630	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1631	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1632	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1633	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1634	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1635	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1636}
1637
1638static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1639				       unsigned long old_opts, int flags)
1640{
1641	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1642	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1643	     (flags & SB_RDONLY))) {
1644		/* wait for any defraggers to finish */
1645		wait_event(fs_info->transaction_wait,
1646			   (atomic_read(&fs_info->defrag_running) == 0));
1647		if (flags & SB_RDONLY)
1648			sync_filesystem(fs_info->sb);
1649	}
1650}
1651
1652static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1653					 unsigned long old_opts)
1654{
1655	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1656
1657	/*
1658	 * We need to cleanup all defragable inodes if the autodefragment is
1659	 * close or the filesystem is read only.
1660	 */
1661	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1662	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1663		btrfs_cleanup_defrag_inodes(fs_info);
1664	}
1665
1666	/* If we toggled discard async */
1667	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1668	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1669		btrfs_discard_resume(fs_info);
1670	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1671		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1672		btrfs_discard_cleanup(fs_info);
1673
1674	/* If we toggled space cache */
1675	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1676		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1677}
1678
1679static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1680{
1681	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
1682	unsigned old_flags = sb->s_flags;
1683	unsigned long old_opts = fs_info->mount_opt;
1684	unsigned long old_compress_type = fs_info->compress_type;
1685	u64 old_max_inline = fs_info->max_inline;
1686	u32 old_thread_pool_size = fs_info->thread_pool_size;
1687	u32 old_metadata_ratio = fs_info->metadata_ratio;
 
1688	int ret;
1689
1690	sync_filesystem(sb);
1691	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1692
1693	if (data) {
1694		void *new_sec_opts = NULL;
1695
1696		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1697		if (!ret)
1698			ret = security_sb_remount(sb, new_sec_opts);
1699		security_free_mnt_opts(&new_sec_opts);
1700		if (ret)
1701			goto restore;
1702	}
1703
1704	ret = btrfs_parse_options(fs_info, data, *flags);
1705	if (ret)
1706		goto restore;
1707
1708	ret = btrfs_check_features(fs_info, !(*flags & SB_RDONLY));
1709	if (ret < 0)
1710		goto restore;
 
1711
1712	btrfs_remount_begin(fs_info, old_opts, *flags);
1713	btrfs_resize_thread_pool(fs_info,
1714		fs_info->thread_pool_size, old_thread_pool_size);
1715
1716	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1717	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1718	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1719		btrfs_warn(fs_info,
1720		"remount supports changing free space tree only from ro to rw");
1721		/* Make sure free space cache options match the state on disk */
1722		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1723			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1724			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1725		}
1726		if (btrfs_free_space_cache_v1_active(fs_info)) {
1727			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1728			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1729		}
1730	}
1731
1732	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1733		goto out;
1734
1735	if (*flags & SB_RDONLY) {
1736		/*
1737		 * this also happens on 'umount -rf' or on shutdown, when
1738		 * the filesystem is busy.
1739		 */
1740		cancel_work_sync(&fs_info->async_reclaim_work);
1741		cancel_work_sync(&fs_info->async_data_reclaim_work);
1742
1743		btrfs_discard_cleanup(fs_info);
1744
1745		/* wait for the uuid_scan task to finish */
1746		down(&fs_info->uuid_tree_rescan_sem);
1747		/* avoid complains from lockdep et al. */
1748		up(&fs_info->uuid_tree_rescan_sem);
1749
1750		btrfs_set_sb_rdonly(sb);
1751
1752		/*
1753		 * Setting SB_RDONLY will put the cleaner thread to
1754		 * sleep at the next loop if it's already active.
1755		 * If it's already asleep, we'll leave unused block
1756		 * groups on disk until we're mounted read-write again
1757		 * unless we clean them up here.
1758		 */
1759		btrfs_delete_unused_bgs(fs_info);
1760
1761		/*
1762		 * The cleaner task could be already running before we set the
1763		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1764		 * We must make sure that after we finish the remount, i.e. after
1765		 * we call btrfs_commit_super(), the cleaner can no longer start
1766		 * a transaction - either because it was dropping a dead root,
1767		 * running delayed iputs or deleting an unused block group (the
1768		 * cleaner picked a block group from the list of unused block
1769		 * groups before we were able to in the previous call to
1770		 * btrfs_delete_unused_bgs()).
1771		 */
1772		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1773			    TASK_UNINTERRUPTIBLE);
1774
1775		/*
1776		 * We've set the superblock to RO mode, so we might have made
1777		 * the cleaner task sleep without running all pending delayed
1778		 * iputs. Go through all the delayed iputs here, so that if an
1779		 * unmount happens without remounting RW we don't end up at
1780		 * finishing close_ctree() with a non-empty list of delayed
1781		 * iputs.
1782		 */
1783		btrfs_run_delayed_iputs(fs_info);
1784
1785		btrfs_dev_replace_suspend_for_unmount(fs_info);
1786		btrfs_scrub_cancel(fs_info);
1787		btrfs_pause_balance(fs_info);
1788
1789		/*
1790		 * Pause the qgroup rescan worker if it is running. We don't want
1791		 * it to be still running after we are in RO mode, as after that,
1792		 * by the time we unmount, it might have left a transaction open,
1793		 * so we would leak the transaction and/or crash.
1794		 */
1795		btrfs_qgroup_wait_for_completion(fs_info, false);
1796
1797		ret = btrfs_commit_super(fs_info);
1798		if (ret)
1799			goto restore;
1800	} else {
1801		if (BTRFS_FS_ERROR(fs_info)) {
1802			btrfs_err(fs_info,
1803				"Remounting read-write after error is not allowed");
1804			ret = -EINVAL;
1805			goto restore;
1806		}
1807		if (fs_info->fs_devices->rw_devices == 0) {
1808			ret = -EACCES;
1809			goto restore;
1810		}
1811
1812		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1813			btrfs_warn(fs_info,
1814		"too many missing devices, writable remount is not allowed");
1815			ret = -EACCES;
1816			goto restore;
1817		}
1818
1819		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1820			btrfs_warn(fs_info,
1821		"mount required to replay tree-log, cannot remount read-write");
1822			ret = -EINVAL;
1823			goto restore;
1824		}
1825
1826		/*
1827		 * NOTE: when remounting with a change that does writes, don't
1828		 * put it anywhere above this point, as we are not sure to be
1829		 * safe to write until we pass the above checks.
1830		 */
1831		ret = btrfs_start_pre_rw_mount(fs_info);
1832		if (ret)
1833			goto restore;
1834
1835		btrfs_clear_sb_rdonly(sb);
 
 
 
1836
1837		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1838	}
1839out:
1840	/*
1841	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1842	 * since the absence of the flag means it can be toggled off by remount.
1843	 */
1844	*flags |= SB_I_VERSION;
1845
1846	wake_up_process(fs_info->transaction_kthread);
1847	btrfs_remount_cleanup(fs_info, old_opts);
1848	btrfs_clear_oneshot_options(fs_info);
1849	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1850
1851	return 0;
1852
1853restore:
1854	/* We've hit an error - don't reset SB_RDONLY */
1855	if (sb_rdonly(sb))
1856		old_flags |= SB_RDONLY;
1857	if (!(old_flags & SB_RDONLY))
1858		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1859	sb->s_flags = old_flags;
1860	fs_info->mount_opt = old_opts;
1861	fs_info->compress_type = old_compress_type;
1862	fs_info->max_inline = old_max_inline;
 
1863	btrfs_resize_thread_pool(fs_info,
1864		old_thread_pool_size, fs_info->thread_pool_size);
1865	fs_info->metadata_ratio = old_metadata_ratio;
1866	btrfs_remount_cleanup(fs_info, old_opts);
1867	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1868
1869	return ret;
1870}
1871
1872/* Used to sort the devices by max_avail(descending sort) */
1873static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
 
1874{
1875	const struct btrfs_device_info *dev_info1 = a;
1876	const struct btrfs_device_info *dev_info2 = b;
1877
1878	if (dev_info1->max_avail > dev_info2->max_avail)
1879		return -1;
1880	else if (dev_info1->max_avail < dev_info2->max_avail)
 
1881		return 1;
 
1882	return 0;
1883}
1884
1885/*
1886 * sort the devices by max_avail, in which max free extent size of each device
1887 * is stored.(Descending Sort)
1888 */
1889static inline void btrfs_descending_sort_devices(
1890					struct btrfs_device_info *devices,
1891					size_t nr_devices)
1892{
1893	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1894	     btrfs_cmp_device_free_bytes, NULL);
1895}
1896
1897/*
1898 * The helper to calc the free space on the devices that can be used to store
1899 * file data.
1900 */
1901static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1902					      u64 *free_bytes)
1903{
 
1904	struct btrfs_device_info *devices_info;
1905	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1906	struct btrfs_device *device;
 
1907	u64 type;
1908	u64 avail_space;
 
1909	u64 min_stripe_size;
1910	int num_stripes = 1;
1911	int i = 0, nr_devices;
1912	const struct btrfs_raid_attr *rattr;
1913
1914	/*
1915	 * We aren't under the device list lock, so this is racy-ish, but good
1916	 * enough for our purposes.
1917	 */
1918	nr_devices = fs_info->fs_devices->open_devices;
1919	if (!nr_devices) {
1920		smp_mb();
1921		nr_devices = fs_info->fs_devices->open_devices;
1922		ASSERT(nr_devices);
1923		if (!nr_devices) {
1924			*free_bytes = 0;
1925			return 0;
1926		}
1927	}
1928
1929	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1930			       GFP_KERNEL);
1931	if (!devices_info)
1932		return -ENOMEM;
1933
1934	/* calc min stripe number for data space allocation */
1935	type = btrfs_data_alloc_profile(fs_info);
1936	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1937
1938	if (type & BTRFS_BLOCK_GROUP_RAID0)
1939		num_stripes = nr_devices;
1940	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1941		num_stripes = rattr->ncopies;
1942	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 
 
1943		num_stripes = 4;
 
1944
1945	/* Adjust for more than 1 stripe per device */
1946	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
 
 
1947
1948	rcu_read_lock();
1949	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1950		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1951						&device->dev_state) ||
1952		    !device->bdev ||
1953		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1954			continue;
1955
1956		if (i >= nr_devices)
1957			break;
1958
1959		avail_space = device->total_bytes - device->bytes_used;
1960
1961		/* align with stripe_len */
1962		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
 
1963
1964		/*
1965		 * Ensure we have at least min_stripe_size on top of the
1966		 * reserved space on the device.
 
1967		 */
1968		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1969			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970
1971		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
 
 
 
 
 
 
 
 
 
 
 
 
 
1972
1973		devices_info[i].dev = device;
1974		devices_info[i].max_avail = avail_space;
1975
1976		i++;
1977	}
1978	rcu_read_unlock();
1979
1980	nr_devices = i;
1981
1982	btrfs_descending_sort_devices(devices_info, nr_devices);
1983
1984	i = nr_devices - 1;
1985	avail_space = 0;
1986	while (nr_devices >= rattr->devs_min) {
1987		num_stripes = min(num_stripes, nr_devices);
 
1988
1989		if (devices_info[i].max_avail >= min_stripe_size) {
1990			int j;
1991			u64 alloc_size;
1992
1993			avail_space += devices_info[i].max_avail * num_stripes;
1994			alloc_size = devices_info[i].max_avail;
1995			for (j = i + 1 - num_stripes; j <= i; j++)
1996				devices_info[j].max_avail -= alloc_size;
1997		}
1998		i--;
1999		nr_devices--;
2000	}
2001
2002	kfree(devices_info);
2003	*free_bytes = avail_space;
2004	return 0;
2005}
2006
2007/*
2008 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2009 *
2010 * If there's a redundant raid level at DATA block groups, use the respective
2011 * multiplier to scale the sizes.
2012 *
2013 * Unused device space usage is based on simulating the chunk allocator
2014 * algorithm that respects the device sizes and order of allocations.  This is
2015 * a close approximation of the actual use but there are other factors that may
2016 * change the result (like a new metadata chunk).
2017 *
2018 * If metadata is exhausted, f_bavail will be 0.
2019 */
2020static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2021{
2022	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2023	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
2024	struct btrfs_space_info *found;
2025	u64 total_used = 0;
2026	u64 total_free_data = 0;
2027	u64 total_free_meta = 0;
2028	u32 bits = fs_info->sectorsize_bits;
2029	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2030	unsigned factor = 1;
2031	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2032	int ret;
2033	u64 thresh = 0;
2034	int mixed = 0;
2035
2036	list_for_each_entry(found, &fs_info->space_info, list) {
 
 
 
2037		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2038			int i;
2039
2040			total_free_data += found->disk_total - found->disk_used;
2041			total_free_data -=
2042				btrfs_account_ro_block_groups_free_space(found);
2043
2044			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2045				if (!list_empty(&found->block_groups[i]))
2046					factor = btrfs_bg_type_to_factor(
2047						btrfs_raid_array[i].bg_flag);
2048			}
2049		}
2050
2051		/*
2052		 * Metadata in mixed block goup profiles are accounted in data
2053		 */
2054		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2055			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2056				mixed = 1;
2057			else
2058				total_free_meta += found->disk_total -
2059					found->disk_used;
2060		}
2061
2062		total_used += found->disk_used;
2063	}
 
2064
2065	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2066	buf->f_blocks >>= bits;
2067	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2068
2069	/* Account global block reserve as used, it's in logical size already */
2070	spin_lock(&block_rsv->lock);
2071	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2072	if (buf->f_bfree >= block_rsv->size >> bits)
2073		buf->f_bfree -= block_rsv->size >> bits;
2074	else
2075		buf->f_bfree = 0;
2076	spin_unlock(&block_rsv->lock);
2077
2078	buf->f_bavail = div_u64(total_free_data, factor);
2079	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2080	if (ret)
2081		return ret;
2082	buf->f_bavail += div_u64(total_free_data, factor);
 
2083	buf->f_bavail = buf->f_bavail >> bits;
2084
2085	/*
2086	 * We calculate the remaining metadata space minus global reserve. If
2087	 * this is (supposedly) smaller than zero, there's no space. But this
2088	 * does not hold in practice, the exhausted state happens where's still
2089	 * some positive delta. So we apply some guesswork and compare the
2090	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2091	 *
2092	 * We probably cannot calculate the exact threshold value because this
2093	 * depends on the internal reservations requested by various
2094	 * operations, so some operations that consume a few metadata will
2095	 * succeed even if the Avail is zero. But this is better than the other
2096	 * way around.
2097	 */
2098	thresh = SZ_4M;
2099
2100	/*
2101	 * We only want to claim there's no available space if we can no longer
2102	 * allocate chunks for our metadata profile and our global reserve will
2103	 * not fit in the free metadata space.  If we aren't ->full then we
2104	 * still can allocate chunks and thus are fine using the currently
2105	 * calculated f_bavail.
2106	 */
2107	if (!mixed && block_rsv->space_info->full &&
2108	    total_free_meta - thresh < block_rsv->size)
2109		buf->f_bavail = 0;
2110
2111	buf->f_type = BTRFS_SUPER_MAGIC;
2112	buf->f_bsize = dentry->d_sb->s_blocksize;
2113	buf->f_namelen = BTRFS_NAME_LEN;
2114
2115	/* We treat it as constant endianness (it doesn't matter _which_)
2116	   because we want the fsid to come out the same whether mounted
2117	   on a big-endian or little-endian host */
2118	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2119	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2120	/* Mask in the root object ID too, to disambiguate subvols */
2121	buf->f_fsid.val[0] ^=
2122		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2123	buf->f_fsid.val[1] ^=
2124		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2125
2126	return 0;
2127}
2128
2129static void btrfs_kill_super(struct super_block *sb)
2130{
2131	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2132	kill_anon_super(sb);
2133	btrfs_free_fs_info(fs_info);
2134}
2135
2136static struct file_system_type btrfs_fs_type = {
2137	.owner		= THIS_MODULE,
2138	.name		= "btrfs",
2139	.mount		= btrfs_mount,
2140	.kill_sb	= btrfs_kill_super,
2141	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2142};
2143
2144static struct file_system_type btrfs_root_fs_type = {
2145	.owner		= THIS_MODULE,
2146	.name		= "btrfs",
2147	.mount		= btrfs_mount_root,
2148	.kill_sb	= btrfs_kill_super,
2149	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2150};
2151
2152MODULE_ALIAS_FS("btrfs");
2153
2154static int btrfs_control_open(struct inode *inode, struct file *file)
2155{
2156	/*
2157	 * The control file's private_data is used to hold the
2158	 * transaction when it is started and is used to keep
2159	 * track of whether a transaction is already in progress.
2160	 */
2161	file->private_data = NULL;
2162	return 0;
2163}
2164
2165/*
2166 * Used by /dev/btrfs-control for devices ioctls.
2167 */
2168static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2169				unsigned long arg)
2170{
2171	struct btrfs_ioctl_vol_args *vol;
2172	struct btrfs_device *device = NULL;
2173	dev_t devt = 0;
2174	int ret = -ENOTTY;
2175
2176	if (!capable(CAP_SYS_ADMIN))
2177		return -EPERM;
2178
2179	vol = memdup_user((void __user *)arg, sizeof(*vol));
2180	if (IS_ERR(vol))
2181		return PTR_ERR(vol);
2182	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2183
2184	switch (cmd) {
2185	case BTRFS_IOC_SCAN_DEV:
2186		mutex_lock(&uuid_mutex);
2187		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2188					       &btrfs_root_fs_type);
2189		ret = PTR_ERR_OR_ZERO(device);
2190		mutex_unlock(&uuid_mutex);
2191		break;
2192	case BTRFS_IOC_FORGET_DEV:
2193		if (vol->name[0] != 0) {
2194			ret = lookup_bdev(vol->name, &devt);
2195			if (ret)
2196				break;
2197		}
2198		ret = btrfs_forget_devices(devt);
2199		break;
2200	case BTRFS_IOC_DEVICES_READY:
2201		mutex_lock(&uuid_mutex);
2202		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2203					       &btrfs_root_fs_type);
2204		if (IS_ERR(device)) {
2205			mutex_unlock(&uuid_mutex);
2206			ret = PTR_ERR(device);
2207			break;
2208		}
2209		ret = !(device->fs_devices->num_devices ==
2210			device->fs_devices->total_devices);
2211		mutex_unlock(&uuid_mutex);
2212		break;
2213	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2214		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2215		break;
2216	}
2217
2218	kfree(vol);
2219	return ret;
2220}
2221
2222static int btrfs_freeze(struct super_block *sb)
2223{
2224	struct btrfs_trans_handle *trans;
2225	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2226	struct btrfs_root *root = fs_info->tree_root;
2227
2228	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2229	/*
2230	 * We don't need a barrier here, we'll wait for any transaction that
2231	 * could be in progress on other threads (and do delayed iputs that
2232	 * we want to avoid on a frozen filesystem), or do the commit
2233	 * ourselves.
2234	 */
2235	trans = btrfs_attach_transaction_barrier(root);
2236	if (IS_ERR(trans)) {
2237		/* no transaction, don't bother */
2238		if (PTR_ERR(trans) == -ENOENT)
2239			return 0;
2240		return PTR_ERR(trans);
2241	}
2242	return btrfs_commit_transaction(trans);
2243}
2244
2245static int check_dev_super(struct btrfs_device *dev)
2246{
2247	struct btrfs_fs_info *fs_info = dev->fs_info;
2248	struct btrfs_super_block *sb;
2249	u16 csum_type;
2250	int ret = 0;
2251
2252	/* This should be called with fs still frozen. */
2253	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2254
2255	/* Missing dev, no need to check. */
2256	if (!dev->bdev)
2257		return 0;
2258
2259	/* Only need to check the primary super block. */
2260	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2261	if (IS_ERR(sb))
2262		return PTR_ERR(sb);
2263
2264	/* Verify the checksum. */
2265	csum_type = btrfs_super_csum_type(sb);
2266	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2267		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2268			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2269		ret = -EUCLEAN;
2270		goto out;
2271	}
2272
2273	if (btrfs_check_super_csum(fs_info, sb)) {
2274		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2275		ret = -EUCLEAN;
2276		goto out;
2277	}
2278
2279	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2280	ret = btrfs_validate_super(fs_info, sb, 0);
2281	if (ret < 0)
2282		goto out;
2283
2284	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2285		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2286			btrfs_super_generation(sb),
2287			fs_info->last_trans_committed);
2288		ret = -EUCLEAN;
2289		goto out;
2290	}
2291out:
2292	btrfs_release_disk_super(sb);
2293	return ret;
2294}
2295
2296static int btrfs_unfreeze(struct super_block *sb)
2297{
2298	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2299	struct btrfs_device *device;
2300	int ret = 0;
 
 
2301
2302	/*
2303	 * Make sure the fs is not changed by accident (like hibernation then
2304	 * modified by other OS).
2305	 * If we found anything wrong, we mark the fs error immediately.
2306	 *
2307	 * And since the fs is frozen, no one can modify the fs yet, thus
2308	 * we don't need to hold device_list_mutex.
2309	 */
2310	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2311		ret = check_dev_super(device);
2312		if (ret < 0) {
2313			btrfs_handle_fs_error(fs_info, ret,
2314				"super block on devid %llu got modified unexpectedly",
2315				device->devid);
2316			break;
2317		}
2318	}
2319	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2320
2321	/*
2322	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2323	 * above checks failed. Since the fs is either fine or read-only, we're
2324	 * safe to continue, without causing further damage.
2325	 */
2326	return 0;
2327}
2328
2329static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2330{
2331	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2332
2333	/*
2334	 * There should be always a valid pointer in latest_dev, it may be stale
2335	 * for a short moment in case it's being deleted but still valid until
2336	 * the end of RCU grace period.
2337	 */
2338	rcu_read_lock();
2339	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2340	rcu_read_unlock();
2341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342	return 0;
2343}
2344
2345static const struct super_operations btrfs_super_ops = {
2346	.drop_inode	= btrfs_drop_inode,
2347	.evict_inode	= btrfs_evict_inode,
2348	.put_super	= btrfs_put_super,
2349	.sync_fs	= btrfs_sync_fs,
2350	.show_options	= btrfs_show_options,
2351	.show_devname	= btrfs_show_devname,
 
 
2352	.alloc_inode	= btrfs_alloc_inode,
2353	.destroy_inode	= btrfs_destroy_inode,
2354	.free_inode	= btrfs_free_inode,
2355	.statfs		= btrfs_statfs,
2356	.remount_fs	= btrfs_remount,
2357	.freeze_fs	= btrfs_freeze,
2358	.unfreeze_fs	= btrfs_unfreeze,
2359};
2360
2361static const struct file_operations btrfs_ctl_fops = {
2362	.open = btrfs_control_open,
2363	.unlocked_ioctl	 = btrfs_control_ioctl,
2364	.compat_ioctl = compat_ptr_ioctl,
2365	.owner	 = THIS_MODULE,
2366	.llseek = noop_llseek,
2367};
2368
2369static struct miscdevice btrfs_misc = {
2370	.minor		= BTRFS_MINOR,
2371	.name		= "btrfs-control",
2372	.fops		= &btrfs_ctl_fops
2373};
2374
2375MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2376MODULE_ALIAS("devname:btrfs-control");
2377
2378static int __init btrfs_interface_init(void)
2379{
2380	return misc_register(&btrfs_misc);
2381}
2382
2383static __cold void btrfs_interface_exit(void)
2384{
2385	misc_deregister(&btrfs_misc);
 
2386}
2387
2388static int __init btrfs_print_mod_info(void)
2389{
2390	static const char options[] = ""
2391#ifdef CONFIG_BTRFS_DEBUG
2392			", debug=on"
2393#endif
2394#ifdef CONFIG_BTRFS_ASSERT
2395			", assert=on"
2396#endif
2397#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2398			", integrity-checker=on"
2399#endif
2400#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2401			", ref-verify=on"
2402#endif
2403#ifdef CONFIG_BLK_DEV_ZONED
2404			", zoned=yes"
2405#else
2406			", zoned=no"
2407#endif
2408#ifdef CONFIG_FS_VERITY
2409			", fsverity=yes"
2410#else
2411			", fsverity=no"
2412#endif
2413			;
2414	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2415	return 0;
2416}
2417
2418static int register_btrfs(void)
2419{
2420	return register_filesystem(&btrfs_fs_type);
2421}
2422
2423static void unregister_btrfs(void)
2424{
2425	unregister_filesystem(&btrfs_fs_type);
2426}
2427
2428/* Helper structure for long init/exit functions. */
2429struct init_sequence {
2430	int (*init_func)(void);
2431	/* Can be NULL if the init_func doesn't need cleanup. */
2432	void (*exit_func)(void);
2433};
2434
2435static const struct init_sequence mod_init_seq[] = {
2436	{
2437		.init_func = btrfs_props_init,
2438		.exit_func = NULL,
2439	}, {
2440		.init_func = btrfs_init_sysfs,
2441		.exit_func = btrfs_exit_sysfs,
2442	}, {
2443		.init_func = btrfs_init_compress,
2444		.exit_func = btrfs_exit_compress,
2445	}, {
2446		.init_func = btrfs_init_cachep,
2447		.exit_func = btrfs_destroy_cachep,
2448	}, {
2449		.init_func = btrfs_transaction_init,
2450		.exit_func = btrfs_transaction_exit,
2451	}, {
2452		.init_func = btrfs_ctree_init,
2453		.exit_func = btrfs_ctree_exit,
2454	}, {
2455		.init_func = btrfs_free_space_init,
2456		.exit_func = btrfs_free_space_exit,
2457	}, {
2458		.init_func = extent_state_init_cachep,
2459		.exit_func = extent_state_free_cachep,
2460	}, {
2461		.init_func = extent_buffer_init_cachep,
2462		.exit_func = extent_buffer_free_cachep,
2463	}, {
2464		.init_func = btrfs_bioset_init,
2465		.exit_func = btrfs_bioset_exit,
2466	}, {
2467		.init_func = extent_map_init,
2468		.exit_func = extent_map_exit,
2469	}, {
2470		.init_func = ordered_data_init,
2471		.exit_func = ordered_data_exit,
2472	}, {
2473		.init_func = btrfs_delayed_inode_init,
2474		.exit_func = btrfs_delayed_inode_exit,
2475	}, {
2476		.init_func = btrfs_auto_defrag_init,
2477		.exit_func = btrfs_auto_defrag_exit,
2478	}, {
2479		.init_func = btrfs_delayed_ref_init,
2480		.exit_func = btrfs_delayed_ref_exit,
2481	}, {
2482		.init_func = btrfs_prelim_ref_init,
2483		.exit_func = btrfs_prelim_ref_exit,
2484	}, {
2485		.init_func = btrfs_interface_init,
2486		.exit_func = btrfs_interface_exit,
2487	}, {
2488		.init_func = btrfs_print_mod_info,
2489		.exit_func = NULL,
2490	}, {
2491		.init_func = btrfs_run_sanity_tests,
2492		.exit_func = NULL,
2493	}, {
2494		.init_func = register_btrfs,
2495		.exit_func = unregister_btrfs,
2496	}
2497};
2498
2499static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
 
 
2500
2501static __always_inline void btrfs_exit_btrfs_fs(void)
2502{
2503	int i;
2504
2505	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2506		if (!mod_init_result[i])
2507			continue;
2508		if (mod_init_seq[i].exit_func)
2509			mod_init_seq[i].exit_func();
2510		mod_init_result[i] = false;
2511	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512}
2513
2514static void __exit exit_btrfs_fs(void)
2515{
2516	btrfs_exit_btrfs_fs();
 
 
 
 
 
 
2517	btrfs_cleanup_fs_uuids();
 
2518}
2519
2520static int __init init_btrfs_fs(void)
2521{
2522	int ret;
2523	int i;
2524
2525	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2526		ASSERT(!mod_init_result[i]);
2527		ret = mod_init_seq[i].init_func();
2528		if (ret < 0) {
2529			btrfs_exit_btrfs_fs();
2530			return ret;
2531		}
2532		mod_init_result[i] = true;
2533	}
2534	return 0;
2535}
2536
2537late_initcall(init_btrfs_fs);
2538module_exit(exit_btrfs_fs)
2539
2540MODULE_LICENSE("GPL");
2541MODULE_SOFTDEP("pre: crc32c");
2542MODULE_SOFTDEP("pre: xxhash64");
2543MODULE_SOFTDEP("pre: sha256");
2544MODULE_SOFTDEP("pre: blake2b-256");
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
  44#include "compat.h"
 
 
  45#include "delayed-inode.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "ioctl.h"
  51#include "print-tree.h"
 
  52#include "xattr.h"
  53#include "volumes.h"
  54#include "version.h"
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/btrfs.h>
  61
  62static const struct super_operations btrfs_super_ops;
  63static struct file_system_type btrfs_fs_type;
  64
  65static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  66				      char nbuf[16])
  67{
  68	char *errstr = NULL;
  69
  70	switch (errno) {
  71	case -EIO:
  72		errstr = "IO failure";
  73		break;
  74	case -ENOMEM:
  75		errstr = "Out of memory";
  76		break;
  77	case -EROFS:
  78		errstr = "Readonly filesystem";
  79		break;
  80	case -EEXIST:
  81		errstr = "Object already exists";
  82		break;
  83	default:
  84		if (nbuf) {
  85			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  86				errstr = nbuf;
  87		}
  88		break;
  89	}
  90
  91	return errstr;
  92}
  93
  94static void __save_error_info(struct btrfs_fs_info *fs_info)
  95{
  96	/*
  97	 * today we only save the error info into ram.  Long term we'll
  98	 * also send it down to the disk
  99	 */
 100	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
 101}
 102
 103/* NOTE:
 104 *	We move write_super stuff at umount in order to avoid deadlock
 105 *	for umount hold all lock.
 106 */
 107static void save_error_info(struct btrfs_fs_info *fs_info)
 108{
 109	__save_error_info(fs_info);
 110}
 111
 112/* btrfs handle error by forcing the filesystem readonly */
 113static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 114{
 115	struct super_block *sb = fs_info->sb;
 116
 117	if (sb->s_flags & MS_RDONLY)
 118		return;
 119
 120	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
 121		sb->s_flags |= MS_RDONLY;
 122		printk(KERN_INFO "btrfs is forced readonly\n");
 123		__btrfs_scrub_cancel(fs_info);
 124//		WARN_ON(1);
 125	}
 126}
 127
 128/*
 129 * __btrfs_std_error decodes expected errors from the caller and
 130 * invokes the approciate error response.
 
 
 
 
 131 */
 132void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 133		       unsigned int line, int errno, const char *fmt, ...)
 134{
 135	struct super_block *sb = fs_info->sb;
 136	char nbuf[16];
 137	const char *errstr;
 138	va_list args;
 139	va_start(args, fmt);
 140
 141	/*
 142	 * Special case: if the error is EROFS, and we're already
 143	 * under MS_RDONLY, then it is safe here.
 144	 */
 145	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 146  		return;
 147
 148  	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 149	if (fmt) {
 150		struct va_format vaf = {
 151			.fmt = fmt,
 152			.va = &args,
 153		};
 154
 155		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
 156			sb->s_id, function, line, errstr, &vaf);
 157	} else {
 158		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
 159			sb->s_id, function, line, errstr);
 160	}
 161
 162	/* Don't go through full error handling during mount */
 163	if (sb->s_flags & MS_BORN) {
 164		save_error_info(fs_info);
 165		btrfs_handle_error(fs_info);
 166	}
 167	va_end(args);
 168}
 169
 170const char *logtypes[] = {
 171	"emergency",
 172	"alert",
 173	"critical",
 174	"error",
 175	"warning",
 176	"notice",
 177	"info",
 178	"debug",
 179};
 180
 181void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
 182{
 183	struct super_block *sb = fs_info->sb;
 184	char lvl[4];
 185	struct va_format vaf;
 186	va_list args;
 187	const char *type = logtypes[4];
 188
 189	va_start(args, fmt);
 190
 191	if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
 192		memcpy(lvl, fmt, 3);
 193		lvl[3] = '\0';
 194		fmt += 3;
 195		type = logtypes[fmt[1] - '0'];
 196	} else
 197		*lvl = '\0';
 198
 199	vaf.fmt = fmt;
 200	vaf.va = &args;
 201	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
 202}
 203
 204/*
 205 * We only mark the transaction aborted and then set the file system read-only.
 206 * This will prevent new transactions from starting or trying to join this
 207 * one.
 208 *
 209 * This means that error recovery at the call site is limited to freeing
 210 * any local memory allocations and passing the error code up without
 211 * further cleanup. The transaction should complete as it normally would
 212 * in the call path but will return -EIO.
 213 *
 214 * We'll complete the cleanup in btrfs_end_transaction and
 215 * btrfs_commit_transaction.
 216 */
 217void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 218			       struct btrfs_root *root, const char *function,
 219			       unsigned int line, int errno)
 220{
 221	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
 222	trans->aborted = errno;
 223	/* Nothing used. The other threads that have joined this
 224	 * transaction may be able to continue. */
 225	if (!trans->blocks_used) {
 226		btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
 227		return;
 228	}
 229	trans->transaction->aborted = errno;
 230	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
 231}
 232/*
 233 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 234 * issues an alert, and either panics or BUGs, depending on mount options.
 235 */
 236void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 237		   unsigned int line, int errno, const char *fmt, ...)
 238{
 239	char nbuf[16];
 240	char *s_id = "<unknown>";
 241	const char *errstr;
 242	struct va_format vaf = { .fmt = fmt };
 243	va_list args;
 244
 245	if (fs_info)
 246		s_id = fs_info->sb->s_id;
 247
 248	va_start(args, fmt);
 249	vaf.va = &args;
 250
 251	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 252	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
 253		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
 254			s_id, function, line, &vaf, errstr);
 255
 256	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
 257	       s_id, function, line, &vaf, errstr);
 258	va_end(args);
 259	/* Caller calls BUG() */
 260}
 261
 262static void btrfs_put_super(struct super_block *sb)
 263{
 264	(void)close_ctree(btrfs_sb(sb)->tree_root);
 265	/* FIXME: need to fix VFS to return error? */
 266	/* AV: return it _where_?  ->put_super() can be triggered by any number
 267	 * of async events, up to and including delivery of SIGKILL to the
 268	 * last process that kept it busy.  Or segfault in the aforementioned
 269	 * process...  Whom would you report that to?
 270	 */
 271}
 272
 273enum {
 274	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 275	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 276	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 277	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 278	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 279	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 280	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
 281	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
 282	Opt_check_integrity, Opt_check_integrity_including_extent_data,
 283	Opt_check_integrity_print_mask, Opt_fatal_errors,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284	Opt_err,
 285};
 286
 287static match_table_t tokens = {
 288	{Opt_degraded, "degraded"},
 289	{Opt_subvol, "subvol=%s"},
 290	{Opt_subvolid, "subvolid=%d"},
 291	{Opt_device, "device=%s"},
 292	{Opt_nodatasum, "nodatasum"},
 293	{Opt_nodatacow, "nodatacow"},
 294	{Opt_nobarrier, "nobarrier"},
 295	{Opt_max_inline, "max_inline=%s"},
 296	{Opt_alloc_start, "alloc_start=%s"},
 297	{Opt_thread_pool, "thread_pool=%d"},
 298	{Opt_compress, "compress"},
 299	{Opt_compress_type, "compress=%s"},
 300	{Opt_compress_force, "compress-force"},
 301	{Opt_compress_force_type, "compress-force=%s"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302	{Opt_ssd, "ssd"},
 
 303	{Opt_ssd_spread, "ssd_spread"},
 304	{Opt_nossd, "nossd"},
 305	{Opt_noacl, "noacl"},
 
 
 
 
 306	{Opt_notreelog, "notreelog"},
 307	{Opt_flushoncommit, "flushoncommit"},
 308	{Opt_ratio, "metadata_ratio=%d"},
 309	{Opt_discard, "discard"},
 310	{Opt_space_cache, "space_cache"},
 311	{Opt_clear_cache, "clear_cache"},
 312	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 313	{Opt_enospc_debug, "enospc_debug"},
 314	{Opt_subvolrootid, "subvolrootid=%d"},
 315	{Opt_defrag, "autodefrag"},
 316	{Opt_inode_cache, "inode_cache"},
 317	{Opt_no_space_cache, "nospace_cache"},
 
 
 
 
 318	{Opt_recovery, "recovery"},
 319	{Opt_skip_balance, "skip_balance"},
 
 320	{Opt_check_integrity, "check_int"},
 321	{Opt_check_integrity_including_extent_data, "check_int_data"},
 322	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 323	{Opt_fatal_errors, "fatal_errors=%s"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324	{Opt_err, NULL},
 325};
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327/*
 328 * Regular mount options parser.  Everything that is needed only when
 329 * reading in a new superblock is parsed here.
 330 * XXX JDM: This needs to be cleaned up for remount.
 331 */
 332int btrfs_parse_options(struct btrfs_root *root, char *options)
 
 333{
 334	struct btrfs_fs_info *info = root->fs_info;
 335	substring_t args[MAX_OPT_ARGS];
 336	char *p, *num, *orig = NULL;
 337	u64 cache_gen;
 338	int intarg;
 339	int ret = 0;
 340	char *compress_type;
 341	bool compress_force = false;
 342
 343	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 344	if (cache_gen)
 345		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 346
 347	if (!options)
 348		goto out;
 
 
 
 
 
 
 
 
 
 
 349
 350	/*
 351	 * strsep changes the string, duplicate it because parse_options
 352	 * gets called twice
 353	 */
 354	options = kstrdup(options, GFP_NOFS);
 355	if (!options)
 356		return -ENOMEM;
 357
 358	orig = options;
 359
 360	while ((p = strsep(&options, ",")) != NULL) {
 361		int token;
 362		if (!*p)
 363			continue;
 364
 365		token = match_token(p, tokens, args);
 366		switch (token) {
 367		case Opt_degraded:
 368			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 369			btrfs_set_opt(info->mount_opt, DEGRADED);
 370			break;
 371		case Opt_subvol:
 
 372		case Opt_subvolid:
 373		case Opt_subvolrootid:
 374		case Opt_device:
 375			/*
 376			 * These are parsed by btrfs_parse_early_options
 377			 * and can be happily ignored here.
 378			 */
 379			break;
 380		case Opt_nodatasum:
 381			printk(KERN_INFO "btrfs: setting nodatasum\n");
 382			btrfs_set_opt(info->mount_opt, NODATASUM);
 
 
 
 
 
 
 
 
 
 
 
 383			break;
 384		case Opt_nodatacow:
 385			printk(KERN_INFO "btrfs: setting nodatacow\n");
 
 
 
 
 
 
 
 
 
 
 386			btrfs_set_opt(info->mount_opt, NODATACOW);
 387			btrfs_set_opt(info->mount_opt, NODATASUM);
 388			break;
 
 
 
 
 389		case Opt_compress_force:
 390		case Opt_compress_force_type:
 391			compress_force = true;
 
 392		case Opt_compress:
 393		case Opt_compress_type:
 
 
 
 
 
 
 394			if (token == Opt_compress ||
 395			    token == Opt_compress_force ||
 396			    strcmp(args[0].from, "zlib") == 0) {
 397				compress_type = "zlib";
 
 398				info->compress_type = BTRFS_COMPRESS_ZLIB;
 399			} else if (strcmp(args[0].from, "lzo") == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400				compress_type = "lzo";
 401				info->compress_type = BTRFS_COMPRESS_LZO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402			} else {
 
 
 403				ret = -EINVAL;
 404				goto out;
 405			}
 406
 407			btrfs_set_opt(info->mount_opt, COMPRESS);
 408			if (compress_force) {
 409				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 410				pr_info("btrfs: force %s compression\n",
 411					compress_type);
 412			} else
 413				pr_info("btrfs: use %s compression\n",
 414					compress_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415			break;
 416		case Opt_ssd:
 417			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 418			btrfs_set_opt(info->mount_opt, SSD);
 
 419			break;
 420		case Opt_ssd_spread:
 421			printk(KERN_INFO "btrfs: use spread ssd "
 422			       "allocation scheme\n");
 423			btrfs_set_opt(info->mount_opt, SSD);
 424			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 
 425			break;
 426		case Opt_nossd:
 427			printk(KERN_INFO "btrfs: not using ssd allocation "
 428			       "scheme\n");
 429			btrfs_set_opt(info->mount_opt, NOSSD);
 430			btrfs_clear_opt(info->mount_opt, SSD);
 431			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 
 
 
 
 
 
 
 
 432			break;
 433		case Opt_nobarrier:
 434			printk(KERN_INFO "btrfs: turning off barriers\n");
 435			btrfs_set_opt(info->mount_opt, NOBARRIER);
 436			break;
 437		case Opt_thread_pool:
 438			intarg = 0;
 439			match_int(&args[0], &intarg);
 440			if (intarg)
 441				info->thread_pool_size = intarg;
 
 
 
 
 
 
 
 442			break;
 443		case Opt_max_inline:
 444			num = match_strdup(&args[0]);
 445			if (num) {
 446				info->max_inline = memparse(num, NULL);
 447				kfree(num);
 448
 449				if (info->max_inline) {
 450					info->max_inline = max_t(u64,
 451						info->max_inline,
 452						root->sectorsize);
 453				}
 454				printk(KERN_INFO "btrfs: max_inline at %llu\n",
 455					(unsigned long long)info->max_inline);
 
 
 
 456			}
 457			break;
 458		case Opt_alloc_start:
 459			num = match_strdup(&args[0]);
 460			if (num) {
 461				info->alloc_start = memparse(num, NULL);
 462				kfree(num);
 463				printk(KERN_INFO
 464					"btrfs: allocations start at %llu\n",
 465					(unsigned long long)info->alloc_start);
 466			}
 467			break;
 
 
 
 
 
 468		case Opt_noacl:
 469			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 470			break;
 471		case Opt_notreelog:
 472			printk(KERN_INFO "btrfs: disabling tree log\n");
 473			btrfs_set_opt(info->mount_opt, NOTREELOG);
 
 
 
 
 
 
 
 
 
 
 
 474			break;
 475		case Opt_flushoncommit:
 476			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 477			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 
 
 
 
 478			break;
 479		case Opt_ratio:
 480			intarg = 0;
 481			match_int(&args[0], &intarg);
 482			if (intarg) {
 483				info->metadata_ratio = intarg;
 484				printk(KERN_INFO "btrfs: metadata ratio %d\n",
 485				       info->metadata_ratio);
 486			}
 
 
 
 487			break;
 488		case Opt_discard:
 489			btrfs_set_opt(info->mount_opt, DISCARD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490			break;
 491		case Opt_space_cache:
 492			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493			break;
 494		case Opt_no_space_cache:
 495			printk(KERN_INFO "btrfs: disabling disk space caching\n");
 496			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
 
 
 
 
 
 
 
 
 
 
 
 
 497			break;
 498		case Opt_inode_cache:
 499			printk(KERN_INFO "btrfs: enabling inode map caching\n");
 500			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 
 501			break;
 502		case Opt_clear_cache:
 503			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 504			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 
 
 
 
 
 
 505			break;
 506		case Opt_user_subvol_rm_allowed:
 507			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 508			break;
 509		case Opt_enospc_debug:
 510			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 511			break;
 
 
 
 512		case Opt_defrag:
 513			printk(KERN_INFO "btrfs: enabling auto defrag");
 514			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 
 
 
 
 515			break;
 516		case Opt_recovery:
 517			printk(KERN_INFO "btrfs: enabling auto recovery");
 518			btrfs_set_opt(info->mount_opt, RECOVERY);
 
 
 
 
 
 
 519			break;
 520		case Opt_skip_balance:
 521			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 522			break;
 523#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 524		case Opt_check_integrity_including_extent_data:
 525			printk(KERN_INFO "btrfs: enabling check integrity"
 526			       " including extent data\n");
 527			btrfs_set_opt(info->mount_opt,
 528				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 529			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 530			break;
 531		case Opt_check_integrity:
 532			printk(KERN_INFO "btrfs: enabling check integrity\n");
 533			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 534			break;
 535		case Opt_check_integrity_print_mask:
 536			intarg = 0;
 537			match_int(&args[0], &intarg);
 538			if (intarg) {
 539				info->check_integrity_print_mask = intarg;
 540				printk(KERN_INFO "btrfs:"
 541				       " check_integrity_print_mask 0x%x\n",
 542				       info->check_integrity_print_mask);
 543			}
 
 
 
 544			break;
 545#else
 546		case Opt_check_integrity_including_extent_data:
 547		case Opt_check_integrity:
 548		case Opt_check_integrity_print_mask:
 549			printk(KERN_ERR "btrfs: support for check_integrity*"
 550			       " not compiled in!\n");
 551			ret = -EINVAL;
 552			goto out;
 553#endif
 554		case Opt_fatal_errors:
 555			if (strcmp(args[0].from, "panic") == 0)
 556				btrfs_set_opt(info->mount_opt,
 557					      PANIC_ON_FATAL_ERROR);
 558			else if (strcmp(args[0].from, "bug") == 0)
 559				btrfs_clear_opt(info->mount_opt,
 560					      PANIC_ON_FATAL_ERROR);
 561			else {
 
 
 
 
 
 
 
 
 
 
 
 
 562				ret = -EINVAL;
 563				goto out;
 564			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565			break;
 
 
 
 
 
 
 
 566		case Opt_err:
 567			printk(KERN_INFO "btrfs: unrecognized mount option "
 568			       "'%s'\n", p);
 569			ret = -EINVAL;
 570			goto out;
 571		default:
 572			break;
 573		}
 574	}
 
 
 
 
 
 
 
 
 
 575out:
 576	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
 577		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
 578	kfree(orig);
 
 
 
 
 
 
 
 
 
 
 
 
 579	return ret;
 580}
 581
 582/*
 583 * Parse mount options that are required early in the mount process.
 584 *
 585 * All other options will be parsed on much later in the mount process and
 586 * only when we need to allocate a new super block.
 587 */
 588static int btrfs_parse_early_options(const char *options, fmode_t flags,
 589		void *holder, char **subvol_name, u64 *subvol_objectid,
 590		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
 591{
 592	substring_t args[MAX_OPT_ARGS];
 593	char *device_name, *opts, *orig, *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594	int error = 0;
 595	int intarg;
 596
 597	if (!options)
 598		return 0;
 599
 600	/*
 601	 * strsep changes the string, duplicate it because parse_options
 602	 * gets called twice
 603	 */
 604	opts = kstrdup(options, GFP_KERNEL);
 605	if (!opts)
 606		return -ENOMEM;
 607	orig = opts;
 608
 609	while ((p = strsep(&opts, ",")) != NULL) {
 610		int token;
 611		if (!*p)
 612			continue;
 613
 614		token = match_token(p, tokens, args);
 615		switch (token) {
 616		case Opt_subvol:
 617			kfree(*subvol_name);
 618			*subvol_name = match_strdup(&args[0]);
 619			break;
 620		case Opt_subvolid:
 621			intarg = 0;
 622			error = match_int(&args[0], &intarg);
 623			if (!error) {
 624				/* we want the original fs_tree */
 625				if (!intarg)
 626					*subvol_objectid =
 627						BTRFS_FS_TREE_OBJECTID;
 628				else
 629					*subvol_objectid = intarg;
 630			}
 631			break;
 632		case Opt_subvolrootid:
 633			intarg = 0;
 634			error = match_int(&args[0], &intarg);
 635			if (!error) {
 636				/* we want the original fs_tree */
 637				if (!intarg)
 638					*subvol_rootid =
 639						BTRFS_FS_TREE_OBJECTID;
 640				else
 641					*subvol_rootid = intarg;
 642			}
 643			break;
 644		case Opt_device:
 645			device_name = match_strdup(&args[0]);
 646			if (!device_name) {
 647				error = -ENOMEM;
 648				goto out;
 649			}
 650			error = btrfs_scan_one_device(device_name,
 651					flags, holder, fs_devices);
 652			kfree(device_name);
 653			if (error)
 654				goto out;
 
 
 
 
 
 
 655			break;
 656		default:
 657			break;
 658		}
 659	}
 660
 661out:
 662	kfree(orig);
 663	return error;
 664}
 665
 666static struct dentry *get_default_root(struct super_block *sb,
 667				       u64 subvol_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668{
 669	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 670	struct btrfs_root *root = fs_info->tree_root;
 671	struct btrfs_root *new_root;
 672	struct btrfs_dir_item *di;
 673	struct btrfs_path *path;
 674	struct btrfs_key location;
 675	struct inode *inode;
 676	u64 dir_id;
 677	int new = 0;
 678
 679	/*
 680	 * We have a specific subvol we want to mount, just setup location and
 681	 * go look up the root.
 682	 */
 683	if (subvol_objectid) {
 684		location.objectid = subvol_objectid;
 685		location.type = BTRFS_ROOT_ITEM_KEY;
 686		location.offset = (u64)-1;
 687		goto find_root;
 688	}
 689
 690	path = btrfs_alloc_path();
 691	if (!path)
 692		return ERR_PTR(-ENOMEM);
 693	path->leave_spinning = 1;
 694
 695	/*
 696	 * Find the "default" dir item which points to the root item that we
 697	 * will mount by default if we haven't been given a specific subvolume
 698	 * to mount.
 699	 */
 700	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 701	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 702	if (IS_ERR(di)) {
 703		btrfs_free_path(path);
 704		return ERR_CAST(di);
 705	}
 706	if (!di) {
 707		/*
 708		 * Ok the default dir item isn't there.  This is weird since
 709		 * it's always been there, but don't freak out, just try and
 710		 * mount to root most subvolume.
 711		 */
 712		btrfs_free_path(path);
 713		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 714		new_root = fs_info->fs_root;
 715		goto setup_root;
 716	}
 717
 718	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 719	btrfs_free_path(path);
 720
 721find_root:
 722	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
 723	if (IS_ERR(new_root))
 724		return ERR_CAST(new_root);
 725
 726	if (btrfs_root_refs(&new_root->root_item) == 0)
 727		return ERR_PTR(-ENOENT);
 728
 729	dir_id = btrfs_root_dirid(&new_root->root_item);
 730setup_root:
 731	location.objectid = dir_id;
 732	location.type = BTRFS_INODE_ITEM_KEY;
 733	location.offset = 0;
 734
 735	inode = btrfs_iget(sb, &location, new_root, &new);
 736	if (IS_ERR(inode))
 737		return ERR_CAST(inode);
 738
 739	/*
 740	 * If we're just mounting the root most subvol put the inode and return
 741	 * a reference to the dentry.  We will have already gotten a reference
 742	 * to the inode in btrfs_fill_super so we're good to go.
 743	 */
 744	if (!new && sb->s_root->d_inode == inode) {
 745		iput(inode);
 746		return dget(sb->s_root);
 747	}
 748
 749	return d_obtain_alias(inode);
 750}
 751
 752static int btrfs_fill_super(struct super_block *sb,
 753			    struct btrfs_fs_devices *fs_devices,
 754			    void *data, int silent)
 755{
 756	struct inode *inode;
 757	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 758	struct btrfs_key key;
 759	int err;
 760
 761	sb->s_maxbytes = MAX_LFS_FILESIZE;
 762	sb->s_magic = BTRFS_SUPER_MAGIC;
 763	sb->s_op = &btrfs_super_ops;
 764	sb->s_d_op = &btrfs_dentry_operations;
 765	sb->s_export_op = &btrfs_export_ops;
 
 
 
 766	sb->s_xattr = btrfs_xattr_handlers;
 767	sb->s_time_gran = 1;
 768#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 769	sb->s_flags |= MS_POSIXACL;
 770#endif
 771	sb->s_flags |= MS_I_VERSION;
 
 
 
 
 
 
 
 
 772	err = open_ctree(sb, fs_devices, (char *)data);
 773	if (err) {
 774		printk("btrfs: open_ctree failed\n");
 775		return err;
 776	}
 777
 778	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 779	key.type = BTRFS_INODE_ITEM_KEY;
 780	key.offset = 0;
 781	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
 782	if (IS_ERR(inode)) {
 783		err = PTR_ERR(inode);
 784		goto fail_close;
 785	}
 786
 787	sb->s_root = d_make_root(inode);
 788	if (!sb->s_root) {
 789		err = -ENOMEM;
 790		goto fail_close;
 791	}
 792
 793	save_mount_options(sb, data);
 794	cleancache_init_fs(sb);
 795	sb->s_flags |= MS_ACTIVE;
 796	return 0;
 797
 798fail_close:
 799	close_ctree(fs_info->tree_root);
 800	return err;
 801}
 802
 803int btrfs_sync_fs(struct super_block *sb, int wait)
 804{
 805	struct btrfs_trans_handle *trans;
 806	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 807	struct btrfs_root *root = fs_info->tree_root;
 808	int ret;
 809
 810	trace_btrfs_sync_fs(wait);
 811
 812	if (!wait) {
 813		filemap_flush(fs_info->btree_inode->i_mapping);
 814		return 0;
 815	}
 816
 817	btrfs_wait_ordered_extents(root, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819	trans = btrfs_start_transaction(root, 0);
 820	if (IS_ERR(trans))
 821		return PTR_ERR(trans);
 822	ret = btrfs_commit_transaction(trans, root);
 823	return ret;
 824}
 825
 826static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
 827{
 828	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
 829	struct btrfs_root *root = info->tree_root;
 830	char *compress_type;
 
 831
 832	if (btrfs_test_opt(root, DEGRADED))
 833		seq_puts(seq, ",degraded");
 834	if (btrfs_test_opt(root, NODATASUM))
 835		seq_puts(seq, ",nodatasum");
 836	if (btrfs_test_opt(root, NODATACOW))
 837		seq_puts(seq, ",nodatacow");
 838	if (btrfs_test_opt(root, NOBARRIER))
 839		seq_puts(seq, ",nobarrier");
 840	if (info->max_inline != 8192 * 1024)
 841		seq_printf(seq, ",max_inline=%llu",
 842			   (unsigned long long)info->max_inline);
 843	if (info->alloc_start != 0)
 844		seq_printf(seq, ",alloc_start=%llu",
 845			   (unsigned long long)info->alloc_start);
 846	if (info->thread_pool_size !=  min_t(unsigned long,
 847					     num_online_cpus() + 2, 8))
 848		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 849	if (btrfs_test_opt(root, COMPRESS)) {
 850		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 851			compress_type = "zlib";
 852		else
 853			compress_type = "lzo";
 854		if (btrfs_test_opt(root, FORCE_COMPRESS))
 855			seq_printf(seq, ",compress-force=%s", compress_type);
 856		else
 857			seq_printf(seq, ",compress=%s", compress_type);
 
 
 858	}
 859	if (btrfs_test_opt(root, NOSSD))
 860		seq_puts(seq, ",nossd");
 861	if (btrfs_test_opt(root, SSD_SPREAD))
 862		seq_puts(seq, ",ssd_spread");
 863	else if (btrfs_test_opt(root, SSD))
 864		seq_puts(seq, ",ssd");
 865	if (btrfs_test_opt(root, NOTREELOG))
 866		seq_puts(seq, ",notreelog");
 867	if (btrfs_test_opt(root, FLUSHONCOMMIT))
 
 
 
 
 
 
 
 
 868		seq_puts(seq, ",flushoncommit");
 869	if (btrfs_test_opt(root, DISCARD))
 870		seq_puts(seq, ",discard");
 871	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 
 
 872		seq_puts(seq, ",noacl");
 873	if (btrfs_test_opt(root, SPACE_CACHE))
 874		seq_puts(seq, ",space_cache");
 
 
 875	else
 876		seq_puts(seq, ",nospace_cache");
 877	if (btrfs_test_opt(root, CLEAR_CACHE))
 
 
 878		seq_puts(seq, ",clear_cache");
 879	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 880		seq_puts(seq, ",user_subvol_rm_allowed");
 881	if (btrfs_test_opt(root, ENOSPC_DEBUG))
 882		seq_puts(seq, ",enospc_debug");
 883	if (btrfs_test_opt(root, AUTO_DEFRAG))
 884		seq_puts(seq, ",autodefrag");
 885	if (btrfs_test_opt(root, INODE_MAP_CACHE))
 886		seq_puts(seq, ",inode_cache");
 887	if (btrfs_test_opt(root, SKIP_BALANCE))
 888		seq_puts(seq, ",skip_balance");
 889	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
 
 
 
 
 
 
 
 
 
 
 
 890		seq_puts(seq, ",fatal_errors=panic");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891	return 0;
 892}
 893
 894static int btrfs_test_super(struct super_block *s, void *data)
 895{
 896	struct btrfs_fs_info *p = data;
 897	struct btrfs_fs_info *fs_info = btrfs_sb(s);
 898
 899	return fs_info->fs_devices == p->fs_devices;
 900}
 901
 902static int btrfs_set_super(struct super_block *s, void *data)
 903{
 904	int err = set_anon_super(s, data);
 905	if (!err)
 906		s->s_fs_info = data;
 907	return err;
 908}
 909
 910/*
 911 * subvolumes are identified by ino 256
 912 */
 913static inline int is_subvolume_inode(struct inode *inode)
 914{
 915	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
 916		return 1;
 917	return 0;
 918}
 919
 920/*
 921 * This will strip out the subvol=%s argument for an argument string and add
 922 * subvolid=0 to make sure we get the actual tree root for path walking to the
 923 * subvol we want.
 924 */
 925static char *setup_root_args(char *args)
 926{
 927	unsigned len = strlen(args) + 2 + 1;
 928	char *src, *dst, *buf;
 929
 930	/*
 931	 * We need the same args as before, but with this substitution:
 932	 * s!subvol=[^,]+!subvolid=0!
 933	 *
 934	 * Since the replacement string is up to 2 bytes longer than the
 935	 * original, allocate strlen(args) + 2 + 1 bytes.
 936	 */
 
 
 
 
 
 
 
 
 
 937
 938	src = strstr(args, "subvol=");
 939	/* This shouldn't happen, but just in case.. */
 940	if (!src)
 941		return NULL;
 942
 943	buf = dst = kmalloc(len, GFP_NOFS);
 944	if (!buf)
 945		return NULL;
 946
 947	/*
 948	 * If the subvol= arg is not at the start of the string,
 949	 * copy whatever precedes it into buf.
 950	 */
 951	if (src != args) {
 952		*src++ = '\0';
 953		strcpy(buf, args);
 954		dst += strlen(args);
 955	}
 956
 957	strcpy(dst, "subvolid=0");
 958	dst += strlen("subvolid=0");
 959
 960	/*
 961	 * If there is a "," after the original subvol=... string,
 962	 * copy that suffix into our buffer.  Otherwise, we're done.
 963	 */
 964	src = strchr(src, ',');
 965	if (src)
 966		strcpy(dst, src);
 967
 968	return buf;
 969}
 970
 971static struct dentry *mount_subvol(const char *subvol_name, int flags,
 972				   const char *device_name, char *data)
 973{
 974	struct dentry *root;
 975	struct vfsmount *mnt;
 976	char *newargs;
 977
 978	newargs = setup_root_args(data);
 979	if (!newargs)
 980		return ERR_PTR(-ENOMEM);
 981	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
 982			     newargs);
 983	kfree(newargs);
 984	if (IS_ERR(mnt))
 985		return ERR_CAST(mnt);
 986
 987	root = mount_subtree(mnt, subvol_name);
 
 
 988
 989	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
 990		struct super_block *s = root->d_sb;
 991		dput(root);
 992		root = ERR_PTR(-EINVAL);
 993		deactivate_locked_super(s);
 994		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
 995				subvol_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996	}
 997
 
 
 
 998	return root;
 999}
1000
1001/*
1002 * Find a superblock for the given device / mount point.
1003 *
1004 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1005 *	  for multiple device setup.  Make sure to keep it in sync.
1006 */
1007static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1008		const char *device_name, void *data)
1009{
1010	struct block_device *bdev = NULL;
1011	struct super_block *s;
1012	struct dentry *root;
1013	struct btrfs_fs_devices *fs_devices = NULL;
1014	struct btrfs_fs_info *fs_info = NULL;
 
1015	fmode_t mode = FMODE_READ;
1016	char *subvol_name = NULL;
1017	u64 subvol_objectid = 0;
1018	u64 subvol_rootid = 0;
1019	int error = 0;
1020
1021	if (!(flags & MS_RDONLY))
1022		mode |= FMODE_WRITE;
1023
1024	error = btrfs_parse_early_options(data, mode, fs_type,
1025					  &subvol_name, &subvol_objectid,
1026					  &subvol_rootid, &fs_devices);
1027	if (error) {
1028		kfree(subvol_name);
1029		return ERR_PTR(error);
1030	}
1031
1032	if (subvol_name) {
1033		root = mount_subvol(subvol_name, flags, device_name, data);
1034		kfree(subvol_name);
1035		return root;
1036	}
1037
1038	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1039	if (error)
1040		return ERR_PTR(error);
1041
1042	/*
1043	 * Setup a dummy root and fs_info for test/set super.  This is because
1044	 * we don't actually fill this stuff out until open_ctree, but we need
1045	 * it for searching for existing supers, so this lets us do that and
1046	 * then open_ctree will properly initialize everything later.
 
 
1047	 */
1048	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1049	if (!fs_info)
1050		return ERR_PTR(-ENOMEM);
1051
1052	fs_info->fs_devices = fs_devices;
 
1053
1054	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1055	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1056	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1057		error = -ENOMEM;
1058		goto error_fs_info;
1059	}
1060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	error = btrfs_open_devices(fs_devices, mode, fs_type);
 
1062	if (error)
1063		goto error_fs_info;
1064
1065	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1066		error = -EACCES;
1067		goto error_close_devices;
1068	}
1069
1070	bdev = fs_devices->latest_bdev;
1071	s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
 
1072	if (IS_ERR(s)) {
1073		error = PTR_ERR(s);
1074		goto error_close_devices;
1075	}
1076
1077	if (s->s_root) {
1078		btrfs_close_devices(fs_devices);
1079		free_fs_info(fs_info);
1080		if ((flags ^ s->s_flags) & MS_RDONLY)
1081			error = -EBUSY;
1082	} else {
1083		char b[BDEVNAME_SIZE];
1084
1085		s->s_flags = flags | MS_NOSEC;
1086		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1087		btrfs_sb(s)->bdev_holder = fs_type;
1088		error = btrfs_fill_super(s, fs_devices, data,
1089					 flags & MS_SILENT ? 1 : 0);
 
 
 
 
 
 
 
 
1090	}
1091
1092	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1093	if (IS_ERR(root))
1094		deactivate_locked_super(s);
1095
1096	return root;
1097
1098error_close_devices:
1099	btrfs_close_devices(fs_devices);
1100error_fs_info:
1101	free_fs_info(fs_info);
 
 
1102	return ERR_PTR(error);
1103}
1104
1105static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106{
1107	spin_lock_irq(&workers->lock);
1108	workers->max_workers = new_limit;
1109	spin_unlock_irq(&workers->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110}
1111
1112static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1113				     int new_pool_size, int old_pool_size)
1114{
1115	if (new_pool_size == old_pool_size)
1116		return;
1117
1118	fs_info->thread_pool_size = new_pool_size;
1119
1120	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1121	       old_pool_size, new_pool_size);
1122
1123	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1124	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1125	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1126	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1127	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1128	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1129	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1130	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1131	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1132	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1133	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1134	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1135	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1136	btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137}
1138
1139static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1140{
1141	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1142	struct btrfs_root *root = fs_info->tree_root;
1143	unsigned old_flags = sb->s_flags;
1144	unsigned long old_opts = fs_info->mount_opt;
1145	unsigned long old_compress_type = fs_info->compress_type;
1146	u64 old_max_inline = fs_info->max_inline;
1147	u64 old_alloc_start = fs_info->alloc_start;
1148	int old_thread_pool_size = fs_info->thread_pool_size;
1149	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1150	int ret;
1151
1152	ret = btrfs_parse_options(root, data);
1153	if (ret) {
1154		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155		goto restore;
1156	}
1157
 
1158	btrfs_resize_thread_pool(fs_info,
1159		fs_info->thread_pool_size, old_thread_pool_size);
1160
1161	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1162		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163
1164	if (*flags & MS_RDONLY) {
1165		sb->s_flags |= MS_RDONLY;
 
1166
1167		ret = btrfs_commit_super(root);
 
 
 
 
 
 
 
 
1168		if (ret)
1169			goto restore;
1170	} else {
 
 
 
 
 
 
1171		if (fs_info->fs_devices->rw_devices == 0) {
1172			ret = -EACCES;
1173			goto restore;
1174		}
1175
 
 
 
 
 
 
 
1176		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
 
 
1177			ret = -EINVAL;
1178			goto restore;
1179		}
1180
1181		ret = btrfs_cleanup_fs_roots(fs_info);
 
 
 
 
 
1182		if (ret)
1183			goto restore;
1184
1185		/* recover relocation */
1186		ret = btrfs_recover_relocation(root);
1187		if (ret)
1188			goto restore;
1189
1190		ret = btrfs_resume_balance_async(fs_info);
1191		if (ret)
1192			goto restore;
 
 
 
 
 
1193
1194		sb->s_flags &= ~MS_RDONLY;
1195	}
 
 
1196
1197	return 0;
1198
1199restore:
1200	/* We've hit an error - don't reset MS_RDONLY */
1201	if (sb->s_flags & MS_RDONLY)
1202		old_flags |= MS_RDONLY;
 
 
1203	sb->s_flags = old_flags;
1204	fs_info->mount_opt = old_opts;
1205	fs_info->compress_type = old_compress_type;
1206	fs_info->max_inline = old_max_inline;
1207	fs_info->alloc_start = old_alloc_start;
1208	btrfs_resize_thread_pool(fs_info,
1209		old_thread_pool_size, fs_info->thread_pool_size);
1210	fs_info->metadata_ratio = old_metadata_ratio;
 
 
 
1211	return ret;
1212}
1213
1214/* Used to sort the devices by max_avail(descending sort) */
1215static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1216				       const void *dev_info2)
1217{
1218	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1219	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 
 
1220		return -1;
1221	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1222		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1223		return 1;
1224	else
1225	return 0;
1226}
1227
1228/*
1229 * sort the devices by max_avail, in which max free extent size of each device
1230 * is stored.(Descending Sort)
1231 */
1232static inline void btrfs_descending_sort_devices(
1233					struct btrfs_device_info *devices,
1234					size_t nr_devices)
1235{
1236	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1237	     btrfs_cmp_device_free_bytes, NULL);
1238}
1239
1240/*
1241 * The helper to calc the free space on the devices that can be used to store
1242 * file data.
1243 */
1244static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
 
1245{
1246	struct btrfs_fs_info *fs_info = root->fs_info;
1247	struct btrfs_device_info *devices_info;
1248	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1249	struct btrfs_device *device;
1250	u64 skip_space;
1251	u64 type;
1252	u64 avail_space;
1253	u64 used_space;
1254	u64 min_stripe_size;
1255	int min_stripes = 1, num_stripes = 1;
1256	int i = 0, nr_devices;
1257	int ret;
1258
 
 
 
 
1259	nr_devices = fs_info->fs_devices->open_devices;
1260	BUG_ON(!nr_devices);
 
 
 
 
 
 
 
 
1261
1262	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1263			       GFP_NOFS);
1264	if (!devices_info)
1265		return -ENOMEM;
1266
1267	/* calc min stripe number for data space alloction */
1268	type = btrfs_get_alloc_profile(root, 1);
1269	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1270		min_stripes = 2;
 
1271		num_stripes = nr_devices;
1272	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1273		min_stripes = 2;
1274		num_stripes = 2;
1275	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1276		min_stripes = 4;
1277		num_stripes = 4;
1278	}
1279
1280	if (type & BTRFS_BLOCK_GROUP_DUP)
1281		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1282	else
1283		min_stripe_size = BTRFS_STRIPE_LEN;
1284
1285	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1286		if (!device->in_fs_metadata || !device->bdev)
 
 
 
 
1287			continue;
1288
 
 
 
1289		avail_space = device->total_bytes - device->bytes_used;
1290
1291		/* align with stripe_len */
1292		do_div(avail_space, BTRFS_STRIPE_LEN);
1293		avail_space *= BTRFS_STRIPE_LEN;
1294
1295		/*
1296		 * In order to avoid overwritting the superblock on the drive,
1297		 * btrfs starts at an offset of at least 1MB when doing chunk
1298		 * allocation.
1299		 */
1300		skip_space = 1024 * 1024;
1301
1302		/* user can set the offset in fs_info->alloc_start. */
1303		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1304		    device->total_bytes)
1305			skip_space = max(fs_info->alloc_start, skip_space);
1306
1307		/*
1308		 * btrfs can not use the free space in [0, skip_space - 1],
1309		 * we must subtract it from the total. In order to implement
1310		 * it, we account the used space in this range first.
1311		 */
1312		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1313						     &used_space);
1314		if (ret) {
1315			kfree(devices_info);
1316			return ret;
1317		}
1318
1319		/* calc the free space in [0, skip_space - 1] */
1320		skip_space -= used_space;
1321
1322		/*
1323		 * we can use the free space in [0, skip_space - 1], subtract
1324		 * it from the total.
1325		 */
1326		if (avail_space && avail_space >= skip_space)
1327			avail_space -= skip_space;
1328		else
1329			avail_space = 0;
1330
1331		if (avail_space < min_stripe_size)
1332			continue;
1333
1334		devices_info[i].dev = device;
1335		devices_info[i].max_avail = avail_space;
1336
1337		i++;
1338	}
 
1339
1340	nr_devices = i;
1341
1342	btrfs_descending_sort_devices(devices_info, nr_devices);
1343
1344	i = nr_devices - 1;
1345	avail_space = 0;
1346	while (nr_devices >= min_stripes) {
1347		if (num_stripes > nr_devices)
1348			num_stripes = nr_devices;
1349
1350		if (devices_info[i].max_avail >= min_stripe_size) {
1351			int j;
1352			u64 alloc_size;
1353
1354			avail_space += devices_info[i].max_avail * num_stripes;
1355			alloc_size = devices_info[i].max_avail;
1356			for (j = i + 1 - num_stripes; j <= i; j++)
1357				devices_info[j].max_avail -= alloc_size;
1358		}
1359		i--;
1360		nr_devices--;
1361	}
1362
1363	kfree(devices_info);
1364	*free_bytes = avail_space;
1365	return 0;
1366}
1367
 
 
 
 
 
 
 
 
 
 
 
 
 
1368static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1369{
1370	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1371	struct btrfs_super_block *disk_super = fs_info->super_copy;
1372	struct list_head *head = &fs_info->space_info;
1373	struct btrfs_space_info *found;
1374	u64 total_used = 0;
1375	u64 total_free_data = 0;
1376	int bits = dentry->d_sb->s_blocksize_bits;
1377	__be32 *fsid = (__be32 *)fs_info->fsid;
 
 
 
1378	int ret;
 
 
1379
1380	/* holding chunk_muext to avoid allocating new chunks */
1381	mutex_lock(&fs_info->chunk_mutex);
1382	rcu_read_lock();
1383	list_for_each_entry_rcu(found, head, list) {
1384		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
 
 
1385			total_free_data += found->disk_total - found->disk_used;
1386			total_free_data -=
1387				btrfs_account_ro_block_groups_free_space(found);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388		}
1389
1390		total_used += found->disk_used;
1391	}
1392	rcu_read_unlock();
1393
1394	buf->f_namelen = BTRFS_NAME_LEN;
1395	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1396	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1397	buf->f_bsize = dentry->d_sb->s_blocksize;
1398	buf->f_type = BTRFS_SUPER_MAGIC;
1399	buf->f_bavail = total_free_data;
1400	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1401	if (ret) {
1402		mutex_unlock(&fs_info->chunk_mutex);
 
 
 
 
 
 
 
1403		return ret;
1404	}
1405	buf->f_bavail += total_free_data;
1406	buf->f_bavail = buf->f_bavail >> bits;
1407	mutex_unlock(&fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408
1409	/* We treat it as constant endianness (it doesn't matter _which_)
1410	   because we want the fsid to come out the same whether mounted
1411	   on a big-endian or little-endian host */
1412	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1413	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1414	/* Mask in the root object ID too, to disambiguate subvols */
1415	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1416	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
 
 
1417
1418	return 0;
1419}
1420
1421static void btrfs_kill_super(struct super_block *sb)
1422{
1423	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1424	kill_anon_super(sb);
1425	free_fs_info(fs_info);
1426}
1427
1428static struct file_system_type btrfs_fs_type = {
1429	.owner		= THIS_MODULE,
1430	.name		= "btrfs",
1431	.mount		= btrfs_mount,
1432	.kill_sb	= btrfs_kill_super,
1433	.fs_flags	= FS_REQUIRES_DEV,
 
 
 
 
 
 
 
 
1434};
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
1436/*
1437 * used by btrfsctl to scan devices when no FS is mounted
1438 */
1439static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1440				unsigned long arg)
1441{
1442	struct btrfs_ioctl_vol_args *vol;
1443	struct btrfs_fs_devices *fs_devices;
 
1444	int ret = -ENOTTY;
1445
1446	if (!capable(CAP_SYS_ADMIN))
1447		return -EPERM;
1448
1449	vol = memdup_user((void __user *)arg, sizeof(*vol));
1450	if (IS_ERR(vol))
1451		return PTR_ERR(vol);
 
1452
1453	switch (cmd) {
1454	case BTRFS_IOC_SCAN_DEV:
1455		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1456					    &btrfs_fs_type, &fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457		break;
1458	}
1459
1460	kfree(vol);
1461	return ret;
1462}
1463
1464static int btrfs_freeze(struct super_block *sb)
1465{
 
1466	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1467	mutex_lock(&fs_info->transaction_kthread_mutex);
1468	mutex_lock(&fs_info->cleaner_mutex);
1469	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470}
1471
1472static int btrfs_unfreeze(struct super_block *sb)
1473{
1474	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1475	mutex_unlock(&fs_info->cleaner_mutex);
1476	mutex_unlock(&fs_info->transaction_kthread_mutex);
1477	return 0;
1478}
1479
1480static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1481{
1482	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483
1484	ret = btrfs_dirty_inode(inode);
1485	if (ret)
1486		printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1487				   "error %d\n", btrfs_ino(inode), ret);
 
 
1488}
1489
1490static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1491{
1492	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1493	struct btrfs_fs_devices *cur_devices;
1494	struct btrfs_device *dev, *first_dev = NULL;
1495	struct list_head *head;
1496	struct rcu_string *name;
1497
1498	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1499	cur_devices = fs_info->fs_devices;
1500	while (cur_devices) {
1501		head = &cur_devices->devices;
1502		list_for_each_entry(dev, head, dev_list) {
1503			if (!first_dev || dev->devid < first_dev->devid)
1504				first_dev = dev;
1505		}
1506		cur_devices = cur_devices->seed;
1507	}
1508
1509	if (first_dev) {
1510		rcu_read_lock();
1511		name = rcu_dereference(first_dev->name);
1512		seq_escape(m, name->str, " \t\n\\");
1513		rcu_read_unlock();
1514	} else {
1515		WARN_ON(1);
1516	}
1517	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1518	return 0;
1519}
1520
1521static const struct super_operations btrfs_super_ops = {
1522	.drop_inode	= btrfs_drop_inode,
1523	.evict_inode	= btrfs_evict_inode,
1524	.put_super	= btrfs_put_super,
1525	.sync_fs	= btrfs_sync_fs,
1526	.show_options	= btrfs_show_options,
1527	.show_devname	= btrfs_show_devname,
1528	.write_inode	= btrfs_write_inode,
1529	.dirty_inode	= btrfs_fs_dirty_inode,
1530	.alloc_inode	= btrfs_alloc_inode,
1531	.destroy_inode	= btrfs_destroy_inode,
 
1532	.statfs		= btrfs_statfs,
1533	.remount_fs	= btrfs_remount,
1534	.freeze_fs	= btrfs_freeze,
1535	.unfreeze_fs	= btrfs_unfreeze,
1536};
1537
1538static const struct file_operations btrfs_ctl_fops = {
 
1539	.unlocked_ioctl	 = btrfs_control_ioctl,
1540	.compat_ioctl = btrfs_control_ioctl,
1541	.owner	 = THIS_MODULE,
1542	.llseek = noop_llseek,
1543};
1544
1545static struct miscdevice btrfs_misc = {
1546	.minor		= BTRFS_MINOR,
1547	.name		= "btrfs-control",
1548	.fops		= &btrfs_ctl_fops
1549};
1550
1551MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1552MODULE_ALIAS("devname:btrfs-control");
1553
1554static int btrfs_interface_init(void)
1555{
1556	return misc_register(&btrfs_misc);
1557}
1558
1559static void btrfs_interface_exit(void)
1560{
1561	if (misc_deregister(&btrfs_misc) < 0)
1562		printk(KERN_INFO "misc_deregister failed for control device");
1563}
1564
1565static int __init init_btrfs_fs(void)
1566{
1567	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	err = btrfs_init_sysfs();
1570	if (err)
1571		return err;
 
1572
1573	btrfs_init_compress();
 
 
 
1574
1575	err = btrfs_init_cachep();
1576	if (err)
1577		goto free_compress;
 
 
 
1578
1579	err = extent_io_init();
1580	if (err)
1581		goto free_cachep;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582
1583	err = extent_map_init();
1584	if (err)
1585		goto free_extent_io;
1586
1587	err = btrfs_delayed_inode_init();
1588	if (err)
1589		goto free_extent_map;
1590
1591	err = btrfs_interface_init();
1592	if (err)
1593		goto free_delayed_inode;
1594
1595	err = register_filesystem(&btrfs_fs_type);
1596	if (err)
1597		goto unregister_ioctl;
1598
1599	btrfs_init_lockdep();
1600
1601	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1602	return 0;
1603
1604unregister_ioctl:
1605	btrfs_interface_exit();
1606free_delayed_inode:
1607	btrfs_delayed_inode_exit();
1608free_extent_map:
1609	extent_map_exit();
1610free_extent_io:
1611	extent_io_exit();
1612free_cachep:
1613	btrfs_destroy_cachep();
1614free_compress:
1615	btrfs_exit_compress();
1616	btrfs_exit_sysfs();
1617	return err;
1618}
1619
1620static void __exit exit_btrfs_fs(void)
1621{
1622	btrfs_destroy_cachep();
1623	btrfs_delayed_inode_exit();
1624	extent_map_exit();
1625	extent_io_exit();
1626	btrfs_interface_exit();
1627	unregister_filesystem(&btrfs_fs_type);
1628	btrfs_exit_sysfs();
1629	btrfs_cleanup_fs_uuids();
1630	btrfs_exit_compress();
1631}
1632
1633module_init(init_btrfs_fs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634module_exit(exit_btrfs_fs)
1635
1636MODULE_LICENSE("GPL");