Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1#include <linux/moduleloader.h>
  2#include <linux/workqueue.h>
  3#include <linux/netdevice.h>
  4#include <linux/filter.h>
  5#include <linux/cache.h>
  6
  7#include <asm/cacheflush.h>
  8#include <asm/ptrace.h>
  9
 10#include "bpf_jit.h"
 11
 12int bpf_jit_enable __read_mostly;
 13
 14static inline bool is_simm13(unsigned int value)
 15{
 16	return value + 0x1000 < 0x2000;
 17}
 18
 19static void bpf_flush_icache(void *start_, void *end_)
 20{
 21#ifdef CONFIG_SPARC64
 22	/* Cheetah's I-cache is fully coherent.  */
 23	if (tlb_type == spitfire) {
 24		unsigned long start = (unsigned long) start_;
 25		unsigned long end = (unsigned long) end_;
 26
 27		start &= ~7UL;
 28		end = (end + 7UL) & ~7UL;
 29		while (start < end) {
 30			flushi(start);
 31			start += 32;
 32		}
 33	}
 34#endif
 35}
 36
 37#define SEEN_DATAREF 1 /* might call external helpers */
 38#define SEEN_XREG    2 /* ebx is used */
 39#define SEEN_MEM     4 /* use mem[] for temporary storage */
 40
 41#define S13(X)		((X) & 0x1fff)
 42#define IMMED		0x00002000
 43#define RD(X)		((X) << 25)
 44#define RS1(X)		((X) << 14)
 45#define RS2(X)		((X))
 46#define OP(X)		((X) << 30)
 47#define OP2(X)		((X) << 22)
 48#define OP3(X)		((X) << 19)
 49#define COND(X)		((X) << 25)
 50#define F1(X)		OP(X)
 51#define F2(X, Y)	(OP(X) | OP2(Y))
 52#define F3(X, Y)	(OP(X) | OP3(Y))
 53
 54#define CONDN		COND(0x0)
 55#define CONDE		COND(0x1)
 56#define CONDLE		COND(0x2)
 57#define CONDL		COND(0x3)
 58#define CONDLEU		COND(0x4)
 59#define CONDCS		COND(0x5)
 60#define CONDNEG		COND(0x6)
 61#define CONDVC		COND(0x7)
 62#define CONDA		COND(0x8)
 63#define CONDNE		COND(0x9)
 64#define CONDG		COND(0xa)
 65#define CONDGE		COND(0xb)
 66#define CONDGU		COND(0xc)
 67#define CONDCC		COND(0xd)
 68#define CONDPOS		COND(0xe)
 69#define CONDVS		COND(0xf)
 70
 71#define CONDGEU		CONDCC
 72#define CONDLU		CONDCS
 73
 74#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
 75
 76#define BA		(F2(0, 2) | CONDA)
 77#define BGU		(F2(0, 2) | CONDGU)
 78#define BLEU		(F2(0, 2) | CONDLEU)
 79#define BGEU		(F2(0, 2) | CONDGEU)
 80#define BLU		(F2(0, 2) | CONDLU)
 81#define BE		(F2(0, 2) | CONDE)
 82#define BNE		(F2(0, 2) | CONDNE)
 83
 84#ifdef CONFIG_SPARC64
 85#define BNE_PTR		(F2(0, 1) | CONDNE | (2 << 20))
 86#else
 87#define BNE_PTR		BNE
 88#endif
 89
 90#define SETHI(K, REG)	\
 91	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
 92#define OR_LO(K, REG)	\
 93	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
 94
 95#define ADD		F3(2, 0x00)
 96#define AND		F3(2, 0x01)
 97#define ANDCC		F3(2, 0x11)
 98#define OR		F3(2, 0x02)
 99#define SUB		F3(2, 0x04)
100#define SUBCC		F3(2, 0x14)
101#define MUL		F3(2, 0x0a)	/* umul */
102#define DIV		F3(2, 0x0e)	/* udiv */
103#define SLL		F3(2, 0x25)
104#define SRL		F3(2, 0x26)
105#define JMPL		F3(2, 0x38)
106#define CALL		F1(1)
107#define BR		F2(0, 0x01)
108#define RD_Y		F3(2, 0x28)
109#define WR_Y		F3(2, 0x30)
110
111#define LD32		F3(3, 0x00)
112#define LD8		F3(3, 0x01)
113#define LD16		F3(3, 0x02)
114#define LD64		F3(3, 0x0b)
115#define ST32		F3(3, 0x04)
116
117#ifdef CONFIG_SPARC64
118#define LDPTR		LD64
119#define BASE_STACKFRAME	176
120#else
121#define LDPTR		LD32
122#define BASE_STACKFRAME	96
123#endif
124
125#define LD32I		(LD32 | IMMED)
126#define LD8I		(LD8 | IMMED)
127#define LD16I		(LD16 | IMMED)
128#define LD64I		(LD64 | IMMED)
129#define LDPTRI		(LDPTR | IMMED)
130#define ST32I		(ST32 | IMMED)
131
132#define emit_nop()		\
133do {				\
134	*prog++ = SETHI(0, G0);	\
135} while (0)
136
137#define emit_neg()					\
138do {	/* sub %g0, r_A, r_A */				\
139	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
140} while (0)
141
142#define emit_reg_move(FROM, TO)				\
143do {	/* or %g0, FROM, TO */				\
144	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
145} while (0)
146
147#define emit_clear(REG)					\
148do {	/* or %g0, %g0, REG */				\
149	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
150} while (0)
151
152#define emit_set_const(K, REG)					\
153do {	/* sethi %hi(K), REG */					\
154	*prog++ = SETHI(K, REG);				\
155	/* or REG, %lo(K), REG */				\
156	*prog++ = OR_LO(K, REG);				\
157} while (0)
158
159	/* Emit
160	 *
161	 *	OP	r_A, r_X, r_A
162	 */
163#define emit_alu_X(OPCODE)					\
164do {								\
165	seen |= SEEN_XREG;					\
166	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
167} while (0)
168
169	/* Emit either:
170	 *
171	 *	OP	r_A, K, r_A
172	 *
173	 * or
174	 *
175	 *	sethi	%hi(K), r_TMP
176	 *	or	r_TMP, %lo(K), r_TMP
177	 *	OP	r_A, r_TMP, r_A
178	 *
179	 * depending upon whether K fits in a signed 13-bit
180	 * immediate instruction field.  Emit nothing if K
181	 * is zero.
182	 */
183#define emit_alu_K(OPCODE, K)					\
184do {								\
185	if (K) {						\
186		unsigned int _insn = OPCODE;			\
187		_insn |= RS1(r_A) | RD(r_A);			\
188		if (is_simm13(K)) {				\
189			*prog++ = _insn | IMMED | S13(K);	\
190		} else {					\
191			emit_set_const(K, r_TMP);		\
192			*prog++ = _insn | RS2(r_TMP);		\
193		}						\
194	}							\
195} while (0)
196
197#define emit_loadimm(K, DEST)						\
198do {									\
199	if (is_simm13(K)) {						\
200		/* or %g0, K, DEST */					\
201		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
202	} else {							\
203		emit_set_const(K, DEST);				\
204	}								\
205} while (0)
206
207#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
208do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
209	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));	\
210	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
211} while (0)
212
213#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
214do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
215	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));	\
216	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
217} while (0)
218
219#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
220do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
221	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));	\
222	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
223} while (0)
224
225#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
226do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
227	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
228} while (0)
229
230#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
231do {	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));	\
232	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
233} while (0)
234
235#define emit_ldmem(OFF, DEST)					\
236do {	*prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST);	\
237} while (0)
238
239#define emit_stmem(OFF, SRC)					\
240do {	*prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC);	\
241} while (0)
242
243#ifdef CONFIG_SMP
244#ifdef CONFIG_SPARC64
245#define emit_load_cpu(REG)						\
246	emit_load16(G6, struct thread_info, cpu, REG)
247#else
248#define emit_load_cpu(REG)						\
249	emit_load32(G6, struct thread_info, cpu, REG)
250#endif
251#else
252#define emit_load_cpu(REG)	emit_clear(REG)
253#endif
254
255#define emit_skb_loadptr(FIELD, DEST) \
256	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
257#define emit_skb_load32(FIELD, DEST) \
258	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
259#define emit_skb_load16(FIELD, DEST) \
260	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
261#define __emit_skb_load8(FIELD, DEST) \
262	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
263#define emit_skb_load8(FIELD, DEST) \
264	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
265
266#define emit_jmpl(BASE, IMM_OFF, LREG) \
267	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
268
269#define emit_call(FUNC)					\
270do {	void *_here = image + addrs[i] - 8;		\
271	unsigned int _off = (void *)(FUNC) - _here;	\
272	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
273	emit_nop();					\
274} while (0)
275
276#define emit_branch(BR_OPC, DEST)			\
277do {	unsigned int _here = addrs[i] - 8;		\
278	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
279} while (0)
280
281#define emit_branch_off(BR_OPC, OFF)			\
282do {	*prog++ = BR_OPC | WDISP22(OFF);		\
283} while (0)
284
285#define emit_jump(DEST)		emit_branch(BA, DEST)
286
287#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
288#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
289
290#define emit_cmp(R1, R2) \
291	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
292
293#define emit_cmpi(R1, IMM) \
294	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
295
296#define emit_btst(R1, R2) \
297	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
298
299#define emit_btsti(R1, IMM) \
300	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
301
302#define emit_sub(R1, R2, R3) \
303	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
304
305#define emit_subi(R1, IMM, R3) \
306	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
307
308#define emit_add(R1, R2, R3) \
309	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
310
311#define emit_addi(R1, IMM, R3) \
312	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
313
314#define emit_alloc_stack(SZ) \
315	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
316
317#define emit_release_stack(SZ) \
318	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
319
320/* A note about branch offset calculations.  The addrs[] array,
321 * indexed by BPF instruction, records the address after all the
322 * sparc instructions emitted for that BPF instruction.
323 *
324 * The most common case is to emit a branch at the end of such
325 * a code sequence.  So this would be two instructions, the
326 * branch and it's delay slot.
327 *
328 * Therefore by default the branch emitters calculate the branch
329 * offset field as:
330 *
331 *	destination - (addrs[i] - 8)
332 *
333 * This "addrs[i] - 8" is the address of the branch itself or
334 * what "." would be in assembler notation.  The "8" part is
335 * how we take into consideration the branch and it's delay
336 * slot mentioned above.
337 *
338 * Sometimes we need to emit a branch earlier in the code
339 * sequence.  And in these situations we adjust "destination"
340 * to accomodate this difference.  For example, if we needed
341 * to emit a branch (and it's delay slot) right before the
342 * final instruction emitted for a BPF opcode, we'd use
343 * "destination + 4" instead of just plain "destination" above.
344 *
345 * This is why you see all of these funny emit_branch() and
346 * emit_jump() calls with adjusted offsets.
347 */
348
349void bpf_jit_compile(struct sk_filter *fp)
350{
351	unsigned int cleanup_addr, proglen, oldproglen = 0;
352	u32 temp[8], *prog, *func, seen = 0, pass;
353	const struct sock_filter *filter = fp->insns;
354	int i, flen = fp->len, pc_ret0 = -1;
355	unsigned int *addrs;
356	void *image;
357
358	if (!bpf_jit_enable)
359		return;
360
361	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
362	if (addrs == NULL)
363		return;
364
365	/* Before first pass, make a rough estimation of addrs[]
366	 * each bpf instruction is translated to less than 64 bytes
367	 */
368	for (proglen = 0, i = 0; i < flen; i++) {
369		proglen += 64;
370		addrs[i] = proglen;
371	}
372	cleanup_addr = proglen; /* epilogue address */
373	image = NULL;
374	for (pass = 0; pass < 10; pass++) {
375		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
376
377		/* no prologue/epilogue for trivial filters (RET something) */
378		proglen = 0;
379		prog = temp;
380
381		/* Prologue */
382		if (seen_or_pass0) {
383			if (seen_or_pass0 & SEEN_MEM) {
384				unsigned int sz = BASE_STACKFRAME;
385				sz += BPF_MEMWORDS * sizeof(u32);
386				emit_alloc_stack(sz);
387			}
388
389			/* Make sure we dont leek kernel memory. */
390			if (seen_or_pass0 & SEEN_XREG)
391				emit_clear(r_X);
392
393			/* If this filter needs to access skb data,
394			 * load %o4 and %o5 with:
395			 *  %o4 = skb->len - skb->data_len
396			 *  %o5 = skb->data
397			 * And also back up %o7 into r_saved_O7 so we can
398			 * invoke the stubs using 'call'.
399			 */
400			if (seen_or_pass0 & SEEN_DATAREF) {
401				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
402				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
403				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
404				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
405			}
406		}
407		emit_reg_move(O7, r_saved_O7);
408
409		switch (filter[0].code) {
410		case BPF_S_RET_K:
411		case BPF_S_LD_W_LEN:
412		case BPF_S_ANC_PROTOCOL:
413		case BPF_S_ANC_PKTTYPE:
414		case BPF_S_ANC_IFINDEX:
415		case BPF_S_ANC_MARK:
416		case BPF_S_ANC_RXHASH:
417		case BPF_S_ANC_CPU:
418		case BPF_S_ANC_QUEUE:
419		case BPF_S_LD_W_ABS:
420		case BPF_S_LD_H_ABS:
421		case BPF_S_LD_B_ABS:
422			/* The first instruction sets the A register (or is
423			 * a "RET 'constant'")
424			 */
425			break;
426		default:
427			/* Make sure we dont leak kernel information to the
428			 * user.
429			 */
430			emit_clear(r_A); /* A = 0 */
431		}
432
433		for (i = 0; i < flen; i++) {
434			unsigned int K = filter[i].k;
435			unsigned int t_offset;
436			unsigned int f_offset;
437			u32 t_op, f_op;
438			int ilen;
439
440			switch (filter[i].code) {
441			case BPF_S_ALU_ADD_X:	/* A += X; */
442				emit_alu_X(ADD);
443				break;
444			case BPF_S_ALU_ADD_K:	/* A += K; */
445				emit_alu_K(ADD, K);
446				break;
447			case BPF_S_ALU_SUB_X:	/* A -= X; */
448				emit_alu_X(SUB);
449				break;
450			case BPF_S_ALU_SUB_K:	/* A -= K */
451				emit_alu_K(SUB, K);
452				break;
453			case BPF_S_ALU_AND_X:	/* A &= X */
454				emit_alu_X(AND);
455				break;
456			case BPF_S_ALU_AND_K:	/* A &= K */
457				emit_alu_K(AND, K);
458				break;
459			case BPF_S_ALU_OR_X:	/* A |= X */
460				emit_alu_X(OR);
461				break;
462			case BPF_S_ALU_OR_K:	/* A |= K */
463				emit_alu_K(OR, K);
464				break;
465			case BPF_S_ALU_LSH_X:	/* A <<= X */
466				emit_alu_X(SLL);
467				break;
468			case BPF_S_ALU_LSH_K:	/* A <<= K */
469				emit_alu_K(SLL, K);
470				break;
471			case BPF_S_ALU_RSH_X:	/* A >>= X */
472				emit_alu_X(SRL);
473				break;
474			case BPF_S_ALU_RSH_K:	/* A >>= K */
475				emit_alu_K(SRL, K);
476				break;
477			case BPF_S_ALU_MUL_X:	/* A *= X; */
478				emit_alu_X(MUL);
479				break;
480			case BPF_S_ALU_MUL_K:	/* A *= K */
481				emit_alu_K(MUL, K);
482				break;
483			case BPF_S_ALU_DIV_K:	/* A /= K */
484				emit_alu_K(MUL, K);
485				emit_read_y(r_A);
486				break;
487			case BPF_S_ALU_DIV_X:	/* A /= X; */
488				emit_cmpi(r_X, 0);
489				if (pc_ret0 > 0) {
490					t_offset = addrs[pc_ret0 - 1];
491#ifdef CONFIG_SPARC32
492					emit_branch(BE, t_offset + 20);
493#else
494					emit_branch(BE, t_offset + 8);
495#endif
496					emit_nop(); /* delay slot */
497				} else {
498					emit_branch_off(BNE, 16);
499					emit_nop();
500#ifdef CONFIG_SPARC32
501					emit_jump(cleanup_addr + 20);
502#else
503					emit_jump(cleanup_addr + 8);
504#endif
505					emit_clear(r_A);
506				}
507				emit_write_y(G0);
508#ifdef CONFIG_SPARC32
509				/* The Sparc v8 architecture requires
510				 * three instructions between a %y
511				 * register write and the first use.
512				 */
513				emit_nop();
514				emit_nop();
515				emit_nop();
516#endif
517				emit_alu_X(DIV);
518				break;
519			case BPF_S_ALU_NEG:
520				emit_neg();
521				break;
522			case BPF_S_RET_K:
523				if (!K) {
524					if (pc_ret0 == -1)
525						pc_ret0 = i;
526					emit_clear(r_A);
527				} else {
528					emit_loadimm(K, r_A);
529				}
530				/* Fallthrough */
531			case BPF_S_RET_A:
532				if (seen_or_pass0) {
533					if (i != flen - 1) {
534						emit_jump(cleanup_addr);
535						emit_nop();
536						break;
537					}
538					if (seen_or_pass0 & SEEN_MEM) {
539						unsigned int sz = BASE_STACKFRAME;
540						sz += BPF_MEMWORDS * sizeof(u32);
541						emit_release_stack(sz);
542					}
543				}
544				/* jmpl %r_saved_O7 + 8, %g0 */
545				emit_jmpl(r_saved_O7, 8, G0);
546				emit_reg_move(r_A, O0); /* delay slot */
547				break;
548			case BPF_S_MISC_TAX:
549				seen |= SEEN_XREG;
550				emit_reg_move(r_A, r_X);
551				break;
552			case BPF_S_MISC_TXA:
553				seen |= SEEN_XREG;
554				emit_reg_move(r_X, r_A);
555				break;
556			case BPF_S_ANC_CPU:
557				emit_load_cpu(r_A);
558				break;
559			case BPF_S_ANC_PROTOCOL:
560				emit_skb_load16(protocol, r_A);
561				break;
562#if 0
563				/* GCC won't let us take the address of
564				 * a bit field even though we very much
565				 * know what we are doing here.
566				 */
567			case BPF_S_ANC_PKTTYPE:
568				__emit_skb_load8(pkt_type, r_A);
569				emit_alu_K(SRL, 5);
570				break;
571#endif
572			case BPF_S_ANC_IFINDEX:
573				emit_skb_loadptr(dev, r_A);
574				emit_cmpi(r_A, 0);
575				emit_branch(BNE_PTR, cleanup_addr + 4);
576				emit_nop();
577				emit_load32(r_A, struct net_device, ifindex, r_A);
578				break;
579			case BPF_S_ANC_MARK:
580				emit_skb_load32(mark, r_A);
581				break;
582			case BPF_S_ANC_QUEUE:
583				emit_skb_load16(queue_mapping, r_A);
584				break;
585			case BPF_S_ANC_HATYPE:
586				emit_skb_loadptr(dev, r_A);
587				emit_cmpi(r_A, 0);
588				emit_branch(BNE_PTR, cleanup_addr + 4);
589				emit_nop();
590				emit_load16(r_A, struct net_device, type, r_A);
591				break;
592			case BPF_S_ANC_RXHASH:
593				emit_skb_load32(rxhash, r_A);
594				break;
595
596			case BPF_S_LD_IMM:
597				emit_loadimm(K, r_A);
598				break;
599			case BPF_S_LDX_IMM:
600				emit_loadimm(K, r_X);
601				break;
602			case BPF_S_LD_MEM:
603				emit_ldmem(K * 4, r_A);
604				break;
605			case BPF_S_LDX_MEM:
606				emit_ldmem(K * 4, r_X);
607				break;
608			case BPF_S_ST:
609				emit_stmem(K * 4, r_A);
610				break;
611			case BPF_S_STX:
612				emit_stmem(K * 4, r_X);
613				break;
614
615#define CHOOSE_LOAD_FUNC(K, func) \
616	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
617
618			case BPF_S_LD_W_ABS:
619				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
620common_load:			seen |= SEEN_DATAREF;
621				emit_loadimm(K, r_OFF);
622				emit_call(func);
623				break;
624			case BPF_S_LD_H_ABS:
625				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
626				goto common_load;
627			case BPF_S_LD_B_ABS:
628				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
629				goto common_load;
630			case BPF_S_LDX_B_MSH:
631				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
632				goto common_load;
633			case BPF_S_LD_W_IND:
634				func = bpf_jit_load_word;
635common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
636				if (K) {
637					if (is_simm13(K)) {
638						emit_addi(r_X, K, r_OFF);
639					} else {
640						emit_loadimm(K, r_TMP);
641						emit_add(r_X, r_TMP, r_OFF);
642					}
643				} else {
644					emit_reg_move(r_X, r_OFF);
645				}
646				emit_call(func);
647				break;
648			case BPF_S_LD_H_IND:
649				func = bpf_jit_load_half;
650				goto common_load_ind;
651			case BPF_S_LD_B_IND:
652				func = bpf_jit_load_byte;
653				goto common_load_ind;
654			case BPF_S_JMP_JA:
655				emit_jump(addrs[i + K]);
656				emit_nop();
657				break;
658
659#define COND_SEL(CODE, TOP, FOP)	\
660	case CODE:			\
661		t_op = TOP;		\
662		f_op = FOP;		\
663		goto cond_branch
664
665			COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
666			COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
667			COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
668			COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
669			COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
670			COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
671			COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
672			COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
673
674cond_branch:			f_offset = addrs[i + filter[i].jf];
675				t_offset = addrs[i + filter[i].jt];
676
677				/* same targets, can avoid doing the test :) */
678				if (filter[i].jt == filter[i].jf) {
679					emit_jump(t_offset);
680					emit_nop();
681					break;
682				}
683
684				switch (filter[i].code) {
685				case BPF_S_JMP_JGT_X:
686				case BPF_S_JMP_JGE_X:
687				case BPF_S_JMP_JEQ_X:
688					seen |= SEEN_XREG;
689					emit_cmp(r_A, r_X);
690					break;
691				case BPF_S_JMP_JSET_X:
692					seen |= SEEN_XREG;
693					emit_btst(r_A, r_X);
694					break;
695				case BPF_S_JMP_JEQ_K:
696				case BPF_S_JMP_JGT_K:
697				case BPF_S_JMP_JGE_K:
698					if (is_simm13(K)) {
699						emit_cmpi(r_A, K);
700					} else {
701						emit_loadimm(K, r_TMP);
702						emit_cmp(r_A, r_TMP);
703					}
704					break;
705				case BPF_S_JMP_JSET_K:
706					if (is_simm13(K)) {
707						emit_btsti(r_A, K);
708					} else {
709						emit_loadimm(K, r_TMP);
710						emit_btst(r_A, r_TMP);
711					}
712					break;
713				}
714				if (filter[i].jt != 0) {
715					if (filter[i].jf)
716						t_offset += 8;
717					emit_branch(t_op, t_offset);
718					emit_nop(); /* delay slot */
719					if (filter[i].jf) {
720						emit_jump(f_offset);
721						emit_nop();
722					}
723					break;
724				}
725				emit_branch(f_op, f_offset);
726				emit_nop(); /* delay slot */
727				break;
728
729			default:
730				/* hmm, too complex filter, give up with jit compiler */
731				goto out;
732			}
733			ilen = (void *) prog - (void *) temp;
734			if (image) {
735				if (unlikely(proglen + ilen > oldproglen)) {
736					pr_err("bpb_jit_compile fatal error\n");
737					kfree(addrs);
738					module_free(NULL, image);
739					return;
740				}
741				memcpy(image + proglen, temp, ilen);
742			}
743			proglen += ilen;
744			addrs[i] = proglen;
745			prog = temp;
746		}
747		/* last bpf instruction is always a RET :
748		 * use it to give the cleanup instruction(s) addr
749		 */
750		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
751		if (seen_or_pass0 & SEEN_MEM)
752			cleanup_addr -= 4; /* add %sp, X, %sp; */
753
754		if (image) {
755			if (proglen != oldproglen)
756				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
757				       proglen, oldproglen);
758			break;
759		}
760		if (proglen == oldproglen) {
761			image = module_alloc(max_t(unsigned int,
762						   proglen,
763						   sizeof(struct work_struct)));
764			if (!image)
765				goto out;
766		}
767		oldproglen = proglen;
768	}
769
770	if (bpf_jit_enable > 1)
771		pr_err("flen=%d proglen=%u pass=%d image=%p\n",
772		       flen, proglen, pass, image);
773
774	if (image) {
775		if (bpf_jit_enable > 1)
776			print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
777				       16, 1, image, proglen, false);
778		bpf_flush_icache(image, image + proglen);
779		fp->bpf_func = (void *)image;
780	}
781out:
782	kfree(addrs);
783	return;
784}
785
786static void jit_free_defer(struct work_struct *arg)
787{
788	module_free(NULL, arg);
789}
790
791/* run from softirq, we must use a work_struct to call
792 * module_free() from process context
793 */
794void bpf_jit_free(struct sk_filter *fp)
795{
796	if (fp->bpf_func != sk_run_filter) {
797		struct work_struct *work = (struct work_struct *)fp->bpf_func;
798
799		INIT_WORK(work, jit_free_defer);
800		schedule_work(work);
801	}
802}