Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15#define KMSG_COMPONENT "time"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/kernel_stat.h>
19#include <linux/errno.h>
20#include <linux/export.h>
21#include <linux/sched.h>
22#include <linux/sched/clock.h>
23#include <linux/kernel.h>
24#include <linux/param.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/cpu.h>
29#include <linux/stop_machine.h>
30#include <linux/time.h>
31#include <linux/device.h>
32#include <linux/delay.h>
33#include <linux/init.h>
34#include <linux/smp.h>
35#include <linux/types.h>
36#include <linux/profile.h>
37#include <linux/timex.h>
38#include <linux/notifier.h>
39#include <linux/timekeeper_internal.h>
40#include <linux/clockchips.h>
41#include <linux/gfp.h>
42#include <linux/kprobes.h>
43#include <linux/uaccess.h>
44#include <vdso/vsyscall.h>
45#include <vdso/clocksource.h>
46#include <vdso/helpers.h>
47#include <asm/facility.h>
48#include <asm/delay.h>
49#include <asm/div64.h>
50#include <asm/vdso.h>
51#include <asm/irq.h>
52#include <asm/irq_regs.h>
53#include <asm/vtimer.h>
54#include <asm/stp.h>
55#include <asm/cio.h>
56#include "entry.h"
57
58union tod_clock tod_clock_base __section(".data");
59EXPORT_SYMBOL_GPL(tod_clock_base);
60
61u64 clock_comparator_max = -1ULL;
62EXPORT_SYMBOL_GPL(clock_comparator_max);
63
64static DEFINE_PER_CPU(struct clock_event_device, comparators);
65
66ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67EXPORT_SYMBOL(s390_epoch_delta_notifier);
68
69unsigned char ptff_function_mask[16];
70
71static unsigned long lpar_offset;
72static unsigned long initial_leap_seconds;
73static unsigned long tod_steering_end;
74static long tod_steering_delta;
75
76/*
77 * Get time offsets with PTFF
78 */
79void __init time_early_init(void)
80{
81 struct ptff_qto qto;
82 struct ptff_qui qui;
83 int cs;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = tod_clock_base.tod;
87 for (cs = 0; cs < CS_BASES; cs++)
88 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
89
90 if (!test_facility(28))
91 return;
92
93 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
94
95 /* get LPAR offset */
96 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
97 lpar_offset = qto.tod_epoch_difference;
98
99 /* get initial leap seconds */
100 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101 initial_leap_seconds = (unsigned long)
102 ((long) qui.old_leap * 4096000000L);
103}
104
105/*
106 * Scheduler clock - returns current time in nanosec units.
107 */
108unsigned long long notrace sched_clock(void)
109{
110 return tod_to_ns(get_tod_clock_monotonic());
111}
112NOKPROBE_SYMBOL(sched_clock);
113
114static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
115{
116 unsigned long rem, sec, nsec;
117
118 sec = clk->us;
119 rem = do_div(sec, 1000000);
120 nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
121 xt->tv_sec = sec;
122 xt->tv_nsec = nsec;
123}
124
125void clock_comparator_work(void)
126{
127 struct clock_event_device *cd;
128
129 S390_lowcore.clock_comparator = clock_comparator_max;
130 cd = this_cpu_ptr(&comparators);
131 cd->event_handler(cd);
132}
133
134static int s390_next_event(unsigned long delta,
135 struct clock_event_device *evt)
136{
137 S390_lowcore.clock_comparator = get_tod_clock() + delta;
138 set_clock_comparator(S390_lowcore.clock_comparator);
139 return 0;
140}
141
142/*
143 * Set up lowcore and control register of the current cpu to
144 * enable TOD clock and clock comparator interrupts.
145 */
146void init_cpu_timer(void)
147{
148 struct clock_event_device *cd;
149 int cpu;
150
151 S390_lowcore.clock_comparator = clock_comparator_max;
152 set_clock_comparator(S390_lowcore.clock_comparator);
153
154 cpu = smp_processor_id();
155 cd = &per_cpu(comparators, cpu);
156 cd->name = "comparator";
157 cd->features = CLOCK_EVT_FEAT_ONESHOT;
158 cd->mult = 16777;
159 cd->shift = 12;
160 cd->min_delta_ns = 1;
161 cd->min_delta_ticks = 1;
162 cd->max_delta_ns = LONG_MAX;
163 cd->max_delta_ticks = ULONG_MAX;
164 cd->rating = 400;
165 cd->cpumask = cpumask_of(cpu);
166 cd->set_next_event = s390_next_event;
167
168 clockevents_register_device(cd);
169
170 /* Enable clock comparator timer interrupt. */
171 __ctl_set_bit(0,11);
172
173 /* Always allow the timing alert external interrupt. */
174 __ctl_set_bit(0, 4);
175}
176
177static void clock_comparator_interrupt(struct ext_code ext_code,
178 unsigned int param32,
179 unsigned long param64)
180{
181 inc_irq_stat(IRQEXT_CLK);
182 if (S390_lowcore.clock_comparator == clock_comparator_max)
183 set_clock_comparator(S390_lowcore.clock_comparator);
184}
185
186static void stp_timing_alert(struct stp_irq_parm *);
187
188static void timing_alert_interrupt(struct ext_code ext_code,
189 unsigned int param32, unsigned long param64)
190{
191 inc_irq_stat(IRQEXT_TLA);
192 if (param32 & 0x00038000)
193 stp_timing_alert((struct stp_irq_parm *) ¶m32);
194}
195
196static void stp_reset(void);
197
198void read_persistent_clock64(struct timespec64 *ts)
199{
200 union tod_clock clk;
201 u64 delta;
202
203 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
204 store_tod_clock_ext(&clk);
205 clk.eitod -= delta;
206 ext_to_timespec64(&clk, ts);
207}
208
209void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
210 struct timespec64 *boot_offset)
211{
212 struct timespec64 boot_time;
213 union tod_clock clk;
214 u64 delta;
215
216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 clk = tod_clock_base;
218 clk.eitod -= delta;
219 ext_to_timespec64(&clk, &boot_time);
220
221 read_persistent_clock64(wall_time);
222 *boot_offset = timespec64_sub(*wall_time, boot_time);
223}
224
225static u64 read_tod_clock(struct clocksource *cs)
226{
227 unsigned long now, adj;
228
229 preempt_disable(); /* protect from changes to steering parameters */
230 now = get_tod_clock();
231 adj = tod_steering_end - now;
232 if (unlikely((s64) adj > 0))
233 /*
234 * manually steer by 1 cycle every 2^16 cycles. This
235 * corresponds to shifting the tod delta by 15. 1s is
236 * therefore steered in ~9h. The adjust will decrease
237 * over time, until it finally reaches 0.
238 */
239 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
240 preempt_enable();
241 return now;
242}
243
244static struct clocksource clocksource_tod = {
245 .name = "tod",
246 .rating = 400,
247 .read = read_tod_clock,
248 .mask = CLOCKSOURCE_MASK(64),
249 .mult = 1000,
250 .shift = 12,
251 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
252 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
253};
254
255struct clocksource * __init clocksource_default_clock(void)
256{
257 return &clocksource_tod;
258}
259
260/*
261 * Initialize the TOD clock and the CPU timer of
262 * the boot cpu.
263 */
264void __init time_init(void)
265{
266 /* Reset time synchronization interfaces. */
267 stp_reset();
268
269 /* request the clock comparator external interrupt */
270 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
271 panic("Couldn't request external interrupt 0x1004");
272
273 /* request the timing alert external interrupt */
274 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
275 panic("Couldn't request external interrupt 0x1406");
276
277 if (__clocksource_register(&clocksource_tod) != 0)
278 panic("Could not register TOD clock source");
279
280 /* Enable TOD clock interrupts on the boot cpu. */
281 init_cpu_timer();
282
283 /* Enable cpu timer interrupts on the boot cpu. */
284 vtime_init();
285}
286
287static DEFINE_PER_CPU(atomic_t, clock_sync_word);
288static DEFINE_MUTEX(stp_mutex);
289static unsigned long clock_sync_flags;
290
291#define CLOCK_SYNC_HAS_STP 0
292#define CLOCK_SYNC_STP 1
293#define CLOCK_SYNC_STPINFO_VALID 2
294
295/*
296 * The get_clock function for the physical clock. It will get the current
297 * TOD clock, subtract the LPAR offset and write the result to *clock.
298 * The function returns 0 if the clock is in sync with the external time
299 * source. If the clock mode is local it will return -EOPNOTSUPP and
300 * -EAGAIN if the clock is not in sync with the external reference.
301 */
302int get_phys_clock(unsigned long *clock)
303{
304 atomic_t *sw_ptr;
305 unsigned int sw0, sw1;
306
307 sw_ptr = &get_cpu_var(clock_sync_word);
308 sw0 = atomic_read(sw_ptr);
309 *clock = get_tod_clock() - lpar_offset;
310 sw1 = atomic_read(sw_ptr);
311 put_cpu_var(clock_sync_word);
312 if (sw0 == sw1 && (sw0 & 0x80000000U))
313 /* Success: time is in sync. */
314 return 0;
315 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
316 return -EOPNOTSUPP;
317 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
318 return -EACCES;
319 return -EAGAIN;
320}
321EXPORT_SYMBOL(get_phys_clock);
322
323/*
324 * Make get_phys_clock() return -EAGAIN.
325 */
326static void disable_sync_clock(void *dummy)
327{
328 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
329 /*
330 * Clear the in-sync bit 2^31. All get_phys_clock calls will
331 * fail until the sync bit is turned back on. In addition
332 * increase the "sequence" counter to avoid the race of an
333 * stp event and the complete recovery against get_phys_clock.
334 */
335 atomic_andnot(0x80000000, sw_ptr);
336 atomic_inc(sw_ptr);
337}
338
339/*
340 * Make get_phys_clock() return 0 again.
341 * Needs to be called from a context disabled for preemption.
342 */
343static void enable_sync_clock(void)
344{
345 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
346 atomic_or(0x80000000, sw_ptr);
347}
348
349/*
350 * Function to check if the clock is in sync.
351 */
352static inline int check_sync_clock(void)
353{
354 atomic_t *sw_ptr;
355 int rc;
356
357 sw_ptr = &get_cpu_var(clock_sync_word);
358 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
359 put_cpu_var(clock_sync_word);
360 return rc;
361}
362
363/*
364 * Apply clock delta to the global data structures.
365 * This is called once on the CPU that performed the clock sync.
366 */
367static void clock_sync_global(long delta)
368{
369 unsigned long now, adj;
370 struct ptff_qto qto;
371 int cs;
372
373 /* Fixup the monotonic sched clock. */
374 tod_clock_base.eitod += delta;
375 /* Adjust TOD steering parameters. */
376 now = get_tod_clock();
377 adj = tod_steering_end - now;
378 if (unlikely((s64) adj >= 0))
379 /* Calculate how much of the old adjustment is left. */
380 tod_steering_delta = (tod_steering_delta < 0) ?
381 -(adj >> 15) : (adj >> 15);
382 tod_steering_delta += delta;
383 if ((abs(tod_steering_delta) >> 48) != 0)
384 panic("TOD clock sync offset %li is too large to drift\n",
385 tod_steering_delta);
386 tod_steering_end = now + (abs(tod_steering_delta) << 15);
387 for (cs = 0; cs < CS_BASES; cs++) {
388 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
389 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
390 }
391
392 /* Update LPAR offset. */
393 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
394 lpar_offset = qto.tod_epoch_difference;
395 /* Call the TOD clock change notifier. */
396 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
397}
398
399/*
400 * Apply clock delta to the per-CPU data structures of this CPU.
401 * This is called for each online CPU after the call to clock_sync_global.
402 */
403static void clock_sync_local(long delta)
404{
405 /* Add the delta to the clock comparator. */
406 if (S390_lowcore.clock_comparator != clock_comparator_max) {
407 S390_lowcore.clock_comparator += delta;
408 set_clock_comparator(S390_lowcore.clock_comparator);
409 }
410 /* Adjust the last_update_clock time-stamp. */
411 S390_lowcore.last_update_clock += delta;
412}
413
414/* Single threaded workqueue used for stp sync events */
415static struct workqueue_struct *time_sync_wq;
416
417static void __init time_init_wq(void)
418{
419 if (time_sync_wq)
420 return;
421 time_sync_wq = create_singlethread_workqueue("timesync");
422}
423
424struct clock_sync_data {
425 atomic_t cpus;
426 int in_sync;
427 long clock_delta;
428};
429
430/*
431 * Server Time Protocol (STP) code.
432 */
433static bool stp_online;
434static struct stp_sstpi stp_info;
435static void *stp_page;
436
437static void stp_work_fn(struct work_struct *work);
438static DECLARE_WORK(stp_work, stp_work_fn);
439static struct timer_list stp_timer;
440
441static int __init early_parse_stp(char *p)
442{
443 return kstrtobool(p, &stp_online);
444}
445early_param("stp", early_parse_stp);
446
447/*
448 * Reset STP attachment.
449 */
450static void __init stp_reset(void)
451{
452 int rc;
453
454 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
455 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
456 if (rc == 0)
457 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
458 else if (stp_online) {
459 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
460 free_page((unsigned long) stp_page);
461 stp_page = NULL;
462 stp_online = false;
463 }
464}
465
466static void stp_timeout(struct timer_list *unused)
467{
468 queue_work(time_sync_wq, &stp_work);
469}
470
471static int __init stp_init(void)
472{
473 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
474 return 0;
475 timer_setup(&stp_timer, stp_timeout, 0);
476 time_init_wq();
477 if (!stp_online)
478 return 0;
479 queue_work(time_sync_wq, &stp_work);
480 return 0;
481}
482
483arch_initcall(stp_init);
484
485/*
486 * STP timing alert. There are three causes:
487 * 1) timing status change
488 * 2) link availability change
489 * 3) time control parameter change
490 * In all three cases we are only interested in the clock source state.
491 * If a STP clock source is now available use it.
492 */
493static void stp_timing_alert(struct stp_irq_parm *intparm)
494{
495 if (intparm->tsc || intparm->lac || intparm->tcpc)
496 queue_work(time_sync_wq, &stp_work);
497}
498
499/*
500 * STP sync check machine check. This is called when the timing state
501 * changes from the synchronized state to the unsynchronized state.
502 * After a STP sync check the clock is not in sync. The machine check
503 * is broadcasted to all cpus at the same time.
504 */
505int stp_sync_check(void)
506{
507 disable_sync_clock(NULL);
508 return 1;
509}
510
511/*
512 * STP island condition machine check. This is called when an attached
513 * server attempts to communicate over an STP link and the servers
514 * have matching CTN ids and have a valid stratum-1 configuration
515 * but the configurations do not match.
516 */
517int stp_island_check(void)
518{
519 disable_sync_clock(NULL);
520 return 1;
521}
522
523void stp_queue_work(void)
524{
525 queue_work(time_sync_wq, &stp_work);
526}
527
528static int __store_stpinfo(void)
529{
530 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
531
532 if (rc)
533 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
534 else
535 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
536 return rc;
537}
538
539static int stpinfo_valid(void)
540{
541 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
542}
543
544static int stp_sync_clock(void *data)
545{
546 struct clock_sync_data *sync = data;
547 long clock_delta, flags;
548 static int first;
549 int rc;
550
551 enable_sync_clock();
552 if (xchg(&first, 1) == 0) {
553 /* Wait until all other cpus entered the sync function. */
554 while (atomic_read(&sync->cpus) != 0)
555 cpu_relax();
556 rc = 0;
557 if (stp_info.todoff || stp_info.tmd != 2) {
558 flags = vdso_update_begin();
559 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
560 &clock_delta);
561 if (rc == 0) {
562 sync->clock_delta = clock_delta;
563 clock_sync_global(clock_delta);
564 rc = __store_stpinfo();
565 if (rc == 0 && stp_info.tmd != 2)
566 rc = -EAGAIN;
567 }
568 vdso_update_end(flags);
569 }
570 sync->in_sync = rc ? -EAGAIN : 1;
571 xchg(&first, 0);
572 } else {
573 /* Slave */
574 atomic_dec(&sync->cpus);
575 /* Wait for in_sync to be set. */
576 while (READ_ONCE(sync->in_sync) == 0)
577 __udelay(1);
578 }
579 if (sync->in_sync != 1)
580 /* Didn't work. Clear per-cpu in sync bit again. */
581 disable_sync_clock(NULL);
582 /* Apply clock delta to per-CPU fields of this CPU. */
583 clock_sync_local(sync->clock_delta);
584
585 return 0;
586}
587
588static int stp_clear_leap(void)
589{
590 struct __kernel_timex txc;
591 int ret;
592
593 memset(&txc, 0, sizeof(txc));
594
595 ret = do_adjtimex(&txc);
596 if (ret < 0)
597 return ret;
598
599 txc.modes = ADJ_STATUS;
600 txc.status &= ~(STA_INS|STA_DEL);
601 return do_adjtimex(&txc);
602}
603
604static void stp_check_leap(void)
605{
606 struct stp_stzi stzi;
607 struct stp_lsoib *lsoib = &stzi.lsoib;
608 struct __kernel_timex txc;
609 int64_t timediff;
610 int leapdiff, ret;
611
612 if (!stp_info.lu || !check_sync_clock()) {
613 /*
614 * Either a scheduled leap second was removed by the operator,
615 * or STP is out of sync. In both cases, clear the leap second
616 * kernel flags.
617 */
618 if (stp_clear_leap() < 0)
619 pr_err("failed to clear leap second flags\n");
620 return;
621 }
622
623 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
624 pr_err("stzi failed\n");
625 return;
626 }
627
628 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
629 leapdiff = lsoib->nlso - lsoib->also;
630
631 if (leapdiff != 1 && leapdiff != -1) {
632 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
633 return;
634 }
635
636 if (timediff < 0) {
637 if (stp_clear_leap() < 0)
638 pr_err("failed to clear leap second flags\n");
639 } else if (timediff < 7200) {
640 memset(&txc, 0, sizeof(txc));
641 ret = do_adjtimex(&txc);
642 if (ret < 0)
643 return;
644
645 txc.modes = ADJ_STATUS;
646 if (leapdiff > 0)
647 txc.status |= STA_INS;
648 else
649 txc.status |= STA_DEL;
650 ret = do_adjtimex(&txc);
651 if (ret < 0)
652 pr_err("failed to set leap second flags\n");
653 /* arm Timer to clear leap second flags */
654 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
655 } else {
656 /* The day the leap second is scheduled for hasn't been reached. Retry
657 * in one hour.
658 */
659 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
660 }
661}
662
663/*
664 * STP work. Check for the STP state and take over the clock
665 * synchronization if the STP clock source is usable.
666 */
667static void stp_work_fn(struct work_struct *work)
668{
669 struct clock_sync_data stp_sync;
670 int rc;
671
672 /* prevent multiple execution. */
673 mutex_lock(&stp_mutex);
674
675 if (!stp_online) {
676 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
677 del_timer_sync(&stp_timer);
678 goto out_unlock;
679 }
680
681 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
682 if (rc)
683 goto out_unlock;
684
685 rc = __store_stpinfo();
686 if (rc || stp_info.c == 0)
687 goto out_unlock;
688
689 /* Skip synchronization if the clock is already in sync. */
690 if (!check_sync_clock()) {
691 memset(&stp_sync, 0, sizeof(stp_sync));
692 cpus_read_lock();
693 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
694 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
695 cpus_read_unlock();
696 }
697
698 if (!check_sync_clock())
699 /*
700 * There is a usable clock but the synchonization failed.
701 * Retry after a second.
702 */
703 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
704 else if (stp_info.lu)
705 stp_check_leap();
706
707out_unlock:
708 mutex_unlock(&stp_mutex);
709}
710
711/*
712 * STP subsys sysfs interface functions
713 */
714static struct bus_type stp_subsys = {
715 .name = "stp",
716 .dev_name = "stp",
717};
718
719static ssize_t ctn_id_show(struct device *dev,
720 struct device_attribute *attr,
721 char *buf)
722{
723 ssize_t ret = -ENODATA;
724
725 mutex_lock(&stp_mutex);
726 if (stpinfo_valid())
727 ret = sprintf(buf, "%016lx\n",
728 *(unsigned long *) stp_info.ctnid);
729 mutex_unlock(&stp_mutex);
730 return ret;
731}
732
733static DEVICE_ATTR_RO(ctn_id);
734
735static ssize_t ctn_type_show(struct device *dev,
736 struct device_attribute *attr,
737 char *buf)
738{
739 ssize_t ret = -ENODATA;
740
741 mutex_lock(&stp_mutex);
742 if (stpinfo_valid())
743 ret = sprintf(buf, "%i\n", stp_info.ctn);
744 mutex_unlock(&stp_mutex);
745 return ret;
746}
747
748static DEVICE_ATTR_RO(ctn_type);
749
750static ssize_t dst_offset_show(struct device *dev,
751 struct device_attribute *attr,
752 char *buf)
753{
754 ssize_t ret = -ENODATA;
755
756 mutex_lock(&stp_mutex);
757 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
758 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
759 mutex_unlock(&stp_mutex);
760 return ret;
761}
762
763static DEVICE_ATTR_RO(dst_offset);
764
765static ssize_t leap_seconds_show(struct device *dev,
766 struct device_attribute *attr,
767 char *buf)
768{
769 ssize_t ret = -ENODATA;
770
771 mutex_lock(&stp_mutex);
772 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
773 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
774 mutex_unlock(&stp_mutex);
775 return ret;
776}
777
778static DEVICE_ATTR_RO(leap_seconds);
779
780static ssize_t leap_seconds_scheduled_show(struct device *dev,
781 struct device_attribute *attr,
782 char *buf)
783{
784 struct stp_stzi stzi;
785 ssize_t ret;
786
787 mutex_lock(&stp_mutex);
788 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
789 mutex_unlock(&stp_mutex);
790 return -ENODATA;
791 }
792
793 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
794 mutex_unlock(&stp_mutex);
795 if (ret < 0)
796 return ret;
797
798 if (!stzi.lsoib.p)
799 return sprintf(buf, "0,0\n");
800
801 return sprintf(buf, "%lu,%d\n",
802 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
803 stzi.lsoib.nlso - stzi.lsoib.also);
804}
805
806static DEVICE_ATTR_RO(leap_seconds_scheduled);
807
808static ssize_t stratum_show(struct device *dev,
809 struct device_attribute *attr,
810 char *buf)
811{
812 ssize_t ret = -ENODATA;
813
814 mutex_lock(&stp_mutex);
815 if (stpinfo_valid())
816 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
817 mutex_unlock(&stp_mutex);
818 return ret;
819}
820
821static DEVICE_ATTR_RO(stratum);
822
823static ssize_t time_offset_show(struct device *dev,
824 struct device_attribute *attr,
825 char *buf)
826{
827 ssize_t ret = -ENODATA;
828
829 mutex_lock(&stp_mutex);
830 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
831 ret = sprintf(buf, "%i\n", (int) stp_info.tto);
832 mutex_unlock(&stp_mutex);
833 return ret;
834}
835
836static DEVICE_ATTR_RO(time_offset);
837
838static ssize_t time_zone_offset_show(struct device *dev,
839 struct device_attribute *attr,
840 char *buf)
841{
842 ssize_t ret = -ENODATA;
843
844 mutex_lock(&stp_mutex);
845 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
846 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
847 mutex_unlock(&stp_mutex);
848 return ret;
849}
850
851static DEVICE_ATTR_RO(time_zone_offset);
852
853static ssize_t timing_mode_show(struct device *dev,
854 struct device_attribute *attr,
855 char *buf)
856{
857 ssize_t ret = -ENODATA;
858
859 mutex_lock(&stp_mutex);
860 if (stpinfo_valid())
861 ret = sprintf(buf, "%i\n", stp_info.tmd);
862 mutex_unlock(&stp_mutex);
863 return ret;
864}
865
866static DEVICE_ATTR_RO(timing_mode);
867
868static ssize_t timing_state_show(struct device *dev,
869 struct device_attribute *attr,
870 char *buf)
871{
872 ssize_t ret = -ENODATA;
873
874 mutex_lock(&stp_mutex);
875 if (stpinfo_valid())
876 ret = sprintf(buf, "%i\n", stp_info.tst);
877 mutex_unlock(&stp_mutex);
878 return ret;
879}
880
881static DEVICE_ATTR_RO(timing_state);
882
883static ssize_t online_show(struct device *dev,
884 struct device_attribute *attr,
885 char *buf)
886{
887 return sprintf(buf, "%i\n", stp_online);
888}
889
890static ssize_t online_store(struct device *dev,
891 struct device_attribute *attr,
892 const char *buf, size_t count)
893{
894 unsigned int value;
895
896 value = simple_strtoul(buf, NULL, 0);
897 if (value != 0 && value != 1)
898 return -EINVAL;
899 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
900 return -EOPNOTSUPP;
901 mutex_lock(&stp_mutex);
902 stp_online = value;
903 if (stp_online)
904 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
905 else
906 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
907 queue_work(time_sync_wq, &stp_work);
908 mutex_unlock(&stp_mutex);
909 return count;
910}
911
912/*
913 * Can't use DEVICE_ATTR because the attribute should be named
914 * stp/online but dev_attr_online already exists in this file ..
915 */
916static DEVICE_ATTR_RW(online);
917
918static struct attribute *stp_dev_attrs[] = {
919 &dev_attr_ctn_id.attr,
920 &dev_attr_ctn_type.attr,
921 &dev_attr_dst_offset.attr,
922 &dev_attr_leap_seconds.attr,
923 &dev_attr_online.attr,
924 &dev_attr_leap_seconds_scheduled.attr,
925 &dev_attr_stratum.attr,
926 &dev_attr_time_offset.attr,
927 &dev_attr_time_zone_offset.attr,
928 &dev_attr_timing_mode.attr,
929 &dev_attr_timing_state.attr,
930 NULL
931};
932ATTRIBUTE_GROUPS(stp_dev);
933
934static int __init stp_init_sysfs(void)
935{
936 return subsys_system_register(&stp_subsys, stp_dev_groups);
937}
938
939device_initcall(stp_init_sysfs);
1/*
2 * arch/s390/kernel/time.c
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15#define KMSG_COMPONENT "time"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/kernel_stat.h>
19#include <linux/errno.h>
20#include <linux/module.h>
21#include <linux/sched.h>
22#include <linux/kernel.h>
23#include <linux/param.h>
24#include <linux/string.h>
25#include <linux/mm.h>
26#include <linux/interrupt.h>
27#include <linux/cpu.h>
28#include <linux/stop_machine.h>
29#include <linux/time.h>
30#include <linux/device.h>
31#include <linux/delay.h>
32#include <linux/init.h>
33#include <linux/smp.h>
34#include <linux/types.h>
35#include <linux/profile.h>
36#include <linux/timex.h>
37#include <linux/notifier.h>
38#include <linux/clocksource.h>
39#include <linux/clockchips.h>
40#include <linux/gfp.h>
41#include <linux/kprobes.h>
42#include <asm/uaccess.h>
43#include <asm/delay.h>
44#include <asm/div64.h>
45#include <asm/vdso.h>
46#include <asm/irq.h>
47#include <asm/irq_regs.h>
48#include <asm/timer.h>
49#include <asm/etr.h>
50#include <asm/cio.h>
51#include "entry.h"
52
53/* change this if you have some constant time drift */
54#define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
55#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56
57u64 sched_clock_base_cc = -1; /* Force to data section. */
58EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59
60static DEFINE_PER_CPU(struct clock_event_device, comparators);
61
62/*
63 * Scheduler clock - returns current time in nanosec units.
64 */
65unsigned long long notrace __kprobes sched_clock(void)
66{
67 return (get_clock_monotonic() * 125) >> 9;
68}
69
70/*
71 * Monotonic_clock - returns # of nanoseconds passed since time_init()
72 */
73unsigned long long monotonic_clock(void)
74{
75 return sched_clock();
76}
77EXPORT_SYMBOL(monotonic_clock);
78
79void tod_to_timeval(__u64 todval, struct timespec *xt)
80{
81 unsigned long long sec;
82
83 sec = todval >> 12;
84 do_div(sec, 1000000);
85 xt->tv_sec = sec;
86 todval -= (sec * 1000000) << 12;
87 xt->tv_nsec = ((todval * 1000) >> 12);
88}
89EXPORT_SYMBOL(tod_to_timeval);
90
91void clock_comparator_work(void)
92{
93 struct clock_event_device *cd;
94
95 S390_lowcore.clock_comparator = -1ULL;
96 set_clock_comparator(S390_lowcore.clock_comparator);
97 cd = &__get_cpu_var(comparators);
98 cd->event_handler(cd);
99}
100
101/*
102 * Fixup the clock comparator.
103 */
104static void fixup_clock_comparator(unsigned long long delta)
105{
106 /* If nobody is waiting there's nothing to fix. */
107 if (S390_lowcore.clock_comparator == -1ULL)
108 return;
109 S390_lowcore.clock_comparator += delta;
110 set_clock_comparator(S390_lowcore.clock_comparator);
111}
112
113static int s390_next_ktime(ktime_t expires,
114 struct clock_event_device *evt)
115{
116 struct timespec ts;
117 u64 nsecs;
118
119 ts.tv_sec = ts.tv_nsec = 0;
120 monotonic_to_bootbased(&ts);
121 nsecs = ktime_to_ns(ktime_add(timespec_to_ktime(ts), expires));
122 do_div(nsecs, 125);
123 S390_lowcore.clock_comparator = sched_clock_base_cc + (nsecs << 9);
124 set_clock_comparator(S390_lowcore.clock_comparator);
125 return 0;
126}
127
128static void s390_set_mode(enum clock_event_mode mode,
129 struct clock_event_device *evt)
130{
131}
132
133/*
134 * Set up lowcore and control register of the current cpu to
135 * enable TOD clock and clock comparator interrupts.
136 */
137void init_cpu_timer(void)
138{
139 struct clock_event_device *cd;
140 int cpu;
141
142 S390_lowcore.clock_comparator = -1ULL;
143 set_clock_comparator(S390_lowcore.clock_comparator);
144
145 cpu = smp_processor_id();
146 cd = &per_cpu(comparators, cpu);
147 cd->name = "comparator";
148 cd->features = CLOCK_EVT_FEAT_ONESHOT |
149 CLOCK_EVT_FEAT_KTIME;
150 cd->mult = 16777;
151 cd->shift = 12;
152 cd->min_delta_ns = 1;
153 cd->max_delta_ns = LONG_MAX;
154 cd->rating = 400;
155 cd->cpumask = cpumask_of(cpu);
156 cd->set_next_ktime = s390_next_ktime;
157 cd->set_mode = s390_set_mode;
158
159 clockevents_register_device(cd);
160
161 /* Enable clock comparator timer interrupt. */
162 __ctl_set_bit(0,11);
163
164 /* Always allow the timing alert external interrupt. */
165 __ctl_set_bit(0, 4);
166}
167
168static void clock_comparator_interrupt(struct ext_code ext_code,
169 unsigned int param32,
170 unsigned long param64)
171{
172 kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
173 if (S390_lowcore.clock_comparator == -1ULL)
174 set_clock_comparator(S390_lowcore.clock_comparator);
175}
176
177static void etr_timing_alert(struct etr_irq_parm *);
178static void stp_timing_alert(struct stp_irq_parm *);
179
180static void timing_alert_interrupt(struct ext_code ext_code,
181 unsigned int param32, unsigned long param64)
182{
183 kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
184 if (param32 & 0x00c40000)
185 etr_timing_alert((struct etr_irq_parm *) ¶m32);
186 if (param32 & 0x00038000)
187 stp_timing_alert((struct stp_irq_parm *) ¶m32);
188}
189
190static void etr_reset(void);
191static void stp_reset(void);
192
193void read_persistent_clock(struct timespec *ts)
194{
195 tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
196}
197
198void read_boot_clock(struct timespec *ts)
199{
200 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
201}
202
203static cycle_t read_tod_clock(struct clocksource *cs)
204{
205 return get_clock();
206}
207
208static struct clocksource clocksource_tod = {
209 .name = "tod",
210 .rating = 400,
211 .read = read_tod_clock,
212 .mask = -1ULL,
213 .mult = 1000,
214 .shift = 12,
215 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
216};
217
218struct clocksource * __init clocksource_default_clock(void)
219{
220 return &clocksource_tod;
221}
222
223void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
224 struct clocksource *clock, u32 mult)
225{
226 if (clock != &clocksource_tod)
227 return;
228
229 /* Make userspace gettimeofday spin until we're done. */
230 ++vdso_data->tb_update_count;
231 smp_wmb();
232 vdso_data->xtime_tod_stamp = clock->cycle_last;
233 vdso_data->xtime_clock_sec = wall_time->tv_sec;
234 vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
235 vdso_data->wtom_clock_sec = wtm->tv_sec;
236 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
237 vdso_data->ntp_mult = mult;
238 smp_wmb();
239 ++vdso_data->tb_update_count;
240}
241
242extern struct timezone sys_tz;
243
244void update_vsyscall_tz(void)
245{
246 /* Make userspace gettimeofday spin until we're done. */
247 ++vdso_data->tb_update_count;
248 smp_wmb();
249 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
250 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
251 smp_wmb();
252 ++vdso_data->tb_update_count;
253}
254
255/*
256 * Initialize the TOD clock and the CPU timer of
257 * the boot cpu.
258 */
259void __init time_init(void)
260{
261 /* Reset time synchronization interfaces. */
262 etr_reset();
263 stp_reset();
264
265 /* request the clock comparator external interrupt */
266 if (register_external_interrupt(0x1004, clock_comparator_interrupt))
267 panic("Couldn't request external interrupt 0x1004");
268
269 /* request the timing alert external interrupt */
270 if (register_external_interrupt(0x1406, timing_alert_interrupt))
271 panic("Couldn't request external interrupt 0x1406");
272
273 if (clocksource_register(&clocksource_tod) != 0)
274 panic("Could not register TOD clock source");
275
276 /* Enable TOD clock interrupts on the boot cpu. */
277 init_cpu_timer();
278
279 /* Enable cpu timer interrupts on the boot cpu. */
280 vtime_init();
281}
282
283/*
284 * The time is "clock". old is what we think the time is.
285 * Adjust the value by a multiple of jiffies and add the delta to ntp.
286 * "delay" is an approximation how long the synchronization took. If
287 * the time correction is positive, then "delay" is subtracted from
288 * the time difference and only the remaining part is passed to ntp.
289 */
290static unsigned long long adjust_time(unsigned long long old,
291 unsigned long long clock,
292 unsigned long long delay)
293{
294 unsigned long long delta, ticks;
295 struct timex adjust;
296
297 if (clock > old) {
298 /* It is later than we thought. */
299 delta = ticks = clock - old;
300 delta = ticks = (delta < delay) ? 0 : delta - delay;
301 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
302 adjust.offset = ticks * (1000000 / HZ);
303 } else {
304 /* It is earlier than we thought. */
305 delta = ticks = old - clock;
306 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
307 delta = -delta;
308 adjust.offset = -ticks * (1000000 / HZ);
309 }
310 sched_clock_base_cc += delta;
311 if (adjust.offset != 0) {
312 pr_notice("The ETR interface has adjusted the clock "
313 "by %li microseconds\n", adjust.offset);
314 adjust.modes = ADJ_OFFSET_SINGLESHOT;
315 do_adjtimex(&adjust);
316 }
317 return delta;
318}
319
320static DEFINE_PER_CPU(atomic_t, clock_sync_word);
321static DEFINE_MUTEX(clock_sync_mutex);
322static unsigned long clock_sync_flags;
323
324#define CLOCK_SYNC_HAS_ETR 0
325#define CLOCK_SYNC_HAS_STP 1
326#define CLOCK_SYNC_ETR 2
327#define CLOCK_SYNC_STP 3
328
329/*
330 * The synchronous get_clock function. It will write the current clock
331 * value to the clock pointer and return 0 if the clock is in sync with
332 * the external time source. If the clock mode is local it will return
333 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
334 * reference.
335 */
336int get_sync_clock(unsigned long long *clock)
337{
338 atomic_t *sw_ptr;
339 unsigned int sw0, sw1;
340
341 sw_ptr = &get_cpu_var(clock_sync_word);
342 sw0 = atomic_read(sw_ptr);
343 *clock = get_clock();
344 sw1 = atomic_read(sw_ptr);
345 put_cpu_var(clock_sync_word);
346 if (sw0 == sw1 && (sw0 & 0x80000000U))
347 /* Success: time is in sync. */
348 return 0;
349 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
350 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
351 return -ENOSYS;
352 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
353 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
354 return -EACCES;
355 return -EAGAIN;
356}
357EXPORT_SYMBOL(get_sync_clock);
358
359/*
360 * Make get_sync_clock return -EAGAIN.
361 */
362static void disable_sync_clock(void *dummy)
363{
364 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
365 /*
366 * Clear the in-sync bit 2^31. All get_sync_clock calls will
367 * fail until the sync bit is turned back on. In addition
368 * increase the "sequence" counter to avoid the race of an
369 * etr event and the complete recovery against get_sync_clock.
370 */
371 atomic_clear_mask(0x80000000, sw_ptr);
372 atomic_inc(sw_ptr);
373}
374
375/*
376 * Make get_sync_clock return 0 again.
377 * Needs to be called from a context disabled for preemption.
378 */
379static void enable_sync_clock(void)
380{
381 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
382 atomic_set_mask(0x80000000, sw_ptr);
383}
384
385/*
386 * Function to check if the clock is in sync.
387 */
388static inline int check_sync_clock(void)
389{
390 atomic_t *sw_ptr;
391 int rc;
392
393 sw_ptr = &get_cpu_var(clock_sync_word);
394 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
395 put_cpu_var(clock_sync_word);
396 return rc;
397}
398
399/* Single threaded workqueue used for etr and stp sync events */
400static struct workqueue_struct *time_sync_wq;
401
402static void __init time_init_wq(void)
403{
404 if (time_sync_wq)
405 return;
406 time_sync_wq = create_singlethread_workqueue("timesync");
407}
408
409/*
410 * External Time Reference (ETR) code.
411 */
412static int etr_port0_online;
413static int etr_port1_online;
414static int etr_steai_available;
415
416static int __init early_parse_etr(char *p)
417{
418 if (strncmp(p, "off", 3) == 0)
419 etr_port0_online = etr_port1_online = 0;
420 else if (strncmp(p, "port0", 5) == 0)
421 etr_port0_online = 1;
422 else if (strncmp(p, "port1", 5) == 0)
423 etr_port1_online = 1;
424 else if (strncmp(p, "on", 2) == 0)
425 etr_port0_online = etr_port1_online = 1;
426 return 0;
427}
428early_param("etr", early_parse_etr);
429
430enum etr_event {
431 ETR_EVENT_PORT0_CHANGE,
432 ETR_EVENT_PORT1_CHANGE,
433 ETR_EVENT_PORT_ALERT,
434 ETR_EVENT_SYNC_CHECK,
435 ETR_EVENT_SWITCH_LOCAL,
436 ETR_EVENT_UPDATE,
437};
438
439/*
440 * Valid bit combinations of the eacr register are (x = don't care):
441 * e0 e1 dp p0 p1 ea es sl
442 * 0 0 x 0 0 0 0 0 initial, disabled state
443 * 0 0 x 0 1 1 0 0 port 1 online
444 * 0 0 x 1 0 1 0 0 port 0 online
445 * 0 0 x 1 1 1 0 0 both ports online
446 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
447 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
448 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
449 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
450 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
451 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
452 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
453 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
454 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
455 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
456 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
457 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
458 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
459 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
460 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
461 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
462 */
463static struct etr_eacr etr_eacr;
464static u64 etr_tolec; /* time of last eacr update */
465static struct etr_aib etr_port0;
466static int etr_port0_uptodate;
467static struct etr_aib etr_port1;
468static int etr_port1_uptodate;
469static unsigned long etr_events;
470static struct timer_list etr_timer;
471
472static void etr_timeout(unsigned long dummy);
473static void etr_work_fn(struct work_struct *work);
474static DEFINE_MUTEX(etr_work_mutex);
475static DECLARE_WORK(etr_work, etr_work_fn);
476
477/*
478 * Reset ETR attachment.
479 */
480static void etr_reset(void)
481{
482 etr_eacr = (struct etr_eacr) {
483 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
484 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
485 .es = 0, .sl = 0 };
486 if (etr_setr(&etr_eacr) == 0) {
487 etr_tolec = get_clock();
488 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
489 if (etr_port0_online && etr_port1_online)
490 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
491 } else if (etr_port0_online || etr_port1_online) {
492 pr_warning("The real or virtual hardware system does "
493 "not provide an ETR interface\n");
494 etr_port0_online = etr_port1_online = 0;
495 }
496}
497
498static int __init etr_init(void)
499{
500 struct etr_aib aib;
501
502 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
503 return 0;
504 time_init_wq();
505 /* Check if this machine has the steai instruction. */
506 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
507 etr_steai_available = 1;
508 setup_timer(&etr_timer, etr_timeout, 0UL);
509 if (etr_port0_online) {
510 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
511 queue_work(time_sync_wq, &etr_work);
512 }
513 if (etr_port1_online) {
514 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
515 queue_work(time_sync_wq, &etr_work);
516 }
517 return 0;
518}
519
520arch_initcall(etr_init);
521
522/*
523 * Two sorts of ETR machine checks. The architecture reads:
524 * "When a machine-check niterruption occurs and if a switch-to-local or
525 * ETR-sync-check interrupt request is pending but disabled, this pending
526 * disabled interruption request is indicated and is cleared".
527 * Which means that we can get etr_switch_to_local events from the machine
528 * check handler although the interruption condition is disabled. Lovely..
529 */
530
531/*
532 * Switch to local machine check. This is called when the last usable
533 * ETR port goes inactive. After switch to local the clock is not in sync.
534 */
535void etr_switch_to_local(void)
536{
537 if (!etr_eacr.sl)
538 return;
539 disable_sync_clock(NULL);
540 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
541 etr_eacr.es = etr_eacr.sl = 0;
542 etr_setr(&etr_eacr);
543 queue_work(time_sync_wq, &etr_work);
544 }
545}
546
547/*
548 * ETR sync check machine check. This is called when the ETR OTE and the
549 * local clock OTE are farther apart than the ETR sync check tolerance.
550 * After a ETR sync check the clock is not in sync. The machine check
551 * is broadcasted to all cpus at the same time.
552 */
553void etr_sync_check(void)
554{
555 if (!etr_eacr.es)
556 return;
557 disable_sync_clock(NULL);
558 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
559 etr_eacr.es = 0;
560 etr_setr(&etr_eacr);
561 queue_work(time_sync_wq, &etr_work);
562 }
563}
564
565/*
566 * ETR timing alert. There are two causes:
567 * 1) port state change, check the usability of the port
568 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
569 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
570 * or ETR-data word 4 (edf4) has changed.
571 */
572static void etr_timing_alert(struct etr_irq_parm *intparm)
573{
574 if (intparm->pc0)
575 /* ETR port 0 state change. */
576 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
577 if (intparm->pc1)
578 /* ETR port 1 state change. */
579 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
580 if (intparm->eai)
581 /*
582 * ETR port alert on either port 0, 1 or both.
583 * Both ports are not up-to-date now.
584 */
585 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
586 queue_work(time_sync_wq, &etr_work);
587}
588
589static void etr_timeout(unsigned long dummy)
590{
591 set_bit(ETR_EVENT_UPDATE, &etr_events);
592 queue_work(time_sync_wq, &etr_work);
593}
594
595/*
596 * Check if the etr mode is pss.
597 */
598static inline int etr_mode_is_pps(struct etr_eacr eacr)
599{
600 return eacr.es && !eacr.sl;
601}
602
603/*
604 * Check if the etr mode is etr.
605 */
606static inline int etr_mode_is_etr(struct etr_eacr eacr)
607{
608 return eacr.es && eacr.sl;
609}
610
611/*
612 * Check if the port can be used for TOD synchronization.
613 * For PPS mode the port has to receive OTEs. For ETR mode
614 * the port has to receive OTEs, the ETR stepping bit has to
615 * be zero and the validity bits for data frame 1, 2, and 3
616 * have to be 1.
617 */
618static int etr_port_valid(struct etr_aib *aib, int port)
619{
620 unsigned int psc;
621
622 /* Check that this port is receiving OTEs. */
623 if (aib->tsp == 0)
624 return 0;
625
626 psc = port ? aib->esw.psc1 : aib->esw.psc0;
627 if (psc == etr_lpsc_pps_mode)
628 return 1;
629 if (psc == etr_lpsc_operational_step)
630 return !aib->esw.y && aib->slsw.v1 &&
631 aib->slsw.v2 && aib->slsw.v3;
632 return 0;
633}
634
635/*
636 * Check if two ports are on the same network.
637 */
638static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
639{
640 // FIXME: any other fields we have to compare?
641 return aib1->edf1.net_id == aib2->edf1.net_id;
642}
643
644/*
645 * Wrapper for etr_stei that converts physical port states
646 * to logical port states to be consistent with the output
647 * of stetr (see etr_psc vs. etr_lpsc).
648 */
649static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
650{
651 BUG_ON(etr_steai(aib, func) != 0);
652 /* Convert port state to logical port state. */
653 if (aib->esw.psc0 == 1)
654 aib->esw.psc0 = 2;
655 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
656 aib->esw.psc0 = 1;
657 if (aib->esw.psc1 == 1)
658 aib->esw.psc1 = 2;
659 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
660 aib->esw.psc1 = 1;
661}
662
663/*
664 * Check if the aib a2 is still connected to the same attachment as
665 * aib a1, the etv values differ by one and a2 is valid.
666 */
667static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
668{
669 int state_a1, state_a2;
670
671 /* Paranoia check: e0/e1 should better be the same. */
672 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
673 a1->esw.eacr.e1 != a2->esw.eacr.e1)
674 return 0;
675
676 /* Still connected to the same etr ? */
677 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
678 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
679 if (state_a1 == etr_lpsc_operational_step) {
680 if (state_a2 != etr_lpsc_operational_step ||
681 a1->edf1.net_id != a2->edf1.net_id ||
682 a1->edf1.etr_id != a2->edf1.etr_id ||
683 a1->edf1.etr_pn != a2->edf1.etr_pn)
684 return 0;
685 } else if (state_a2 != etr_lpsc_pps_mode)
686 return 0;
687
688 /* The ETV value of a2 needs to be ETV of a1 + 1. */
689 if (a1->edf2.etv + 1 != a2->edf2.etv)
690 return 0;
691
692 if (!etr_port_valid(a2, p))
693 return 0;
694
695 return 1;
696}
697
698struct clock_sync_data {
699 atomic_t cpus;
700 int in_sync;
701 unsigned long long fixup_cc;
702 int etr_port;
703 struct etr_aib *etr_aib;
704};
705
706static void clock_sync_cpu(struct clock_sync_data *sync)
707{
708 atomic_dec(&sync->cpus);
709 enable_sync_clock();
710 /*
711 * This looks like a busy wait loop but it isn't. etr_sync_cpus
712 * is called on all other cpus while the TOD clocks is stopped.
713 * __udelay will stop the cpu on an enabled wait psw until the
714 * TOD is running again.
715 */
716 while (sync->in_sync == 0) {
717 __udelay(1);
718 /*
719 * A different cpu changes *in_sync. Therefore use
720 * barrier() to force memory access.
721 */
722 barrier();
723 }
724 if (sync->in_sync != 1)
725 /* Didn't work. Clear per-cpu in sync bit again. */
726 disable_sync_clock(NULL);
727 /*
728 * This round of TOD syncing is done. Set the clock comparator
729 * to the next tick and let the processor continue.
730 */
731 fixup_clock_comparator(sync->fixup_cc);
732}
733
734/*
735 * Sync the TOD clock using the port referred to by aibp. This port
736 * has to be enabled and the other port has to be disabled. The
737 * last eacr update has to be more than 1.6 seconds in the past.
738 */
739static int etr_sync_clock(void *data)
740{
741 static int first;
742 unsigned long long clock, old_clock, delay, delta;
743 struct clock_sync_data *etr_sync;
744 struct etr_aib *sync_port, *aib;
745 int port;
746 int rc;
747
748 etr_sync = data;
749
750 if (xchg(&first, 1) == 1) {
751 /* Slave */
752 clock_sync_cpu(etr_sync);
753 return 0;
754 }
755
756 /* Wait until all other cpus entered the sync function. */
757 while (atomic_read(&etr_sync->cpus) != 0)
758 cpu_relax();
759
760 port = etr_sync->etr_port;
761 aib = etr_sync->etr_aib;
762 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
763 enable_sync_clock();
764
765 /* Set clock to next OTE. */
766 __ctl_set_bit(14, 21);
767 __ctl_set_bit(0, 29);
768 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
769 old_clock = get_clock();
770 if (set_clock(clock) == 0) {
771 __udelay(1); /* Wait for the clock to start. */
772 __ctl_clear_bit(0, 29);
773 __ctl_clear_bit(14, 21);
774 etr_stetr(aib);
775 /* Adjust Linux timing variables. */
776 delay = (unsigned long long)
777 (aib->edf2.etv - sync_port->edf2.etv) << 32;
778 delta = adjust_time(old_clock, clock, delay);
779 etr_sync->fixup_cc = delta;
780 fixup_clock_comparator(delta);
781 /* Verify that the clock is properly set. */
782 if (!etr_aib_follows(sync_port, aib, port)) {
783 /* Didn't work. */
784 disable_sync_clock(NULL);
785 etr_sync->in_sync = -EAGAIN;
786 rc = -EAGAIN;
787 } else {
788 etr_sync->in_sync = 1;
789 rc = 0;
790 }
791 } else {
792 /* Could not set the clock ?!? */
793 __ctl_clear_bit(0, 29);
794 __ctl_clear_bit(14, 21);
795 disable_sync_clock(NULL);
796 etr_sync->in_sync = -EAGAIN;
797 rc = -EAGAIN;
798 }
799 xchg(&first, 0);
800 return rc;
801}
802
803static int etr_sync_clock_stop(struct etr_aib *aib, int port)
804{
805 struct clock_sync_data etr_sync;
806 struct etr_aib *sync_port;
807 int follows;
808 int rc;
809
810 /* Check if the current aib is adjacent to the sync port aib. */
811 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
812 follows = etr_aib_follows(sync_port, aib, port);
813 memcpy(sync_port, aib, sizeof(*aib));
814 if (!follows)
815 return -EAGAIN;
816 memset(&etr_sync, 0, sizeof(etr_sync));
817 etr_sync.etr_aib = aib;
818 etr_sync.etr_port = port;
819 get_online_cpus();
820 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
821 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
822 put_online_cpus();
823 return rc;
824}
825
826/*
827 * Handle the immediate effects of the different events.
828 * The port change event is used for online/offline changes.
829 */
830static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
831{
832 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
833 eacr.es = 0;
834 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
835 eacr.es = eacr.sl = 0;
836 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
837 etr_port0_uptodate = etr_port1_uptodate = 0;
838
839 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
840 if (eacr.e0)
841 /*
842 * Port change of an enabled port. We have to
843 * assume that this can have caused an stepping
844 * port switch.
845 */
846 etr_tolec = get_clock();
847 eacr.p0 = etr_port0_online;
848 if (!eacr.p0)
849 eacr.e0 = 0;
850 etr_port0_uptodate = 0;
851 }
852 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
853 if (eacr.e1)
854 /*
855 * Port change of an enabled port. We have to
856 * assume that this can have caused an stepping
857 * port switch.
858 */
859 etr_tolec = get_clock();
860 eacr.p1 = etr_port1_online;
861 if (!eacr.p1)
862 eacr.e1 = 0;
863 etr_port1_uptodate = 0;
864 }
865 clear_bit(ETR_EVENT_UPDATE, &etr_events);
866 return eacr;
867}
868
869/*
870 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
871 * one of the ports needs an update.
872 */
873static void etr_set_tolec_timeout(unsigned long long now)
874{
875 unsigned long micros;
876
877 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
878 (!etr_eacr.p1 || etr_port1_uptodate))
879 return;
880 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
881 micros = (micros > 1600000) ? 0 : 1600000 - micros;
882 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
883}
884
885/*
886 * Set up a time that expires after 1/2 second.
887 */
888static void etr_set_sync_timeout(void)
889{
890 mod_timer(&etr_timer, jiffies + HZ/2);
891}
892
893/*
894 * Update the aib information for one or both ports.
895 */
896static struct etr_eacr etr_handle_update(struct etr_aib *aib,
897 struct etr_eacr eacr)
898{
899 /* With both ports disabled the aib information is useless. */
900 if (!eacr.e0 && !eacr.e1)
901 return eacr;
902
903 /* Update port0 or port1 with aib stored in etr_work_fn. */
904 if (aib->esw.q == 0) {
905 /* Information for port 0 stored. */
906 if (eacr.p0 && !etr_port0_uptodate) {
907 etr_port0 = *aib;
908 if (etr_port0_online)
909 etr_port0_uptodate = 1;
910 }
911 } else {
912 /* Information for port 1 stored. */
913 if (eacr.p1 && !etr_port1_uptodate) {
914 etr_port1 = *aib;
915 if (etr_port0_online)
916 etr_port1_uptodate = 1;
917 }
918 }
919
920 /*
921 * Do not try to get the alternate port aib if the clock
922 * is not in sync yet.
923 */
924 if (!eacr.es || !check_sync_clock())
925 return eacr;
926
927 /*
928 * If steai is available we can get the information about
929 * the other port immediately. If only stetr is available the
930 * data-port bit toggle has to be used.
931 */
932 if (etr_steai_available) {
933 if (eacr.p0 && !etr_port0_uptodate) {
934 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
935 etr_port0_uptodate = 1;
936 }
937 if (eacr.p1 && !etr_port1_uptodate) {
938 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
939 etr_port1_uptodate = 1;
940 }
941 } else {
942 /*
943 * One port was updated above, if the other
944 * port is not uptodate toggle dp bit.
945 */
946 if ((eacr.p0 && !etr_port0_uptodate) ||
947 (eacr.p1 && !etr_port1_uptodate))
948 eacr.dp ^= 1;
949 else
950 eacr.dp = 0;
951 }
952 return eacr;
953}
954
955/*
956 * Write new etr control register if it differs from the current one.
957 * Return 1 if etr_tolec has been updated as well.
958 */
959static void etr_update_eacr(struct etr_eacr eacr)
960{
961 int dp_changed;
962
963 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
964 /* No change, return. */
965 return;
966 /*
967 * The disable of an active port of the change of the data port
968 * bit can/will cause a change in the data port.
969 */
970 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
971 (etr_eacr.dp ^ eacr.dp) != 0;
972 etr_eacr = eacr;
973 etr_setr(&etr_eacr);
974 if (dp_changed)
975 etr_tolec = get_clock();
976}
977
978/*
979 * ETR work. In this function you'll find the main logic. In
980 * particular this is the only function that calls etr_update_eacr(),
981 * it "controls" the etr control register.
982 */
983static void etr_work_fn(struct work_struct *work)
984{
985 unsigned long long now;
986 struct etr_eacr eacr;
987 struct etr_aib aib;
988 int sync_port;
989
990 /* prevent multiple execution. */
991 mutex_lock(&etr_work_mutex);
992
993 /* Create working copy of etr_eacr. */
994 eacr = etr_eacr;
995
996 /* Check for the different events and their immediate effects. */
997 eacr = etr_handle_events(eacr);
998
999 /* Check if ETR is supposed to be active. */
1000 eacr.ea = eacr.p0 || eacr.p1;
1001 if (!eacr.ea) {
1002 /* Both ports offline. Reset everything. */
1003 eacr.dp = eacr.es = eacr.sl = 0;
1004 on_each_cpu(disable_sync_clock, NULL, 1);
1005 del_timer_sync(&etr_timer);
1006 etr_update_eacr(eacr);
1007 goto out_unlock;
1008 }
1009
1010 /* Store aib to get the current ETR status word. */
1011 BUG_ON(etr_stetr(&aib) != 0);
1012 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1013 now = get_clock();
1014
1015 /*
1016 * Update the port information if the last stepping port change
1017 * or data port change is older than 1.6 seconds.
1018 */
1019 if (now >= etr_tolec + (1600000 << 12))
1020 eacr = etr_handle_update(&aib, eacr);
1021
1022 /*
1023 * Select ports to enable. The preferred synchronization mode is PPS.
1024 * If a port can be enabled depends on a number of things:
1025 * 1) The port needs to be online and uptodate. A port is not
1026 * disabled just because it is not uptodate, but it is only
1027 * enabled if it is uptodate.
1028 * 2) The port needs to have the same mode (pps / etr).
1029 * 3) The port needs to be usable -> etr_port_valid() == 1
1030 * 4) To enable the second port the clock needs to be in sync.
1031 * 5) If both ports are useable and are ETR ports, the network id
1032 * has to be the same.
1033 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1034 */
1035 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1036 eacr.sl = 0;
1037 eacr.e0 = 1;
1038 if (!etr_mode_is_pps(etr_eacr))
1039 eacr.es = 0;
1040 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1041 eacr.e1 = 0;
1042 // FIXME: uptodate checks ?
1043 else if (etr_port0_uptodate && etr_port1_uptodate)
1044 eacr.e1 = 1;
1045 sync_port = (etr_port0_uptodate &&
1046 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1047 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1048 eacr.sl = 0;
1049 eacr.e0 = 0;
1050 eacr.e1 = 1;
1051 if (!etr_mode_is_pps(etr_eacr))
1052 eacr.es = 0;
1053 sync_port = (etr_port1_uptodate &&
1054 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1055 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1056 eacr.sl = 1;
1057 eacr.e0 = 1;
1058 if (!etr_mode_is_etr(etr_eacr))
1059 eacr.es = 0;
1060 if (!eacr.es || !eacr.p1 ||
1061 aib.esw.psc1 != etr_lpsc_operational_alt)
1062 eacr.e1 = 0;
1063 else if (etr_port0_uptodate && etr_port1_uptodate &&
1064 etr_compare_network(&etr_port0, &etr_port1))
1065 eacr.e1 = 1;
1066 sync_port = (etr_port0_uptodate &&
1067 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1068 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1069 eacr.sl = 1;
1070 eacr.e0 = 0;
1071 eacr.e1 = 1;
1072 if (!etr_mode_is_etr(etr_eacr))
1073 eacr.es = 0;
1074 sync_port = (etr_port1_uptodate &&
1075 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1076 } else {
1077 /* Both ports not usable. */
1078 eacr.es = eacr.sl = 0;
1079 sync_port = -1;
1080 }
1081
1082 /*
1083 * If the clock is in sync just update the eacr and return.
1084 * If there is no valid sync port wait for a port update.
1085 */
1086 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1087 etr_update_eacr(eacr);
1088 etr_set_tolec_timeout(now);
1089 goto out_unlock;
1090 }
1091
1092 /*
1093 * Prepare control register for clock syncing
1094 * (reset data port bit, set sync check control.
1095 */
1096 eacr.dp = 0;
1097 eacr.es = 1;
1098
1099 /*
1100 * Update eacr and try to synchronize the clock. If the update
1101 * of eacr caused a stepping port switch (or if we have to
1102 * assume that a stepping port switch has occurred) or the
1103 * clock syncing failed, reset the sync check control bit
1104 * and set up a timer to try again after 0.5 seconds
1105 */
1106 etr_update_eacr(eacr);
1107 if (now < etr_tolec + (1600000 << 12) ||
1108 etr_sync_clock_stop(&aib, sync_port) != 0) {
1109 /* Sync failed. Try again in 1/2 second. */
1110 eacr.es = 0;
1111 etr_update_eacr(eacr);
1112 etr_set_sync_timeout();
1113 } else
1114 etr_set_tolec_timeout(now);
1115out_unlock:
1116 mutex_unlock(&etr_work_mutex);
1117}
1118
1119/*
1120 * Sysfs interface functions
1121 */
1122static struct bus_type etr_subsys = {
1123 .name = "etr",
1124 .dev_name = "etr",
1125};
1126
1127static struct device etr_port0_dev = {
1128 .id = 0,
1129 .bus = &etr_subsys,
1130};
1131
1132static struct device etr_port1_dev = {
1133 .id = 1,
1134 .bus = &etr_subsys,
1135};
1136
1137/*
1138 * ETR subsys attributes
1139 */
1140static ssize_t etr_stepping_port_show(struct device *dev,
1141 struct device_attribute *attr,
1142 char *buf)
1143{
1144 return sprintf(buf, "%i\n", etr_port0.esw.p);
1145}
1146
1147static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1148
1149static ssize_t etr_stepping_mode_show(struct device *dev,
1150 struct device_attribute *attr,
1151 char *buf)
1152{
1153 char *mode_str;
1154
1155 if (etr_mode_is_pps(etr_eacr))
1156 mode_str = "pps";
1157 else if (etr_mode_is_etr(etr_eacr))
1158 mode_str = "etr";
1159 else
1160 mode_str = "local";
1161 return sprintf(buf, "%s\n", mode_str);
1162}
1163
1164static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1165
1166/*
1167 * ETR port attributes
1168 */
1169static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1170{
1171 if (dev == &etr_port0_dev)
1172 return etr_port0_online ? &etr_port0 : NULL;
1173 else
1174 return etr_port1_online ? &etr_port1 : NULL;
1175}
1176
1177static ssize_t etr_online_show(struct device *dev,
1178 struct device_attribute *attr,
1179 char *buf)
1180{
1181 unsigned int online;
1182
1183 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1184 return sprintf(buf, "%i\n", online);
1185}
1186
1187static ssize_t etr_online_store(struct device *dev,
1188 struct device_attribute *attr,
1189 const char *buf, size_t count)
1190{
1191 unsigned int value;
1192
1193 value = simple_strtoul(buf, NULL, 0);
1194 if (value != 0 && value != 1)
1195 return -EINVAL;
1196 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1197 return -EOPNOTSUPP;
1198 mutex_lock(&clock_sync_mutex);
1199 if (dev == &etr_port0_dev) {
1200 if (etr_port0_online == value)
1201 goto out; /* Nothing to do. */
1202 etr_port0_online = value;
1203 if (etr_port0_online && etr_port1_online)
1204 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1205 else
1206 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1207 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1208 queue_work(time_sync_wq, &etr_work);
1209 } else {
1210 if (etr_port1_online == value)
1211 goto out; /* Nothing to do. */
1212 etr_port1_online = value;
1213 if (etr_port0_online && etr_port1_online)
1214 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1215 else
1216 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1217 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1218 queue_work(time_sync_wq, &etr_work);
1219 }
1220out:
1221 mutex_unlock(&clock_sync_mutex);
1222 return count;
1223}
1224
1225static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1226
1227static ssize_t etr_stepping_control_show(struct device *dev,
1228 struct device_attribute *attr,
1229 char *buf)
1230{
1231 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1232 etr_eacr.e0 : etr_eacr.e1);
1233}
1234
1235static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1236
1237static ssize_t etr_mode_code_show(struct device *dev,
1238 struct device_attribute *attr, char *buf)
1239{
1240 if (!etr_port0_online && !etr_port1_online)
1241 /* Status word is not uptodate if both ports are offline. */
1242 return -ENODATA;
1243 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1244 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1245}
1246
1247static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1248
1249static ssize_t etr_untuned_show(struct device *dev,
1250 struct device_attribute *attr, char *buf)
1251{
1252 struct etr_aib *aib = etr_aib_from_dev(dev);
1253
1254 if (!aib || !aib->slsw.v1)
1255 return -ENODATA;
1256 return sprintf(buf, "%i\n", aib->edf1.u);
1257}
1258
1259static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1260
1261static ssize_t etr_network_id_show(struct device *dev,
1262 struct device_attribute *attr, char *buf)
1263{
1264 struct etr_aib *aib = etr_aib_from_dev(dev);
1265
1266 if (!aib || !aib->slsw.v1)
1267 return -ENODATA;
1268 return sprintf(buf, "%i\n", aib->edf1.net_id);
1269}
1270
1271static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1272
1273static ssize_t etr_id_show(struct device *dev,
1274 struct device_attribute *attr, char *buf)
1275{
1276 struct etr_aib *aib = etr_aib_from_dev(dev);
1277
1278 if (!aib || !aib->slsw.v1)
1279 return -ENODATA;
1280 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1281}
1282
1283static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1284
1285static ssize_t etr_port_number_show(struct device *dev,
1286 struct device_attribute *attr, char *buf)
1287{
1288 struct etr_aib *aib = etr_aib_from_dev(dev);
1289
1290 if (!aib || !aib->slsw.v1)
1291 return -ENODATA;
1292 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1293}
1294
1295static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1296
1297static ssize_t etr_coupled_show(struct device *dev,
1298 struct device_attribute *attr, char *buf)
1299{
1300 struct etr_aib *aib = etr_aib_from_dev(dev);
1301
1302 if (!aib || !aib->slsw.v3)
1303 return -ENODATA;
1304 return sprintf(buf, "%i\n", aib->edf3.c);
1305}
1306
1307static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1308
1309static ssize_t etr_local_time_show(struct device *dev,
1310 struct device_attribute *attr, char *buf)
1311{
1312 struct etr_aib *aib = etr_aib_from_dev(dev);
1313
1314 if (!aib || !aib->slsw.v3)
1315 return -ENODATA;
1316 return sprintf(buf, "%i\n", aib->edf3.blto);
1317}
1318
1319static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1320
1321static ssize_t etr_utc_offset_show(struct device *dev,
1322 struct device_attribute *attr, char *buf)
1323{
1324 struct etr_aib *aib = etr_aib_from_dev(dev);
1325
1326 if (!aib || !aib->slsw.v3)
1327 return -ENODATA;
1328 return sprintf(buf, "%i\n", aib->edf3.buo);
1329}
1330
1331static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1332
1333static struct device_attribute *etr_port_attributes[] = {
1334 &dev_attr_online,
1335 &dev_attr_stepping_control,
1336 &dev_attr_state_code,
1337 &dev_attr_untuned,
1338 &dev_attr_network,
1339 &dev_attr_id,
1340 &dev_attr_port,
1341 &dev_attr_coupled,
1342 &dev_attr_local_time,
1343 &dev_attr_utc_offset,
1344 NULL
1345};
1346
1347static int __init etr_register_port(struct device *dev)
1348{
1349 struct device_attribute **attr;
1350 int rc;
1351
1352 rc = device_register(dev);
1353 if (rc)
1354 goto out;
1355 for (attr = etr_port_attributes; *attr; attr++) {
1356 rc = device_create_file(dev, *attr);
1357 if (rc)
1358 goto out_unreg;
1359 }
1360 return 0;
1361out_unreg:
1362 for (; attr >= etr_port_attributes; attr--)
1363 device_remove_file(dev, *attr);
1364 device_unregister(dev);
1365out:
1366 return rc;
1367}
1368
1369static void __init etr_unregister_port(struct device *dev)
1370{
1371 struct device_attribute **attr;
1372
1373 for (attr = etr_port_attributes; *attr; attr++)
1374 device_remove_file(dev, *attr);
1375 device_unregister(dev);
1376}
1377
1378static int __init etr_init_sysfs(void)
1379{
1380 int rc;
1381
1382 rc = subsys_system_register(&etr_subsys, NULL);
1383 if (rc)
1384 goto out;
1385 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1386 if (rc)
1387 goto out_unreg_subsys;
1388 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1389 if (rc)
1390 goto out_remove_stepping_port;
1391 rc = etr_register_port(&etr_port0_dev);
1392 if (rc)
1393 goto out_remove_stepping_mode;
1394 rc = etr_register_port(&etr_port1_dev);
1395 if (rc)
1396 goto out_remove_port0;
1397 return 0;
1398
1399out_remove_port0:
1400 etr_unregister_port(&etr_port0_dev);
1401out_remove_stepping_mode:
1402 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1403out_remove_stepping_port:
1404 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1405out_unreg_subsys:
1406 bus_unregister(&etr_subsys);
1407out:
1408 return rc;
1409}
1410
1411device_initcall(etr_init_sysfs);
1412
1413/*
1414 * Server Time Protocol (STP) code.
1415 */
1416static int stp_online;
1417static struct stp_sstpi stp_info;
1418static void *stp_page;
1419
1420static void stp_work_fn(struct work_struct *work);
1421static DEFINE_MUTEX(stp_work_mutex);
1422static DECLARE_WORK(stp_work, stp_work_fn);
1423static struct timer_list stp_timer;
1424
1425static int __init early_parse_stp(char *p)
1426{
1427 if (strncmp(p, "off", 3) == 0)
1428 stp_online = 0;
1429 else if (strncmp(p, "on", 2) == 0)
1430 stp_online = 1;
1431 return 0;
1432}
1433early_param("stp", early_parse_stp);
1434
1435/*
1436 * Reset STP attachment.
1437 */
1438static void __init stp_reset(void)
1439{
1440 int rc;
1441
1442 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1443 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1444 if (rc == 0)
1445 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1446 else if (stp_online) {
1447 pr_warning("The real or virtual hardware system does "
1448 "not provide an STP interface\n");
1449 free_page((unsigned long) stp_page);
1450 stp_page = NULL;
1451 stp_online = 0;
1452 }
1453}
1454
1455static void stp_timeout(unsigned long dummy)
1456{
1457 queue_work(time_sync_wq, &stp_work);
1458}
1459
1460static int __init stp_init(void)
1461{
1462 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1463 return 0;
1464 setup_timer(&stp_timer, stp_timeout, 0UL);
1465 time_init_wq();
1466 if (!stp_online)
1467 return 0;
1468 queue_work(time_sync_wq, &stp_work);
1469 return 0;
1470}
1471
1472arch_initcall(stp_init);
1473
1474/*
1475 * STP timing alert. There are three causes:
1476 * 1) timing status change
1477 * 2) link availability change
1478 * 3) time control parameter change
1479 * In all three cases we are only interested in the clock source state.
1480 * If a STP clock source is now available use it.
1481 */
1482static void stp_timing_alert(struct stp_irq_parm *intparm)
1483{
1484 if (intparm->tsc || intparm->lac || intparm->tcpc)
1485 queue_work(time_sync_wq, &stp_work);
1486}
1487
1488/*
1489 * STP sync check machine check. This is called when the timing state
1490 * changes from the synchronized state to the unsynchronized state.
1491 * After a STP sync check the clock is not in sync. The machine check
1492 * is broadcasted to all cpus at the same time.
1493 */
1494void stp_sync_check(void)
1495{
1496 disable_sync_clock(NULL);
1497 queue_work(time_sync_wq, &stp_work);
1498}
1499
1500/*
1501 * STP island condition machine check. This is called when an attached
1502 * server attempts to communicate over an STP link and the servers
1503 * have matching CTN ids and have a valid stratum-1 configuration
1504 * but the configurations do not match.
1505 */
1506void stp_island_check(void)
1507{
1508 disable_sync_clock(NULL);
1509 queue_work(time_sync_wq, &stp_work);
1510}
1511
1512
1513static int stp_sync_clock(void *data)
1514{
1515 static int first;
1516 unsigned long long old_clock, delta;
1517 struct clock_sync_data *stp_sync;
1518 int rc;
1519
1520 stp_sync = data;
1521
1522 if (xchg(&first, 1) == 1) {
1523 /* Slave */
1524 clock_sync_cpu(stp_sync);
1525 return 0;
1526 }
1527
1528 /* Wait until all other cpus entered the sync function. */
1529 while (atomic_read(&stp_sync->cpus) != 0)
1530 cpu_relax();
1531
1532 enable_sync_clock();
1533
1534 rc = 0;
1535 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1536 stp_info.todoff[2] || stp_info.todoff[3] ||
1537 stp_info.tmd != 2) {
1538 old_clock = get_clock();
1539 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1540 if (rc == 0) {
1541 delta = adjust_time(old_clock, get_clock(), 0);
1542 fixup_clock_comparator(delta);
1543 rc = chsc_sstpi(stp_page, &stp_info,
1544 sizeof(struct stp_sstpi));
1545 if (rc == 0 && stp_info.tmd != 2)
1546 rc = -EAGAIN;
1547 }
1548 }
1549 if (rc) {
1550 disable_sync_clock(NULL);
1551 stp_sync->in_sync = -EAGAIN;
1552 } else
1553 stp_sync->in_sync = 1;
1554 xchg(&first, 0);
1555 return 0;
1556}
1557
1558/*
1559 * STP work. Check for the STP state and take over the clock
1560 * synchronization if the STP clock source is usable.
1561 */
1562static void stp_work_fn(struct work_struct *work)
1563{
1564 struct clock_sync_data stp_sync;
1565 int rc;
1566
1567 /* prevent multiple execution. */
1568 mutex_lock(&stp_work_mutex);
1569
1570 if (!stp_online) {
1571 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1572 del_timer_sync(&stp_timer);
1573 goto out_unlock;
1574 }
1575
1576 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1577 if (rc)
1578 goto out_unlock;
1579
1580 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1581 if (rc || stp_info.c == 0)
1582 goto out_unlock;
1583
1584 /* Skip synchronization if the clock is already in sync. */
1585 if (check_sync_clock())
1586 goto out_unlock;
1587
1588 memset(&stp_sync, 0, sizeof(stp_sync));
1589 get_online_cpus();
1590 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1591 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1592 put_online_cpus();
1593
1594 if (!check_sync_clock())
1595 /*
1596 * There is a usable clock but the synchonization failed.
1597 * Retry after a second.
1598 */
1599 mod_timer(&stp_timer, jiffies + HZ);
1600
1601out_unlock:
1602 mutex_unlock(&stp_work_mutex);
1603}
1604
1605/*
1606 * STP subsys sysfs interface functions
1607 */
1608static struct bus_type stp_subsys = {
1609 .name = "stp",
1610 .dev_name = "stp",
1611};
1612
1613static ssize_t stp_ctn_id_show(struct device *dev,
1614 struct device_attribute *attr,
1615 char *buf)
1616{
1617 if (!stp_online)
1618 return -ENODATA;
1619 return sprintf(buf, "%016llx\n",
1620 *(unsigned long long *) stp_info.ctnid);
1621}
1622
1623static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1624
1625static ssize_t stp_ctn_type_show(struct device *dev,
1626 struct device_attribute *attr,
1627 char *buf)
1628{
1629 if (!stp_online)
1630 return -ENODATA;
1631 return sprintf(buf, "%i\n", stp_info.ctn);
1632}
1633
1634static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1635
1636static ssize_t stp_dst_offset_show(struct device *dev,
1637 struct device_attribute *attr,
1638 char *buf)
1639{
1640 if (!stp_online || !(stp_info.vbits & 0x2000))
1641 return -ENODATA;
1642 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1643}
1644
1645static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1646
1647static ssize_t stp_leap_seconds_show(struct device *dev,
1648 struct device_attribute *attr,
1649 char *buf)
1650{
1651 if (!stp_online || !(stp_info.vbits & 0x8000))
1652 return -ENODATA;
1653 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1654}
1655
1656static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1657
1658static ssize_t stp_stratum_show(struct device *dev,
1659 struct device_attribute *attr,
1660 char *buf)
1661{
1662 if (!stp_online)
1663 return -ENODATA;
1664 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1665}
1666
1667static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1668
1669static ssize_t stp_time_offset_show(struct device *dev,
1670 struct device_attribute *attr,
1671 char *buf)
1672{
1673 if (!stp_online || !(stp_info.vbits & 0x0800))
1674 return -ENODATA;
1675 return sprintf(buf, "%i\n", (int) stp_info.tto);
1676}
1677
1678static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1679
1680static ssize_t stp_time_zone_offset_show(struct device *dev,
1681 struct device_attribute *attr,
1682 char *buf)
1683{
1684 if (!stp_online || !(stp_info.vbits & 0x4000))
1685 return -ENODATA;
1686 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1687}
1688
1689static DEVICE_ATTR(time_zone_offset, 0400,
1690 stp_time_zone_offset_show, NULL);
1691
1692static ssize_t stp_timing_mode_show(struct device *dev,
1693 struct device_attribute *attr,
1694 char *buf)
1695{
1696 if (!stp_online)
1697 return -ENODATA;
1698 return sprintf(buf, "%i\n", stp_info.tmd);
1699}
1700
1701static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1702
1703static ssize_t stp_timing_state_show(struct device *dev,
1704 struct device_attribute *attr,
1705 char *buf)
1706{
1707 if (!stp_online)
1708 return -ENODATA;
1709 return sprintf(buf, "%i\n", stp_info.tst);
1710}
1711
1712static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1713
1714static ssize_t stp_online_show(struct device *dev,
1715 struct device_attribute *attr,
1716 char *buf)
1717{
1718 return sprintf(buf, "%i\n", stp_online);
1719}
1720
1721static ssize_t stp_online_store(struct device *dev,
1722 struct device_attribute *attr,
1723 const char *buf, size_t count)
1724{
1725 unsigned int value;
1726
1727 value = simple_strtoul(buf, NULL, 0);
1728 if (value != 0 && value != 1)
1729 return -EINVAL;
1730 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1731 return -EOPNOTSUPP;
1732 mutex_lock(&clock_sync_mutex);
1733 stp_online = value;
1734 if (stp_online)
1735 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1736 else
1737 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1738 queue_work(time_sync_wq, &stp_work);
1739 mutex_unlock(&clock_sync_mutex);
1740 return count;
1741}
1742
1743/*
1744 * Can't use DEVICE_ATTR because the attribute should be named
1745 * stp/online but dev_attr_online already exists in this file ..
1746 */
1747static struct device_attribute dev_attr_stp_online = {
1748 .attr = { .name = "online", .mode = 0600 },
1749 .show = stp_online_show,
1750 .store = stp_online_store,
1751};
1752
1753static struct device_attribute *stp_attributes[] = {
1754 &dev_attr_ctn_id,
1755 &dev_attr_ctn_type,
1756 &dev_attr_dst_offset,
1757 &dev_attr_leap_seconds,
1758 &dev_attr_stp_online,
1759 &dev_attr_stratum,
1760 &dev_attr_time_offset,
1761 &dev_attr_time_zone_offset,
1762 &dev_attr_timing_mode,
1763 &dev_attr_timing_state,
1764 NULL
1765};
1766
1767static int __init stp_init_sysfs(void)
1768{
1769 struct device_attribute **attr;
1770 int rc;
1771
1772 rc = subsys_system_register(&stp_subsys, NULL);
1773 if (rc)
1774 goto out;
1775 for (attr = stp_attributes; *attr; attr++) {
1776 rc = device_create_file(stp_subsys.dev_root, *attr);
1777 if (rc)
1778 goto out_unreg;
1779 }
1780 return 0;
1781out_unreg:
1782 for (; attr >= stp_attributes; attr--)
1783 device_remove_file(stp_subsys.dev_root, *attr);
1784 bus_unregister(&stp_subsys);
1785out:
1786 return rc;
1787}
1788
1789device_initcall(stp_init_sysfs);