Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/bits.h>
 17#include <linux/compiler.h>
 
 18#include <linux/types.h>
 19#include <asm/asm.h>
 20#include <asm/barrier.h>
 21#include <asm/byteorder.h>		/* sigh ... */
 22#include <asm/compiler.h>
 23#include <asm/cpu-features.h>
 24#include <asm/sgidefs.h>
 
 25
 26#define __bit_op(mem, insn, inputs...) do {			\
 27	unsigned long __temp;					\
 28								\
 29	asm volatile(						\
 30	"	.set		push			\n"	\
 31	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 32	"	" __SYNC(full, loongson3_war) "		\n"	\
 33	"1:	" __stringify(LONG_LL)	"	%0, %1	\n"	\
 34	"	" insn		"			\n"	\
 35	"	" __stringify(LONG_SC)	"	%0, %1	\n"	\
 36	"	" __stringify(SC_BEQZ)	"	%0, 1b	\n"	\
 37	"	.set		pop			\n"	\
 38	: "=&r"(__temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
 39	: inputs						\
 40	: __LLSC_CLOBBER);					\
 41} while (0)
 42
 43#define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
 44	unsigned long __orig, __temp;				\
 45								\
 46	asm volatile(						\
 47	"	.set		push			\n"	\
 48	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 49	"	" __SYNC(full, loongson3_war) "		\n"	\
 50	"1:	" __stringify(LONG_LL) " "	ll_dst ", %2\n"	\
 51	"	" insn		"			\n"	\
 52	"	" __stringify(LONG_SC)	"	%1, %2	\n"	\
 53	"	" __stringify(SC_BEQZ)	"	%1, 1b	\n"	\
 54	"	.set		pop			\n"	\
 55	: "=&r"(__orig), "=&r"(__temp),				\
 56	  "+" GCC_OFF_SMALL_ASM()(mem)				\
 57	: inputs						\
 58	: __LLSC_CLOBBER);					\
 59								\
 60	__orig;							\
 61})
 62
 63/*
 64 * These are the "slower" versions of the functions and are in bitops.c.
 65 * These functions call raw_local_irq_{save,restore}().
 66 */
 67void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 68void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 69void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 70int __mips_test_and_set_bit_lock(unsigned long nr,
 71				 volatile unsigned long *addr);
 72int __mips_test_and_clear_bit(unsigned long nr,
 73			      volatile unsigned long *addr);
 74int __mips_test_and_change_bit(unsigned long nr,
 75			       volatile unsigned long *addr);
 76
 
 
 
 
 
 77
 78/*
 79 * set_bit - Atomically set a bit in memory
 80 * @nr: the bit to set
 81 * @addr: the address to start counting from
 82 *
 83 * This function is atomic and may not be reordered.  See __set_bit()
 84 * if you do not require the atomic guarantees.
 85 * Note that @nr may be almost arbitrarily large; this function is not
 86 * restricted to acting on a single-word quantity.
 87 */
 88static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 89{
 90	volatile unsigned long *m = &addr[BIT_WORD(nr)];
 91	int bit = nr % BITS_PER_LONG;
 92
 93	if (!kernel_uses_llsc) {
 94		__mips_set_bit(nr, addr);
 95		return;
 96	}
 97
 98	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
 99		__bit_op(*m, __stringify(LONG_INS) " %0, %3, %2, 1", "i"(bit), "r"(~0));
100		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101	}
102
103	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
104}
105
106/*
107 * clear_bit - Clears a bit in memory
108 * @nr: Bit to clear
109 * @addr: Address to start counting from
110 *
111 * clear_bit() is atomic and may not be reordered.  However, it does
112 * not contain a memory barrier, so if it is used for locking purposes,
113 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
114 * in order to ensure changes are visible on other processors.
115 */
116static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
117{
118	volatile unsigned long *m = &addr[BIT_WORD(nr)];
119	int bit = nr % BITS_PER_LONG;
120
121	if (!kernel_uses_llsc) {
122		__mips_clear_bit(nr, addr);
123		return;
124	}
125
126	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
127		__bit_op(*m, __stringify(LONG_INS) " %0, $0, %2, 1", "i"(bit));
128		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129	}
130
131	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
132}
133
134/*
135 * clear_bit_unlock - Clears a bit in memory
136 * @nr: Bit to clear
137 * @addr: Address to start counting from
138 *
139 * clear_bit() is atomic and implies release semantics before the memory
140 * operation. It can be used for an unlock.
141 */
142static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
143{
144	smp_mb__before_atomic();
145	clear_bit(nr, addr);
146}
147
148/*
149 * change_bit - Toggle a bit in memory
150 * @nr: Bit to change
151 * @addr: Address to start counting from
152 *
153 * change_bit() is atomic and may not be reordered.
154 * Note that @nr may be almost arbitrarily large; this function is not
155 * restricted to acting on a single-word quantity.
156 */
157static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
158{
159	volatile unsigned long *m = &addr[BIT_WORD(nr)];
160	int bit = nr % BITS_PER_LONG;
161
162	if (!kernel_uses_llsc) {
163		__mips_change_bit(nr, addr);
164		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165	}
166
167	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
168}
169
170/*
171 * test_and_set_bit_lock - Set a bit and return its old value
172 * @nr: Bit to set
173 * @addr: Address to count from
174 *
175 * This operation is atomic and implies acquire ordering semantics
176 * after the memory operation.
177 */
178static inline int test_and_set_bit_lock(unsigned long nr,
179	volatile unsigned long *addr)
180{
181	volatile unsigned long *m = &addr[BIT_WORD(nr)];
182	int bit = nr % BITS_PER_LONG;
183	unsigned long res, orig;
 
184
185	if (!kernel_uses_llsc) {
186		res = __mips_test_and_set_bit_lock(nr, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187	} else {
188		orig = __test_bit_op(*m, "%0",
189				     "or\t%1, %0, %3",
190				     "ir"(BIT(bit)));
191		res = (orig & BIT(bit)) != 0;
 
 
 
 
 
 
192	}
193
194	smp_llsc_mb();
195
196	return res;
197}
198
199/*
200 * test_and_set_bit - Set a bit and return its old value
201 * @nr: Bit to set
202 * @addr: Address to count from
203 *
204 * This operation is atomic and cannot be reordered.
205 * It also implies a memory barrier.
206 */
207static inline int test_and_set_bit(unsigned long nr,
208	volatile unsigned long *addr)
209{
210	smp_mb__before_atomic();
211	return test_and_set_bit_lock(nr, addr);
212}
213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214/*
215 * test_and_clear_bit - Clear a bit and return its old value
216 * @nr: Bit to clear
217 * @addr: Address to count from
218 *
219 * This operation is atomic and cannot be reordered.
220 * It also implies a memory barrier.
221 */
222static inline int test_and_clear_bit(unsigned long nr,
223	volatile unsigned long *addr)
224{
225	volatile unsigned long *m = &addr[BIT_WORD(nr)];
226	int bit = nr % BITS_PER_LONG;
227	unsigned long res, orig;
228
229	smp_mb__before_atomic();
230
231	if (!kernel_uses_llsc) {
232		res = __mips_test_and_clear_bit(nr, addr);
233	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
234		res = __test_bit_op(*m, "%1",
235				    __stringify(LONG_EXT) " %0, %1, %3, 1;"
236				    __stringify(LONG_INS) " %1, $0, %3, 1",
237				    "i"(bit));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238	} else {
239		orig = __test_bit_op(*m, "%0",
240				     "or\t%1, %0, %3;"
241				     "xor\t%1, %1, %3",
242				     "ir"(BIT(bit)));
243		res = (orig & BIT(bit)) != 0;
 
 
 
 
 
244	}
245
246	smp_llsc_mb();
247
248	return res;
249}
250
251/*
252 * test_and_change_bit - Change a bit and return its old value
253 * @nr: Bit to change
254 * @addr: Address to count from
255 *
256 * This operation is atomic and cannot be reordered.
257 * It also implies a memory barrier.
258 */
259static inline int test_and_change_bit(unsigned long nr,
260	volatile unsigned long *addr)
261{
262	volatile unsigned long *m = &addr[BIT_WORD(nr)];
263	int bit = nr % BITS_PER_LONG;
264	unsigned long res, orig;
 
265
266	smp_mb__before_atomic();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
268	if (!kernel_uses_llsc) {
269		res = __mips_test_and_change_bit(nr, addr);
270	} else {
271		orig = __test_bit_op(*m, "%0",
272				     "xor\t%1, %0, %3",
273				     "ir"(BIT(bit)));
274		res = (orig & BIT(bit)) != 0;
 
 
 
 
 
 
275	}
276
277	smp_llsc_mb();
278
279	return res;
280}
281
282#undef __bit_op
283#undef __test_bit_op
284
285#include <asm-generic/bitops/non-atomic.h>
286
287/*
288 * __clear_bit_unlock - Clears a bit in memory
289 * @nr: Bit to clear
290 * @addr: Address to start counting from
291 *
292 * __clear_bit() is non-atomic and implies release semantics before the memory
293 * operation. It can be used for an unlock if no other CPUs can concurrently
294 * modify other bits in the word.
295 */
296static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
297{
298	smp_mb__before_llsc();
299	__clear_bit(nr, addr);
300	nudge_writes();
301}
302
303/*
304 * Return the bit position (0..63) of the most significant 1 bit in a word
305 * Returns -1 if no 1 bit exists
306 */
307static __always_inline unsigned long __fls(unsigned long word)
308{
309	int num;
310
311	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
312	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
313		__asm__(
314		"	.set	push					\n"
315		"	.set	"MIPS_ISA_LEVEL"			\n"
316		"	clz	%0, %1					\n"
317		"	.set	pop					\n"
318		: "=r" (num)
319		: "r" (word));
320
321		return 31 - num;
322	}
323
324	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
325	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
326		__asm__(
327		"	.set	push					\n"
328		"	.set	"MIPS_ISA_LEVEL"			\n"
329		"	dclz	%0, %1					\n"
330		"	.set	pop					\n"
331		: "=r" (num)
332		: "r" (word));
333
334		return 63 - num;
335	}
336
337	num = BITS_PER_LONG - 1;
338
339#if BITS_PER_LONG == 64
340	if (!(word & (~0ul << 32))) {
341		num -= 32;
342		word <<= 32;
343	}
344#endif
345	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
346		num -= 16;
347		word <<= 16;
348	}
349	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
350		num -= 8;
351		word <<= 8;
352	}
353	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
354		num -= 4;
355		word <<= 4;
356	}
357	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
358		num -= 2;
359		word <<= 2;
360	}
361	if (!(word & (~0ul << (BITS_PER_LONG-1))))
362		num -= 1;
363	return num;
364}
365
366/*
367 * __ffs - find first bit in word.
368 * @word: The word to search
369 *
370 * Returns 0..SZLONG-1
371 * Undefined if no bit exists, so code should check against 0 first.
372 */
373static __always_inline unsigned long __ffs(unsigned long word)
374{
375	return __fls(word & -word);
376}
377
378/*
379 * fls - find last bit set.
380 * @word: The word to search
381 *
382 * This is defined the same way as ffs.
383 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
384 */
385static inline int fls(unsigned int x)
386{
387	int r;
388
389	if (!__builtin_constant_p(x) &&
390	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
391		__asm__(
392		"	.set	push					\n"
393		"	.set	"MIPS_ISA_LEVEL"			\n"
394		"	clz	%0, %1					\n"
395		"	.set	pop					\n"
396		: "=r" (x)
397		: "r" (x));
398
399		return 32 - x;
400	}
401
402	r = 32;
403	if (!x)
404		return 0;
405	if (!(x & 0xffff0000u)) {
406		x <<= 16;
407		r -= 16;
408	}
409	if (!(x & 0xff000000u)) {
410		x <<= 8;
411		r -= 8;
412	}
413	if (!(x & 0xf0000000u)) {
414		x <<= 4;
415		r -= 4;
416	}
417	if (!(x & 0xc0000000u)) {
418		x <<= 2;
419		r -= 2;
420	}
421	if (!(x & 0x80000000u)) {
422		x <<= 1;
423		r -= 1;
424	}
425	return r;
426}
427
428#include <asm-generic/bitops/fls64.h>
429
430/*
431 * ffs - find first bit set.
432 * @word: The word to search
433 *
434 * This is defined the same way as
435 * the libc and compiler builtin ffs routines, therefore
436 * differs in spirit from the below ffz (man ffs).
437 */
438static inline int ffs(int word)
439{
440	if (!word)
441		return 0;
442
443	return fls(word & -word);
444}
445
446#include <asm-generic/bitops/ffz.h>
 
447
448#ifdef __KERNEL__
449
450#include <asm-generic/bitops/sched.h>
451
452#include <asm/arch_hweight.h>
453#include <asm-generic/bitops/const_hweight.h>
454
455#include <asm-generic/bitops/le.h>
456#include <asm-generic/bitops/ext2-atomic.h>
457
458#endif /* __KERNEL__ */
459
460#endif /* _ASM_BITOPS_H */
v3.5.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 
 16#include <linux/compiler.h>
 17#include <linux/irqflags.h>
 18#include <linux/types.h>
 
 19#include <asm/barrier.h>
 20#include <asm/byteorder.h>		/* sigh ... */
 
 21#include <asm/cpu-features.h>
 22#include <asm/sgidefs.h>
 23#include <asm/war.h>
 24
 25#if _MIPS_SZLONG == 32
 26#define SZLONG_LOG 5
 27#define SZLONG_MASK 31UL
 28#define __LL		"ll	"
 29#define __SC		"sc	"
 30#define __INS		"ins    "
 31#define __EXT		"ext    "
 32#elif _MIPS_SZLONG == 64
 33#define SZLONG_LOG 6
 34#define SZLONG_MASK 63UL
 35#define __LL		"lld	"
 36#define __SC		"scd	"
 37#define __INS		"dins    "
 38#define __EXT		"dext    "
 39#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40
 41/*
 42 * clear_bit() doesn't provide any barrier for the compiler.
 43 */
 44#define smp_mb__before_clear_bit()	smp_mb__before_llsc()
 45#define smp_mb__after_clear_bit()	smp_llsc_mb()
 46
 47/*
 48 * set_bit - Atomically set a bit in memory
 49 * @nr: the bit to set
 50 * @addr: the address to start counting from
 51 *
 52 * This function is atomic and may not be reordered.  See __set_bit()
 53 * if you do not require the atomic guarantees.
 54 * Note that @nr may be almost arbitrarily large; this function is not
 55 * restricted to acting on a single-word quantity.
 56 */
 57static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 58{
 59	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
 60	unsigned short bit = nr & SZLONG_MASK;
 61	unsigned long temp;
 62
 63	if (kernel_uses_llsc && R10000_LLSC_WAR) {
 64		__asm__ __volatile__(
 65		"	.set	mips3					\n"
 66		"1:	" __LL "%0, %1			# set_bit	\n"
 67		"	or	%0, %2					\n"
 68		"	" __SC	"%0, %1					\n"
 69		"	beqzl	%0, 1b					\n"
 70		"	.set	mips0					\n"
 71		: "=&r" (temp), "=m" (*m)
 72		: "ir" (1UL << bit), "m" (*m));
 73#ifdef CONFIG_CPU_MIPSR2
 74	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
 75		do {
 76			__asm__ __volatile__(
 77			"	" __LL "%0, %1		# set_bit	\n"
 78			"	" __INS "%0, %3, %2, 1			\n"
 79			"	" __SC "%0, %1				\n"
 80			: "=&r" (temp), "+m" (*m)
 81			: "ir" (bit), "r" (~0));
 82		} while (unlikely(!temp));
 83#endif /* CONFIG_CPU_MIPSR2 */
 84	} else if (kernel_uses_llsc) {
 85		do {
 86			__asm__ __volatile__(
 87			"	.set	mips3				\n"
 88			"	" __LL "%0, %1		# set_bit	\n"
 89			"	or	%0, %2				\n"
 90			"	" __SC	"%0, %1				\n"
 91			"	.set	mips0				\n"
 92			: "=&r" (temp), "+m" (*m)
 93			: "ir" (1UL << bit));
 94		} while (unlikely(!temp));
 95	} else {
 96		volatile unsigned long *a = addr;
 97		unsigned long mask;
 98		unsigned long flags;
 99
100		a += nr >> SZLONG_LOG;
101		mask = 1UL << bit;
102		raw_local_irq_save(flags);
103		*a |= mask;
104		raw_local_irq_restore(flags);
105	}
 
 
106}
107
108/*
109 * clear_bit - Clears a bit in memory
110 * @nr: Bit to clear
111 * @addr: Address to start counting from
112 *
113 * clear_bit() is atomic and may not be reordered.  However, it does
114 * not contain a memory barrier, so if it is used for locking purposes,
115 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
116 * in order to ensure changes are visible on other processors.
117 */
118static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
119{
120	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
121	unsigned short bit = nr & SZLONG_MASK;
122	unsigned long temp;
123
124	if (kernel_uses_llsc && R10000_LLSC_WAR) {
125		__asm__ __volatile__(
126		"	.set	mips3					\n"
127		"1:	" __LL "%0, %1			# clear_bit	\n"
128		"	and	%0, %2					\n"
129		"	" __SC "%0, %1					\n"
130		"	beqzl	%0, 1b					\n"
131		"	.set	mips0					\n"
132		: "=&r" (temp), "+m" (*m)
133		: "ir" (~(1UL << bit)));
134#ifdef CONFIG_CPU_MIPSR2
135	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
136		do {
137			__asm__ __volatile__(
138			"	" __LL "%0, %1		# clear_bit	\n"
139			"	" __INS "%0, $0, %2, 1			\n"
140			"	" __SC "%0, %1				\n"
141			: "=&r" (temp), "+m" (*m)
142			: "ir" (bit));
143		} while (unlikely(!temp));
144#endif /* CONFIG_CPU_MIPSR2 */
145	} else if (kernel_uses_llsc) {
146		do {
147			__asm__ __volatile__(
148			"	.set	mips3				\n"
149			"	" __LL "%0, %1		# clear_bit	\n"
150			"	and	%0, %2				\n"
151			"	" __SC "%0, %1				\n"
152			"	.set	mips0				\n"
153			: "=&r" (temp), "+m" (*m)
154			: "ir" (~(1UL << bit)));
155		} while (unlikely(!temp));
156	} else {
157		volatile unsigned long *a = addr;
158		unsigned long mask;
159		unsigned long flags;
160
161		a += nr >> SZLONG_LOG;
162		mask = 1UL << bit;
163		raw_local_irq_save(flags);
164		*a &= ~mask;
165		raw_local_irq_restore(flags);
166	}
 
 
167}
168
169/*
170 * clear_bit_unlock - Clears a bit in memory
171 * @nr: Bit to clear
172 * @addr: Address to start counting from
173 *
174 * clear_bit() is atomic and implies release semantics before the memory
175 * operation. It can be used for an unlock.
176 */
177static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
178{
179	smp_mb__before_clear_bit();
180	clear_bit(nr, addr);
181}
182
183/*
184 * change_bit - Toggle a bit in memory
185 * @nr: Bit to change
186 * @addr: Address to start counting from
187 *
188 * change_bit() is atomic and may not be reordered.
189 * Note that @nr may be almost arbitrarily large; this function is not
190 * restricted to acting on a single-word quantity.
191 */
192static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
193{
194	unsigned short bit = nr & SZLONG_MASK;
 
195
196	if (kernel_uses_llsc && R10000_LLSC_WAR) {
197		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
198		unsigned long temp;
199
200		__asm__ __volatile__(
201		"	.set	mips3				\n"
202		"1:	" __LL "%0, %1		# change_bit	\n"
203		"	xor	%0, %2				\n"
204		"	" __SC	"%0, %1				\n"
205		"	beqzl	%0, 1b				\n"
206		"	.set	mips0				\n"
207		: "=&r" (temp), "+m" (*m)
208		: "ir" (1UL << bit));
209	} else if (kernel_uses_llsc) {
210		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
211		unsigned long temp;
212
213		do {
214			__asm__ __volatile__(
215			"	.set	mips3				\n"
216			"	" __LL "%0, %1		# change_bit	\n"
217			"	xor	%0, %2				\n"
218			"	" __SC	"%0, %1				\n"
219			"	.set	mips0				\n"
220			: "=&r" (temp), "+m" (*m)
221			: "ir" (1UL << bit));
222		} while (unlikely(!temp));
223	} else {
224		volatile unsigned long *a = addr;
225		unsigned long mask;
226		unsigned long flags;
227
228		a += nr >> SZLONG_LOG;
229		mask = 1UL << bit;
230		raw_local_irq_save(flags);
231		*a ^= mask;
232		raw_local_irq_restore(flags);
233	}
 
 
234}
235
236/*
237 * test_and_set_bit - Set a bit and return its old value
238 * @nr: Bit to set
239 * @addr: Address to count from
240 *
241 * This operation is atomic and cannot be reordered.
242 * It also implies a memory barrier.
243 */
244static inline int test_and_set_bit(unsigned long nr,
245	volatile unsigned long *addr)
246{
247	unsigned short bit = nr & SZLONG_MASK;
248	unsigned long res;
249
250	smp_mb__before_llsc();
251
252	if (kernel_uses_llsc && R10000_LLSC_WAR) {
253		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
254		unsigned long temp;
255
256		__asm__ __volatile__(
257		"	.set	mips3					\n"
258		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
259		"	or	%2, %0, %3				\n"
260		"	" __SC	"%2, %1					\n"
261		"	beqzl	%2, 1b					\n"
262		"	and	%2, %0, %3				\n"
263		"	.set	mips0					\n"
264		: "=&r" (temp), "+m" (*m), "=&r" (res)
265		: "r" (1UL << bit)
266		: "memory");
267	} else if (kernel_uses_llsc) {
268		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
269		unsigned long temp;
270
271		do {
272			__asm__ __volatile__(
273			"	.set	mips3				\n"
274			"	" __LL "%0, %1	# test_and_set_bit	\n"
275			"	or	%2, %0, %3			\n"
276			"	" __SC	"%2, %1				\n"
277			"	.set	mips0				\n"
278			: "=&r" (temp), "+m" (*m), "=&r" (res)
279			: "r" (1UL << bit)
280			: "memory");
281		} while (unlikely(!res));
282
283		res = temp & (1UL << bit);
284	} else {
285		volatile unsigned long *a = addr;
286		unsigned long mask;
287		unsigned long flags;
288
289		a += nr >> SZLONG_LOG;
290		mask = 1UL << bit;
291		raw_local_irq_save(flags);
292		res = (mask & *a);
293		*a |= mask;
294		raw_local_irq_restore(flags);
295	}
296
297	smp_llsc_mb();
298
299	return res != 0;
300}
301
302/*
303 * test_and_set_bit_lock - Set a bit and return its old value
304 * @nr: Bit to set
305 * @addr: Address to count from
306 *
307 * This operation is atomic and implies acquire ordering semantics
308 * after the memory operation.
309 */
310static inline int test_and_set_bit_lock(unsigned long nr,
311	volatile unsigned long *addr)
312{
313	unsigned short bit = nr & SZLONG_MASK;
314	unsigned long res;
 
315
316	if (kernel_uses_llsc && R10000_LLSC_WAR) {
317		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
318		unsigned long temp;
319
320		__asm__ __volatile__(
321		"	.set	mips3					\n"
322		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
323		"	or	%2, %0, %3				\n"
324		"	" __SC	"%2, %1					\n"
325		"	beqzl	%2, 1b					\n"
326		"	and	%2, %0, %3				\n"
327		"	.set	mips0					\n"
328		: "=&r" (temp), "+m" (*m), "=&r" (res)
329		: "r" (1UL << bit)
330		: "memory");
331	} else if (kernel_uses_llsc) {
332		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
333		unsigned long temp;
334
335		do {
336			__asm__ __volatile__(
337			"	.set	mips3				\n"
338			"	" __LL "%0, %1	# test_and_set_bit	\n"
339			"	or	%2, %0, %3			\n"
340			"	" __SC	"%2, %1				\n"
341			"	.set	mips0				\n"
342			: "=&r" (temp), "+m" (*m), "=&r" (res)
343			: "r" (1UL << bit)
344			: "memory");
345		} while (unlikely(!res));
346
347		res = temp & (1UL << bit);
348	} else {
349		volatile unsigned long *a = addr;
350		unsigned long mask;
351		unsigned long flags;
352
353		a += nr >> SZLONG_LOG;
354		mask = 1UL << bit;
355		raw_local_irq_save(flags);
356		res = (mask & *a);
357		*a |= mask;
358		raw_local_irq_restore(flags);
359	}
360
361	smp_llsc_mb();
362
363	return res != 0;
364}
365/*
366 * test_and_clear_bit - Clear a bit and return its old value
367 * @nr: Bit to clear
368 * @addr: Address to count from
369 *
370 * This operation is atomic and cannot be reordered.
371 * It also implies a memory barrier.
372 */
373static inline int test_and_clear_bit(unsigned long nr,
374	volatile unsigned long *addr)
375{
376	unsigned short bit = nr & SZLONG_MASK;
377	unsigned long res;
378
379	smp_mb__before_llsc();
380
381	if (kernel_uses_llsc && R10000_LLSC_WAR) {
382		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
383		unsigned long temp;
384
385		__asm__ __volatile__(
386		"	.set	mips3					\n"
387		"1:	" __LL	"%0, %1		# test_and_clear_bit	\n"
388		"	or	%2, %0, %3				\n"
389		"	xor	%2, %3					\n"
390		"	" __SC 	"%2, %1					\n"
391		"	beqzl	%2, 1b					\n"
392		"	and	%2, %0, %3				\n"
393		"	.set	mips0					\n"
394		: "=&r" (temp), "+m" (*m), "=&r" (res)
395		: "r" (1UL << bit)
396		: "memory");
397#ifdef CONFIG_CPU_MIPSR2
398	} else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
399		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
400		unsigned long temp;
401
402		do {
403			__asm__ __volatile__(
404			"	" __LL	"%0, %1	# test_and_clear_bit	\n"
405			"	" __EXT "%2, %0, %3, 1			\n"
406			"	" __INS	"%0, $0, %3, 1			\n"
407			"	" __SC 	"%0, %1				\n"
408			: "=&r" (temp), "+m" (*m), "=&r" (res)
409			: "ir" (bit)
410			: "memory");
411		} while (unlikely(!temp));
412#endif
413	} else if (kernel_uses_llsc) {
414		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
415		unsigned long temp;
416
417		do {
418			__asm__ __volatile__(
419			"	.set	mips3				\n"
420			"	" __LL	"%0, %1	# test_and_clear_bit	\n"
421			"	or	%2, %0, %3			\n"
422			"	xor	%2, %3				\n"
423			"	" __SC 	"%2, %1				\n"
424			"	.set	mips0				\n"
425			: "=&r" (temp), "+m" (*m), "=&r" (res)
426			: "r" (1UL << bit)
427			: "memory");
428		} while (unlikely(!res));
429
430		res = temp & (1UL << bit);
431	} else {
432		volatile unsigned long *a = addr;
433		unsigned long mask;
434		unsigned long flags;
435
436		a += nr >> SZLONG_LOG;
437		mask = 1UL << bit;
438		raw_local_irq_save(flags);
439		res = (mask & *a);
440		*a &= ~mask;
441		raw_local_irq_restore(flags);
442	}
443
444	smp_llsc_mb();
445
446	return res != 0;
447}
448
449/*
450 * test_and_change_bit - Change a bit and return its old value
451 * @nr: Bit to change
452 * @addr: Address to count from
453 *
454 * This operation is atomic and cannot be reordered.
455 * It also implies a memory barrier.
456 */
457static inline int test_and_change_bit(unsigned long nr,
458	volatile unsigned long *addr)
459{
460	unsigned short bit = nr & SZLONG_MASK;
461	unsigned long res;
462
463	smp_mb__before_llsc();
464
465	if (kernel_uses_llsc && R10000_LLSC_WAR) {
466		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
467		unsigned long temp;
468
469		__asm__ __volatile__(
470		"	.set	mips3					\n"
471		"1:	" __LL	"%0, %1		# test_and_change_bit	\n"
472		"	xor	%2, %0, %3				\n"
473		"	" __SC	"%2, %1					\n"
474		"	beqzl	%2, 1b					\n"
475		"	and	%2, %0, %3				\n"
476		"	.set	mips0					\n"
477		: "=&r" (temp), "+m" (*m), "=&r" (res)
478		: "r" (1UL << bit)
479		: "memory");
480	} else if (kernel_uses_llsc) {
481		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
482		unsigned long temp;
483
484		do {
485			__asm__ __volatile__(
486			"	.set	mips3				\n"
487			"	" __LL	"%0, %1	# test_and_change_bit	\n"
488			"	xor	%2, %0, %3			\n"
489			"	" __SC	"\t%2, %1			\n"
490			"	.set	mips0				\n"
491			: "=&r" (temp), "+m" (*m), "=&r" (res)
492			: "r" (1UL << bit)
493			: "memory");
494		} while (unlikely(!res));
495
496		res = temp & (1UL << bit);
 
497	} else {
498		volatile unsigned long *a = addr;
499		unsigned long mask;
500		unsigned long flags;
501
502		a += nr >> SZLONG_LOG;
503		mask = 1UL << bit;
504		raw_local_irq_save(flags);
505		res = (mask & *a);
506		*a ^= mask;
507		raw_local_irq_restore(flags);
508	}
509
510	smp_llsc_mb();
511
512	return res != 0;
513}
514
 
 
 
515#include <asm-generic/bitops/non-atomic.h>
516
517/*
518 * __clear_bit_unlock - Clears a bit in memory
519 * @nr: Bit to clear
520 * @addr: Address to start counting from
521 *
522 * __clear_bit() is non-atomic and implies release semantics before the memory
523 * operation. It can be used for an unlock if no other CPUs can concurrently
524 * modify other bits in the word.
525 */
526static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
527{
528	smp_mb();
529	__clear_bit(nr, addr);
 
530}
531
532/*
533 * Return the bit position (0..63) of the most significant 1 bit in a word
534 * Returns -1 if no 1 bit exists
535 */
536static inline unsigned long __fls(unsigned long word)
537{
538	int num;
539
540	if (BITS_PER_LONG == 32 &&
541	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
542		__asm__(
543		"	.set	push					\n"
544		"	.set	mips32					\n"
545		"	clz	%0, %1					\n"
546		"	.set	pop					\n"
547		: "=r" (num)
548		: "r" (word));
549
550		return 31 - num;
551	}
552
553	if (BITS_PER_LONG == 64 &&
554	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
555		__asm__(
556		"	.set	push					\n"
557		"	.set	mips64					\n"
558		"	dclz	%0, %1					\n"
559		"	.set	pop					\n"
560		: "=r" (num)
561		: "r" (word));
562
563		return 63 - num;
564	}
565
566	num = BITS_PER_LONG - 1;
567
568#if BITS_PER_LONG == 64
569	if (!(word & (~0ul << 32))) {
570		num -= 32;
571		word <<= 32;
572	}
573#endif
574	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
575		num -= 16;
576		word <<= 16;
577	}
578	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
579		num -= 8;
580		word <<= 8;
581	}
582	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
583		num -= 4;
584		word <<= 4;
585	}
586	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
587		num -= 2;
588		word <<= 2;
589	}
590	if (!(word & (~0ul << (BITS_PER_LONG-1))))
591		num -= 1;
592	return num;
593}
594
595/*
596 * __ffs - find first bit in word.
597 * @word: The word to search
598 *
599 * Returns 0..SZLONG-1
600 * Undefined if no bit exists, so code should check against 0 first.
601 */
602static inline unsigned long __ffs(unsigned long word)
603{
604	return __fls(word & -word);
605}
606
607/*
608 * fls - find last bit set.
609 * @word: The word to search
610 *
611 * This is defined the same way as ffs.
612 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
613 */
614static inline int fls(int x)
615{
616	int r;
617
618	if (__builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
619		__asm__("clz %0, %1" : "=r" (x) : "r" (x));
 
 
 
 
 
 
 
620
621		return 32 - x;
622	}
623
624	r = 32;
625	if (!x)
626		return 0;
627	if (!(x & 0xffff0000u)) {
628		x <<= 16;
629		r -= 16;
630	}
631	if (!(x & 0xff000000u)) {
632		x <<= 8;
633		r -= 8;
634	}
635	if (!(x & 0xf0000000u)) {
636		x <<= 4;
637		r -= 4;
638	}
639	if (!(x & 0xc0000000u)) {
640		x <<= 2;
641		r -= 2;
642	}
643	if (!(x & 0x80000000u)) {
644		x <<= 1;
645		r -= 1;
646	}
647	return r;
648}
649
650#include <asm-generic/bitops/fls64.h>
651
652/*
653 * ffs - find first bit set.
654 * @word: The word to search
655 *
656 * This is defined the same way as
657 * the libc and compiler builtin ffs routines, therefore
658 * differs in spirit from the above ffz (man ffs).
659 */
660static inline int ffs(int word)
661{
662	if (!word)
663		return 0;
664
665	return fls(word & -word);
666}
667
668#include <asm-generic/bitops/ffz.h>
669#include <asm-generic/bitops/find.h>
670
671#ifdef __KERNEL__
672
673#include <asm-generic/bitops/sched.h>
674
675#include <asm/arch_hweight.h>
676#include <asm-generic/bitops/const_hweight.h>
677
678#include <asm-generic/bitops/le.h>
679#include <asm-generic/bitops/ext2-atomic.h>
680
681#endif /* __KERNEL__ */
682
683#endif /* _ASM_BITOPS_H */