Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	Macintosh interrupts
  4 *
  5 * General design:
  6 * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
  7 * exclusively use the autovector interrupts (the 'generic level0-level7'
  8 * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
  9 * are used:
 10 *	1	- VIA1
 11 *		  - slot 0: one second interrupt (CA2)
 12 *		  - slot 1: VBlank (CA1)
 13 *		  - slot 2: ADB data ready (SR full)
 14 *		  - slot 3: ADB data  (CB2)
 15 *		  - slot 4: ADB clock (CB1)
 16 *		  - slot 5: timer 2
 17 *		  - slot 6: timer 1
 18 *		  - slot 7: status of IRQ; signals 'any enabled int.'
 19 *
 20 *	2	- VIA2 or RBV
 21 *		  - slot 0: SCSI DRQ (CA2)
 22 *		  - slot 1: NUBUS IRQ (CA1) need to read port A to find which
 23 *		  - slot 2: /EXP IRQ (only on IIci)
 24 *		  - slot 3: SCSI IRQ (CB2)
 25 *		  - slot 4: ASC IRQ (CB1)
 26 *		  - slot 5: timer 2 (not on IIci)
 27 *		  - slot 6: timer 1 (not on IIci)
 28 *		  - slot 7: status of IRQ; signals 'any enabled int.'
 29 *
 30 * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
 31 *
 32 *	3	- unused (?)
 33 *
 34 *	4	- SCC
 35 *
 36 *	5	- unused (?)
 37 *		  [serial errors or special conditions seem to raise level 6
 38 *		  interrupts on some models (LC4xx?)]
 39 *
 40 *	6	- off switch (?)
 41 *
 42 * Machines with Quadra-like VIA hardware, except PSC and PMU machines, support
 43 * an alternate interrupt mapping, as used by A/UX. It spreads ethernet and
 44 * sound out to their own autovector IRQs and gives VIA1 a higher priority:
 45 *
 46 *	1	- unused (?)
 47 *
 48 *	3	- on-board SONIC
 49 *
 50 *	5	- Apple Sound Chip (ASC)
 51 *
 52 *	6	- VIA1
 53 *
 54 * For OSS Macintoshes (IIfx only), we apply an interrupt mapping similar to
 55 * the Quadra (A/UX) mapping:
 56 *
 57 *	1	- ISM IOP (ADB)
 58 *
 59 *	2	- SCSI
 60 *
 61 *	3	- NuBus
 62 *
 63 *	4	- SCC IOP
 64 *
 65 *	6	- VIA1
 66 *
 67 * For PSC Macintoshes (660AV, 840AV):
 68 *
 69 *	3	- PSC level 3
 70 *		  - slot 0: MACE
 71 *
 72 *	4	- PSC level 4
 73 *		  - slot 1: SCC channel A interrupt
 74 *		  - slot 2: SCC channel B interrupt
 75 *		  - slot 3: MACE DMA
 76 *
 77 *	5	- PSC level 5
 78 *
 79 *	6	- PSC level 6
 80 *
 81 * Finally we have good 'ole level 7, the non-maskable interrupt:
 82 *
 83 *	7	- NMI (programmer's switch on the back of some Macs)
 84 *		  Also RAM parity error on models which support it (IIc, IIfx?)
 85 *
 86 * The current interrupt logic looks something like this:
 87 *
 88 * - We install dispatchers for the autovector interrupts (1-7). These
 89 *   dispatchers are responsible for querying the hardware (the
 90 *   VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
 91 *   this information a machspec interrupt number is generated by placing the
 92 *   index of the interrupt hardware into the low three bits and the original
 93 *   autovector interrupt number in the upper 5 bits. The handlers for the
 94 *   resulting machspec interrupt are then called.
 95 *
 96 * - Nubus is a special case because its interrupts are hidden behind two
 97 *   layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
 98 *   which translates to IRQ number 17. In this spot we install _another_
 99 *   dispatcher. This dispatcher finds the interrupting slot number (9-F) and
100 *   then forms a new machspec interrupt number as above with the slot number
101 *   minus 9 in the low three bits and the pseudo-level 7 in the upper five
102 *   bits.  The handlers for this new machspec interrupt number are then
103 *   called. This puts Nubus interrupts into the range 56-62.
104 *
105 * - The Baboon interrupts (used on some PowerBooks) are an even more special
106 *   case. They're hidden behind the Nubus slot $C interrupt thus adding a
107 *   third layer of indirection. Why oh why did the Apple engineers do that?
108 *
109 */
110
111#include <linux/types.h>
112#include <linux/kernel.h>
113#include <linux/sched.h>
114#include <linux/sched/debug.h>
115#include <linux/interrupt.h>
116#include <linux/irq.h>
117#include <linux/delay.h>
118
119#include <asm/irq.h>
120#include <asm/macintosh.h>
121#include <asm/macints.h>
122#include <asm/mac_via.h>
123#include <asm/mac_psc.h>
124#include <asm/mac_oss.h>
125#include <asm/mac_iop.h>
126#include <asm/mac_baboon.h>
127#include <asm/hwtest.h>
128#include <asm/irq_regs.h>
129#include <asm/processor.h>
 
 
 
 
 
 
 
 
 
 
130
131static unsigned int mac_irq_startup(struct irq_data *);
132static void mac_irq_shutdown(struct irq_data *);
133
134static struct irq_chip mac_irq_chip = {
135	.name		= "mac",
136	.irq_enable	= mac_irq_enable,
137	.irq_disable	= mac_irq_disable,
138	.irq_startup	= mac_irq_startup,
139	.irq_shutdown	= mac_irq_shutdown,
140};
141
142static irqreturn_t mac_nmi_handler(int irq, void *dev_id)
143{
144	static volatile int in_nmi;
145
146	if (in_nmi)
147		return IRQ_HANDLED;
148	in_nmi = 1;
149
150	pr_info("Non-Maskable Interrupt\n");
151	show_registers(get_irq_regs());
152
153	in_nmi = 0;
154	return IRQ_HANDLED;
155}
156
157void __init mac_init_IRQ(void)
158{
 
 
 
159	m68k_setup_irq_controller(&mac_irq_chip, handle_simple_irq, IRQ_USER,
160				  NUM_MAC_SOURCES - IRQ_USER);
 
 
 
 
 
 
 
 
 
 
161
162	/*
163	 * Now register the handlers for the master IRQ handlers
164	 * at levels 1-7. Most of the work is done elsewhere.
165	 */
166
167	if (oss_present)
168		oss_register_interrupts();
169	else
170		via_register_interrupts();
171	if (psc)
172		psc_register_interrupts();
173	if (baboon_present)
174		baboon_register_interrupts();
175	iop_register_interrupts();
176	if (request_irq(IRQ_AUTO_7, mac_nmi_handler, 0, "NMI",
177			mac_nmi_handler))
178		pr_err("Couldn't register NMI\n");
 
 
 
179}
180
181/*
182 *  mac_irq_enable - enable an interrupt source
183 * mac_irq_disable - disable an interrupt source
184 *
185 * These routines are just dispatchers to the VIA/OSS/PSC routines.
186 */
187
188void mac_irq_enable(struct irq_data *data)
189{
190	int irq = data->irq;
191	int irq_src = IRQ_SRC(irq);
192
193	switch(irq_src) {
194	case 1:
195	case 2:
196	case 7:
197		if (oss_present)
198			oss_irq_enable(irq);
199		else
200			via_irq_enable(irq);
201		break;
202	case 3:
203	case 4:
204	case 5:
205	case 6:
206		if (psc)
207			psc_irq_enable(irq);
208		else if (oss_present)
209			oss_irq_enable(irq);
210		break;
211	case 8:
212		if (baboon_present)
213			baboon_irq_enable(irq);
214		break;
215	}
216}
217
218void mac_irq_disable(struct irq_data *data)
219{
220	int irq = data->irq;
221	int irq_src = IRQ_SRC(irq);
222
223	switch(irq_src) {
224	case 1:
225	case 2:
226	case 7:
227		if (oss_present)
228			oss_irq_disable(irq);
229		else
230			via_irq_disable(irq);
231		break;
232	case 3:
233	case 4:
234	case 5:
235	case 6:
236		if (psc)
237			psc_irq_disable(irq);
238		else if (oss_present)
239			oss_irq_disable(irq);
240		break;
241	case 8:
242		if (baboon_present)
243			baboon_irq_disable(irq);
244		break;
245	}
246}
247
248static unsigned int mac_irq_startup(struct irq_data *data)
249{
250	int irq = data->irq;
251
252	if (IRQ_SRC(irq) == 7 && !oss_present)
253		via_nubus_irq_startup(irq);
254	else
255		mac_irq_enable(data);
256
257	return 0;
258}
259
260static void mac_irq_shutdown(struct irq_data *data)
261{
262	int irq = data->irq;
263
264	if (IRQ_SRC(irq) == 7 && !oss_present)
265		via_nubus_irq_shutdown(irq);
266	else
267		mac_irq_disable(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268}
v3.5.6
 
  1/*
  2 *	Macintosh interrupts
  3 *
  4 * General design:
  5 * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
  6 * exclusively use the autovector interrupts (the 'generic level0-level7'
  7 * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
  8 * are used:
  9 *	1	- VIA1
 10 *		  - slot 0: one second interrupt (CA2)
 11 *		  - slot 1: VBlank (CA1)
 12 *		  - slot 2: ADB data ready (SR full)
 13 *		  - slot 3: ADB data  (CB2)
 14 *		  - slot 4: ADB clock (CB1)
 15 *		  - slot 5: timer 2
 16 *		  - slot 6: timer 1
 17 *		  - slot 7: status of IRQ; signals 'any enabled int.'
 18 *
 19 *	2	- VIA2 or RBV
 20 *		  - slot 0: SCSI DRQ (CA2)
 21 *		  - slot 1: NUBUS IRQ (CA1) need to read port A to find which
 22 *		  - slot 2: /EXP IRQ (only on IIci)
 23 *		  - slot 3: SCSI IRQ (CB2)
 24 *		  - slot 4: ASC IRQ (CB1)
 25 *		  - slot 5: timer 2 (not on IIci)
 26 *		  - slot 6: timer 1 (not on IIci)
 27 *		  - slot 7: status of IRQ; signals 'any enabled int.'
 28 *
 29 * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
 30 *
 31 *	3	- unused (?)
 32 *
 33 *	4	- SCC
 34 *
 35 *	5	- unused (?)
 36 *		  [serial errors or special conditions seem to raise level 6
 37 *		  interrupts on some models (LC4xx?)]
 38 *
 39 *	6	- off switch (?)
 40 *
 41 * Machines with Quadra-like VIA hardware, except PSC and PMU machines, support
 42 * an alternate interrupt mapping, as used by A/UX. It spreads ethernet and
 43 * sound out to their own autovector IRQs and gives VIA1 a higher priority:
 44 *
 45 *	1	- unused (?)
 46 *
 47 *	3	- on-board SONIC
 48 *
 49 *	5	- Apple Sound Chip (ASC)
 50 *
 51 *	6	- VIA1
 52 *
 53 * For OSS Macintoshes (IIfx only), we apply an interrupt mapping similar to
 54 * the Quadra (A/UX) mapping:
 55 *
 56 *	1	- ISM IOP (ADB)
 57 *
 58 *	2	- SCSI
 59 *
 60 *	3	- NuBus
 61 *
 62 *	4	- SCC IOP
 63 *
 64 *	6	- VIA1
 65 *
 66 * For PSC Macintoshes (660AV, 840AV):
 67 *
 68 *	3	- PSC level 3
 69 *		  - slot 0: MACE
 70 *
 71 *	4	- PSC level 4
 72 *		  - slot 1: SCC channel A interrupt
 73 *		  - slot 2: SCC channel B interrupt
 74 *		  - slot 3: MACE DMA
 75 *
 76 *	5	- PSC level 5
 77 *
 78 *	6	- PSC level 6
 79 *
 80 * Finally we have good 'ole level 7, the non-maskable interrupt:
 81 *
 82 *	7	- NMI (programmer's switch on the back of some Macs)
 83 *		  Also RAM parity error on models which support it (IIc, IIfx?)
 84 *
 85 * The current interrupt logic looks something like this:
 86 *
 87 * - We install dispatchers for the autovector interrupts (1-7). These
 88 *   dispatchers are responsible for querying the hardware (the
 89 *   VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
 90 *   this information a machspec interrupt number is generated by placing the
 91 *   index of the interrupt hardware into the low three bits and the original
 92 *   autovector interrupt number in the upper 5 bits. The handlers for the
 93 *   resulting machspec interrupt are then called.
 94 *
 95 * - Nubus is a special case because its interrupts are hidden behind two
 96 *   layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
 97 *   which translates to IRQ number 17. In this spot we install _another_
 98 *   dispatcher. This dispatcher finds the interrupting slot number (9-F) and
 99 *   then forms a new machspec interrupt number as above with the slot number
100 *   minus 9 in the low three bits and the pseudo-level 7 in the upper five
101 *   bits.  The handlers for this new machspec interrupt number are then
102 *   called. This puts Nubus interrupts into the range 56-62.
103 *
104 * - The Baboon interrupts (used on some PowerBooks) are an even more special
105 *   case. They're hidden behind the Nubus slot $C interrupt thus adding a
106 *   third layer of indirection. Why oh why did the Apple engineers do that?
107 *
108 */
109
110#include <linux/types.h>
111#include <linux/kernel.h>
112#include <linux/sched.h>
 
113#include <linux/interrupt.h>
114#include <linux/irq.h>
115#include <linux/delay.h>
116
117#include <asm/irq.h>
118#include <asm/macintosh.h>
119#include <asm/macints.h>
120#include <asm/mac_via.h>
121#include <asm/mac_psc.h>
122#include <asm/mac_oss.h>
123#include <asm/mac_iop.h>
124#include <asm/mac_baboon.h>
125#include <asm/hwtest.h>
126#include <asm/irq_regs.h>
127
128#define SHUTUP_SONIC
129
130/*
131 * console_loglevel determines NMI handler function
132 */
133
134irqreturn_t mac_nmi_handler(int, void *);
135irqreturn_t mac_debug_handler(int, void *);
136
137/* #define DEBUG_MACINTS */
138
139static unsigned int mac_irq_startup(struct irq_data *);
140static void mac_irq_shutdown(struct irq_data *);
141
142static struct irq_chip mac_irq_chip = {
143	.name		= "mac",
144	.irq_enable	= mac_irq_enable,
145	.irq_disable	= mac_irq_disable,
146	.irq_startup	= mac_irq_startup,
147	.irq_shutdown	= mac_irq_shutdown,
148};
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150void __init mac_init_IRQ(void)
151{
152#ifdef DEBUG_MACINTS
153	printk("mac_init_IRQ(): Setting things up...\n");
154#endif
155	m68k_setup_irq_controller(&mac_irq_chip, handle_simple_irq, IRQ_USER,
156				  NUM_MAC_SOURCES - IRQ_USER);
157	/* Make sure the SONIC interrupt is cleared or things get ugly */
158#ifdef SHUTUP_SONIC
159	printk("Killing onboard sonic... ");
160	/* This address should hopefully be mapped already */
161	if (hwreg_present((void*)(0x50f0a000))) {
162		*(long *)(0x50f0a014) = 0x7fffL;
163		*(long *)(0x50f0a010) = 0L;
164	}
165	printk("Done.\n");
166#endif /* SHUTUP_SONIC */
167
168	/*
169	 * Now register the handlers for the master IRQ handlers
170	 * at levels 1-7. Most of the work is done elsewhere.
171	 */
172
173	if (oss_present)
174		oss_register_interrupts();
175	else
176		via_register_interrupts();
177	if (psc_present)
178		psc_register_interrupts();
179	if (baboon_present)
180		baboon_register_interrupts();
181	iop_register_interrupts();
182	if (request_irq(IRQ_AUTO_7, mac_nmi_handler, 0, "NMI",
183			mac_nmi_handler))
184		pr_err("Couldn't register NMI\n");
185#ifdef DEBUG_MACINTS
186	printk("mac_init_IRQ(): Done!\n");
187#endif
188}
189
190/*
191 *  mac_irq_enable - enable an interrupt source
192 * mac_irq_disable - disable an interrupt source
193 *
194 * These routines are just dispatchers to the VIA/OSS/PSC routines.
195 */
196
197void mac_irq_enable(struct irq_data *data)
198{
199	int irq = data->irq;
200	int irq_src = IRQ_SRC(irq);
201
202	switch(irq_src) {
203	case 1:
204	case 2:
205	case 7:
206		if (oss_present)
207			oss_irq_enable(irq);
208		else
209			via_irq_enable(irq);
210		break;
211	case 3:
212	case 4:
213	case 5:
214	case 6:
215		if (psc_present)
216			psc_irq_enable(irq);
217		else if (oss_present)
218			oss_irq_enable(irq);
219		break;
220	case 8:
221		if (baboon_present)
222			baboon_irq_enable(irq);
223		break;
224	}
225}
226
227void mac_irq_disable(struct irq_data *data)
228{
229	int irq = data->irq;
230	int irq_src = IRQ_SRC(irq);
231
232	switch(irq_src) {
233	case 1:
234	case 2:
235	case 7:
236		if (oss_present)
237			oss_irq_disable(irq);
238		else
239			via_irq_disable(irq);
240		break;
241	case 3:
242	case 4:
243	case 5:
244	case 6:
245		if (psc_present)
246			psc_irq_disable(irq);
247		else if (oss_present)
248			oss_irq_disable(irq);
249		break;
250	case 8:
251		if (baboon_present)
252			baboon_irq_disable(irq);
253		break;
254	}
255}
256
257static unsigned int mac_irq_startup(struct irq_data *data)
258{
259	int irq = data->irq;
260
261	if (IRQ_SRC(irq) == 7 && !oss_present)
262		via_nubus_irq_startup(irq);
263	else
264		mac_irq_enable(data);
265
266	return 0;
267}
268
269static void mac_irq_shutdown(struct irq_data *data)
270{
271	int irq = data->irq;
272
273	if (IRQ_SRC(irq) == 7 && !oss_present)
274		via_nubus_irq_shutdown(irq);
275	else
276		mac_irq_disable(data);
277}
278
279static int num_debug[8];
280
281irqreturn_t mac_debug_handler(int irq, void *dev_id)
282{
283	if (num_debug[irq] < 10) {
284		printk("DEBUG: Unexpected IRQ %d\n", irq);
285		num_debug[irq]++;
286	}
287	return IRQ_HANDLED;
288}
289
290static int in_nmi;
291static volatile int nmi_hold;
292
293irqreturn_t mac_nmi_handler(int irq, void *dev_id)
294{
295	int i;
296	/*
297	 * generate debug output on NMI switch if 'debug' kernel option given
298	 * (only works with Penguin!)
299	 */
300
301	in_nmi++;
302	for (i=0; i<100; i++)
303		udelay(1000);
304
305	if (in_nmi == 1) {
306		nmi_hold = 1;
307		printk("... pausing, press NMI to resume ...");
308	} else {
309		printk(" ok!\n");
310		nmi_hold = 0;
311	}
312
313	barrier();
314
315	while (nmi_hold == 1)
316		udelay(1000);
317
318	if (console_loglevel >= 8) {
319#if 0
320		struct pt_regs *fp = get_irq_regs();
321		show_state();
322		printk("PC: %08lx\nSR: %04x  SP: %p\n", fp->pc, fp->sr, fp);
323		printk("d0: %08lx    d1: %08lx    d2: %08lx    d3: %08lx\n",
324		       fp->d0, fp->d1, fp->d2, fp->d3);
325		printk("d4: %08lx    d5: %08lx    a0: %08lx    a1: %08lx\n",
326		       fp->d4, fp->d5, fp->a0, fp->a1);
327
328		if (STACK_MAGIC != *(unsigned long *)current->kernel_stack_page)
329			printk("Corrupted stack page\n");
330		printk("Process %s (pid: %d, stackpage=%08lx)\n",
331			current->comm, current->pid, current->kernel_stack_page);
332		if (intr_count == 1)
333			dump_stack((struct frame *)fp);
334#else
335		/* printk("NMI "); */
336#endif
337	}
338	in_nmi--;
339	return IRQ_HANDLED;
340}