Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/memory.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
 
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/xen/xen-ops.h>
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42	struct device *dev;
  43	size_t size;
  44	gfp_t gfp;
  45	pgprot_t prot;
  46	const void *caller;
  47	bool want_vaddr;
  48	int coherent_flag;
  49};
  50
  51struct arm_dma_free_args {
  52	struct device *dev;
  53	size_t size;
  54	void *cpu_addr;
  55	struct page *page;
  56	bool want_vaddr;
  57};
  58
  59#define NORMAL	    0
  60#define COHERENT    1
  61
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109	/*
 110	 * Ensure that the allocated pages are zeroed, and that any data
 111	 * lurking in the kernel direct-mapped region is invalidated.
 112	 */
 113	if (PageHighMem(page)) {
 114		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 115		phys_addr_t end = base + size;
 116		while (size > 0) {
 117			void *ptr = kmap_atomic(page);
 118			memset(ptr, 0, PAGE_SIZE);
 119			if (coherent_flag != COHERENT)
 120				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 121			kunmap_atomic(ptr);
 122			page++;
 123			size -= PAGE_SIZE;
 124		}
 125		if (coherent_flag != COHERENT)
 126			outer_flush_range(base, end);
 127	} else {
 128		void *ptr = page_address(page);
 129		memset(ptr, 0, size);
 130		if (coherent_flag != COHERENT) {
 131			dmac_flush_range(ptr, ptr + size);
 132			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 133		}
 134	}
 135}
 136
 137/*
 138 * Allocate a DMA buffer for 'dev' of size 'size' using the
 139 * specified gfp mask.  Note that 'size' must be page aligned.
 140 */
 141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 142				       gfp_t gfp, int coherent_flag)
 143{
 144	unsigned long order = get_order(size);
 145	struct page *page, *p, *e;
 146
 147	page = alloc_pages(gfp, order);
 148	if (!page)
 149		return NULL;
 150
 151	/*
 152	 * Now split the huge page and free the excess pages
 153	 */
 154	split_page(page, order);
 155	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 156		__free_page(p);
 157
 158	__dma_clear_buffer(page, size, coherent_flag);
 159
 160	return page;
 161}
 162
 163/*
 164 * Free a DMA buffer.  'size' must be page aligned.
 165 */
 166static void __dma_free_buffer(struct page *page, size_t size)
 167{
 168	struct page *e = page + (size >> PAGE_SHIFT);
 169
 170	while (page < e) {
 171		__free_page(page);
 172		page++;
 173	}
 174}
 175
 176static void *__alloc_from_contiguous(struct device *dev, size_t size,
 177				     pgprot_t prot, struct page **ret_page,
 178				     const void *caller, bool want_vaddr,
 179				     int coherent_flag, gfp_t gfp);
 180
 181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 182				 pgprot_t prot, struct page **ret_page,
 183				 const void *caller, bool want_vaddr);
 184
 185#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 186static struct gen_pool *atomic_pool __ro_after_init;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189
 190static int __init early_coherent_pool(char *p)
 191{
 192	atomic_pool_size = memparse(p, &p);
 193	return 0;
 194}
 195early_param("coherent_pool", early_coherent_pool);
 196
 197/*
 198 * Initialise the coherent pool for atomic allocations.
 199 */
 200static int __init atomic_pool_init(void)
 201{
 202	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 203	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 204	struct page *page;
 205	void *ptr;
 206
 207	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 208	if (!atomic_pool)
 209		goto out;
 210	/*
 211	 * The atomic pool is only used for non-coherent allocations
 212	 * so we must pass NORMAL for coherent_flag.
 213	 */
 214	if (dev_get_cma_area(NULL))
 215		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 216				      &page, atomic_pool_init, true, NORMAL,
 217				      GFP_KERNEL);
 218	else
 219		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 220					   &page, atomic_pool_init, true);
 221	if (ptr) {
 222		int ret;
 223
 224		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 225					page_to_phys(page),
 226					atomic_pool_size, -1);
 227		if (ret)
 228			goto destroy_genpool;
 229
 230		gen_pool_set_algo(atomic_pool,
 231				gen_pool_first_fit_order_align,
 232				NULL);
 233		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 234		       atomic_pool_size / 1024);
 235		return 0;
 236	}
 237
 238destroy_genpool:
 239	gen_pool_destroy(atomic_pool);
 240	atomic_pool = NULL;
 241out:
 242	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 243	       atomic_pool_size / 1024);
 244	return -ENOMEM;
 245}
 246/*
 247 * CMA is activated by core_initcall, so we must be called after it.
 248 */
 249postcore_initcall(atomic_pool_init);
 250
 251#ifdef CONFIG_CMA_AREAS
 252struct dma_contig_early_reserve {
 253	phys_addr_t base;
 254	unsigned long size;
 255};
 256
 257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 258
 259static int dma_mmu_remap_num __initdata;
 260
 261void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 262{
 263	dma_mmu_remap[dma_mmu_remap_num].base = base;
 264	dma_mmu_remap[dma_mmu_remap_num].size = size;
 265	dma_mmu_remap_num++;
 266}
 267
 268void __init dma_contiguous_remap(void)
 269{
 270	int i;
 271	for (i = 0; i < dma_mmu_remap_num; i++) {
 272		phys_addr_t start = dma_mmu_remap[i].base;
 273		phys_addr_t end = start + dma_mmu_remap[i].size;
 274		struct map_desc map;
 275		unsigned long addr;
 276
 277		if (end > arm_lowmem_limit)
 278			end = arm_lowmem_limit;
 279		if (start >= end)
 280			continue;
 281
 282		map.pfn = __phys_to_pfn(start);
 283		map.virtual = __phys_to_virt(start);
 284		map.length = end - start;
 285		map.type = MT_MEMORY_DMA_READY;
 286
 287		/*
 288		 * Clear previous low-memory mapping to ensure that the
 289		 * TLB does not see any conflicting entries, then flush
 290		 * the TLB of the old entries before creating new mappings.
 291		 *
 292		 * This ensures that any speculatively loaded TLB entries
 293		 * (even though they may be rare) can not cause any problems,
 294		 * and ensures that this code is architecturally compliant.
 295		 */
 296		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 297		     addr += PMD_SIZE)
 298			pmd_clear(pmd_off_k(addr));
 299
 300		flush_tlb_kernel_range(__phys_to_virt(start),
 301				       __phys_to_virt(end));
 302
 303		iotable_init(&map, 1);
 304	}
 305}
 306#endif
 307
 308static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309{
 310	struct page *page = virt_to_page((void *)addr);
 311	pgprot_t prot = *(pgprot_t *)data;
 312
 313	set_pte_ext(pte, mk_pte(page, prot), 0);
 314	return 0;
 315}
 316
 317static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 318{
 319	unsigned long start = (unsigned long) page_address(page);
 320	unsigned end = start + size;
 321
 322	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 
 323	flush_tlb_kernel_range(start, end);
 324}
 325
 326static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 327				 pgprot_t prot, struct page **ret_page,
 328				 const void *caller, bool want_vaddr)
 329{
 330	struct page *page;
 331	void *ptr = NULL;
 332	/*
 333	 * __alloc_remap_buffer is only called when the device is
 334	 * non-coherent
 335	 */
 336	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 337	if (!page)
 338		return NULL;
 339	if (!want_vaddr)
 340		goto out;
 341
 342	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 343	if (!ptr) {
 344		__dma_free_buffer(page, size);
 345		return NULL;
 346	}
 347
 348 out:
 349	*ret_page = page;
 350	return ptr;
 351}
 352
 353static void *__alloc_from_pool(size_t size, struct page **ret_page)
 
 354{
 355	unsigned long val;
 356	void *ptr = NULL;
 357
 358	if (!atomic_pool) {
 359		WARN(1, "coherent pool not initialised!\n");
 
 
 360		return NULL;
 361	}
 362
 363	val = gen_pool_alloc(atomic_pool, size);
 364	if (val) {
 365		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 366
 367		*ret_page = phys_to_page(phys);
 368		ptr = (void *)val;
 
 
 
 
 
 
 369	}
 370
 371	return ptr;
 372}
 373
 374static bool __in_atomic_pool(void *start, size_t size)
 375{
 376	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 377}
 
 378
 379static int __free_from_pool(void *start, size_t size)
 380{
 381	if (!__in_atomic_pool(start, size))
 382		return 0;
 383
 384	gen_pool_free(atomic_pool, (unsigned long)start, size);
 
 
 
 
 
 
 
 385
 
 386	return 1;
 387}
 388
 389static void *__alloc_from_contiguous(struct device *dev, size_t size,
 390				     pgprot_t prot, struct page **ret_page,
 391				     const void *caller, bool want_vaddr,
 392				     int coherent_flag, gfp_t gfp)
 393{
 394	unsigned long order = get_order(size);
 395	size_t count = size >> PAGE_SHIFT;
 396	struct page *page;
 397	void *ptr = NULL;
 398
 399	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 400	if (!page)
 401		return NULL;
 402
 403	__dma_clear_buffer(page, size, coherent_flag);
 404
 405	if (!want_vaddr)
 406		goto out;
 407
 408	if (PageHighMem(page)) {
 409		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 410		if (!ptr) {
 411			dma_release_from_contiguous(dev, page, count);
 412			return NULL;
 413		}
 414	} else {
 415		__dma_remap(page, size, prot);
 416		ptr = page_address(page);
 417	}
 418
 419 out:
 420	*ret_page = page;
 421	return ptr;
 422}
 423
 424static void __free_from_contiguous(struct device *dev, struct page *page,
 425				   void *cpu_addr, size_t size, bool want_vaddr)
 426{
 427	if (want_vaddr) {
 428		if (PageHighMem(page))
 429			dma_common_free_remap(cpu_addr, size);
 430		else
 431			__dma_remap(page, size, PAGE_KERNEL);
 432	}
 433	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 434}
 435
 436static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 437{
 438	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 439			pgprot_writecombine(prot) :
 440			pgprot_dmacoherent(prot);
 441	return prot;
 442}
 443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 445				   struct page **ret_page)
 446{
 447	struct page *page;
 448	/* __alloc_simple_buffer is only called when the device is coherent */
 449	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 450	if (!page)
 451		return NULL;
 452
 453	*ret_page = page;
 454	return page_address(page);
 455}
 456
 457static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 458				    struct page **ret_page)
 459{
 460	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 461				     ret_page);
 462}
 463
 464static void simple_allocator_free(struct arm_dma_free_args *args)
 465{
 466	__dma_free_buffer(args->page, args->size);
 467}
 468
 469static struct arm_dma_allocator simple_allocator = {
 470	.alloc = simple_allocator_alloc,
 471	.free = simple_allocator_free,
 472};
 473
 474static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 475				 struct page **ret_page)
 476{
 477	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 478				       ret_page, args->caller,
 479				       args->want_vaddr, args->coherent_flag,
 480				       args->gfp);
 481}
 482
 483static void cma_allocator_free(struct arm_dma_free_args *args)
 484{
 485	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 486			       args->size, args->want_vaddr);
 487}
 488
 489static struct arm_dma_allocator cma_allocator = {
 490	.alloc = cma_allocator_alloc,
 491	.free = cma_allocator_free,
 492};
 493
 494static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 495				  struct page **ret_page)
 496{
 497	return __alloc_from_pool(args->size, ret_page);
 498}
 499
 500static void pool_allocator_free(struct arm_dma_free_args *args)
 501{
 502	__free_from_pool(args->cpu_addr, args->size);
 503}
 504
 505static struct arm_dma_allocator pool_allocator = {
 506	.alloc = pool_allocator_alloc,
 507	.free = pool_allocator_free,
 508};
 509
 510static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 511				   struct page **ret_page)
 512{
 513	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 514				    args->prot, ret_page, args->caller,
 515				    args->want_vaddr);
 516}
 517
 518static void remap_allocator_free(struct arm_dma_free_args *args)
 519{
 520	if (args->want_vaddr)
 521		dma_common_free_remap(args->cpu_addr, args->size);
 522
 523	__dma_free_buffer(args->page, args->size);
 524}
 525
 526static struct arm_dma_allocator remap_allocator = {
 527	.alloc = remap_allocator_alloc,
 528	.free = remap_allocator_free,
 529};
 530
 531static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 532			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 533			 unsigned long attrs, const void *caller)
 534{
 535	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 536	struct page *page = NULL;
 537	void *addr;
 538	bool allowblock, cma;
 539	struct arm_dma_buffer *buf;
 540	struct arm_dma_alloc_args args = {
 541		.dev = dev,
 542		.size = PAGE_ALIGN(size),
 543		.gfp = gfp,
 544		.prot = prot,
 545		.caller = caller,
 546		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 547		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 548	};
 549
 550#ifdef CONFIG_DMA_API_DEBUG
 551	u64 limit = (mask + 1) & ~mask;
 552	if (limit && size >= limit) {
 553		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 554			size, mask);
 555		return NULL;
 556	}
 557#endif
 558
 559	buf = kzalloc(sizeof(*buf),
 560		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 561	if (!buf)
 562		return NULL;
 563
 564	if (mask < 0xffffffffULL)
 565		gfp |= GFP_DMA;
 566
 567	args.gfp = gfp;
 
 
 
 
 
 
 
 568
 569	*handle = DMA_MAPPING_ERROR;
 570	allowblock = gfpflags_allow_blocking(gfp);
 571	cma = allowblock ? dev_get_cma_area(dev) : NULL;
 572
 573	if (cma)
 574		buf->allocator = &cma_allocator;
 575	else if (is_coherent)
 576		buf->allocator = &simple_allocator;
 577	else if (allowblock)
 578		buf->allocator = &remap_allocator;
 579	else
 580		buf->allocator = &pool_allocator;
 581
 582	addr = buf->allocator->alloc(&args, &page);
 
 583
 584	if (page) {
 585		unsigned long flags;
 586
 587		*handle = phys_to_dma(dev, page_to_phys(page));
 588		buf->virt = args.want_vaddr ? addr : page;
 
 
 
 
 
 
 
 589
 590		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 591		list_add(&buf->list, &arm_dma_bufs);
 592		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 593	} else {
 594		kfree(buf);
 595	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596
 597	return args.want_vaddr ? addr : page;
 
 
 
 
 
 
 598}
 599
 600/*
 601 * Free a buffer as defined by the above mapping.
 602 */
 603static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 604			   dma_addr_t handle, unsigned long attrs,
 605			   bool is_coherent)
 606{
 607	struct page *page = phys_to_page(dma_to_phys(dev, handle));
 608	struct arm_dma_buffer *buf;
 609	struct arm_dma_free_args args = {
 610		.dev = dev,
 611		.size = PAGE_ALIGN(size),
 612		.cpu_addr = cpu_addr,
 613		.page = page,
 614		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 615	};
 616
 617	buf = arm_dma_buffer_find(cpu_addr);
 618	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 619		return;
 620
 621	buf->allocator->free(&args);
 622	kfree(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623}
 624
 625static void dma_cache_maint_page(struct page *page, unsigned long offset,
 626	size_t size, enum dma_data_direction dir,
 627	void (*op)(const void *, size_t, int))
 628{
 629	unsigned long pfn;
 630	size_t left = size;
 631
 632	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 633	offset %= PAGE_SIZE;
 634
 635	/*
 636	 * A single sg entry may refer to multiple physically contiguous
 637	 * pages.  But we still need to process highmem pages individually.
 638	 * If highmem is not configured then the bulk of this loop gets
 639	 * optimized out.
 640	 */
 
 641	do {
 642		size_t len = left;
 643		void *vaddr;
 644
 645		page = pfn_to_page(pfn);
 646
 647		if (PageHighMem(page)) {
 648			if (len + offset > PAGE_SIZE)
 
 
 
 
 649				len = PAGE_SIZE - offset;
 650
 651			if (cache_is_vipt_nonaliasing()) {
 
 
 
 
 
 
 652				vaddr = kmap_atomic(page);
 653				op(vaddr + offset, len, dir);
 654				kunmap_atomic(vaddr);
 655			} else {
 656				vaddr = kmap_high_get(page);
 657				if (vaddr) {
 658					op(vaddr + offset, len, dir);
 659					kunmap_high(page);
 660				}
 661			}
 662		} else {
 663			vaddr = page_address(page) + offset;
 664			op(vaddr, len, dir);
 665		}
 666		offset = 0;
 667		pfn++;
 668		left -= len;
 669	} while (left);
 670}
 671
 672/*
 673 * Make an area consistent for devices.
 674 * Note: Drivers should NOT use this function directly.
 
 675 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 676 */
 677static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 678	size_t size, enum dma_data_direction dir)
 679{
 680	phys_addr_t paddr;
 681
 682	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 683
 684	paddr = page_to_phys(page) + off;
 685	if (dir == DMA_FROM_DEVICE) {
 686		outer_inv_range(paddr, paddr + size);
 687	} else {
 688		outer_clean_range(paddr, paddr + size);
 689	}
 690	/* FIXME: non-speculating: flush on bidirectional mappings? */
 691}
 692
 693static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 694	size_t size, enum dma_data_direction dir)
 695{
 696	phys_addr_t paddr = page_to_phys(page) + off;
 697
 698	/* FIXME: non-speculating: not required */
 699	/* in any case, don't bother invalidating if DMA to device */
 700	if (dir != DMA_TO_DEVICE) {
 701		outer_inv_range(paddr, paddr + size);
 702
 703		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 704	}
 705
 706	/*
 707	 * Mark the D-cache clean for these pages to avoid extra flushing.
 708	 */
 709	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 710		unsigned long pfn;
 711		size_t left = size;
 712
 713		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 714		off %= PAGE_SIZE;
 715		if (off) {
 716			pfn++;
 717			left -= PAGE_SIZE - off;
 718		}
 719		while (left >= PAGE_SIZE) {
 720			page = pfn_to_page(pfn++);
 721			set_bit(PG_dcache_clean, &page->flags);
 722			left -= PAGE_SIZE;
 723		}
 724	}
 725}
 726
 727#ifdef CONFIG_ARM_DMA_USE_IOMMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728
 729static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730{
 731	int prot = 0;
 
 732
 733	if (attrs & DMA_ATTR_PRIVILEGED)
 734		prot |= IOMMU_PRIV;
 735
 736	switch (dir) {
 737	case DMA_BIDIRECTIONAL:
 738		return prot | IOMMU_READ | IOMMU_WRITE;
 739	case DMA_TO_DEVICE:
 740		return prot | IOMMU_READ;
 741	case DMA_FROM_DEVICE:
 742		return prot | IOMMU_WRITE;
 743	default:
 744		return prot;
 745	}
 746}
 747
 748/* IOMMU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749
 750static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751
 752static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
 753				      size_t size)
 754{
 755	unsigned int order = get_order(size);
 756	unsigned int align = 0;
 757	unsigned int count, start;
 758	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 759	unsigned long flags;
 760	dma_addr_t iova;
 761	int i;
 762
 763	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
 764		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
 765
 766	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 767	align = (1 << order) - 1;
 768
 769	spin_lock_irqsave(&mapping->lock, flags);
 770	for (i = 0; i < mapping->nr_bitmaps; i++) {
 771		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 772				mapping->bits, 0, count, align);
 773
 774		if (start > mapping->bits)
 775			continue;
 776
 777		bitmap_set(mapping->bitmaps[i], start, count);
 778		break;
 779	}
 780
 781	/*
 782	 * No unused range found. Try to extend the existing mapping
 783	 * and perform a second attempt to reserve an IO virtual
 784	 * address range of size bytes.
 785	 */
 786	if (i == mapping->nr_bitmaps) {
 787		if (extend_iommu_mapping(mapping)) {
 788			spin_unlock_irqrestore(&mapping->lock, flags);
 789			return DMA_MAPPING_ERROR;
 790		}
 791
 792		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 793				mapping->bits, 0, count, align);
 794
 795		if (start > mapping->bits) {
 796			spin_unlock_irqrestore(&mapping->lock, flags);
 797			return DMA_MAPPING_ERROR;
 798		}
 799
 800		bitmap_set(mapping->bitmaps[i], start, count);
 801	}
 802	spin_unlock_irqrestore(&mapping->lock, flags);
 803
 804	iova = mapping->base + (mapping_size * i);
 805	iova += start << PAGE_SHIFT;
 806
 807	return iova;
 808}
 809
 810static inline void __free_iova(struct dma_iommu_mapping *mapping,
 811			       dma_addr_t addr, size_t size)
 812{
 813	unsigned int start, count;
 814	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 
 
 815	unsigned long flags;
 816	dma_addr_t bitmap_base;
 817	u32 bitmap_index;
 818
 819	if (!size)
 820		return;
 821
 822	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
 823	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
 824
 825	bitmap_base = mapping->base + mapping_size * bitmap_index;
 826
 827	start = (addr - bitmap_base) >>	PAGE_SHIFT;
 828
 829	if (addr + size > bitmap_base + mapping_size) {
 830		/*
 831		 * The address range to be freed reaches into the iova
 832		 * range of the next bitmap. This should not happen as
 833		 * we don't allow this in __alloc_iova (at the
 834		 * moment).
 835		 */
 836		BUG();
 837	} else
 838		count = size >> PAGE_SHIFT;
 839
 840	spin_lock_irqsave(&mapping->lock, flags);
 841	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
 842	spin_unlock_irqrestore(&mapping->lock, flags);
 843}
 844
 845/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
 846static const int iommu_order_array[] = { 9, 8, 4, 0 };
 847
 848static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
 849					  gfp_t gfp, unsigned long attrs,
 850					  int coherent_flag)
 851{
 852	struct page **pages;
 853	int count = size >> PAGE_SHIFT;
 854	int array_size = count * sizeof(struct page *);
 855	int i = 0;
 856	int order_idx = 0;
 857
 858	if (array_size <= PAGE_SIZE)
 859		pages = kzalloc(array_size, GFP_KERNEL);
 860	else
 861		pages = vzalloc(array_size);
 862	if (!pages)
 863		return NULL;
 864
 865	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
 866	{
 867		unsigned long order = get_order(size);
 868		struct page *page;
 869
 870		page = dma_alloc_from_contiguous(dev, count, order,
 871						 gfp & __GFP_NOWARN);
 872		if (!page)
 873			goto error;
 874
 875		__dma_clear_buffer(page, size, coherent_flag);
 876
 877		for (i = 0; i < count; i++)
 878			pages[i] = page + i;
 879
 880		return pages;
 881	}
 882
 883	/* Go straight to 4K chunks if caller says it's OK. */
 884	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 885		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
 886
 887	/*
 888	 * IOMMU can map any pages, so himem can also be used here
 889	 */
 890	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 891
 892	while (count) {
 893		int j, order;
 894
 895		order = iommu_order_array[order_idx];
 896
 897		/* Drop down when we get small */
 898		if (__fls(count) < order) {
 899			order_idx++;
 900			continue;
 901		}
 902
 903		if (order) {
 904			/* See if it's easy to allocate a high-order chunk */
 905			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
 906
 907			/* Go down a notch at first sign of pressure */
 908			if (!pages[i]) {
 909				order_idx++;
 910				continue;
 911			}
 912		} else {
 913			pages[i] = alloc_pages(gfp, 0);
 914			if (!pages[i])
 915				goto error;
 916		}
 917
 918		if (order) {
 919			split_page(pages[i], order);
 920			j = 1 << order;
 921			while (--j)
 922				pages[i + j] = pages[i] + j;
 923		}
 924
 925		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
 926		i += 1 << order;
 927		count -= 1 << order;
 928	}
 929
 930	return pages;
 931error:
 932	while (i--)
 933		if (pages[i])
 934			__free_pages(pages[i], 0);
 935	kvfree(pages);
 
 
 
 936	return NULL;
 937}
 938
 939static int __iommu_free_buffer(struct device *dev, struct page **pages,
 940			       size_t size, unsigned long attrs)
 941{
 942	int count = size >> PAGE_SHIFT;
 
 943	int i;
 
 
 
 
 
 
 
 
 
 944
 945	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
 946		dma_release_from_contiguous(dev, pages[0], count);
 947	} else {
 948		for (i = 0; i < count; i++)
 949			if (pages[i])
 950				__free_pages(pages[i], 0);
 
 
 
 
 
 
 
 
 
 951	}
 952
 953	kvfree(pages);
 954	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955}
 956
 957/*
 958 * Create a mapping in device IO address space for specified pages
 959 */
 960static dma_addr_t
 961__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
 962		       unsigned long attrs)
 963{
 964	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
 965	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 966	dma_addr_t dma_addr, iova;
 967	int i;
 968
 969	dma_addr = __alloc_iova(mapping, size);
 970	if (dma_addr == DMA_MAPPING_ERROR)
 971		return dma_addr;
 972
 973	iova = dma_addr;
 974	for (i = 0; i < count; ) {
 975		int ret;
 976
 977		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
 978		phys_addr_t phys = page_to_phys(pages[i]);
 979		unsigned int len, j;
 980
 981		for (j = i + 1; j < count; j++, next_pfn++)
 982			if (page_to_pfn(pages[j]) != next_pfn)
 983				break;
 984
 985		len = (j - i) << PAGE_SHIFT;
 986		ret = iommu_map(mapping->domain, iova, phys, len,
 987				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
 988		if (ret < 0)
 989			goto fail;
 990		iova += len;
 991		i = j;
 992	}
 993	return dma_addr;
 994fail:
 995	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
 996	__free_iova(mapping, dma_addr, size);
 997	return DMA_MAPPING_ERROR;
 998}
 999
1000static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1001{
1002	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1003
1004	/*
1005	 * add optional in-page offset from iova to size and align
1006	 * result to page size
1007	 */
1008	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1009	iova &= PAGE_MASK;
1010
1011	iommu_unmap(mapping->domain, iova, size);
1012	__free_iova(mapping, iova, size);
1013	return 0;
1014}
1015
1016static struct page **__atomic_get_pages(void *addr)
1017{
1018	struct page *page;
1019	phys_addr_t phys;
1020
1021	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1022	page = phys_to_page(phys);
1023
1024	return (struct page **)page;
1025}
1026
1027static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1028{
1029	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1030		return __atomic_get_pages(cpu_addr);
1031
1032	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1033		return cpu_addr;
1034
1035	return dma_common_find_pages(cpu_addr);
1036}
1037
1038static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1039				  dma_addr_t *handle, int coherent_flag,
1040				  unsigned long attrs)
1041{
1042	struct page *page;
1043	void *addr;
1044
1045	if (coherent_flag  == COHERENT)
1046		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1047	else
1048		addr = __alloc_from_pool(size, &page);
1049	if (!addr)
1050		return NULL;
1051
1052	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1053	if (*handle == DMA_MAPPING_ERROR)
1054		goto err_mapping;
1055
1056	return addr;
1057
1058err_mapping:
1059	__free_from_pool(addr, size);
1060	return NULL;
1061}
1062
1063static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1064			dma_addr_t handle, size_t size, int coherent_flag)
1065{
1066	__iommu_remove_mapping(dev, handle, size);
1067	if (coherent_flag == COHERENT)
1068		__dma_free_buffer(virt_to_page(cpu_addr), size);
1069	else
1070		__free_from_pool(cpu_addr, size);
1071}
1072
1073static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1074	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1075{
1076	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1077	struct page **pages;
1078	void *addr = NULL;
1079	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1080
1081	*handle = DMA_MAPPING_ERROR;
1082	size = PAGE_ALIGN(size);
1083
1084	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1085		return __iommu_alloc_simple(dev, size, gfp, handle,
1086					    coherent_flag, attrs);
1087
1088	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1089	if (!pages)
1090		return NULL;
1091
1092	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1093	if (*handle == DMA_MAPPING_ERROR)
1094		goto err_buffer;
1095
1096	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1097		return pages;
1098
1099	addr = dma_common_pages_remap(pages, size, prot,
1100				   __builtin_return_address(0));
1101	if (!addr)
1102		goto err_mapping;
1103
1104	return addr;
1105
1106err_mapping:
1107	__iommu_remove_mapping(dev, *handle, size);
1108err_buffer:
1109	__iommu_free_buffer(dev, pages, size, attrs);
1110	return NULL;
1111}
1112
1113static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1114		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1115		    unsigned long attrs)
1116{
1117	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1118	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1119	int err;
1120
1121	if (!pages)
1122		return -ENXIO;
1123
1124	if (vma->vm_pgoff >= nr_pages)
1125		return -ENXIO;
1126
1127	if (!dev->dma_coherent)
1128		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 
1129
1130	err = vm_map_pages(vma, pages, nr_pages);
1131	if (err)
1132		pr_err("Remapping memory failed: %d\n", err);
 
 
 
 
 
1133
1134	return err;
 
 
 
 
1135}
1136
1137/*
1138 * free a page as defined by the above mapping.
1139 * Must not be called with IRQs disabled.
1140 */
1141static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1142	dma_addr_t handle, unsigned long attrs)
1143{
1144	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1145	struct page **pages;
1146	size = PAGE_ALIGN(size);
1147
1148	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1149		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1150		return;
 
 
 
1151	}
1152
1153	pages = __iommu_get_pages(cpu_addr, attrs);
1154	if (!pages) {
1155		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1156		return;
1157	}
1158
1159	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1160		dma_common_free_remap(cpu_addr, size);
1161
1162	__iommu_remove_mapping(dev, handle, size);
1163	__iommu_free_buffer(dev, pages, size, attrs);
1164}
1165
1166static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1167				 void *cpu_addr, dma_addr_t dma_addr,
1168				 size_t size, unsigned long attrs)
1169{
1170	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1172
1173	if (!pages)
1174		return -ENXIO;
1175
1176	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1177					 GFP_KERNEL);
1178}
1179
1180/*
1181 * Map a part of the scatter-gather list into contiguous io address space
1182 */
1183static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1184			  size_t size, dma_addr_t *handle,
1185			  enum dma_data_direction dir, unsigned long attrs)
1186{
1187	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1188	dma_addr_t iova, iova_base;
1189	int ret = 0;
1190	unsigned int count;
1191	struct scatterlist *s;
1192	int prot;
1193
1194	size = PAGE_ALIGN(size);
1195	*handle = DMA_MAPPING_ERROR;
1196
1197	iova_base = iova = __alloc_iova(mapping, size);
1198	if (iova == DMA_MAPPING_ERROR)
1199		return -ENOMEM;
1200
1201	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1202		phys_addr_t phys = page_to_phys(sg_page(s));
1203		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1204
1205		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1206			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1207
1208		prot = __dma_info_to_prot(dir, attrs);
1209
1210		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1211		if (ret < 0)
1212			goto fail;
1213		count += len >> PAGE_SHIFT;
1214		iova += len;
1215	}
1216	*handle = iova_base;
1217
1218	return 0;
1219fail:
1220	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1221	__free_iova(mapping, iova_base, size);
1222	return ret;
1223}
1224
1225/**
1226 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1227 * @dev: valid struct device pointer
1228 * @sg: list of buffers
1229 * @nents: number of buffers to map
1230 * @dir: DMA transfer direction
1231 *
1232 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1233 * The scatter gather list elements are merged together (if possible) and
1234 * tagged with the appropriate dma address and length. They are obtained via
1235 * sg_dma_{address,length}.
1236 */
1237static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1238		int nents, enum dma_data_direction dir, unsigned long attrs)
1239{
1240	struct scatterlist *s = sg, *dma = sg, *start = sg;
1241	int i, count = 0, ret;
1242	unsigned int offset = s->offset;
1243	unsigned int size = s->offset + s->length;
1244	unsigned int max = dma_get_max_seg_size(dev);
1245
1246	for (i = 1; i < nents; i++) {
1247		s = sg_next(s);
1248
 
1249		s->dma_length = 0;
1250
1251		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1252			ret = __map_sg_chunk(dev, start, size,
1253					     &dma->dma_address, dir, attrs);
1254			if (ret < 0)
1255				goto bad_mapping;
1256
1257			dma->dma_address += offset;
1258			dma->dma_length = size - offset;
1259
1260			size = offset = s->offset;
1261			start = s;
1262			dma = sg_next(dma);
1263			count += 1;
1264		}
1265		size += s->length;
1266	}
1267	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1268	if (ret < 0)
1269		goto bad_mapping;
1270
1271	dma->dma_address += offset;
1272	dma->dma_length = size - offset;
1273
1274	return count+1;
1275
1276bad_mapping:
1277	for_each_sg(sg, s, count, i)
1278		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1279	if (ret == -ENOMEM)
1280		return ret;
1281	return -EINVAL;
1282}
1283
1284/**
1285 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1286 * @dev: valid struct device pointer
1287 * @sg: list of buffers
1288 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1289 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1290 *
1291 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1292 * rules concerning calls here are the same as for dma_unmap_single().
1293 */
1294static void arm_iommu_unmap_sg(struct device *dev,
1295			       struct scatterlist *sg, int nents,
1296			       enum dma_data_direction dir,
1297			       unsigned long attrs)
1298{
1299	struct scatterlist *s;
1300	int i;
1301
1302	for_each_sg(sg, s, nents, i) {
1303		if (sg_dma_len(s))
1304			__iommu_remove_mapping(dev, sg_dma_address(s),
1305					       sg_dma_len(s));
1306		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1307			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1308					      s->length, dir);
1309	}
1310}
1311
1312/**
1313 * arm_iommu_sync_sg_for_cpu
1314 * @dev: valid struct device pointer
1315 * @sg: list of buffers
1316 * @nents: number of buffers to map (returned from dma_map_sg)
1317 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1318 */
1319static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1320			struct scatterlist *sg,
1321			int nents, enum dma_data_direction dir)
1322{
1323	struct scatterlist *s;
1324	int i;
1325
1326	if (dev->dma_coherent)
1327		return;
1328
1329	for_each_sg(sg, s, nents, i)
1330		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
 
1331
1332}
1333
1334/**
1335 * arm_iommu_sync_sg_for_device
1336 * @dev: valid struct device pointer
1337 * @sg: list of buffers
1338 * @nents: number of buffers to map (returned from dma_map_sg)
1339 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1340 */
1341static void arm_iommu_sync_sg_for_device(struct device *dev,
1342			struct scatterlist *sg,
1343			int nents, enum dma_data_direction dir)
1344{
1345	struct scatterlist *s;
1346	int i;
1347
1348	if (dev->dma_coherent)
1349		return;
1350
1351	for_each_sg(sg, s, nents, i)
1352		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
 
1353}
1354
 
1355/**
1356 * arm_iommu_map_page
1357 * @dev: valid struct device pointer
1358 * @page: page that buffer resides in
1359 * @offset: offset into page for start of buffer
1360 * @size: size of buffer to map
1361 * @dir: DMA transfer direction
1362 *
1363 * IOMMU aware version of arm_dma_map_page()
1364 */
1365static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1366	     unsigned long offset, size_t size, enum dma_data_direction dir,
1367	     unsigned long attrs)
1368{
1369	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1370	dma_addr_t dma_addr;
1371	int ret, prot, len = PAGE_ALIGN(size + offset);
1372
1373	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1374		__dma_page_cpu_to_dev(page, offset, size, dir);
1375
1376	dma_addr = __alloc_iova(mapping, len);
1377	if (dma_addr == DMA_MAPPING_ERROR)
1378		return dma_addr;
1379
1380	prot = __dma_info_to_prot(dir, attrs);
1381
1382	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1383	if (ret < 0)
1384		goto fail;
1385
1386	return dma_addr + offset;
1387fail:
1388	__free_iova(mapping, dma_addr, len);
1389	return DMA_MAPPING_ERROR;
1390}
1391
1392/**
1393 * arm_iommu_unmap_page
1394 * @dev: valid struct device pointer
1395 * @handle: DMA address of buffer
1396 * @size: size of buffer (same as passed to dma_map_page)
1397 * @dir: DMA transfer direction (same as passed to dma_map_page)
1398 *
1399 * IOMMU aware version of arm_dma_unmap_page()
1400 */
1401static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1402		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1403{
1404	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1405	dma_addr_t iova = handle & PAGE_MASK;
1406	struct page *page;
1407	int offset = handle & ~PAGE_MASK;
1408	int len = PAGE_ALIGN(size + offset);
1409
1410	if (!iova)
1411		return;
1412
1413	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1414		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1415		__dma_page_dev_to_cpu(page, offset, size, dir);
1416	}
1417
1418	iommu_unmap(mapping->domain, iova, len);
1419	__free_iova(mapping, iova, len);
1420}
1421
1422/**
1423 * arm_iommu_map_resource - map a device resource for DMA
1424 * @dev: valid struct device pointer
1425 * @phys_addr: physical address of resource
1426 * @size: size of resource to map
1427 * @dir: DMA transfer direction
1428 */
1429static dma_addr_t arm_iommu_map_resource(struct device *dev,
1430		phys_addr_t phys_addr, size_t size,
1431		enum dma_data_direction dir, unsigned long attrs)
1432{
1433	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1434	dma_addr_t dma_addr;
1435	int ret, prot;
1436	phys_addr_t addr = phys_addr & PAGE_MASK;
1437	unsigned int offset = phys_addr & ~PAGE_MASK;
1438	size_t len = PAGE_ALIGN(size + offset);
1439
1440	dma_addr = __alloc_iova(mapping, len);
1441	if (dma_addr == DMA_MAPPING_ERROR)
1442		return dma_addr;
1443
1444	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1445
1446	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1447	if (ret < 0)
1448		goto fail;
1449
1450	return dma_addr + offset;
1451fail:
1452	__free_iova(mapping, dma_addr, len);
1453	return DMA_MAPPING_ERROR;
1454}
1455
1456/**
1457 * arm_iommu_unmap_resource - unmap a device DMA resource
1458 * @dev: valid struct device pointer
1459 * @dma_handle: DMA address to resource
1460 * @size: size of resource to map
1461 * @dir: DMA transfer direction
1462 */
1463static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1464		size_t size, enum dma_data_direction dir,
1465		unsigned long attrs)
1466{
1467	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1468	dma_addr_t iova = dma_handle & PAGE_MASK;
1469	unsigned int offset = dma_handle & ~PAGE_MASK;
1470	size_t len = PAGE_ALIGN(size + offset);
1471
1472	if (!iova)
1473		return;
1474
1475	iommu_unmap(mapping->domain, iova, len);
1476	__free_iova(mapping, iova, len);
1477}
1478
1479static void arm_iommu_sync_single_for_cpu(struct device *dev,
1480		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1481{
1482	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1483	dma_addr_t iova = handle & PAGE_MASK;
1484	struct page *page;
1485	unsigned int offset = handle & ~PAGE_MASK;
1486
1487	if (dev->dma_coherent || !iova)
1488		return;
1489
1490	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1491	__dma_page_dev_to_cpu(page, offset, size, dir);
1492}
1493
1494static void arm_iommu_sync_single_for_device(struct device *dev,
1495		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1496{
1497	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1498	dma_addr_t iova = handle & PAGE_MASK;
1499	struct page *page;
1500	unsigned int offset = handle & ~PAGE_MASK;
1501
1502	if (dev->dma_coherent || !iova)
1503		return;
1504
1505	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1506	__dma_page_cpu_to_dev(page, offset, size, dir);
1507}
1508
1509static const struct dma_map_ops iommu_ops = {
1510	.alloc		= arm_iommu_alloc_attrs,
1511	.free		= arm_iommu_free_attrs,
1512	.mmap		= arm_iommu_mmap_attrs,
1513	.get_sgtable	= arm_iommu_get_sgtable,
1514
1515	.map_page		= arm_iommu_map_page,
1516	.unmap_page		= arm_iommu_unmap_page,
1517	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1518	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1519
1520	.map_sg			= arm_iommu_map_sg,
1521	.unmap_sg		= arm_iommu_unmap_sg,
1522	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1523	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1524
1525	.map_resource		= arm_iommu_map_resource,
1526	.unmap_resource		= arm_iommu_unmap_resource,
1527};
1528
1529/**
1530 * arm_iommu_create_mapping
1531 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1532 * @base: start address of the valid IO address space
1533 * @size: maximum size of the valid IO address space
 
1534 *
1535 * Creates a mapping structure which holds information about used/unused
1536 * IO address ranges, which is required to perform memory allocation and
1537 * mapping with IOMMU aware functions.
1538 *
1539 * The client device need to be attached to the mapping with
1540 * arm_iommu_attach_device function.
1541 */
1542struct dma_iommu_mapping *
1543arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
 
1544{
1545	unsigned int bits = size >> PAGE_SHIFT;
1546	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1547	struct dma_iommu_mapping *mapping;
1548	int extensions = 1;
1549	int err = -ENOMEM;
1550
1551	/* currently only 32-bit DMA address space is supported */
1552	if (size > DMA_BIT_MASK(32) + 1)
1553		return ERR_PTR(-ERANGE);
1554
1555	if (!bitmap_size)
1556		return ERR_PTR(-EINVAL);
1557
1558	if (bitmap_size > PAGE_SIZE) {
1559		extensions = bitmap_size / PAGE_SIZE;
1560		bitmap_size = PAGE_SIZE;
1561	}
1562
1563	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1564	if (!mapping)
1565		goto err;
1566
1567	mapping->bitmap_size = bitmap_size;
1568	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1569				   GFP_KERNEL);
1570	if (!mapping->bitmaps)
1571		goto err2;
1572
1573	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1574	if (!mapping->bitmaps[0])
1575		goto err3;
1576
1577	mapping->nr_bitmaps = 1;
1578	mapping->extensions = extensions;
1579	mapping->base = base;
1580	mapping->bits = BITS_PER_BYTE * bitmap_size;
1581
1582	spin_lock_init(&mapping->lock);
1583
1584	mapping->domain = iommu_domain_alloc(bus);
1585	if (!mapping->domain)
1586		goto err4;
1587
1588	kref_init(&mapping->kref);
1589	return mapping;
1590err4:
1591	kfree(mapping->bitmaps[0]);
1592err3:
1593	kfree(mapping->bitmaps);
1594err2:
1595	kfree(mapping);
1596err:
1597	return ERR_PTR(err);
1598}
1599EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1600
1601static void release_iommu_mapping(struct kref *kref)
1602{
1603	int i;
1604	struct dma_iommu_mapping *mapping =
1605		container_of(kref, struct dma_iommu_mapping, kref);
1606
1607	iommu_domain_free(mapping->domain);
1608	for (i = 0; i < mapping->nr_bitmaps; i++)
1609		kfree(mapping->bitmaps[i]);
1610	kfree(mapping->bitmaps);
1611	kfree(mapping);
1612}
1613
1614static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1615{
1616	int next_bitmap;
1617
1618	if (mapping->nr_bitmaps >= mapping->extensions)
1619		return -EINVAL;
1620
1621	next_bitmap = mapping->nr_bitmaps;
1622	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1623						GFP_ATOMIC);
1624	if (!mapping->bitmaps[next_bitmap])
1625		return -ENOMEM;
1626
1627	mapping->nr_bitmaps++;
1628
1629	return 0;
1630}
1631
1632void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1633{
1634	if (mapping)
1635		kref_put(&mapping->kref, release_iommu_mapping);
1636}
1637EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1638
1639static int __arm_iommu_attach_device(struct device *dev,
1640				     struct dma_iommu_mapping *mapping)
1641{
1642	int err;
1643
1644	err = iommu_attach_device(mapping->domain, dev);
1645	if (err)
1646		return err;
1647
1648	kref_get(&mapping->kref);
1649	to_dma_iommu_mapping(dev) = mapping;
1650
1651	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1652	return 0;
1653}
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 *	arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device.
1662 * This replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version.
1664 *
1665 * More than one client might be attached to the same io address space
1666 * mapping.
1667 */
1668int arm_iommu_attach_device(struct device *dev,
1669			    struct dma_iommu_mapping *mapping)
1670{
1671	int err;
1672
1673	err = __arm_iommu_attach_device(dev, mapping);
1674	if (err)
1675		return err;
1676
 
 
1677	set_dma_ops(dev, &iommu_ops);
1678	return 0;
1679}
1680EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1681
1682/**
1683 * arm_iommu_detach_device
1684 * @dev: valid struct device pointer
1685 *
1686 * Detaches the provided device from a previously attached map.
1687 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1688 */
1689void arm_iommu_detach_device(struct device *dev)
1690{
1691	struct dma_iommu_mapping *mapping;
1692
1693	mapping = to_dma_iommu_mapping(dev);
1694	if (!mapping) {
1695		dev_warn(dev, "Not attached\n");
1696		return;
1697	}
1698
1699	iommu_detach_device(mapping->domain, dev);
1700	kref_put(&mapping->kref, release_iommu_mapping);
1701	to_dma_iommu_mapping(dev) = NULL;
1702	set_dma_ops(dev, NULL);
1703
1704	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1705}
1706EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1707
1708static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1709				    const struct iommu_ops *iommu, bool coherent)
1710{
1711	struct dma_iommu_mapping *mapping;
1712
1713	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1714	if (IS_ERR(mapping)) {
1715		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1716				size, dev_name(dev));
1717		return;
1718	}
1719
1720	if (__arm_iommu_attach_device(dev, mapping)) {
1721		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1722				dev_name(dev));
1723		arm_iommu_release_mapping(mapping);
1724		return;
1725	}
1726
1727	set_dma_ops(dev, &iommu_ops);
1728}
1729
1730static void arm_teardown_iommu_dma_ops(struct device *dev)
1731{
1732	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1733
1734	if (!mapping)
1735		return;
1736
1737	arm_iommu_detach_device(dev);
1738	arm_iommu_release_mapping(mapping);
1739}
1740
1741#else
1742
1743static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1744				    const struct iommu_ops *iommu, bool coherent)
1745{
1746}
1747
1748static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1749
1750#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1751
1752void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1753			const struct iommu_ops *iommu, bool coherent)
1754{
1755	/*
1756	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1757	 * notifier we can't just assign coherent to the ->dma_coherent flag
1758	 * here, but instead have to make sure we only set but never clear it
1759	 * for now.
1760	 */
1761	if (coherent)
1762		dev->dma_coherent = true;
1763
1764	/*
1765	 * Don't override the dma_ops if they have already been set. Ideally
1766	 * this should be the only location where dma_ops are set, remove this
1767	 * check when all other callers of set_dma_ops will have disappeared.
1768	 */
1769	if (dev->dma_ops)
1770		return;
1771
1772	if (iommu)
1773		arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);
1774
1775	xen_setup_dma_ops(dev);
1776	dev->archdata.dma_ops_setup = true;
1777}
1778
1779void arch_teardown_dma_ops(struct device *dev)
1780{
1781	if (!dev->archdata.dma_ops_setup)
1782		return;
1783
1784	arm_teardown_iommu_dma_ops(dev);
1785	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1786	set_dma_ops(dev, NULL);
1787}
1788
1789void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1790		enum dma_data_direction dir)
1791{
1792	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1793			      size, dir);
1794}
1795
1796void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1797		enum dma_data_direction dir)
1798{
1799	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1800			      size, dir);
1801}
1802
1803void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1804		gfp_t gfp, unsigned long attrs)
1805{
1806	return __dma_alloc(dev, size, dma_handle, gfp,
1807			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1808			   attrs, __builtin_return_address(0));
1809}
1810
1811void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1812		dma_addr_t dma_handle, unsigned long attrs)
1813{
1814	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1815}
v3.5.6
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
 
  14#include <linux/gfp.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
 
  25#include <linux/vmalloc.h>
 
 
  26
  27#include <asm/memory.h>
  28#include <asm/highmem.h>
  29#include <asm/cacheflush.h>
  30#include <asm/tlbflush.h>
  31#include <asm/sizes.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/dma-contiguous.h>
  37
 
  38#include "mm.h"
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/*
  41 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  42 * is either exclusively owned by the CPU (and therefore may be accessed
  43 * by it) or exclusively owned by the DMA device.  These helper functions
  44 * represent the transitions between these two ownership states.
  45 *
  46 * Note, however, that on later ARMs, this notion does not work due to
  47 * speculative prefetches.  We model our approach on the assumption that
  48 * the CPU does do speculative prefetches, which means we clean caches
  49 * before transfers and delay cache invalidation until transfer completion.
  50 *
  51 */
  52static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  53		size_t, enum dma_data_direction);
  54static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  55		size_t, enum dma_data_direction);
  56
  57/**
  58 * arm_dma_map_page - map a portion of a page for streaming DMA
  59 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  60 * @page: page that buffer resides in
  61 * @offset: offset into page for start of buffer
  62 * @size: size of buffer to map
  63 * @dir: DMA transfer direction
  64 *
  65 * Ensure that any data held in the cache is appropriately discarded
  66 * or written back.
  67 *
  68 * The device owns this memory once this call has completed.  The CPU
  69 * can regain ownership by calling dma_unmap_page().
  70 */
  71static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  72	     unsigned long offset, size_t size, enum dma_data_direction dir,
  73	     struct dma_attrs *attrs)
  74{
  75	if (!arch_is_coherent())
  76		__dma_page_cpu_to_dev(page, offset, size, dir);
  77	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  78}
  79
  80/**
  81 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  82 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  83 * @handle: DMA address of buffer
  84 * @size: size of buffer (same as passed to dma_map_page)
  85 * @dir: DMA transfer direction (same as passed to dma_map_page)
  86 *
  87 * Unmap a page streaming mode DMA translation.  The handle and size
  88 * must match what was provided in the previous dma_map_page() call.
  89 * All other usages are undefined.
  90 *
  91 * After this call, reads by the CPU to the buffer are guaranteed to see
  92 * whatever the device wrote there.
  93 */
  94static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  95		size_t size, enum dma_data_direction dir,
  96		struct dma_attrs *attrs)
  97{
  98	if (!arch_is_coherent())
  99		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 100				      handle & ~PAGE_MASK, size, dir);
 101}
 102
 103static void arm_dma_sync_single_for_cpu(struct device *dev,
 104		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 105{
 106	unsigned int offset = handle & (PAGE_SIZE - 1);
 107	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 108	if (!arch_is_coherent())
 109		__dma_page_dev_to_cpu(page, offset, size, dir);
 110}
 111
 112static void arm_dma_sync_single_for_device(struct device *dev,
 113		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 114{
 115	unsigned int offset = handle & (PAGE_SIZE - 1);
 116	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 117	if (!arch_is_coherent())
 118		__dma_page_cpu_to_dev(page, offset, size, dir);
 119}
 120
 121static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
 122
 123struct dma_map_ops arm_dma_ops = {
 124	.alloc			= arm_dma_alloc,
 125	.free			= arm_dma_free,
 126	.mmap			= arm_dma_mmap,
 127	.map_page		= arm_dma_map_page,
 128	.unmap_page		= arm_dma_unmap_page,
 129	.map_sg			= arm_dma_map_sg,
 130	.unmap_sg		= arm_dma_unmap_sg,
 131	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 132	.sync_single_for_device	= arm_dma_sync_single_for_device,
 133	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 134	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 135	.set_dma_mask		= arm_dma_set_mask,
 136};
 137EXPORT_SYMBOL(arm_dma_ops);
 138
 139static u64 get_coherent_dma_mask(struct device *dev)
 140{
 141	u64 mask = (u64)arm_dma_limit;
 142
 143	if (dev) {
 144		mask = dev->coherent_dma_mask;
 145
 146		/*
 147		 * Sanity check the DMA mask - it must be non-zero, and
 148		 * must be able to be satisfied by a DMA allocation.
 149		 */
 150		if (mask == 0) {
 151			dev_warn(dev, "coherent DMA mask is unset\n");
 152			return 0;
 153		}
 154
 155		if ((~mask) & (u64)arm_dma_limit) {
 156			dev_warn(dev, "coherent DMA mask %#llx is smaller "
 157				 "than system GFP_DMA mask %#llx\n",
 158				 mask, (u64)arm_dma_limit);
 159			return 0;
 160		}
 161	}
 162
 163	return mask;
 164}
 165
 166static void __dma_clear_buffer(struct page *page, size_t size)
 167{
 168	void *ptr;
 169	/*
 170	 * Ensure that the allocated pages are zeroed, and that any data
 171	 * lurking in the kernel direct-mapped region is invalidated.
 172	 */
 173	ptr = page_address(page);
 174	if (ptr) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175		memset(ptr, 0, size);
 176		dmac_flush_range(ptr, ptr + size);
 177		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 
 
 178	}
 179}
 180
 181/*
 182 * Allocate a DMA buffer for 'dev' of size 'size' using the
 183 * specified gfp mask.  Note that 'size' must be page aligned.
 184 */
 185static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 186{
 187	unsigned long order = get_order(size);
 188	struct page *page, *p, *e;
 189
 190	page = alloc_pages(gfp, order);
 191	if (!page)
 192		return NULL;
 193
 194	/*
 195	 * Now split the huge page and free the excess pages
 196	 */
 197	split_page(page, order);
 198	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 199		__free_page(p);
 200
 201	__dma_clear_buffer(page, size);
 202
 203	return page;
 204}
 205
 206/*
 207 * Free a DMA buffer.  'size' must be page aligned.
 208 */
 209static void __dma_free_buffer(struct page *page, size_t size)
 210{
 211	struct page *e = page + (size >> PAGE_SHIFT);
 212
 213	while (page < e) {
 214		__free_page(page);
 215		page++;
 216	}
 217}
 218
 219#ifdef CONFIG_MMU
 
 
 
 220
 221#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
 222#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
 
 223
 224/*
 225 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
 226 */
 227static pte_t **consistent_pte;
 228
 229#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
 230
 231static unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
 232
 233void __init init_consistent_dma_size(unsigned long size)
 234{
 235	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
 236
 237	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
 238	BUG_ON(base < VMALLOC_END);
 239
 240	/* Grow region to accommodate specified size  */
 241	if (base < consistent_base)
 242		consistent_base = base;
 243}
 244
 245#include "vmregion.h"
 246
 247static struct arm_vmregion_head consistent_head = {
 248	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
 249	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
 250	.vm_end		= CONSISTENT_END,
 251};
 252
 253#ifdef CONFIG_HUGETLB_PAGE
 254#error ARM Coherent DMA allocator does not (yet) support huge TLB
 255#endif
 256
 257/*
 258 * Initialise the consistent memory allocation.
 259 */
 260static int __init consistent_init(void)
 261{
 262	int ret = 0;
 263	pgd_t *pgd;
 264	pud_t *pud;
 265	pmd_t *pmd;
 266	pte_t *pte;
 267	int i = 0;
 268	unsigned long base = consistent_base;
 269	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
 270
 271	if (IS_ENABLED(CONFIG_CMA) && !IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))
 272		return 0;
 273
 274	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
 275	if (!consistent_pte) {
 276		pr_err("%s: no memory\n", __func__);
 277		return -ENOMEM;
 278	}
 279
 280	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
 281	consistent_head.vm_start = base;
 282
 283	do {
 284		pgd = pgd_offset(&init_mm, base);
 285
 286		pud = pud_alloc(&init_mm, pgd, base);
 287		if (!pud) {
 288			pr_err("%s: no pud tables\n", __func__);
 289			ret = -ENOMEM;
 290			break;
 291		}
 292
 293		pmd = pmd_alloc(&init_mm, pud, base);
 294		if (!pmd) {
 295			pr_err("%s: no pmd tables\n", __func__);
 296			ret = -ENOMEM;
 297			break;
 298		}
 299		WARN_ON(!pmd_none(*pmd));
 300
 301		pte = pte_alloc_kernel(pmd, base);
 302		if (!pte) {
 303			pr_err("%s: no pte tables\n", __func__);
 304			ret = -ENOMEM;
 305			break;
 306		}
 307
 308		consistent_pte[i++] = pte;
 309		base += PMD_SIZE;
 310	} while (base < CONSISTENT_END);
 311
 312	return ret;
 313}
 314core_initcall(consistent_init);
 315
 316static void *__alloc_from_contiguous(struct device *dev, size_t size,
 317				     pgprot_t prot, struct page **ret_page);
 318
 319static struct arm_vmregion_head coherent_head = {
 320	.vm_lock	= __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
 321	.vm_list	= LIST_HEAD_INIT(coherent_head.vm_list),
 322};
 323
 324static size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
 325
 326static int __init early_coherent_pool(char *p)
 327{
 328	coherent_pool_size = memparse(p, &p);
 329	return 0;
 330}
 331early_param("coherent_pool", early_coherent_pool);
 332
 333/*
 334 * Initialise the coherent pool for atomic allocations.
 335 */
 336static int __init coherent_init(void)
 337{
 338	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
 339	size_t size = coherent_pool_size;
 340	struct page *page;
 341	void *ptr;
 342
 343	if (!IS_ENABLED(CONFIG_CMA))
 344		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345
 346	ptr = __alloc_from_contiguous(NULL, size, prot, &page);
 347	if (ptr) {
 348		coherent_head.vm_start = (unsigned long) ptr;
 349		coherent_head.vm_end = (unsigned long) ptr + size;
 350		printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 351		       (unsigned)size / 1024);
 
 
 
 
 
 352		return 0;
 353	}
 354	printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 355	       (unsigned)size / 1024);
 
 
 
 
 
 356	return -ENOMEM;
 357}
 358/*
 359 * CMA is activated by core_initcall, so we must be called after it.
 360 */
 361postcore_initcall(coherent_init);
 362
 
 363struct dma_contig_early_reserve {
 364	phys_addr_t base;
 365	unsigned long size;
 366};
 367
 368static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 369
 370static int dma_mmu_remap_num __initdata;
 371
 372void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 373{
 374	dma_mmu_remap[dma_mmu_remap_num].base = base;
 375	dma_mmu_remap[dma_mmu_remap_num].size = size;
 376	dma_mmu_remap_num++;
 377}
 378
 379void __init dma_contiguous_remap(void)
 380{
 381	int i;
 382	for (i = 0; i < dma_mmu_remap_num; i++) {
 383		phys_addr_t start = dma_mmu_remap[i].base;
 384		phys_addr_t end = start + dma_mmu_remap[i].size;
 385		struct map_desc map;
 386		unsigned long addr;
 387
 388		if (end > arm_lowmem_limit)
 389			end = arm_lowmem_limit;
 390		if (start >= end)
 391			return;
 392
 393		map.pfn = __phys_to_pfn(start);
 394		map.virtual = __phys_to_virt(start);
 395		map.length = end - start;
 396		map.type = MT_MEMORY_DMA_READY;
 397
 398		/*
 399		 * Clear previous low-memory mapping
 
 
 
 
 
 
 400		 */
 401		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 402		     addr += PMD_SIZE)
 403			pmd_clear(pmd_off_k(addr));
 404
 
 
 
 405		iotable_init(&map, 1);
 406	}
 407}
 
 408
 409static void *
 410__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 411	const void *caller)
 412{
 413	struct arm_vmregion *c;
 414	size_t align;
 415	int bit;
 416
 417	if (!consistent_pte) {
 418		pr_err("%s: not initialised\n", __func__);
 419		dump_stack();
 420		return NULL;
 421	}
 422
 423	/*
 424	 * Align the virtual region allocation - maximum alignment is
 425	 * a section size, minimum is a page size.  This helps reduce
 426	 * fragmentation of the DMA space, and also prevents allocations
 427	 * smaller than a section from crossing a section boundary.
 428	 */
 429	bit = fls(size - 1);
 430	if (bit > SECTION_SHIFT)
 431		bit = SECTION_SHIFT;
 432	align = 1 << bit;
 433
 434	/*
 435	 * Allocate a virtual address in the consistent mapping region.
 436	 */
 437	c = arm_vmregion_alloc(&consistent_head, align, size,
 438			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
 439	if (c) {
 440		pte_t *pte;
 441		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
 442		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 443
 444		pte = consistent_pte[idx] + off;
 445		c->priv = page;
 446
 447		do {
 448			BUG_ON(!pte_none(*pte));
 449
 450			set_pte_ext(pte, mk_pte(page, prot), 0);
 451			page++;
 452			pte++;
 453			off++;
 454			if (off >= PTRS_PER_PTE) {
 455				off = 0;
 456				pte = consistent_pte[++idx];
 457			}
 458		} while (size -= PAGE_SIZE);
 459
 460		dsb();
 461
 462		return (void *)c->vm_start;
 463	}
 464	return NULL;
 465}
 466
 467static void __dma_free_remap(void *cpu_addr, size_t size)
 468{
 469	struct arm_vmregion *c;
 470	unsigned long addr;
 471	pte_t *ptep;
 472	int idx;
 473	u32 off;
 474
 475	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
 476	if (!c) {
 477		pr_err("%s: trying to free invalid coherent area: %p\n",
 478		       __func__, cpu_addr);
 479		dump_stack();
 480		return;
 481	}
 482
 483	if ((c->vm_end - c->vm_start) != size) {
 484		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
 485		       __func__, c->vm_end - c->vm_start, size);
 486		dump_stack();
 487		size = c->vm_end - c->vm_start;
 488	}
 489
 490	idx = CONSISTENT_PTE_INDEX(c->vm_start);
 491	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 492	ptep = consistent_pte[idx] + off;
 493	addr = c->vm_start;
 494	do {
 495		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
 496
 497		ptep++;
 498		addr += PAGE_SIZE;
 499		off++;
 500		if (off >= PTRS_PER_PTE) {
 501			off = 0;
 502			ptep = consistent_pte[++idx];
 503		}
 504
 505		if (pte_none(pte) || !pte_present(pte))
 506			pr_crit("%s: bad page in kernel page table\n",
 507				__func__);
 508	} while (size -= PAGE_SIZE);
 509
 510	flush_tlb_kernel_range(c->vm_start, c->vm_end);
 511
 512	arm_vmregion_free(&consistent_head, c);
 513}
 514
 515static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 516			    void *data)
 517{
 518	struct page *page = virt_to_page(addr);
 519	pgprot_t prot = *(pgprot_t *)data;
 520
 521	set_pte_ext(pte, mk_pte(page, prot), 0);
 522	return 0;
 523}
 524
 525static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 526{
 527	unsigned long start = (unsigned long) page_address(page);
 528	unsigned end = start + size;
 529
 530	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 531	dsb();
 532	flush_tlb_kernel_range(start, end);
 533}
 534
 535static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 536				 pgprot_t prot, struct page **ret_page,
 537				 const void *caller)
 538{
 539	struct page *page;
 540	void *ptr;
 541	page = __dma_alloc_buffer(dev, size, gfp);
 
 
 
 
 542	if (!page)
 543		return NULL;
 
 
 544
 545	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 546	if (!ptr) {
 547		__dma_free_buffer(page, size);
 548		return NULL;
 549	}
 550
 
 551	*ret_page = page;
 552	return ptr;
 553}
 554
 555static void *__alloc_from_pool(struct device *dev, size_t size,
 556			       struct page **ret_page, const void *caller)
 557{
 558	struct arm_vmregion *c;
 559	size_t align;
 560
 561	if (!coherent_head.vm_start) {
 562		printk(KERN_ERR "%s: coherent pool not initialised!\n",
 563		       __func__);
 564		dump_stack();
 565		return NULL;
 566	}
 567
 568	/*
 569	 * Align the region allocation - allocations from pool are rather
 570	 * small, so align them to their order in pages, minimum is a page
 571	 * size. This helps reduce fragmentation of the DMA space.
 572	 */
 573	align = PAGE_SIZE << get_order(size);
 574	c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
 575	if (c) {
 576		void *ptr = (void *)c->vm_start;
 577		struct page *page = virt_to_page(ptr);
 578		*ret_page = page;
 579		return ptr;
 580	}
 581	return NULL;
 
 582}
 583
 584static int __free_from_pool(void *cpu_addr, size_t size)
 585{
 586	unsigned long start = (unsigned long)cpu_addr;
 587	unsigned long end = start + size;
 588	struct arm_vmregion *c;
 589
 590	if (start < coherent_head.vm_start || end > coherent_head.vm_end)
 
 
 591		return 0;
 592
 593	c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
 594
 595	if ((c->vm_end - c->vm_start) != size) {
 596		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
 597		       __func__, c->vm_end - c->vm_start, size);
 598		dump_stack();
 599		size = c->vm_end - c->vm_start;
 600	}
 601
 602	arm_vmregion_free(&coherent_head, c);
 603	return 1;
 604}
 605
 606static void *__alloc_from_contiguous(struct device *dev, size_t size,
 607				     pgprot_t prot, struct page **ret_page)
 
 
 608{
 609	unsigned long order = get_order(size);
 610	size_t count = size >> PAGE_SHIFT;
 611	struct page *page;
 
 612
 613	page = dma_alloc_from_contiguous(dev, count, order);
 614	if (!page)
 615		return NULL;
 616
 617	__dma_clear_buffer(page, size);
 618	__dma_remap(page, size, prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 
 620	*ret_page = page;
 621	return page_address(page);
 622}
 623
 624static void __free_from_contiguous(struct device *dev, struct page *page,
 625				   size_t size)
 626{
 627	__dma_remap(page, size, pgprot_kernel);
 
 
 
 
 
 628	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 629}
 630
 631static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 632{
 633	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 634			    pgprot_writecombine(prot) :
 635			    pgprot_dmacoherent(prot);
 636	return prot;
 637}
 638
 639#define nommu() 0
 640
 641#else	/* !CONFIG_MMU */
 642
 643#define nommu() 1
 644
 645#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
 646#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
 647#define __alloc_from_pool(dev, size, ret_page, c)		NULL
 648#define __alloc_from_contiguous(dev, size, prot, ret)		NULL
 649#define __free_from_pool(cpu_addr, size)			0
 650#define __free_from_contiguous(dev, page, size)			do { } while (0)
 651#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 652
 653#endif	/* CONFIG_MMU */
 654
 655static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 656				   struct page **ret_page)
 657{
 658	struct page *page;
 659	page = __dma_alloc_buffer(dev, size, gfp);
 
 660	if (!page)
 661		return NULL;
 662
 663	*ret_page = page;
 664	return page_address(page);
 665}
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 670			 gfp_t gfp, pgprot_t prot, const void *caller)
 
 671{
 672	u64 mask = get_coherent_dma_mask(dev);
 673	struct page *page;
 674	void *addr;
 
 
 
 
 
 
 
 
 
 
 
 675
 676#ifdef CONFIG_DMA_API_DEBUG
 677	u64 limit = (mask + 1) & ~mask;
 678	if (limit && size >= limit) {
 679		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 680			size, mask);
 681		return NULL;
 682	}
 683#endif
 684
 685	if (!mask)
 
 
 686		return NULL;
 687
 688	if (mask < 0xffffffffULL)
 689		gfp |= GFP_DMA;
 690
 691	/*
 692	 * Following is a work-around (a.k.a. hack) to prevent pages
 693	 * with __GFP_COMP being passed to split_page() which cannot
 694	 * handle them.  The real problem is that this flag probably
 695	 * should be 0 on ARM as it is not supported on this
 696	 * platform; see CONFIG_HUGETLBFS.
 697	 */
 698	gfp &= ~(__GFP_COMP);
 699
 700	*handle = DMA_ERROR_CODE;
 701	size = PAGE_ALIGN(size);
 702
 703	if (arch_is_coherent() || nommu())
 704		addr = __alloc_simple_buffer(dev, size, gfp, &page);
 705	else if (!IS_ENABLED(CONFIG_CMA))
 706		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 707	else if (gfp & GFP_ATOMIC)
 708		addr = __alloc_from_pool(dev, size, &page, caller);
 
 709	else
 710		addr = __alloc_from_contiguous(dev, size, prot, &page);
 711
 712	if (addr)
 713		*handle = pfn_to_dma(dev, page_to_pfn(page));
 714
 715	return addr;
 716}
 717
 718/*
 719 * Allocate DMA-coherent memory space and return both the kernel remapped
 720 * virtual and bus address for that space.
 721 */
 722void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 723		    gfp_t gfp, struct dma_attrs *attrs)
 724{
 725	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 726	void *memory;
 727
 728	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 729		return memory;
 730
 731	return __dma_alloc(dev, size, handle, gfp, prot,
 732			   __builtin_return_address(0));
 733}
 734
 735/*
 736 * Create userspace mapping for the DMA-coherent memory.
 737 */
 738int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 739		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 740		 struct dma_attrs *attrs)
 741{
 742	int ret = -ENXIO;
 743#ifdef CONFIG_MMU
 744	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 745	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 746
 747	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 748		return ret;
 749
 750	ret = remap_pfn_range(vma, vma->vm_start,
 751			      pfn + vma->vm_pgoff,
 752			      vma->vm_end - vma->vm_start,
 753			      vma->vm_page_prot);
 754#endif	/* CONFIG_MMU */
 755
 756	return ret;
 757}
 758
 759/*
 760 * Free a buffer as defined by the above mapping.
 761 */
 762void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 763		  dma_addr_t handle, struct dma_attrs *attrs)
 764{
 765	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 
 
 
 
 
 
 
 
 766
 767	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 
 768		return;
 769
 770	size = PAGE_ALIGN(size);
 771
 772	if (arch_is_coherent() || nommu()) {
 773		__dma_free_buffer(page, size);
 774	} else if (!IS_ENABLED(CONFIG_CMA)) {
 775		__dma_free_remap(cpu_addr, size);
 776		__dma_free_buffer(page, size);
 777	} else {
 778		if (__free_from_pool(cpu_addr, size))
 779			return;
 780		/*
 781		 * Non-atomic allocations cannot be freed with IRQs disabled
 782		 */
 783		WARN_ON(irqs_disabled());
 784		__free_from_contiguous(dev, page, size);
 785	}
 786}
 787
 788static void dma_cache_maint_page(struct page *page, unsigned long offset,
 789	size_t size, enum dma_data_direction dir,
 790	void (*op)(const void *, size_t, int))
 791{
 
 
 
 
 
 
 792	/*
 793	 * A single sg entry may refer to multiple physically contiguous
 794	 * pages.  But we still need to process highmem pages individually.
 795	 * If highmem is not configured then the bulk of this loop gets
 796	 * optimized out.
 797	 */
 798	size_t left = size;
 799	do {
 800		size_t len = left;
 801		void *vaddr;
 802
 
 
 803		if (PageHighMem(page)) {
 804			if (len + offset > PAGE_SIZE) {
 805				if (offset >= PAGE_SIZE) {
 806					page += offset / PAGE_SIZE;
 807					offset %= PAGE_SIZE;
 808				}
 809				len = PAGE_SIZE - offset;
 810			}
 811			vaddr = kmap_high_get(page);
 812			if (vaddr) {
 813				vaddr += offset;
 814				op(vaddr, len, dir);
 815				kunmap_high(page);
 816			} else if (cache_is_vipt()) {
 817				/* unmapped pages might still be cached */
 818				vaddr = kmap_atomic(page);
 819				op(vaddr + offset, len, dir);
 820				kunmap_atomic(vaddr);
 
 
 
 
 
 
 821			}
 822		} else {
 823			vaddr = page_address(page) + offset;
 824			op(vaddr, len, dir);
 825		}
 826		offset = 0;
 827		page++;
 828		left -= len;
 829	} while (left);
 830}
 831
 832/*
 833 * Make an area consistent for devices.
 834 * Note: Drivers should NOT use this function directly, as it will break
 835 * platforms with CONFIG_DMABOUNCE.
 836 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 837 */
 838static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 839	size_t size, enum dma_data_direction dir)
 840{
 841	unsigned long paddr;
 842
 843	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 844
 845	paddr = page_to_phys(page) + off;
 846	if (dir == DMA_FROM_DEVICE) {
 847		outer_inv_range(paddr, paddr + size);
 848	} else {
 849		outer_clean_range(paddr, paddr + size);
 850	}
 851	/* FIXME: non-speculating: flush on bidirectional mappings? */
 852}
 853
 854static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 855	size_t size, enum dma_data_direction dir)
 856{
 857	unsigned long paddr = page_to_phys(page) + off;
 858
 859	/* FIXME: non-speculating: not required */
 860	/* don't bother invalidating if DMA to device */
 861	if (dir != DMA_TO_DEVICE)
 862		outer_inv_range(paddr, paddr + size);
 863
 864	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 
 865
 866	/*
 867	 * Mark the D-cache clean for this page to avoid extra flushing.
 868	 */
 869	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
 870		set_bit(PG_dcache_clean, &page->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871}
 872
 873/**
 874 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 875 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 876 * @sg: list of buffers
 877 * @nents: number of buffers to map
 878 * @dir: DMA transfer direction
 879 *
 880 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 881 * This is the scatter-gather version of the dma_map_single interface.
 882 * Here the scatter gather list elements are each tagged with the
 883 * appropriate dma address and length.  They are obtained via
 884 * sg_dma_{address,length}.
 885 *
 886 * Device ownership issues as mentioned for dma_map_single are the same
 887 * here.
 888 */
 889int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 890		enum dma_data_direction dir, struct dma_attrs *attrs)
 891{
 892	struct dma_map_ops *ops = get_dma_ops(dev);
 893	struct scatterlist *s;
 894	int i, j;
 895
 896	for_each_sg(sg, s, nents, i) {
 897#ifdef CONFIG_NEED_SG_DMA_LENGTH
 898		s->dma_length = s->length;
 899#endif
 900		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 901						s->length, dir, attrs);
 902		if (dma_mapping_error(dev, s->dma_address))
 903			goto bad_mapping;
 904	}
 905	return nents;
 906
 907 bad_mapping:
 908	for_each_sg(sg, s, i, j)
 909		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 910	return 0;
 911}
 912
 913/**
 914 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 915 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 916 * @sg: list of buffers
 917 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 918 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 919 *
 920 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 921 * rules concerning calls here are the same as for dma_unmap_single().
 922 */
 923void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 924		enum dma_data_direction dir, struct dma_attrs *attrs)
 925{
 926	struct dma_map_ops *ops = get_dma_ops(dev);
 927	struct scatterlist *s;
 928
 929	int i;
 
 930
 931	for_each_sg(sg, s, nents, i)
 932		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 
 
 
 
 
 
 
 
 933}
 934
 935/**
 936 * arm_dma_sync_sg_for_cpu
 937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 938 * @sg: list of buffers
 939 * @nents: number of buffers to map (returned from dma_map_sg)
 940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 941 */
 942void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 943			int nents, enum dma_data_direction dir)
 944{
 945	struct dma_map_ops *ops = get_dma_ops(dev);
 946	struct scatterlist *s;
 947	int i;
 948
 949	for_each_sg(sg, s, nents, i)
 950		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 951					 dir);
 952}
 953
 954/**
 955 * arm_dma_sync_sg_for_device
 956 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 957 * @sg: list of buffers
 958 * @nents: number of buffers to map (returned from dma_map_sg)
 959 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 960 */
 961void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 962			int nents, enum dma_data_direction dir)
 963{
 964	struct dma_map_ops *ops = get_dma_ops(dev);
 965	struct scatterlist *s;
 966	int i;
 967
 968	for_each_sg(sg, s, nents, i)
 969		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
 970					    dir);
 971}
 972
 973/*
 974 * Return whether the given device DMA address mask can be supported
 975 * properly.  For example, if your device can only drive the low 24-bits
 976 * during bus mastering, then you would pass 0x00ffffff as the mask
 977 * to this function.
 978 */
 979int dma_supported(struct device *dev, u64 mask)
 980{
 981	if (mask < (u64)arm_dma_limit)
 982		return 0;
 983	return 1;
 984}
 985EXPORT_SYMBOL(dma_supported);
 986
 987static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
 988{
 989	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
 990		return -EIO;
 991
 992	*dev->dma_mask = dma_mask;
 993
 994	return 0;
 995}
 996
 997#define PREALLOC_DMA_DEBUG_ENTRIES	4096
 998
 999static int __init dma_debug_do_init(void)
1000{
1001#ifdef CONFIG_MMU
1002	arm_vmregion_create_proc("dma-mappings", &consistent_head);
1003#endif
1004	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1005	return 0;
1006}
1007fs_initcall(dma_debug_do_init);
1008
1009#ifdef CONFIG_ARM_DMA_USE_IOMMU
1010
1011/* IOMMU */
1012
1013static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1014				      size_t size)
1015{
1016	unsigned int order = get_order(size);
1017	unsigned int align = 0;
1018	unsigned int count, start;
 
1019	unsigned long flags;
 
 
1020
1021	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1022		 (1 << mapping->order) - 1) >> mapping->order;
1023
1024	if (order > mapping->order)
1025		align = (1 << (order - mapping->order)) - 1;
1026
1027	spin_lock_irqsave(&mapping->lock, flags);
1028	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1029					   count, align);
1030	if (start > mapping->bits) {
1031		spin_unlock_irqrestore(&mapping->lock, flags);
1032		return DMA_ERROR_CODE;
 
 
 
 
1033	}
1034
1035	bitmap_set(mapping->bitmap, start, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036	spin_unlock_irqrestore(&mapping->lock, flags);
1037
1038	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
 
 
 
1039}
1040
1041static inline void __free_iova(struct dma_iommu_mapping *mapping,
1042			       dma_addr_t addr, size_t size)
1043{
1044	unsigned int start = (addr - mapping->base) >>
1045			     (mapping->order + PAGE_SHIFT);
1046	unsigned int count = ((size >> PAGE_SHIFT) +
1047			      (1 << mapping->order) - 1) >> mapping->order;
1048	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	spin_lock_irqsave(&mapping->lock, flags);
1051	bitmap_clear(mapping->bitmap, start, count);
1052	spin_unlock_irqrestore(&mapping->lock, flags);
1053}
1054
1055static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 
 
 
 
1056{
1057	struct page **pages;
1058	int count = size >> PAGE_SHIFT;
1059	int array_size = count * sizeof(struct page *);
1060	int i = 0;
 
1061
1062	if (array_size <= PAGE_SIZE)
1063		pages = kzalloc(array_size, gfp);
1064	else
1065		pages = vzalloc(array_size);
1066	if (!pages)
1067		return NULL;
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069	while (count) {
1070		int j, order = __fls(count);
 
 
 
 
 
 
 
 
1071
1072		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1073		while (!pages[i] && order)
1074			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1075		if (!pages[i])
1076			goto error;
 
 
 
 
 
 
 
 
 
1077
1078		if (order)
1079			split_page(pages[i], order);
1080		j = 1 << order;
1081		while (--j)
1082			pages[i + j] = pages[i] + j;
 
1083
1084		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1085		i += 1 << order;
1086		count -= 1 << order;
1087	}
1088
1089	return pages;
1090error:
1091	while (--i)
1092		if (pages[i])
1093			__free_pages(pages[i], 0);
1094	if (array_size <= PAGE_SIZE)
1095		kfree(pages);
1096	else
1097		vfree(pages);
1098	return NULL;
1099}
1100
1101static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
 
1102{
1103	int count = size >> PAGE_SHIFT;
1104	int array_size = count * sizeof(struct page *);
1105	int i;
1106	for (i = 0; i < count; i++)
1107		if (pages[i])
1108			__free_pages(pages[i], 0);
1109	if (array_size <= PAGE_SIZE)
1110		kfree(pages);
1111	else
1112		vfree(pages);
1113	return 0;
1114}
1115
1116/*
1117 * Create a CPU mapping for a specified pages
1118 */
1119static void *
1120__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot)
1121{
1122	struct arm_vmregion *c;
1123	size_t align;
1124	size_t count = size >> PAGE_SHIFT;
1125	int bit;
1126
1127	if (!consistent_pte[0]) {
1128		pr_err("%s: not initialised\n", __func__);
1129		dump_stack();
1130		return NULL;
1131	}
1132
1133	/*
1134	 * Align the virtual region allocation - maximum alignment is
1135	 * a section size, minimum is a page size.  This helps reduce
1136	 * fragmentation of the DMA space, and also prevents allocations
1137	 * smaller than a section from crossing a section boundary.
1138	 */
1139	bit = fls(size - 1);
1140	if (bit > SECTION_SHIFT)
1141		bit = SECTION_SHIFT;
1142	align = 1 << bit;
1143
1144	/*
1145	 * Allocate a virtual address in the consistent mapping region.
1146	 */
1147	c = arm_vmregion_alloc(&consistent_head, align, size,
1148			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL);
1149	if (c) {
1150		pte_t *pte;
1151		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
1152		int i = 0;
1153		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1154
1155		pte = consistent_pte[idx] + off;
1156		c->priv = pages;
1157
1158		do {
1159			BUG_ON(!pte_none(*pte));
1160
1161			set_pte_ext(pte, mk_pte(pages[i], prot), 0);
1162			pte++;
1163			off++;
1164			i++;
1165			if (off >= PTRS_PER_PTE) {
1166				off = 0;
1167				pte = consistent_pte[++idx];
1168			}
1169		} while (i < count);
1170
1171		dsb();
1172
1173		return (void *)c->vm_start;
1174	}
1175	return NULL;
1176}
1177
1178/*
1179 * Create a mapping in device IO address space for specified pages
1180 */
1181static dma_addr_t
1182__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1183{
1184	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1185	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186	dma_addr_t dma_addr, iova;
1187	int i, ret = DMA_ERROR_CODE;
1188
1189	dma_addr = __alloc_iova(mapping, size);
1190	if (dma_addr == DMA_ERROR_CODE)
1191		return dma_addr;
1192
1193	iova = dma_addr;
1194	for (i = 0; i < count; ) {
 
 
1195		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1196		phys_addr_t phys = page_to_phys(pages[i]);
1197		unsigned int len, j;
1198
1199		for (j = i + 1; j < count; j++, next_pfn++)
1200			if (page_to_pfn(pages[j]) != next_pfn)
1201				break;
1202
1203		len = (j - i) << PAGE_SHIFT;
1204		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 
1205		if (ret < 0)
1206			goto fail;
1207		iova += len;
1208		i = j;
1209	}
1210	return dma_addr;
1211fail:
1212	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1213	__free_iova(mapping, dma_addr, size);
1214	return DMA_ERROR_CODE;
1215}
1216
1217static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1218{
1219	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1220
1221	/*
1222	 * add optional in-page offset from iova to size and align
1223	 * result to page size
1224	 */
1225	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1226	iova &= PAGE_MASK;
1227
1228	iommu_unmap(mapping->domain, iova, size);
1229	__free_iova(mapping, iova, size);
1230	return 0;
1231}
1232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1234	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1235{
1236	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1237	struct page **pages;
1238	void *addr = NULL;
 
1239
1240	*handle = DMA_ERROR_CODE;
1241	size = PAGE_ALIGN(size);
1242
1243	pages = __iommu_alloc_buffer(dev, size, gfp);
 
 
 
 
1244	if (!pages)
1245		return NULL;
1246
1247	*handle = __iommu_create_mapping(dev, pages, size);
1248	if (*handle == DMA_ERROR_CODE)
1249		goto err_buffer;
1250
1251	addr = __iommu_alloc_remap(pages, size, gfp, prot);
 
 
 
 
1252	if (!addr)
1253		goto err_mapping;
1254
1255	return addr;
1256
1257err_mapping:
1258	__iommu_remove_mapping(dev, *handle, size);
1259err_buffer:
1260	__iommu_free_buffer(dev, pages, size);
1261	return NULL;
1262}
1263
1264static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1265		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1266		    struct dma_attrs *attrs)
1267{
1268	struct arm_vmregion *c;
 
 
1269
1270	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1271	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1272
1273	if (c) {
1274		struct page **pages = c->priv;
1275
1276		unsigned long uaddr = vma->vm_start;
1277		unsigned long usize = vma->vm_end - vma->vm_start;
1278		int i = 0;
1279
1280		do {
1281			int ret;
1282
1283			ret = vm_insert_page(vma, uaddr, pages[i++]);
1284			if (ret) {
1285				pr_err("Remapping memory, error: %d\n", ret);
1286				return ret;
1287			}
1288
1289			uaddr += PAGE_SIZE;
1290			usize -= PAGE_SIZE;
1291		} while (usize > 0);
1292	}
1293	return 0;
1294}
1295
1296/*
1297 * free a page as defined by the above mapping.
1298 * Must not be called with IRQs disabled.
1299 */
1300void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1301			  dma_addr_t handle, struct dma_attrs *attrs)
1302{
1303	struct arm_vmregion *c;
 
1304	size = PAGE_ALIGN(size);
1305
1306	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1307	if (c) {
1308		struct page **pages = c->priv;
1309		__dma_free_remap(cpu_addr, size);
1310		__iommu_remove_mapping(dev, handle, size);
1311		__iommu_free_buffer(dev, pages, size);
1312	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313}
1314
1315/*
1316 * Map a part of the scatter-gather list into contiguous io address space
1317 */
1318static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1319			  size_t size, dma_addr_t *handle,
1320			  enum dma_data_direction dir)
1321{
1322	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1323	dma_addr_t iova, iova_base;
1324	int ret = 0;
1325	unsigned int count;
1326	struct scatterlist *s;
 
1327
1328	size = PAGE_ALIGN(size);
1329	*handle = DMA_ERROR_CODE;
1330
1331	iova_base = iova = __alloc_iova(mapping, size);
1332	if (iova == DMA_ERROR_CODE)
1333		return -ENOMEM;
1334
1335	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1336		phys_addr_t phys = page_to_phys(sg_page(s));
1337		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1338
1339		if (!arch_is_coherent())
1340			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1341
1342		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 
 
1343		if (ret < 0)
1344			goto fail;
1345		count += len >> PAGE_SHIFT;
1346		iova += len;
1347	}
1348	*handle = iova_base;
1349
1350	return 0;
1351fail:
1352	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1353	__free_iova(mapping, iova_base, size);
1354	return ret;
1355}
1356
1357/**
1358 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1359 * @dev: valid struct device pointer
1360 * @sg: list of buffers
1361 * @nents: number of buffers to map
1362 * @dir: DMA transfer direction
1363 *
1364 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1365 * The scatter gather list elements are merged together (if possible) and
1366 * tagged with the appropriate dma address and length. They are obtained via
1367 * sg_dma_{address,length}.
1368 */
1369int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1370		     enum dma_data_direction dir, struct dma_attrs *attrs)
1371{
1372	struct scatterlist *s = sg, *dma = sg, *start = sg;
1373	int i, count = 0;
1374	unsigned int offset = s->offset;
1375	unsigned int size = s->offset + s->length;
1376	unsigned int max = dma_get_max_seg_size(dev);
1377
1378	for (i = 1; i < nents; i++) {
1379		s = sg_next(s);
1380
1381		s->dma_address = DMA_ERROR_CODE;
1382		s->dma_length = 0;
1383
1384		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1385			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1386			    dir) < 0)
 
1387				goto bad_mapping;
1388
1389			dma->dma_address += offset;
1390			dma->dma_length = size - offset;
1391
1392			size = offset = s->offset;
1393			start = s;
1394			dma = sg_next(dma);
1395			count += 1;
1396		}
1397		size += s->length;
1398	}
1399	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
 
1400		goto bad_mapping;
1401
1402	dma->dma_address += offset;
1403	dma->dma_length = size - offset;
1404
1405	return count+1;
1406
1407bad_mapping:
1408	for_each_sg(sg, s, count, i)
1409		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1410	return 0;
 
 
1411}
1412
1413/**
1414 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1415 * @dev: valid struct device pointer
1416 * @sg: list of buffers
1417 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1418 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1419 *
1420 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1421 * rules concerning calls here are the same as for dma_unmap_single().
1422 */
1423void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1424			enum dma_data_direction dir, struct dma_attrs *attrs)
 
 
1425{
1426	struct scatterlist *s;
1427	int i;
1428
1429	for_each_sg(sg, s, nents, i) {
1430		if (sg_dma_len(s))
1431			__iommu_remove_mapping(dev, sg_dma_address(s),
1432					       sg_dma_len(s));
1433		if (!arch_is_coherent())
1434			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1435					      s->length, dir);
1436	}
1437}
1438
1439/**
1440 * arm_iommu_sync_sg_for_cpu
1441 * @dev: valid struct device pointer
1442 * @sg: list of buffers
1443 * @nents: number of buffers to map (returned from dma_map_sg)
1444 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1445 */
1446void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 
1447			int nents, enum dma_data_direction dir)
1448{
1449	struct scatterlist *s;
1450	int i;
1451
 
 
 
1452	for_each_sg(sg, s, nents, i)
1453		if (!arch_is_coherent())
1454			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1455
1456}
1457
1458/**
1459 * arm_iommu_sync_sg_for_device
1460 * @dev: valid struct device pointer
1461 * @sg: list of buffers
1462 * @nents: number of buffers to map (returned from dma_map_sg)
1463 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1464 */
1465void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 
1466			int nents, enum dma_data_direction dir)
1467{
1468	struct scatterlist *s;
1469	int i;
1470
 
 
 
1471	for_each_sg(sg, s, nents, i)
1472		if (!arch_is_coherent())
1473			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1474}
1475
1476
1477/**
1478 * arm_iommu_map_page
1479 * @dev: valid struct device pointer
1480 * @page: page that buffer resides in
1481 * @offset: offset into page for start of buffer
1482 * @size: size of buffer to map
1483 * @dir: DMA transfer direction
1484 *
1485 * IOMMU aware version of arm_dma_map_page()
1486 */
1487static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1488	     unsigned long offset, size_t size, enum dma_data_direction dir,
1489	     struct dma_attrs *attrs)
1490{
1491	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1492	dma_addr_t dma_addr;
1493	int ret, len = PAGE_ALIGN(size + offset);
1494
1495	if (!arch_is_coherent())
1496		__dma_page_cpu_to_dev(page, offset, size, dir);
1497
1498	dma_addr = __alloc_iova(mapping, len);
1499	if (dma_addr == DMA_ERROR_CODE)
1500		return dma_addr;
1501
1502	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
 
 
1503	if (ret < 0)
1504		goto fail;
1505
1506	return dma_addr + offset;
1507fail:
1508	__free_iova(mapping, dma_addr, len);
1509	return DMA_ERROR_CODE;
1510}
1511
1512/**
1513 * arm_iommu_unmap_page
1514 * @dev: valid struct device pointer
1515 * @handle: DMA address of buffer
1516 * @size: size of buffer (same as passed to dma_map_page)
1517 * @dir: DMA transfer direction (same as passed to dma_map_page)
1518 *
1519 * IOMMU aware version of arm_dma_unmap_page()
1520 */
1521static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1522		size_t size, enum dma_data_direction dir,
1523		struct dma_attrs *attrs)
1524{
1525	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1526	dma_addr_t iova = handle & PAGE_MASK;
1527	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1528	int offset = handle & ~PAGE_MASK;
1529	int len = PAGE_ALIGN(size + offset);
1530
1531	if (!iova)
1532		return;
1533
1534	if (!arch_is_coherent())
 
1535		__dma_page_dev_to_cpu(page, offset, size, dir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536
1537	iommu_unmap(mapping->domain, iova, len);
1538	__free_iova(mapping, iova, len);
1539}
1540
1541static void arm_iommu_sync_single_for_cpu(struct device *dev,
1542		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1543{
1544	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1545	dma_addr_t iova = handle & PAGE_MASK;
1546	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1547	unsigned int offset = handle & ~PAGE_MASK;
1548
1549	if (!iova)
1550		return;
1551
1552	if (!arch_is_coherent())
1553		__dma_page_dev_to_cpu(page, offset, size, dir);
1554}
1555
1556static void arm_iommu_sync_single_for_device(struct device *dev,
1557		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1558{
1559	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1560	dma_addr_t iova = handle & PAGE_MASK;
1561	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1562	unsigned int offset = handle & ~PAGE_MASK;
1563
1564	if (!iova)
1565		return;
1566
 
1567	__dma_page_cpu_to_dev(page, offset, size, dir);
1568}
1569
1570struct dma_map_ops iommu_ops = {
1571	.alloc		= arm_iommu_alloc_attrs,
1572	.free		= arm_iommu_free_attrs,
1573	.mmap		= arm_iommu_mmap_attrs,
 
1574
1575	.map_page		= arm_iommu_map_page,
1576	.unmap_page		= arm_iommu_unmap_page,
1577	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1578	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1579
1580	.map_sg			= arm_iommu_map_sg,
1581	.unmap_sg		= arm_iommu_unmap_sg,
1582	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1583	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
 
 
 
1584};
1585
1586/**
1587 * arm_iommu_create_mapping
1588 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1589 * @base: start address of the valid IO address space
1590 * @size: size of the valid IO address space
1591 * @order: accuracy of the IO addresses allocations
1592 *
1593 * Creates a mapping structure which holds information about used/unused
1594 * IO address ranges, which is required to perform memory allocation and
1595 * mapping with IOMMU aware functions.
1596 *
1597 * The client device need to be attached to the mapping with
1598 * arm_iommu_attach_device function.
1599 */
1600struct dma_iommu_mapping *
1601arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1602			 int order)
1603{
1604	unsigned int count = size >> (PAGE_SHIFT + order);
1605	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1606	struct dma_iommu_mapping *mapping;
 
1607	int err = -ENOMEM;
1608
1609	if (!count)
 
 
 
 
1610		return ERR_PTR(-EINVAL);
1611
 
 
 
 
 
1612	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1613	if (!mapping)
1614		goto err;
1615
1616	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1617	if (!mapping->bitmap)
 
 
1618		goto err2;
1619
 
 
 
 
 
 
1620	mapping->base = base;
1621	mapping->bits = BITS_PER_BYTE * bitmap_size;
1622	mapping->order = order;
1623	spin_lock_init(&mapping->lock);
1624
1625	mapping->domain = iommu_domain_alloc(bus);
1626	if (!mapping->domain)
1627		goto err3;
1628
1629	kref_init(&mapping->kref);
1630	return mapping;
 
 
1631err3:
1632	kfree(mapping->bitmap);
1633err2:
1634	kfree(mapping);
1635err:
1636	return ERR_PTR(err);
1637}
 
1638
1639static void release_iommu_mapping(struct kref *kref)
1640{
 
1641	struct dma_iommu_mapping *mapping =
1642		container_of(kref, struct dma_iommu_mapping, kref);
1643
1644	iommu_domain_free(mapping->domain);
1645	kfree(mapping->bitmap);
 
 
1646	kfree(mapping);
1647}
1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1650{
1651	if (mapping)
1652		kref_put(&mapping->kref, release_iommu_mapping);
1653}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 *	arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device,
1662 * this replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version. More than one client might be attached to
1664 * the same io address space mapping.
 
 
1665 */
1666int arm_iommu_attach_device(struct device *dev,
1667			    struct dma_iommu_mapping *mapping)
1668{
1669	int err;
1670
1671	err = iommu_attach_device(mapping->domain, dev);
1672	if (err)
1673		return err;
1674
1675	kref_get(&mapping->kref);
1676	dev->archdata.mapping = mapping;
1677	set_dma_ops(dev, &iommu_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678
1679	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1680	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681}
1682
1683#endif