Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Digital Audio (PCM) abstract layer
   4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   5 *                   Abramo Bagnara <abramo@alsa-project.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/sched/signal.h>
  10#include <linux/time.h>
  11#include <linux/math64.h>
  12#include <linux/export.h>
  13#include <sound/core.h>
  14#include <sound/control.h>
  15#include <sound/tlv.h>
  16#include <sound/info.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/timer.h>
  20
  21#include "pcm_local.h"
  22
  23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  24#define CREATE_TRACE_POINTS
  25#include "pcm_trace.h"
  26#else
  27#define trace_hwptr(substream, pos, in_interrupt)
  28#define trace_xrun(substream)
  29#define trace_hw_ptr_error(substream, reason)
  30#define trace_applptr(substream, prev, curr)
  31#endif
  32
  33static int fill_silence_frames(struct snd_pcm_substream *substream,
  34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
  35
  36/*
  37 * fill ring buffer with silence
  38 * runtime->silence_start: starting pointer to silence area
  39 * runtime->silence_filled: size filled with silence
  40 * runtime->silence_threshold: threshold from application
  41 * runtime->silence_size: maximal size from application
  42 *
  43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  44 */
  45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  46{
  47	struct snd_pcm_runtime *runtime = substream->runtime;
  48	snd_pcm_uframes_t frames, ofs, transfer;
  49	int err;
  50
  51	if (runtime->silence_size < runtime->boundary) {
  52		snd_pcm_sframes_t noise_dist, n;
  53		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
  54		if (runtime->silence_start != appl_ptr) {
  55			n = appl_ptr - runtime->silence_start;
  56			if (n < 0)
  57				n += runtime->boundary;
  58			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  59				runtime->silence_filled -= n;
  60			else
  61				runtime->silence_filled = 0;
  62			runtime->silence_start = appl_ptr;
  63		}
  64		if (runtime->silence_filled >= runtime->buffer_size)
  65			return;
  66		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  67		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  68			return;
  69		frames = runtime->silence_threshold - noise_dist;
  70		if (frames > runtime->silence_size)
  71			frames = runtime->silence_size;
  72	} else {
  73		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  74			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  75			if (avail > runtime->buffer_size)
  76				avail = runtime->buffer_size;
  77			runtime->silence_filled = avail > 0 ? avail : 0;
  78			runtime->silence_start = (runtime->status->hw_ptr +
  79						  runtime->silence_filled) %
  80						 runtime->boundary;
  81		} else {
  82			ofs = runtime->status->hw_ptr;
  83			frames = new_hw_ptr - ofs;
  84			if ((snd_pcm_sframes_t)frames < 0)
  85				frames += runtime->boundary;
  86			runtime->silence_filled -= frames;
  87			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  88				runtime->silence_filled = 0;
  89				runtime->silence_start = new_hw_ptr;
  90			} else {
  91				runtime->silence_start = ofs;
  92			}
  93		}
  94		frames = runtime->buffer_size - runtime->silence_filled;
  95	}
  96	if (snd_BUG_ON(frames > runtime->buffer_size))
  97		return;
  98	if (frames == 0)
  99		return;
 100	ofs = runtime->silence_start % runtime->buffer_size;
 101	while (frames > 0) {
 102		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 103		err = fill_silence_frames(substream, ofs, transfer);
 104		snd_BUG_ON(err < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105		runtime->silence_filled += transfer;
 106		frames -= transfer;
 107		ofs = 0;
 108	}
 109	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
 110}
 111
 112#ifdef CONFIG_SND_DEBUG
 113void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 114			   char *name, size_t len)
 115{
 116	snprintf(name, len, "pcmC%dD%d%c:%d",
 117		 substream->pcm->card->number,
 118		 substream->pcm->device,
 119		 substream->stream ? 'c' : 'p',
 120		 substream->number);
 121}
 122EXPORT_SYMBOL(snd_pcm_debug_name);
 123#endif
 124
 125#define XRUN_DEBUG_BASIC	(1<<0)
 126#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 127#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 
 
 
 
 128
 129#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 130
 131#define xrun_debug(substream, mask) \
 132			((substream)->pstr->xrun_debug & (mask))
 133#else
 134#define xrun_debug(substream, mask)	0
 135#endif
 136
 137#define dump_stack_on_xrun(substream) do {			\
 138		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 139			dump_stack();				\
 140	} while (0)
 141
 142/* call with stream lock held */
 143void __snd_pcm_xrun(struct snd_pcm_substream *substream)
 144{
 145	struct snd_pcm_runtime *runtime = substream->runtime;
 146
 147	trace_xrun(substream);
 148	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 149		struct timespec64 tstamp;
 150
 151		snd_pcm_gettime(runtime, &tstamp);
 152		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
 153		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
 154	}
 155	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 156	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 157		char name[16];
 158		snd_pcm_debug_name(substream, name, sizeof(name));
 159		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 160		dump_stack_on_xrun(substream);
 161	}
 162}
 163
 164#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 165#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 166	do {								\
 167		trace_hw_ptr_error(substream, reason);	\
 168		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 169			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 170					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 
 
 171			dump_stack_on_xrun(substream);			\
 172		}							\
 173	} while (0)
 174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 176
 177#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 
 
 178
 179#endif
 180
 181int snd_pcm_update_state(struct snd_pcm_substream *substream,
 182			 struct snd_pcm_runtime *runtime)
 183{
 184	snd_pcm_uframes_t avail;
 185
 186	avail = snd_pcm_avail(substream);
 
 
 
 187	if (avail > runtime->avail_max)
 188		runtime->avail_max = avail;
 189	if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
 190		if (avail >= runtime->buffer_size) {
 191			snd_pcm_drain_done(substream);
 192			return -EPIPE;
 193		}
 194	} else {
 195		if (avail >= runtime->stop_threshold) {
 196			__snd_pcm_xrun(substream);
 197			return -EPIPE;
 198		}
 199	}
 200	if (runtime->twake) {
 201		if (avail >= runtime->twake)
 202			wake_up(&runtime->tsleep);
 203	} else if (avail >= runtime->control->avail_min)
 204		wake_up(&runtime->sleep);
 205	return 0;
 206}
 207
 208static void update_audio_tstamp(struct snd_pcm_substream *substream,
 209				struct timespec64 *curr_tstamp,
 210				struct timespec64 *audio_tstamp)
 211{
 212	struct snd_pcm_runtime *runtime = substream->runtime;
 213	u64 audio_frames, audio_nsecs;
 214	struct timespec64 driver_tstamp;
 215
 216	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 217		return;
 218
 219	if (!(substream->ops->get_time_info) ||
 220		(runtime->audio_tstamp_report.actual_type ==
 221			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 222
 223		/*
 224		 * provide audio timestamp derived from pointer position
 225		 * add delay only if requested
 226		 */
 227
 228		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 229
 230		if (runtime->audio_tstamp_config.report_delay) {
 231			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 232				audio_frames -=  runtime->delay;
 233			else
 234				audio_frames +=  runtime->delay;
 235		}
 236		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 237				runtime->rate);
 238		*audio_tstamp = ns_to_timespec64(audio_nsecs);
 239	}
 240
 241	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
 242	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
 243		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
 244		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
 245		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
 246		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
 247	}
 248
 249
 250	/*
 251	 * re-take a driver timestamp to let apps detect if the reference tstamp
 252	 * read by low-level hardware was provided with a delay
 253	 */
 254	snd_pcm_gettime(substream->runtime, &driver_tstamp);
 255	runtime->driver_tstamp = driver_tstamp;
 256}
 257
 258static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 259				  unsigned int in_interrupt)
 260{
 261	struct snd_pcm_runtime *runtime = substream->runtime;
 262	snd_pcm_uframes_t pos;
 263	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 264	snd_pcm_sframes_t hdelta, delta;
 265	unsigned long jdelta;
 266	unsigned long curr_jiffies;
 267	struct timespec64 curr_tstamp;
 268	struct timespec64 audio_tstamp;
 269	int crossed_boundary = 0;
 270
 271	old_hw_ptr = runtime->status->hw_ptr;
 272
 273	/*
 274	 * group pointer, time and jiffies reads to allow for more
 275	 * accurate correlations/corrections.
 276	 * The values are stored at the end of this routine after
 277	 * corrections for hw_ptr position
 278	 */
 279	pos = substream->ops->pointer(substream);
 280	curr_jiffies = jiffies;
 281	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 282		if ((substream->ops->get_time_info) &&
 283			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 284			substream->ops->get_time_info(substream, &curr_tstamp,
 285						&audio_tstamp,
 286						&runtime->audio_tstamp_config,
 287						&runtime->audio_tstamp_report);
 288
 289			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 290			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 291				snd_pcm_gettime(runtime, &curr_tstamp);
 292		} else
 293			snd_pcm_gettime(runtime, &curr_tstamp);
 294	}
 295
 296	if (pos == SNDRV_PCM_POS_XRUN) {
 297		__snd_pcm_xrun(substream);
 298		return -EPIPE;
 299	}
 300	if (pos >= runtime->buffer_size) {
 301		if (printk_ratelimit()) {
 302			char name[16];
 303			snd_pcm_debug_name(substream, name, sizeof(name));
 304			pcm_err(substream->pcm,
 305				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 306				name, pos, runtime->buffer_size,
 307				runtime->period_size);
 
 308		}
 309		pos = 0;
 310	}
 311	pos -= pos % runtime->min_align;
 312	trace_hwptr(substream, pos, in_interrupt);
 
 313	hw_base = runtime->hw_ptr_base;
 314	new_hw_ptr = hw_base + pos;
 315	if (in_interrupt) {
 316		/* we know that one period was processed */
 317		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 318		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 319		if (delta > new_hw_ptr) {
 320			/* check for double acknowledged interrupts */
 321			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 322			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 323				hw_base += runtime->buffer_size;
 324				if (hw_base >= runtime->boundary) {
 325					hw_base = 0;
 326					crossed_boundary++;
 327				}
 328				new_hw_ptr = hw_base + pos;
 329				goto __delta;
 330			}
 331		}
 332	}
 333	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 334	/* pointer crosses the end of the ring buffer */
 335	if (new_hw_ptr < old_hw_ptr) {
 336		hw_base += runtime->buffer_size;
 337		if (hw_base >= runtime->boundary) {
 338			hw_base = 0;
 339			crossed_boundary++;
 340		}
 341		new_hw_ptr = hw_base + pos;
 342	}
 343      __delta:
 344	delta = new_hw_ptr - old_hw_ptr;
 345	if (delta < 0)
 346		delta += runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347
 348	if (runtime->no_period_wakeup) {
 349		snd_pcm_sframes_t xrun_threshold;
 350		/*
 351		 * Without regular period interrupts, we have to check
 352		 * the elapsed time to detect xruns.
 353		 */
 354		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 355		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 356			goto no_delta_check;
 357		hdelta = jdelta - delta * HZ / runtime->rate;
 358		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 359		while (hdelta > xrun_threshold) {
 360			delta += runtime->buffer_size;
 361			hw_base += runtime->buffer_size;
 362			if (hw_base >= runtime->boundary) {
 363				hw_base = 0;
 364				crossed_boundary++;
 365			}
 366			new_hw_ptr = hw_base + pos;
 367			hdelta -= runtime->hw_ptr_buffer_jiffies;
 368		}
 369		goto no_delta_check;
 370	}
 371
 372	/* something must be really wrong */
 373	if (delta >= runtime->buffer_size + runtime->period_size) {
 374		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 375			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 376			     substream->stream, (long)pos,
 377			     (long)new_hw_ptr, (long)old_hw_ptr);
 
 
 
 378		return 0;
 379	}
 380
 381	/* Do jiffies check only in xrun_debug mode */
 382	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 383		goto no_jiffies_check;
 384
 385	/* Skip the jiffies check for hardwares with BATCH flag.
 386	 * Such hardware usually just increases the position at each IRQ,
 387	 * thus it can't give any strange position.
 388	 */
 389	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 390		goto no_jiffies_check;
 391	hdelta = delta;
 392	if (hdelta < runtime->delay)
 393		goto no_jiffies_check;
 394	hdelta -= runtime->delay;
 395	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 396	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 397		delta = jdelta /
 398			(((runtime->period_size * HZ) / runtime->rate)
 399								+ HZ/100);
 400		/* move new_hw_ptr according jiffies not pos variable */
 401		new_hw_ptr = old_hw_ptr;
 402		hw_base = delta;
 403		/* use loop to avoid checks for delta overflows */
 404		/* the delta value is small or zero in most cases */
 405		while (delta > 0) {
 406			new_hw_ptr += runtime->period_size;
 407			if (new_hw_ptr >= runtime->boundary) {
 408				new_hw_ptr -= runtime->boundary;
 409				crossed_boundary--;
 410			}
 411			delta--;
 412		}
 413		/* align hw_base to buffer_size */
 414		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 415			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 
 
 
 416			     (long)pos, (long)hdelta,
 417			     (long)runtime->period_size, jdelta,
 418			     ((hdelta * HZ) / runtime->rate), hw_base,
 419			     (unsigned long)old_hw_ptr,
 420			     (unsigned long)new_hw_ptr);
 421		/* reset values to proper state */
 422		delta = 0;
 423		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 424	}
 425 no_jiffies_check:
 426	if (delta > runtime->period_size + runtime->period_size / 2) {
 427		hw_ptr_error(substream, in_interrupt,
 428			     "Lost interrupts?",
 429			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 
 
 430			     substream->stream, (long)delta,
 431			     (long)new_hw_ptr,
 432			     (long)old_hw_ptr);
 433	}
 434
 435 no_delta_check:
 436	if (runtime->status->hw_ptr == new_hw_ptr) {
 437		runtime->hw_ptr_jiffies = curr_jiffies;
 438		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 439		return 0;
 440	}
 441
 442	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 443	    runtime->silence_size > 0)
 444		snd_pcm_playback_silence(substream, new_hw_ptr);
 445
 446	if (in_interrupt) {
 447		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 448		if (delta < 0)
 449			delta += runtime->boundary;
 450		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 451		runtime->hw_ptr_interrupt += delta;
 452		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 453			runtime->hw_ptr_interrupt -= runtime->boundary;
 454	}
 455	runtime->hw_ptr_base = hw_base;
 456	runtime->status->hw_ptr = new_hw_ptr;
 457	runtime->hw_ptr_jiffies = curr_jiffies;
 458	if (crossed_boundary) {
 459		snd_BUG_ON(crossed_boundary != 1);
 460		runtime->hw_ptr_wrap += runtime->boundary;
 461	}
 462
 463	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 464
 465	return snd_pcm_update_state(substream, runtime);
 466}
 467
 468/* CAUTION: call it with irq disabled */
 469int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 470{
 471	return snd_pcm_update_hw_ptr0(substream, 0);
 472}
 473
 474/**
 475 * snd_pcm_set_ops - set the PCM operators
 476 * @pcm: the pcm instance
 477 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 478 * @ops: the operator table
 479 *
 480 * Sets the given PCM operators to the pcm instance.
 481 */
 482void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 483		     const struct snd_pcm_ops *ops)
 484{
 485	struct snd_pcm_str *stream = &pcm->streams[direction];
 486	struct snd_pcm_substream *substream;
 487	
 488	for (substream = stream->substream; substream != NULL; substream = substream->next)
 489		substream->ops = ops;
 490}
 
 491EXPORT_SYMBOL(snd_pcm_set_ops);
 492
 493/**
 494 * snd_pcm_set_sync - set the PCM sync id
 495 * @substream: the pcm substream
 496 *
 497 * Sets the PCM sync identifier for the card.
 498 */
 499void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 500{
 501	struct snd_pcm_runtime *runtime = substream->runtime;
 502	
 503	runtime->sync.id32[0] = substream->pcm->card->number;
 504	runtime->sync.id32[1] = -1;
 505	runtime->sync.id32[2] = -1;
 506	runtime->sync.id32[3] = -1;
 507}
 
 508EXPORT_SYMBOL(snd_pcm_set_sync);
 509
 510/*
 511 *  Standard ioctl routine
 512 */
 513
 514static inline unsigned int div32(unsigned int a, unsigned int b, 
 515				 unsigned int *r)
 516{
 517	if (b == 0) {
 518		*r = 0;
 519		return UINT_MAX;
 520	}
 521	*r = a % b;
 522	return a / b;
 523}
 524
 525static inline unsigned int div_down(unsigned int a, unsigned int b)
 526{
 527	if (b == 0)
 528		return UINT_MAX;
 529	return a / b;
 530}
 531
 532static inline unsigned int div_up(unsigned int a, unsigned int b)
 533{
 534	unsigned int r;
 535	unsigned int q;
 536	if (b == 0)
 537		return UINT_MAX;
 538	q = div32(a, b, &r);
 539	if (r)
 540		++q;
 541	return q;
 542}
 543
 544static inline unsigned int mul(unsigned int a, unsigned int b)
 545{
 546	if (a == 0)
 547		return 0;
 548	if (div_down(UINT_MAX, a) < b)
 549		return UINT_MAX;
 550	return a * b;
 551}
 552
 553static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 554				    unsigned int c, unsigned int *r)
 555{
 556	u_int64_t n = (u_int64_t) a * b;
 557	if (c == 0) {
 
 558		*r = 0;
 559		return UINT_MAX;
 560	}
 561	n = div_u64_rem(n, c, r);
 562	if (n >= UINT_MAX) {
 563		*r = 0;
 564		return UINT_MAX;
 565	}
 566	return n;
 567}
 568
 569/**
 570 * snd_interval_refine - refine the interval value of configurator
 571 * @i: the interval value to refine
 572 * @v: the interval value to refer to
 573 *
 574 * Refines the interval value with the reference value.
 575 * The interval is changed to the range satisfying both intervals.
 576 * The interval status (min, max, integer, etc.) are evaluated.
 577 *
 578 * Return: Positive if the value is changed, zero if it's not changed, or a
 579 * negative error code.
 580 */
 581int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 582{
 583	int changed = 0;
 584	if (snd_BUG_ON(snd_interval_empty(i)))
 585		return -EINVAL;
 586	if (i->min < v->min) {
 587		i->min = v->min;
 588		i->openmin = v->openmin;
 589		changed = 1;
 590	} else if (i->min == v->min && !i->openmin && v->openmin) {
 591		i->openmin = 1;
 592		changed = 1;
 593	}
 594	if (i->max > v->max) {
 595		i->max = v->max;
 596		i->openmax = v->openmax;
 597		changed = 1;
 598	} else if (i->max == v->max && !i->openmax && v->openmax) {
 599		i->openmax = 1;
 600		changed = 1;
 601	}
 602	if (!i->integer && v->integer) {
 603		i->integer = 1;
 604		changed = 1;
 605	}
 606	if (i->integer) {
 607		if (i->openmin) {
 608			i->min++;
 609			i->openmin = 0;
 610		}
 611		if (i->openmax) {
 612			i->max--;
 613			i->openmax = 0;
 614		}
 615	} else if (!i->openmin && !i->openmax && i->min == i->max)
 616		i->integer = 1;
 617	if (snd_interval_checkempty(i)) {
 618		snd_interval_none(i);
 619		return -EINVAL;
 620	}
 621	return changed;
 622}
 
 623EXPORT_SYMBOL(snd_interval_refine);
 624
 625static int snd_interval_refine_first(struct snd_interval *i)
 626{
 627	const unsigned int last_max = i->max;
 628
 629	if (snd_BUG_ON(snd_interval_empty(i)))
 630		return -EINVAL;
 631	if (snd_interval_single(i))
 632		return 0;
 633	i->max = i->min;
 634	if (i->openmin)
 
 635		i->max++;
 636	/* only exclude max value if also excluded before refine */
 637	i->openmax = (i->openmax && i->max >= last_max);
 638	return 1;
 639}
 640
 641static int snd_interval_refine_last(struct snd_interval *i)
 642{
 643	const unsigned int last_min = i->min;
 644
 645	if (snd_BUG_ON(snd_interval_empty(i)))
 646		return -EINVAL;
 647	if (snd_interval_single(i))
 648		return 0;
 649	i->min = i->max;
 650	if (i->openmax)
 
 651		i->min--;
 652	/* only exclude min value if also excluded before refine */
 653	i->openmin = (i->openmin && i->min <= last_min);
 654	return 1;
 655}
 656
 657void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 658{
 659	if (a->empty || b->empty) {
 660		snd_interval_none(c);
 661		return;
 662	}
 663	c->empty = 0;
 664	c->min = mul(a->min, b->min);
 665	c->openmin = (a->openmin || b->openmin);
 666	c->max = mul(a->max,  b->max);
 667	c->openmax = (a->openmax || b->openmax);
 668	c->integer = (a->integer && b->integer);
 669}
 670
 671/**
 672 * snd_interval_div - refine the interval value with division
 673 * @a: dividend
 674 * @b: divisor
 675 * @c: quotient
 676 *
 677 * c = a / b
 678 *
 679 * Returns non-zero if the value is changed, zero if not changed.
 680 */
 681void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 682{
 683	unsigned int r;
 684	if (a->empty || b->empty) {
 685		snd_interval_none(c);
 686		return;
 687	}
 688	c->empty = 0;
 689	c->min = div32(a->min, b->max, &r);
 690	c->openmin = (r || a->openmin || b->openmax);
 691	if (b->min > 0) {
 692		c->max = div32(a->max, b->min, &r);
 693		if (r) {
 694			c->max++;
 695			c->openmax = 1;
 696		} else
 697			c->openmax = (a->openmax || b->openmin);
 698	} else {
 699		c->max = UINT_MAX;
 700		c->openmax = 0;
 701	}
 702	c->integer = 0;
 703}
 704
 705/**
 706 * snd_interval_muldivk - refine the interval value
 707 * @a: dividend 1
 708 * @b: dividend 2
 709 * @k: divisor (as integer)
 710 * @c: result
 711  *
 712 * c = a * b / k
 713 *
 714 * Returns non-zero if the value is changed, zero if not changed.
 715 */
 716void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 717		      unsigned int k, struct snd_interval *c)
 718{
 719	unsigned int r;
 720	if (a->empty || b->empty) {
 721		snd_interval_none(c);
 722		return;
 723	}
 724	c->empty = 0;
 725	c->min = muldiv32(a->min, b->min, k, &r);
 726	c->openmin = (r || a->openmin || b->openmin);
 727	c->max = muldiv32(a->max, b->max, k, &r);
 728	if (r) {
 729		c->max++;
 730		c->openmax = 1;
 731	} else
 732		c->openmax = (a->openmax || b->openmax);
 733	c->integer = 0;
 734}
 735
 736/**
 737 * snd_interval_mulkdiv - refine the interval value
 738 * @a: dividend 1
 739 * @k: dividend 2 (as integer)
 740 * @b: divisor
 741 * @c: result
 742 *
 743 * c = a * k / b
 744 *
 745 * Returns non-zero if the value is changed, zero if not changed.
 746 */
 747void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 748		      const struct snd_interval *b, struct snd_interval *c)
 749{
 750	unsigned int r;
 751	if (a->empty || b->empty) {
 752		snd_interval_none(c);
 753		return;
 754	}
 755	c->empty = 0;
 756	c->min = muldiv32(a->min, k, b->max, &r);
 757	c->openmin = (r || a->openmin || b->openmax);
 758	if (b->min > 0) {
 759		c->max = muldiv32(a->max, k, b->min, &r);
 760		if (r) {
 761			c->max++;
 762			c->openmax = 1;
 763		} else
 764			c->openmax = (a->openmax || b->openmin);
 765	} else {
 766		c->max = UINT_MAX;
 767		c->openmax = 0;
 768	}
 769	c->integer = 0;
 770}
 771
 772/* ---- */
 773
 774
 775/**
 776 * snd_interval_ratnum - refine the interval value
 777 * @i: interval to refine
 778 * @rats_count: number of ratnum_t 
 779 * @rats: ratnum_t array
 780 * @nump: pointer to store the resultant numerator
 781 * @denp: pointer to store the resultant denominator
 782 *
 783 * Return: Positive if the value is changed, zero if it's not changed, or a
 784 * negative error code.
 785 */
 786int snd_interval_ratnum(struct snd_interval *i,
 787			unsigned int rats_count, const struct snd_ratnum *rats,
 788			unsigned int *nump, unsigned int *denp)
 789{
 790	unsigned int best_num, best_den;
 791	int best_diff;
 792	unsigned int k;
 793	struct snd_interval t;
 794	int err;
 795	unsigned int result_num, result_den;
 796	int result_diff;
 797
 798	best_num = best_den = best_diff = 0;
 799	for (k = 0; k < rats_count; ++k) {
 800		unsigned int num = rats[k].num;
 801		unsigned int den;
 802		unsigned int q = i->min;
 803		int diff;
 804		if (q == 0)
 805			q = 1;
 806		den = div_up(num, q);
 807		if (den < rats[k].den_min)
 808			continue;
 809		if (den > rats[k].den_max)
 810			den = rats[k].den_max;
 811		else {
 812			unsigned int r;
 813			r = (den - rats[k].den_min) % rats[k].den_step;
 814			if (r != 0)
 815				den -= r;
 816		}
 817		diff = num - q * den;
 818		if (diff < 0)
 819			diff = -diff;
 820		if (best_num == 0 ||
 821		    diff * best_den < best_diff * den) {
 822			best_diff = diff;
 823			best_den = den;
 824			best_num = num;
 825		}
 826	}
 827	if (best_den == 0) {
 828		i->empty = 1;
 829		return -EINVAL;
 830	}
 831	t.min = div_down(best_num, best_den);
 832	t.openmin = !!(best_num % best_den);
 833	
 834	result_num = best_num;
 835	result_diff = best_diff;
 836	result_den = best_den;
 837	best_num = best_den = best_diff = 0;
 838	for (k = 0; k < rats_count; ++k) {
 839		unsigned int num = rats[k].num;
 840		unsigned int den;
 841		unsigned int q = i->max;
 842		int diff;
 843		if (q == 0) {
 844			i->empty = 1;
 845			return -EINVAL;
 846		}
 847		den = div_down(num, q);
 848		if (den > rats[k].den_max)
 849			continue;
 850		if (den < rats[k].den_min)
 851			den = rats[k].den_min;
 852		else {
 853			unsigned int r;
 854			r = (den - rats[k].den_min) % rats[k].den_step;
 855			if (r != 0)
 856				den += rats[k].den_step - r;
 857		}
 858		diff = q * den - num;
 859		if (diff < 0)
 860			diff = -diff;
 861		if (best_num == 0 ||
 862		    diff * best_den < best_diff * den) {
 863			best_diff = diff;
 864			best_den = den;
 865			best_num = num;
 866		}
 867	}
 868	if (best_den == 0) {
 869		i->empty = 1;
 870		return -EINVAL;
 871	}
 872	t.max = div_up(best_num, best_den);
 873	t.openmax = !!(best_num % best_den);
 874	t.integer = 0;
 875	err = snd_interval_refine(i, &t);
 876	if (err < 0)
 877		return err;
 878
 879	if (snd_interval_single(i)) {
 880		if (best_diff * result_den < result_diff * best_den) {
 881			result_num = best_num;
 882			result_den = best_den;
 883		}
 884		if (nump)
 885			*nump = result_num;
 886		if (denp)
 887			*denp = result_den;
 888	}
 889	return err;
 890}
 
 891EXPORT_SYMBOL(snd_interval_ratnum);
 892
 893/**
 894 * snd_interval_ratden - refine the interval value
 895 * @i: interval to refine
 896 * @rats_count: number of struct ratden
 897 * @rats: struct ratden array
 898 * @nump: pointer to store the resultant numerator
 899 * @denp: pointer to store the resultant denominator
 900 *
 901 * Return: Positive if the value is changed, zero if it's not changed, or a
 902 * negative error code.
 903 */
 904static int snd_interval_ratden(struct snd_interval *i,
 905			       unsigned int rats_count,
 906			       const struct snd_ratden *rats,
 907			       unsigned int *nump, unsigned int *denp)
 908{
 909	unsigned int best_num, best_diff, best_den;
 910	unsigned int k;
 911	struct snd_interval t;
 912	int err;
 913
 914	best_num = best_den = best_diff = 0;
 915	for (k = 0; k < rats_count; ++k) {
 916		unsigned int num;
 917		unsigned int den = rats[k].den;
 918		unsigned int q = i->min;
 919		int diff;
 920		num = mul(q, den);
 921		if (num > rats[k].num_max)
 922			continue;
 923		if (num < rats[k].num_min)
 924			num = rats[k].num_max;
 925		else {
 926			unsigned int r;
 927			r = (num - rats[k].num_min) % rats[k].num_step;
 928			if (r != 0)
 929				num += rats[k].num_step - r;
 930		}
 931		diff = num - q * den;
 932		if (best_num == 0 ||
 933		    diff * best_den < best_diff * den) {
 934			best_diff = diff;
 935			best_den = den;
 936			best_num = num;
 937		}
 938	}
 939	if (best_den == 0) {
 940		i->empty = 1;
 941		return -EINVAL;
 942	}
 943	t.min = div_down(best_num, best_den);
 944	t.openmin = !!(best_num % best_den);
 945	
 946	best_num = best_den = best_diff = 0;
 947	for (k = 0; k < rats_count; ++k) {
 948		unsigned int num;
 949		unsigned int den = rats[k].den;
 950		unsigned int q = i->max;
 951		int diff;
 952		num = mul(q, den);
 953		if (num < rats[k].num_min)
 954			continue;
 955		if (num > rats[k].num_max)
 956			num = rats[k].num_max;
 957		else {
 958			unsigned int r;
 959			r = (num - rats[k].num_min) % rats[k].num_step;
 960			if (r != 0)
 961				num -= r;
 962		}
 963		diff = q * den - num;
 964		if (best_num == 0 ||
 965		    diff * best_den < best_diff * den) {
 966			best_diff = diff;
 967			best_den = den;
 968			best_num = num;
 969		}
 970	}
 971	if (best_den == 0) {
 972		i->empty = 1;
 973		return -EINVAL;
 974	}
 975	t.max = div_up(best_num, best_den);
 976	t.openmax = !!(best_num % best_den);
 977	t.integer = 0;
 978	err = snd_interval_refine(i, &t);
 979	if (err < 0)
 980		return err;
 981
 982	if (snd_interval_single(i)) {
 983		if (nump)
 984			*nump = best_num;
 985		if (denp)
 986			*denp = best_den;
 987	}
 988	return err;
 989}
 990
 991/**
 992 * snd_interval_list - refine the interval value from the list
 993 * @i: the interval value to refine
 994 * @count: the number of elements in the list
 995 * @list: the value list
 996 * @mask: the bit-mask to evaluate
 997 *
 998 * Refines the interval value from the list.
 999 * When mask is non-zero, only the elements corresponding to bit 1 are
1000 * evaluated.
1001 *
1002 * Return: Positive if the value is changed, zero if it's not changed, or a
1003 * negative error code.
1004 */
1005int snd_interval_list(struct snd_interval *i, unsigned int count,
1006		      const unsigned int *list, unsigned int mask)
1007{
1008        unsigned int k;
1009	struct snd_interval list_range;
1010
1011	if (!count) {
1012		i->empty = 1;
1013		return -EINVAL;
1014	}
1015	snd_interval_any(&list_range);
1016	list_range.min = UINT_MAX;
1017	list_range.max = 0;
1018        for (k = 0; k < count; k++) {
1019		if (mask && !(mask & (1 << k)))
1020			continue;
1021		if (!snd_interval_test(i, list[k]))
1022			continue;
1023		list_range.min = min(list_range.min, list[k]);
1024		list_range.max = max(list_range.max, list[k]);
1025        }
1026	return snd_interval_refine(i, &list_range);
1027}
1028EXPORT_SYMBOL(snd_interval_list);
1029
1030/**
1031 * snd_interval_ranges - refine the interval value from the list of ranges
1032 * @i: the interval value to refine
1033 * @count: the number of elements in the list of ranges
1034 * @ranges: the ranges list
1035 * @mask: the bit-mask to evaluate
1036 *
1037 * Refines the interval value from the list of ranges.
1038 * When mask is non-zero, only the elements corresponding to bit 1 are
1039 * evaluated.
1040 *
1041 * Return: Positive if the value is changed, zero if it's not changed, or a
1042 * negative error code.
1043 */
1044int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045			const struct snd_interval *ranges, unsigned int mask)
1046{
1047	unsigned int k;
1048	struct snd_interval range_union;
1049	struct snd_interval range;
1050
1051	if (!count) {
1052		snd_interval_none(i);
1053		return -EINVAL;
1054	}
1055	snd_interval_any(&range_union);
1056	range_union.min = UINT_MAX;
1057	range_union.max = 0;
1058	for (k = 0; k < count; k++) {
1059		if (mask && !(mask & (1 << k)))
1060			continue;
1061		snd_interval_copy(&range, &ranges[k]);
1062		if (snd_interval_refine(&range, i) < 0)
1063			continue;
1064		if (snd_interval_empty(&range))
1065			continue;
1066
1067		if (range.min < range_union.min) {
1068			range_union.min = range.min;
1069			range_union.openmin = 1;
1070		}
1071		if (range.min == range_union.min && !range.openmin)
1072			range_union.openmin = 0;
1073		if (range.max > range_union.max) {
1074			range_union.max = range.max;
1075			range_union.openmax = 1;
1076		}
1077		if (range.max == range_union.max && !range.openmax)
1078			range_union.openmax = 0;
1079	}
1080	return snd_interval_refine(i, &range_union);
1081}
1082EXPORT_SYMBOL(snd_interval_ranges);
1083
1084static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085{
1086	unsigned int n;
1087	int changed = 0;
1088	n = i->min % step;
1089	if (n != 0 || i->openmin) {
1090		i->min += step - n;
1091		i->openmin = 0;
1092		changed = 1;
1093	}
1094	n = i->max % step;
1095	if (n != 0 || i->openmax) {
1096		i->max -= n;
1097		i->openmax = 0;
1098		changed = 1;
1099	}
1100	if (snd_interval_checkempty(i)) {
1101		i->empty = 1;
1102		return -EINVAL;
1103	}
1104	return changed;
1105}
1106
1107/* Info constraints helpers */
1108
1109/**
1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
1111 * @runtime: the pcm runtime instance
1112 * @cond: condition bits
1113 * @var: the variable to evaluate
1114 * @func: the evaluation function
1115 * @private: the private data pointer passed to function
1116 * @dep: the dependent variables
1117 *
1118 * Return: Zero if successful, or a negative error code on failure.
1119 */
1120int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121			int var,
1122			snd_pcm_hw_rule_func_t func, void *private,
1123			int dep, ...)
1124{
1125	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126	struct snd_pcm_hw_rule *c;
1127	unsigned int k;
1128	va_list args;
1129	va_start(args, dep);
1130	if (constrs->rules_num >= constrs->rules_all) {
1131		struct snd_pcm_hw_rule *new;
1132		unsigned int new_rules = constrs->rules_all + 16;
1133		new = krealloc_array(constrs->rules, new_rules,
1134				     sizeof(*c), GFP_KERNEL);
1135		if (!new) {
1136			va_end(args);
1137			return -ENOMEM;
1138		}
 
 
 
 
 
1139		constrs->rules = new;
1140		constrs->rules_all = new_rules;
1141	}
1142	c = &constrs->rules[constrs->rules_num];
1143	c->cond = cond;
1144	c->func = func;
1145	c->var = var;
1146	c->private = private;
1147	k = 0;
1148	while (1) {
1149		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1150			va_end(args);
1151			return -EINVAL;
1152		}
1153		c->deps[k++] = dep;
1154		if (dep < 0)
1155			break;
1156		dep = va_arg(args, int);
1157	}
1158	constrs->rules_num++;
1159	va_end(args);
1160	return 0;
1161}
 
1162EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1163
1164/**
1165 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1166 * @runtime: PCM runtime instance
1167 * @var: hw_params variable to apply the mask
1168 * @mask: the bitmap mask
1169 *
1170 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171 *
1172 * Return: Zero if successful, or a negative error code on failure.
1173 */
1174int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1175			       u_int32_t mask)
1176{
1177	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1178	struct snd_mask *maskp = constrs_mask(constrs, var);
1179	*maskp->bits &= mask;
1180	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1181	if (*maskp->bits == 0)
1182		return -EINVAL;
1183	return 0;
1184}
1185
1186/**
1187 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1188 * @runtime: PCM runtime instance
1189 * @var: hw_params variable to apply the mask
1190 * @mask: the 64bit bitmap mask
1191 *
1192 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193 *
1194 * Return: Zero if successful, or a negative error code on failure.
1195 */
1196int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1197				 u_int64_t mask)
1198{
1199	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1200	struct snd_mask *maskp = constrs_mask(constrs, var);
1201	maskp->bits[0] &= (u_int32_t)mask;
1202	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1203	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1204	if (! maskp->bits[0] && ! maskp->bits[1])
1205		return -EINVAL;
1206	return 0;
1207}
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1209
1210/**
1211 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the integer constraint
1214 *
1215 * Apply the constraint of integer to an interval parameter.
1216 *
1217 * Return: Positive if the value is changed, zero if it's not changed, or a
1218 * negative error code.
1219 */
1220int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221{
1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223	return snd_interval_setinteger(constrs_interval(constrs, var));
1224}
 
1225EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1226
1227/**
1228 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1229 * @runtime: PCM runtime instance
1230 * @var: hw_params variable to apply the range
1231 * @min: the minimal value
1232 * @max: the maximal value
1233 * 
1234 * Apply the min/max range constraint to an interval parameter.
1235 *
1236 * Return: Positive if the value is changed, zero if it's not changed, or a
1237 * negative error code.
1238 */
1239int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1240				 unsigned int min, unsigned int max)
1241{
1242	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1243	struct snd_interval t;
1244	t.min = min;
1245	t.max = max;
1246	t.openmin = t.openmax = 0;
1247	t.integer = 0;
1248	return snd_interval_refine(constrs_interval(constrs, var), &t);
1249}
 
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251
1252static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1253				struct snd_pcm_hw_rule *rule)
1254{
1255	struct snd_pcm_hw_constraint_list *list = rule->private;
1256	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257}		
1258
1259
1260/**
1261 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1262 * @runtime: PCM runtime instance
1263 * @cond: condition bits
1264 * @var: hw_params variable to apply the list constraint
1265 * @l: list
1266 * 
1267 * Apply the list of constraints to an interval parameter.
1268 *
1269 * Return: Zero if successful, or a negative error code on failure.
1270 */
1271int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272			       unsigned int cond,
1273			       snd_pcm_hw_param_t var,
1274			       const struct snd_pcm_hw_constraint_list *l)
1275{
1276	return snd_pcm_hw_rule_add(runtime, cond, var,
1277				   snd_pcm_hw_rule_list, (void *)l,
1278				   var, -1);
1279}
1280EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281
1282static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1283				  struct snd_pcm_hw_rule *rule)
1284{
1285	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1286	return snd_interval_ranges(hw_param_interval(params, rule->var),
1287				   r->count, r->ranges, r->mask);
1288}
1289
1290
1291/**
1292 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1293 * @runtime: PCM runtime instance
1294 * @cond: condition bits
1295 * @var: hw_params variable to apply the list of range constraints
1296 * @r: ranges
1297 *
1298 * Apply the list of range constraints to an interval parameter.
1299 *
1300 * Return: Zero if successful, or a negative error code on failure.
1301 */
1302int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303				 unsigned int cond,
1304				 snd_pcm_hw_param_t var,
1305				 const struct snd_pcm_hw_constraint_ranges *r)
1306{
1307	return snd_pcm_hw_rule_add(runtime, cond, var,
1308				   snd_pcm_hw_rule_ranges, (void *)r,
1309				   var, -1);
1310}
1311EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312
1313static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1314				   struct snd_pcm_hw_rule *rule)
1315{
1316	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1317	unsigned int num = 0, den = 0;
1318	int err;
1319	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1320				  r->nrats, r->rats, &num, &den);
1321	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1322		params->rate_num = num;
1323		params->rate_den = den;
1324	}
1325	return err;
1326}
1327
1328/**
1329 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1330 * @runtime: PCM runtime instance
1331 * @cond: condition bits
1332 * @var: hw_params variable to apply the ratnums constraint
1333 * @r: struct snd_ratnums constriants
1334 *
1335 * Return: Zero if successful, or a negative error code on failure.
1336 */
1337int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1338				  unsigned int cond,
1339				  snd_pcm_hw_param_t var,
1340				  const struct snd_pcm_hw_constraint_ratnums *r)
1341{
1342	return snd_pcm_hw_rule_add(runtime, cond, var,
1343				   snd_pcm_hw_rule_ratnums, (void *)r,
1344				   var, -1);
1345}
 
1346EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347
1348static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1349				   struct snd_pcm_hw_rule *rule)
1350{
1351	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1352	unsigned int num = 0, den = 0;
1353	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1354				  r->nrats, r->rats, &num, &den);
1355	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356		params->rate_num = num;
1357		params->rate_den = den;
1358	}
1359	return err;
1360}
1361
1362/**
1363 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1364 * @runtime: PCM runtime instance
1365 * @cond: condition bits
1366 * @var: hw_params variable to apply the ratdens constraint
1367 * @r: struct snd_ratdens constriants
1368 *
1369 * Return: Zero if successful, or a negative error code on failure.
1370 */
1371int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1372				  unsigned int cond,
1373				  snd_pcm_hw_param_t var,
1374				  const struct snd_pcm_hw_constraint_ratdens *r)
1375{
1376	return snd_pcm_hw_rule_add(runtime, cond, var,
1377				   snd_pcm_hw_rule_ratdens, (void *)r,
1378				   var, -1);
1379}
 
1380EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381
1382static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1383				  struct snd_pcm_hw_rule *rule)
1384{
1385	unsigned int l = (unsigned long) rule->private;
1386	int width = l & 0xffff;
1387	unsigned int msbits = l >> 16;
1388	const struct snd_interval *i =
1389		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390
1391	if (!snd_interval_single(i))
1392		return 0;
1393
1394	if ((snd_interval_value(i) == width) ||
1395	    (width == 0 && snd_interval_value(i) > msbits))
1396		params->msbits = min_not_zero(params->msbits, msbits);
1397
1398	return 0;
1399}
1400
1401/**
1402 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1403 * @runtime: PCM runtime instance
1404 * @cond: condition bits
1405 * @width: sample bits width
1406 * @msbits: msbits width
1407 *
1408 * This constraint will set the number of most significant bits (msbits) if a
1409 * sample format with the specified width has been select. If width is set to 0
1410 * the msbits will be set for any sample format with a width larger than the
1411 * specified msbits.
1412 *
1413 * Return: Zero if successful, or a negative error code on failure.
1414 */
1415int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1416				 unsigned int cond,
1417				 unsigned int width,
1418				 unsigned int msbits)
1419{
1420	unsigned long l = (msbits << 16) | width;
1421	return snd_pcm_hw_rule_add(runtime, cond, -1,
1422				    snd_pcm_hw_rule_msbits,
1423				    (void*) l,
1424				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425}
 
1426EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427
1428static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429				struct snd_pcm_hw_rule *rule)
1430{
1431	unsigned long step = (unsigned long) rule->private;
1432	return snd_interval_step(hw_param_interval(params, rule->var), step);
1433}
1434
1435/**
1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437 * @runtime: PCM runtime instance
1438 * @cond: condition bits
1439 * @var: hw_params variable to apply the step constraint
1440 * @step: step size
1441 *
1442 * Return: Zero if successful, or a negative error code on failure.
1443 */
1444int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445			       unsigned int cond,
1446			       snd_pcm_hw_param_t var,
1447			       unsigned long step)
1448{
1449	return snd_pcm_hw_rule_add(runtime, cond, var, 
1450				   snd_pcm_hw_rule_step, (void *) step,
1451				   var, -1);
1452}
 
1453EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456{
1457	static const unsigned int pow2_sizes[] = {
1458		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462	};
1463	return snd_interval_list(hw_param_interval(params, rule->var),
1464				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465}		
1466
1467/**
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1472 *
1473 * Return: Zero if successful, or a negative error code on failure.
1474 */
1475int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476			       unsigned int cond,
1477			       snd_pcm_hw_param_t var)
1478{
1479	return snd_pcm_hw_rule_add(runtime, cond, var, 
1480				   snd_pcm_hw_rule_pow2, NULL,
1481				   var, -1);
1482}
 
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486					   struct snd_pcm_hw_rule *rule)
1487{
1488	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489	struct snd_interval *rate;
1490
1491	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492	return snd_interval_list(rate, 1, &base_rate, 0);
1493}
1494
1495/**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503			       unsigned int base_rate)
1504{
1505	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506				   SNDRV_PCM_HW_PARAM_RATE,
1507				   snd_pcm_hw_rule_noresample_func,
1508				   (void *)(uintptr_t)base_rate,
1509				   SNDRV_PCM_HW_PARAM_RATE, -1);
1510}
1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514				  snd_pcm_hw_param_t var)
1515{
1516	if (hw_is_mask(var)) {
1517		snd_mask_any(hw_param_mask(params, var));
1518		params->cmask |= 1 << var;
1519		params->rmask |= 1 << var;
1520		return;
1521	}
1522	if (hw_is_interval(var)) {
1523		snd_interval_any(hw_param_interval(params, var));
1524		params->cmask |= 1 << var;
1525		params->rmask |= 1 << var;
1526		return;
1527	}
1528	snd_BUG();
1529}
1530
1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532{
1533	unsigned int k;
1534	memset(params, 0, sizeof(*params));
1535	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536		_snd_pcm_hw_param_any(params, k);
1537	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538		_snd_pcm_hw_param_any(params, k);
1539	params->info = ~0U;
1540}
 
1541EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542
1543/**
1544 * snd_pcm_hw_param_value - return @params field @var value
1545 * @params: the hw_params instance
1546 * @var: parameter to retrieve
1547 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 *
1549 * Return: The value for field @var if it's fixed in configuration space
1550 * defined by @params. -%EINVAL otherwise.
1551 */
1552int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553			   snd_pcm_hw_param_t var, int *dir)
1554{
1555	if (hw_is_mask(var)) {
1556		const struct snd_mask *mask = hw_param_mask_c(params, var);
1557		if (!snd_mask_single(mask))
1558			return -EINVAL;
1559		if (dir)
1560			*dir = 0;
1561		return snd_mask_value(mask);
1562	}
1563	if (hw_is_interval(var)) {
1564		const struct snd_interval *i = hw_param_interval_c(params, var);
1565		if (!snd_interval_single(i))
1566			return -EINVAL;
1567		if (dir)
1568			*dir = i->openmin;
1569		return snd_interval_value(i);
1570	}
1571	return -EINVAL;
1572}
 
1573EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574
1575void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1576				snd_pcm_hw_param_t var)
1577{
1578	if (hw_is_mask(var)) {
1579		snd_mask_none(hw_param_mask(params, var));
1580		params->cmask |= 1 << var;
1581		params->rmask |= 1 << var;
1582	} else if (hw_is_interval(var)) {
1583		snd_interval_none(hw_param_interval(params, var));
1584		params->cmask |= 1 << var;
1585		params->rmask |= 1 << var;
1586	} else {
1587		snd_BUG();
1588	}
1589}
 
1590EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591
1592static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1593				   snd_pcm_hw_param_t var)
1594{
1595	int changed;
1596	if (hw_is_mask(var))
1597		changed = snd_mask_refine_first(hw_param_mask(params, var));
1598	else if (hw_is_interval(var))
1599		changed = snd_interval_refine_first(hw_param_interval(params, var));
1600	else
1601		return -EINVAL;
1602	if (changed > 0) {
1603		params->cmask |= 1 << var;
1604		params->rmask |= 1 << var;
1605	}
1606	return changed;
1607}
1608
1609
1610/**
1611 * snd_pcm_hw_param_first - refine config space and return minimum value
1612 * @pcm: PCM instance
1613 * @params: the hw_params instance
1614 * @var: parameter to retrieve
1615 * @dir: pointer to the direction (-1,0,1) or %NULL
1616 *
1617 * Inside configuration space defined by @params remove from @var all
1618 * values > minimum. Reduce configuration space accordingly.
1619 *
1620 * Return: The minimum, or a negative error code on failure.
1621 */
1622int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1623			   struct snd_pcm_hw_params *params, 
1624			   snd_pcm_hw_param_t var, int *dir)
1625{
1626	int changed = _snd_pcm_hw_param_first(params, var);
1627	if (changed < 0)
1628		return changed;
1629	if (params->rmask) {
1630		int err = snd_pcm_hw_refine(pcm, params);
1631		if (err < 0)
1632			return err;
1633	}
1634	return snd_pcm_hw_param_value(params, var, dir);
1635}
 
1636EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637
1638static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1639				  snd_pcm_hw_param_t var)
1640{
1641	int changed;
1642	if (hw_is_mask(var))
1643		changed = snd_mask_refine_last(hw_param_mask(params, var));
1644	else if (hw_is_interval(var))
1645		changed = snd_interval_refine_last(hw_param_interval(params, var));
1646	else
1647		return -EINVAL;
1648	if (changed > 0) {
1649		params->cmask |= 1 << var;
1650		params->rmask |= 1 << var;
1651	}
1652	return changed;
1653}
1654
1655
1656/**
1657 * snd_pcm_hw_param_last - refine config space and return maximum value
1658 * @pcm: PCM instance
1659 * @params: the hw_params instance
1660 * @var: parameter to retrieve
1661 * @dir: pointer to the direction (-1,0,1) or %NULL
1662 *
1663 * Inside configuration space defined by @params remove from @var all
1664 * values < maximum. Reduce configuration space accordingly.
1665 *
1666 * Return: The maximum, or a negative error code on failure.
1667 */
1668int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1669			  struct snd_pcm_hw_params *params,
1670			  snd_pcm_hw_param_t var, int *dir)
1671{
1672	int changed = _snd_pcm_hw_param_last(params, var);
1673	if (changed < 0)
1674		return changed;
1675	if (params->rmask) {
1676		int err = snd_pcm_hw_refine(pcm, params);
1677		if (err < 0)
1678			return err;
1679	}
1680	return snd_pcm_hw_param_value(params, var, dir);
1681}
 
1682EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1685				   void *arg)
1686{
1687	struct snd_pcm_runtime *runtime = substream->runtime;
1688	unsigned long flags;
1689	snd_pcm_stream_lock_irqsave(substream, flags);
1690	if (snd_pcm_running(substream) &&
1691	    snd_pcm_update_hw_ptr(substream) >= 0)
1692		runtime->status->hw_ptr %= runtime->buffer_size;
1693	else {
1694		runtime->status->hw_ptr = 0;
1695		runtime->hw_ptr_wrap = 0;
1696	}
1697	snd_pcm_stream_unlock_irqrestore(substream, flags);
1698	return 0;
1699}
1700
1701static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1702					  void *arg)
1703{
1704	struct snd_pcm_channel_info *info = arg;
1705	struct snd_pcm_runtime *runtime = substream->runtime;
1706	int width;
1707	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1708		info->offset = -1;
1709		return 0;
1710	}
1711	width = snd_pcm_format_physical_width(runtime->format);
1712	if (width < 0)
1713		return width;
1714	info->offset = 0;
1715	switch (runtime->access) {
1716	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1717	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1718		info->first = info->channel * width;
1719		info->step = runtime->channels * width;
1720		break;
1721	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1722	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723	{
1724		size_t size = runtime->dma_bytes / runtime->channels;
1725		info->first = info->channel * size * 8;
1726		info->step = width;
1727		break;
1728	}
1729	default:
1730		snd_BUG();
1731		break;
1732	}
1733	return 0;
1734}
1735
1736static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1737				       void *arg)
1738{
1739	struct snd_pcm_hw_params *params = arg;
1740	snd_pcm_format_t format;
1741	int channels;
1742	ssize_t frame_size;
1743
1744	params->fifo_size = substream->runtime->hw.fifo_size;
1745	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1746		format = params_format(params);
1747		channels = params_channels(params);
1748		frame_size = snd_pcm_format_size(format, channels);
1749		if (frame_size > 0)
1750			params->fifo_size /= frame_size;
1751	}
1752	return 0;
1753}
1754
1755/**
1756 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1757 * @substream: the pcm substream instance
1758 * @cmd: ioctl command
1759 * @arg: ioctl argument
1760 *
1761 * Processes the generic ioctl commands for PCM.
1762 * Can be passed as the ioctl callback for PCM ops.
1763 *
1764 * Return: Zero if successful, or a negative error code on failure.
1765 */
1766int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1767		      unsigned int cmd, void *arg)
1768{
1769	switch (cmd) {
 
 
1770	case SNDRV_PCM_IOCTL1_RESET:
1771		return snd_pcm_lib_ioctl_reset(substream, arg);
1772	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1773		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1774	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1775		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1776	}
1777	return -ENXIO;
1778}
 
1779EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1780
1781/**
1782 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1783 *						under acquired lock of PCM substream.
1784 * @substream: the instance of pcm substream.
1785 *
1786 * This function is called when the batch of audio data frames as the same size as the period of
1787 * buffer is already processed in audio data transmission.
1788 *
1789 * The call of function updates the status of runtime with the latest position of audio data
1790 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1791 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1792 * substream according to configured threshold.
1793 *
1794 * The function is intended to use for the case that PCM driver operates audio data frames under
1795 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1796 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1797 * since lock of PCM substream should be acquired in advance.
1798 *
1799 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1800 * function:
1801 *
1802 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1803 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1804 * - .get_time_info - to retrieve audio time stamp if needed.
1805 *
1806 * Even if more than one periods have elapsed since the last call, you have to call this only once.
 
1807 */
1808void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809{
1810	struct snd_pcm_runtime *runtime;
 
1811
1812	if (PCM_RUNTIME_CHECK(substream))
1813		return;
1814	runtime = substream->runtime;
1815
 
 
 
 
1816	if (!snd_pcm_running(substream) ||
1817	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1818		goto _end;
1819
1820#ifdef CONFIG_SND_PCM_TIMER
1821	if (substream->timer_running)
1822		snd_timer_interrupt(substream->timer, 1);
1823#endif
1824 _end:
1825	snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1826}
1827EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1828
1829/**
1830 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831 *			      PCM substream.
1832 * @substream: the instance of PCM substream.
1833 *
1834 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1835 * acquiring lock of PCM substream voluntarily.
1836 *
1837 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1838 * the batch of audio data frames as the same size as the period of buffer is already processed in
1839 * audio data transmission.
1840 */
1841void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842{
1843	unsigned long flags;
1844
1845	if (snd_BUG_ON(!substream))
1846		return;
1847
1848	snd_pcm_stream_lock_irqsave(substream, flags);
1849	snd_pcm_period_elapsed_under_stream_lock(substream);
1850	snd_pcm_stream_unlock_irqrestore(substream, flags);
 
 
 
1851}
 
1852EXPORT_SYMBOL(snd_pcm_period_elapsed);
1853
1854/*
1855 * Wait until avail_min data becomes available
1856 * Returns a negative error code if any error occurs during operation.
1857 * The available space is stored on availp.  When err = 0 and avail = 0
1858 * on the capture stream, it indicates the stream is in DRAINING state.
1859 */
1860static int wait_for_avail(struct snd_pcm_substream *substream,
1861			      snd_pcm_uframes_t *availp)
1862{
1863	struct snd_pcm_runtime *runtime = substream->runtime;
1864	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1865	wait_queue_entry_t wait;
1866	int err = 0;
1867	snd_pcm_uframes_t avail = 0;
1868	long wait_time, tout;
1869
1870	init_waitqueue_entry(&wait, current);
1871	set_current_state(TASK_INTERRUPTIBLE);
1872	add_wait_queue(&runtime->tsleep, &wait);
1873
1874	if (runtime->no_period_wakeup)
1875		wait_time = MAX_SCHEDULE_TIMEOUT;
1876	else {
1877		/* use wait time from substream if available */
1878		if (substream->wait_time) {
1879			wait_time = substream->wait_time;
1880		} else {
1881			wait_time = 10;
1882
1883			if (runtime->rate) {
1884				long t = runtime->period_size * 2 /
1885					 runtime->rate;
1886				wait_time = max(t, wait_time);
1887			}
1888			wait_time = msecs_to_jiffies(wait_time * 1000);
1889		}
 
1890	}
1891
1892	for (;;) {
1893		if (signal_pending(current)) {
1894			err = -ERESTARTSYS;
1895			break;
1896		}
1897
1898		/*
1899		 * We need to check if space became available already
1900		 * (and thus the wakeup happened already) first to close
1901		 * the race of space already having become available.
1902		 * This check must happen after been added to the waitqueue
1903		 * and having current state be INTERRUPTIBLE.
1904		 */
1905		avail = snd_pcm_avail(substream);
 
 
 
1906		if (avail >= runtime->twake)
1907			break;
1908		snd_pcm_stream_unlock_irq(substream);
1909
1910		tout = schedule_timeout(wait_time);
1911
1912		snd_pcm_stream_lock_irq(substream);
1913		set_current_state(TASK_INTERRUPTIBLE);
1914		switch (runtime->state) {
1915		case SNDRV_PCM_STATE_SUSPENDED:
1916			err = -ESTRPIPE;
1917			goto _endloop;
1918		case SNDRV_PCM_STATE_XRUN:
1919			err = -EPIPE;
1920			goto _endloop;
1921		case SNDRV_PCM_STATE_DRAINING:
1922			if (is_playback)
1923				err = -EPIPE;
1924			else 
1925				avail = 0; /* indicate draining */
1926			goto _endloop;
1927		case SNDRV_PCM_STATE_OPEN:
1928		case SNDRV_PCM_STATE_SETUP:
1929		case SNDRV_PCM_STATE_DISCONNECTED:
1930			err = -EBADFD;
1931			goto _endloop;
1932		case SNDRV_PCM_STATE_PAUSED:
1933			continue;
1934		}
1935		if (!tout) {
1936			pcm_dbg(substream->pcm,
1937				"%s write error (DMA or IRQ trouble?)\n",
1938				is_playback ? "playback" : "capture");
1939			err = -EIO;
1940			break;
1941		}
1942	}
1943 _endloop:
1944	set_current_state(TASK_RUNNING);
1945	remove_wait_queue(&runtime->tsleep, &wait);
1946	*availp = avail;
1947	return err;
1948}
1949	
1950typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1951			      int channel, unsigned long hwoff,
1952			      void *buf, unsigned long bytes);
1953
1954typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1955			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1956
1957/* calculate the target DMA-buffer position to be written/read */
1958static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1959			   int channel, unsigned long hwoff)
1960{
1961	return runtime->dma_area + hwoff +
1962		channel * (runtime->dma_bytes / runtime->channels);
1963}
1964
1965/* default copy_user ops for write; used for both interleaved and non- modes */
1966static int default_write_copy(struct snd_pcm_substream *substream,
1967			      int channel, unsigned long hwoff,
1968			      void *buf, unsigned long bytes)
1969{
1970	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1971			   (void __user *)buf, bytes))
1972		return -EFAULT;
1973	return 0;
1974}
1975
1976/* default copy_kernel ops for write */
1977static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1978				     int channel, unsigned long hwoff,
1979				     void *buf, unsigned long bytes)
1980{
1981	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1982	return 0;
1983}
1984
1985/* fill silence instead of copy data; called as a transfer helper
1986 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1987 * a NULL buffer is passed
1988 */
1989static int fill_silence(struct snd_pcm_substream *substream, int channel,
1990			unsigned long hwoff, void *buf, unsigned long bytes)
1991{
1992	struct snd_pcm_runtime *runtime = substream->runtime;
1993
1994	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1995		return 0;
1996	if (substream->ops->fill_silence)
1997		return substream->ops->fill_silence(substream, channel,
1998						    hwoff, bytes);
1999
2000	snd_pcm_format_set_silence(runtime->format,
2001				   get_dma_ptr(runtime, channel, hwoff),
2002				   bytes_to_samples(runtime, bytes));
2003	return 0;
2004}
2005
2006/* default copy_user ops for read; used for both interleaved and non- modes */
2007static int default_read_copy(struct snd_pcm_substream *substream,
2008			     int channel, unsigned long hwoff,
2009			     void *buf, unsigned long bytes)
2010{
2011	if (copy_to_user((void __user *)buf,
2012			 get_dma_ptr(substream->runtime, channel, hwoff),
2013			 bytes))
2014		return -EFAULT;
2015	return 0;
2016}
2017
2018/* default copy_kernel ops for read */
2019static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2020				    int channel, unsigned long hwoff,
2021				    void *buf, unsigned long bytes)
2022{
2023	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2024	return 0;
2025}
2026
2027/* call transfer function with the converted pointers and sizes;
2028 * for interleaved mode, it's one shot for all samples
2029 */
2030static int interleaved_copy(struct snd_pcm_substream *substream,
2031			    snd_pcm_uframes_t hwoff, void *data,
2032			    snd_pcm_uframes_t off,
2033			    snd_pcm_uframes_t frames,
2034			    pcm_transfer_f transfer)
 
2035{
2036	struct snd_pcm_runtime *runtime = substream->runtime;
 
 
 
 
2037
2038	/* convert to bytes */
2039	hwoff = frames_to_bytes(runtime, hwoff);
2040	off = frames_to_bytes(runtime, off);
2041	frames = frames_to_bytes(runtime, frames);
2042	return transfer(substream, 0, hwoff, data + off, frames);
2043}
2044
2045/* call transfer function with the converted pointers and sizes for each
2046 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2047 */
2048static int noninterleaved_copy(struct snd_pcm_substream *substream,
2049			       snd_pcm_uframes_t hwoff, void *data,
2050			       snd_pcm_uframes_t off,
2051			       snd_pcm_uframes_t frames,
2052			       pcm_transfer_f transfer)
2053{
2054	struct snd_pcm_runtime *runtime = substream->runtime;
2055	int channels = runtime->channels;
2056	void **bufs = data;
2057	int c, err;
 
 
 
2058
2059	/* convert to bytes; note that it's not frames_to_bytes() here.
2060	 * in non-interleaved mode, we copy for each channel, thus
2061	 * each copy is n_samples bytes x channels = whole frames.
2062	 */
2063	off = samples_to_bytes(runtime, off);
2064	frames = samples_to_bytes(runtime, frames);
2065	hwoff = samples_to_bytes(runtime, hwoff);
2066	for (c = 0; c < channels; ++c, ++bufs) {
2067		if (!data || !*bufs)
2068			err = fill_silence(substream, c, hwoff, NULL, frames);
2069		else
2070			err = transfer(substream, c, hwoff, *bufs + off,
2071				       frames);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072		if (err < 0)
2073			return err;
2074	}
2075	return 0;
2076}
 
 
 
 
 
 
 
 
 
 
 
 
 
2077
2078/* fill silence on the given buffer position;
2079 * called from snd_pcm_playback_silence()
2080 */
2081static int fill_silence_frames(struct snd_pcm_substream *substream,
2082			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2083{
2084	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2085	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2086		return interleaved_copy(substream, off, NULL, 0, frames,
2087					fill_silence);
2088	else
2089		return noninterleaved_copy(substream, off, NULL, 0, frames,
2090					   fill_silence);
 
 
 
 
2091}
2092
2093/* sanity-check for read/write methods */
2094static int pcm_sanity_check(struct snd_pcm_substream *substream)
2095{
2096	struct snd_pcm_runtime *runtime;
2097	if (PCM_RUNTIME_CHECK(substream))
2098		return -ENXIO;
2099	runtime = substream->runtime;
2100	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2101		return -EINVAL;
2102	if (runtime->state == SNDRV_PCM_STATE_OPEN)
2103		return -EBADFD;
2104	return 0;
2105}
2106
2107static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2108{
2109	switch (runtime->state) {
2110	case SNDRV_PCM_STATE_PREPARED:
2111	case SNDRV_PCM_STATE_RUNNING:
2112	case SNDRV_PCM_STATE_PAUSED:
2113		return 0;
2114	case SNDRV_PCM_STATE_XRUN:
2115		return -EPIPE;
2116	case SNDRV_PCM_STATE_SUSPENDED:
2117		return -ESTRPIPE;
2118	default:
2119		return -EBADFD;
2120	}
 
 
 
2121}
2122
2123/* update to the given appl_ptr and call ack callback if needed;
2124 * when an error is returned, take back to the original value
2125 */
2126int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2127			   snd_pcm_uframes_t appl_ptr)
 
2128{
2129	struct snd_pcm_runtime *runtime = substream->runtime;
2130	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2131	snd_pcm_sframes_t diff;
2132	int ret;
2133
2134	if (old_appl_ptr == appl_ptr)
2135		return 0;
2136
2137	if (appl_ptr >= runtime->boundary)
2138		return -EINVAL;
2139	/*
2140	 * check if a rewind is requested by the application
2141	 */
2142	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2143		diff = appl_ptr - old_appl_ptr;
2144		if (diff >= 0) {
2145			if (diff > runtime->buffer_size)
2146				return -EINVAL;
2147		} else {
2148			if (runtime->boundary + diff > runtime->buffer_size)
2149				return -EINVAL;
2150		}
2151	}
2152
2153	runtime->control->appl_ptr = appl_ptr;
2154	if (substream->ops->ack) {
2155		ret = substream->ops->ack(substream);
2156		if (ret < 0) {
2157			runtime->control->appl_ptr = old_appl_ptr;
2158			return ret;
 
 
 
 
2159		}
2160	}
2161
2162	trace_applptr(substream, old_appl_ptr, appl_ptr);
2163
2164	return 0;
2165}
2166
2167/* the common loop for read/write data */
2168snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2169				     void *data, bool interleaved,
2170				     snd_pcm_uframes_t size, bool in_kernel)
2171{
2172	struct snd_pcm_runtime *runtime = substream->runtime;
2173	snd_pcm_uframes_t xfer = 0;
2174	snd_pcm_uframes_t offset = 0;
2175	snd_pcm_uframes_t avail;
2176	pcm_copy_f writer;
2177	pcm_transfer_f transfer;
2178	bool nonblock;
2179	bool is_playback;
2180	int err;
2181
2182	err = pcm_sanity_check(substream);
2183	if (err < 0)
2184		return err;
 
 
2185
2186	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2187	if (interleaved) {
2188		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2189		    runtime->channels > 1)
2190			return -EINVAL;
2191		writer = interleaved_copy;
2192	} else {
2193		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2194			return -EINVAL;
2195		writer = noninterleaved_copy;
2196	}
2197
2198	if (!data) {
2199		if (is_playback)
2200			transfer = fill_silence;
2201		else
2202			return -EINVAL;
2203	} else if (in_kernel) {
2204		if (substream->ops->copy_kernel)
2205			transfer = substream->ops->copy_kernel;
2206		else
2207			transfer = is_playback ?
2208				default_write_copy_kernel : default_read_copy_kernel;
 
 
2209	} else {
2210		if (substream->ops->copy_user)
2211			transfer = (pcm_transfer_f)substream->ops->copy_user;
2212		else
2213			transfer = is_playback ?
2214				default_write_copy : default_read_copy;
2215	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216
2217	if (size == 0)
2218		return 0;
2219
2220	nonblock = !!(substream->f_flags & O_NONBLOCK);
2221
2222	snd_pcm_stream_lock_irq(substream);
2223	err = pcm_accessible_state(runtime);
2224	if (err < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225		goto _end_unlock;
 
2226
2227	runtime->twake = runtime->control->avail_min ? : 1;
2228	if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2229		snd_pcm_update_hw_ptr(substream);
2230
2231	/*
2232	 * If size < start_threshold, wait indefinitely. Another
2233	 * thread may start capture
2234	 */
2235	if (!is_playback &&
2236	    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2237	    size >= runtime->start_threshold) {
2238		err = snd_pcm_start(substream);
2239		if (err < 0)
2240			goto _end_unlock;
2241	}
2242
2243	avail = snd_pcm_avail(substream);
2244
2245	while (size > 0) {
2246		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2247		snd_pcm_uframes_t cont;
2248		if (!avail) {
2249			if (!is_playback &&
2250			    runtime->state == SNDRV_PCM_STATE_DRAINING) {
2251				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2252				goto _end_unlock;
2253			}
2254			if (nonblock) {
2255				err = -EAGAIN;
2256				goto _end_unlock;
2257			}
2258			runtime->twake = min_t(snd_pcm_uframes_t, size,
2259					runtime->control->avail_min ? : 1);
2260			err = wait_for_avail(substream, &avail);
2261			if (err < 0)
2262				goto _end_unlock;
2263			if (!avail)
2264				continue; /* draining */
2265		}
2266		frames = size > avail ? avail : size;
2267		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2268		appl_ofs = appl_ptr % runtime->buffer_size;
2269		cont = runtime->buffer_size - appl_ofs;
2270		if (frames > cont)
2271			frames = cont;
2272		if (snd_BUG_ON(!frames)) {
2273			err = -EINVAL;
2274			goto _end_unlock;
2275		}
2276		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2277			err = -EBUSY;
2278			goto _end_unlock;
2279		}
 
 
2280		snd_pcm_stream_unlock_irq(substream);
2281		if (!is_playback)
2282			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2283		err = writer(substream, appl_ofs, data, offset, frames,
2284			     transfer);
2285		if (is_playback)
2286			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2287		snd_pcm_stream_lock_irq(substream);
2288		atomic_dec(&runtime->buffer_accessing);
2289		if (err < 0)
2290			goto _end_unlock;
2291		err = pcm_accessible_state(runtime);
2292		if (err < 0)
 
2293			goto _end_unlock;
 
 
 
 
 
 
2294		appl_ptr += frames;
2295		if (appl_ptr >= runtime->boundary)
2296			appl_ptr -= runtime->boundary;
2297		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2298		if (err < 0)
2299			goto _end_unlock;
2300
2301		offset += frames;
2302		size -= frames;
2303		xfer += frames;
2304		avail -= frames;
2305		if (is_playback &&
2306		    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2307		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2308			err = snd_pcm_start(substream);
2309			if (err < 0)
2310				goto _end_unlock;
2311		}
2312	}
2313 _end_unlock:
2314	runtime->twake = 0;
2315	if (xfer > 0 && err >= 0)
2316		snd_pcm_update_state(substream, runtime);
2317	snd_pcm_stream_unlock_irq(substream);
2318	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2319}
2320EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2321
2322/*
2323 * standard channel mapping helpers
2324 */
2325
2326/* default channel maps for multi-channel playbacks, up to 8 channels */
2327const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2328	{ .channels = 1,
2329	  .map = { SNDRV_CHMAP_MONO } },
2330	{ .channels = 2,
2331	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2332	{ .channels = 4,
2333	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2334		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2335	{ .channels = 6,
2336	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2337		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2339	{ .channels = 8,
2340	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2341		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2342		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2343		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2344	{ }
2345};
2346EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2347
2348/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2349const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2350	{ .channels = 1,
2351	  .map = { SNDRV_CHMAP_MONO } },
2352	{ .channels = 2,
2353	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2354	{ .channels = 4,
2355	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2356		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2357	{ .channels = 6,
2358	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2359		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2360		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2361	{ .channels = 8,
2362	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2363		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2364		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2365		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2366	{ }
2367};
2368EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2369
2370static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2371{
2372	if (ch > info->max_channels)
2373		return false;
2374	return !info->channel_mask || (info->channel_mask & (1U << ch));
 
 
 
 
 
 
 
 
 
2375}
2376
2377static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2378			      struct snd_ctl_elem_info *uinfo)
2379{
2380	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2381
2382	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2383	uinfo->count = info->max_channels;
2384	uinfo->value.integer.min = 0;
2385	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2386	return 0;
2387}
2388
2389/* get callback for channel map ctl element
2390 * stores the channel position firstly matching with the current channels
2391 */
2392static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2393			     struct snd_ctl_elem_value *ucontrol)
2394{
2395	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2396	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2397	struct snd_pcm_substream *substream;
2398	const struct snd_pcm_chmap_elem *map;
2399
2400	if (!info->chmap)
2401		return -EINVAL;
2402	substream = snd_pcm_chmap_substream(info, idx);
2403	if (!substream)
2404		return -ENODEV;
2405	memset(ucontrol->value.integer.value, 0,
2406	       sizeof(long) * info->max_channels);
2407	if (!substream->runtime)
2408		return 0; /* no channels set */
2409	for (map = info->chmap; map->channels; map++) {
2410		int i;
2411		if (map->channels == substream->runtime->channels &&
2412		    valid_chmap_channels(info, map->channels)) {
2413			for (i = 0; i < map->channels; i++)
2414				ucontrol->value.integer.value[i] = map->map[i];
2415			return 0;
2416		}
2417	}
2418	return -EINVAL;
2419}
2420
2421/* tlv callback for channel map ctl element
2422 * expands the pre-defined channel maps in a form of TLV
2423 */
2424static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2425			     unsigned int size, unsigned int __user *tlv)
2426{
2427	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2428	const struct snd_pcm_chmap_elem *map;
2429	unsigned int __user *dst;
2430	int c, count = 0;
2431
2432	if (!info->chmap)
2433		return -EINVAL;
2434	if (size < 8)
2435		return -ENOMEM;
2436	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2437		return -EFAULT;
2438	size -= 8;
2439	dst = tlv + 2;
2440	for (map = info->chmap; map->channels; map++) {
2441		int chs_bytes = map->channels * 4;
2442		if (!valid_chmap_channels(info, map->channels))
2443			continue;
2444		if (size < 8)
2445			return -ENOMEM;
2446		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2447		    put_user(chs_bytes, dst + 1))
2448			return -EFAULT;
2449		dst += 2;
2450		size -= 8;
2451		count += 8;
2452		if (size < chs_bytes)
2453			return -ENOMEM;
2454		size -= chs_bytes;
2455		count += chs_bytes;
2456		for (c = 0; c < map->channels; c++) {
2457			if (put_user(map->map[c], dst))
2458				return -EFAULT;
2459			dst++;
2460		}
2461	}
2462	if (put_user(count, tlv + 1))
2463		return -EFAULT;
2464	return 0;
2465}
2466
2467static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
 
 
2468{
2469	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2470	info->pcm->streams[info->stream].chmap_kctl = NULL;
2471	kfree(info);
2472}
2473
2474/**
2475 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2476 * @pcm: the assigned PCM instance
2477 * @stream: stream direction
2478 * @chmap: channel map elements (for query)
2479 * @max_channels: the max number of channels for the stream
2480 * @private_value: the value passed to each kcontrol's private_value field
2481 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2482 *
2483 * Create channel-mapping control elements assigned to the given PCM stream(s).
2484 * Return: Zero if successful, or a negative error value.
2485 */
2486int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2487			   const struct snd_pcm_chmap_elem *chmap,
2488			   int max_channels,
2489			   unsigned long private_value,
2490			   struct snd_pcm_chmap **info_ret)
2491{
2492	struct snd_pcm_chmap *info;
2493	struct snd_kcontrol_new knew = {
2494		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2495		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2496			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2497			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2498		.info = pcm_chmap_ctl_info,
2499		.get = pcm_chmap_ctl_get,
2500		.tlv.c = pcm_chmap_ctl_tlv,
2501	};
2502	int err;
2503
2504	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2505		return -EBUSY;
2506	info = kzalloc(sizeof(*info), GFP_KERNEL);
2507	if (!info)
2508		return -ENOMEM;
2509	info->pcm = pcm;
2510	info->stream = stream;
2511	info->chmap = chmap;
2512	info->max_channels = max_channels;
2513	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2514		knew.name = "Playback Channel Map";
2515	else
2516		knew.name = "Capture Channel Map";
2517	knew.device = pcm->device;
2518	knew.count = pcm->streams[stream].substream_count;
2519	knew.private_value = private_value;
2520	info->kctl = snd_ctl_new1(&knew, info);
2521	if (!info->kctl) {
2522		kfree(info);
2523		return -ENOMEM;
2524	}
2525	info->kctl->private_free = pcm_chmap_ctl_private_free;
2526	err = snd_ctl_add(pcm->card, info->kctl);
2527	if (err < 0)
2528		return err;
2529	pcm->streams[stream].chmap_kctl = info->kctl;
2530	if (info_ret)
2531		*info_ret = info;
2532	return 0;
 
 
 
 
2533}
2534EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
 
v3.5.6
 
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
 
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
 
  29#include <sound/info.h>
  30#include <sound/pcm.h>
  31#include <sound/pcm_params.h>
  32#include <sound/timer.h>
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34/*
  35 * fill ring buffer with silence
  36 * runtime->silence_start: starting pointer to silence area
  37 * runtime->silence_filled: size filled with silence
  38 * runtime->silence_threshold: threshold from application
  39 * runtime->silence_size: maximal size from application
  40 *
  41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  42 */
  43void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  44{
  45	struct snd_pcm_runtime *runtime = substream->runtime;
  46	snd_pcm_uframes_t frames, ofs, transfer;
 
  47
  48	if (runtime->silence_size < runtime->boundary) {
  49		snd_pcm_sframes_t noise_dist, n;
  50		if (runtime->silence_start != runtime->control->appl_ptr) {
  51			n = runtime->control->appl_ptr - runtime->silence_start;
 
  52			if (n < 0)
  53				n += runtime->boundary;
  54			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  55				runtime->silence_filled -= n;
  56			else
  57				runtime->silence_filled = 0;
  58			runtime->silence_start = runtime->control->appl_ptr;
  59		}
  60		if (runtime->silence_filled >= runtime->buffer_size)
  61			return;
  62		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  63		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  64			return;
  65		frames = runtime->silence_threshold - noise_dist;
  66		if (frames > runtime->silence_size)
  67			frames = runtime->silence_size;
  68	} else {
  69		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  70			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  71			if (avail > runtime->buffer_size)
  72				avail = runtime->buffer_size;
  73			runtime->silence_filled = avail > 0 ? avail : 0;
  74			runtime->silence_start = (runtime->status->hw_ptr +
  75						  runtime->silence_filled) %
  76						 runtime->boundary;
  77		} else {
  78			ofs = runtime->status->hw_ptr;
  79			frames = new_hw_ptr - ofs;
  80			if ((snd_pcm_sframes_t)frames < 0)
  81				frames += runtime->boundary;
  82			runtime->silence_filled -= frames;
  83			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  84				runtime->silence_filled = 0;
  85				runtime->silence_start = new_hw_ptr;
  86			} else {
  87				runtime->silence_start = ofs;
  88			}
  89		}
  90		frames = runtime->buffer_size - runtime->silence_filled;
  91	}
  92	if (snd_BUG_ON(frames > runtime->buffer_size))
  93		return;
  94	if (frames == 0)
  95		return;
  96	ofs = runtime->silence_start % runtime->buffer_size;
  97	while (frames > 0) {
  98		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
  99		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 100		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 101			if (substream->ops->silence) {
 102				int err;
 103				err = substream->ops->silence(substream, -1, ofs, transfer);
 104				snd_BUG_ON(err < 0);
 105			} else {
 106				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 107				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 108			}
 109		} else {
 110			unsigned int c;
 111			unsigned int channels = runtime->channels;
 112			if (substream->ops->silence) {
 113				for (c = 0; c < channels; ++c) {
 114					int err;
 115					err = substream->ops->silence(substream, c, ofs, transfer);
 116					snd_BUG_ON(err < 0);
 117				}
 118			} else {
 119				size_t dma_csize = runtime->dma_bytes / channels;
 120				for (c = 0; c < channels; ++c) {
 121					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 122					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 123				}
 124			}
 125		}
 126		runtime->silence_filled += transfer;
 127		frames -= transfer;
 128		ofs = 0;
 129	}
 
 130}
 131
 132#ifdef CONFIG_SND_DEBUG
 133void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 134			   char *name, size_t len)
 135{
 136	snprintf(name, len, "pcmC%dD%d%c:%d",
 137		 substream->pcm->card->number,
 138		 substream->pcm->device,
 139		 substream->stream ? 'c' : 'p',
 140		 substream->number);
 141}
 142EXPORT_SYMBOL(snd_pcm_debug_name);
 143#endif
 144
 145#define XRUN_DEBUG_BASIC	(1<<0)
 146#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 147#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 148#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 149#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 150#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 151#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 152
 153#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 154
 155#define xrun_debug(substream, mask) \
 156			((substream)->pstr->xrun_debug & (mask))
 157#else
 158#define xrun_debug(substream, mask)	0
 159#endif
 160
 161#define dump_stack_on_xrun(substream) do {			\
 162		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 163			dump_stack();				\
 164	} while (0)
 165
 166static void xrun(struct snd_pcm_substream *substream)
 
 167{
 168	struct snd_pcm_runtime *runtime = substream->runtime;
 169
 170	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 171		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 
 
 
 
 
 
 172	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 173	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 174		char name[16];
 175		snd_pcm_debug_name(substream, name, sizeof(name));
 176		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 177		dump_stack_on_xrun(substream);
 178	}
 179}
 180
 181#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 182#define hw_ptr_error(substream, fmt, args...)				\
 183	do {								\
 
 184		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 185			xrun_log_show(substream);			\
 186			if (printk_ratelimit()) {			\
 187				snd_printd("PCM: " fmt, ##args);	\
 188			}						\
 189			dump_stack_on_xrun(substream);			\
 190		}							\
 191	} while (0)
 192
 193#define XRUN_LOG_CNT	10
 194
 195struct hwptr_log_entry {
 196	unsigned int in_interrupt;
 197	unsigned long jiffies;
 198	snd_pcm_uframes_t pos;
 199	snd_pcm_uframes_t period_size;
 200	snd_pcm_uframes_t buffer_size;
 201	snd_pcm_uframes_t old_hw_ptr;
 202	snd_pcm_uframes_t hw_ptr_base;
 203};
 204
 205struct snd_pcm_hwptr_log {
 206	unsigned int idx;
 207	unsigned int hit: 1;
 208	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 209};
 210
 211static void xrun_log(struct snd_pcm_substream *substream,
 212		     snd_pcm_uframes_t pos, int in_interrupt)
 213{
 214	struct snd_pcm_runtime *runtime = substream->runtime;
 215	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 216	struct hwptr_log_entry *entry;
 217
 218	if (log == NULL) {
 219		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 220		if (log == NULL)
 221			return;
 222		runtime->hwptr_log = log;
 223	} else {
 224		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 225			return;
 226	}
 227	entry = &log->entries[log->idx];
 228	entry->in_interrupt = in_interrupt;
 229	entry->jiffies = jiffies;
 230	entry->pos = pos;
 231	entry->period_size = runtime->period_size;
 232	entry->buffer_size = runtime->buffer_size;
 233	entry->old_hw_ptr = runtime->status->hw_ptr;
 234	entry->hw_ptr_base = runtime->hw_ptr_base;
 235	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 236}
 237
 238static void xrun_log_show(struct snd_pcm_substream *substream)
 239{
 240	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 241	struct hwptr_log_entry *entry;
 242	char name[16];
 243	unsigned int idx;
 244	int cnt;
 245
 246	if (log == NULL)
 247		return;
 248	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 249		return;
 250	snd_pcm_debug_name(substream, name, sizeof(name));
 251	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 252		entry = &log->entries[idx];
 253		if (entry->period_size == 0)
 254			break;
 255		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 256			   "hwptr=%ld/%ld\n",
 257			   name, entry->in_interrupt ? "[Q] " : "",
 258			   entry->jiffies,
 259			   (unsigned long)entry->pos,
 260			   (unsigned long)entry->period_size,
 261			   (unsigned long)entry->buffer_size,
 262			   (unsigned long)entry->old_hw_ptr,
 263			   (unsigned long)entry->hw_ptr_base);
 264		idx++;
 265		idx %= XRUN_LOG_CNT;
 266	}
 267	log->hit = 1;
 268}
 269
 270#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 271
 272#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 273#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
 274#define xrun_log_show(substream)	do { } while (0)
 275
 276#endif
 277
 278int snd_pcm_update_state(struct snd_pcm_substream *substream,
 279			 struct snd_pcm_runtime *runtime)
 280{
 281	snd_pcm_uframes_t avail;
 282
 283	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 284		avail = snd_pcm_playback_avail(runtime);
 285	else
 286		avail = snd_pcm_capture_avail(runtime);
 287	if (avail > runtime->avail_max)
 288		runtime->avail_max = avail;
 289	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 290		if (avail >= runtime->buffer_size) {
 291			snd_pcm_drain_done(substream);
 292			return -EPIPE;
 293		}
 294	} else {
 295		if (avail >= runtime->stop_threshold) {
 296			xrun(substream);
 297			return -EPIPE;
 298		}
 299	}
 300	if (runtime->twake) {
 301		if (avail >= runtime->twake)
 302			wake_up(&runtime->tsleep);
 303	} else if (avail >= runtime->control->avail_min)
 304		wake_up(&runtime->sleep);
 305	return 0;
 306}
 307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 309				  unsigned int in_interrupt)
 310{
 311	struct snd_pcm_runtime *runtime = substream->runtime;
 312	snd_pcm_uframes_t pos;
 313	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 314	snd_pcm_sframes_t hdelta, delta;
 315	unsigned long jdelta;
 316	unsigned long curr_jiffies;
 317	struct timespec curr_tstamp;
 
 
 318
 319	old_hw_ptr = runtime->status->hw_ptr;
 320
 321	/*
 322	 * group pointer, time and jiffies reads to allow for more
 323	 * accurate correlations/corrections.
 324	 * The values are stored at the end of this routine after
 325	 * corrections for hw_ptr position
 326	 */
 327	pos = substream->ops->pointer(substream);
 328	curr_jiffies = jiffies;
 329	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 330		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 
 
 
 
 
 
 
 
 
 
 
 
 331
 332	if (pos == SNDRV_PCM_POS_XRUN) {
 333		xrun(substream);
 334		return -EPIPE;
 335	}
 336	if (pos >= runtime->buffer_size) {
 337		if (printk_ratelimit()) {
 338			char name[16];
 339			snd_pcm_debug_name(substream, name, sizeof(name));
 340			xrun_log_show(substream);
 341			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 342				   "buffer size = %ld, period size = %ld\n",
 343				   name, pos, runtime->buffer_size,
 344				   runtime->period_size);
 345		}
 346		pos = 0;
 347	}
 348	pos -= pos % runtime->min_align;
 349	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 350		xrun_log(substream, pos, in_interrupt);
 351	hw_base = runtime->hw_ptr_base;
 352	new_hw_ptr = hw_base + pos;
 353	if (in_interrupt) {
 354		/* we know that one period was processed */
 355		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 356		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 357		if (delta > new_hw_ptr) {
 358			/* check for double acknowledged interrupts */
 359			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 360			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 361				hw_base += runtime->buffer_size;
 362				if (hw_base >= runtime->boundary)
 363					hw_base = 0;
 
 
 364				new_hw_ptr = hw_base + pos;
 365				goto __delta;
 366			}
 367		}
 368	}
 369	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 370	/* pointer crosses the end of the ring buffer */
 371	if (new_hw_ptr < old_hw_ptr) {
 372		hw_base += runtime->buffer_size;
 373		if (hw_base >= runtime->boundary)
 374			hw_base = 0;
 
 
 375		new_hw_ptr = hw_base + pos;
 376	}
 377      __delta:
 378	delta = new_hw_ptr - old_hw_ptr;
 379	if (delta < 0)
 380		delta += runtime->boundary;
 381	if (xrun_debug(substream, in_interrupt ?
 382			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 383		char name[16];
 384		snd_pcm_debug_name(substream, name, sizeof(name));
 385		snd_printd("%s_update: %s: pos=%u/%u/%u, "
 386			   "hwptr=%ld/%ld/%ld/%ld\n",
 387			   in_interrupt ? "period" : "hwptr",
 388			   name,
 389			   (unsigned int)pos,
 390			   (unsigned int)runtime->period_size,
 391			   (unsigned int)runtime->buffer_size,
 392			   (unsigned long)delta,
 393			   (unsigned long)old_hw_ptr,
 394			   (unsigned long)new_hw_ptr,
 395			   (unsigned long)runtime->hw_ptr_base);
 396	}
 397
 398	if (runtime->no_period_wakeup) {
 399		snd_pcm_sframes_t xrun_threshold;
 400		/*
 401		 * Without regular period interrupts, we have to check
 402		 * the elapsed time to detect xruns.
 403		 */
 404		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 405		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 406			goto no_delta_check;
 407		hdelta = jdelta - delta * HZ / runtime->rate;
 408		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 409		while (hdelta > xrun_threshold) {
 410			delta += runtime->buffer_size;
 411			hw_base += runtime->buffer_size;
 412			if (hw_base >= runtime->boundary)
 413				hw_base = 0;
 
 
 414			new_hw_ptr = hw_base + pos;
 415			hdelta -= runtime->hw_ptr_buffer_jiffies;
 416		}
 417		goto no_delta_check;
 418	}
 419
 420	/* something must be really wrong */
 421	if (delta >= runtime->buffer_size + runtime->period_size) {
 422		hw_ptr_error(substream,
 423			       "Unexpected hw_pointer value %s"
 424			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 425			       "old_hw_ptr=%ld)\n",
 426				     in_interrupt ? "[Q] " : "[P]",
 427				     substream->stream, (long)pos,
 428				     (long)new_hw_ptr, (long)old_hw_ptr);
 429		return 0;
 430	}
 431
 432	/* Do jiffies check only in xrun_debug mode */
 433	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 434		goto no_jiffies_check;
 435
 436	/* Skip the jiffies check for hardwares with BATCH flag.
 437	 * Such hardware usually just increases the position at each IRQ,
 438	 * thus it can't give any strange position.
 439	 */
 440	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 441		goto no_jiffies_check;
 442	hdelta = delta;
 443	if (hdelta < runtime->delay)
 444		goto no_jiffies_check;
 445	hdelta -= runtime->delay;
 446	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 447	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 448		delta = jdelta /
 449			(((runtime->period_size * HZ) / runtime->rate)
 450								+ HZ/100);
 451		/* move new_hw_ptr according jiffies not pos variable */
 452		new_hw_ptr = old_hw_ptr;
 453		hw_base = delta;
 454		/* use loop to avoid checks for delta overflows */
 455		/* the delta value is small or zero in most cases */
 456		while (delta > 0) {
 457			new_hw_ptr += runtime->period_size;
 458			if (new_hw_ptr >= runtime->boundary)
 459				new_hw_ptr -= runtime->boundary;
 
 
 460			delta--;
 461		}
 462		/* align hw_base to buffer_size */
 463		hw_ptr_error(substream,
 464			     "hw_ptr skipping! %s"
 465			     "(pos=%ld, delta=%ld, period=%ld, "
 466			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 467			     in_interrupt ? "[Q] " : "",
 468			     (long)pos, (long)hdelta,
 469			     (long)runtime->period_size, jdelta,
 470			     ((hdelta * HZ) / runtime->rate), hw_base,
 471			     (unsigned long)old_hw_ptr,
 472			     (unsigned long)new_hw_ptr);
 473		/* reset values to proper state */
 474		delta = 0;
 475		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 476	}
 477 no_jiffies_check:
 478	if (delta > runtime->period_size + runtime->period_size / 2) {
 479		hw_ptr_error(substream,
 480			     "Lost interrupts? %s"
 481			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 482			     "old_hw_ptr=%ld)\n",
 483			     in_interrupt ? "[Q] " : "",
 484			     substream->stream, (long)delta,
 485			     (long)new_hw_ptr,
 486			     (long)old_hw_ptr);
 487	}
 488
 489 no_delta_check:
 490	if (runtime->status->hw_ptr == new_hw_ptr)
 
 
 491		return 0;
 
 492
 493	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 494	    runtime->silence_size > 0)
 495		snd_pcm_playback_silence(substream, new_hw_ptr);
 496
 497	if (in_interrupt) {
 498		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 499		if (delta < 0)
 500			delta += runtime->boundary;
 501		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 502		runtime->hw_ptr_interrupt += delta;
 503		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 504			runtime->hw_ptr_interrupt -= runtime->boundary;
 505	}
 506	runtime->hw_ptr_base = hw_base;
 507	runtime->status->hw_ptr = new_hw_ptr;
 508	runtime->hw_ptr_jiffies = curr_jiffies;
 509	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 510		runtime->status->tstamp = curr_tstamp;
 
 
 
 
 511
 512	return snd_pcm_update_state(substream, runtime);
 513}
 514
 515/* CAUTION: call it with irq disabled */
 516int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 517{
 518	return snd_pcm_update_hw_ptr0(substream, 0);
 519}
 520
 521/**
 522 * snd_pcm_set_ops - set the PCM operators
 523 * @pcm: the pcm instance
 524 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 525 * @ops: the operator table
 526 *
 527 * Sets the given PCM operators to the pcm instance.
 528 */
 529void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
 
 530{
 531	struct snd_pcm_str *stream = &pcm->streams[direction];
 532	struct snd_pcm_substream *substream;
 533	
 534	for (substream = stream->substream; substream != NULL; substream = substream->next)
 535		substream->ops = ops;
 536}
 537
 538EXPORT_SYMBOL(snd_pcm_set_ops);
 539
 540/**
 541 * snd_pcm_sync - set the PCM sync id
 542 * @substream: the pcm substream
 543 *
 544 * Sets the PCM sync identifier for the card.
 545 */
 546void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 547{
 548	struct snd_pcm_runtime *runtime = substream->runtime;
 549	
 550	runtime->sync.id32[0] = substream->pcm->card->number;
 551	runtime->sync.id32[1] = -1;
 552	runtime->sync.id32[2] = -1;
 553	runtime->sync.id32[3] = -1;
 554}
 555
 556EXPORT_SYMBOL(snd_pcm_set_sync);
 557
 558/*
 559 *  Standard ioctl routine
 560 */
 561
 562static inline unsigned int div32(unsigned int a, unsigned int b, 
 563				 unsigned int *r)
 564{
 565	if (b == 0) {
 566		*r = 0;
 567		return UINT_MAX;
 568	}
 569	*r = a % b;
 570	return a / b;
 571}
 572
 573static inline unsigned int div_down(unsigned int a, unsigned int b)
 574{
 575	if (b == 0)
 576		return UINT_MAX;
 577	return a / b;
 578}
 579
 580static inline unsigned int div_up(unsigned int a, unsigned int b)
 581{
 582	unsigned int r;
 583	unsigned int q;
 584	if (b == 0)
 585		return UINT_MAX;
 586	q = div32(a, b, &r);
 587	if (r)
 588		++q;
 589	return q;
 590}
 591
 592static inline unsigned int mul(unsigned int a, unsigned int b)
 593{
 594	if (a == 0)
 595		return 0;
 596	if (div_down(UINT_MAX, a) < b)
 597		return UINT_MAX;
 598	return a * b;
 599}
 600
 601static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 602				    unsigned int c, unsigned int *r)
 603{
 604	u_int64_t n = (u_int64_t) a * b;
 605	if (c == 0) {
 606		snd_BUG_ON(!n);
 607		*r = 0;
 608		return UINT_MAX;
 609	}
 610	n = div_u64_rem(n, c, r);
 611	if (n >= UINT_MAX) {
 612		*r = 0;
 613		return UINT_MAX;
 614	}
 615	return n;
 616}
 617
 618/**
 619 * snd_interval_refine - refine the interval value of configurator
 620 * @i: the interval value to refine
 621 * @v: the interval value to refer to
 622 *
 623 * Refines the interval value with the reference value.
 624 * The interval is changed to the range satisfying both intervals.
 625 * The interval status (min, max, integer, etc.) are evaluated.
 626 *
 627 * Returns non-zero if the value is changed, zero if not changed.
 
 628 */
 629int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 630{
 631	int changed = 0;
 632	if (snd_BUG_ON(snd_interval_empty(i)))
 633		return -EINVAL;
 634	if (i->min < v->min) {
 635		i->min = v->min;
 636		i->openmin = v->openmin;
 637		changed = 1;
 638	} else if (i->min == v->min && !i->openmin && v->openmin) {
 639		i->openmin = 1;
 640		changed = 1;
 641	}
 642	if (i->max > v->max) {
 643		i->max = v->max;
 644		i->openmax = v->openmax;
 645		changed = 1;
 646	} else if (i->max == v->max && !i->openmax && v->openmax) {
 647		i->openmax = 1;
 648		changed = 1;
 649	}
 650	if (!i->integer && v->integer) {
 651		i->integer = 1;
 652		changed = 1;
 653	}
 654	if (i->integer) {
 655		if (i->openmin) {
 656			i->min++;
 657			i->openmin = 0;
 658		}
 659		if (i->openmax) {
 660			i->max--;
 661			i->openmax = 0;
 662		}
 663	} else if (!i->openmin && !i->openmax && i->min == i->max)
 664		i->integer = 1;
 665	if (snd_interval_checkempty(i)) {
 666		snd_interval_none(i);
 667		return -EINVAL;
 668	}
 669	return changed;
 670}
 671
 672EXPORT_SYMBOL(snd_interval_refine);
 673
 674static int snd_interval_refine_first(struct snd_interval *i)
 675{
 
 
 676	if (snd_BUG_ON(snd_interval_empty(i)))
 677		return -EINVAL;
 678	if (snd_interval_single(i))
 679		return 0;
 680	i->max = i->min;
 681	i->openmax = i->openmin;
 682	if (i->openmax)
 683		i->max++;
 
 
 684	return 1;
 685}
 686
 687static int snd_interval_refine_last(struct snd_interval *i)
 688{
 
 
 689	if (snd_BUG_ON(snd_interval_empty(i)))
 690		return -EINVAL;
 691	if (snd_interval_single(i))
 692		return 0;
 693	i->min = i->max;
 694	i->openmin = i->openmax;
 695	if (i->openmin)
 696		i->min--;
 
 
 697	return 1;
 698}
 699
 700void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 701{
 702	if (a->empty || b->empty) {
 703		snd_interval_none(c);
 704		return;
 705	}
 706	c->empty = 0;
 707	c->min = mul(a->min, b->min);
 708	c->openmin = (a->openmin || b->openmin);
 709	c->max = mul(a->max,  b->max);
 710	c->openmax = (a->openmax || b->openmax);
 711	c->integer = (a->integer && b->integer);
 712}
 713
 714/**
 715 * snd_interval_div - refine the interval value with division
 716 * @a: dividend
 717 * @b: divisor
 718 * @c: quotient
 719 *
 720 * c = a / b
 721 *
 722 * Returns non-zero if the value is changed, zero if not changed.
 723 */
 724void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 725{
 726	unsigned int r;
 727	if (a->empty || b->empty) {
 728		snd_interval_none(c);
 729		return;
 730	}
 731	c->empty = 0;
 732	c->min = div32(a->min, b->max, &r);
 733	c->openmin = (r || a->openmin || b->openmax);
 734	if (b->min > 0) {
 735		c->max = div32(a->max, b->min, &r);
 736		if (r) {
 737			c->max++;
 738			c->openmax = 1;
 739		} else
 740			c->openmax = (a->openmax || b->openmin);
 741	} else {
 742		c->max = UINT_MAX;
 743		c->openmax = 0;
 744	}
 745	c->integer = 0;
 746}
 747
 748/**
 749 * snd_interval_muldivk - refine the interval value
 750 * @a: dividend 1
 751 * @b: dividend 2
 752 * @k: divisor (as integer)
 753 * @c: result
 754  *
 755 * c = a * b / k
 756 *
 757 * Returns non-zero if the value is changed, zero if not changed.
 758 */
 759void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 760		      unsigned int k, struct snd_interval *c)
 761{
 762	unsigned int r;
 763	if (a->empty || b->empty) {
 764		snd_interval_none(c);
 765		return;
 766	}
 767	c->empty = 0;
 768	c->min = muldiv32(a->min, b->min, k, &r);
 769	c->openmin = (r || a->openmin || b->openmin);
 770	c->max = muldiv32(a->max, b->max, k, &r);
 771	if (r) {
 772		c->max++;
 773		c->openmax = 1;
 774	} else
 775		c->openmax = (a->openmax || b->openmax);
 776	c->integer = 0;
 777}
 778
 779/**
 780 * snd_interval_mulkdiv - refine the interval value
 781 * @a: dividend 1
 782 * @k: dividend 2 (as integer)
 783 * @b: divisor
 784 * @c: result
 785 *
 786 * c = a * k / b
 787 *
 788 * Returns non-zero if the value is changed, zero if not changed.
 789 */
 790void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 791		      const struct snd_interval *b, struct snd_interval *c)
 792{
 793	unsigned int r;
 794	if (a->empty || b->empty) {
 795		snd_interval_none(c);
 796		return;
 797	}
 798	c->empty = 0;
 799	c->min = muldiv32(a->min, k, b->max, &r);
 800	c->openmin = (r || a->openmin || b->openmax);
 801	if (b->min > 0) {
 802		c->max = muldiv32(a->max, k, b->min, &r);
 803		if (r) {
 804			c->max++;
 805			c->openmax = 1;
 806		} else
 807			c->openmax = (a->openmax || b->openmin);
 808	} else {
 809		c->max = UINT_MAX;
 810		c->openmax = 0;
 811	}
 812	c->integer = 0;
 813}
 814
 815/* ---- */
 816
 817
 818/**
 819 * snd_interval_ratnum - refine the interval value
 820 * @i: interval to refine
 821 * @rats_count: number of ratnum_t 
 822 * @rats: ratnum_t array
 823 * @nump: pointer to store the resultant numerator
 824 * @denp: pointer to store the resultant denominator
 825 *
 826 * Returns non-zero if the value is changed, zero if not changed.
 
 827 */
 828int snd_interval_ratnum(struct snd_interval *i,
 829			unsigned int rats_count, struct snd_ratnum *rats,
 830			unsigned int *nump, unsigned int *denp)
 831{
 832	unsigned int best_num, best_den;
 833	int best_diff;
 834	unsigned int k;
 835	struct snd_interval t;
 836	int err;
 837	unsigned int result_num, result_den;
 838	int result_diff;
 839
 840	best_num = best_den = best_diff = 0;
 841	for (k = 0; k < rats_count; ++k) {
 842		unsigned int num = rats[k].num;
 843		unsigned int den;
 844		unsigned int q = i->min;
 845		int diff;
 846		if (q == 0)
 847			q = 1;
 848		den = div_up(num, q);
 849		if (den < rats[k].den_min)
 850			continue;
 851		if (den > rats[k].den_max)
 852			den = rats[k].den_max;
 853		else {
 854			unsigned int r;
 855			r = (den - rats[k].den_min) % rats[k].den_step;
 856			if (r != 0)
 857				den -= r;
 858		}
 859		diff = num - q * den;
 860		if (diff < 0)
 861			diff = -diff;
 862		if (best_num == 0 ||
 863		    diff * best_den < best_diff * den) {
 864			best_diff = diff;
 865			best_den = den;
 866			best_num = num;
 867		}
 868	}
 869	if (best_den == 0) {
 870		i->empty = 1;
 871		return -EINVAL;
 872	}
 873	t.min = div_down(best_num, best_den);
 874	t.openmin = !!(best_num % best_den);
 875	
 876	result_num = best_num;
 877	result_diff = best_diff;
 878	result_den = best_den;
 879	best_num = best_den = best_diff = 0;
 880	for (k = 0; k < rats_count; ++k) {
 881		unsigned int num = rats[k].num;
 882		unsigned int den;
 883		unsigned int q = i->max;
 884		int diff;
 885		if (q == 0) {
 886			i->empty = 1;
 887			return -EINVAL;
 888		}
 889		den = div_down(num, q);
 890		if (den > rats[k].den_max)
 891			continue;
 892		if (den < rats[k].den_min)
 893			den = rats[k].den_min;
 894		else {
 895			unsigned int r;
 896			r = (den - rats[k].den_min) % rats[k].den_step;
 897			if (r != 0)
 898				den += rats[k].den_step - r;
 899		}
 900		diff = q * den - num;
 901		if (diff < 0)
 902			diff = -diff;
 903		if (best_num == 0 ||
 904		    diff * best_den < best_diff * den) {
 905			best_diff = diff;
 906			best_den = den;
 907			best_num = num;
 908		}
 909	}
 910	if (best_den == 0) {
 911		i->empty = 1;
 912		return -EINVAL;
 913	}
 914	t.max = div_up(best_num, best_den);
 915	t.openmax = !!(best_num % best_den);
 916	t.integer = 0;
 917	err = snd_interval_refine(i, &t);
 918	if (err < 0)
 919		return err;
 920
 921	if (snd_interval_single(i)) {
 922		if (best_diff * result_den < result_diff * best_den) {
 923			result_num = best_num;
 924			result_den = best_den;
 925		}
 926		if (nump)
 927			*nump = result_num;
 928		if (denp)
 929			*denp = result_den;
 930	}
 931	return err;
 932}
 933
 934EXPORT_SYMBOL(snd_interval_ratnum);
 935
 936/**
 937 * snd_interval_ratden - refine the interval value
 938 * @i: interval to refine
 939 * @rats_count: number of struct ratden
 940 * @rats: struct ratden array
 941 * @nump: pointer to store the resultant numerator
 942 * @denp: pointer to store the resultant denominator
 943 *
 944 * Returns non-zero if the value is changed, zero if not changed.
 
 945 */
 946static int snd_interval_ratden(struct snd_interval *i,
 947			       unsigned int rats_count, struct snd_ratden *rats,
 
 948			       unsigned int *nump, unsigned int *denp)
 949{
 950	unsigned int best_num, best_diff, best_den;
 951	unsigned int k;
 952	struct snd_interval t;
 953	int err;
 954
 955	best_num = best_den = best_diff = 0;
 956	for (k = 0; k < rats_count; ++k) {
 957		unsigned int num;
 958		unsigned int den = rats[k].den;
 959		unsigned int q = i->min;
 960		int diff;
 961		num = mul(q, den);
 962		if (num > rats[k].num_max)
 963			continue;
 964		if (num < rats[k].num_min)
 965			num = rats[k].num_max;
 966		else {
 967			unsigned int r;
 968			r = (num - rats[k].num_min) % rats[k].num_step;
 969			if (r != 0)
 970				num += rats[k].num_step - r;
 971		}
 972		diff = num - q * den;
 973		if (best_num == 0 ||
 974		    diff * best_den < best_diff * den) {
 975			best_diff = diff;
 976			best_den = den;
 977			best_num = num;
 978		}
 979	}
 980	if (best_den == 0) {
 981		i->empty = 1;
 982		return -EINVAL;
 983	}
 984	t.min = div_down(best_num, best_den);
 985	t.openmin = !!(best_num % best_den);
 986	
 987	best_num = best_den = best_diff = 0;
 988	for (k = 0; k < rats_count; ++k) {
 989		unsigned int num;
 990		unsigned int den = rats[k].den;
 991		unsigned int q = i->max;
 992		int diff;
 993		num = mul(q, den);
 994		if (num < rats[k].num_min)
 995			continue;
 996		if (num > rats[k].num_max)
 997			num = rats[k].num_max;
 998		else {
 999			unsigned int r;
1000			r = (num - rats[k].num_min) % rats[k].num_step;
1001			if (r != 0)
1002				num -= r;
1003		}
1004		diff = q * den - num;
1005		if (best_num == 0 ||
1006		    diff * best_den < best_diff * den) {
1007			best_diff = diff;
1008			best_den = den;
1009			best_num = num;
1010		}
1011	}
1012	if (best_den == 0) {
1013		i->empty = 1;
1014		return -EINVAL;
1015	}
1016	t.max = div_up(best_num, best_den);
1017	t.openmax = !!(best_num % best_den);
1018	t.integer = 0;
1019	err = snd_interval_refine(i, &t);
1020	if (err < 0)
1021		return err;
1022
1023	if (snd_interval_single(i)) {
1024		if (nump)
1025			*nump = best_num;
1026		if (denp)
1027			*denp = best_den;
1028	}
1029	return err;
1030}
1031
1032/**
1033 * snd_interval_list - refine the interval value from the list
1034 * @i: the interval value to refine
1035 * @count: the number of elements in the list
1036 * @list: the value list
1037 * @mask: the bit-mask to evaluate
1038 *
1039 * Refines the interval value from the list.
1040 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * evaluated.
1042 *
1043 * Returns non-zero if the value is changed, zero if not changed.
 
1044 */
1045int snd_interval_list(struct snd_interval *i, unsigned int count,
1046		      const unsigned int *list, unsigned int mask)
1047{
1048        unsigned int k;
1049	struct snd_interval list_range;
1050
1051	if (!count) {
1052		i->empty = 1;
1053		return -EINVAL;
1054	}
1055	snd_interval_any(&list_range);
1056	list_range.min = UINT_MAX;
1057	list_range.max = 0;
1058        for (k = 0; k < count; k++) {
1059		if (mask && !(mask & (1 << k)))
1060			continue;
1061		if (!snd_interval_test(i, list[k]))
1062			continue;
1063		list_range.min = min(list_range.min, list[k]);
1064		list_range.max = max(list_range.max, list[k]);
1065        }
1066	return snd_interval_refine(i, &list_range);
1067}
 
1068
1069EXPORT_SYMBOL(snd_interval_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072{
1073	unsigned int n;
1074	int changed = 0;
1075	n = (i->min - min) % step;
1076	if (n != 0 || i->openmin) {
1077		i->min += step - n;
 
1078		changed = 1;
1079	}
1080	n = (i->max - min) % step;
1081	if (n != 0 || i->openmax) {
1082		i->max -= n;
 
1083		changed = 1;
1084	}
1085	if (snd_interval_checkempty(i)) {
1086		i->empty = 1;
1087		return -EINVAL;
1088	}
1089	return changed;
1090}
1091
1092/* Info constraints helpers */
1093
1094/**
1095 * snd_pcm_hw_rule_add - add the hw-constraint rule
1096 * @runtime: the pcm runtime instance
1097 * @cond: condition bits
1098 * @var: the variable to evaluate
1099 * @func: the evaluation function
1100 * @private: the private data pointer passed to function
1101 * @dep: the dependent variables
1102 *
1103 * Returns zero if successful, or a negative error code on failure.
1104 */
1105int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106			int var,
1107			snd_pcm_hw_rule_func_t func, void *private,
1108			int dep, ...)
1109{
1110	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111	struct snd_pcm_hw_rule *c;
1112	unsigned int k;
1113	va_list args;
1114	va_start(args, dep);
1115	if (constrs->rules_num >= constrs->rules_all) {
1116		struct snd_pcm_hw_rule *new;
1117		unsigned int new_rules = constrs->rules_all + 16;
1118		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
 
1119		if (!new) {
1120			va_end(args);
1121			return -ENOMEM;
1122		}
1123		if (constrs->rules) {
1124			memcpy(new, constrs->rules,
1125			       constrs->rules_num * sizeof(*c));
1126			kfree(constrs->rules);
1127		}
1128		constrs->rules = new;
1129		constrs->rules_all = new_rules;
1130	}
1131	c = &constrs->rules[constrs->rules_num];
1132	c->cond = cond;
1133	c->func = func;
1134	c->var = var;
1135	c->private = private;
1136	k = 0;
1137	while (1) {
1138		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139			va_end(args);
1140			return -EINVAL;
1141		}
1142		c->deps[k++] = dep;
1143		if (dep < 0)
1144			break;
1145		dep = va_arg(args, int);
1146	}
1147	constrs->rules_num++;
1148	va_end(args);
1149	return 0;
1150}
1151
1152EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154/**
1155 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156 * @runtime: PCM runtime instance
1157 * @var: hw_params variable to apply the mask
1158 * @mask: the bitmap mask
1159 *
1160 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
 
 
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163			       u_int32_t mask)
1164{
1165	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166	struct snd_mask *maskp = constrs_mask(constrs, var);
1167	*maskp->bits &= mask;
1168	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169	if (*maskp->bits == 0)
1170		return -EINVAL;
1171	return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
 
 
1181 */
1182int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183				 u_int64_t mask)
1184{
1185	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186	struct snd_mask *maskp = constrs_mask(constrs, var);
1187	maskp->bits[0] &= (u_int32_t)mask;
1188	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190	if (! maskp->bits[0] && ! maskp->bits[1])
1191		return -EINVAL;
1192	return 0;
1193}
 
1194
1195/**
1196 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the integer constraint
1199 *
1200 * Apply the constraint of integer to an interval parameter.
 
 
 
1201 */
1202int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203{
1204	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205	return snd_interval_setinteger(constrs_interval(constrs, var));
1206}
1207
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210/**
1211 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the range
1214 * @min: the minimal value
1215 * @max: the maximal value
1216 * 
1217 * Apply the min/max range constraint to an interval parameter.
 
 
 
1218 */
1219int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220				 unsigned int min, unsigned int max)
1221{
1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223	struct snd_interval t;
1224	t.min = min;
1225	t.max = max;
1226	t.openmin = t.openmax = 0;
1227	t.integer = 0;
1228	return snd_interval_refine(constrs_interval(constrs, var), &t);
1229}
1230
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234				struct snd_pcm_hw_rule *rule)
1235{
1236	struct snd_pcm_hw_constraint_list *list = rule->private;
1237	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238}		
1239
1240
1241/**
1242 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243 * @runtime: PCM runtime instance
1244 * @cond: condition bits
1245 * @var: hw_params variable to apply the list constraint
1246 * @l: list
1247 * 
1248 * Apply the list of constraints to an interval parameter.
 
 
1249 */
1250int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251			       unsigned int cond,
1252			       snd_pcm_hw_param_t var,
1253			       struct snd_pcm_hw_constraint_list *l)
1254{
1255	return snd_pcm_hw_rule_add(runtime, cond, var,
1256				   snd_pcm_hw_rule_list, l,
1257				   var, -1);
1258}
 
 
 
 
 
 
 
 
 
1259
1260EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261
1262static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263				   struct snd_pcm_hw_rule *rule)
1264{
1265	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266	unsigned int num = 0, den = 0;
1267	int err;
1268	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269				  r->nrats, r->rats, &num, &den);
1270	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271		params->rate_num = num;
1272		params->rate_den = den;
1273	}
1274	return err;
1275}
1276
1277/**
1278 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279 * @runtime: PCM runtime instance
1280 * @cond: condition bits
1281 * @var: hw_params variable to apply the ratnums constraint
1282 * @r: struct snd_ratnums constriants
 
 
1283 */
1284int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1285				  unsigned int cond,
1286				  snd_pcm_hw_param_t var,
1287				  struct snd_pcm_hw_constraint_ratnums *r)
1288{
1289	return snd_pcm_hw_rule_add(runtime, cond, var,
1290				   snd_pcm_hw_rule_ratnums, r,
1291				   var, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297				   struct snd_pcm_hw_rule *rule)
1298{
1299	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300	unsigned int num = 0, den = 0;
1301	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302				  r->nrats, r->rats, &num, &den);
1303	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304		params->rate_num = num;
1305		params->rate_den = den;
1306	}
1307	return err;
1308}
1309
1310/**
1311 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312 * @runtime: PCM runtime instance
1313 * @cond: condition bits
1314 * @var: hw_params variable to apply the ratdens constraint
1315 * @r: struct snd_ratdens constriants
 
 
1316 */
1317int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1318				  unsigned int cond,
1319				  snd_pcm_hw_param_t var,
1320				  struct snd_pcm_hw_constraint_ratdens *r)
1321{
1322	return snd_pcm_hw_rule_add(runtime, cond, var,
1323				   snd_pcm_hw_rule_ratdens, r,
1324				   var, -1);
1325}
1326
1327EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330				  struct snd_pcm_hw_rule *rule)
1331{
1332	unsigned int l = (unsigned long) rule->private;
1333	int width = l & 0xffff;
1334	unsigned int msbits = l >> 16;
1335	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336	if (snd_interval_single(i) && snd_interval_value(i) == width)
1337		params->msbits = msbits;
 
 
 
 
 
 
 
1338	return 0;
1339}
1340
1341/**
1342 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343 * @runtime: PCM runtime instance
1344 * @cond: condition bits
1345 * @width: sample bits width
1346 * @msbits: msbits width
 
 
 
 
 
 
 
1347 */
1348int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1349				 unsigned int cond,
1350				 unsigned int width,
1351				 unsigned int msbits)
1352{
1353	unsigned long l = (msbits << 16) | width;
1354	return snd_pcm_hw_rule_add(runtime, cond, -1,
1355				    snd_pcm_hw_rule_msbits,
1356				    (void*) l,
1357				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358}
1359
1360EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363				struct snd_pcm_hw_rule *rule)
1364{
1365	unsigned long step = (unsigned long) rule->private;
1366	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367}
1368
1369/**
1370 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the step constraint
1374 * @step: step size
 
 
1375 */
1376int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377			       unsigned int cond,
1378			       snd_pcm_hw_param_t var,
1379			       unsigned long step)
1380{
1381	return snd_pcm_hw_rule_add(runtime, cond, var, 
1382				   snd_pcm_hw_rule_step, (void *) step,
1383				   var, -1);
1384}
1385
1386EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389{
1390	static unsigned int pow2_sizes[] = {
1391		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395	};
1396	return snd_interval_list(hw_param_interval(params, rule->var),
1397				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398}		
1399
1400/**
1401 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @var: hw_params variable to apply the power-of-2 constraint
 
 
1405 */
1406int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407			       unsigned int cond,
1408			       snd_pcm_hw_param_t var)
1409{
1410	return snd_pcm_hw_rule_add(runtime, cond, var, 
1411				   snd_pcm_hw_rule_pow2, NULL,
1412				   var, -1);
1413}
1414
1415EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418					   struct snd_pcm_hw_rule *rule)
1419{
1420	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421	struct snd_interval *rate;
1422
1423	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424	return snd_interval_list(rate, 1, &base_rate, 0);
1425}
1426
1427/**
1428 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429 * @runtime: PCM runtime instance
1430 * @base_rate: the rate at which the hardware does not resample
 
 
1431 */
1432int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433			       unsigned int base_rate)
1434{
1435	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436				   SNDRV_PCM_HW_PARAM_RATE,
1437				   snd_pcm_hw_rule_noresample_func,
1438				   (void *)(uintptr_t)base_rate,
1439				   SNDRV_PCM_HW_PARAM_RATE, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444				  snd_pcm_hw_param_t var)
1445{
1446	if (hw_is_mask(var)) {
1447		snd_mask_any(hw_param_mask(params, var));
1448		params->cmask |= 1 << var;
1449		params->rmask |= 1 << var;
1450		return;
1451	}
1452	if (hw_is_interval(var)) {
1453		snd_interval_any(hw_param_interval(params, var));
1454		params->cmask |= 1 << var;
1455		params->rmask |= 1 << var;
1456		return;
1457	}
1458	snd_BUG();
1459}
1460
1461void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462{
1463	unsigned int k;
1464	memset(params, 0, sizeof(*params));
1465	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466		_snd_pcm_hw_param_any(params, k);
1467	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468		_snd_pcm_hw_param_any(params, k);
1469	params->info = ~0U;
1470}
1471
1472EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474/**
1475 * snd_pcm_hw_param_value - return @params field @var value
1476 * @params: the hw_params instance
1477 * @var: parameter to retrieve
1478 * @dir: pointer to the direction (-1,0,1) or %NULL
1479 *
1480 * Return the value for field @var if it's fixed in configuration space
1481 * defined by @params. Return -%EINVAL otherwise.
1482 */
1483int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484			   snd_pcm_hw_param_t var, int *dir)
1485{
1486	if (hw_is_mask(var)) {
1487		const struct snd_mask *mask = hw_param_mask_c(params, var);
1488		if (!snd_mask_single(mask))
1489			return -EINVAL;
1490		if (dir)
1491			*dir = 0;
1492		return snd_mask_value(mask);
1493	}
1494	if (hw_is_interval(var)) {
1495		const struct snd_interval *i = hw_param_interval_c(params, var);
1496		if (!snd_interval_single(i))
1497			return -EINVAL;
1498		if (dir)
1499			*dir = i->openmin;
1500		return snd_interval_value(i);
1501	}
1502	return -EINVAL;
1503}
1504
1505EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508				snd_pcm_hw_param_t var)
1509{
1510	if (hw_is_mask(var)) {
1511		snd_mask_none(hw_param_mask(params, var));
1512		params->cmask |= 1 << var;
1513		params->rmask |= 1 << var;
1514	} else if (hw_is_interval(var)) {
1515		snd_interval_none(hw_param_interval(params, var));
1516		params->cmask |= 1 << var;
1517		params->rmask |= 1 << var;
1518	} else {
1519		snd_BUG();
1520	}
1521}
1522
1523EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526				   snd_pcm_hw_param_t var)
1527{
1528	int changed;
1529	if (hw_is_mask(var))
1530		changed = snd_mask_refine_first(hw_param_mask(params, var));
1531	else if (hw_is_interval(var))
1532		changed = snd_interval_refine_first(hw_param_interval(params, var));
1533	else
1534		return -EINVAL;
1535	if (changed) {
1536		params->cmask |= 1 << var;
1537		params->rmask |= 1 << var;
1538	}
1539	return changed;
1540}
1541
1542
1543/**
1544 * snd_pcm_hw_param_first - refine config space and return minimum value
1545 * @pcm: PCM instance
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Inside configuration space defined by @params remove from @var all
1551 * values > minimum. Reduce configuration space accordingly.
1552 * Return the minimum.
 
1553 */
1554int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1555			   struct snd_pcm_hw_params *params, 
1556			   snd_pcm_hw_param_t var, int *dir)
1557{
1558	int changed = _snd_pcm_hw_param_first(params, var);
1559	if (changed < 0)
1560		return changed;
1561	if (params->rmask) {
1562		int err = snd_pcm_hw_refine(pcm, params);
1563		if (snd_BUG_ON(err < 0))
1564			return err;
1565	}
1566	return snd_pcm_hw_param_value(params, var, dir);
1567}
1568
1569EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572				  snd_pcm_hw_param_t var)
1573{
1574	int changed;
1575	if (hw_is_mask(var))
1576		changed = snd_mask_refine_last(hw_param_mask(params, var));
1577	else if (hw_is_interval(var))
1578		changed = snd_interval_refine_last(hw_param_interval(params, var));
1579	else
1580		return -EINVAL;
1581	if (changed) {
1582		params->cmask |= 1 << var;
1583		params->rmask |= 1 << var;
1584	}
1585	return changed;
1586}
1587
1588
1589/**
1590 * snd_pcm_hw_param_last - refine config space and return maximum value
1591 * @pcm: PCM instance
1592 * @params: the hw_params instance
1593 * @var: parameter to retrieve
1594 * @dir: pointer to the direction (-1,0,1) or %NULL
1595 *
1596 * Inside configuration space defined by @params remove from @var all
1597 * values < maximum. Reduce configuration space accordingly.
1598 * Return the maximum.
 
1599 */
1600int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1601			  struct snd_pcm_hw_params *params,
1602			  snd_pcm_hw_param_t var, int *dir)
1603{
1604	int changed = _snd_pcm_hw_param_last(params, var);
1605	if (changed < 0)
1606		return changed;
1607	if (params->rmask) {
1608		int err = snd_pcm_hw_refine(pcm, params);
1609		if (snd_BUG_ON(err < 0))
1610			return err;
1611	}
1612	return snd_pcm_hw_param_value(params, var, dir);
1613}
1614
1615EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617/**
1618 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 *
1622 * Choose one configuration from configuration space defined by @params.
1623 * The configuration chosen is that obtained fixing in this order:
1624 * first access, first format, first subformat, min channels,
1625 * min rate, min period time, max buffer size, min tick time
1626 */
1627int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628			     struct snd_pcm_hw_params *params)
1629{
1630	static int vars[] = {
1631		SNDRV_PCM_HW_PARAM_ACCESS,
1632		SNDRV_PCM_HW_PARAM_FORMAT,
1633		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634		SNDRV_PCM_HW_PARAM_CHANNELS,
1635		SNDRV_PCM_HW_PARAM_RATE,
1636		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638		SNDRV_PCM_HW_PARAM_TICK_TIME,
1639		-1
1640	};
1641	int err, *v;
1642
1643	for (v = vars; *v != -1; v++) {
1644		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646		else
1647			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648		if (snd_BUG_ON(err < 0))
1649			return err;
1650	}
1651	return 0;
1652}
1653
1654static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655				   void *arg)
1656{
1657	struct snd_pcm_runtime *runtime = substream->runtime;
1658	unsigned long flags;
1659	snd_pcm_stream_lock_irqsave(substream, flags);
1660	if (snd_pcm_running(substream) &&
1661	    snd_pcm_update_hw_ptr(substream) >= 0)
1662		runtime->status->hw_ptr %= runtime->buffer_size;
1663	else
1664		runtime->status->hw_ptr = 0;
 
 
1665	snd_pcm_stream_unlock_irqrestore(substream, flags);
1666	return 0;
1667}
1668
1669static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670					  void *arg)
1671{
1672	struct snd_pcm_channel_info *info = arg;
1673	struct snd_pcm_runtime *runtime = substream->runtime;
1674	int width;
1675	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676		info->offset = -1;
1677		return 0;
1678	}
1679	width = snd_pcm_format_physical_width(runtime->format);
1680	if (width < 0)
1681		return width;
1682	info->offset = 0;
1683	switch (runtime->access) {
1684	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686		info->first = info->channel * width;
1687		info->step = runtime->channels * width;
1688		break;
1689	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691	{
1692		size_t size = runtime->dma_bytes / runtime->channels;
1693		info->first = info->channel * size * 8;
1694		info->step = width;
1695		break;
1696	}
1697	default:
1698		snd_BUG();
1699		break;
1700	}
1701	return 0;
1702}
1703
1704static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705				       void *arg)
1706{
1707	struct snd_pcm_hw_params *params = arg;
1708	snd_pcm_format_t format;
1709	int channels, width;
 
1710
1711	params->fifo_size = substream->runtime->hw.fifo_size;
1712	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713		format = params_format(params);
1714		channels = params_channels(params);
1715		width = snd_pcm_format_physical_width(format);
1716		params->fifo_size /= width * channels;
 
1717	}
1718	return 0;
1719}
1720
1721/**
1722 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723 * @substream: the pcm substream instance
1724 * @cmd: ioctl command
1725 * @arg: ioctl argument
1726 *
1727 * Processes the generic ioctl commands for PCM.
1728 * Can be passed as the ioctl callback for PCM ops.
1729 *
1730 * Returns zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733		      unsigned int cmd, void *arg)
1734{
1735	switch (cmd) {
1736	case SNDRV_PCM_IOCTL1_INFO:
1737		return 0;
1738	case SNDRV_PCM_IOCTL1_RESET:
1739		return snd_pcm_lib_ioctl_reset(substream, arg);
1740	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744	}
1745	return -ENXIO;
1746}
1747
1748EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750/**
1751 * snd_pcm_period_elapsed - update the pcm status for the next period
1752 * @substream: the pcm substream instance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753 *
1754 * This function is called from the interrupt handler when the
1755 * PCM has processed the period size.  It will update the current
1756 * pointer, wake up sleepers, etc.
1757 *
1758 * Even if more than one periods have elapsed since the last call, you
1759 * have to call this only once.
1760 */
1761void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762{
1763	struct snd_pcm_runtime *runtime;
1764	unsigned long flags;
1765
1766	if (PCM_RUNTIME_CHECK(substream))
1767		return;
1768	runtime = substream->runtime;
1769
1770	if (runtime->transfer_ack_begin)
1771		runtime->transfer_ack_begin(substream);
1772
1773	snd_pcm_stream_lock_irqsave(substream, flags);
1774	if (!snd_pcm_running(substream) ||
1775	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776		goto _end;
1777
 
1778	if (substream->timer_running)
1779		snd_timer_interrupt(substream->timer, 1);
 
1780 _end:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	snd_pcm_stream_unlock_irqrestore(substream, flags);
1782	if (runtime->transfer_ack_end)
1783		runtime->transfer_ack_end(substream);
1784	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785}
1786
1787EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789/*
1790 * Wait until avail_min data becomes available
1791 * Returns a negative error code if any error occurs during operation.
1792 * The available space is stored on availp.  When err = 0 and avail = 0
1793 * on the capture stream, it indicates the stream is in DRAINING state.
1794 */
1795static int wait_for_avail(struct snd_pcm_substream *substream,
1796			      snd_pcm_uframes_t *availp)
1797{
1798	struct snd_pcm_runtime *runtime = substream->runtime;
1799	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800	wait_queue_t wait;
1801	int err = 0;
1802	snd_pcm_uframes_t avail = 0;
1803	long wait_time, tout;
1804
1805	init_waitqueue_entry(&wait, current);
1806	set_current_state(TASK_INTERRUPTIBLE);
1807	add_wait_queue(&runtime->tsleep, &wait);
1808
1809	if (runtime->no_period_wakeup)
1810		wait_time = MAX_SCHEDULE_TIMEOUT;
1811	else {
1812		wait_time = 10;
1813		if (runtime->rate) {
1814			long t = runtime->period_size * 2 / runtime->rate;
1815			wait_time = max(t, wait_time);
 
 
 
 
 
 
 
 
1816		}
1817		wait_time = msecs_to_jiffies(wait_time * 1000);
1818	}
1819
1820	for (;;) {
1821		if (signal_pending(current)) {
1822			err = -ERESTARTSYS;
1823			break;
1824		}
1825
1826		/*
1827		 * We need to check if space became available already
1828		 * (and thus the wakeup happened already) first to close
1829		 * the race of space already having become available.
1830		 * This check must happen after been added to the waitqueue
1831		 * and having current state be INTERRUPTIBLE.
1832		 */
1833		if (is_playback)
1834			avail = snd_pcm_playback_avail(runtime);
1835		else
1836			avail = snd_pcm_capture_avail(runtime);
1837		if (avail >= runtime->twake)
1838			break;
1839		snd_pcm_stream_unlock_irq(substream);
1840
1841		tout = schedule_timeout(wait_time);
1842
1843		snd_pcm_stream_lock_irq(substream);
1844		set_current_state(TASK_INTERRUPTIBLE);
1845		switch (runtime->status->state) {
1846		case SNDRV_PCM_STATE_SUSPENDED:
1847			err = -ESTRPIPE;
1848			goto _endloop;
1849		case SNDRV_PCM_STATE_XRUN:
1850			err = -EPIPE;
1851			goto _endloop;
1852		case SNDRV_PCM_STATE_DRAINING:
1853			if (is_playback)
1854				err = -EPIPE;
1855			else 
1856				avail = 0; /* indicate draining */
1857			goto _endloop;
1858		case SNDRV_PCM_STATE_OPEN:
1859		case SNDRV_PCM_STATE_SETUP:
1860		case SNDRV_PCM_STATE_DISCONNECTED:
1861			err = -EBADFD;
1862			goto _endloop;
 
 
1863		}
1864		if (!tout) {
1865			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866				   is_playback ? "playback" : "capture");
 
1867			err = -EIO;
1868			break;
1869		}
1870	}
1871 _endloop:
1872	set_current_state(TASK_RUNNING);
1873	remove_wait_queue(&runtime->tsleep, &wait);
1874	*availp = avail;
1875	return err;
1876}
1877	
1878static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879				      unsigned int hwoff,
1880				      unsigned long data, unsigned int off,
1881				      snd_pcm_uframes_t frames)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882{
1883	struct snd_pcm_runtime *runtime = substream->runtime;
1884	int err;
1885	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886	if (substream->ops->copy) {
1887		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888			return err;
1889	} else {
1890		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892			return -EFAULT;
1893	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894	return 0;
1895}
1896 
1897typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898			  unsigned long data, unsigned int off,
1899			  snd_pcm_uframes_t size);
1900
1901static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1902					    unsigned long data,
1903					    snd_pcm_uframes_t size,
1904					    int nonblock,
1905					    transfer_f transfer)
1906{
1907	struct snd_pcm_runtime *runtime = substream->runtime;
1908	snd_pcm_uframes_t xfer = 0;
1909	snd_pcm_uframes_t offset = 0;
1910	snd_pcm_uframes_t avail;
1911	int err = 0;
1912
1913	if (size == 0)
1914		return 0;
 
 
 
 
1915
1916	snd_pcm_stream_lock_irq(substream);
1917	switch (runtime->status->state) {
1918	case SNDRV_PCM_STATE_PREPARED:
1919	case SNDRV_PCM_STATE_RUNNING:
1920	case SNDRV_PCM_STATE_PAUSED:
1921		break;
1922	case SNDRV_PCM_STATE_XRUN:
1923		err = -EPIPE;
1924		goto _end_unlock;
1925	case SNDRV_PCM_STATE_SUSPENDED:
1926		err = -ESTRPIPE;
1927		goto _end_unlock;
1928	default:
1929		err = -EBADFD;
1930		goto _end_unlock;
1931	}
1932
1933	runtime->twake = runtime->control->avail_min ? : 1;
1934	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935		snd_pcm_update_hw_ptr(substream);
1936	avail = snd_pcm_playback_avail(runtime);
1937	while (size > 0) {
1938		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939		snd_pcm_uframes_t cont;
1940		if (!avail) {
1941			if (nonblock) {
1942				err = -EAGAIN;
1943				goto _end_unlock;
1944			}
1945			runtime->twake = min_t(snd_pcm_uframes_t, size,
1946					runtime->control->avail_min ? : 1);
1947			err = wait_for_avail(substream, &avail);
1948			if (err < 0)
1949				goto _end_unlock;
1950		}
1951		frames = size > avail ? avail : size;
1952		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953		if (frames > cont)
1954			frames = cont;
1955		if (snd_BUG_ON(!frames)) {
1956			runtime->twake = 0;
1957			snd_pcm_stream_unlock_irq(substream);
1958			return -EINVAL;
1959		}
1960		appl_ptr = runtime->control->appl_ptr;
1961		appl_ofs = appl_ptr % runtime->buffer_size;
1962		snd_pcm_stream_unlock_irq(substream);
1963		err = transfer(substream, appl_ofs, data, offset, frames);
1964		snd_pcm_stream_lock_irq(substream);
1965		if (err < 0)
1966			goto _end_unlock;
1967		switch (runtime->status->state) {
1968		case SNDRV_PCM_STATE_XRUN:
1969			err = -EPIPE;
1970			goto _end_unlock;
1971		case SNDRV_PCM_STATE_SUSPENDED:
1972			err = -ESTRPIPE;
1973			goto _end_unlock;
1974		default:
1975			break;
1976		}
1977		appl_ptr += frames;
1978		if (appl_ptr >= runtime->boundary)
1979			appl_ptr -= runtime->boundary;
1980		runtime->control->appl_ptr = appl_ptr;
1981		if (substream->ops->ack)
1982			substream->ops->ack(substream);
1983
1984		offset += frames;
1985		size -= frames;
1986		xfer += frames;
1987		avail -= frames;
1988		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990			err = snd_pcm_start(substream);
1991			if (err < 0)
1992				goto _end_unlock;
1993		}
1994	}
1995 _end_unlock:
1996	runtime->twake = 0;
1997	if (xfer > 0 && err >= 0)
1998		snd_pcm_update_state(substream, runtime);
1999	snd_pcm_stream_unlock_irq(substream);
2000	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001}
2002
2003/* sanity-check for read/write methods */
2004static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005{
2006	struct snd_pcm_runtime *runtime;
2007	if (PCM_RUNTIME_CHECK(substream))
2008		return -ENXIO;
2009	runtime = substream->runtime;
2010	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011		return -EINVAL;
2012	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013		return -EBADFD;
2014	return 0;
2015}
2016
2017snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018{
2019	struct snd_pcm_runtime *runtime;
2020	int nonblock;
2021	int err;
2022
2023	err = pcm_sanity_check(substream);
2024	if (err < 0)
2025		return err;
2026	runtime = substream->runtime;
2027	nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030	    runtime->channels > 1)
2031		return -EINVAL;
2032	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033				  snd_pcm_lib_write_transfer);
2034}
2035
2036EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039				       unsigned int hwoff,
2040				       unsigned long data, unsigned int off,
2041				       snd_pcm_uframes_t frames)
2042{
2043	struct snd_pcm_runtime *runtime = substream->runtime;
2044	int err;
2045	void __user **bufs = (void __user **)data;
2046	int channels = runtime->channels;
2047	int c;
2048	if (substream->ops->copy) {
2049		if (snd_BUG_ON(!substream->ops->silence))
2050			return -EINVAL;
2051		for (c = 0; c < channels; ++c, ++bufs) {
2052			if (*bufs == NULL) {
2053				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054					return err;
2055			} else {
2056				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058					return err;
2059			}
 
 
 
 
2060		}
2061	} else {
2062		/* default transfer behaviour */
2063		size_t dma_csize = runtime->dma_bytes / channels;
2064		for (c = 0; c < channels; ++c, ++bufs) {
2065			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066			if (*bufs == NULL) {
2067				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068			} else {
2069				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071					return -EFAULT;
2072			}
2073		}
2074	}
 
 
 
2075	return 0;
2076}
2077 
2078snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079				     void __user **bufs,
2080				     snd_pcm_uframes_t frames)
 
2081{
2082	struct snd_pcm_runtime *runtime;
2083	int nonblock;
 
 
 
 
 
 
2084	int err;
2085
2086	err = pcm_sanity_check(substream);
2087	if (err < 0)
2088		return err;
2089	runtime = substream->runtime;
2090	nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093		return -EINVAL;
2094	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095				  nonblock, snd_pcm_lib_writev_transfer);
2096}
 
 
 
 
 
 
2097
2098EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2101				     unsigned int hwoff,
2102				     unsigned long data, unsigned int off,
2103				     snd_pcm_uframes_t frames)
2104{
2105	struct snd_pcm_runtime *runtime = substream->runtime;
2106	int err;
2107	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108	if (substream->ops->copy) {
2109		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110			return err;
2111	} else {
2112		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114			return -EFAULT;
 
 
2115	}
2116	return 0;
2117}
2118
2119static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120					   unsigned long data,
2121					   snd_pcm_uframes_t size,
2122					   int nonblock,
2123					   transfer_f transfer)
2124{
2125	struct snd_pcm_runtime *runtime = substream->runtime;
2126	snd_pcm_uframes_t xfer = 0;
2127	snd_pcm_uframes_t offset = 0;
2128	snd_pcm_uframes_t avail;
2129	int err = 0;
2130
2131	if (size == 0)
2132		return 0;
2133
 
 
2134	snd_pcm_stream_lock_irq(substream);
2135	switch (runtime->status->state) {
2136	case SNDRV_PCM_STATE_PREPARED:
2137		if (size >= runtime->start_threshold) {
2138			err = snd_pcm_start(substream);
2139			if (err < 0)
2140				goto _end_unlock;
2141		}
2142		break;
2143	case SNDRV_PCM_STATE_DRAINING:
2144	case SNDRV_PCM_STATE_RUNNING:
2145	case SNDRV_PCM_STATE_PAUSED:
2146		break;
2147	case SNDRV_PCM_STATE_XRUN:
2148		err = -EPIPE;
2149		goto _end_unlock;
2150	case SNDRV_PCM_STATE_SUSPENDED:
2151		err = -ESTRPIPE;
2152		goto _end_unlock;
2153	default:
2154		err = -EBADFD;
2155		goto _end_unlock;
2156	}
2157
2158	runtime->twake = runtime->control->avail_min ? : 1;
2159	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160		snd_pcm_update_hw_ptr(substream);
2161	avail = snd_pcm_capture_avail(runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162	while (size > 0) {
2163		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164		snd_pcm_uframes_t cont;
2165		if (!avail) {
2166			if (runtime->status->state ==
2167			    SNDRV_PCM_STATE_DRAINING) {
2168				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169				goto _end_unlock;
2170			}
2171			if (nonblock) {
2172				err = -EAGAIN;
2173				goto _end_unlock;
2174			}
2175			runtime->twake = min_t(snd_pcm_uframes_t, size,
2176					runtime->control->avail_min ? : 1);
2177			err = wait_for_avail(substream, &avail);
2178			if (err < 0)
2179				goto _end_unlock;
2180			if (!avail)
2181				continue; /* draining */
2182		}
2183		frames = size > avail ? avail : size;
2184		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
 
 
2185		if (frames > cont)
2186			frames = cont;
2187		if (snd_BUG_ON(!frames)) {
2188			runtime->twake = 0;
2189			snd_pcm_stream_unlock_irq(substream);
2190			return -EINVAL;
 
 
 
2191		}
2192		appl_ptr = runtime->control->appl_ptr;
2193		appl_ofs = appl_ptr % runtime->buffer_size;
2194		snd_pcm_stream_unlock_irq(substream);
2195		err = transfer(substream, appl_ofs, data, offset, frames);
 
 
 
 
 
2196		snd_pcm_stream_lock_irq(substream);
 
2197		if (err < 0)
2198			goto _end_unlock;
2199		switch (runtime->status->state) {
2200		case SNDRV_PCM_STATE_XRUN:
2201			err = -EPIPE;
2202			goto _end_unlock;
2203		case SNDRV_PCM_STATE_SUSPENDED:
2204			err = -ESTRPIPE;
2205			goto _end_unlock;
2206		default:
2207			break;
2208		}
2209		appl_ptr += frames;
2210		if (appl_ptr >= runtime->boundary)
2211			appl_ptr -= runtime->boundary;
2212		runtime->control->appl_ptr = appl_ptr;
2213		if (substream->ops->ack)
2214			substream->ops->ack(substream);
2215
2216		offset += frames;
2217		size -= frames;
2218		xfer += frames;
2219		avail -= frames;
 
 
 
 
 
 
 
2220	}
2221 _end_unlock:
2222	runtime->twake = 0;
2223	if (xfer > 0 && err >= 0)
2224		snd_pcm_update_state(substream, runtime);
2225	snd_pcm_stream_unlock_irq(substream);
2226	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228
2229snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230{
2231	struct snd_pcm_runtime *runtime;
2232	int nonblock;
2233	int err;
2234	
2235	err = pcm_sanity_check(substream);
2236	if (err < 0)
2237		return err;
2238	runtime = substream->runtime;
2239	nonblock = !!(substream->f_flags & O_NONBLOCK);
2240	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241		return -EINVAL;
2242	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243}
2244
2245EXPORT_SYMBOL(snd_pcm_lib_read);
 
 
 
 
 
 
 
 
 
 
2246
2247static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248				      unsigned int hwoff,
2249				      unsigned long data, unsigned int off,
2250				      snd_pcm_uframes_t frames)
 
2251{
2252	struct snd_pcm_runtime *runtime = substream->runtime;
2253	int err;
2254	void __user **bufs = (void __user **)data;
2255	int channels = runtime->channels;
2256	int c;
2257	if (substream->ops->copy) {
2258		for (c = 0; c < channels; ++c, ++bufs) {
2259			char __user *buf;
2260			if (*bufs == NULL)
2261				continue;
2262			buf = *bufs + samples_to_bytes(runtime, off);
2263			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264				return err;
 
 
 
 
 
 
 
 
2265		}
2266	} else {
2267		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268		for (c = 0; c < channels; ++c, ++bufs) {
2269			char *hwbuf;
2270			char __user *buf;
2271			if (*bufs == NULL)
2272				continue;
2273
2274			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275			buf = *bufs + samples_to_bytes(runtime, off);
2276			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277				return -EFAULT;
 
2278		}
2279	}
 
 
2280	return 0;
2281}
2282 
2283snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284				    void __user **bufs,
2285				    snd_pcm_uframes_t frames)
2286{
2287	struct snd_pcm_runtime *runtime;
2288	int nonblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289	int err;
2290
2291	err = pcm_sanity_check(substream);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292	if (err < 0)
2293		return err;
2294	runtime = substream->runtime;
2295	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296		return -EBADFD;
2297
2298	nonblock = !!(substream->f_flags & O_NONBLOCK);
2299	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300		return -EINVAL;
2301	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302}
2303
2304EXPORT_SYMBOL(snd_pcm_lib_readv);