Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
110}
111
112#ifdef CONFIG_SND_DEBUG
113void snd_pcm_debug_name(struct snd_pcm_substream *substream,
114 char *name, size_t len)
115{
116 snprintf(name, len, "pcmC%dD%d%c:%d",
117 substream->pcm->card->number,
118 substream->pcm->device,
119 substream->stream ? 'c' : 'p',
120 substream->number);
121}
122EXPORT_SYMBOL(snd_pcm_debug_name);
123#endif
124
125#define XRUN_DEBUG_BASIC (1<<0)
126#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
127#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
128
129#ifdef CONFIG_SND_PCM_XRUN_DEBUG
130
131#define xrun_debug(substream, mask) \
132 ((substream)->pstr->xrun_debug & (mask))
133#else
134#define xrun_debug(substream, mask) 0
135#endif
136
137#define dump_stack_on_xrun(substream) do { \
138 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
139 dump_stack(); \
140 } while (0)
141
142/* call with stream lock held */
143void __snd_pcm_xrun(struct snd_pcm_substream *substream)
144{
145 struct snd_pcm_runtime *runtime = substream->runtime;
146
147 trace_xrun(substream);
148 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
149 struct timespec64 tstamp;
150
151 snd_pcm_gettime(runtime, &tstamp);
152 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
153 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
154 }
155 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
156 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
157 char name[16];
158 snd_pcm_debug_name(substream, name, sizeof(name));
159 pcm_warn(substream->pcm, "XRUN: %s\n", name);
160 dump_stack_on_xrun(substream);
161 }
162}
163
164#ifdef CONFIG_SND_PCM_XRUN_DEBUG
165#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
166 do { \
167 trace_hw_ptr_error(substream, reason); \
168 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
169 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
170 (in_interrupt) ? 'Q' : 'P', ##args); \
171 dump_stack_on_xrun(substream); \
172 } \
173 } while (0)
174
175#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
176
177#define hw_ptr_error(substream, fmt, args...) do { } while (0)
178
179#endif
180
181int snd_pcm_update_state(struct snd_pcm_substream *substream,
182 struct snd_pcm_runtime *runtime)
183{
184 snd_pcm_uframes_t avail;
185
186 avail = snd_pcm_avail(substream);
187 if (avail > runtime->avail_max)
188 runtime->avail_max = avail;
189 if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
190 if (avail >= runtime->buffer_size) {
191 snd_pcm_drain_done(substream);
192 return -EPIPE;
193 }
194 } else {
195 if (avail >= runtime->stop_threshold) {
196 __snd_pcm_xrun(substream);
197 return -EPIPE;
198 }
199 }
200 if (runtime->twake) {
201 if (avail >= runtime->twake)
202 wake_up(&runtime->tsleep);
203 } else if (avail >= runtime->control->avail_min)
204 wake_up(&runtime->sleep);
205 return 0;
206}
207
208static void update_audio_tstamp(struct snd_pcm_substream *substream,
209 struct timespec64 *curr_tstamp,
210 struct timespec64 *audio_tstamp)
211{
212 struct snd_pcm_runtime *runtime = substream->runtime;
213 u64 audio_frames, audio_nsecs;
214 struct timespec64 driver_tstamp;
215
216 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
217 return;
218
219 if (!(substream->ops->get_time_info) ||
220 (runtime->audio_tstamp_report.actual_type ==
221 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
222
223 /*
224 * provide audio timestamp derived from pointer position
225 * add delay only if requested
226 */
227
228 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
229
230 if (runtime->audio_tstamp_config.report_delay) {
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 audio_frames -= runtime->delay;
233 else
234 audio_frames += runtime->delay;
235 }
236 audio_nsecs = div_u64(audio_frames * 1000000000LL,
237 runtime->rate);
238 *audio_tstamp = ns_to_timespec64(audio_nsecs);
239 }
240
241 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
242 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
243 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
244 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
245 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
246 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
247 }
248
249
250 /*
251 * re-take a driver timestamp to let apps detect if the reference tstamp
252 * read by low-level hardware was provided with a delay
253 */
254 snd_pcm_gettime(substream->runtime, &driver_tstamp);
255 runtime->driver_tstamp = driver_tstamp;
256}
257
258static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
259 unsigned int in_interrupt)
260{
261 struct snd_pcm_runtime *runtime = substream->runtime;
262 snd_pcm_uframes_t pos;
263 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
264 snd_pcm_sframes_t hdelta, delta;
265 unsigned long jdelta;
266 unsigned long curr_jiffies;
267 struct timespec64 curr_tstamp;
268 struct timespec64 audio_tstamp;
269 int crossed_boundary = 0;
270
271 old_hw_ptr = runtime->status->hw_ptr;
272
273 /*
274 * group pointer, time and jiffies reads to allow for more
275 * accurate correlations/corrections.
276 * The values are stored at the end of this routine after
277 * corrections for hw_ptr position
278 */
279 pos = substream->ops->pointer(substream);
280 curr_jiffies = jiffies;
281 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
282 if ((substream->ops->get_time_info) &&
283 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
284 substream->ops->get_time_info(substream, &curr_tstamp,
285 &audio_tstamp,
286 &runtime->audio_tstamp_config,
287 &runtime->audio_tstamp_report);
288
289 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
290 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
291 snd_pcm_gettime(runtime, &curr_tstamp);
292 } else
293 snd_pcm_gettime(runtime, &curr_tstamp);
294 }
295
296 if (pos == SNDRV_PCM_POS_XRUN) {
297 __snd_pcm_xrun(substream);
298 return -EPIPE;
299 }
300 if (pos >= runtime->buffer_size) {
301 if (printk_ratelimit()) {
302 char name[16];
303 snd_pcm_debug_name(substream, name, sizeof(name));
304 pcm_err(substream->pcm,
305 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
306 name, pos, runtime->buffer_size,
307 runtime->period_size);
308 }
309 pos = 0;
310 }
311 pos -= pos % runtime->min_align;
312 trace_hwptr(substream, pos, in_interrupt);
313 hw_base = runtime->hw_ptr_base;
314 new_hw_ptr = hw_base + pos;
315 if (in_interrupt) {
316 /* we know that one period was processed */
317 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
318 delta = runtime->hw_ptr_interrupt + runtime->period_size;
319 if (delta > new_hw_ptr) {
320 /* check for double acknowledged interrupts */
321 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
322 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
323 hw_base += runtime->buffer_size;
324 if (hw_base >= runtime->boundary) {
325 hw_base = 0;
326 crossed_boundary++;
327 }
328 new_hw_ptr = hw_base + pos;
329 goto __delta;
330 }
331 }
332 }
333 /* new_hw_ptr might be lower than old_hw_ptr in case when */
334 /* pointer crosses the end of the ring buffer */
335 if (new_hw_ptr < old_hw_ptr) {
336 hw_base += runtime->buffer_size;
337 if (hw_base >= runtime->boundary) {
338 hw_base = 0;
339 crossed_boundary++;
340 }
341 new_hw_ptr = hw_base + pos;
342 }
343 __delta:
344 delta = new_hw_ptr - old_hw_ptr;
345 if (delta < 0)
346 delta += runtime->boundary;
347
348 if (runtime->no_period_wakeup) {
349 snd_pcm_sframes_t xrun_threshold;
350 /*
351 * Without regular period interrupts, we have to check
352 * the elapsed time to detect xruns.
353 */
354 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
355 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
356 goto no_delta_check;
357 hdelta = jdelta - delta * HZ / runtime->rate;
358 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
359 while (hdelta > xrun_threshold) {
360 delta += runtime->buffer_size;
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary) {
363 hw_base = 0;
364 crossed_boundary++;
365 }
366 new_hw_ptr = hw_base + pos;
367 hdelta -= runtime->hw_ptr_buffer_jiffies;
368 }
369 goto no_delta_check;
370 }
371
372 /* something must be really wrong */
373 if (delta >= runtime->buffer_size + runtime->period_size) {
374 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
375 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
376 substream->stream, (long)pos,
377 (long)new_hw_ptr, (long)old_hw_ptr);
378 return 0;
379 }
380
381 /* Do jiffies check only in xrun_debug mode */
382 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
383 goto no_jiffies_check;
384
385 /* Skip the jiffies check for hardwares with BATCH flag.
386 * Such hardware usually just increases the position at each IRQ,
387 * thus it can't give any strange position.
388 */
389 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
390 goto no_jiffies_check;
391 hdelta = delta;
392 if (hdelta < runtime->delay)
393 goto no_jiffies_check;
394 hdelta -= runtime->delay;
395 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
396 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
397 delta = jdelta /
398 (((runtime->period_size * HZ) / runtime->rate)
399 + HZ/100);
400 /* move new_hw_ptr according jiffies not pos variable */
401 new_hw_ptr = old_hw_ptr;
402 hw_base = delta;
403 /* use loop to avoid checks for delta overflows */
404 /* the delta value is small or zero in most cases */
405 while (delta > 0) {
406 new_hw_ptr += runtime->period_size;
407 if (new_hw_ptr >= runtime->boundary) {
408 new_hw_ptr -= runtime->boundary;
409 crossed_boundary--;
410 }
411 delta--;
412 }
413 /* align hw_base to buffer_size */
414 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
415 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
416 (long)pos, (long)hdelta,
417 (long)runtime->period_size, jdelta,
418 ((hdelta * HZ) / runtime->rate), hw_base,
419 (unsigned long)old_hw_ptr,
420 (unsigned long)new_hw_ptr);
421 /* reset values to proper state */
422 delta = 0;
423 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
424 }
425 no_jiffies_check:
426 if (delta > runtime->period_size + runtime->period_size / 2) {
427 hw_ptr_error(substream, in_interrupt,
428 "Lost interrupts?",
429 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
430 substream->stream, (long)delta,
431 (long)new_hw_ptr,
432 (long)old_hw_ptr);
433 }
434
435 no_delta_check:
436 if (runtime->status->hw_ptr == new_hw_ptr) {
437 runtime->hw_ptr_jiffies = curr_jiffies;
438 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
439 return 0;
440 }
441
442 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
443 runtime->silence_size > 0)
444 snd_pcm_playback_silence(substream, new_hw_ptr);
445
446 if (in_interrupt) {
447 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
448 if (delta < 0)
449 delta += runtime->boundary;
450 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
451 runtime->hw_ptr_interrupt += delta;
452 if (runtime->hw_ptr_interrupt >= runtime->boundary)
453 runtime->hw_ptr_interrupt -= runtime->boundary;
454 }
455 runtime->hw_ptr_base = hw_base;
456 runtime->status->hw_ptr = new_hw_ptr;
457 runtime->hw_ptr_jiffies = curr_jiffies;
458 if (crossed_boundary) {
459 snd_BUG_ON(crossed_boundary != 1);
460 runtime->hw_ptr_wrap += runtime->boundary;
461 }
462
463 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464
465 return snd_pcm_update_state(substream, runtime);
466}
467
468/* CAUTION: call it with irq disabled */
469int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
470{
471 return snd_pcm_update_hw_ptr0(substream, 0);
472}
473
474/**
475 * snd_pcm_set_ops - set the PCM operators
476 * @pcm: the pcm instance
477 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
478 * @ops: the operator table
479 *
480 * Sets the given PCM operators to the pcm instance.
481 */
482void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
483 const struct snd_pcm_ops *ops)
484{
485 struct snd_pcm_str *stream = &pcm->streams[direction];
486 struct snd_pcm_substream *substream;
487
488 for (substream = stream->substream; substream != NULL; substream = substream->next)
489 substream->ops = ops;
490}
491EXPORT_SYMBOL(snd_pcm_set_ops);
492
493/**
494 * snd_pcm_set_sync - set the PCM sync id
495 * @substream: the pcm substream
496 *
497 * Sets the PCM sync identifier for the card.
498 */
499void snd_pcm_set_sync(struct snd_pcm_substream *substream)
500{
501 struct snd_pcm_runtime *runtime = substream->runtime;
502
503 runtime->sync.id32[0] = substream->pcm->card->number;
504 runtime->sync.id32[1] = -1;
505 runtime->sync.id32[2] = -1;
506 runtime->sync.id32[3] = -1;
507}
508EXPORT_SYMBOL(snd_pcm_set_sync);
509
510/*
511 * Standard ioctl routine
512 */
513
514static inline unsigned int div32(unsigned int a, unsigned int b,
515 unsigned int *r)
516{
517 if (b == 0) {
518 *r = 0;
519 return UINT_MAX;
520 }
521 *r = a % b;
522 return a / b;
523}
524
525static inline unsigned int div_down(unsigned int a, unsigned int b)
526{
527 if (b == 0)
528 return UINT_MAX;
529 return a / b;
530}
531
532static inline unsigned int div_up(unsigned int a, unsigned int b)
533{
534 unsigned int r;
535 unsigned int q;
536 if (b == 0)
537 return UINT_MAX;
538 q = div32(a, b, &r);
539 if (r)
540 ++q;
541 return q;
542}
543
544static inline unsigned int mul(unsigned int a, unsigned int b)
545{
546 if (a == 0)
547 return 0;
548 if (div_down(UINT_MAX, a) < b)
549 return UINT_MAX;
550 return a * b;
551}
552
553static inline unsigned int muldiv32(unsigned int a, unsigned int b,
554 unsigned int c, unsigned int *r)
555{
556 u_int64_t n = (u_int64_t) a * b;
557 if (c == 0) {
558 *r = 0;
559 return UINT_MAX;
560 }
561 n = div_u64_rem(n, c, r);
562 if (n >= UINT_MAX) {
563 *r = 0;
564 return UINT_MAX;
565 }
566 return n;
567}
568
569/**
570 * snd_interval_refine - refine the interval value of configurator
571 * @i: the interval value to refine
572 * @v: the interval value to refer to
573 *
574 * Refines the interval value with the reference value.
575 * The interval is changed to the range satisfying both intervals.
576 * The interval status (min, max, integer, etc.) are evaluated.
577 *
578 * Return: Positive if the value is changed, zero if it's not changed, or a
579 * negative error code.
580 */
581int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
582{
583 int changed = 0;
584 if (snd_BUG_ON(snd_interval_empty(i)))
585 return -EINVAL;
586 if (i->min < v->min) {
587 i->min = v->min;
588 i->openmin = v->openmin;
589 changed = 1;
590 } else if (i->min == v->min && !i->openmin && v->openmin) {
591 i->openmin = 1;
592 changed = 1;
593 }
594 if (i->max > v->max) {
595 i->max = v->max;
596 i->openmax = v->openmax;
597 changed = 1;
598 } else if (i->max == v->max && !i->openmax && v->openmax) {
599 i->openmax = 1;
600 changed = 1;
601 }
602 if (!i->integer && v->integer) {
603 i->integer = 1;
604 changed = 1;
605 }
606 if (i->integer) {
607 if (i->openmin) {
608 i->min++;
609 i->openmin = 0;
610 }
611 if (i->openmax) {
612 i->max--;
613 i->openmax = 0;
614 }
615 } else if (!i->openmin && !i->openmax && i->min == i->max)
616 i->integer = 1;
617 if (snd_interval_checkempty(i)) {
618 snd_interval_none(i);
619 return -EINVAL;
620 }
621 return changed;
622}
623EXPORT_SYMBOL(snd_interval_refine);
624
625static int snd_interval_refine_first(struct snd_interval *i)
626{
627 const unsigned int last_max = i->max;
628
629 if (snd_BUG_ON(snd_interval_empty(i)))
630 return -EINVAL;
631 if (snd_interval_single(i))
632 return 0;
633 i->max = i->min;
634 if (i->openmin)
635 i->max++;
636 /* only exclude max value if also excluded before refine */
637 i->openmax = (i->openmax && i->max >= last_max);
638 return 1;
639}
640
641static int snd_interval_refine_last(struct snd_interval *i)
642{
643 const unsigned int last_min = i->min;
644
645 if (snd_BUG_ON(snd_interval_empty(i)))
646 return -EINVAL;
647 if (snd_interval_single(i))
648 return 0;
649 i->min = i->max;
650 if (i->openmax)
651 i->min--;
652 /* only exclude min value if also excluded before refine */
653 i->openmin = (i->openmin && i->min <= last_min);
654 return 1;
655}
656
657void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658{
659 if (a->empty || b->empty) {
660 snd_interval_none(c);
661 return;
662 }
663 c->empty = 0;
664 c->min = mul(a->min, b->min);
665 c->openmin = (a->openmin || b->openmin);
666 c->max = mul(a->max, b->max);
667 c->openmax = (a->openmax || b->openmax);
668 c->integer = (a->integer && b->integer);
669}
670
671/**
672 * snd_interval_div - refine the interval value with division
673 * @a: dividend
674 * @b: divisor
675 * @c: quotient
676 *
677 * c = a / b
678 *
679 * Returns non-zero if the value is changed, zero if not changed.
680 */
681void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682{
683 unsigned int r;
684 if (a->empty || b->empty) {
685 snd_interval_none(c);
686 return;
687 }
688 c->empty = 0;
689 c->min = div32(a->min, b->max, &r);
690 c->openmin = (r || a->openmin || b->openmax);
691 if (b->min > 0) {
692 c->max = div32(a->max, b->min, &r);
693 if (r) {
694 c->max++;
695 c->openmax = 1;
696 } else
697 c->openmax = (a->openmax || b->openmin);
698 } else {
699 c->max = UINT_MAX;
700 c->openmax = 0;
701 }
702 c->integer = 0;
703}
704
705/**
706 * snd_interval_muldivk - refine the interval value
707 * @a: dividend 1
708 * @b: dividend 2
709 * @k: divisor (as integer)
710 * @c: result
711 *
712 * c = a * b / k
713 *
714 * Returns non-zero if the value is changed, zero if not changed.
715 */
716void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
717 unsigned int k, struct snd_interval *c)
718{
719 unsigned int r;
720 if (a->empty || b->empty) {
721 snd_interval_none(c);
722 return;
723 }
724 c->empty = 0;
725 c->min = muldiv32(a->min, b->min, k, &r);
726 c->openmin = (r || a->openmin || b->openmin);
727 c->max = muldiv32(a->max, b->max, k, &r);
728 if (r) {
729 c->max++;
730 c->openmax = 1;
731 } else
732 c->openmax = (a->openmax || b->openmax);
733 c->integer = 0;
734}
735
736/**
737 * snd_interval_mulkdiv - refine the interval value
738 * @a: dividend 1
739 * @k: dividend 2 (as integer)
740 * @b: divisor
741 * @c: result
742 *
743 * c = a * k / b
744 *
745 * Returns non-zero if the value is changed, zero if not changed.
746 */
747void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
748 const struct snd_interval *b, struct snd_interval *c)
749{
750 unsigned int r;
751 if (a->empty || b->empty) {
752 snd_interval_none(c);
753 return;
754 }
755 c->empty = 0;
756 c->min = muldiv32(a->min, k, b->max, &r);
757 c->openmin = (r || a->openmin || b->openmax);
758 if (b->min > 0) {
759 c->max = muldiv32(a->max, k, b->min, &r);
760 if (r) {
761 c->max++;
762 c->openmax = 1;
763 } else
764 c->openmax = (a->openmax || b->openmin);
765 } else {
766 c->max = UINT_MAX;
767 c->openmax = 0;
768 }
769 c->integer = 0;
770}
771
772/* ---- */
773
774
775/**
776 * snd_interval_ratnum - refine the interval value
777 * @i: interval to refine
778 * @rats_count: number of ratnum_t
779 * @rats: ratnum_t array
780 * @nump: pointer to store the resultant numerator
781 * @denp: pointer to store the resultant denominator
782 *
783 * Return: Positive if the value is changed, zero if it's not changed, or a
784 * negative error code.
785 */
786int snd_interval_ratnum(struct snd_interval *i,
787 unsigned int rats_count, const struct snd_ratnum *rats,
788 unsigned int *nump, unsigned int *denp)
789{
790 unsigned int best_num, best_den;
791 int best_diff;
792 unsigned int k;
793 struct snd_interval t;
794 int err;
795 unsigned int result_num, result_den;
796 int result_diff;
797
798 best_num = best_den = best_diff = 0;
799 for (k = 0; k < rats_count; ++k) {
800 unsigned int num = rats[k].num;
801 unsigned int den;
802 unsigned int q = i->min;
803 int diff;
804 if (q == 0)
805 q = 1;
806 den = div_up(num, q);
807 if (den < rats[k].den_min)
808 continue;
809 if (den > rats[k].den_max)
810 den = rats[k].den_max;
811 else {
812 unsigned int r;
813 r = (den - rats[k].den_min) % rats[k].den_step;
814 if (r != 0)
815 den -= r;
816 }
817 diff = num - q * den;
818 if (diff < 0)
819 diff = -diff;
820 if (best_num == 0 ||
821 diff * best_den < best_diff * den) {
822 best_diff = diff;
823 best_den = den;
824 best_num = num;
825 }
826 }
827 if (best_den == 0) {
828 i->empty = 1;
829 return -EINVAL;
830 }
831 t.min = div_down(best_num, best_den);
832 t.openmin = !!(best_num % best_den);
833
834 result_num = best_num;
835 result_diff = best_diff;
836 result_den = best_den;
837 best_num = best_den = best_diff = 0;
838 for (k = 0; k < rats_count; ++k) {
839 unsigned int num = rats[k].num;
840 unsigned int den;
841 unsigned int q = i->max;
842 int diff;
843 if (q == 0) {
844 i->empty = 1;
845 return -EINVAL;
846 }
847 den = div_down(num, q);
848 if (den > rats[k].den_max)
849 continue;
850 if (den < rats[k].den_min)
851 den = rats[k].den_min;
852 else {
853 unsigned int r;
854 r = (den - rats[k].den_min) % rats[k].den_step;
855 if (r != 0)
856 den += rats[k].den_step - r;
857 }
858 diff = q * den - num;
859 if (diff < 0)
860 diff = -diff;
861 if (best_num == 0 ||
862 diff * best_den < best_diff * den) {
863 best_diff = diff;
864 best_den = den;
865 best_num = num;
866 }
867 }
868 if (best_den == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 t.max = div_up(best_num, best_den);
873 t.openmax = !!(best_num % best_den);
874 t.integer = 0;
875 err = snd_interval_refine(i, &t);
876 if (err < 0)
877 return err;
878
879 if (snd_interval_single(i)) {
880 if (best_diff * result_den < result_diff * best_den) {
881 result_num = best_num;
882 result_den = best_den;
883 }
884 if (nump)
885 *nump = result_num;
886 if (denp)
887 *denp = result_den;
888 }
889 return err;
890}
891EXPORT_SYMBOL(snd_interval_ratnum);
892
893/**
894 * snd_interval_ratden - refine the interval value
895 * @i: interval to refine
896 * @rats_count: number of struct ratden
897 * @rats: struct ratden array
898 * @nump: pointer to store the resultant numerator
899 * @denp: pointer to store the resultant denominator
900 *
901 * Return: Positive if the value is changed, zero if it's not changed, or a
902 * negative error code.
903 */
904static int snd_interval_ratden(struct snd_interval *i,
905 unsigned int rats_count,
906 const struct snd_ratden *rats,
907 unsigned int *nump, unsigned int *denp)
908{
909 unsigned int best_num, best_diff, best_den;
910 unsigned int k;
911 struct snd_interval t;
912 int err;
913
914 best_num = best_den = best_diff = 0;
915 for (k = 0; k < rats_count; ++k) {
916 unsigned int num;
917 unsigned int den = rats[k].den;
918 unsigned int q = i->min;
919 int diff;
920 num = mul(q, den);
921 if (num > rats[k].num_max)
922 continue;
923 if (num < rats[k].num_min)
924 num = rats[k].num_max;
925 else {
926 unsigned int r;
927 r = (num - rats[k].num_min) % rats[k].num_step;
928 if (r != 0)
929 num += rats[k].num_step - r;
930 }
931 diff = num - q * den;
932 if (best_num == 0 ||
933 diff * best_den < best_diff * den) {
934 best_diff = diff;
935 best_den = den;
936 best_num = num;
937 }
938 }
939 if (best_den == 0) {
940 i->empty = 1;
941 return -EINVAL;
942 }
943 t.min = div_down(best_num, best_den);
944 t.openmin = !!(best_num % best_den);
945
946 best_num = best_den = best_diff = 0;
947 for (k = 0; k < rats_count; ++k) {
948 unsigned int num;
949 unsigned int den = rats[k].den;
950 unsigned int q = i->max;
951 int diff;
952 num = mul(q, den);
953 if (num < rats[k].num_min)
954 continue;
955 if (num > rats[k].num_max)
956 num = rats[k].num_max;
957 else {
958 unsigned int r;
959 r = (num - rats[k].num_min) % rats[k].num_step;
960 if (r != 0)
961 num -= r;
962 }
963 diff = q * den - num;
964 if (best_num == 0 ||
965 diff * best_den < best_diff * den) {
966 best_diff = diff;
967 best_den = den;
968 best_num = num;
969 }
970 }
971 if (best_den == 0) {
972 i->empty = 1;
973 return -EINVAL;
974 }
975 t.max = div_up(best_num, best_den);
976 t.openmax = !!(best_num % best_den);
977 t.integer = 0;
978 err = snd_interval_refine(i, &t);
979 if (err < 0)
980 return err;
981
982 if (snd_interval_single(i)) {
983 if (nump)
984 *nump = best_num;
985 if (denp)
986 *denp = best_den;
987 }
988 return err;
989}
990
991/**
992 * snd_interval_list - refine the interval value from the list
993 * @i: the interval value to refine
994 * @count: the number of elements in the list
995 * @list: the value list
996 * @mask: the bit-mask to evaluate
997 *
998 * Refines the interval value from the list.
999 * When mask is non-zero, only the elements corresponding to bit 1 are
1000 * evaluated.
1001 *
1002 * Return: Positive if the value is changed, zero if it's not changed, or a
1003 * negative error code.
1004 */
1005int snd_interval_list(struct snd_interval *i, unsigned int count,
1006 const unsigned int *list, unsigned int mask)
1007{
1008 unsigned int k;
1009 struct snd_interval list_range;
1010
1011 if (!count) {
1012 i->empty = 1;
1013 return -EINVAL;
1014 }
1015 snd_interval_any(&list_range);
1016 list_range.min = UINT_MAX;
1017 list_range.max = 0;
1018 for (k = 0; k < count; k++) {
1019 if (mask && !(mask & (1 << k)))
1020 continue;
1021 if (!snd_interval_test(i, list[k]))
1022 continue;
1023 list_range.min = min(list_range.min, list[k]);
1024 list_range.max = max(list_range.max, list[k]);
1025 }
1026 return snd_interval_refine(i, &list_range);
1027}
1028EXPORT_SYMBOL(snd_interval_list);
1029
1030/**
1031 * snd_interval_ranges - refine the interval value from the list of ranges
1032 * @i: the interval value to refine
1033 * @count: the number of elements in the list of ranges
1034 * @ranges: the ranges list
1035 * @mask: the bit-mask to evaluate
1036 *
1037 * Refines the interval value from the list of ranges.
1038 * When mask is non-zero, only the elements corresponding to bit 1 are
1039 * evaluated.
1040 *
1041 * Return: Positive if the value is changed, zero if it's not changed, or a
1042 * negative error code.
1043 */
1044int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045 const struct snd_interval *ranges, unsigned int mask)
1046{
1047 unsigned int k;
1048 struct snd_interval range_union;
1049 struct snd_interval range;
1050
1051 if (!count) {
1052 snd_interval_none(i);
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&range_union);
1056 range_union.min = UINT_MAX;
1057 range_union.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 snd_interval_copy(&range, &ranges[k]);
1062 if (snd_interval_refine(&range, i) < 0)
1063 continue;
1064 if (snd_interval_empty(&range))
1065 continue;
1066
1067 if (range.min < range_union.min) {
1068 range_union.min = range.min;
1069 range_union.openmin = 1;
1070 }
1071 if (range.min == range_union.min && !range.openmin)
1072 range_union.openmin = 0;
1073 if (range.max > range_union.max) {
1074 range_union.max = range.max;
1075 range_union.openmax = 1;
1076 }
1077 if (range.max == range_union.max && !range.openmax)
1078 range_union.openmax = 0;
1079 }
1080 return snd_interval_refine(i, &range_union);
1081}
1082EXPORT_SYMBOL(snd_interval_ranges);
1083
1084static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085{
1086 unsigned int n;
1087 int changed = 0;
1088 n = i->min % step;
1089 if (n != 0 || i->openmin) {
1090 i->min += step - n;
1091 i->openmin = 0;
1092 changed = 1;
1093 }
1094 n = i->max % step;
1095 if (n != 0 || i->openmax) {
1096 i->max -= n;
1097 i->openmax = 0;
1098 changed = 1;
1099 }
1100 if (snd_interval_checkempty(i)) {
1101 i->empty = 1;
1102 return -EINVAL;
1103 }
1104 return changed;
1105}
1106
1107/* Info constraints helpers */
1108
1109/**
1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
1111 * @runtime: the pcm runtime instance
1112 * @cond: condition bits
1113 * @var: the variable to evaluate
1114 * @func: the evaluation function
1115 * @private: the private data pointer passed to function
1116 * @dep: the dependent variables
1117 *
1118 * Return: Zero if successful, or a negative error code on failure.
1119 */
1120int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121 int var,
1122 snd_pcm_hw_rule_func_t func, void *private,
1123 int dep, ...)
1124{
1125 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126 struct snd_pcm_hw_rule *c;
1127 unsigned int k;
1128 va_list args;
1129 va_start(args, dep);
1130 if (constrs->rules_num >= constrs->rules_all) {
1131 struct snd_pcm_hw_rule *new;
1132 unsigned int new_rules = constrs->rules_all + 16;
1133 new = krealloc_array(constrs->rules, new_rules,
1134 sizeof(*c), GFP_KERNEL);
1135 if (!new) {
1136 va_end(args);
1137 return -ENOMEM;
1138 }
1139 constrs->rules = new;
1140 constrs->rules_all = new_rules;
1141 }
1142 c = &constrs->rules[constrs->rules_num];
1143 c->cond = cond;
1144 c->func = func;
1145 c->var = var;
1146 c->private = private;
1147 k = 0;
1148 while (1) {
1149 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1150 va_end(args);
1151 return -EINVAL;
1152 }
1153 c->deps[k++] = dep;
1154 if (dep < 0)
1155 break;
1156 dep = va_arg(args, int);
1157 }
1158 constrs->rules_num++;
1159 va_end(args);
1160 return 0;
1161}
1162EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1163
1164/**
1165 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1166 * @runtime: PCM runtime instance
1167 * @var: hw_params variable to apply the mask
1168 * @mask: the bitmap mask
1169 *
1170 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171 *
1172 * Return: Zero if successful, or a negative error code on failure.
1173 */
1174int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1175 u_int32_t mask)
1176{
1177 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1178 struct snd_mask *maskp = constrs_mask(constrs, var);
1179 *maskp->bits &= mask;
1180 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1181 if (*maskp->bits == 0)
1182 return -EINVAL;
1183 return 0;
1184}
1185
1186/**
1187 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1188 * @runtime: PCM runtime instance
1189 * @var: hw_params variable to apply the mask
1190 * @mask: the 64bit bitmap mask
1191 *
1192 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193 *
1194 * Return: Zero if successful, or a negative error code on failure.
1195 */
1196int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1197 u_int64_t mask)
1198{
1199 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1200 struct snd_mask *maskp = constrs_mask(constrs, var);
1201 maskp->bits[0] &= (u_int32_t)mask;
1202 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1203 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1204 if (! maskp->bits[0] && ! maskp->bits[1])
1205 return -EINVAL;
1206 return 0;
1207}
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1209
1210/**
1211 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the integer constraint
1214 *
1215 * Apply the constraint of integer to an interval parameter.
1216 *
1217 * Return: Positive if the value is changed, zero if it's not changed, or a
1218 * negative error code.
1219 */
1220int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221{
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 return snd_interval_setinteger(constrs_interval(constrs, var));
1224}
1225EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1226
1227/**
1228 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1229 * @runtime: PCM runtime instance
1230 * @var: hw_params variable to apply the range
1231 * @min: the minimal value
1232 * @max: the maximal value
1233 *
1234 * Apply the min/max range constraint to an interval parameter.
1235 *
1236 * Return: Positive if the value is changed, zero if it's not changed, or a
1237 * negative error code.
1238 */
1239int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1240 unsigned int min, unsigned int max)
1241{
1242 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1243 struct snd_interval t;
1244 t.min = min;
1245 t.max = max;
1246 t.openmin = t.openmax = 0;
1247 t.integer = 0;
1248 return snd_interval_refine(constrs_interval(constrs, var), &t);
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251
1252static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1253 struct snd_pcm_hw_rule *rule)
1254{
1255 struct snd_pcm_hw_constraint_list *list = rule->private;
1256 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257}
1258
1259
1260/**
1261 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1262 * @runtime: PCM runtime instance
1263 * @cond: condition bits
1264 * @var: hw_params variable to apply the list constraint
1265 * @l: list
1266 *
1267 * Apply the list of constraints to an interval parameter.
1268 *
1269 * Return: Zero if successful, or a negative error code on failure.
1270 */
1271int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272 unsigned int cond,
1273 snd_pcm_hw_param_t var,
1274 const struct snd_pcm_hw_constraint_list *l)
1275{
1276 return snd_pcm_hw_rule_add(runtime, cond, var,
1277 snd_pcm_hw_rule_list, (void *)l,
1278 var, -1);
1279}
1280EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281
1282static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1283 struct snd_pcm_hw_rule *rule)
1284{
1285 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1286 return snd_interval_ranges(hw_param_interval(params, rule->var),
1287 r->count, r->ranges, r->mask);
1288}
1289
1290
1291/**
1292 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1293 * @runtime: PCM runtime instance
1294 * @cond: condition bits
1295 * @var: hw_params variable to apply the list of range constraints
1296 * @r: ranges
1297 *
1298 * Apply the list of range constraints to an interval parameter.
1299 *
1300 * Return: Zero if successful, or a negative error code on failure.
1301 */
1302int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303 unsigned int cond,
1304 snd_pcm_hw_param_t var,
1305 const struct snd_pcm_hw_constraint_ranges *r)
1306{
1307 return snd_pcm_hw_rule_add(runtime, cond, var,
1308 snd_pcm_hw_rule_ranges, (void *)r,
1309 var, -1);
1310}
1311EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312
1313static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1314 struct snd_pcm_hw_rule *rule)
1315{
1316 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1317 unsigned int num = 0, den = 0;
1318 int err;
1319 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1320 r->nrats, r->rats, &num, &den);
1321 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1322 params->rate_num = num;
1323 params->rate_den = den;
1324 }
1325 return err;
1326}
1327
1328/**
1329 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1330 * @runtime: PCM runtime instance
1331 * @cond: condition bits
1332 * @var: hw_params variable to apply the ratnums constraint
1333 * @r: struct snd_ratnums constriants
1334 *
1335 * Return: Zero if successful, or a negative error code on failure.
1336 */
1337int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1338 unsigned int cond,
1339 snd_pcm_hw_param_t var,
1340 const struct snd_pcm_hw_constraint_ratnums *r)
1341{
1342 return snd_pcm_hw_rule_add(runtime, cond, var,
1343 snd_pcm_hw_rule_ratnums, (void *)r,
1344 var, -1);
1345}
1346EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347
1348static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1349 struct snd_pcm_hw_rule *rule)
1350{
1351 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1352 unsigned int num = 0, den = 0;
1353 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1354 r->nrats, r->rats, &num, &den);
1355 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356 params->rate_num = num;
1357 params->rate_den = den;
1358 }
1359 return err;
1360}
1361
1362/**
1363 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1364 * @runtime: PCM runtime instance
1365 * @cond: condition bits
1366 * @var: hw_params variable to apply the ratdens constraint
1367 * @r: struct snd_ratdens constriants
1368 *
1369 * Return: Zero if successful, or a negative error code on failure.
1370 */
1371int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1372 unsigned int cond,
1373 snd_pcm_hw_param_t var,
1374 const struct snd_pcm_hw_constraint_ratdens *r)
1375{
1376 return snd_pcm_hw_rule_add(runtime, cond, var,
1377 snd_pcm_hw_rule_ratdens, (void *)r,
1378 var, -1);
1379}
1380EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381
1382static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1383 struct snd_pcm_hw_rule *rule)
1384{
1385 unsigned int l = (unsigned long) rule->private;
1386 int width = l & 0xffff;
1387 unsigned int msbits = l >> 16;
1388 const struct snd_interval *i =
1389 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390
1391 if (!snd_interval_single(i))
1392 return 0;
1393
1394 if ((snd_interval_value(i) == width) ||
1395 (width == 0 && snd_interval_value(i) > msbits))
1396 params->msbits = min_not_zero(params->msbits, msbits);
1397
1398 return 0;
1399}
1400
1401/**
1402 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1403 * @runtime: PCM runtime instance
1404 * @cond: condition bits
1405 * @width: sample bits width
1406 * @msbits: msbits width
1407 *
1408 * This constraint will set the number of most significant bits (msbits) if a
1409 * sample format with the specified width has been select. If width is set to 0
1410 * the msbits will be set for any sample format with a width larger than the
1411 * specified msbits.
1412 *
1413 * Return: Zero if successful, or a negative error code on failure.
1414 */
1415int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1416 unsigned int cond,
1417 unsigned int width,
1418 unsigned int msbits)
1419{
1420 unsigned long l = (msbits << 16) | width;
1421 return snd_pcm_hw_rule_add(runtime, cond, -1,
1422 snd_pcm_hw_rule_msbits,
1423 (void*) l,
1424 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425}
1426EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427
1428static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429 struct snd_pcm_hw_rule *rule)
1430{
1431 unsigned long step = (unsigned long) rule->private;
1432 return snd_interval_step(hw_param_interval(params, rule->var), step);
1433}
1434
1435/**
1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437 * @runtime: PCM runtime instance
1438 * @cond: condition bits
1439 * @var: hw_params variable to apply the step constraint
1440 * @step: step size
1441 *
1442 * Return: Zero if successful, or a negative error code on failure.
1443 */
1444int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445 unsigned int cond,
1446 snd_pcm_hw_param_t var,
1447 unsigned long step)
1448{
1449 return snd_pcm_hw_rule_add(runtime, cond, var,
1450 snd_pcm_hw_rule_step, (void *) step,
1451 var, -1);
1452}
1453EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456{
1457 static const unsigned int pow2_sizes[] = {
1458 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462 };
1463 return snd_interval_list(hw_param_interval(params, rule->var),
1464 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465}
1466
1467/**
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1472 *
1473 * Return: Zero if successful, or a negative error code on failure.
1474 */
1475int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476 unsigned int cond,
1477 snd_pcm_hw_param_t var)
1478{
1479 return snd_pcm_hw_rule_add(runtime, cond, var,
1480 snd_pcm_hw_rule_pow2, NULL,
1481 var, -1);
1482}
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486 struct snd_pcm_hw_rule *rule)
1487{
1488 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489 struct snd_interval *rate;
1490
1491 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492 return snd_interval_list(rate, 1, &base_rate, 0);
1493}
1494
1495/**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503 unsigned int base_rate)
1504{
1505 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506 SNDRV_PCM_HW_PARAM_RATE,
1507 snd_pcm_hw_rule_noresample_func,
1508 (void *)(uintptr_t)base_rate,
1509 SNDRV_PCM_HW_PARAM_RATE, -1);
1510}
1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514 snd_pcm_hw_param_t var)
1515{
1516 if (hw_is_mask(var)) {
1517 snd_mask_any(hw_param_mask(params, var));
1518 params->cmask |= 1 << var;
1519 params->rmask |= 1 << var;
1520 return;
1521 }
1522 if (hw_is_interval(var)) {
1523 snd_interval_any(hw_param_interval(params, var));
1524 params->cmask |= 1 << var;
1525 params->rmask |= 1 << var;
1526 return;
1527 }
1528 snd_BUG();
1529}
1530
1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532{
1533 unsigned int k;
1534 memset(params, 0, sizeof(*params));
1535 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536 _snd_pcm_hw_param_any(params, k);
1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538 _snd_pcm_hw_param_any(params, k);
1539 params->info = ~0U;
1540}
1541EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542
1543/**
1544 * snd_pcm_hw_param_value - return @params field @var value
1545 * @params: the hw_params instance
1546 * @var: parameter to retrieve
1547 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 *
1549 * Return: The value for field @var if it's fixed in configuration space
1550 * defined by @params. -%EINVAL otherwise.
1551 */
1552int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553 snd_pcm_hw_param_t var, int *dir)
1554{
1555 if (hw_is_mask(var)) {
1556 const struct snd_mask *mask = hw_param_mask_c(params, var);
1557 if (!snd_mask_single(mask))
1558 return -EINVAL;
1559 if (dir)
1560 *dir = 0;
1561 return snd_mask_value(mask);
1562 }
1563 if (hw_is_interval(var)) {
1564 const struct snd_interval *i = hw_param_interval_c(params, var);
1565 if (!snd_interval_single(i))
1566 return -EINVAL;
1567 if (dir)
1568 *dir = i->openmin;
1569 return snd_interval_value(i);
1570 }
1571 return -EINVAL;
1572}
1573EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574
1575void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1576 snd_pcm_hw_param_t var)
1577{
1578 if (hw_is_mask(var)) {
1579 snd_mask_none(hw_param_mask(params, var));
1580 params->cmask |= 1 << var;
1581 params->rmask |= 1 << var;
1582 } else if (hw_is_interval(var)) {
1583 snd_interval_none(hw_param_interval(params, var));
1584 params->cmask |= 1 << var;
1585 params->rmask |= 1 << var;
1586 } else {
1587 snd_BUG();
1588 }
1589}
1590EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591
1592static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1593 snd_pcm_hw_param_t var)
1594{
1595 int changed;
1596 if (hw_is_mask(var))
1597 changed = snd_mask_refine_first(hw_param_mask(params, var));
1598 else if (hw_is_interval(var))
1599 changed = snd_interval_refine_first(hw_param_interval(params, var));
1600 else
1601 return -EINVAL;
1602 if (changed > 0) {
1603 params->cmask |= 1 << var;
1604 params->rmask |= 1 << var;
1605 }
1606 return changed;
1607}
1608
1609
1610/**
1611 * snd_pcm_hw_param_first - refine config space and return minimum value
1612 * @pcm: PCM instance
1613 * @params: the hw_params instance
1614 * @var: parameter to retrieve
1615 * @dir: pointer to the direction (-1,0,1) or %NULL
1616 *
1617 * Inside configuration space defined by @params remove from @var all
1618 * values > minimum. Reduce configuration space accordingly.
1619 *
1620 * Return: The minimum, or a negative error code on failure.
1621 */
1622int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1623 struct snd_pcm_hw_params *params,
1624 snd_pcm_hw_param_t var, int *dir)
1625{
1626 int changed = _snd_pcm_hw_param_first(params, var);
1627 if (changed < 0)
1628 return changed;
1629 if (params->rmask) {
1630 int err = snd_pcm_hw_refine(pcm, params);
1631 if (err < 0)
1632 return err;
1633 }
1634 return snd_pcm_hw_param_value(params, var, dir);
1635}
1636EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637
1638static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1639 snd_pcm_hw_param_t var)
1640{
1641 int changed;
1642 if (hw_is_mask(var))
1643 changed = snd_mask_refine_last(hw_param_mask(params, var));
1644 else if (hw_is_interval(var))
1645 changed = snd_interval_refine_last(hw_param_interval(params, var));
1646 else
1647 return -EINVAL;
1648 if (changed > 0) {
1649 params->cmask |= 1 << var;
1650 params->rmask |= 1 << var;
1651 }
1652 return changed;
1653}
1654
1655
1656/**
1657 * snd_pcm_hw_param_last - refine config space and return maximum value
1658 * @pcm: PCM instance
1659 * @params: the hw_params instance
1660 * @var: parameter to retrieve
1661 * @dir: pointer to the direction (-1,0,1) or %NULL
1662 *
1663 * Inside configuration space defined by @params remove from @var all
1664 * values < maximum. Reduce configuration space accordingly.
1665 *
1666 * Return: The maximum, or a negative error code on failure.
1667 */
1668int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1669 struct snd_pcm_hw_params *params,
1670 snd_pcm_hw_param_t var, int *dir)
1671{
1672 int changed = _snd_pcm_hw_param_last(params, var);
1673 if (changed < 0)
1674 return changed;
1675 if (params->rmask) {
1676 int err = snd_pcm_hw_refine(pcm, params);
1677 if (err < 0)
1678 return err;
1679 }
1680 return snd_pcm_hw_param_value(params, var, dir);
1681}
1682EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683
1684static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1685 void *arg)
1686{
1687 struct snd_pcm_runtime *runtime = substream->runtime;
1688 unsigned long flags;
1689 snd_pcm_stream_lock_irqsave(substream, flags);
1690 if (snd_pcm_running(substream) &&
1691 snd_pcm_update_hw_ptr(substream) >= 0)
1692 runtime->status->hw_ptr %= runtime->buffer_size;
1693 else {
1694 runtime->status->hw_ptr = 0;
1695 runtime->hw_ptr_wrap = 0;
1696 }
1697 snd_pcm_stream_unlock_irqrestore(substream, flags);
1698 return 0;
1699}
1700
1701static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1702 void *arg)
1703{
1704 struct snd_pcm_channel_info *info = arg;
1705 struct snd_pcm_runtime *runtime = substream->runtime;
1706 int width;
1707 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1708 info->offset = -1;
1709 return 0;
1710 }
1711 width = snd_pcm_format_physical_width(runtime->format);
1712 if (width < 0)
1713 return width;
1714 info->offset = 0;
1715 switch (runtime->access) {
1716 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1717 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1718 info->first = info->channel * width;
1719 info->step = runtime->channels * width;
1720 break;
1721 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1722 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723 {
1724 size_t size = runtime->dma_bytes / runtime->channels;
1725 info->first = info->channel * size * 8;
1726 info->step = width;
1727 break;
1728 }
1729 default:
1730 snd_BUG();
1731 break;
1732 }
1733 return 0;
1734}
1735
1736static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1737 void *arg)
1738{
1739 struct snd_pcm_hw_params *params = arg;
1740 snd_pcm_format_t format;
1741 int channels;
1742 ssize_t frame_size;
1743
1744 params->fifo_size = substream->runtime->hw.fifo_size;
1745 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1746 format = params_format(params);
1747 channels = params_channels(params);
1748 frame_size = snd_pcm_format_size(format, channels);
1749 if (frame_size > 0)
1750 params->fifo_size /= frame_size;
1751 }
1752 return 0;
1753}
1754
1755/**
1756 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1757 * @substream: the pcm substream instance
1758 * @cmd: ioctl command
1759 * @arg: ioctl argument
1760 *
1761 * Processes the generic ioctl commands for PCM.
1762 * Can be passed as the ioctl callback for PCM ops.
1763 *
1764 * Return: Zero if successful, or a negative error code on failure.
1765 */
1766int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1767 unsigned int cmd, void *arg)
1768{
1769 switch (cmd) {
1770 case SNDRV_PCM_IOCTL1_RESET:
1771 return snd_pcm_lib_ioctl_reset(substream, arg);
1772 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1773 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1774 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1775 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1776 }
1777 return -ENXIO;
1778}
1779EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1780
1781/**
1782 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1783 * under acquired lock of PCM substream.
1784 * @substream: the instance of pcm substream.
1785 *
1786 * This function is called when the batch of audio data frames as the same size as the period of
1787 * buffer is already processed in audio data transmission.
1788 *
1789 * The call of function updates the status of runtime with the latest position of audio data
1790 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1791 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1792 * substream according to configured threshold.
1793 *
1794 * The function is intended to use for the case that PCM driver operates audio data frames under
1795 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1796 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1797 * since lock of PCM substream should be acquired in advance.
1798 *
1799 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1800 * function:
1801 *
1802 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1803 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1804 * - .get_time_info - to retrieve audio time stamp if needed.
1805 *
1806 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1807 */
1808void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809{
1810 struct snd_pcm_runtime *runtime;
1811
1812 if (PCM_RUNTIME_CHECK(substream))
1813 return;
1814 runtime = substream->runtime;
1815
1816 if (!snd_pcm_running(substream) ||
1817 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1818 goto _end;
1819
1820#ifdef CONFIG_SND_PCM_TIMER
1821 if (substream->timer_running)
1822 snd_timer_interrupt(substream->timer, 1);
1823#endif
1824 _end:
1825 snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1826}
1827EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1828
1829/**
1830 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831 * PCM substream.
1832 * @substream: the instance of PCM substream.
1833 *
1834 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1835 * acquiring lock of PCM substream voluntarily.
1836 *
1837 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1838 * the batch of audio data frames as the same size as the period of buffer is already processed in
1839 * audio data transmission.
1840 */
1841void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842{
1843 unsigned long flags;
1844
1845 if (snd_BUG_ON(!substream))
1846 return;
1847
1848 snd_pcm_stream_lock_irqsave(substream, flags);
1849 snd_pcm_period_elapsed_under_stream_lock(substream);
1850 snd_pcm_stream_unlock_irqrestore(substream, flags);
1851}
1852EXPORT_SYMBOL(snd_pcm_period_elapsed);
1853
1854/*
1855 * Wait until avail_min data becomes available
1856 * Returns a negative error code if any error occurs during operation.
1857 * The available space is stored on availp. When err = 0 and avail = 0
1858 * on the capture stream, it indicates the stream is in DRAINING state.
1859 */
1860static int wait_for_avail(struct snd_pcm_substream *substream,
1861 snd_pcm_uframes_t *availp)
1862{
1863 struct snd_pcm_runtime *runtime = substream->runtime;
1864 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1865 wait_queue_entry_t wait;
1866 int err = 0;
1867 snd_pcm_uframes_t avail = 0;
1868 long wait_time, tout;
1869
1870 init_waitqueue_entry(&wait, current);
1871 set_current_state(TASK_INTERRUPTIBLE);
1872 add_wait_queue(&runtime->tsleep, &wait);
1873
1874 if (runtime->no_period_wakeup)
1875 wait_time = MAX_SCHEDULE_TIMEOUT;
1876 else {
1877 /* use wait time from substream if available */
1878 if (substream->wait_time) {
1879 wait_time = substream->wait_time;
1880 } else {
1881 wait_time = 10;
1882
1883 if (runtime->rate) {
1884 long t = runtime->period_size * 2 /
1885 runtime->rate;
1886 wait_time = max(t, wait_time);
1887 }
1888 wait_time = msecs_to_jiffies(wait_time * 1000);
1889 }
1890 }
1891
1892 for (;;) {
1893 if (signal_pending(current)) {
1894 err = -ERESTARTSYS;
1895 break;
1896 }
1897
1898 /*
1899 * We need to check if space became available already
1900 * (and thus the wakeup happened already) first to close
1901 * the race of space already having become available.
1902 * This check must happen after been added to the waitqueue
1903 * and having current state be INTERRUPTIBLE.
1904 */
1905 avail = snd_pcm_avail(substream);
1906 if (avail >= runtime->twake)
1907 break;
1908 snd_pcm_stream_unlock_irq(substream);
1909
1910 tout = schedule_timeout(wait_time);
1911
1912 snd_pcm_stream_lock_irq(substream);
1913 set_current_state(TASK_INTERRUPTIBLE);
1914 switch (runtime->state) {
1915 case SNDRV_PCM_STATE_SUSPENDED:
1916 err = -ESTRPIPE;
1917 goto _endloop;
1918 case SNDRV_PCM_STATE_XRUN:
1919 err = -EPIPE;
1920 goto _endloop;
1921 case SNDRV_PCM_STATE_DRAINING:
1922 if (is_playback)
1923 err = -EPIPE;
1924 else
1925 avail = 0; /* indicate draining */
1926 goto _endloop;
1927 case SNDRV_PCM_STATE_OPEN:
1928 case SNDRV_PCM_STATE_SETUP:
1929 case SNDRV_PCM_STATE_DISCONNECTED:
1930 err = -EBADFD;
1931 goto _endloop;
1932 case SNDRV_PCM_STATE_PAUSED:
1933 continue;
1934 }
1935 if (!tout) {
1936 pcm_dbg(substream->pcm,
1937 "%s write error (DMA or IRQ trouble?)\n",
1938 is_playback ? "playback" : "capture");
1939 err = -EIO;
1940 break;
1941 }
1942 }
1943 _endloop:
1944 set_current_state(TASK_RUNNING);
1945 remove_wait_queue(&runtime->tsleep, &wait);
1946 *availp = avail;
1947 return err;
1948}
1949
1950typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1951 int channel, unsigned long hwoff,
1952 void *buf, unsigned long bytes);
1953
1954typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1955 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1956
1957/* calculate the target DMA-buffer position to be written/read */
1958static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1959 int channel, unsigned long hwoff)
1960{
1961 return runtime->dma_area + hwoff +
1962 channel * (runtime->dma_bytes / runtime->channels);
1963}
1964
1965/* default copy_user ops for write; used for both interleaved and non- modes */
1966static int default_write_copy(struct snd_pcm_substream *substream,
1967 int channel, unsigned long hwoff,
1968 void *buf, unsigned long bytes)
1969{
1970 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1971 (void __user *)buf, bytes))
1972 return -EFAULT;
1973 return 0;
1974}
1975
1976/* default copy_kernel ops for write */
1977static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1978 int channel, unsigned long hwoff,
1979 void *buf, unsigned long bytes)
1980{
1981 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1982 return 0;
1983}
1984
1985/* fill silence instead of copy data; called as a transfer helper
1986 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1987 * a NULL buffer is passed
1988 */
1989static int fill_silence(struct snd_pcm_substream *substream, int channel,
1990 unsigned long hwoff, void *buf, unsigned long bytes)
1991{
1992 struct snd_pcm_runtime *runtime = substream->runtime;
1993
1994 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1995 return 0;
1996 if (substream->ops->fill_silence)
1997 return substream->ops->fill_silence(substream, channel,
1998 hwoff, bytes);
1999
2000 snd_pcm_format_set_silence(runtime->format,
2001 get_dma_ptr(runtime, channel, hwoff),
2002 bytes_to_samples(runtime, bytes));
2003 return 0;
2004}
2005
2006/* default copy_user ops for read; used for both interleaved and non- modes */
2007static int default_read_copy(struct snd_pcm_substream *substream,
2008 int channel, unsigned long hwoff,
2009 void *buf, unsigned long bytes)
2010{
2011 if (copy_to_user((void __user *)buf,
2012 get_dma_ptr(substream->runtime, channel, hwoff),
2013 bytes))
2014 return -EFAULT;
2015 return 0;
2016}
2017
2018/* default copy_kernel ops for read */
2019static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2020 int channel, unsigned long hwoff,
2021 void *buf, unsigned long bytes)
2022{
2023 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2024 return 0;
2025}
2026
2027/* call transfer function with the converted pointers and sizes;
2028 * for interleaved mode, it's one shot for all samples
2029 */
2030static int interleaved_copy(struct snd_pcm_substream *substream,
2031 snd_pcm_uframes_t hwoff, void *data,
2032 snd_pcm_uframes_t off,
2033 snd_pcm_uframes_t frames,
2034 pcm_transfer_f transfer)
2035{
2036 struct snd_pcm_runtime *runtime = substream->runtime;
2037
2038 /* convert to bytes */
2039 hwoff = frames_to_bytes(runtime, hwoff);
2040 off = frames_to_bytes(runtime, off);
2041 frames = frames_to_bytes(runtime, frames);
2042 return transfer(substream, 0, hwoff, data + off, frames);
2043}
2044
2045/* call transfer function with the converted pointers and sizes for each
2046 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2047 */
2048static int noninterleaved_copy(struct snd_pcm_substream *substream,
2049 snd_pcm_uframes_t hwoff, void *data,
2050 snd_pcm_uframes_t off,
2051 snd_pcm_uframes_t frames,
2052 pcm_transfer_f transfer)
2053{
2054 struct snd_pcm_runtime *runtime = substream->runtime;
2055 int channels = runtime->channels;
2056 void **bufs = data;
2057 int c, err;
2058
2059 /* convert to bytes; note that it's not frames_to_bytes() here.
2060 * in non-interleaved mode, we copy for each channel, thus
2061 * each copy is n_samples bytes x channels = whole frames.
2062 */
2063 off = samples_to_bytes(runtime, off);
2064 frames = samples_to_bytes(runtime, frames);
2065 hwoff = samples_to_bytes(runtime, hwoff);
2066 for (c = 0; c < channels; ++c, ++bufs) {
2067 if (!data || !*bufs)
2068 err = fill_silence(substream, c, hwoff, NULL, frames);
2069 else
2070 err = transfer(substream, c, hwoff, *bufs + off,
2071 frames);
2072 if (err < 0)
2073 return err;
2074 }
2075 return 0;
2076}
2077
2078/* fill silence on the given buffer position;
2079 * called from snd_pcm_playback_silence()
2080 */
2081static int fill_silence_frames(struct snd_pcm_substream *substream,
2082 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2083{
2084 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2085 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2086 return interleaved_copy(substream, off, NULL, 0, frames,
2087 fill_silence);
2088 else
2089 return noninterleaved_copy(substream, off, NULL, 0, frames,
2090 fill_silence);
2091}
2092
2093/* sanity-check for read/write methods */
2094static int pcm_sanity_check(struct snd_pcm_substream *substream)
2095{
2096 struct snd_pcm_runtime *runtime;
2097 if (PCM_RUNTIME_CHECK(substream))
2098 return -ENXIO;
2099 runtime = substream->runtime;
2100 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2101 return -EINVAL;
2102 if (runtime->state == SNDRV_PCM_STATE_OPEN)
2103 return -EBADFD;
2104 return 0;
2105}
2106
2107static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2108{
2109 switch (runtime->state) {
2110 case SNDRV_PCM_STATE_PREPARED:
2111 case SNDRV_PCM_STATE_RUNNING:
2112 case SNDRV_PCM_STATE_PAUSED:
2113 return 0;
2114 case SNDRV_PCM_STATE_XRUN:
2115 return -EPIPE;
2116 case SNDRV_PCM_STATE_SUSPENDED:
2117 return -ESTRPIPE;
2118 default:
2119 return -EBADFD;
2120 }
2121}
2122
2123/* update to the given appl_ptr and call ack callback if needed;
2124 * when an error is returned, take back to the original value
2125 */
2126int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2127 snd_pcm_uframes_t appl_ptr)
2128{
2129 struct snd_pcm_runtime *runtime = substream->runtime;
2130 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2131 snd_pcm_sframes_t diff;
2132 int ret;
2133
2134 if (old_appl_ptr == appl_ptr)
2135 return 0;
2136
2137 if (appl_ptr >= runtime->boundary)
2138 return -EINVAL;
2139 /*
2140 * check if a rewind is requested by the application
2141 */
2142 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2143 diff = appl_ptr - old_appl_ptr;
2144 if (diff >= 0) {
2145 if (diff > runtime->buffer_size)
2146 return -EINVAL;
2147 } else {
2148 if (runtime->boundary + diff > runtime->buffer_size)
2149 return -EINVAL;
2150 }
2151 }
2152
2153 runtime->control->appl_ptr = appl_ptr;
2154 if (substream->ops->ack) {
2155 ret = substream->ops->ack(substream);
2156 if (ret < 0) {
2157 runtime->control->appl_ptr = old_appl_ptr;
2158 return ret;
2159 }
2160 }
2161
2162 trace_applptr(substream, old_appl_ptr, appl_ptr);
2163
2164 return 0;
2165}
2166
2167/* the common loop for read/write data */
2168snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2169 void *data, bool interleaved,
2170 snd_pcm_uframes_t size, bool in_kernel)
2171{
2172 struct snd_pcm_runtime *runtime = substream->runtime;
2173 snd_pcm_uframes_t xfer = 0;
2174 snd_pcm_uframes_t offset = 0;
2175 snd_pcm_uframes_t avail;
2176 pcm_copy_f writer;
2177 pcm_transfer_f transfer;
2178 bool nonblock;
2179 bool is_playback;
2180 int err;
2181
2182 err = pcm_sanity_check(substream);
2183 if (err < 0)
2184 return err;
2185
2186 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2187 if (interleaved) {
2188 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2189 runtime->channels > 1)
2190 return -EINVAL;
2191 writer = interleaved_copy;
2192 } else {
2193 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2194 return -EINVAL;
2195 writer = noninterleaved_copy;
2196 }
2197
2198 if (!data) {
2199 if (is_playback)
2200 transfer = fill_silence;
2201 else
2202 return -EINVAL;
2203 } else if (in_kernel) {
2204 if (substream->ops->copy_kernel)
2205 transfer = substream->ops->copy_kernel;
2206 else
2207 transfer = is_playback ?
2208 default_write_copy_kernel : default_read_copy_kernel;
2209 } else {
2210 if (substream->ops->copy_user)
2211 transfer = (pcm_transfer_f)substream->ops->copy_user;
2212 else
2213 transfer = is_playback ?
2214 default_write_copy : default_read_copy;
2215 }
2216
2217 if (size == 0)
2218 return 0;
2219
2220 nonblock = !!(substream->f_flags & O_NONBLOCK);
2221
2222 snd_pcm_stream_lock_irq(substream);
2223 err = pcm_accessible_state(runtime);
2224 if (err < 0)
2225 goto _end_unlock;
2226
2227 runtime->twake = runtime->control->avail_min ? : 1;
2228 if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2229 snd_pcm_update_hw_ptr(substream);
2230
2231 /*
2232 * If size < start_threshold, wait indefinitely. Another
2233 * thread may start capture
2234 */
2235 if (!is_playback &&
2236 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2237 size >= runtime->start_threshold) {
2238 err = snd_pcm_start(substream);
2239 if (err < 0)
2240 goto _end_unlock;
2241 }
2242
2243 avail = snd_pcm_avail(substream);
2244
2245 while (size > 0) {
2246 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2247 snd_pcm_uframes_t cont;
2248 if (!avail) {
2249 if (!is_playback &&
2250 runtime->state == SNDRV_PCM_STATE_DRAINING) {
2251 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2252 goto _end_unlock;
2253 }
2254 if (nonblock) {
2255 err = -EAGAIN;
2256 goto _end_unlock;
2257 }
2258 runtime->twake = min_t(snd_pcm_uframes_t, size,
2259 runtime->control->avail_min ? : 1);
2260 err = wait_for_avail(substream, &avail);
2261 if (err < 0)
2262 goto _end_unlock;
2263 if (!avail)
2264 continue; /* draining */
2265 }
2266 frames = size > avail ? avail : size;
2267 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2268 appl_ofs = appl_ptr % runtime->buffer_size;
2269 cont = runtime->buffer_size - appl_ofs;
2270 if (frames > cont)
2271 frames = cont;
2272 if (snd_BUG_ON(!frames)) {
2273 err = -EINVAL;
2274 goto _end_unlock;
2275 }
2276 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2277 err = -EBUSY;
2278 goto _end_unlock;
2279 }
2280 snd_pcm_stream_unlock_irq(substream);
2281 if (!is_playback)
2282 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2283 err = writer(substream, appl_ofs, data, offset, frames,
2284 transfer);
2285 if (is_playback)
2286 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2287 snd_pcm_stream_lock_irq(substream);
2288 atomic_dec(&runtime->buffer_accessing);
2289 if (err < 0)
2290 goto _end_unlock;
2291 err = pcm_accessible_state(runtime);
2292 if (err < 0)
2293 goto _end_unlock;
2294 appl_ptr += frames;
2295 if (appl_ptr >= runtime->boundary)
2296 appl_ptr -= runtime->boundary;
2297 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2298 if (err < 0)
2299 goto _end_unlock;
2300
2301 offset += frames;
2302 size -= frames;
2303 xfer += frames;
2304 avail -= frames;
2305 if (is_playback &&
2306 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2307 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2308 err = snd_pcm_start(substream);
2309 if (err < 0)
2310 goto _end_unlock;
2311 }
2312 }
2313 _end_unlock:
2314 runtime->twake = 0;
2315 if (xfer > 0 && err >= 0)
2316 snd_pcm_update_state(substream, runtime);
2317 snd_pcm_stream_unlock_irq(substream);
2318 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2319}
2320EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2321
2322/*
2323 * standard channel mapping helpers
2324 */
2325
2326/* default channel maps for multi-channel playbacks, up to 8 channels */
2327const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2328 { .channels = 1,
2329 .map = { SNDRV_CHMAP_MONO } },
2330 { .channels = 2,
2331 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2332 { .channels = 4,
2333 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2334 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2335 { .channels = 6,
2336 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2337 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2339 { .channels = 8,
2340 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2341 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2342 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2343 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2344 { }
2345};
2346EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2347
2348/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2349const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2350 { .channels = 1,
2351 .map = { SNDRV_CHMAP_MONO } },
2352 { .channels = 2,
2353 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2354 { .channels = 4,
2355 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2356 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2357 { .channels = 6,
2358 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2359 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2360 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2361 { .channels = 8,
2362 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2363 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2364 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2365 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2366 { }
2367};
2368EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2369
2370static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2371{
2372 if (ch > info->max_channels)
2373 return false;
2374 return !info->channel_mask || (info->channel_mask & (1U << ch));
2375}
2376
2377static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2378 struct snd_ctl_elem_info *uinfo)
2379{
2380 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2381
2382 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2383 uinfo->count = info->max_channels;
2384 uinfo->value.integer.min = 0;
2385 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2386 return 0;
2387}
2388
2389/* get callback for channel map ctl element
2390 * stores the channel position firstly matching with the current channels
2391 */
2392static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2393 struct snd_ctl_elem_value *ucontrol)
2394{
2395 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2396 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2397 struct snd_pcm_substream *substream;
2398 const struct snd_pcm_chmap_elem *map;
2399
2400 if (!info->chmap)
2401 return -EINVAL;
2402 substream = snd_pcm_chmap_substream(info, idx);
2403 if (!substream)
2404 return -ENODEV;
2405 memset(ucontrol->value.integer.value, 0,
2406 sizeof(long) * info->max_channels);
2407 if (!substream->runtime)
2408 return 0; /* no channels set */
2409 for (map = info->chmap; map->channels; map++) {
2410 int i;
2411 if (map->channels == substream->runtime->channels &&
2412 valid_chmap_channels(info, map->channels)) {
2413 for (i = 0; i < map->channels; i++)
2414 ucontrol->value.integer.value[i] = map->map[i];
2415 return 0;
2416 }
2417 }
2418 return -EINVAL;
2419}
2420
2421/* tlv callback for channel map ctl element
2422 * expands the pre-defined channel maps in a form of TLV
2423 */
2424static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2425 unsigned int size, unsigned int __user *tlv)
2426{
2427 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2428 const struct snd_pcm_chmap_elem *map;
2429 unsigned int __user *dst;
2430 int c, count = 0;
2431
2432 if (!info->chmap)
2433 return -EINVAL;
2434 if (size < 8)
2435 return -ENOMEM;
2436 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2437 return -EFAULT;
2438 size -= 8;
2439 dst = tlv + 2;
2440 for (map = info->chmap; map->channels; map++) {
2441 int chs_bytes = map->channels * 4;
2442 if (!valid_chmap_channels(info, map->channels))
2443 continue;
2444 if (size < 8)
2445 return -ENOMEM;
2446 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2447 put_user(chs_bytes, dst + 1))
2448 return -EFAULT;
2449 dst += 2;
2450 size -= 8;
2451 count += 8;
2452 if (size < chs_bytes)
2453 return -ENOMEM;
2454 size -= chs_bytes;
2455 count += chs_bytes;
2456 for (c = 0; c < map->channels; c++) {
2457 if (put_user(map->map[c], dst))
2458 return -EFAULT;
2459 dst++;
2460 }
2461 }
2462 if (put_user(count, tlv + 1))
2463 return -EFAULT;
2464 return 0;
2465}
2466
2467static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2468{
2469 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2470 info->pcm->streams[info->stream].chmap_kctl = NULL;
2471 kfree(info);
2472}
2473
2474/**
2475 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2476 * @pcm: the assigned PCM instance
2477 * @stream: stream direction
2478 * @chmap: channel map elements (for query)
2479 * @max_channels: the max number of channels for the stream
2480 * @private_value: the value passed to each kcontrol's private_value field
2481 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2482 *
2483 * Create channel-mapping control elements assigned to the given PCM stream(s).
2484 * Return: Zero if successful, or a negative error value.
2485 */
2486int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2487 const struct snd_pcm_chmap_elem *chmap,
2488 int max_channels,
2489 unsigned long private_value,
2490 struct snd_pcm_chmap **info_ret)
2491{
2492 struct snd_pcm_chmap *info;
2493 struct snd_kcontrol_new knew = {
2494 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2495 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2496 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2497 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2498 .info = pcm_chmap_ctl_info,
2499 .get = pcm_chmap_ctl_get,
2500 .tlv.c = pcm_chmap_ctl_tlv,
2501 };
2502 int err;
2503
2504 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2505 return -EBUSY;
2506 info = kzalloc(sizeof(*info), GFP_KERNEL);
2507 if (!info)
2508 return -ENOMEM;
2509 info->pcm = pcm;
2510 info->stream = stream;
2511 info->chmap = chmap;
2512 info->max_channels = max_channels;
2513 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2514 knew.name = "Playback Channel Map";
2515 else
2516 knew.name = "Capture Channel Map";
2517 knew.device = pcm->device;
2518 knew.count = pcm->streams[stream].substream_count;
2519 knew.private_value = private_value;
2520 info->kctl = snd_ctl_new1(&knew, info);
2521 if (!info->kctl) {
2522 kfree(info);
2523 return -ENOMEM;
2524 }
2525 info->kctl->private_free = pcm_chmap_ctl_private_free;
2526 err = snd_ctl_add(pcm->card, info->kctl);
2527 if (err < 0)
2528 return err;
2529 pcm->streams[stream].chmap_kctl = info->kctl;
2530 if (info_ret)
2531 *info_ret = info;
2532 return 0;
2533}
2534EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <linux/export.h>
27#include <sound/core.h>
28#include <sound/control.h>
29#include <sound/info.h>
30#include <sound/pcm.h>
31#include <sound/pcm_params.h>
32#include <sound/timer.h>
33
34/*
35 * fill ring buffer with silence
36 * runtime->silence_start: starting pointer to silence area
37 * runtime->silence_filled: size filled with silence
38 * runtime->silence_threshold: threshold from application
39 * runtime->silence_size: maximal size from application
40 *
41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42 */
43void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44{
45 struct snd_pcm_runtime *runtime = substream->runtime;
46 snd_pcm_uframes_t frames, ofs, transfer;
47
48 if (runtime->silence_size < runtime->boundary) {
49 snd_pcm_sframes_t noise_dist, n;
50 if (runtime->silence_start != runtime->control->appl_ptr) {
51 n = runtime->control->appl_ptr - runtime->silence_start;
52 if (n < 0)
53 n += runtime->boundary;
54 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 runtime->silence_filled -= n;
56 else
57 runtime->silence_filled = 0;
58 runtime->silence_start = runtime->control->appl_ptr;
59 }
60 if (runtime->silence_filled >= runtime->buffer_size)
61 return;
62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 return;
65 frames = runtime->silence_threshold - noise_dist;
66 if (frames > runtime->silence_size)
67 frames = runtime->silence_size;
68 } else {
69 if (new_hw_ptr == ULONG_MAX) { /* initialization */
70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 if (avail > runtime->buffer_size)
72 avail = runtime->buffer_size;
73 runtime->silence_filled = avail > 0 ? avail : 0;
74 runtime->silence_start = (runtime->status->hw_ptr +
75 runtime->silence_filled) %
76 runtime->boundary;
77 } else {
78 ofs = runtime->status->hw_ptr;
79 frames = new_hw_ptr - ofs;
80 if ((snd_pcm_sframes_t)frames < 0)
81 frames += runtime->boundary;
82 runtime->silence_filled -= frames;
83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 runtime->silence_filled = 0;
85 runtime->silence_start = new_hw_ptr;
86 } else {
87 runtime->silence_start = ofs;
88 }
89 }
90 frames = runtime->buffer_size - runtime->silence_filled;
91 }
92 if (snd_BUG_ON(frames > runtime->buffer_size))
93 return;
94 if (frames == 0)
95 return;
96 ofs = runtime->silence_start % runtime->buffer_size;
97 while (frames > 0) {
98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 if (substream->ops->silence) {
102 int err;
103 err = substream->ops->silence(substream, -1, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 } else {
106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 }
109 } else {
110 unsigned int c;
111 unsigned int channels = runtime->channels;
112 if (substream->ops->silence) {
113 for (c = 0; c < channels; ++c) {
114 int err;
115 err = substream->ops->silence(substream, c, ofs, transfer);
116 snd_BUG_ON(err < 0);
117 }
118 } else {
119 size_t dma_csize = runtime->dma_bytes / channels;
120 for (c = 0; c < channels; ++c) {
121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 }
124 }
125 }
126 runtime->silence_filled += transfer;
127 frames -= transfer;
128 ofs = 0;
129 }
130}
131
132#ifdef CONFIG_SND_DEBUG
133void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 char *name, size_t len)
135{
136 snprintf(name, len, "pcmC%dD%d%c:%d",
137 substream->pcm->card->number,
138 substream->pcm->device,
139 substream->stream ? 'c' : 'p',
140 substream->number);
141}
142EXPORT_SYMBOL(snd_pcm_debug_name);
143#endif
144
145#define XRUN_DEBUG_BASIC (1<<0)
146#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
147#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
148#define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
149#define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
150#define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
151#define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
152
153#ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155#define xrun_debug(substream, mask) \
156 ((substream)->pstr->xrun_debug & (mask))
157#else
158#define xrun_debug(substream, mask) 0
159#endif
160
161#define dump_stack_on_xrun(substream) do { \
162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
163 dump_stack(); \
164 } while (0)
165
166static void xrun(struct snd_pcm_substream *substream)
167{
168 struct snd_pcm_runtime *runtime = substream->runtime;
169
170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 char name[16];
175 snd_pcm_debug_name(substream, name, sizeof(name));
176 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 dump_stack_on_xrun(substream);
178 }
179}
180
181#ifdef CONFIG_SND_PCM_XRUN_DEBUG
182#define hw_ptr_error(substream, fmt, args...) \
183 do { \
184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
185 xrun_log_show(substream); \
186 if (printk_ratelimit()) { \
187 snd_printd("PCM: " fmt, ##args); \
188 } \
189 dump_stack_on_xrun(substream); \
190 } \
191 } while (0)
192
193#define XRUN_LOG_CNT 10
194
195struct hwptr_log_entry {
196 unsigned int in_interrupt;
197 unsigned long jiffies;
198 snd_pcm_uframes_t pos;
199 snd_pcm_uframes_t period_size;
200 snd_pcm_uframes_t buffer_size;
201 snd_pcm_uframes_t old_hw_ptr;
202 snd_pcm_uframes_t hw_ptr_base;
203};
204
205struct snd_pcm_hwptr_log {
206 unsigned int idx;
207 unsigned int hit: 1;
208 struct hwptr_log_entry entries[XRUN_LOG_CNT];
209};
210
211static void xrun_log(struct snd_pcm_substream *substream,
212 snd_pcm_uframes_t pos, int in_interrupt)
213{
214 struct snd_pcm_runtime *runtime = substream->runtime;
215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 struct hwptr_log_entry *entry;
217
218 if (log == NULL) {
219 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 if (log == NULL)
221 return;
222 runtime->hwptr_log = log;
223 } else {
224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 return;
226 }
227 entry = &log->entries[log->idx];
228 entry->in_interrupt = in_interrupt;
229 entry->jiffies = jiffies;
230 entry->pos = pos;
231 entry->period_size = runtime->period_size;
232 entry->buffer_size = runtime->buffer_size;
233 entry->old_hw_ptr = runtime->status->hw_ptr;
234 entry->hw_ptr_base = runtime->hw_ptr_base;
235 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236}
237
238static void xrun_log_show(struct snd_pcm_substream *substream)
239{
240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 struct hwptr_log_entry *entry;
242 char name[16];
243 unsigned int idx;
244 int cnt;
245
246 if (log == NULL)
247 return;
248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 return;
250 snd_pcm_debug_name(substream, name, sizeof(name));
251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 entry = &log->entries[idx];
253 if (entry->period_size == 0)
254 break;
255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 "hwptr=%ld/%ld\n",
257 name, entry->in_interrupt ? "[Q] " : "",
258 entry->jiffies,
259 (unsigned long)entry->pos,
260 (unsigned long)entry->period_size,
261 (unsigned long)entry->buffer_size,
262 (unsigned long)entry->old_hw_ptr,
263 (unsigned long)entry->hw_ptr_base);
264 idx++;
265 idx %= XRUN_LOG_CNT;
266 }
267 log->hit = 1;
268}
269
270#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272#define hw_ptr_error(substream, fmt, args...) do { } while (0)
273#define xrun_log(substream, pos, in_interrupt) do { } while (0)
274#define xrun_log_show(substream) do { } while (0)
275
276#endif
277
278int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 struct snd_pcm_runtime *runtime)
280{
281 snd_pcm_uframes_t avail;
282
283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 avail = snd_pcm_playback_avail(runtime);
285 else
286 avail = snd_pcm_capture_avail(runtime);
287 if (avail > runtime->avail_max)
288 runtime->avail_max = avail;
289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 if (avail >= runtime->buffer_size) {
291 snd_pcm_drain_done(substream);
292 return -EPIPE;
293 }
294 } else {
295 if (avail >= runtime->stop_threshold) {
296 xrun(substream);
297 return -EPIPE;
298 }
299 }
300 if (runtime->twake) {
301 if (avail >= runtime->twake)
302 wake_up(&runtime->tsleep);
303 } else if (avail >= runtime->control->avail_min)
304 wake_up(&runtime->sleep);
305 return 0;
306}
307
308static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 unsigned int in_interrupt)
310{
311 struct snd_pcm_runtime *runtime = substream->runtime;
312 snd_pcm_uframes_t pos;
313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 snd_pcm_sframes_t hdelta, delta;
315 unsigned long jdelta;
316 unsigned long curr_jiffies;
317 struct timespec curr_tstamp;
318
319 old_hw_ptr = runtime->status->hw_ptr;
320
321 /*
322 * group pointer, time and jiffies reads to allow for more
323 * accurate correlations/corrections.
324 * The values are stored at the end of this routine after
325 * corrections for hw_ptr position
326 */
327 pos = substream->ops->pointer(substream);
328 curr_jiffies = jiffies;
329 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
330 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
331
332 if (pos == SNDRV_PCM_POS_XRUN) {
333 xrun(substream);
334 return -EPIPE;
335 }
336 if (pos >= runtime->buffer_size) {
337 if (printk_ratelimit()) {
338 char name[16];
339 snd_pcm_debug_name(substream, name, sizeof(name));
340 xrun_log_show(substream);
341 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
342 "buffer size = %ld, period size = %ld\n",
343 name, pos, runtime->buffer_size,
344 runtime->period_size);
345 }
346 pos = 0;
347 }
348 pos -= pos % runtime->min_align;
349 if (xrun_debug(substream, XRUN_DEBUG_LOG))
350 xrun_log(substream, pos, in_interrupt);
351 hw_base = runtime->hw_ptr_base;
352 new_hw_ptr = hw_base + pos;
353 if (in_interrupt) {
354 /* we know that one period was processed */
355 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
356 delta = runtime->hw_ptr_interrupt + runtime->period_size;
357 if (delta > new_hw_ptr) {
358 /* check for double acknowledged interrupts */
359 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
360 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary)
363 hw_base = 0;
364 new_hw_ptr = hw_base + pos;
365 goto __delta;
366 }
367 }
368 }
369 /* new_hw_ptr might be lower than old_hw_ptr in case when */
370 /* pointer crosses the end of the ring buffer */
371 if (new_hw_ptr < old_hw_ptr) {
372 hw_base += runtime->buffer_size;
373 if (hw_base >= runtime->boundary)
374 hw_base = 0;
375 new_hw_ptr = hw_base + pos;
376 }
377 __delta:
378 delta = new_hw_ptr - old_hw_ptr;
379 if (delta < 0)
380 delta += runtime->boundary;
381 if (xrun_debug(substream, in_interrupt ?
382 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
383 char name[16];
384 snd_pcm_debug_name(substream, name, sizeof(name));
385 snd_printd("%s_update: %s: pos=%u/%u/%u, "
386 "hwptr=%ld/%ld/%ld/%ld\n",
387 in_interrupt ? "period" : "hwptr",
388 name,
389 (unsigned int)pos,
390 (unsigned int)runtime->period_size,
391 (unsigned int)runtime->buffer_size,
392 (unsigned long)delta,
393 (unsigned long)old_hw_ptr,
394 (unsigned long)new_hw_ptr,
395 (unsigned long)runtime->hw_ptr_base);
396 }
397
398 if (runtime->no_period_wakeup) {
399 snd_pcm_sframes_t xrun_threshold;
400 /*
401 * Without regular period interrupts, we have to check
402 * the elapsed time to detect xruns.
403 */
404 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
405 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
406 goto no_delta_check;
407 hdelta = jdelta - delta * HZ / runtime->rate;
408 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
409 while (hdelta > xrun_threshold) {
410 delta += runtime->buffer_size;
411 hw_base += runtime->buffer_size;
412 if (hw_base >= runtime->boundary)
413 hw_base = 0;
414 new_hw_ptr = hw_base + pos;
415 hdelta -= runtime->hw_ptr_buffer_jiffies;
416 }
417 goto no_delta_check;
418 }
419
420 /* something must be really wrong */
421 if (delta >= runtime->buffer_size + runtime->period_size) {
422 hw_ptr_error(substream,
423 "Unexpected hw_pointer value %s"
424 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
425 "old_hw_ptr=%ld)\n",
426 in_interrupt ? "[Q] " : "[P]",
427 substream->stream, (long)pos,
428 (long)new_hw_ptr, (long)old_hw_ptr);
429 return 0;
430 }
431
432 /* Do jiffies check only in xrun_debug mode */
433 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
434 goto no_jiffies_check;
435
436 /* Skip the jiffies check for hardwares with BATCH flag.
437 * Such hardware usually just increases the position at each IRQ,
438 * thus it can't give any strange position.
439 */
440 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
441 goto no_jiffies_check;
442 hdelta = delta;
443 if (hdelta < runtime->delay)
444 goto no_jiffies_check;
445 hdelta -= runtime->delay;
446 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
447 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
448 delta = jdelta /
449 (((runtime->period_size * HZ) / runtime->rate)
450 + HZ/100);
451 /* move new_hw_ptr according jiffies not pos variable */
452 new_hw_ptr = old_hw_ptr;
453 hw_base = delta;
454 /* use loop to avoid checks for delta overflows */
455 /* the delta value is small or zero in most cases */
456 while (delta > 0) {
457 new_hw_ptr += runtime->period_size;
458 if (new_hw_ptr >= runtime->boundary)
459 new_hw_ptr -= runtime->boundary;
460 delta--;
461 }
462 /* align hw_base to buffer_size */
463 hw_ptr_error(substream,
464 "hw_ptr skipping! %s"
465 "(pos=%ld, delta=%ld, period=%ld, "
466 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
467 in_interrupt ? "[Q] " : "",
468 (long)pos, (long)hdelta,
469 (long)runtime->period_size, jdelta,
470 ((hdelta * HZ) / runtime->rate), hw_base,
471 (unsigned long)old_hw_ptr,
472 (unsigned long)new_hw_ptr);
473 /* reset values to proper state */
474 delta = 0;
475 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
476 }
477 no_jiffies_check:
478 if (delta > runtime->period_size + runtime->period_size / 2) {
479 hw_ptr_error(substream,
480 "Lost interrupts? %s"
481 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
482 "old_hw_ptr=%ld)\n",
483 in_interrupt ? "[Q] " : "",
484 substream->stream, (long)delta,
485 (long)new_hw_ptr,
486 (long)old_hw_ptr);
487 }
488
489 no_delta_check:
490 if (runtime->status->hw_ptr == new_hw_ptr)
491 return 0;
492
493 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
494 runtime->silence_size > 0)
495 snd_pcm_playback_silence(substream, new_hw_ptr);
496
497 if (in_interrupt) {
498 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
499 if (delta < 0)
500 delta += runtime->boundary;
501 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
502 runtime->hw_ptr_interrupt += delta;
503 if (runtime->hw_ptr_interrupt >= runtime->boundary)
504 runtime->hw_ptr_interrupt -= runtime->boundary;
505 }
506 runtime->hw_ptr_base = hw_base;
507 runtime->status->hw_ptr = new_hw_ptr;
508 runtime->hw_ptr_jiffies = curr_jiffies;
509 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
510 runtime->status->tstamp = curr_tstamp;
511
512 return snd_pcm_update_state(substream, runtime);
513}
514
515/* CAUTION: call it with irq disabled */
516int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
517{
518 return snd_pcm_update_hw_ptr0(substream, 0);
519}
520
521/**
522 * snd_pcm_set_ops - set the PCM operators
523 * @pcm: the pcm instance
524 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
525 * @ops: the operator table
526 *
527 * Sets the given PCM operators to the pcm instance.
528 */
529void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
530{
531 struct snd_pcm_str *stream = &pcm->streams[direction];
532 struct snd_pcm_substream *substream;
533
534 for (substream = stream->substream; substream != NULL; substream = substream->next)
535 substream->ops = ops;
536}
537
538EXPORT_SYMBOL(snd_pcm_set_ops);
539
540/**
541 * snd_pcm_sync - set the PCM sync id
542 * @substream: the pcm substream
543 *
544 * Sets the PCM sync identifier for the card.
545 */
546void snd_pcm_set_sync(struct snd_pcm_substream *substream)
547{
548 struct snd_pcm_runtime *runtime = substream->runtime;
549
550 runtime->sync.id32[0] = substream->pcm->card->number;
551 runtime->sync.id32[1] = -1;
552 runtime->sync.id32[2] = -1;
553 runtime->sync.id32[3] = -1;
554}
555
556EXPORT_SYMBOL(snd_pcm_set_sync);
557
558/*
559 * Standard ioctl routine
560 */
561
562static inline unsigned int div32(unsigned int a, unsigned int b,
563 unsigned int *r)
564{
565 if (b == 0) {
566 *r = 0;
567 return UINT_MAX;
568 }
569 *r = a % b;
570 return a / b;
571}
572
573static inline unsigned int div_down(unsigned int a, unsigned int b)
574{
575 if (b == 0)
576 return UINT_MAX;
577 return a / b;
578}
579
580static inline unsigned int div_up(unsigned int a, unsigned int b)
581{
582 unsigned int r;
583 unsigned int q;
584 if (b == 0)
585 return UINT_MAX;
586 q = div32(a, b, &r);
587 if (r)
588 ++q;
589 return q;
590}
591
592static inline unsigned int mul(unsigned int a, unsigned int b)
593{
594 if (a == 0)
595 return 0;
596 if (div_down(UINT_MAX, a) < b)
597 return UINT_MAX;
598 return a * b;
599}
600
601static inline unsigned int muldiv32(unsigned int a, unsigned int b,
602 unsigned int c, unsigned int *r)
603{
604 u_int64_t n = (u_int64_t) a * b;
605 if (c == 0) {
606 snd_BUG_ON(!n);
607 *r = 0;
608 return UINT_MAX;
609 }
610 n = div_u64_rem(n, c, r);
611 if (n >= UINT_MAX) {
612 *r = 0;
613 return UINT_MAX;
614 }
615 return n;
616}
617
618/**
619 * snd_interval_refine - refine the interval value of configurator
620 * @i: the interval value to refine
621 * @v: the interval value to refer to
622 *
623 * Refines the interval value with the reference value.
624 * The interval is changed to the range satisfying both intervals.
625 * The interval status (min, max, integer, etc.) are evaluated.
626 *
627 * Returns non-zero if the value is changed, zero if not changed.
628 */
629int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
630{
631 int changed = 0;
632 if (snd_BUG_ON(snd_interval_empty(i)))
633 return -EINVAL;
634 if (i->min < v->min) {
635 i->min = v->min;
636 i->openmin = v->openmin;
637 changed = 1;
638 } else if (i->min == v->min && !i->openmin && v->openmin) {
639 i->openmin = 1;
640 changed = 1;
641 }
642 if (i->max > v->max) {
643 i->max = v->max;
644 i->openmax = v->openmax;
645 changed = 1;
646 } else if (i->max == v->max && !i->openmax && v->openmax) {
647 i->openmax = 1;
648 changed = 1;
649 }
650 if (!i->integer && v->integer) {
651 i->integer = 1;
652 changed = 1;
653 }
654 if (i->integer) {
655 if (i->openmin) {
656 i->min++;
657 i->openmin = 0;
658 }
659 if (i->openmax) {
660 i->max--;
661 i->openmax = 0;
662 }
663 } else if (!i->openmin && !i->openmax && i->min == i->max)
664 i->integer = 1;
665 if (snd_interval_checkempty(i)) {
666 snd_interval_none(i);
667 return -EINVAL;
668 }
669 return changed;
670}
671
672EXPORT_SYMBOL(snd_interval_refine);
673
674static int snd_interval_refine_first(struct snd_interval *i)
675{
676 if (snd_BUG_ON(snd_interval_empty(i)))
677 return -EINVAL;
678 if (snd_interval_single(i))
679 return 0;
680 i->max = i->min;
681 i->openmax = i->openmin;
682 if (i->openmax)
683 i->max++;
684 return 1;
685}
686
687static int snd_interval_refine_last(struct snd_interval *i)
688{
689 if (snd_BUG_ON(snd_interval_empty(i)))
690 return -EINVAL;
691 if (snd_interval_single(i))
692 return 0;
693 i->min = i->max;
694 i->openmin = i->openmax;
695 if (i->openmin)
696 i->min--;
697 return 1;
698}
699
700void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
701{
702 if (a->empty || b->empty) {
703 snd_interval_none(c);
704 return;
705 }
706 c->empty = 0;
707 c->min = mul(a->min, b->min);
708 c->openmin = (a->openmin || b->openmin);
709 c->max = mul(a->max, b->max);
710 c->openmax = (a->openmax || b->openmax);
711 c->integer = (a->integer && b->integer);
712}
713
714/**
715 * snd_interval_div - refine the interval value with division
716 * @a: dividend
717 * @b: divisor
718 * @c: quotient
719 *
720 * c = a / b
721 *
722 * Returns non-zero if the value is changed, zero if not changed.
723 */
724void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
725{
726 unsigned int r;
727 if (a->empty || b->empty) {
728 snd_interval_none(c);
729 return;
730 }
731 c->empty = 0;
732 c->min = div32(a->min, b->max, &r);
733 c->openmin = (r || a->openmin || b->openmax);
734 if (b->min > 0) {
735 c->max = div32(a->max, b->min, &r);
736 if (r) {
737 c->max++;
738 c->openmax = 1;
739 } else
740 c->openmax = (a->openmax || b->openmin);
741 } else {
742 c->max = UINT_MAX;
743 c->openmax = 0;
744 }
745 c->integer = 0;
746}
747
748/**
749 * snd_interval_muldivk - refine the interval value
750 * @a: dividend 1
751 * @b: dividend 2
752 * @k: divisor (as integer)
753 * @c: result
754 *
755 * c = a * b / k
756 *
757 * Returns non-zero if the value is changed, zero if not changed.
758 */
759void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
760 unsigned int k, struct snd_interval *c)
761{
762 unsigned int r;
763 if (a->empty || b->empty) {
764 snd_interval_none(c);
765 return;
766 }
767 c->empty = 0;
768 c->min = muldiv32(a->min, b->min, k, &r);
769 c->openmin = (r || a->openmin || b->openmin);
770 c->max = muldiv32(a->max, b->max, k, &r);
771 if (r) {
772 c->max++;
773 c->openmax = 1;
774 } else
775 c->openmax = (a->openmax || b->openmax);
776 c->integer = 0;
777}
778
779/**
780 * snd_interval_mulkdiv - refine the interval value
781 * @a: dividend 1
782 * @k: dividend 2 (as integer)
783 * @b: divisor
784 * @c: result
785 *
786 * c = a * k / b
787 *
788 * Returns non-zero if the value is changed, zero if not changed.
789 */
790void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
791 const struct snd_interval *b, struct snd_interval *c)
792{
793 unsigned int r;
794 if (a->empty || b->empty) {
795 snd_interval_none(c);
796 return;
797 }
798 c->empty = 0;
799 c->min = muldiv32(a->min, k, b->max, &r);
800 c->openmin = (r || a->openmin || b->openmax);
801 if (b->min > 0) {
802 c->max = muldiv32(a->max, k, b->min, &r);
803 if (r) {
804 c->max++;
805 c->openmax = 1;
806 } else
807 c->openmax = (a->openmax || b->openmin);
808 } else {
809 c->max = UINT_MAX;
810 c->openmax = 0;
811 }
812 c->integer = 0;
813}
814
815/* ---- */
816
817
818/**
819 * snd_interval_ratnum - refine the interval value
820 * @i: interval to refine
821 * @rats_count: number of ratnum_t
822 * @rats: ratnum_t array
823 * @nump: pointer to store the resultant numerator
824 * @denp: pointer to store the resultant denominator
825 *
826 * Returns non-zero if the value is changed, zero if not changed.
827 */
828int snd_interval_ratnum(struct snd_interval *i,
829 unsigned int rats_count, struct snd_ratnum *rats,
830 unsigned int *nump, unsigned int *denp)
831{
832 unsigned int best_num, best_den;
833 int best_diff;
834 unsigned int k;
835 struct snd_interval t;
836 int err;
837 unsigned int result_num, result_den;
838 int result_diff;
839
840 best_num = best_den = best_diff = 0;
841 for (k = 0; k < rats_count; ++k) {
842 unsigned int num = rats[k].num;
843 unsigned int den;
844 unsigned int q = i->min;
845 int diff;
846 if (q == 0)
847 q = 1;
848 den = div_up(num, q);
849 if (den < rats[k].den_min)
850 continue;
851 if (den > rats[k].den_max)
852 den = rats[k].den_max;
853 else {
854 unsigned int r;
855 r = (den - rats[k].den_min) % rats[k].den_step;
856 if (r != 0)
857 den -= r;
858 }
859 diff = num - q * den;
860 if (diff < 0)
861 diff = -diff;
862 if (best_num == 0 ||
863 diff * best_den < best_diff * den) {
864 best_diff = diff;
865 best_den = den;
866 best_num = num;
867 }
868 }
869 if (best_den == 0) {
870 i->empty = 1;
871 return -EINVAL;
872 }
873 t.min = div_down(best_num, best_den);
874 t.openmin = !!(best_num % best_den);
875
876 result_num = best_num;
877 result_diff = best_diff;
878 result_den = best_den;
879 best_num = best_den = best_diff = 0;
880 for (k = 0; k < rats_count; ++k) {
881 unsigned int num = rats[k].num;
882 unsigned int den;
883 unsigned int q = i->max;
884 int diff;
885 if (q == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 den = div_down(num, q);
890 if (den > rats[k].den_max)
891 continue;
892 if (den < rats[k].den_min)
893 den = rats[k].den_min;
894 else {
895 unsigned int r;
896 r = (den - rats[k].den_min) % rats[k].den_step;
897 if (r != 0)
898 den += rats[k].den_step - r;
899 }
900 diff = q * den - num;
901 if (diff < 0)
902 diff = -diff;
903 if (best_num == 0 ||
904 diff * best_den < best_diff * den) {
905 best_diff = diff;
906 best_den = den;
907 best_num = num;
908 }
909 }
910 if (best_den == 0) {
911 i->empty = 1;
912 return -EINVAL;
913 }
914 t.max = div_up(best_num, best_den);
915 t.openmax = !!(best_num % best_den);
916 t.integer = 0;
917 err = snd_interval_refine(i, &t);
918 if (err < 0)
919 return err;
920
921 if (snd_interval_single(i)) {
922 if (best_diff * result_den < result_diff * best_den) {
923 result_num = best_num;
924 result_den = best_den;
925 }
926 if (nump)
927 *nump = result_num;
928 if (denp)
929 *denp = result_den;
930 }
931 return err;
932}
933
934EXPORT_SYMBOL(snd_interval_ratnum);
935
936/**
937 * snd_interval_ratden - refine the interval value
938 * @i: interval to refine
939 * @rats_count: number of struct ratden
940 * @rats: struct ratden array
941 * @nump: pointer to store the resultant numerator
942 * @denp: pointer to store the resultant denominator
943 *
944 * Returns non-zero if the value is changed, zero if not changed.
945 */
946static int snd_interval_ratden(struct snd_interval *i,
947 unsigned int rats_count, struct snd_ratden *rats,
948 unsigned int *nump, unsigned int *denp)
949{
950 unsigned int best_num, best_diff, best_den;
951 unsigned int k;
952 struct snd_interval t;
953 int err;
954
955 best_num = best_den = best_diff = 0;
956 for (k = 0; k < rats_count; ++k) {
957 unsigned int num;
958 unsigned int den = rats[k].den;
959 unsigned int q = i->min;
960 int diff;
961 num = mul(q, den);
962 if (num > rats[k].num_max)
963 continue;
964 if (num < rats[k].num_min)
965 num = rats[k].num_max;
966 else {
967 unsigned int r;
968 r = (num - rats[k].num_min) % rats[k].num_step;
969 if (r != 0)
970 num += rats[k].num_step - r;
971 }
972 diff = num - q * den;
973 if (best_num == 0 ||
974 diff * best_den < best_diff * den) {
975 best_diff = diff;
976 best_den = den;
977 best_num = num;
978 }
979 }
980 if (best_den == 0) {
981 i->empty = 1;
982 return -EINVAL;
983 }
984 t.min = div_down(best_num, best_den);
985 t.openmin = !!(best_num % best_den);
986
987 best_num = best_den = best_diff = 0;
988 for (k = 0; k < rats_count; ++k) {
989 unsigned int num;
990 unsigned int den = rats[k].den;
991 unsigned int q = i->max;
992 int diff;
993 num = mul(q, den);
994 if (num < rats[k].num_min)
995 continue;
996 if (num > rats[k].num_max)
997 num = rats[k].num_max;
998 else {
999 unsigned int r;
1000 r = (num - rats[k].num_min) % rats[k].num_step;
1001 if (r != 0)
1002 num -= r;
1003 }
1004 diff = q * den - num;
1005 if (best_num == 0 ||
1006 diff * best_den < best_diff * den) {
1007 best_diff = diff;
1008 best_den = den;
1009 best_num = num;
1010 }
1011 }
1012 if (best_den == 0) {
1013 i->empty = 1;
1014 return -EINVAL;
1015 }
1016 t.max = div_up(best_num, best_den);
1017 t.openmax = !!(best_num % best_den);
1018 t.integer = 0;
1019 err = snd_interval_refine(i, &t);
1020 if (err < 0)
1021 return err;
1022
1023 if (snd_interval_single(i)) {
1024 if (nump)
1025 *nump = best_num;
1026 if (denp)
1027 *denp = best_den;
1028 }
1029 return err;
1030}
1031
1032/**
1033 * snd_interval_list - refine the interval value from the list
1034 * @i: the interval value to refine
1035 * @count: the number of elements in the list
1036 * @list: the value list
1037 * @mask: the bit-mask to evaluate
1038 *
1039 * Refines the interval value from the list.
1040 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * evaluated.
1042 *
1043 * Returns non-zero if the value is changed, zero if not changed.
1044 */
1045int snd_interval_list(struct snd_interval *i, unsigned int count,
1046 const unsigned int *list, unsigned int mask)
1047{
1048 unsigned int k;
1049 struct snd_interval list_range;
1050
1051 if (!count) {
1052 i->empty = 1;
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&list_range);
1056 list_range.min = UINT_MAX;
1057 list_range.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 if (!snd_interval_test(i, list[k]))
1062 continue;
1063 list_range.min = min(list_range.min, list[k]);
1064 list_range.max = max(list_range.max, list[k]);
1065 }
1066 return snd_interval_refine(i, &list_range);
1067}
1068
1069EXPORT_SYMBOL(snd_interval_list);
1070
1071static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072{
1073 unsigned int n;
1074 int changed = 0;
1075 n = (i->min - min) % step;
1076 if (n != 0 || i->openmin) {
1077 i->min += step - n;
1078 changed = 1;
1079 }
1080 n = (i->max - min) % step;
1081 if (n != 0 || i->openmax) {
1082 i->max -= n;
1083 changed = 1;
1084 }
1085 if (snd_interval_checkempty(i)) {
1086 i->empty = 1;
1087 return -EINVAL;
1088 }
1089 return changed;
1090}
1091
1092/* Info constraints helpers */
1093
1094/**
1095 * snd_pcm_hw_rule_add - add the hw-constraint rule
1096 * @runtime: the pcm runtime instance
1097 * @cond: condition bits
1098 * @var: the variable to evaluate
1099 * @func: the evaluation function
1100 * @private: the private data pointer passed to function
1101 * @dep: the dependent variables
1102 *
1103 * Returns zero if successful, or a negative error code on failure.
1104 */
1105int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106 int var,
1107 snd_pcm_hw_rule_func_t func, void *private,
1108 int dep, ...)
1109{
1110 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111 struct snd_pcm_hw_rule *c;
1112 unsigned int k;
1113 va_list args;
1114 va_start(args, dep);
1115 if (constrs->rules_num >= constrs->rules_all) {
1116 struct snd_pcm_hw_rule *new;
1117 unsigned int new_rules = constrs->rules_all + 16;
1118 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1119 if (!new) {
1120 va_end(args);
1121 return -ENOMEM;
1122 }
1123 if (constrs->rules) {
1124 memcpy(new, constrs->rules,
1125 constrs->rules_num * sizeof(*c));
1126 kfree(constrs->rules);
1127 }
1128 constrs->rules = new;
1129 constrs->rules_all = new_rules;
1130 }
1131 c = &constrs->rules[constrs->rules_num];
1132 c->cond = cond;
1133 c->func = func;
1134 c->var = var;
1135 c->private = private;
1136 k = 0;
1137 while (1) {
1138 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139 va_end(args);
1140 return -EINVAL;
1141 }
1142 c->deps[k++] = dep;
1143 if (dep < 0)
1144 break;
1145 dep = va_arg(args, int);
1146 }
1147 constrs->rules_num++;
1148 va_end(args);
1149 return 0;
1150}
1151
1152EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154/**
1155 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156 * @runtime: PCM runtime instance
1157 * @var: hw_params variable to apply the mask
1158 * @mask: the bitmap mask
1159 *
1160 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 */
1182int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183 u_int64_t mask)
1184{
1185 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186 struct snd_mask *maskp = constrs_mask(constrs, var);
1187 maskp->bits[0] &= (u_int32_t)mask;
1188 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190 if (! maskp->bits[0] && ! maskp->bits[1])
1191 return -EINVAL;
1192 return 0;
1193}
1194
1195/**
1196 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the integer constraint
1199 *
1200 * Apply the constraint of integer to an interval parameter.
1201 */
1202int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203{
1204 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205 return snd_interval_setinteger(constrs_interval(constrs, var));
1206}
1207
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210/**
1211 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the range
1214 * @min: the minimal value
1215 * @max: the maximal value
1216 *
1217 * Apply the min/max range constraint to an interval parameter.
1218 */
1219int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220 unsigned int min, unsigned int max)
1221{
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 struct snd_interval t;
1224 t.min = min;
1225 t.max = max;
1226 t.openmin = t.openmax = 0;
1227 t.integer = 0;
1228 return snd_interval_refine(constrs_interval(constrs, var), &t);
1229}
1230
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234 struct snd_pcm_hw_rule *rule)
1235{
1236 struct snd_pcm_hw_constraint_list *list = rule->private;
1237 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238}
1239
1240
1241/**
1242 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243 * @runtime: PCM runtime instance
1244 * @cond: condition bits
1245 * @var: hw_params variable to apply the list constraint
1246 * @l: list
1247 *
1248 * Apply the list of constraints to an interval parameter.
1249 */
1250int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251 unsigned int cond,
1252 snd_pcm_hw_param_t var,
1253 struct snd_pcm_hw_constraint_list *l)
1254{
1255 return snd_pcm_hw_rule_add(runtime, cond, var,
1256 snd_pcm_hw_rule_list, l,
1257 var, -1);
1258}
1259
1260EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1261
1262static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263 struct snd_pcm_hw_rule *rule)
1264{
1265 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266 unsigned int num = 0, den = 0;
1267 int err;
1268 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269 r->nrats, r->rats, &num, &den);
1270 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271 params->rate_num = num;
1272 params->rate_den = den;
1273 }
1274 return err;
1275}
1276
1277/**
1278 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279 * @runtime: PCM runtime instance
1280 * @cond: condition bits
1281 * @var: hw_params variable to apply the ratnums constraint
1282 * @r: struct snd_ratnums constriants
1283 */
1284int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1285 unsigned int cond,
1286 snd_pcm_hw_param_t var,
1287 struct snd_pcm_hw_constraint_ratnums *r)
1288{
1289 return snd_pcm_hw_rule_add(runtime, cond, var,
1290 snd_pcm_hw_rule_ratnums, r,
1291 var, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297 struct snd_pcm_hw_rule *rule)
1298{
1299 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300 unsigned int num = 0, den = 0;
1301 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302 r->nrats, r->rats, &num, &den);
1303 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304 params->rate_num = num;
1305 params->rate_den = den;
1306 }
1307 return err;
1308}
1309
1310/**
1311 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312 * @runtime: PCM runtime instance
1313 * @cond: condition bits
1314 * @var: hw_params variable to apply the ratdens constraint
1315 * @r: struct snd_ratdens constriants
1316 */
1317int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1318 unsigned int cond,
1319 snd_pcm_hw_param_t var,
1320 struct snd_pcm_hw_constraint_ratdens *r)
1321{
1322 return snd_pcm_hw_rule_add(runtime, cond, var,
1323 snd_pcm_hw_rule_ratdens, r,
1324 var, -1);
1325}
1326
1327EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330 struct snd_pcm_hw_rule *rule)
1331{
1332 unsigned int l = (unsigned long) rule->private;
1333 int width = l & 0xffff;
1334 unsigned int msbits = l >> 16;
1335 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336 if (snd_interval_single(i) && snd_interval_value(i) == width)
1337 params->msbits = msbits;
1338 return 0;
1339}
1340
1341/**
1342 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343 * @runtime: PCM runtime instance
1344 * @cond: condition bits
1345 * @width: sample bits width
1346 * @msbits: msbits width
1347 */
1348int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1349 unsigned int cond,
1350 unsigned int width,
1351 unsigned int msbits)
1352{
1353 unsigned long l = (msbits << 16) | width;
1354 return snd_pcm_hw_rule_add(runtime, cond, -1,
1355 snd_pcm_hw_rule_msbits,
1356 (void*) l,
1357 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358}
1359
1360EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363 struct snd_pcm_hw_rule *rule)
1364{
1365 unsigned long step = (unsigned long) rule->private;
1366 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367}
1368
1369/**
1370 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the step constraint
1374 * @step: step size
1375 */
1376int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377 unsigned int cond,
1378 snd_pcm_hw_param_t var,
1379 unsigned long step)
1380{
1381 return snd_pcm_hw_rule_add(runtime, cond, var,
1382 snd_pcm_hw_rule_step, (void *) step,
1383 var, -1);
1384}
1385
1386EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389{
1390 static unsigned int pow2_sizes[] = {
1391 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395 };
1396 return snd_interval_list(hw_param_interval(params, rule->var),
1397 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398}
1399
1400/**
1401 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @var: hw_params variable to apply the power-of-2 constraint
1405 */
1406int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407 unsigned int cond,
1408 snd_pcm_hw_param_t var)
1409{
1410 return snd_pcm_hw_rule_add(runtime, cond, var,
1411 snd_pcm_hw_rule_pow2, NULL,
1412 var, -1);
1413}
1414
1415EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418 struct snd_pcm_hw_rule *rule)
1419{
1420 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421 struct snd_interval *rate;
1422
1423 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424 return snd_interval_list(rate, 1, &base_rate, 0);
1425}
1426
1427/**
1428 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429 * @runtime: PCM runtime instance
1430 * @base_rate: the rate at which the hardware does not resample
1431 */
1432int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433 unsigned int base_rate)
1434{
1435 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436 SNDRV_PCM_HW_PARAM_RATE,
1437 snd_pcm_hw_rule_noresample_func,
1438 (void *)(uintptr_t)base_rate,
1439 SNDRV_PCM_HW_PARAM_RATE, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444 snd_pcm_hw_param_t var)
1445{
1446 if (hw_is_mask(var)) {
1447 snd_mask_any(hw_param_mask(params, var));
1448 params->cmask |= 1 << var;
1449 params->rmask |= 1 << var;
1450 return;
1451 }
1452 if (hw_is_interval(var)) {
1453 snd_interval_any(hw_param_interval(params, var));
1454 params->cmask |= 1 << var;
1455 params->rmask |= 1 << var;
1456 return;
1457 }
1458 snd_BUG();
1459}
1460
1461void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462{
1463 unsigned int k;
1464 memset(params, 0, sizeof(*params));
1465 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466 _snd_pcm_hw_param_any(params, k);
1467 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468 _snd_pcm_hw_param_any(params, k);
1469 params->info = ~0U;
1470}
1471
1472EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474/**
1475 * snd_pcm_hw_param_value - return @params field @var value
1476 * @params: the hw_params instance
1477 * @var: parameter to retrieve
1478 * @dir: pointer to the direction (-1,0,1) or %NULL
1479 *
1480 * Return the value for field @var if it's fixed in configuration space
1481 * defined by @params. Return -%EINVAL otherwise.
1482 */
1483int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484 snd_pcm_hw_param_t var, int *dir)
1485{
1486 if (hw_is_mask(var)) {
1487 const struct snd_mask *mask = hw_param_mask_c(params, var);
1488 if (!snd_mask_single(mask))
1489 return -EINVAL;
1490 if (dir)
1491 *dir = 0;
1492 return snd_mask_value(mask);
1493 }
1494 if (hw_is_interval(var)) {
1495 const struct snd_interval *i = hw_param_interval_c(params, var);
1496 if (!snd_interval_single(i))
1497 return -EINVAL;
1498 if (dir)
1499 *dir = i->openmin;
1500 return snd_interval_value(i);
1501 }
1502 return -EINVAL;
1503}
1504
1505EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508 snd_pcm_hw_param_t var)
1509{
1510 if (hw_is_mask(var)) {
1511 snd_mask_none(hw_param_mask(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 } else if (hw_is_interval(var)) {
1515 snd_interval_none(hw_param_interval(params, var));
1516 params->cmask |= 1 << var;
1517 params->rmask |= 1 << var;
1518 } else {
1519 snd_BUG();
1520 }
1521}
1522
1523EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526 snd_pcm_hw_param_t var)
1527{
1528 int changed;
1529 if (hw_is_mask(var))
1530 changed = snd_mask_refine_first(hw_param_mask(params, var));
1531 else if (hw_is_interval(var))
1532 changed = snd_interval_refine_first(hw_param_interval(params, var));
1533 else
1534 return -EINVAL;
1535 if (changed) {
1536 params->cmask |= 1 << var;
1537 params->rmask |= 1 << var;
1538 }
1539 return changed;
1540}
1541
1542
1543/**
1544 * snd_pcm_hw_param_first - refine config space and return minimum value
1545 * @pcm: PCM instance
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Inside configuration space defined by @params remove from @var all
1551 * values > minimum. Reduce configuration space accordingly.
1552 * Return the minimum.
1553 */
1554int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1555 struct snd_pcm_hw_params *params,
1556 snd_pcm_hw_param_t var, int *dir)
1557{
1558 int changed = _snd_pcm_hw_param_first(params, var);
1559 if (changed < 0)
1560 return changed;
1561 if (params->rmask) {
1562 int err = snd_pcm_hw_refine(pcm, params);
1563 if (snd_BUG_ON(err < 0))
1564 return err;
1565 }
1566 return snd_pcm_hw_param_value(params, var, dir);
1567}
1568
1569EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572 snd_pcm_hw_param_t var)
1573{
1574 int changed;
1575 if (hw_is_mask(var))
1576 changed = snd_mask_refine_last(hw_param_mask(params, var));
1577 else if (hw_is_interval(var))
1578 changed = snd_interval_refine_last(hw_param_interval(params, var));
1579 else
1580 return -EINVAL;
1581 if (changed) {
1582 params->cmask |= 1 << var;
1583 params->rmask |= 1 << var;
1584 }
1585 return changed;
1586}
1587
1588
1589/**
1590 * snd_pcm_hw_param_last - refine config space and return maximum value
1591 * @pcm: PCM instance
1592 * @params: the hw_params instance
1593 * @var: parameter to retrieve
1594 * @dir: pointer to the direction (-1,0,1) or %NULL
1595 *
1596 * Inside configuration space defined by @params remove from @var all
1597 * values < maximum. Reduce configuration space accordingly.
1598 * Return the maximum.
1599 */
1600int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1601 struct snd_pcm_hw_params *params,
1602 snd_pcm_hw_param_t var, int *dir)
1603{
1604 int changed = _snd_pcm_hw_param_last(params, var);
1605 if (changed < 0)
1606 return changed;
1607 if (params->rmask) {
1608 int err = snd_pcm_hw_refine(pcm, params);
1609 if (snd_BUG_ON(err < 0))
1610 return err;
1611 }
1612 return snd_pcm_hw_param_value(params, var, dir);
1613}
1614
1615EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617/**
1618 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 *
1622 * Choose one configuration from configuration space defined by @params.
1623 * The configuration chosen is that obtained fixing in this order:
1624 * first access, first format, first subformat, min channels,
1625 * min rate, min period time, max buffer size, min tick time
1626 */
1627int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628 struct snd_pcm_hw_params *params)
1629{
1630 static int vars[] = {
1631 SNDRV_PCM_HW_PARAM_ACCESS,
1632 SNDRV_PCM_HW_PARAM_FORMAT,
1633 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634 SNDRV_PCM_HW_PARAM_CHANNELS,
1635 SNDRV_PCM_HW_PARAM_RATE,
1636 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638 SNDRV_PCM_HW_PARAM_TICK_TIME,
1639 -1
1640 };
1641 int err, *v;
1642
1643 for (v = vars; *v != -1; v++) {
1644 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646 else
1647 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648 if (snd_BUG_ON(err < 0))
1649 return err;
1650 }
1651 return 0;
1652}
1653
1654static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655 void *arg)
1656{
1657 struct snd_pcm_runtime *runtime = substream->runtime;
1658 unsigned long flags;
1659 snd_pcm_stream_lock_irqsave(substream, flags);
1660 if (snd_pcm_running(substream) &&
1661 snd_pcm_update_hw_ptr(substream) >= 0)
1662 runtime->status->hw_ptr %= runtime->buffer_size;
1663 else
1664 runtime->status->hw_ptr = 0;
1665 snd_pcm_stream_unlock_irqrestore(substream, flags);
1666 return 0;
1667}
1668
1669static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670 void *arg)
1671{
1672 struct snd_pcm_channel_info *info = arg;
1673 struct snd_pcm_runtime *runtime = substream->runtime;
1674 int width;
1675 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676 info->offset = -1;
1677 return 0;
1678 }
1679 width = snd_pcm_format_physical_width(runtime->format);
1680 if (width < 0)
1681 return width;
1682 info->offset = 0;
1683 switch (runtime->access) {
1684 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686 info->first = info->channel * width;
1687 info->step = runtime->channels * width;
1688 break;
1689 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691 {
1692 size_t size = runtime->dma_bytes / runtime->channels;
1693 info->first = info->channel * size * 8;
1694 info->step = width;
1695 break;
1696 }
1697 default:
1698 snd_BUG();
1699 break;
1700 }
1701 return 0;
1702}
1703
1704static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705 void *arg)
1706{
1707 struct snd_pcm_hw_params *params = arg;
1708 snd_pcm_format_t format;
1709 int channels, width;
1710
1711 params->fifo_size = substream->runtime->hw.fifo_size;
1712 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713 format = params_format(params);
1714 channels = params_channels(params);
1715 width = snd_pcm_format_physical_width(format);
1716 params->fifo_size /= width * channels;
1717 }
1718 return 0;
1719}
1720
1721/**
1722 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723 * @substream: the pcm substream instance
1724 * @cmd: ioctl command
1725 * @arg: ioctl argument
1726 *
1727 * Processes the generic ioctl commands for PCM.
1728 * Can be passed as the ioctl callback for PCM ops.
1729 *
1730 * Returns zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733 unsigned int cmd, void *arg)
1734{
1735 switch (cmd) {
1736 case SNDRV_PCM_IOCTL1_INFO:
1737 return 0;
1738 case SNDRV_PCM_IOCTL1_RESET:
1739 return snd_pcm_lib_ioctl_reset(substream, arg);
1740 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744 }
1745 return -ENXIO;
1746}
1747
1748EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750/**
1751 * snd_pcm_period_elapsed - update the pcm status for the next period
1752 * @substream: the pcm substream instance
1753 *
1754 * This function is called from the interrupt handler when the
1755 * PCM has processed the period size. It will update the current
1756 * pointer, wake up sleepers, etc.
1757 *
1758 * Even if more than one periods have elapsed since the last call, you
1759 * have to call this only once.
1760 */
1761void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762{
1763 struct snd_pcm_runtime *runtime;
1764 unsigned long flags;
1765
1766 if (PCM_RUNTIME_CHECK(substream))
1767 return;
1768 runtime = substream->runtime;
1769
1770 if (runtime->transfer_ack_begin)
1771 runtime->transfer_ack_begin(substream);
1772
1773 snd_pcm_stream_lock_irqsave(substream, flags);
1774 if (!snd_pcm_running(substream) ||
1775 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776 goto _end;
1777
1778 if (substream->timer_running)
1779 snd_timer_interrupt(substream->timer, 1);
1780 _end:
1781 snd_pcm_stream_unlock_irqrestore(substream, flags);
1782 if (runtime->transfer_ack_end)
1783 runtime->transfer_ack_end(substream);
1784 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785}
1786
1787EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789/*
1790 * Wait until avail_min data becomes available
1791 * Returns a negative error code if any error occurs during operation.
1792 * The available space is stored on availp. When err = 0 and avail = 0
1793 * on the capture stream, it indicates the stream is in DRAINING state.
1794 */
1795static int wait_for_avail(struct snd_pcm_substream *substream,
1796 snd_pcm_uframes_t *availp)
1797{
1798 struct snd_pcm_runtime *runtime = substream->runtime;
1799 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800 wait_queue_t wait;
1801 int err = 0;
1802 snd_pcm_uframes_t avail = 0;
1803 long wait_time, tout;
1804
1805 init_waitqueue_entry(&wait, current);
1806 set_current_state(TASK_INTERRUPTIBLE);
1807 add_wait_queue(&runtime->tsleep, &wait);
1808
1809 if (runtime->no_period_wakeup)
1810 wait_time = MAX_SCHEDULE_TIMEOUT;
1811 else {
1812 wait_time = 10;
1813 if (runtime->rate) {
1814 long t = runtime->period_size * 2 / runtime->rate;
1815 wait_time = max(t, wait_time);
1816 }
1817 wait_time = msecs_to_jiffies(wait_time * 1000);
1818 }
1819
1820 for (;;) {
1821 if (signal_pending(current)) {
1822 err = -ERESTARTSYS;
1823 break;
1824 }
1825
1826 /*
1827 * We need to check if space became available already
1828 * (and thus the wakeup happened already) first to close
1829 * the race of space already having become available.
1830 * This check must happen after been added to the waitqueue
1831 * and having current state be INTERRUPTIBLE.
1832 */
1833 if (is_playback)
1834 avail = snd_pcm_playback_avail(runtime);
1835 else
1836 avail = snd_pcm_capture_avail(runtime);
1837 if (avail >= runtime->twake)
1838 break;
1839 snd_pcm_stream_unlock_irq(substream);
1840
1841 tout = schedule_timeout(wait_time);
1842
1843 snd_pcm_stream_lock_irq(substream);
1844 set_current_state(TASK_INTERRUPTIBLE);
1845 switch (runtime->status->state) {
1846 case SNDRV_PCM_STATE_SUSPENDED:
1847 err = -ESTRPIPE;
1848 goto _endloop;
1849 case SNDRV_PCM_STATE_XRUN:
1850 err = -EPIPE;
1851 goto _endloop;
1852 case SNDRV_PCM_STATE_DRAINING:
1853 if (is_playback)
1854 err = -EPIPE;
1855 else
1856 avail = 0; /* indicate draining */
1857 goto _endloop;
1858 case SNDRV_PCM_STATE_OPEN:
1859 case SNDRV_PCM_STATE_SETUP:
1860 case SNDRV_PCM_STATE_DISCONNECTED:
1861 err = -EBADFD;
1862 goto _endloop;
1863 }
1864 if (!tout) {
1865 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866 is_playback ? "playback" : "capture");
1867 err = -EIO;
1868 break;
1869 }
1870 }
1871 _endloop:
1872 set_current_state(TASK_RUNNING);
1873 remove_wait_queue(&runtime->tsleep, &wait);
1874 *availp = avail;
1875 return err;
1876}
1877
1878static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879 unsigned int hwoff,
1880 unsigned long data, unsigned int off,
1881 snd_pcm_uframes_t frames)
1882{
1883 struct snd_pcm_runtime *runtime = substream->runtime;
1884 int err;
1885 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886 if (substream->ops->copy) {
1887 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888 return err;
1889 } else {
1890 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892 return -EFAULT;
1893 }
1894 return 0;
1895}
1896
1897typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898 unsigned long data, unsigned int off,
1899 snd_pcm_uframes_t size);
1900
1901static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1902 unsigned long data,
1903 snd_pcm_uframes_t size,
1904 int nonblock,
1905 transfer_f transfer)
1906{
1907 struct snd_pcm_runtime *runtime = substream->runtime;
1908 snd_pcm_uframes_t xfer = 0;
1909 snd_pcm_uframes_t offset = 0;
1910 snd_pcm_uframes_t avail;
1911 int err = 0;
1912
1913 if (size == 0)
1914 return 0;
1915
1916 snd_pcm_stream_lock_irq(substream);
1917 switch (runtime->status->state) {
1918 case SNDRV_PCM_STATE_PREPARED:
1919 case SNDRV_PCM_STATE_RUNNING:
1920 case SNDRV_PCM_STATE_PAUSED:
1921 break;
1922 case SNDRV_PCM_STATE_XRUN:
1923 err = -EPIPE;
1924 goto _end_unlock;
1925 case SNDRV_PCM_STATE_SUSPENDED:
1926 err = -ESTRPIPE;
1927 goto _end_unlock;
1928 default:
1929 err = -EBADFD;
1930 goto _end_unlock;
1931 }
1932
1933 runtime->twake = runtime->control->avail_min ? : 1;
1934 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935 snd_pcm_update_hw_ptr(substream);
1936 avail = snd_pcm_playback_avail(runtime);
1937 while (size > 0) {
1938 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939 snd_pcm_uframes_t cont;
1940 if (!avail) {
1941 if (nonblock) {
1942 err = -EAGAIN;
1943 goto _end_unlock;
1944 }
1945 runtime->twake = min_t(snd_pcm_uframes_t, size,
1946 runtime->control->avail_min ? : 1);
1947 err = wait_for_avail(substream, &avail);
1948 if (err < 0)
1949 goto _end_unlock;
1950 }
1951 frames = size > avail ? avail : size;
1952 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953 if (frames > cont)
1954 frames = cont;
1955 if (snd_BUG_ON(!frames)) {
1956 runtime->twake = 0;
1957 snd_pcm_stream_unlock_irq(substream);
1958 return -EINVAL;
1959 }
1960 appl_ptr = runtime->control->appl_ptr;
1961 appl_ofs = appl_ptr % runtime->buffer_size;
1962 snd_pcm_stream_unlock_irq(substream);
1963 err = transfer(substream, appl_ofs, data, offset, frames);
1964 snd_pcm_stream_lock_irq(substream);
1965 if (err < 0)
1966 goto _end_unlock;
1967 switch (runtime->status->state) {
1968 case SNDRV_PCM_STATE_XRUN:
1969 err = -EPIPE;
1970 goto _end_unlock;
1971 case SNDRV_PCM_STATE_SUSPENDED:
1972 err = -ESTRPIPE;
1973 goto _end_unlock;
1974 default:
1975 break;
1976 }
1977 appl_ptr += frames;
1978 if (appl_ptr >= runtime->boundary)
1979 appl_ptr -= runtime->boundary;
1980 runtime->control->appl_ptr = appl_ptr;
1981 if (substream->ops->ack)
1982 substream->ops->ack(substream);
1983
1984 offset += frames;
1985 size -= frames;
1986 xfer += frames;
1987 avail -= frames;
1988 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990 err = snd_pcm_start(substream);
1991 if (err < 0)
1992 goto _end_unlock;
1993 }
1994 }
1995 _end_unlock:
1996 runtime->twake = 0;
1997 if (xfer > 0 && err >= 0)
1998 snd_pcm_update_state(substream, runtime);
1999 snd_pcm_stream_unlock_irq(substream);
2000 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001}
2002
2003/* sanity-check for read/write methods */
2004static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005{
2006 struct snd_pcm_runtime *runtime;
2007 if (PCM_RUNTIME_CHECK(substream))
2008 return -ENXIO;
2009 runtime = substream->runtime;
2010 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011 return -EINVAL;
2012 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013 return -EBADFD;
2014 return 0;
2015}
2016
2017snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018{
2019 struct snd_pcm_runtime *runtime;
2020 int nonblock;
2021 int err;
2022
2023 err = pcm_sanity_check(substream);
2024 if (err < 0)
2025 return err;
2026 runtime = substream->runtime;
2027 nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030 runtime->channels > 1)
2031 return -EINVAL;
2032 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033 snd_pcm_lib_write_transfer);
2034}
2035
2036EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039 unsigned int hwoff,
2040 unsigned long data, unsigned int off,
2041 snd_pcm_uframes_t frames)
2042{
2043 struct snd_pcm_runtime *runtime = substream->runtime;
2044 int err;
2045 void __user **bufs = (void __user **)data;
2046 int channels = runtime->channels;
2047 int c;
2048 if (substream->ops->copy) {
2049 if (snd_BUG_ON(!substream->ops->silence))
2050 return -EINVAL;
2051 for (c = 0; c < channels; ++c, ++bufs) {
2052 if (*bufs == NULL) {
2053 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054 return err;
2055 } else {
2056 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058 return err;
2059 }
2060 }
2061 } else {
2062 /* default transfer behaviour */
2063 size_t dma_csize = runtime->dma_bytes / channels;
2064 for (c = 0; c < channels; ++c, ++bufs) {
2065 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066 if (*bufs == NULL) {
2067 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068 } else {
2069 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071 return -EFAULT;
2072 }
2073 }
2074 }
2075 return 0;
2076}
2077
2078snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079 void __user **bufs,
2080 snd_pcm_uframes_t frames)
2081{
2082 struct snd_pcm_runtime *runtime;
2083 int nonblock;
2084 int err;
2085
2086 err = pcm_sanity_check(substream);
2087 if (err < 0)
2088 return err;
2089 runtime = substream->runtime;
2090 nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093 return -EINVAL;
2094 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095 nonblock, snd_pcm_lib_writev_transfer);
2096}
2097
2098EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2101 unsigned int hwoff,
2102 unsigned long data, unsigned int off,
2103 snd_pcm_uframes_t frames)
2104{
2105 struct snd_pcm_runtime *runtime = substream->runtime;
2106 int err;
2107 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108 if (substream->ops->copy) {
2109 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110 return err;
2111 } else {
2112 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114 return -EFAULT;
2115 }
2116 return 0;
2117}
2118
2119static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120 unsigned long data,
2121 snd_pcm_uframes_t size,
2122 int nonblock,
2123 transfer_f transfer)
2124{
2125 struct snd_pcm_runtime *runtime = substream->runtime;
2126 snd_pcm_uframes_t xfer = 0;
2127 snd_pcm_uframes_t offset = 0;
2128 snd_pcm_uframes_t avail;
2129 int err = 0;
2130
2131 if (size == 0)
2132 return 0;
2133
2134 snd_pcm_stream_lock_irq(substream);
2135 switch (runtime->status->state) {
2136 case SNDRV_PCM_STATE_PREPARED:
2137 if (size >= runtime->start_threshold) {
2138 err = snd_pcm_start(substream);
2139 if (err < 0)
2140 goto _end_unlock;
2141 }
2142 break;
2143 case SNDRV_PCM_STATE_DRAINING:
2144 case SNDRV_PCM_STATE_RUNNING:
2145 case SNDRV_PCM_STATE_PAUSED:
2146 break;
2147 case SNDRV_PCM_STATE_XRUN:
2148 err = -EPIPE;
2149 goto _end_unlock;
2150 case SNDRV_PCM_STATE_SUSPENDED:
2151 err = -ESTRPIPE;
2152 goto _end_unlock;
2153 default:
2154 err = -EBADFD;
2155 goto _end_unlock;
2156 }
2157
2158 runtime->twake = runtime->control->avail_min ? : 1;
2159 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160 snd_pcm_update_hw_ptr(substream);
2161 avail = snd_pcm_capture_avail(runtime);
2162 while (size > 0) {
2163 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164 snd_pcm_uframes_t cont;
2165 if (!avail) {
2166 if (runtime->status->state ==
2167 SNDRV_PCM_STATE_DRAINING) {
2168 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169 goto _end_unlock;
2170 }
2171 if (nonblock) {
2172 err = -EAGAIN;
2173 goto _end_unlock;
2174 }
2175 runtime->twake = min_t(snd_pcm_uframes_t, size,
2176 runtime->control->avail_min ? : 1);
2177 err = wait_for_avail(substream, &avail);
2178 if (err < 0)
2179 goto _end_unlock;
2180 if (!avail)
2181 continue; /* draining */
2182 }
2183 frames = size > avail ? avail : size;
2184 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2185 if (frames > cont)
2186 frames = cont;
2187 if (snd_BUG_ON(!frames)) {
2188 runtime->twake = 0;
2189 snd_pcm_stream_unlock_irq(substream);
2190 return -EINVAL;
2191 }
2192 appl_ptr = runtime->control->appl_ptr;
2193 appl_ofs = appl_ptr % runtime->buffer_size;
2194 snd_pcm_stream_unlock_irq(substream);
2195 err = transfer(substream, appl_ofs, data, offset, frames);
2196 snd_pcm_stream_lock_irq(substream);
2197 if (err < 0)
2198 goto _end_unlock;
2199 switch (runtime->status->state) {
2200 case SNDRV_PCM_STATE_XRUN:
2201 err = -EPIPE;
2202 goto _end_unlock;
2203 case SNDRV_PCM_STATE_SUSPENDED:
2204 err = -ESTRPIPE;
2205 goto _end_unlock;
2206 default:
2207 break;
2208 }
2209 appl_ptr += frames;
2210 if (appl_ptr >= runtime->boundary)
2211 appl_ptr -= runtime->boundary;
2212 runtime->control->appl_ptr = appl_ptr;
2213 if (substream->ops->ack)
2214 substream->ops->ack(substream);
2215
2216 offset += frames;
2217 size -= frames;
2218 xfer += frames;
2219 avail -= frames;
2220 }
2221 _end_unlock:
2222 runtime->twake = 0;
2223 if (xfer > 0 && err >= 0)
2224 snd_pcm_update_state(substream, runtime);
2225 snd_pcm_stream_unlock_irq(substream);
2226 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227}
2228
2229snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230{
2231 struct snd_pcm_runtime *runtime;
2232 int nonblock;
2233 int err;
2234
2235 err = pcm_sanity_check(substream);
2236 if (err < 0)
2237 return err;
2238 runtime = substream->runtime;
2239 nonblock = !!(substream->f_flags & O_NONBLOCK);
2240 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241 return -EINVAL;
2242 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243}
2244
2245EXPORT_SYMBOL(snd_pcm_lib_read);
2246
2247static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248 unsigned int hwoff,
2249 unsigned long data, unsigned int off,
2250 snd_pcm_uframes_t frames)
2251{
2252 struct snd_pcm_runtime *runtime = substream->runtime;
2253 int err;
2254 void __user **bufs = (void __user **)data;
2255 int channels = runtime->channels;
2256 int c;
2257 if (substream->ops->copy) {
2258 for (c = 0; c < channels; ++c, ++bufs) {
2259 char __user *buf;
2260 if (*bufs == NULL)
2261 continue;
2262 buf = *bufs + samples_to_bytes(runtime, off);
2263 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264 return err;
2265 }
2266 } else {
2267 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268 for (c = 0; c < channels; ++c, ++bufs) {
2269 char *hwbuf;
2270 char __user *buf;
2271 if (*bufs == NULL)
2272 continue;
2273
2274 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275 buf = *bufs + samples_to_bytes(runtime, off);
2276 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2277 return -EFAULT;
2278 }
2279 }
2280 return 0;
2281}
2282
2283snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284 void __user **bufs,
2285 snd_pcm_uframes_t frames)
2286{
2287 struct snd_pcm_runtime *runtime;
2288 int nonblock;
2289 int err;
2290
2291 err = pcm_sanity_check(substream);
2292 if (err < 0)
2293 return err;
2294 runtime = substream->runtime;
2295 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296 return -EBADFD;
2297
2298 nonblock = !!(substream->f_flags & O_NONBLOCK);
2299 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300 return -EINVAL;
2301 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302}
2303
2304EXPORT_SYMBOL(snd_pcm_lib_readv);