Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * xfrm algorithm interface
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 */
7
8#include <crypto/hash.h>
9#include <crypto/skcipher.h>
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/pfkeyv2.h>
13#include <linux/crypto.h>
14#include <linux/scatterlist.h>
15#include <net/xfrm.h>
16#if IS_ENABLED(CONFIG_INET_ESP) || IS_ENABLED(CONFIG_INET6_ESP)
17#include <net/esp.h>
18#endif
19
20/*
21 * Algorithms supported by IPsec. These entries contain properties which
22 * are used in key negotiation and xfrm processing, and are used to verify
23 * that instantiated crypto transforms have correct parameters for IPsec
24 * purposes.
25 */
26static struct xfrm_algo_desc aead_list[] = {
27{
28 .name = "rfc4106(gcm(aes))",
29
30 .uinfo = {
31 .aead = {
32 .geniv = "seqiv",
33 .icv_truncbits = 64,
34 }
35 },
36
37 .pfkey_supported = 1,
38
39 .desc = {
40 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
41 .sadb_alg_ivlen = 8,
42 .sadb_alg_minbits = 128,
43 .sadb_alg_maxbits = 256
44 }
45},
46{
47 .name = "rfc4106(gcm(aes))",
48
49 .uinfo = {
50 .aead = {
51 .geniv = "seqiv",
52 .icv_truncbits = 96,
53 }
54 },
55
56 .pfkey_supported = 1,
57
58 .desc = {
59 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
60 .sadb_alg_ivlen = 8,
61 .sadb_alg_minbits = 128,
62 .sadb_alg_maxbits = 256
63 }
64},
65{
66 .name = "rfc4106(gcm(aes))",
67
68 .uinfo = {
69 .aead = {
70 .geniv = "seqiv",
71 .icv_truncbits = 128,
72 }
73 },
74
75 .pfkey_supported = 1,
76
77 .desc = {
78 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
79 .sadb_alg_ivlen = 8,
80 .sadb_alg_minbits = 128,
81 .sadb_alg_maxbits = 256
82 }
83},
84{
85 .name = "rfc4309(ccm(aes))",
86
87 .uinfo = {
88 .aead = {
89 .geniv = "seqiv",
90 .icv_truncbits = 64,
91 }
92 },
93
94 .pfkey_supported = 1,
95
96 .desc = {
97 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
98 .sadb_alg_ivlen = 8,
99 .sadb_alg_minbits = 128,
100 .sadb_alg_maxbits = 256
101 }
102},
103{
104 .name = "rfc4309(ccm(aes))",
105
106 .uinfo = {
107 .aead = {
108 .geniv = "seqiv",
109 .icv_truncbits = 96,
110 }
111 },
112
113 .pfkey_supported = 1,
114
115 .desc = {
116 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
117 .sadb_alg_ivlen = 8,
118 .sadb_alg_minbits = 128,
119 .sadb_alg_maxbits = 256
120 }
121},
122{
123 .name = "rfc4309(ccm(aes))",
124
125 .uinfo = {
126 .aead = {
127 .geniv = "seqiv",
128 .icv_truncbits = 128,
129 }
130 },
131
132 .pfkey_supported = 1,
133
134 .desc = {
135 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
136 .sadb_alg_ivlen = 8,
137 .sadb_alg_minbits = 128,
138 .sadb_alg_maxbits = 256
139 }
140},
141{
142 .name = "rfc4543(gcm(aes))",
143
144 .uinfo = {
145 .aead = {
146 .geniv = "seqiv",
147 .icv_truncbits = 128,
148 }
149 },
150
151 .pfkey_supported = 1,
152
153 .desc = {
154 .sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
155 .sadb_alg_ivlen = 8,
156 .sadb_alg_minbits = 128,
157 .sadb_alg_maxbits = 256
158 }
159},
160{
161 .name = "rfc7539esp(chacha20,poly1305)",
162
163 .uinfo = {
164 .aead = {
165 .geniv = "seqiv",
166 .icv_truncbits = 128,
167 }
168 },
169
170 .pfkey_supported = 0,
171},
172};
173
174static struct xfrm_algo_desc aalg_list[] = {
175{
176 .name = "digest_null",
177
178 .uinfo = {
179 .auth = {
180 .icv_truncbits = 0,
181 .icv_fullbits = 0,
182 }
183 },
184
185 .pfkey_supported = 1,
186
187 .desc = {
188 .sadb_alg_id = SADB_X_AALG_NULL,
189 .sadb_alg_ivlen = 0,
190 .sadb_alg_minbits = 0,
191 .sadb_alg_maxbits = 0
192 }
193},
194{
195 .name = "hmac(md5)",
196 .compat = "md5",
197
198 .uinfo = {
199 .auth = {
200 .icv_truncbits = 96,
201 .icv_fullbits = 128,
202 }
203 },
204
205 .pfkey_supported = 1,
206
207 .desc = {
208 .sadb_alg_id = SADB_AALG_MD5HMAC,
209 .sadb_alg_ivlen = 0,
210 .sadb_alg_minbits = 128,
211 .sadb_alg_maxbits = 128
212 }
213},
214{
215 .name = "hmac(sha1)",
216 .compat = "sha1",
217
218 .uinfo = {
219 .auth = {
220 .icv_truncbits = 96,
221 .icv_fullbits = 160,
222 }
223 },
224
225 .pfkey_supported = 1,
226
227 .desc = {
228 .sadb_alg_id = SADB_AALG_SHA1HMAC,
229 .sadb_alg_ivlen = 0,
230 .sadb_alg_minbits = 160,
231 .sadb_alg_maxbits = 160
232 }
233},
234{
235 .name = "hmac(sha256)",
236 .compat = "sha256",
237
238 .uinfo = {
239 .auth = {
240 .icv_truncbits = 96,
241 .icv_fullbits = 256,
242 }
243 },
244
245 .pfkey_supported = 1,
246
247 .desc = {
248 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
249 .sadb_alg_ivlen = 0,
250 .sadb_alg_minbits = 256,
251 .sadb_alg_maxbits = 256
252 }
253},
254{
255 .name = "hmac(sha384)",
256
257 .uinfo = {
258 .auth = {
259 .icv_truncbits = 192,
260 .icv_fullbits = 384,
261 }
262 },
263
264 .pfkey_supported = 1,
265
266 .desc = {
267 .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
268 .sadb_alg_ivlen = 0,
269 .sadb_alg_minbits = 384,
270 .sadb_alg_maxbits = 384
271 }
272},
273{
274 .name = "hmac(sha512)",
275
276 .uinfo = {
277 .auth = {
278 .icv_truncbits = 256,
279 .icv_fullbits = 512,
280 }
281 },
282
283 .pfkey_supported = 1,
284
285 .desc = {
286 .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
287 .sadb_alg_ivlen = 0,
288 .sadb_alg_minbits = 512,
289 .sadb_alg_maxbits = 512
290 }
291},
292{
293 .name = "hmac(rmd160)",
294 .compat = "rmd160",
295
296 .uinfo = {
297 .auth = {
298 .icv_truncbits = 96,
299 .icv_fullbits = 160,
300 }
301 },
302
303 .pfkey_supported = 1,
304
305 .desc = {
306 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
307 .sadb_alg_ivlen = 0,
308 .sadb_alg_minbits = 160,
309 .sadb_alg_maxbits = 160
310 }
311},
312{
313 .name = "xcbc(aes)",
314
315 .uinfo = {
316 .auth = {
317 .icv_truncbits = 96,
318 .icv_fullbits = 128,
319 }
320 },
321
322 .pfkey_supported = 1,
323
324 .desc = {
325 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
326 .sadb_alg_ivlen = 0,
327 .sadb_alg_minbits = 128,
328 .sadb_alg_maxbits = 128
329 }
330},
331{
332 /* rfc4494 */
333 .name = "cmac(aes)",
334
335 .uinfo = {
336 .auth = {
337 .icv_truncbits = 96,
338 .icv_fullbits = 128,
339 }
340 },
341
342 .pfkey_supported = 0,
343},
344{
345 .name = "hmac(sm3)",
346 .compat = "sm3",
347
348 .uinfo = {
349 .auth = {
350 .icv_truncbits = 256,
351 .icv_fullbits = 256,
352 }
353 },
354
355 .pfkey_supported = 1,
356
357 .desc = {
358 .sadb_alg_id = SADB_X_AALG_SM3_256HMAC,
359 .sadb_alg_ivlen = 0,
360 .sadb_alg_minbits = 256,
361 .sadb_alg_maxbits = 256
362 }
363},
364};
365
366static struct xfrm_algo_desc ealg_list[] = {
367{
368 .name = "ecb(cipher_null)",
369 .compat = "cipher_null",
370
371 .uinfo = {
372 .encr = {
373 .blockbits = 8,
374 .defkeybits = 0,
375 }
376 },
377
378 .pfkey_supported = 1,
379
380 .desc = {
381 .sadb_alg_id = SADB_EALG_NULL,
382 .sadb_alg_ivlen = 0,
383 .sadb_alg_minbits = 0,
384 .sadb_alg_maxbits = 0
385 }
386},
387{
388 .name = "cbc(des)",
389 .compat = "des",
390
391 .uinfo = {
392 .encr = {
393 .geniv = "echainiv",
394 .blockbits = 64,
395 .defkeybits = 64,
396 }
397 },
398
399 .pfkey_supported = 1,
400
401 .desc = {
402 .sadb_alg_id = SADB_EALG_DESCBC,
403 .sadb_alg_ivlen = 8,
404 .sadb_alg_minbits = 64,
405 .sadb_alg_maxbits = 64
406 }
407},
408{
409 .name = "cbc(des3_ede)",
410 .compat = "des3_ede",
411
412 .uinfo = {
413 .encr = {
414 .geniv = "echainiv",
415 .blockbits = 64,
416 .defkeybits = 192,
417 }
418 },
419
420 .pfkey_supported = 1,
421
422 .desc = {
423 .sadb_alg_id = SADB_EALG_3DESCBC,
424 .sadb_alg_ivlen = 8,
425 .sadb_alg_minbits = 192,
426 .sadb_alg_maxbits = 192
427 }
428},
429{
430 .name = "cbc(cast5)",
431 .compat = "cast5",
432
433 .uinfo = {
434 .encr = {
435 .geniv = "echainiv",
436 .blockbits = 64,
437 .defkeybits = 128,
438 }
439 },
440
441 .pfkey_supported = 1,
442
443 .desc = {
444 .sadb_alg_id = SADB_X_EALG_CASTCBC,
445 .sadb_alg_ivlen = 8,
446 .sadb_alg_minbits = 40,
447 .sadb_alg_maxbits = 128
448 }
449},
450{
451 .name = "cbc(blowfish)",
452 .compat = "blowfish",
453
454 .uinfo = {
455 .encr = {
456 .geniv = "echainiv",
457 .blockbits = 64,
458 .defkeybits = 128,
459 }
460 },
461
462 .pfkey_supported = 1,
463
464 .desc = {
465 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
466 .sadb_alg_ivlen = 8,
467 .sadb_alg_minbits = 40,
468 .sadb_alg_maxbits = 448
469 }
470},
471{
472 .name = "cbc(aes)",
473 .compat = "aes",
474
475 .uinfo = {
476 .encr = {
477 .geniv = "echainiv",
478 .blockbits = 128,
479 .defkeybits = 128,
480 }
481 },
482
483 .pfkey_supported = 1,
484
485 .desc = {
486 .sadb_alg_id = SADB_X_EALG_AESCBC,
487 .sadb_alg_ivlen = 8,
488 .sadb_alg_minbits = 128,
489 .sadb_alg_maxbits = 256
490 }
491},
492{
493 .name = "cbc(serpent)",
494 .compat = "serpent",
495
496 .uinfo = {
497 .encr = {
498 .geniv = "echainiv",
499 .blockbits = 128,
500 .defkeybits = 128,
501 }
502 },
503
504 .pfkey_supported = 1,
505
506 .desc = {
507 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
508 .sadb_alg_ivlen = 8,
509 .sadb_alg_minbits = 128,
510 .sadb_alg_maxbits = 256,
511 }
512},
513{
514 .name = "cbc(camellia)",
515 .compat = "camellia",
516
517 .uinfo = {
518 .encr = {
519 .geniv = "echainiv",
520 .blockbits = 128,
521 .defkeybits = 128,
522 }
523 },
524
525 .pfkey_supported = 1,
526
527 .desc = {
528 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
529 .sadb_alg_ivlen = 8,
530 .sadb_alg_minbits = 128,
531 .sadb_alg_maxbits = 256
532 }
533},
534{
535 .name = "cbc(twofish)",
536 .compat = "twofish",
537
538 .uinfo = {
539 .encr = {
540 .geniv = "echainiv",
541 .blockbits = 128,
542 .defkeybits = 128,
543 }
544 },
545
546 .pfkey_supported = 1,
547
548 .desc = {
549 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
550 .sadb_alg_ivlen = 8,
551 .sadb_alg_minbits = 128,
552 .sadb_alg_maxbits = 256
553 }
554},
555{
556 .name = "rfc3686(ctr(aes))",
557
558 .uinfo = {
559 .encr = {
560 .geniv = "seqiv",
561 .blockbits = 128,
562 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
563 }
564 },
565
566 .pfkey_supported = 1,
567
568 .desc = {
569 .sadb_alg_id = SADB_X_EALG_AESCTR,
570 .sadb_alg_ivlen = 8,
571 .sadb_alg_minbits = 160,
572 .sadb_alg_maxbits = 288
573 }
574},
575{
576 .name = "cbc(sm4)",
577 .compat = "sm4",
578
579 .uinfo = {
580 .encr = {
581 .geniv = "echainiv",
582 .blockbits = 128,
583 .defkeybits = 128,
584 }
585 },
586
587 .pfkey_supported = 1,
588
589 .desc = {
590 .sadb_alg_id = SADB_X_EALG_SM4CBC,
591 .sadb_alg_ivlen = 16,
592 .sadb_alg_minbits = 128,
593 .sadb_alg_maxbits = 256
594 }
595},
596};
597
598static struct xfrm_algo_desc calg_list[] = {
599{
600 .name = "deflate",
601 .uinfo = {
602 .comp = {
603 .threshold = 90,
604 }
605 },
606 .pfkey_supported = 1,
607 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
608},
609{
610 .name = "lzs",
611 .uinfo = {
612 .comp = {
613 .threshold = 90,
614 }
615 },
616 .pfkey_supported = 1,
617 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
618},
619{
620 .name = "lzjh",
621 .uinfo = {
622 .comp = {
623 .threshold = 50,
624 }
625 },
626 .pfkey_supported = 1,
627 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
628},
629};
630
631static inline int aalg_entries(void)
632{
633 return ARRAY_SIZE(aalg_list);
634}
635
636static inline int ealg_entries(void)
637{
638 return ARRAY_SIZE(ealg_list);
639}
640
641static inline int calg_entries(void)
642{
643 return ARRAY_SIZE(calg_list);
644}
645
646struct xfrm_algo_list {
647 struct xfrm_algo_desc *algs;
648 int entries;
649 u32 type;
650 u32 mask;
651};
652
653static const struct xfrm_algo_list xfrm_aead_list = {
654 .algs = aead_list,
655 .entries = ARRAY_SIZE(aead_list),
656 .type = CRYPTO_ALG_TYPE_AEAD,
657 .mask = CRYPTO_ALG_TYPE_MASK,
658};
659
660static const struct xfrm_algo_list xfrm_aalg_list = {
661 .algs = aalg_list,
662 .entries = ARRAY_SIZE(aalg_list),
663 .type = CRYPTO_ALG_TYPE_HASH,
664 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
665};
666
667static const struct xfrm_algo_list xfrm_ealg_list = {
668 .algs = ealg_list,
669 .entries = ARRAY_SIZE(ealg_list),
670 .type = CRYPTO_ALG_TYPE_SKCIPHER,
671 .mask = CRYPTO_ALG_TYPE_MASK,
672};
673
674static const struct xfrm_algo_list xfrm_calg_list = {
675 .algs = calg_list,
676 .entries = ARRAY_SIZE(calg_list),
677 .type = CRYPTO_ALG_TYPE_COMPRESS,
678 .mask = CRYPTO_ALG_TYPE_MASK,
679};
680
681static struct xfrm_algo_desc *xfrm_find_algo(
682 const struct xfrm_algo_list *algo_list,
683 int match(const struct xfrm_algo_desc *entry, const void *data),
684 const void *data, int probe)
685{
686 struct xfrm_algo_desc *list = algo_list->algs;
687 int i, status;
688
689 for (i = 0; i < algo_list->entries; i++) {
690 if (!match(list + i, data))
691 continue;
692
693 if (list[i].available)
694 return &list[i];
695
696 if (!probe)
697 break;
698
699 status = crypto_has_alg(list[i].name, algo_list->type,
700 algo_list->mask);
701 if (!status)
702 break;
703
704 list[i].available = status;
705 return &list[i];
706 }
707 return NULL;
708}
709
710static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
711 const void *data)
712{
713 return entry->desc.sadb_alg_id == (unsigned long)data;
714}
715
716struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
717{
718 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
719 (void *)(unsigned long)alg_id, 1);
720}
721EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
722
723struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
724{
725 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
726 (void *)(unsigned long)alg_id, 1);
727}
728EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
729
730struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
731{
732 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
733 (void *)(unsigned long)alg_id, 1);
734}
735EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
736
737static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
738 const void *data)
739{
740 const char *name = data;
741
742 return name && (!strcmp(name, entry->name) ||
743 (entry->compat && !strcmp(name, entry->compat)));
744}
745
746struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
747{
748 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
749 probe);
750}
751EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
752
753struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
754{
755 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
756 probe);
757}
758EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
759
760struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
761{
762 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
763 probe);
764}
765EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
766
767struct xfrm_aead_name {
768 const char *name;
769 int icvbits;
770};
771
772static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
773 const void *data)
774{
775 const struct xfrm_aead_name *aead = data;
776 const char *name = aead->name;
777
778 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
779 !strcmp(name, entry->name);
780}
781
782struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
783{
784 struct xfrm_aead_name data = {
785 .name = name,
786 .icvbits = icv_len,
787 };
788
789 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
790 probe);
791}
792EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
793
794struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
795{
796 if (idx >= aalg_entries())
797 return NULL;
798
799 return &aalg_list[idx];
800}
801EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
802
803struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
804{
805 if (idx >= ealg_entries())
806 return NULL;
807
808 return &ealg_list[idx];
809}
810EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
811
812/*
813 * Probe for the availability of crypto algorithms, and set the available
814 * flag for any algorithms found on the system. This is typically called by
815 * pfkey during userspace SA add, update or register.
816 */
817void xfrm_probe_algs(void)
818{
819 int i, status;
820
821 BUG_ON(in_softirq());
822
823 for (i = 0; i < aalg_entries(); i++) {
824 status = crypto_has_ahash(aalg_list[i].name, 0, 0);
825 if (aalg_list[i].available != status)
826 aalg_list[i].available = status;
827 }
828
829 for (i = 0; i < ealg_entries(); i++) {
830 status = crypto_has_skcipher(ealg_list[i].name, 0, 0);
831 if (ealg_list[i].available != status)
832 ealg_list[i].available = status;
833 }
834
835 for (i = 0; i < calg_entries(); i++) {
836 status = crypto_has_comp(calg_list[i].name, 0,
837 CRYPTO_ALG_ASYNC);
838 if (calg_list[i].available != status)
839 calg_list[i].available = status;
840 }
841}
842EXPORT_SYMBOL_GPL(xfrm_probe_algs);
843
844int xfrm_count_pfkey_auth_supported(void)
845{
846 int i, n;
847
848 for (i = 0, n = 0; i < aalg_entries(); i++)
849 if (aalg_list[i].available && aalg_list[i].pfkey_supported)
850 n++;
851 return n;
852}
853EXPORT_SYMBOL_GPL(xfrm_count_pfkey_auth_supported);
854
855int xfrm_count_pfkey_enc_supported(void)
856{
857 int i, n;
858
859 for (i = 0, n = 0; i < ealg_entries(); i++)
860 if (ealg_list[i].available && ealg_list[i].pfkey_supported)
861 n++;
862 return n;
863}
864EXPORT_SYMBOL_GPL(xfrm_count_pfkey_enc_supported);
865
866MODULE_LICENSE("GPL");
1/*
2 * xfrm algorithm interface
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/pfkeyv2.h>
15#include <linux/crypto.h>
16#include <linux/scatterlist.h>
17#include <net/xfrm.h>
18#if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
19#include <net/esp.h>
20#endif
21
22/*
23 * Algorithms supported by IPsec. These entries contain properties which
24 * are used in key negotiation and xfrm processing, and are used to verify
25 * that instantiated crypto transforms have correct parameters for IPsec
26 * purposes.
27 */
28static struct xfrm_algo_desc aead_list[] = {
29{
30 .name = "rfc4106(gcm(aes))",
31
32 .uinfo = {
33 .aead = {
34 .icv_truncbits = 64,
35 }
36 },
37
38 .desc = {
39 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
40 .sadb_alg_ivlen = 8,
41 .sadb_alg_minbits = 128,
42 .sadb_alg_maxbits = 256
43 }
44},
45{
46 .name = "rfc4106(gcm(aes))",
47
48 .uinfo = {
49 .aead = {
50 .icv_truncbits = 96,
51 }
52 },
53
54 .desc = {
55 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
56 .sadb_alg_ivlen = 8,
57 .sadb_alg_minbits = 128,
58 .sadb_alg_maxbits = 256
59 }
60},
61{
62 .name = "rfc4106(gcm(aes))",
63
64 .uinfo = {
65 .aead = {
66 .icv_truncbits = 128,
67 }
68 },
69
70 .desc = {
71 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
72 .sadb_alg_ivlen = 8,
73 .sadb_alg_minbits = 128,
74 .sadb_alg_maxbits = 256
75 }
76},
77{
78 .name = "rfc4309(ccm(aes))",
79
80 .uinfo = {
81 .aead = {
82 .icv_truncbits = 64,
83 }
84 },
85
86 .desc = {
87 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
88 .sadb_alg_ivlen = 8,
89 .sadb_alg_minbits = 128,
90 .sadb_alg_maxbits = 256
91 }
92},
93{
94 .name = "rfc4309(ccm(aes))",
95
96 .uinfo = {
97 .aead = {
98 .icv_truncbits = 96,
99 }
100 },
101
102 .desc = {
103 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
104 .sadb_alg_ivlen = 8,
105 .sadb_alg_minbits = 128,
106 .sadb_alg_maxbits = 256
107 }
108},
109{
110 .name = "rfc4309(ccm(aes))",
111
112 .uinfo = {
113 .aead = {
114 .icv_truncbits = 128,
115 }
116 },
117
118 .desc = {
119 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
120 .sadb_alg_ivlen = 8,
121 .sadb_alg_minbits = 128,
122 .sadb_alg_maxbits = 256
123 }
124},
125{
126 .name = "rfc4543(gcm(aes))",
127
128 .uinfo = {
129 .aead = {
130 .icv_truncbits = 128,
131 }
132 },
133
134 .desc = {
135 .sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
136 .sadb_alg_ivlen = 8,
137 .sadb_alg_minbits = 128,
138 .sadb_alg_maxbits = 256
139 }
140},
141};
142
143static struct xfrm_algo_desc aalg_list[] = {
144{
145 .name = "digest_null",
146
147 .uinfo = {
148 .auth = {
149 .icv_truncbits = 0,
150 .icv_fullbits = 0,
151 }
152 },
153
154 .desc = {
155 .sadb_alg_id = SADB_X_AALG_NULL,
156 .sadb_alg_ivlen = 0,
157 .sadb_alg_minbits = 0,
158 .sadb_alg_maxbits = 0
159 }
160},
161{
162 .name = "hmac(md5)",
163 .compat = "md5",
164
165 .uinfo = {
166 .auth = {
167 .icv_truncbits = 96,
168 .icv_fullbits = 128,
169 }
170 },
171
172 .desc = {
173 .sadb_alg_id = SADB_AALG_MD5HMAC,
174 .sadb_alg_ivlen = 0,
175 .sadb_alg_minbits = 128,
176 .sadb_alg_maxbits = 128
177 }
178},
179{
180 .name = "hmac(sha1)",
181 .compat = "sha1",
182
183 .uinfo = {
184 .auth = {
185 .icv_truncbits = 96,
186 .icv_fullbits = 160,
187 }
188 },
189
190 .desc = {
191 .sadb_alg_id = SADB_AALG_SHA1HMAC,
192 .sadb_alg_ivlen = 0,
193 .sadb_alg_minbits = 160,
194 .sadb_alg_maxbits = 160
195 }
196},
197{
198 .name = "hmac(sha256)",
199 .compat = "sha256",
200
201 .uinfo = {
202 .auth = {
203 .icv_truncbits = 96,
204 .icv_fullbits = 256,
205 }
206 },
207
208 .desc = {
209 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
210 .sadb_alg_ivlen = 0,
211 .sadb_alg_minbits = 256,
212 .sadb_alg_maxbits = 256
213 }
214},
215{
216 .name = "hmac(sha384)",
217
218 .uinfo = {
219 .auth = {
220 .icv_truncbits = 192,
221 .icv_fullbits = 384,
222 }
223 },
224
225 .desc = {
226 .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
227 .sadb_alg_ivlen = 0,
228 .sadb_alg_minbits = 384,
229 .sadb_alg_maxbits = 384
230 }
231},
232{
233 .name = "hmac(sha512)",
234
235 .uinfo = {
236 .auth = {
237 .icv_truncbits = 256,
238 .icv_fullbits = 512,
239 }
240 },
241
242 .desc = {
243 .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
244 .sadb_alg_ivlen = 0,
245 .sadb_alg_minbits = 512,
246 .sadb_alg_maxbits = 512
247 }
248},
249{
250 .name = "hmac(rmd160)",
251 .compat = "rmd160",
252
253 .uinfo = {
254 .auth = {
255 .icv_truncbits = 96,
256 .icv_fullbits = 160,
257 }
258 },
259
260 .desc = {
261 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
262 .sadb_alg_ivlen = 0,
263 .sadb_alg_minbits = 160,
264 .sadb_alg_maxbits = 160
265 }
266},
267{
268 .name = "xcbc(aes)",
269
270 .uinfo = {
271 .auth = {
272 .icv_truncbits = 96,
273 .icv_fullbits = 128,
274 }
275 },
276
277 .desc = {
278 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
279 .sadb_alg_ivlen = 0,
280 .sadb_alg_minbits = 128,
281 .sadb_alg_maxbits = 128
282 }
283},
284};
285
286static struct xfrm_algo_desc ealg_list[] = {
287{
288 .name = "ecb(cipher_null)",
289 .compat = "cipher_null",
290
291 .uinfo = {
292 .encr = {
293 .blockbits = 8,
294 .defkeybits = 0,
295 }
296 },
297
298 .desc = {
299 .sadb_alg_id = SADB_EALG_NULL,
300 .sadb_alg_ivlen = 0,
301 .sadb_alg_minbits = 0,
302 .sadb_alg_maxbits = 0
303 }
304},
305{
306 .name = "cbc(des)",
307 .compat = "des",
308
309 .uinfo = {
310 .encr = {
311 .blockbits = 64,
312 .defkeybits = 64,
313 }
314 },
315
316 .desc = {
317 .sadb_alg_id = SADB_EALG_DESCBC,
318 .sadb_alg_ivlen = 8,
319 .sadb_alg_minbits = 64,
320 .sadb_alg_maxbits = 64
321 }
322},
323{
324 .name = "cbc(des3_ede)",
325 .compat = "des3_ede",
326
327 .uinfo = {
328 .encr = {
329 .blockbits = 64,
330 .defkeybits = 192,
331 }
332 },
333
334 .desc = {
335 .sadb_alg_id = SADB_EALG_3DESCBC,
336 .sadb_alg_ivlen = 8,
337 .sadb_alg_minbits = 192,
338 .sadb_alg_maxbits = 192
339 }
340},
341{
342 .name = "cbc(cast5)",
343 .compat = "cast5",
344
345 .uinfo = {
346 .encr = {
347 .blockbits = 64,
348 .defkeybits = 128,
349 }
350 },
351
352 .desc = {
353 .sadb_alg_id = SADB_X_EALG_CASTCBC,
354 .sadb_alg_ivlen = 8,
355 .sadb_alg_minbits = 40,
356 .sadb_alg_maxbits = 128
357 }
358},
359{
360 .name = "cbc(blowfish)",
361 .compat = "blowfish",
362
363 .uinfo = {
364 .encr = {
365 .blockbits = 64,
366 .defkeybits = 128,
367 }
368 },
369
370 .desc = {
371 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
372 .sadb_alg_ivlen = 8,
373 .sadb_alg_minbits = 40,
374 .sadb_alg_maxbits = 448
375 }
376},
377{
378 .name = "cbc(aes)",
379 .compat = "aes",
380
381 .uinfo = {
382 .encr = {
383 .blockbits = 128,
384 .defkeybits = 128,
385 }
386 },
387
388 .desc = {
389 .sadb_alg_id = SADB_X_EALG_AESCBC,
390 .sadb_alg_ivlen = 8,
391 .sadb_alg_minbits = 128,
392 .sadb_alg_maxbits = 256
393 }
394},
395{
396 .name = "cbc(serpent)",
397 .compat = "serpent",
398
399 .uinfo = {
400 .encr = {
401 .blockbits = 128,
402 .defkeybits = 128,
403 }
404 },
405
406 .desc = {
407 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
408 .sadb_alg_ivlen = 8,
409 .sadb_alg_minbits = 128,
410 .sadb_alg_maxbits = 256,
411 }
412},
413{
414 .name = "cbc(camellia)",
415 .compat = "camellia",
416
417 .uinfo = {
418 .encr = {
419 .blockbits = 128,
420 .defkeybits = 128,
421 }
422 },
423
424 .desc = {
425 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
426 .sadb_alg_ivlen = 8,
427 .sadb_alg_minbits = 128,
428 .sadb_alg_maxbits = 256
429 }
430},
431{
432 .name = "cbc(twofish)",
433 .compat = "twofish",
434
435 .uinfo = {
436 .encr = {
437 .blockbits = 128,
438 .defkeybits = 128,
439 }
440 },
441
442 .desc = {
443 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
444 .sadb_alg_ivlen = 8,
445 .sadb_alg_minbits = 128,
446 .sadb_alg_maxbits = 256
447 }
448},
449{
450 .name = "rfc3686(ctr(aes))",
451
452 .uinfo = {
453 .encr = {
454 .blockbits = 128,
455 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
456 }
457 },
458
459 .desc = {
460 .sadb_alg_id = SADB_X_EALG_AESCTR,
461 .sadb_alg_ivlen = 8,
462 .sadb_alg_minbits = 160,
463 .sadb_alg_maxbits = 288
464 }
465},
466};
467
468static struct xfrm_algo_desc calg_list[] = {
469{
470 .name = "deflate",
471 .uinfo = {
472 .comp = {
473 .threshold = 90,
474 }
475 },
476 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
477},
478{
479 .name = "lzs",
480 .uinfo = {
481 .comp = {
482 .threshold = 90,
483 }
484 },
485 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
486},
487{
488 .name = "lzjh",
489 .uinfo = {
490 .comp = {
491 .threshold = 50,
492 }
493 },
494 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
495},
496};
497
498static inline int aead_entries(void)
499{
500 return ARRAY_SIZE(aead_list);
501}
502
503static inline int aalg_entries(void)
504{
505 return ARRAY_SIZE(aalg_list);
506}
507
508static inline int ealg_entries(void)
509{
510 return ARRAY_SIZE(ealg_list);
511}
512
513static inline int calg_entries(void)
514{
515 return ARRAY_SIZE(calg_list);
516}
517
518struct xfrm_algo_list {
519 struct xfrm_algo_desc *algs;
520 int entries;
521 u32 type;
522 u32 mask;
523};
524
525static const struct xfrm_algo_list xfrm_aead_list = {
526 .algs = aead_list,
527 .entries = ARRAY_SIZE(aead_list),
528 .type = CRYPTO_ALG_TYPE_AEAD,
529 .mask = CRYPTO_ALG_TYPE_MASK,
530};
531
532static const struct xfrm_algo_list xfrm_aalg_list = {
533 .algs = aalg_list,
534 .entries = ARRAY_SIZE(aalg_list),
535 .type = CRYPTO_ALG_TYPE_HASH,
536 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
537};
538
539static const struct xfrm_algo_list xfrm_ealg_list = {
540 .algs = ealg_list,
541 .entries = ARRAY_SIZE(ealg_list),
542 .type = CRYPTO_ALG_TYPE_BLKCIPHER,
543 .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
544};
545
546static const struct xfrm_algo_list xfrm_calg_list = {
547 .algs = calg_list,
548 .entries = ARRAY_SIZE(calg_list),
549 .type = CRYPTO_ALG_TYPE_COMPRESS,
550 .mask = CRYPTO_ALG_TYPE_MASK,
551};
552
553static struct xfrm_algo_desc *xfrm_find_algo(
554 const struct xfrm_algo_list *algo_list,
555 int match(const struct xfrm_algo_desc *entry, const void *data),
556 const void *data, int probe)
557{
558 struct xfrm_algo_desc *list = algo_list->algs;
559 int i, status;
560
561 for (i = 0; i < algo_list->entries; i++) {
562 if (!match(list + i, data))
563 continue;
564
565 if (list[i].available)
566 return &list[i];
567
568 if (!probe)
569 break;
570
571 status = crypto_has_alg(list[i].name, algo_list->type,
572 algo_list->mask);
573 if (!status)
574 break;
575
576 list[i].available = status;
577 return &list[i];
578 }
579 return NULL;
580}
581
582static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
583 const void *data)
584{
585 return entry->desc.sadb_alg_id == (unsigned long)data;
586}
587
588struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
589{
590 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
591 (void *)(unsigned long)alg_id, 1);
592}
593EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
594
595struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
596{
597 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
598 (void *)(unsigned long)alg_id, 1);
599}
600EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
601
602struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
603{
604 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
605 (void *)(unsigned long)alg_id, 1);
606}
607EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
608
609static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
610 const void *data)
611{
612 const char *name = data;
613
614 return name && (!strcmp(name, entry->name) ||
615 (entry->compat && !strcmp(name, entry->compat)));
616}
617
618struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
619{
620 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
621 probe);
622}
623EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
624
625struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
626{
627 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
628 probe);
629}
630EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
631
632struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
633{
634 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
635 probe);
636}
637EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
638
639struct xfrm_aead_name {
640 const char *name;
641 int icvbits;
642};
643
644static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
645 const void *data)
646{
647 const struct xfrm_aead_name *aead = data;
648 const char *name = aead->name;
649
650 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
651 !strcmp(name, entry->name);
652}
653
654struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
655{
656 struct xfrm_aead_name data = {
657 .name = name,
658 .icvbits = icv_len,
659 };
660
661 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
662 probe);
663}
664EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
665
666struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
667{
668 if (idx >= aalg_entries())
669 return NULL;
670
671 return &aalg_list[idx];
672}
673EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
674
675struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
676{
677 if (idx >= ealg_entries())
678 return NULL;
679
680 return &ealg_list[idx];
681}
682EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
683
684/*
685 * Probe for the availability of crypto algorithms, and set the available
686 * flag for any algorithms found on the system. This is typically called by
687 * pfkey during userspace SA add, update or register.
688 */
689void xfrm_probe_algs(void)
690{
691 int i, status;
692
693 BUG_ON(in_softirq());
694
695 for (i = 0; i < aalg_entries(); i++) {
696 status = crypto_has_hash(aalg_list[i].name, 0,
697 CRYPTO_ALG_ASYNC);
698 if (aalg_list[i].available != status)
699 aalg_list[i].available = status;
700 }
701
702 for (i = 0; i < ealg_entries(); i++) {
703 status = crypto_has_blkcipher(ealg_list[i].name, 0,
704 CRYPTO_ALG_ASYNC);
705 if (ealg_list[i].available != status)
706 ealg_list[i].available = status;
707 }
708
709 for (i = 0; i < calg_entries(); i++) {
710 status = crypto_has_comp(calg_list[i].name, 0,
711 CRYPTO_ALG_ASYNC);
712 if (calg_list[i].available != status)
713 calg_list[i].available = status;
714 }
715}
716EXPORT_SYMBOL_GPL(xfrm_probe_algs);
717
718int xfrm_count_auth_supported(void)
719{
720 int i, n;
721
722 for (i = 0, n = 0; i < aalg_entries(); i++)
723 if (aalg_list[i].available)
724 n++;
725 return n;
726}
727EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
728
729int xfrm_count_enc_supported(void)
730{
731 int i, n;
732
733 for (i = 0, n = 0; i < ealg_entries(); i++)
734 if (ealg_list[i].available)
735 n++;
736 return n;
737}
738EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
739
740#if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
741
742void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
743{
744 if (tail != skb) {
745 skb->data_len += len;
746 skb->len += len;
747 }
748 return skb_put(tail, len);
749}
750EXPORT_SYMBOL_GPL(pskb_put);
751#endif
752
753MODULE_LICENSE("GPL");