Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * DMA Pool allocator
  4 *
  5 * Copyright 2001 David Brownell
  6 * Copyright 2007 Intel Corporation
  7 *   Author: Matthew Wilcox <willy@linux.intel.com>
  8 *
 
 
 
 
  9 * This allocator returns small blocks of a given size which are DMA-able by
 10 * the given device.  It uses the dma_alloc_coherent page allocator to get
 11 * new pages, then splits them up into blocks of the required size.
 12 * Many older drivers still have their own code to do this.
 13 *
 14 * The current design of this allocator is fairly simple.  The pool is
 15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 16 * allocated pages.  Each page in the page_list is split into blocks of at
 17 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 18 * list of free blocks within the page.  Used blocks aren't tracked, but we
 19 * keep a count of how many are currently allocated from each page.
 20 */
 21
 22#include <linux/device.h>
 23#include <linux/dma-mapping.h>
 24#include <linux/dmapool.h>
 25#include <linux/kernel.h>
 26#include <linux/list.h>
 27#include <linux/export.h>
 28#include <linux/mutex.h>
 29#include <linux/poison.h>
 30#include <linux/sched.h>
 31#include <linux/sched/mm.h>
 32#include <linux/slab.h>
 33#include <linux/stat.h>
 34#include <linux/spinlock.h>
 35#include <linux/string.h>
 36#include <linux/types.h>
 37#include <linux/wait.h>
 38
 39#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 40#define DMAPOOL_DEBUG 1
 41#endif
 42
 43struct dma_pool {		/* the pool */
 44	struct list_head page_list;
 45	spinlock_t lock;
 46	size_t size;
 47	struct device *dev;
 48	size_t allocation;
 49	size_t boundary;
 50	char name[32];
 
 51	struct list_head pools;
 52};
 53
 54struct dma_page {		/* cacheable header for 'allocation' bytes */
 55	struct list_head page_list;
 56	void *vaddr;
 57	dma_addr_t dma;
 58	unsigned int in_use;
 59	unsigned int offset;
 60};
 61
 
 
 62static DEFINE_MUTEX(pools_lock);
 63static DEFINE_MUTEX(pools_reg_lock);
 64
 65static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
 
 66{
 67	unsigned temp;
 68	unsigned size;
 69	char *next;
 70	struct dma_page *page;
 71	struct dma_pool *pool;
 72
 73	next = buf;
 74	size = PAGE_SIZE;
 75
 76	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 77	size -= temp;
 78	next += temp;
 79
 80	mutex_lock(&pools_lock);
 81	list_for_each_entry(pool, &dev->dma_pools, pools) {
 82		unsigned pages = 0;
 83		unsigned blocks = 0;
 84
 85		spin_lock_irq(&pool->lock);
 86		list_for_each_entry(page, &pool->page_list, page_list) {
 87			pages++;
 88			blocks += page->in_use;
 89		}
 90		spin_unlock_irq(&pool->lock);
 91
 92		/* per-pool info, no real statistics yet */
 93		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
 94				 pool->name, blocks,
 95				 pages * (pool->allocation / pool->size),
 96				 pool->size, pages);
 97		size -= temp;
 98		next += temp;
 99	}
100	mutex_unlock(&pools_lock);
101
102	return PAGE_SIZE - size;
103}
104
105static DEVICE_ATTR_RO(pools);
106
107/**
108 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109 * @name: name of pool, for diagnostics
110 * @dev: device that will be doing the DMA
111 * @size: size of the blocks in this pool.
112 * @align: alignment requirement for blocks; must be a power of two
113 * @boundary: returned blocks won't cross this power of two boundary
114 * Context: not in_interrupt()
115 *
116 * Given one of these pools, dma_pool_alloc()
 
117 * may be used to allocate memory.  Such memory will all have "consistent"
118 * DMA mappings, accessible by the device and its driver without using
119 * cache flushing primitives.  The actual size of blocks allocated may be
120 * larger than requested because of alignment.
121 *
122 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
123 * cross that size boundary.  This is useful for devices which have
124 * addressing restrictions on individual DMA transfers, such as not crossing
125 * boundaries of 4KBytes.
126 *
127 * Return: a dma allocation pool with the requested characteristics, or
128 * %NULL if one can't be created.
129 */
130struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131				 size_t size, size_t align, size_t boundary)
132{
133	struct dma_pool *retval;
134	size_t allocation;
135	bool empty = false;
136
137	if (align == 0)
138		align = 1;
139	else if (align & (align - 1))
140		return NULL;
 
141
142	if (size == 0)
143		return NULL;
144	else if (size < 4)
145		size = 4;
 
 
 
 
146
147	size = ALIGN(size, align);
148	allocation = max_t(size_t, size, PAGE_SIZE);
149
150	if (!boundary)
151		boundary = allocation;
152	else if ((boundary < size) || (boundary & (boundary - 1)))
153		return NULL;
 
154
155	retval = kmalloc(sizeof(*retval), GFP_KERNEL);
156	if (!retval)
157		return retval;
158
159	strscpy(retval->name, name, sizeof(retval->name));
160
161	retval->dev = dev;
162
163	INIT_LIST_HEAD(&retval->page_list);
164	spin_lock_init(&retval->lock);
165	retval->size = size;
166	retval->boundary = boundary;
167	retval->allocation = allocation;
 
168
169	INIT_LIST_HEAD(&retval->pools);
170
171	/*
172	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
173	 * pools_reg_lock ensures that there is not a race between
174	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
175	 * when the first invocation of dma_pool_create() failed on
176	 * device_create_file() and the second assumes that it has been done (I
177	 * know it is a short window).
178	 */
179	mutex_lock(&pools_reg_lock);
180	mutex_lock(&pools_lock);
181	if (list_empty(&dev->dma_pools))
182		empty = true;
183	list_add(&retval->pools, &dev->dma_pools);
184	mutex_unlock(&pools_lock);
185	if (empty) {
186		int err;
187
188		err = device_create_file(dev, &dev_attr_pools);
189		if (err) {
190			mutex_lock(&pools_lock);
191			list_del(&retval->pools);
192			mutex_unlock(&pools_lock);
193			mutex_unlock(&pools_reg_lock);
 
 
 
194			kfree(retval);
195			return NULL;
196		}
197	}
198	mutex_unlock(&pools_reg_lock);
 
 
199	return retval;
200}
201EXPORT_SYMBOL(dma_pool_create);
202
203static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
204{
205	unsigned int offset = 0;
206	unsigned int next_boundary = pool->boundary;
207
208	do {
209		unsigned int next = offset + pool->size;
210		if (unlikely((next + pool->size) >= next_boundary)) {
211			next = next_boundary;
212			next_boundary += pool->boundary;
213		}
214		*(int *)(page->vaddr + offset) = next;
215		offset = next;
216	} while (offset < pool->allocation);
217}
218
219static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
220{
221	struct dma_page *page;
222
223	page = kmalloc(sizeof(*page), mem_flags);
224	if (!page)
225		return NULL;
226	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
227					 &page->dma, mem_flags);
228	if (page->vaddr) {
229#ifdef	DMAPOOL_DEBUG
230		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
231#endif
232		pool_initialise_page(pool, page);
 
233		page->in_use = 0;
234		page->offset = 0;
235	} else {
236		kfree(page);
237		page = NULL;
238	}
239	return page;
240}
241
242static inline bool is_page_busy(struct dma_page *page)
243{
244	return page->in_use != 0;
245}
246
247static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
248{
249	dma_addr_t dma = page->dma;
250
251#ifdef	DMAPOOL_DEBUG
252	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
253#endif
254	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
255	list_del(&page->page_list);
256	kfree(page);
257}
258
259/**
260 * dma_pool_destroy - destroys a pool of dma memory blocks.
261 * @pool: dma pool that will be destroyed
262 * Context: !in_interrupt()
263 *
264 * Caller guarantees that no more memory from the pool is in use,
265 * and that nothing will try to use the pool after this call.
266 */
267void dma_pool_destroy(struct dma_pool *pool)
268{
269	struct dma_page *page, *tmp;
270	bool empty = false;
271
272	if (unlikely(!pool))
273		return;
274
275	mutex_lock(&pools_reg_lock);
276	mutex_lock(&pools_lock);
277	list_del(&pool->pools);
278	if (pool->dev && list_empty(&pool->dev->dma_pools))
279		empty = true;
280	mutex_unlock(&pools_lock);
281	if (empty)
282		device_remove_file(pool->dev, &dev_attr_pools);
283	mutex_unlock(&pools_reg_lock);
284
285	list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
 
 
 
286		if (is_page_busy(page)) {
287			if (pool->dev)
288				dev_err(pool->dev, "%s %s, %p busy\n", __func__,
 
289					pool->name, page->vaddr);
290			else
291				pr_err("%s %s, %p busy\n", __func__,
 
292				       pool->name, page->vaddr);
293			/* leak the still-in-use consistent memory */
294			list_del(&page->page_list);
295			kfree(page);
296		} else
297			pool_free_page(pool, page);
298	}
299
300	kfree(pool);
301}
302EXPORT_SYMBOL(dma_pool_destroy);
303
304/**
305 * dma_pool_alloc - get a block of consistent memory
306 * @pool: dma pool that will produce the block
307 * @mem_flags: GFP_* bitmask
308 * @handle: pointer to dma address of block
309 *
310 * Return: the kernel virtual address of a currently unused block,
311 * and reports its dma address through the handle.
312 * If such a memory block can't be allocated, %NULL is returned.
313 */
314void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
315		     dma_addr_t *handle)
316{
317	unsigned long flags;
318	struct dma_page *page;
319	size_t offset;
320	void *retval;
321
322	might_alloc(mem_flags);
323
324	spin_lock_irqsave(&pool->lock, flags);
 
325	list_for_each_entry(page, &pool->page_list, page_list) {
326		if (page->offset < pool->allocation)
327			goto ready;
328	}
 
 
 
 
329
330	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
331	spin_unlock_irqrestore(&pool->lock, flags);
 
332
333	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
334	if (!page)
335		return NULL;
336
337	spin_lock_irqsave(&pool->lock, flags);
 
 
 
 
 
 
338
339	list_add(&page->page_list, &pool->page_list);
340 ready:
341	page->in_use++;
342	offset = page->offset;
343	page->offset = *(int *)(page->vaddr + offset);
344	retval = offset + page->vaddr;
345	*handle = offset + page->dma;
346#ifdef	DMAPOOL_DEBUG
347	{
348		int i;
349		u8 *data = retval;
350		/* page->offset is stored in first 4 bytes */
351		for (i = sizeof(page->offset); i < pool->size; i++) {
352			if (data[i] == POOL_POISON_FREED)
353				continue;
354			if (pool->dev)
355				dev_err(pool->dev, "%s %s, %p (corrupted)\n",
356					__func__, pool->name, retval);
357			else
358				pr_err("%s %s, %p (corrupted)\n",
359					__func__, pool->name, retval);
360
361			/*
362			 * Dump the first 4 bytes even if they are not
363			 * POOL_POISON_FREED
364			 */
365			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
366					data, pool->size, 1);
367			break;
368		}
369	}
370	if (!(mem_flags & __GFP_ZERO))
371		memset(retval, POOL_POISON_ALLOCATED, pool->size);
372#endif
 
373	spin_unlock_irqrestore(&pool->lock, flags);
374
375	if (want_init_on_alloc(mem_flags))
376		memset(retval, 0, pool->size);
377
378	return retval;
379}
380EXPORT_SYMBOL(dma_pool_alloc);
381
382static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
383{
384	struct dma_page *page;
385
386	list_for_each_entry(page, &pool->page_list, page_list) {
387		if (dma < page->dma)
388			continue;
389		if ((dma - page->dma) < pool->allocation)
390			return page;
391	}
392	return NULL;
393}
394
395/**
396 * dma_pool_free - put block back into dma pool
397 * @pool: the dma pool holding the block
398 * @vaddr: virtual address of block
399 * @dma: dma address of block
400 *
401 * Caller promises neither device nor driver will again touch this block
402 * unless it is first re-allocated.
403 */
404void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
405{
406	struct dma_page *page;
407	unsigned long flags;
408	unsigned int offset;
409
410	spin_lock_irqsave(&pool->lock, flags);
411	page = pool_find_page(pool, dma);
412	if (!page) {
413		spin_unlock_irqrestore(&pool->lock, flags);
414		if (pool->dev)
415			dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
416				__func__, pool->name, vaddr, &dma);
 
417		else
418			pr_err("%s %s, %p/%pad (bad dma)\n",
419			       __func__, pool->name, vaddr, &dma);
420		return;
421	}
422
423	offset = vaddr - page->vaddr;
424	if (want_init_on_free())
425		memset(vaddr, 0, pool->size);
426#ifdef	DMAPOOL_DEBUG
427	if ((dma - page->dma) != offset) {
428		spin_unlock_irqrestore(&pool->lock, flags);
429		if (pool->dev)
430			dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
431				__func__, pool->name, vaddr, &dma);
 
432		else
433			pr_err("%s %s, %p (bad vaddr)/%pad\n",
434			       __func__, pool->name, vaddr, &dma);
 
435		return;
436	}
437	{
438		unsigned int chain = page->offset;
439		while (chain < pool->allocation) {
440			if (chain != offset) {
441				chain = *(int *)(page->vaddr + chain);
442				continue;
443			}
444			spin_unlock_irqrestore(&pool->lock, flags);
445			if (pool->dev)
446				dev_err(pool->dev, "%s %s, dma %pad already free\n",
447					__func__, pool->name, &dma);
 
448			else
449				pr_err("%s %s, dma %pad already free\n",
450				       __func__, pool->name, &dma);
 
451			return;
452		}
453	}
454	memset(vaddr, POOL_POISON_FREED, pool->size);
455#endif
456
457	page->in_use--;
458	*(int *)vaddr = page->offset;
459	page->offset = offset;
 
 
460	/*
461	 * Resist a temptation to do
462	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
463	 * Better have a few empty pages hang around.
464	 */
465	spin_unlock_irqrestore(&pool->lock, flags);
466}
467EXPORT_SYMBOL(dma_pool_free);
468
469/*
470 * Managed DMA pool
471 */
472static void dmam_pool_release(struct device *dev, void *res)
473{
474	struct dma_pool *pool = *(struct dma_pool **)res;
475
476	dma_pool_destroy(pool);
477}
478
479static int dmam_pool_match(struct device *dev, void *res, void *match_data)
480{
481	return *(struct dma_pool **)res == match_data;
482}
483
484/**
485 * dmam_pool_create - Managed dma_pool_create()
486 * @name: name of pool, for diagnostics
487 * @dev: device that will be doing the DMA
488 * @size: size of the blocks in this pool.
489 * @align: alignment requirement for blocks; must be a power of two
490 * @allocation: returned blocks won't cross this boundary (or zero)
491 *
492 * Managed dma_pool_create().  DMA pool created with this function is
493 * automatically destroyed on driver detach.
494 *
495 * Return: a managed dma allocation pool with the requested
496 * characteristics, or %NULL if one can't be created.
497 */
498struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
499				  size_t size, size_t align, size_t allocation)
500{
501	struct dma_pool **ptr, *pool;
502
503	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
504	if (!ptr)
505		return NULL;
506
507	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
508	if (pool)
509		devres_add(dev, ptr);
510	else
511		devres_free(ptr);
512
513	return pool;
514}
515EXPORT_SYMBOL(dmam_pool_create);
516
517/**
518 * dmam_pool_destroy - Managed dma_pool_destroy()
519 * @pool: dma pool that will be destroyed
520 *
521 * Managed dma_pool_destroy().
522 */
523void dmam_pool_destroy(struct dma_pool *pool)
524{
525	struct device *dev = pool->dev;
526
527	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
 
528}
529EXPORT_SYMBOL(dmam_pool_destroy);
v3.5.6
 
  1/*
  2 * DMA Pool allocator
  3 *
  4 * Copyright 2001 David Brownell
  5 * Copyright 2007 Intel Corporation
  6 *   Author: Matthew Wilcox <willy@linux.intel.com>
  7 *
  8 * This software may be redistributed and/or modified under the terms of
  9 * the GNU General Public License ("GPL") version 2 as published by the
 10 * Free Software Foundation.
 11 *
 12 * This allocator returns small blocks of a given size which are DMA-able by
 13 * the given device.  It uses the dma_alloc_coherent page allocator to get
 14 * new pages, then splits them up into blocks of the required size.
 15 * Many older drivers still have their own code to do this.
 16 *
 17 * The current design of this allocator is fairly simple.  The pool is
 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 19 * allocated pages.  Each page in the page_list is split into blocks of at
 20 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 21 * list of free blocks within the page.  Used blocks aren't tracked, but we
 22 * keep a count of how many are currently allocated from each page.
 23 */
 24
 25#include <linux/device.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/dmapool.h>
 28#include <linux/kernel.h>
 29#include <linux/list.h>
 30#include <linux/export.h>
 31#include <linux/mutex.h>
 32#include <linux/poison.h>
 33#include <linux/sched.h>
 
 34#include <linux/slab.h>
 35#include <linux/stat.h>
 36#include <linux/spinlock.h>
 37#include <linux/string.h>
 38#include <linux/types.h>
 39#include <linux/wait.h>
 40
 41#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 42#define DMAPOOL_DEBUG 1
 43#endif
 44
 45struct dma_pool {		/* the pool */
 46	struct list_head page_list;
 47	spinlock_t lock;
 48	size_t size;
 49	struct device *dev;
 50	size_t allocation;
 51	size_t boundary;
 52	char name[32];
 53	wait_queue_head_t waitq;
 54	struct list_head pools;
 55};
 56
 57struct dma_page {		/* cacheable header for 'allocation' bytes */
 58	struct list_head page_list;
 59	void *vaddr;
 60	dma_addr_t dma;
 61	unsigned int in_use;
 62	unsigned int offset;
 63};
 64
 65#define	POOL_TIMEOUT_JIFFIES	((100 /* msec */ * HZ) / 1000)
 66
 67static DEFINE_MUTEX(pools_lock);
 
 68
 69static ssize_t
 70show_pools(struct device *dev, struct device_attribute *attr, char *buf)
 71{
 72	unsigned temp;
 73	unsigned size;
 74	char *next;
 75	struct dma_page *page;
 76	struct dma_pool *pool;
 77
 78	next = buf;
 79	size = PAGE_SIZE;
 80
 81	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 82	size -= temp;
 83	next += temp;
 84
 85	mutex_lock(&pools_lock);
 86	list_for_each_entry(pool, &dev->dma_pools, pools) {
 87		unsigned pages = 0;
 88		unsigned blocks = 0;
 89
 90		spin_lock_irq(&pool->lock);
 91		list_for_each_entry(page, &pool->page_list, page_list) {
 92			pages++;
 93			blocks += page->in_use;
 94		}
 95		spin_unlock_irq(&pool->lock);
 96
 97		/* per-pool info, no real statistics yet */
 98		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
 99				 pool->name, blocks,
100				 pages * (pool->allocation / pool->size),
101				 pool->size, pages);
102		size -= temp;
103		next += temp;
104	}
105	mutex_unlock(&pools_lock);
106
107	return PAGE_SIZE - size;
108}
109
110static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
111
112/**
113 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
114 * @name: name of pool, for diagnostics
115 * @dev: device that will be doing the DMA
116 * @size: size of the blocks in this pool.
117 * @align: alignment requirement for blocks; must be a power of two
118 * @boundary: returned blocks won't cross this power of two boundary
119 * Context: !in_interrupt()
120 *
121 * Returns a dma allocation pool with the requested characteristics, or
122 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
123 * may be used to allocate memory.  Such memory will all have "consistent"
124 * DMA mappings, accessible by the device and its driver without using
125 * cache flushing primitives.  The actual size of blocks allocated may be
126 * larger than requested because of alignment.
127 *
128 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
129 * cross that size boundary.  This is useful for devices which have
130 * addressing restrictions on individual DMA transfers, such as not crossing
131 * boundaries of 4KBytes.
 
 
 
132 */
133struct dma_pool *dma_pool_create(const char *name, struct device *dev,
134				 size_t size, size_t align, size_t boundary)
135{
136	struct dma_pool *retval;
137	size_t allocation;
 
138
139	if (align == 0) {
140		align = 1;
141	} else if (align & (align - 1)) {
142		return NULL;
143	}
144
145	if (size == 0) {
146		return NULL;
147	} else if (size < 4) {
148		size = 4;
149	}
150
151	if ((size % align) != 0)
152		size = ALIGN(size, align);
153
 
154	allocation = max_t(size_t, size, PAGE_SIZE);
155
156	if (!boundary) {
157		boundary = allocation;
158	} else if ((boundary < size) || (boundary & (boundary - 1))) {
159		return NULL;
160	}
161
162	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
163	if (!retval)
164		return retval;
165
166	strlcpy(retval->name, name, sizeof(retval->name));
167
168	retval->dev = dev;
169
170	INIT_LIST_HEAD(&retval->page_list);
171	spin_lock_init(&retval->lock);
172	retval->size = size;
173	retval->boundary = boundary;
174	retval->allocation = allocation;
175	init_waitqueue_head(&retval->waitq);
176
177	if (dev) {
178		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
180		mutex_lock(&pools_lock);
181		if (list_empty(&dev->dma_pools))
182			ret = device_create_file(dev, &dev_attr_pools);
183		else
184			ret = 0;
185		/* note:  not currently insisting "name" be unique */
186		if (!ret)
187			list_add(&retval->pools, &dev->dma_pools);
188		else {
189			kfree(retval);
190			retval = NULL;
191		}
192		mutex_unlock(&pools_lock);
193	} else
194		INIT_LIST_HEAD(&retval->pools);
195
196	return retval;
197}
198EXPORT_SYMBOL(dma_pool_create);
199
200static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
201{
202	unsigned int offset = 0;
203	unsigned int next_boundary = pool->boundary;
204
205	do {
206		unsigned int next = offset + pool->size;
207		if (unlikely((next + pool->size) >= next_boundary)) {
208			next = next_boundary;
209			next_boundary += pool->boundary;
210		}
211		*(int *)(page->vaddr + offset) = next;
212		offset = next;
213	} while (offset < pool->allocation);
214}
215
216static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
217{
218	struct dma_page *page;
219
220	page = kmalloc(sizeof(*page), mem_flags);
221	if (!page)
222		return NULL;
223	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
224					 &page->dma, mem_flags);
225	if (page->vaddr) {
226#ifdef	DMAPOOL_DEBUG
227		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
228#endif
229		pool_initialise_page(pool, page);
230		list_add(&page->page_list, &pool->page_list);
231		page->in_use = 0;
232		page->offset = 0;
233	} else {
234		kfree(page);
235		page = NULL;
236	}
237	return page;
238}
239
240static inline int is_page_busy(struct dma_page *page)
241{
242	return page->in_use != 0;
243}
244
245static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
246{
247	dma_addr_t dma = page->dma;
248
249#ifdef	DMAPOOL_DEBUG
250	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
251#endif
252	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
253	list_del(&page->page_list);
254	kfree(page);
255}
256
257/**
258 * dma_pool_destroy - destroys a pool of dma memory blocks.
259 * @pool: dma pool that will be destroyed
260 * Context: !in_interrupt()
261 *
262 * Caller guarantees that no more memory from the pool is in use,
263 * and that nothing will try to use the pool after this call.
264 */
265void dma_pool_destroy(struct dma_pool *pool)
266{
 
 
 
 
 
 
 
267	mutex_lock(&pools_lock);
268	list_del(&pool->pools);
269	if (pool->dev && list_empty(&pool->dev->dma_pools))
 
 
 
270		device_remove_file(pool->dev, &dev_attr_pools);
271	mutex_unlock(&pools_lock);
272
273	while (!list_empty(&pool->page_list)) {
274		struct dma_page *page;
275		page = list_entry(pool->page_list.next,
276				  struct dma_page, page_list);
277		if (is_page_busy(page)) {
278			if (pool->dev)
279				dev_err(pool->dev,
280					"dma_pool_destroy %s, %p busy\n",
281					pool->name, page->vaddr);
282			else
283				printk(KERN_ERR
284				       "dma_pool_destroy %s, %p busy\n",
285				       pool->name, page->vaddr);
286			/* leak the still-in-use consistent memory */
287			list_del(&page->page_list);
288			kfree(page);
289		} else
290			pool_free_page(pool, page);
291	}
292
293	kfree(pool);
294}
295EXPORT_SYMBOL(dma_pool_destroy);
296
297/**
298 * dma_pool_alloc - get a block of consistent memory
299 * @pool: dma pool that will produce the block
300 * @mem_flags: GFP_* bitmask
301 * @handle: pointer to dma address of block
302 *
303 * This returns the kernel virtual address of a currently unused block,
304 * and reports its dma address through the handle.
305 * If such a memory block can't be allocated, %NULL is returned.
306 */
307void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
308		     dma_addr_t *handle)
309{
310	unsigned long flags;
311	struct dma_page *page;
312	size_t offset;
313	void *retval;
314
315	might_sleep_if(mem_flags & __GFP_WAIT);
316
317	spin_lock_irqsave(&pool->lock, flags);
318 restart:
319	list_for_each_entry(page, &pool->page_list, page_list) {
320		if (page->offset < pool->allocation)
321			goto ready;
322	}
323	page = pool_alloc_page(pool, GFP_ATOMIC);
324	if (!page) {
325		if (mem_flags & __GFP_WAIT) {
326			DECLARE_WAITQUEUE(wait, current);
327
328			__set_current_state(TASK_UNINTERRUPTIBLE);
329			__add_wait_queue(&pool->waitq, &wait);
330			spin_unlock_irqrestore(&pool->lock, flags);
331
332			schedule_timeout(POOL_TIMEOUT_JIFFIES);
 
 
333
334			spin_lock_irqsave(&pool->lock, flags);
335			__remove_wait_queue(&pool->waitq, &wait);
336			goto restart;
337		}
338		retval = NULL;
339		goto done;
340	}
341
 
342 ready:
343	page->in_use++;
344	offset = page->offset;
345	page->offset = *(int *)(page->vaddr + offset);
346	retval = offset + page->vaddr;
347	*handle = offset + page->dma;
348#ifdef	DMAPOOL_DEBUG
349	memset(retval, POOL_POISON_ALLOCATED, pool->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350#endif
351 done:
352	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
353	return retval;
354}
355EXPORT_SYMBOL(dma_pool_alloc);
356
357static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
358{
359	struct dma_page *page;
360
361	list_for_each_entry(page, &pool->page_list, page_list) {
362		if (dma < page->dma)
363			continue;
364		if (dma < (page->dma + pool->allocation))
365			return page;
366	}
367	return NULL;
368}
369
370/**
371 * dma_pool_free - put block back into dma pool
372 * @pool: the dma pool holding the block
373 * @vaddr: virtual address of block
374 * @dma: dma address of block
375 *
376 * Caller promises neither device nor driver will again touch this block
377 * unless it is first re-allocated.
378 */
379void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
380{
381	struct dma_page *page;
382	unsigned long flags;
383	unsigned int offset;
384
385	spin_lock_irqsave(&pool->lock, flags);
386	page = pool_find_page(pool, dma);
387	if (!page) {
388		spin_unlock_irqrestore(&pool->lock, flags);
389		if (pool->dev)
390			dev_err(pool->dev,
391				"dma_pool_free %s, %p/%lx (bad dma)\n",
392				pool->name, vaddr, (unsigned long)dma);
393		else
394			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
395			       pool->name, vaddr, (unsigned long)dma);
396		return;
397	}
398
399	offset = vaddr - page->vaddr;
 
 
400#ifdef	DMAPOOL_DEBUG
401	if ((dma - page->dma) != offset) {
402		spin_unlock_irqrestore(&pool->lock, flags);
403		if (pool->dev)
404			dev_err(pool->dev,
405				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
406				pool->name, vaddr, (unsigned long long)dma);
407		else
408			printk(KERN_ERR
409			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
410			       pool->name, vaddr, (unsigned long long)dma);
411		return;
412	}
413	{
414		unsigned int chain = page->offset;
415		while (chain < pool->allocation) {
416			if (chain != offset) {
417				chain = *(int *)(page->vaddr + chain);
418				continue;
419			}
420			spin_unlock_irqrestore(&pool->lock, flags);
421			if (pool->dev)
422				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
423					"already free\n", pool->name,
424					(unsigned long long)dma);
425			else
426				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
427					"already free\n", pool->name,
428					(unsigned long long)dma);
429			return;
430		}
431	}
432	memset(vaddr, POOL_POISON_FREED, pool->size);
433#endif
434
435	page->in_use--;
436	*(int *)vaddr = page->offset;
437	page->offset = offset;
438	if (waitqueue_active(&pool->waitq))
439		wake_up_locked(&pool->waitq);
440	/*
441	 * Resist a temptation to do
442	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
443	 * Better have a few empty pages hang around.
444	 */
445	spin_unlock_irqrestore(&pool->lock, flags);
446}
447EXPORT_SYMBOL(dma_pool_free);
448
449/*
450 * Managed DMA pool
451 */
452static void dmam_pool_release(struct device *dev, void *res)
453{
454	struct dma_pool *pool = *(struct dma_pool **)res;
455
456	dma_pool_destroy(pool);
457}
458
459static int dmam_pool_match(struct device *dev, void *res, void *match_data)
460{
461	return *(struct dma_pool **)res == match_data;
462}
463
464/**
465 * dmam_pool_create - Managed dma_pool_create()
466 * @name: name of pool, for diagnostics
467 * @dev: device that will be doing the DMA
468 * @size: size of the blocks in this pool.
469 * @align: alignment requirement for blocks; must be a power of two
470 * @allocation: returned blocks won't cross this boundary (or zero)
471 *
472 * Managed dma_pool_create().  DMA pool created with this function is
473 * automatically destroyed on driver detach.
 
 
 
474 */
475struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
476				  size_t size, size_t align, size_t allocation)
477{
478	struct dma_pool **ptr, *pool;
479
480	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
481	if (!ptr)
482		return NULL;
483
484	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
485	if (pool)
486		devres_add(dev, ptr);
487	else
488		devres_free(ptr);
489
490	return pool;
491}
492EXPORT_SYMBOL(dmam_pool_create);
493
494/**
495 * dmam_pool_destroy - Managed dma_pool_destroy()
496 * @pool: dma pool that will be destroyed
497 *
498 * Managed dma_pool_destroy().
499 */
500void dmam_pool_destroy(struct dma_pool *pool)
501{
502	struct device *dev = pool->dev;
503
504	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
505	dma_pool_destroy(pool);
506}
507EXPORT_SYMBOL(dmam_pool_destroy);