Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14/* #define DEBUG */
15/* #define VERBOSE_DEBUG */
16
17#include <linux/blkdev.h>
18#include <linux/pagemap.h>
19#include <linux/export.h>
20#include <linux/fs_parser.h>
21#include <linux/hid.h>
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/scatterlist.h>
25#include <linux/sched/signal.h>
26#include <linux/uio.h>
27#include <linux/vmalloc.h>
28#include <asm/unaligned.h>
29
30#include <linux/usb/ccid.h>
31#include <linux/usb/composite.h>
32#include <linux/usb/functionfs.h>
33
34#include <linux/aio.h>
35#include <linux/kthread.h>
36#include <linux/poll.h>
37#include <linux/eventfd.h>
38
39#include "u_fs.h"
40#include "u_f.h"
41#include "u_os_desc.h"
42#include "configfs.h"
43
44#define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
45
46/* Reference counter handling */
47static void ffs_data_get(struct ffs_data *ffs);
48static void ffs_data_put(struct ffs_data *ffs);
49/* Creates new ffs_data object. */
50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 __attribute__((malloc));
52
53/* Opened counter handling. */
54static void ffs_data_opened(struct ffs_data *ffs);
55static void ffs_data_closed(struct ffs_data *ffs);
56
57/* Called with ffs->mutex held; take over ownership of data. */
58static int __must_check
59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60static int __must_check
61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64/* The function structure ***************************************************/
65
66struct ffs_ep;
67
68struct ffs_function {
69 struct usb_configuration *conf;
70 struct usb_gadget *gadget;
71 struct ffs_data *ffs;
72
73 struct ffs_ep *eps;
74 u8 eps_revmap[16];
75 short *interfaces_nums;
76
77 struct usb_function function;
78};
79
80
81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82{
83 return container_of(f, struct ffs_function, function);
84}
85
86
87static inline enum ffs_setup_state
88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89{
90 return (enum ffs_setup_state)
91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92}
93
94
95static void ffs_func_eps_disable(struct ffs_function *func);
96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98static int ffs_func_bind(struct usb_configuration *,
99 struct usb_function *);
100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101static void ffs_func_disable(struct usb_function *);
102static int ffs_func_setup(struct usb_function *,
103 const struct usb_ctrlrequest *);
104static bool ffs_func_req_match(struct usb_function *,
105 const struct usb_ctrlrequest *,
106 bool config0);
107static void ffs_func_suspend(struct usb_function *);
108static void ffs_func_resume(struct usb_function *);
109
110
111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115/* The endpoints structures *************************************************/
116
117struct ffs_ep {
118 struct usb_ep *ep; /* P: ffs->eps_lock */
119 struct usb_request *req; /* P: epfile->mutex */
120
121 /* [0]: full speed, [1]: high speed, [2]: super speed */
122 struct usb_endpoint_descriptor *descs[3];
123
124 u8 num;
125};
126
127struct ffs_epfile {
128 /* Protects ep->ep and ep->req. */
129 struct mutex mutex;
130
131 struct ffs_data *ffs;
132 struct ffs_ep *ep; /* P: ffs->eps_lock */
133
134 struct dentry *dentry;
135
136 /*
137 * Buffer for holding data from partial reads which may happen since
138 * we’re rounding user read requests to a multiple of a max packet size.
139 *
140 * The pointer is initialised with NULL value and may be set by
141 * __ffs_epfile_read_data function to point to a temporary buffer.
142 *
143 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 * data from said buffer and eventually free it. Importantly, while the
145 * function is using the buffer, it sets the pointer to NULL. This is
146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 * can never run concurrently (they are synchronised by epfile->mutex)
148 * so the latter will not assign a new value to the pointer.
149 *
150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
152 * value is crux of the synchronisation between ffs_func_eps_disable and
153 * __ffs_epfile_read_data.
154 *
155 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 * pointer back to its old value (as described above), but seeing as the
157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 * the buffer.
159 *
160 * == State transitions ==
161 *
162 * • ptr == NULL: (initial state)
163 * â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 * â—¦ __ffs_epfile_read_buffered: nop
165 * â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 * ◦ reading finishes: n/a, not in ‘and reading’ state
167 * • ptr == DROP:
168 * â—¦ __ffs_epfile_read_buffer_free: nop
169 * â—¦ __ffs_epfile_read_buffered: go to ptr == NULL
170 * â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 * ◦ reading finishes: n/a, not in ‘and reading’ state
172 * • ptr == buf:
173 * â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 * â—¦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
175 * â—¦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
176 * is always called first
177 * ◦ reading finishes: n/a, not in ‘and reading’ state
178 * • ptr == NULL and reading:
179 * â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 * â—¦ __ffs_epfile_read_buffered: n/a, mutex is held
181 * â—¦ __ffs_epfile_read_data: n/a, mutex is held
182 * ◦ reading finishes and …
183 * … all data read: free buf, go to ptr == NULL
184 * … otherwise: go to ptr == buf and reading
185 * • ptr == DROP and reading:
186 * â—¦ __ffs_epfile_read_buffer_free: nop
187 * â—¦ __ffs_epfile_read_buffered: n/a, mutex is held
188 * â—¦ __ffs_epfile_read_data: n/a, mutex is held
189 * â—¦ reading finishes: free buf, go to ptr == DROP
190 */
191 struct ffs_buffer *read_buffer;
192#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193
194 char name[5];
195
196 unsigned char in; /* P: ffs->eps_lock */
197 unsigned char isoc; /* P: ffs->eps_lock */
198
199 unsigned char _pad;
200};
201
202struct ffs_buffer {
203 size_t length;
204 char *data;
205 char storage[];
206};
207
208/* ffs_io_data structure ***************************************************/
209
210struct ffs_io_data {
211 bool aio;
212 bool read;
213
214 struct kiocb *kiocb;
215 struct iov_iter data;
216 const void *to_free;
217 char *buf;
218
219 struct mm_struct *mm;
220 struct work_struct work;
221
222 struct usb_ep *ep;
223 struct usb_request *req;
224 struct sg_table sgt;
225 bool use_sg;
226
227 struct ffs_data *ffs;
228
229 int status;
230 struct completion done;
231};
232
233struct ffs_desc_helper {
234 struct ffs_data *ffs;
235 unsigned interfaces_count;
236 unsigned eps_count;
237};
238
239static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
240static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
241
242static struct dentry *
243ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
244 const struct file_operations *fops);
245
246/* Devices management *******************************************************/
247
248DEFINE_MUTEX(ffs_lock);
249EXPORT_SYMBOL_GPL(ffs_lock);
250
251static struct ffs_dev *_ffs_find_dev(const char *name);
252static struct ffs_dev *_ffs_alloc_dev(void);
253static void _ffs_free_dev(struct ffs_dev *dev);
254static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
255static void ffs_release_dev(struct ffs_dev *ffs_dev);
256static int ffs_ready(struct ffs_data *ffs);
257static void ffs_closed(struct ffs_data *ffs);
258
259/* Misc helper functions ****************************************************/
260
261static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
262 __attribute__((warn_unused_result, nonnull));
263static char *ffs_prepare_buffer(const char __user *buf, size_t len)
264 __attribute__((warn_unused_result, nonnull));
265
266
267/* Control file aka ep0 *****************************************************/
268
269static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
270{
271 struct ffs_data *ffs = req->context;
272
273 complete(&ffs->ep0req_completion);
274}
275
276static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
277 __releases(&ffs->ev.waitq.lock)
278{
279 struct usb_request *req = ffs->ep0req;
280 int ret;
281
282 if (!req) {
283 spin_unlock_irq(&ffs->ev.waitq.lock);
284 return -EINVAL;
285 }
286
287 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
288
289 spin_unlock_irq(&ffs->ev.waitq.lock);
290
291 req->buf = data;
292 req->length = len;
293
294 /*
295 * UDC layer requires to provide a buffer even for ZLP, but should
296 * not use it at all. Let's provide some poisoned pointer to catch
297 * possible bug in the driver.
298 */
299 if (req->buf == NULL)
300 req->buf = (void *)0xDEADBABE;
301
302 reinit_completion(&ffs->ep0req_completion);
303
304 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
305 if (ret < 0)
306 return ret;
307
308 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
309 if (ret) {
310 usb_ep_dequeue(ffs->gadget->ep0, req);
311 return -EINTR;
312 }
313
314 ffs->setup_state = FFS_NO_SETUP;
315 return req->status ? req->status : req->actual;
316}
317
318static int __ffs_ep0_stall(struct ffs_data *ffs)
319{
320 if (ffs->ev.can_stall) {
321 pr_vdebug("ep0 stall\n");
322 usb_ep_set_halt(ffs->gadget->ep0);
323 ffs->setup_state = FFS_NO_SETUP;
324 return -EL2HLT;
325 } else {
326 pr_debug("bogus ep0 stall!\n");
327 return -ESRCH;
328 }
329}
330
331static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
332 size_t len, loff_t *ptr)
333{
334 struct ffs_data *ffs = file->private_data;
335 ssize_t ret;
336 char *data;
337
338 ENTER();
339
340 /* Fast check if setup was canceled */
341 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
342 return -EIDRM;
343
344 /* Acquire mutex */
345 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
346 if (ret < 0)
347 return ret;
348
349 /* Check state */
350 switch (ffs->state) {
351 case FFS_READ_DESCRIPTORS:
352 case FFS_READ_STRINGS:
353 /* Copy data */
354 if (len < 16) {
355 ret = -EINVAL;
356 break;
357 }
358
359 data = ffs_prepare_buffer(buf, len);
360 if (IS_ERR(data)) {
361 ret = PTR_ERR(data);
362 break;
363 }
364
365 /* Handle data */
366 if (ffs->state == FFS_READ_DESCRIPTORS) {
367 pr_info("read descriptors\n");
368 ret = __ffs_data_got_descs(ffs, data, len);
369 if (ret < 0)
370 break;
371
372 ffs->state = FFS_READ_STRINGS;
373 ret = len;
374 } else {
375 pr_info("read strings\n");
376 ret = __ffs_data_got_strings(ffs, data, len);
377 if (ret < 0)
378 break;
379
380 ret = ffs_epfiles_create(ffs);
381 if (ret) {
382 ffs->state = FFS_CLOSING;
383 break;
384 }
385
386 ffs->state = FFS_ACTIVE;
387 mutex_unlock(&ffs->mutex);
388
389 ret = ffs_ready(ffs);
390 if (ret < 0) {
391 ffs->state = FFS_CLOSING;
392 return ret;
393 }
394
395 return len;
396 }
397 break;
398
399 case FFS_ACTIVE:
400 data = NULL;
401 /*
402 * We're called from user space, we can use _irq
403 * rather then _irqsave
404 */
405 spin_lock_irq(&ffs->ev.waitq.lock);
406 switch (ffs_setup_state_clear_cancelled(ffs)) {
407 case FFS_SETUP_CANCELLED:
408 ret = -EIDRM;
409 goto done_spin;
410
411 case FFS_NO_SETUP:
412 ret = -ESRCH;
413 goto done_spin;
414
415 case FFS_SETUP_PENDING:
416 break;
417 }
418
419 /* FFS_SETUP_PENDING */
420 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
421 spin_unlock_irq(&ffs->ev.waitq.lock);
422 ret = __ffs_ep0_stall(ffs);
423 break;
424 }
425
426 /* FFS_SETUP_PENDING and not stall */
427 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
428
429 spin_unlock_irq(&ffs->ev.waitq.lock);
430
431 data = ffs_prepare_buffer(buf, len);
432 if (IS_ERR(data)) {
433 ret = PTR_ERR(data);
434 break;
435 }
436
437 spin_lock_irq(&ffs->ev.waitq.lock);
438
439 /*
440 * We are guaranteed to be still in FFS_ACTIVE state
441 * but the state of setup could have changed from
442 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
443 * to check for that. If that happened we copied data
444 * from user space in vain but it's unlikely.
445 *
446 * For sure we are not in FFS_NO_SETUP since this is
447 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
448 * transition can be performed and it's protected by
449 * mutex.
450 */
451 if (ffs_setup_state_clear_cancelled(ffs) ==
452 FFS_SETUP_CANCELLED) {
453 ret = -EIDRM;
454done_spin:
455 spin_unlock_irq(&ffs->ev.waitq.lock);
456 } else {
457 /* unlocks spinlock */
458 ret = __ffs_ep0_queue_wait(ffs, data, len);
459 }
460 kfree(data);
461 break;
462
463 default:
464 ret = -EBADFD;
465 break;
466 }
467
468 mutex_unlock(&ffs->mutex);
469 return ret;
470}
471
472/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
473static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
474 size_t n)
475 __releases(&ffs->ev.waitq.lock)
476{
477 /*
478 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
479 * size of ffs->ev.types array (which is four) so that's how much space
480 * we reserve.
481 */
482 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
483 const size_t size = n * sizeof *events;
484 unsigned i = 0;
485
486 memset(events, 0, size);
487
488 do {
489 events[i].type = ffs->ev.types[i];
490 if (events[i].type == FUNCTIONFS_SETUP) {
491 events[i].u.setup = ffs->ev.setup;
492 ffs->setup_state = FFS_SETUP_PENDING;
493 }
494 } while (++i < n);
495
496 ffs->ev.count -= n;
497 if (ffs->ev.count)
498 memmove(ffs->ev.types, ffs->ev.types + n,
499 ffs->ev.count * sizeof *ffs->ev.types);
500
501 spin_unlock_irq(&ffs->ev.waitq.lock);
502 mutex_unlock(&ffs->mutex);
503
504 return copy_to_user(buf, events, size) ? -EFAULT : size;
505}
506
507static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
508 size_t len, loff_t *ptr)
509{
510 struct ffs_data *ffs = file->private_data;
511 char *data = NULL;
512 size_t n;
513 int ret;
514
515 ENTER();
516
517 /* Fast check if setup was canceled */
518 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
519 return -EIDRM;
520
521 /* Acquire mutex */
522 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
523 if (ret < 0)
524 return ret;
525
526 /* Check state */
527 if (ffs->state != FFS_ACTIVE) {
528 ret = -EBADFD;
529 goto done_mutex;
530 }
531
532 /*
533 * We're called from user space, we can use _irq rather then
534 * _irqsave
535 */
536 spin_lock_irq(&ffs->ev.waitq.lock);
537
538 switch (ffs_setup_state_clear_cancelled(ffs)) {
539 case FFS_SETUP_CANCELLED:
540 ret = -EIDRM;
541 break;
542
543 case FFS_NO_SETUP:
544 n = len / sizeof(struct usb_functionfs_event);
545 if (!n) {
546 ret = -EINVAL;
547 break;
548 }
549
550 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
551 ret = -EAGAIN;
552 break;
553 }
554
555 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
556 ffs->ev.count)) {
557 ret = -EINTR;
558 break;
559 }
560
561 /* unlocks spinlock */
562 return __ffs_ep0_read_events(ffs, buf,
563 min(n, (size_t)ffs->ev.count));
564
565 case FFS_SETUP_PENDING:
566 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
567 spin_unlock_irq(&ffs->ev.waitq.lock);
568 ret = __ffs_ep0_stall(ffs);
569 goto done_mutex;
570 }
571
572 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
573
574 spin_unlock_irq(&ffs->ev.waitq.lock);
575
576 if (len) {
577 data = kmalloc(len, GFP_KERNEL);
578 if (!data) {
579 ret = -ENOMEM;
580 goto done_mutex;
581 }
582 }
583
584 spin_lock_irq(&ffs->ev.waitq.lock);
585
586 /* See ffs_ep0_write() */
587 if (ffs_setup_state_clear_cancelled(ffs) ==
588 FFS_SETUP_CANCELLED) {
589 ret = -EIDRM;
590 break;
591 }
592
593 /* unlocks spinlock */
594 ret = __ffs_ep0_queue_wait(ffs, data, len);
595 if ((ret > 0) && (copy_to_user(buf, data, len)))
596 ret = -EFAULT;
597 goto done_mutex;
598
599 default:
600 ret = -EBADFD;
601 break;
602 }
603
604 spin_unlock_irq(&ffs->ev.waitq.lock);
605done_mutex:
606 mutex_unlock(&ffs->mutex);
607 kfree(data);
608 return ret;
609}
610
611static int ffs_ep0_open(struct inode *inode, struct file *file)
612{
613 struct ffs_data *ffs = inode->i_private;
614
615 ENTER();
616
617 if (ffs->state == FFS_CLOSING)
618 return -EBUSY;
619
620 file->private_data = ffs;
621 ffs_data_opened(ffs);
622
623 return stream_open(inode, file);
624}
625
626static int ffs_ep0_release(struct inode *inode, struct file *file)
627{
628 struct ffs_data *ffs = file->private_data;
629
630 ENTER();
631
632 ffs_data_closed(ffs);
633
634 return 0;
635}
636
637static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
638{
639 struct ffs_data *ffs = file->private_data;
640 struct usb_gadget *gadget = ffs->gadget;
641 long ret;
642
643 ENTER();
644
645 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
646 struct ffs_function *func = ffs->func;
647 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
648 } else if (gadget && gadget->ops->ioctl) {
649 ret = gadget->ops->ioctl(gadget, code, value);
650 } else {
651 ret = -ENOTTY;
652 }
653
654 return ret;
655}
656
657static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
658{
659 struct ffs_data *ffs = file->private_data;
660 __poll_t mask = EPOLLWRNORM;
661 int ret;
662
663 poll_wait(file, &ffs->ev.waitq, wait);
664
665 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
666 if (ret < 0)
667 return mask;
668
669 switch (ffs->state) {
670 case FFS_READ_DESCRIPTORS:
671 case FFS_READ_STRINGS:
672 mask |= EPOLLOUT;
673 break;
674
675 case FFS_ACTIVE:
676 switch (ffs->setup_state) {
677 case FFS_NO_SETUP:
678 if (ffs->ev.count)
679 mask |= EPOLLIN;
680 break;
681
682 case FFS_SETUP_PENDING:
683 case FFS_SETUP_CANCELLED:
684 mask |= (EPOLLIN | EPOLLOUT);
685 break;
686 }
687 break;
688
689 case FFS_CLOSING:
690 break;
691 case FFS_DEACTIVATED:
692 break;
693 }
694
695 mutex_unlock(&ffs->mutex);
696
697 return mask;
698}
699
700static const struct file_operations ffs_ep0_operations = {
701 .llseek = no_llseek,
702
703 .open = ffs_ep0_open,
704 .write = ffs_ep0_write,
705 .read = ffs_ep0_read,
706 .release = ffs_ep0_release,
707 .unlocked_ioctl = ffs_ep0_ioctl,
708 .poll = ffs_ep0_poll,
709};
710
711
712/* "Normal" endpoints operations ********************************************/
713
714static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
715{
716 struct ffs_io_data *io_data = req->context;
717
718 ENTER();
719 if (req->status)
720 io_data->status = req->status;
721 else
722 io_data->status = req->actual;
723
724 complete(&io_data->done);
725}
726
727static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
728{
729 ssize_t ret = copy_to_iter(data, data_len, iter);
730 if (ret == data_len)
731 return ret;
732
733 if (iov_iter_count(iter))
734 return -EFAULT;
735
736 /*
737 * Dear user space developer!
738 *
739 * TL;DR: To stop getting below error message in your kernel log, change
740 * user space code using functionfs to align read buffers to a max
741 * packet size.
742 *
743 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
744 * packet size. When unaligned buffer is passed to functionfs, it
745 * internally uses a larger, aligned buffer so that such UDCs are happy.
746 *
747 * Unfortunately, this means that host may send more data than was
748 * requested in read(2) system call. f_fs doesn’t know what to do with
749 * that excess data so it simply drops it.
750 *
751 * Was the buffer aligned in the first place, no such problem would
752 * happen.
753 *
754 * Data may be dropped only in AIO reads. Synchronous reads are handled
755 * by splitting a request into multiple parts. This splitting may still
756 * be a problem though so it’s likely best to align the buffer
757 * regardless of it being AIO or not..
758 *
759 * This only affects OUT endpoints, i.e. reading data with a read(2),
760 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
761 * affected.
762 */
763 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
764 "Align read buffer size to max packet size to avoid the problem.\n",
765 data_len, ret);
766
767 return ret;
768}
769
770/*
771 * allocate a virtually contiguous buffer and create a scatterlist describing it
772 * @sg_table - pointer to a place to be filled with sg_table contents
773 * @size - required buffer size
774 */
775static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
776{
777 struct page **pages;
778 void *vaddr, *ptr;
779 unsigned int n_pages;
780 int i;
781
782 vaddr = vmalloc(sz);
783 if (!vaddr)
784 return NULL;
785
786 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
787 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
788 if (!pages) {
789 vfree(vaddr);
790
791 return NULL;
792 }
793 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
794 pages[i] = vmalloc_to_page(ptr);
795
796 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
797 kvfree(pages);
798 vfree(vaddr);
799
800 return NULL;
801 }
802 kvfree(pages);
803
804 return vaddr;
805}
806
807static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
808 size_t data_len)
809{
810 if (io_data->use_sg)
811 return ffs_build_sg_list(&io_data->sgt, data_len);
812
813 return kmalloc(data_len, GFP_KERNEL);
814}
815
816static inline void ffs_free_buffer(struct ffs_io_data *io_data)
817{
818 if (!io_data->buf)
819 return;
820
821 if (io_data->use_sg) {
822 sg_free_table(&io_data->sgt);
823 vfree(io_data->buf);
824 } else {
825 kfree(io_data->buf);
826 }
827}
828
829static void ffs_user_copy_worker(struct work_struct *work)
830{
831 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
832 work);
833 int ret = io_data->req->status ? io_data->req->status :
834 io_data->req->actual;
835 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
836
837 if (io_data->read && ret > 0) {
838 kthread_use_mm(io_data->mm);
839 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
840 kthread_unuse_mm(io_data->mm);
841 }
842
843 io_data->kiocb->ki_complete(io_data->kiocb, ret);
844
845 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
846 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
847
848 usb_ep_free_request(io_data->ep, io_data->req);
849
850 if (io_data->read)
851 kfree(io_data->to_free);
852 ffs_free_buffer(io_data);
853 kfree(io_data);
854}
855
856static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
857 struct usb_request *req)
858{
859 struct ffs_io_data *io_data = req->context;
860 struct ffs_data *ffs = io_data->ffs;
861
862 ENTER();
863
864 INIT_WORK(&io_data->work, ffs_user_copy_worker);
865 queue_work(ffs->io_completion_wq, &io_data->work);
866}
867
868static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
869{
870 /*
871 * See comment in struct ffs_epfile for full read_buffer pointer
872 * synchronisation story.
873 */
874 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
875 if (buf && buf != READ_BUFFER_DROP)
876 kfree(buf);
877}
878
879/* Assumes epfile->mutex is held. */
880static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
881 struct iov_iter *iter)
882{
883 /*
884 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
885 * the buffer while we are using it. See comment in struct ffs_epfile
886 * for full read_buffer pointer synchronisation story.
887 */
888 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
889 ssize_t ret;
890 if (!buf || buf == READ_BUFFER_DROP)
891 return 0;
892
893 ret = copy_to_iter(buf->data, buf->length, iter);
894 if (buf->length == ret) {
895 kfree(buf);
896 return ret;
897 }
898
899 if (iov_iter_count(iter)) {
900 ret = -EFAULT;
901 } else {
902 buf->length -= ret;
903 buf->data += ret;
904 }
905
906 if (cmpxchg(&epfile->read_buffer, NULL, buf))
907 kfree(buf);
908
909 return ret;
910}
911
912/* Assumes epfile->mutex is held. */
913static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
914 void *data, int data_len,
915 struct iov_iter *iter)
916{
917 struct ffs_buffer *buf;
918
919 ssize_t ret = copy_to_iter(data, data_len, iter);
920 if (data_len == ret)
921 return ret;
922
923 if (iov_iter_count(iter))
924 return -EFAULT;
925
926 /* See ffs_copy_to_iter for more context. */
927 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
928 data_len, ret);
929
930 data_len -= ret;
931 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
932 if (!buf)
933 return -ENOMEM;
934 buf->length = data_len;
935 buf->data = buf->storage;
936 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
937
938 /*
939 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
940 * ffs_func_eps_disable has been called in the meanwhile). See comment
941 * in struct ffs_epfile for full read_buffer pointer synchronisation
942 * story.
943 */
944 if (cmpxchg(&epfile->read_buffer, NULL, buf))
945 kfree(buf);
946
947 return ret;
948}
949
950static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
951{
952 struct ffs_epfile *epfile = file->private_data;
953 struct usb_request *req;
954 struct ffs_ep *ep;
955 char *data = NULL;
956 ssize_t ret, data_len = -EINVAL;
957 int halt;
958
959 /* Are we still active? */
960 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
961 return -ENODEV;
962
963 /* Wait for endpoint to be enabled */
964 ep = epfile->ep;
965 if (!ep) {
966 if (file->f_flags & O_NONBLOCK)
967 return -EAGAIN;
968
969 ret = wait_event_interruptible(
970 epfile->ffs->wait, (ep = epfile->ep));
971 if (ret)
972 return -EINTR;
973 }
974
975 /* Do we halt? */
976 halt = (!io_data->read == !epfile->in);
977 if (halt && epfile->isoc)
978 return -EINVAL;
979
980 /* We will be using request and read_buffer */
981 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
982 if (ret)
983 goto error;
984
985 /* Allocate & copy */
986 if (!halt) {
987 struct usb_gadget *gadget;
988
989 /*
990 * Do we have buffered data from previous partial read? Check
991 * that for synchronous case only because we do not have
992 * facility to ‘wake up’ a pending asynchronous read and push
993 * buffered data to it which we would need to make things behave
994 * consistently.
995 */
996 if (!io_data->aio && io_data->read) {
997 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
998 if (ret)
999 goto error_mutex;
1000 }
1001
1002 /*
1003 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1004 * before the waiting completes, so do not assign to 'gadget'
1005 * earlier
1006 */
1007 gadget = epfile->ffs->gadget;
1008
1009 spin_lock_irq(&epfile->ffs->eps_lock);
1010 /* In the meantime, endpoint got disabled or changed. */
1011 if (epfile->ep != ep) {
1012 ret = -ESHUTDOWN;
1013 goto error_lock;
1014 }
1015 data_len = iov_iter_count(&io_data->data);
1016 /*
1017 * Controller may require buffer size to be aligned to
1018 * maxpacketsize of an out endpoint.
1019 */
1020 if (io_data->read)
1021 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1022
1023 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1024 spin_unlock_irq(&epfile->ffs->eps_lock);
1025
1026 data = ffs_alloc_buffer(io_data, data_len);
1027 if (!data) {
1028 ret = -ENOMEM;
1029 goto error_mutex;
1030 }
1031 if (!io_data->read &&
1032 !copy_from_iter_full(data, data_len, &io_data->data)) {
1033 ret = -EFAULT;
1034 goto error_mutex;
1035 }
1036 }
1037
1038 spin_lock_irq(&epfile->ffs->eps_lock);
1039
1040 if (epfile->ep != ep) {
1041 /* In the meantime, endpoint got disabled or changed. */
1042 ret = -ESHUTDOWN;
1043 } else if (halt) {
1044 ret = usb_ep_set_halt(ep->ep);
1045 if (!ret)
1046 ret = -EBADMSG;
1047 } else if (data_len == -EINVAL) {
1048 /*
1049 * Sanity Check: even though data_len can't be used
1050 * uninitialized at the time I write this comment, some
1051 * compilers complain about this situation.
1052 * In order to keep the code clean from warnings, data_len is
1053 * being initialized to -EINVAL during its declaration, which
1054 * means we can't rely on compiler anymore to warn no future
1055 * changes won't result in data_len being used uninitialized.
1056 * For such reason, we're adding this redundant sanity check
1057 * here.
1058 */
1059 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1060 ret = -EINVAL;
1061 } else if (!io_data->aio) {
1062 bool interrupted = false;
1063
1064 req = ep->req;
1065 if (io_data->use_sg) {
1066 req->buf = NULL;
1067 req->sg = io_data->sgt.sgl;
1068 req->num_sgs = io_data->sgt.nents;
1069 } else {
1070 req->buf = data;
1071 req->num_sgs = 0;
1072 }
1073 req->length = data_len;
1074
1075 io_data->buf = data;
1076
1077 init_completion(&io_data->done);
1078 req->context = io_data;
1079 req->complete = ffs_epfile_io_complete;
1080
1081 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1082 if (ret < 0)
1083 goto error_lock;
1084
1085 spin_unlock_irq(&epfile->ffs->eps_lock);
1086
1087 if (wait_for_completion_interruptible(&io_data->done)) {
1088 spin_lock_irq(&epfile->ffs->eps_lock);
1089 if (epfile->ep != ep) {
1090 ret = -ESHUTDOWN;
1091 goto error_lock;
1092 }
1093 /*
1094 * To avoid race condition with ffs_epfile_io_complete,
1095 * dequeue the request first then check
1096 * status. usb_ep_dequeue API should guarantee no race
1097 * condition with req->complete callback.
1098 */
1099 usb_ep_dequeue(ep->ep, req);
1100 spin_unlock_irq(&epfile->ffs->eps_lock);
1101 wait_for_completion(&io_data->done);
1102 interrupted = io_data->status < 0;
1103 }
1104
1105 if (interrupted)
1106 ret = -EINTR;
1107 else if (io_data->read && io_data->status > 0)
1108 ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1109 &io_data->data);
1110 else
1111 ret = io_data->status;
1112 goto error_mutex;
1113 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1114 ret = -ENOMEM;
1115 } else {
1116 if (io_data->use_sg) {
1117 req->buf = NULL;
1118 req->sg = io_data->sgt.sgl;
1119 req->num_sgs = io_data->sgt.nents;
1120 } else {
1121 req->buf = data;
1122 req->num_sgs = 0;
1123 }
1124 req->length = data_len;
1125
1126 io_data->buf = data;
1127 io_data->ep = ep->ep;
1128 io_data->req = req;
1129 io_data->ffs = epfile->ffs;
1130
1131 req->context = io_data;
1132 req->complete = ffs_epfile_async_io_complete;
1133
1134 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1135 if (ret) {
1136 io_data->req = NULL;
1137 usb_ep_free_request(ep->ep, req);
1138 goto error_lock;
1139 }
1140
1141 ret = -EIOCBQUEUED;
1142 /*
1143 * Do not kfree the buffer in this function. It will be freed
1144 * by ffs_user_copy_worker.
1145 */
1146 data = NULL;
1147 }
1148
1149error_lock:
1150 spin_unlock_irq(&epfile->ffs->eps_lock);
1151error_mutex:
1152 mutex_unlock(&epfile->mutex);
1153error:
1154 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1155 ffs_free_buffer(io_data);
1156 return ret;
1157}
1158
1159static int
1160ffs_epfile_open(struct inode *inode, struct file *file)
1161{
1162 struct ffs_epfile *epfile = inode->i_private;
1163
1164 ENTER();
1165
1166 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1167 return -ENODEV;
1168
1169 file->private_data = epfile;
1170 ffs_data_opened(epfile->ffs);
1171
1172 return stream_open(inode, file);
1173}
1174
1175static int ffs_aio_cancel(struct kiocb *kiocb)
1176{
1177 struct ffs_io_data *io_data = kiocb->private;
1178 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1179 unsigned long flags;
1180 int value;
1181
1182 ENTER();
1183
1184 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1185
1186 if (io_data && io_data->ep && io_data->req)
1187 value = usb_ep_dequeue(io_data->ep, io_data->req);
1188 else
1189 value = -EINVAL;
1190
1191 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1192
1193 return value;
1194}
1195
1196static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1197{
1198 struct ffs_io_data io_data, *p = &io_data;
1199 ssize_t res;
1200
1201 ENTER();
1202
1203 if (!is_sync_kiocb(kiocb)) {
1204 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1205 if (!p)
1206 return -ENOMEM;
1207 p->aio = true;
1208 } else {
1209 memset(p, 0, sizeof(*p));
1210 p->aio = false;
1211 }
1212
1213 p->read = false;
1214 p->kiocb = kiocb;
1215 p->data = *from;
1216 p->mm = current->mm;
1217
1218 kiocb->private = p;
1219
1220 if (p->aio)
1221 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1222
1223 res = ffs_epfile_io(kiocb->ki_filp, p);
1224 if (res == -EIOCBQUEUED)
1225 return res;
1226 if (p->aio)
1227 kfree(p);
1228 else
1229 *from = p->data;
1230 return res;
1231}
1232
1233static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1234{
1235 struct ffs_io_data io_data, *p = &io_data;
1236 ssize_t res;
1237
1238 ENTER();
1239
1240 if (!is_sync_kiocb(kiocb)) {
1241 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1242 if (!p)
1243 return -ENOMEM;
1244 p->aio = true;
1245 } else {
1246 memset(p, 0, sizeof(*p));
1247 p->aio = false;
1248 }
1249
1250 p->read = true;
1251 p->kiocb = kiocb;
1252 if (p->aio) {
1253 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1254 if (!p->to_free) {
1255 kfree(p);
1256 return -ENOMEM;
1257 }
1258 } else {
1259 p->data = *to;
1260 p->to_free = NULL;
1261 }
1262 p->mm = current->mm;
1263
1264 kiocb->private = p;
1265
1266 if (p->aio)
1267 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1268
1269 res = ffs_epfile_io(kiocb->ki_filp, p);
1270 if (res == -EIOCBQUEUED)
1271 return res;
1272
1273 if (p->aio) {
1274 kfree(p->to_free);
1275 kfree(p);
1276 } else {
1277 *to = p->data;
1278 }
1279 return res;
1280}
1281
1282static int
1283ffs_epfile_release(struct inode *inode, struct file *file)
1284{
1285 struct ffs_epfile *epfile = inode->i_private;
1286
1287 ENTER();
1288
1289 __ffs_epfile_read_buffer_free(epfile);
1290 ffs_data_closed(epfile->ffs);
1291
1292 return 0;
1293}
1294
1295static long ffs_epfile_ioctl(struct file *file, unsigned code,
1296 unsigned long value)
1297{
1298 struct ffs_epfile *epfile = file->private_data;
1299 struct ffs_ep *ep;
1300 int ret;
1301
1302 ENTER();
1303
1304 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1305 return -ENODEV;
1306
1307 /* Wait for endpoint to be enabled */
1308 ep = epfile->ep;
1309 if (!ep) {
1310 if (file->f_flags & O_NONBLOCK)
1311 return -EAGAIN;
1312
1313 ret = wait_event_interruptible(
1314 epfile->ffs->wait, (ep = epfile->ep));
1315 if (ret)
1316 return -EINTR;
1317 }
1318
1319 spin_lock_irq(&epfile->ffs->eps_lock);
1320
1321 /* In the meantime, endpoint got disabled or changed. */
1322 if (epfile->ep != ep) {
1323 spin_unlock_irq(&epfile->ffs->eps_lock);
1324 return -ESHUTDOWN;
1325 }
1326
1327 switch (code) {
1328 case FUNCTIONFS_FIFO_STATUS:
1329 ret = usb_ep_fifo_status(epfile->ep->ep);
1330 break;
1331 case FUNCTIONFS_FIFO_FLUSH:
1332 usb_ep_fifo_flush(epfile->ep->ep);
1333 ret = 0;
1334 break;
1335 case FUNCTIONFS_CLEAR_HALT:
1336 ret = usb_ep_clear_halt(epfile->ep->ep);
1337 break;
1338 case FUNCTIONFS_ENDPOINT_REVMAP:
1339 ret = epfile->ep->num;
1340 break;
1341 case FUNCTIONFS_ENDPOINT_DESC:
1342 {
1343 int desc_idx;
1344 struct usb_endpoint_descriptor desc1, *desc;
1345
1346 switch (epfile->ffs->gadget->speed) {
1347 case USB_SPEED_SUPER:
1348 case USB_SPEED_SUPER_PLUS:
1349 desc_idx = 2;
1350 break;
1351 case USB_SPEED_HIGH:
1352 desc_idx = 1;
1353 break;
1354 default:
1355 desc_idx = 0;
1356 }
1357
1358 desc = epfile->ep->descs[desc_idx];
1359 memcpy(&desc1, desc, desc->bLength);
1360
1361 spin_unlock_irq(&epfile->ffs->eps_lock);
1362 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1363 if (ret)
1364 ret = -EFAULT;
1365 return ret;
1366 }
1367 default:
1368 ret = -ENOTTY;
1369 }
1370 spin_unlock_irq(&epfile->ffs->eps_lock);
1371
1372 return ret;
1373}
1374
1375static const struct file_operations ffs_epfile_operations = {
1376 .llseek = no_llseek,
1377
1378 .open = ffs_epfile_open,
1379 .write_iter = ffs_epfile_write_iter,
1380 .read_iter = ffs_epfile_read_iter,
1381 .release = ffs_epfile_release,
1382 .unlocked_ioctl = ffs_epfile_ioctl,
1383 .compat_ioctl = compat_ptr_ioctl,
1384};
1385
1386
1387/* File system and super block operations ***********************************/
1388
1389/*
1390 * Mounting the file system creates a controller file, used first for
1391 * function configuration then later for event monitoring.
1392 */
1393
1394static struct inode *__must_check
1395ffs_sb_make_inode(struct super_block *sb, void *data,
1396 const struct file_operations *fops,
1397 const struct inode_operations *iops,
1398 struct ffs_file_perms *perms)
1399{
1400 struct inode *inode;
1401
1402 ENTER();
1403
1404 inode = new_inode(sb);
1405
1406 if (inode) {
1407 struct timespec64 ts = current_time(inode);
1408
1409 inode->i_ino = get_next_ino();
1410 inode->i_mode = perms->mode;
1411 inode->i_uid = perms->uid;
1412 inode->i_gid = perms->gid;
1413 inode->i_atime = ts;
1414 inode->i_mtime = ts;
1415 inode->i_ctime = ts;
1416 inode->i_private = data;
1417 if (fops)
1418 inode->i_fop = fops;
1419 if (iops)
1420 inode->i_op = iops;
1421 }
1422
1423 return inode;
1424}
1425
1426/* Create "regular" file */
1427static struct dentry *ffs_sb_create_file(struct super_block *sb,
1428 const char *name, void *data,
1429 const struct file_operations *fops)
1430{
1431 struct ffs_data *ffs = sb->s_fs_info;
1432 struct dentry *dentry;
1433 struct inode *inode;
1434
1435 ENTER();
1436
1437 dentry = d_alloc_name(sb->s_root, name);
1438 if (!dentry)
1439 return NULL;
1440
1441 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1442 if (!inode) {
1443 dput(dentry);
1444 return NULL;
1445 }
1446
1447 d_add(dentry, inode);
1448 return dentry;
1449}
1450
1451/* Super block */
1452static const struct super_operations ffs_sb_operations = {
1453 .statfs = simple_statfs,
1454 .drop_inode = generic_delete_inode,
1455};
1456
1457struct ffs_sb_fill_data {
1458 struct ffs_file_perms perms;
1459 umode_t root_mode;
1460 const char *dev_name;
1461 bool no_disconnect;
1462 struct ffs_data *ffs_data;
1463};
1464
1465static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1466{
1467 struct ffs_sb_fill_data *data = fc->fs_private;
1468 struct inode *inode;
1469 struct ffs_data *ffs = data->ffs_data;
1470
1471 ENTER();
1472
1473 ffs->sb = sb;
1474 data->ffs_data = NULL;
1475 sb->s_fs_info = ffs;
1476 sb->s_blocksize = PAGE_SIZE;
1477 sb->s_blocksize_bits = PAGE_SHIFT;
1478 sb->s_magic = FUNCTIONFS_MAGIC;
1479 sb->s_op = &ffs_sb_operations;
1480 sb->s_time_gran = 1;
1481
1482 /* Root inode */
1483 data->perms.mode = data->root_mode;
1484 inode = ffs_sb_make_inode(sb, NULL,
1485 &simple_dir_operations,
1486 &simple_dir_inode_operations,
1487 &data->perms);
1488 sb->s_root = d_make_root(inode);
1489 if (!sb->s_root)
1490 return -ENOMEM;
1491
1492 /* EP0 file */
1493 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1494 return -ENOMEM;
1495
1496 return 0;
1497}
1498
1499enum {
1500 Opt_no_disconnect,
1501 Opt_rmode,
1502 Opt_fmode,
1503 Opt_mode,
1504 Opt_uid,
1505 Opt_gid,
1506};
1507
1508static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1509 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1510 fsparam_u32 ("rmode", Opt_rmode),
1511 fsparam_u32 ("fmode", Opt_fmode),
1512 fsparam_u32 ("mode", Opt_mode),
1513 fsparam_u32 ("uid", Opt_uid),
1514 fsparam_u32 ("gid", Opt_gid),
1515 {}
1516};
1517
1518static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1519{
1520 struct ffs_sb_fill_data *data = fc->fs_private;
1521 struct fs_parse_result result;
1522 int opt;
1523
1524 ENTER();
1525
1526 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1527 if (opt < 0)
1528 return opt;
1529
1530 switch (opt) {
1531 case Opt_no_disconnect:
1532 data->no_disconnect = result.boolean;
1533 break;
1534 case Opt_rmode:
1535 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1536 break;
1537 case Opt_fmode:
1538 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1539 break;
1540 case Opt_mode:
1541 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1542 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1543 break;
1544
1545 case Opt_uid:
1546 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1547 if (!uid_valid(data->perms.uid))
1548 goto unmapped_value;
1549 break;
1550 case Opt_gid:
1551 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1552 if (!gid_valid(data->perms.gid))
1553 goto unmapped_value;
1554 break;
1555
1556 default:
1557 return -ENOPARAM;
1558 }
1559
1560 return 0;
1561
1562unmapped_value:
1563 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1564}
1565
1566/*
1567 * Set up the superblock for a mount.
1568 */
1569static int ffs_fs_get_tree(struct fs_context *fc)
1570{
1571 struct ffs_sb_fill_data *ctx = fc->fs_private;
1572 struct ffs_data *ffs;
1573 int ret;
1574
1575 ENTER();
1576
1577 if (!fc->source)
1578 return invalf(fc, "No source specified");
1579
1580 ffs = ffs_data_new(fc->source);
1581 if (!ffs)
1582 return -ENOMEM;
1583 ffs->file_perms = ctx->perms;
1584 ffs->no_disconnect = ctx->no_disconnect;
1585
1586 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1587 if (!ffs->dev_name) {
1588 ffs_data_put(ffs);
1589 return -ENOMEM;
1590 }
1591
1592 ret = ffs_acquire_dev(ffs->dev_name, ffs);
1593 if (ret) {
1594 ffs_data_put(ffs);
1595 return ret;
1596 }
1597
1598 ctx->ffs_data = ffs;
1599 return get_tree_nodev(fc, ffs_sb_fill);
1600}
1601
1602static void ffs_fs_free_fc(struct fs_context *fc)
1603{
1604 struct ffs_sb_fill_data *ctx = fc->fs_private;
1605
1606 if (ctx) {
1607 if (ctx->ffs_data) {
1608 ffs_data_put(ctx->ffs_data);
1609 }
1610
1611 kfree(ctx);
1612 }
1613}
1614
1615static const struct fs_context_operations ffs_fs_context_ops = {
1616 .free = ffs_fs_free_fc,
1617 .parse_param = ffs_fs_parse_param,
1618 .get_tree = ffs_fs_get_tree,
1619};
1620
1621static int ffs_fs_init_fs_context(struct fs_context *fc)
1622{
1623 struct ffs_sb_fill_data *ctx;
1624
1625 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1626 if (!ctx)
1627 return -ENOMEM;
1628
1629 ctx->perms.mode = S_IFREG | 0600;
1630 ctx->perms.uid = GLOBAL_ROOT_UID;
1631 ctx->perms.gid = GLOBAL_ROOT_GID;
1632 ctx->root_mode = S_IFDIR | 0500;
1633 ctx->no_disconnect = false;
1634
1635 fc->fs_private = ctx;
1636 fc->ops = &ffs_fs_context_ops;
1637 return 0;
1638}
1639
1640static void
1641ffs_fs_kill_sb(struct super_block *sb)
1642{
1643 ENTER();
1644
1645 kill_litter_super(sb);
1646 if (sb->s_fs_info)
1647 ffs_data_closed(sb->s_fs_info);
1648}
1649
1650static struct file_system_type ffs_fs_type = {
1651 .owner = THIS_MODULE,
1652 .name = "functionfs",
1653 .init_fs_context = ffs_fs_init_fs_context,
1654 .parameters = ffs_fs_fs_parameters,
1655 .kill_sb = ffs_fs_kill_sb,
1656};
1657MODULE_ALIAS_FS("functionfs");
1658
1659
1660/* Driver's main init/cleanup functions *************************************/
1661
1662static int functionfs_init(void)
1663{
1664 int ret;
1665
1666 ENTER();
1667
1668 ret = register_filesystem(&ffs_fs_type);
1669 if (!ret)
1670 pr_info("file system registered\n");
1671 else
1672 pr_err("failed registering file system (%d)\n", ret);
1673
1674 return ret;
1675}
1676
1677static void functionfs_cleanup(void)
1678{
1679 ENTER();
1680
1681 pr_info("unloading\n");
1682 unregister_filesystem(&ffs_fs_type);
1683}
1684
1685
1686/* ffs_data and ffs_function construction and destruction code **************/
1687
1688static void ffs_data_clear(struct ffs_data *ffs);
1689static void ffs_data_reset(struct ffs_data *ffs);
1690
1691static void ffs_data_get(struct ffs_data *ffs)
1692{
1693 ENTER();
1694
1695 refcount_inc(&ffs->ref);
1696}
1697
1698static void ffs_data_opened(struct ffs_data *ffs)
1699{
1700 ENTER();
1701
1702 refcount_inc(&ffs->ref);
1703 if (atomic_add_return(1, &ffs->opened) == 1 &&
1704 ffs->state == FFS_DEACTIVATED) {
1705 ffs->state = FFS_CLOSING;
1706 ffs_data_reset(ffs);
1707 }
1708}
1709
1710static void ffs_data_put(struct ffs_data *ffs)
1711{
1712 ENTER();
1713
1714 if (refcount_dec_and_test(&ffs->ref)) {
1715 pr_info("%s(): freeing\n", __func__);
1716 ffs_data_clear(ffs);
1717 ffs_release_dev(ffs->private_data);
1718 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1719 swait_active(&ffs->ep0req_completion.wait) ||
1720 waitqueue_active(&ffs->wait));
1721 destroy_workqueue(ffs->io_completion_wq);
1722 kfree(ffs->dev_name);
1723 kfree(ffs);
1724 }
1725}
1726
1727static void ffs_data_closed(struct ffs_data *ffs)
1728{
1729 struct ffs_epfile *epfiles;
1730 unsigned long flags;
1731
1732 ENTER();
1733
1734 if (atomic_dec_and_test(&ffs->opened)) {
1735 if (ffs->no_disconnect) {
1736 ffs->state = FFS_DEACTIVATED;
1737 spin_lock_irqsave(&ffs->eps_lock, flags);
1738 epfiles = ffs->epfiles;
1739 ffs->epfiles = NULL;
1740 spin_unlock_irqrestore(&ffs->eps_lock,
1741 flags);
1742
1743 if (epfiles)
1744 ffs_epfiles_destroy(epfiles,
1745 ffs->eps_count);
1746
1747 if (ffs->setup_state == FFS_SETUP_PENDING)
1748 __ffs_ep0_stall(ffs);
1749 } else {
1750 ffs->state = FFS_CLOSING;
1751 ffs_data_reset(ffs);
1752 }
1753 }
1754 if (atomic_read(&ffs->opened) < 0) {
1755 ffs->state = FFS_CLOSING;
1756 ffs_data_reset(ffs);
1757 }
1758
1759 ffs_data_put(ffs);
1760}
1761
1762static struct ffs_data *ffs_data_new(const char *dev_name)
1763{
1764 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1765 if (!ffs)
1766 return NULL;
1767
1768 ENTER();
1769
1770 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1771 if (!ffs->io_completion_wq) {
1772 kfree(ffs);
1773 return NULL;
1774 }
1775
1776 refcount_set(&ffs->ref, 1);
1777 atomic_set(&ffs->opened, 0);
1778 ffs->state = FFS_READ_DESCRIPTORS;
1779 mutex_init(&ffs->mutex);
1780 spin_lock_init(&ffs->eps_lock);
1781 init_waitqueue_head(&ffs->ev.waitq);
1782 init_waitqueue_head(&ffs->wait);
1783 init_completion(&ffs->ep0req_completion);
1784
1785 /* XXX REVISIT need to update it in some places, or do we? */
1786 ffs->ev.can_stall = 1;
1787
1788 return ffs;
1789}
1790
1791static void ffs_data_clear(struct ffs_data *ffs)
1792{
1793 struct ffs_epfile *epfiles;
1794 unsigned long flags;
1795
1796 ENTER();
1797
1798 ffs_closed(ffs);
1799
1800 BUG_ON(ffs->gadget);
1801
1802 spin_lock_irqsave(&ffs->eps_lock, flags);
1803 epfiles = ffs->epfiles;
1804 ffs->epfiles = NULL;
1805 spin_unlock_irqrestore(&ffs->eps_lock, flags);
1806
1807 /*
1808 * potential race possible between ffs_func_eps_disable
1809 * & ffs_epfile_release therefore maintaining a local
1810 * copy of epfile will save us from use-after-free.
1811 */
1812 if (epfiles) {
1813 ffs_epfiles_destroy(epfiles, ffs->eps_count);
1814 ffs->epfiles = NULL;
1815 }
1816
1817 if (ffs->ffs_eventfd) {
1818 eventfd_ctx_put(ffs->ffs_eventfd);
1819 ffs->ffs_eventfd = NULL;
1820 }
1821
1822 kfree(ffs->raw_descs_data);
1823 kfree(ffs->raw_strings);
1824 kfree(ffs->stringtabs);
1825}
1826
1827static void ffs_data_reset(struct ffs_data *ffs)
1828{
1829 ENTER();
1830
1831 ffs_data_clear(ffs);
1832
1833 ffs->raw_descs_data = NULL;
1834 ffs->raw_descs = NULL;
1835 ffs->raw_strings = NULL;
1836 ffs->stringtabs = NULL;
1837
1838 ffs->raw_descs_length = 0;
1839 ffs->fs_descs_count = 0;
1840 ffs->hs_descs_count = 0;
1841 ffs->ss_descs_count = 0;
1842
1843 ffs->strings_count = 0;
1844 ffs->interfaces_count = 0;
1845 ffs->eps_count = 0;
1846
1847 ffs->ev.count = 0;
1848
1849 ffs->state = FFS_READ_DESCRIPTORS;
1850 ffs->setup_state = FFS_NO_SETUP;
1851 ffs->flags = 0;
1852
1853 ffs->ms_os_descs_ext_prop_count = 0;
1854 ffs->ms_os_descs_ext_prop_name_len = 0;
1855 ffs->ms_os_descs_ext_prop_data_len = 0;
1856}
1857
1858
1859static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1860{
1861 struct usb_gadget_strings **lang;
1862 int first_id;
1863
1864 ENTER();
1865
1866 if (WARN_ON(ffs->state != FFS_ACTIVE
1867 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1868 return -EBADFD;
1869
1870 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1871 if (first_id < 0)
1872 return first_id;
1873
1874 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1875 if (!ffs->ep0req)
1876 return -ENOMEM;
1877 ffs->ep0req->complete = ffs_ep0_complete;
1878 ffs->ep0req->context = ffs;
1879
1880 lang = ffs->stringtabs;
1881 if (lang) {
1882 for (; *lang; ++lang) {
1883 struct usb_string *str = (*lang)->strings;
1884 int id = first_id;
1885 for (; str->s; ++id, ++str)
1886 str->id = id;
1887 }
1888 }
1889
1890 ffs->gadget = cdev->gadget;
1891 ffs_data_get(ffs);
1892 return 0;
1893}
1894
1895static void functionfs_unbind(struct ffs_data *ffs)
1896{
1897 ENTER();
1898
1899 if (!WARN_ON(!ffs->gadget)) {
1900 /* dequeue before freeing ep0req */
1901 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1902 mutex_lock(&ffs->mutex);
1903 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1904 ffs->ep0req = NULL;
1905 ffs->gadget = NULL;
1906 clear_bit(FFS_FL_BOUND, &ffs->flags);
1907 mutex_unlock(&ffs->mutex);
1908 ffs_data_put(ffs);
1909 }
1910}
1911
1912static int ffs_epfiles_create(struct ffs_data *ffs)
1913{
1914 struct ffs_epfile *epfile, *epfiles;
1915 unsigned i, count;
1916
1917 ENTER();
1918
1919 count = ffs->eps_count;
1920 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1921 if (!epfiles)
1922 return -ENOMEM;
1923
1924 epfile = epfiles;
1925 for (i = 1; i <= count; ++i, ++epfile) {
1926 epfile->ffs = ffs;
1927 mutex_init(&epfile->mutex);
1928 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1929 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1930 else
1931 sprintf(epfile->name, "ep%u", i);
1932 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1933 epfile,
1934 &ffs_epfile_operations);
1935 if (!epfile->dentry) {
1936 ffs_epfiles_destroy(epfiles, i - 1);
1937 return -ENOMEM;
1938 }
1939 }
1940
1941 ffs->epfiles = epfiles;
1942 return 0;
1943}
1944
1945static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1946{
1947 struct ffs_epfile *epfile = epfiles;
1948
1949 ENTER();
1950
1951 for (; count; --count, ++epfile) {
1952 BUG_ON(mutex_is_locked(&epfile->mutex));
1953 if (epfile->dentry) {
1954 d_delete(epfile->dentry);
1955 dput(epfile->dentry);
1956 epfile->dentry = NULL;
1957 }
1958 }
1959
1960 kfree(epfiles);
1961}
1962
1963static void ffs_func_eps_disable(struct ffs_function *func)
1964{
1965 struct ffs_ep *ep;
1966 struct ffs_epfile *epfile;
1967 unsigned short count;
1968 unsigned long flags;
1969
1970 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1971 count = func->ffs->eps_count;
1972 epfile = func->ffs->epfiles;
1973 ep = func->eps;
1974 while (count--) {
1975 /* pending requests get nuked */
1976 if (ep->ep)
1977 usb_ep_disable(ep->ep);
1978 ++ep;
1979
1980 if (epfile) {
1981 epfile->ep = NULL;
1982 __ffs_epfile_read_buffer_free(epfile);
1983 ++epfile;
1984 }
1985 }
1986 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1987}
1988
1989static int ffs_func_eps_enable(struct ffs_function *func)
1990{
1991 struct ffs_data *ffs;
1992 struct ffs_ep *ep;
1993 struct ffs_epfile *epfile;
1994 unsigned short count;
1995 unsigned long flags;
1996 int ret = 0;
1997
1998 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1999 ffs = func->ffs;
2000 ep = func->eps;
2001 epfile = ffs->epfiles;
2002 count = ffs->eps_count;
2003 while(count--) {
2004 ep->ep->driver_data = ep;
2005
2006 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2007 if (ret) {
2008 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2009 __func__, ep->ep->name, ret);
2010 break;
2011 }
2012
2013 ret = usb_ep_enable(ep->ep);
2014 if (!ret) {
2015 epfile->ep = ep;
2016 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2017 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2018 } else {
2019 break;
2020 }
2021
2022 ++ep;
2023 ++epfile;
2024 }
2025
2026 wake_up_interruptible(&ffs->wait);
2027 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2028
2029 return ret;
2030}
2031
2032
2033/* Parsing and building descriptors and strings *****************************/
2034
2035/*
2036 * This validates if data pointed by data is a valid USB descriptor as
2037 * well as record how many interfaces, endpoints and strings are
2038 * required by given configuration. Returns address after the
2039 * descriptor or NULL if data is invalid.
2040 */
2041
2042enum ffs_entity_type {
2043 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2044};
2045
2046enum ffs_os_desc_type {
2047 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2048};
2049
2050typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2051 u8 *valuep,
2052 struct usb_descriptor_header *desc,
2053 void *priv);
2054
2055typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2056 struct usb_os_desc_header *h, void *data,
2057 unsigned len, void *priv);
2058
2059static int __must_check ffs_do_single_desc(char *data, unsigned len,
2060 ffs_entity_callback entity,
2061 void *priv, int *current_class)
2062{
2063 struct usb_descriptor_header *_ds = (void *)data;
2064 u8 length;
2065 int ret;
2066
2067 ENTER();
2068
2069 /* At least two bytes are required: length and type */
2070 if (len < 2) {
2071 pr_vdebug("descriptor too short\n");
2072 return -EINVAL;
2073 }
2074
2075 /* If we have at least as many bytes as the descriptor takes? */
2076 length = _ds->bLength;
2077 if (len < length) {
2078 pr_vdebug("descriptor longer then available data\n");
2079 return -EINVAL;
2080 }
2081
2082#define __entity_check_INTERFACE(val) 1
2083#define __entity_check_STRING(val) (val)
2084#define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2085#define __entity(type, val) do { \
2086 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2087 if (!__entity_check_ ##type(val)) { \
2088 pr_vdebug("invalid entity's value\n"); \
2089 return -EINVAL; \
2090 } \
2091 ret = entity(FFS_ ##type, &val, _ds, priv); \
2092 if (ret < 0) { \
2093 pr_debug("entity " #type "(%02x); ret = %d\n", \
2094 (val), ret); \
2095 return ret; \
2096 } \
2097 } while (0)
2098
2099 /* Parse descriptor depending on type. */
2100 switch (_ds->bDescriptorType) {
2101 case USB_DT_DEVICE:
2102 case USB_DT_CONFIG:
2103 case USB_DT_STRING:
2104 case USB_DT_DEVICE_QUALIFIER:
2105 /* function can't have any of those */
2106 pr_vdebug("descriptor reserved for gadget: %d\n",
2107 _ds->bDescriptorType);
2108 return -EINVAL;
2109
2110 case USB_DT_INTERFACE: {
2111 struct usb_interface_descriptor *ds = (void *)_ds;
2112 pr_vdebug("interface descriptor\n");
2113 if (length != sizeof *ds)
2114 goto inv_length;
2115
2116 __entity(INTERFACE, ds->bInterfaceNumber);
2117 if (ds->iInterface)
2118 __entity(STRING, ds->iInterface);
2119 *current_class = ds->bInterfaceClass;
2120 }
2121 break;
2122
2123 case USB_DT_ENDPOINT: {
2124 struct usb_endpoint_descriptor *ds = (void *)_ds;
2125 pr_vdebug("endpoint descriptor\n");
2126 if (length != USB_DT_ENDPOINT_SIZE &&
2127 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2128 goto inv_length;
2129 __entity(ENDPOINT, ds->bEndpointAddress);
2130 }
2131 break;
2132
2133 case USB_TYPE_CLASS | 0x01:
2134 if (*current_class == USB_INTERFACE_CLASS_HID) {
2135 pr_vdebug("hid descriptor\n");
2136 if (length != sizeof(struct hid_descriptor))
2137 goto inv_length;
2138 break;
2139 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2140 pr_vdebug("ccid descriptor\n");
2141 if (length != sizeof(struct ccid_descriptor))
2142 goto inv_length;
2143 break;
2144 } else {
2145 pr_vdebug("unknown descriptor: %d for class %d\n",
2146 _ds->bDescriptorType, *current_class);
2147 return -EINVAL;
2148 }
2149
2150 case USB_DT_OTG:
2151 if (length != sizeof(struct usb_otg_descriptor))
2152 goto inv_length;
2153 break;
2154
2155 case USB_DT_INTERFACE_ASSOCIATION: {
2156 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2157 pr_vdebug("interface association descriptor\n");
2158 if (length != sizeof *ds)
2159 goto inv_length;
2160 if (ds->iFunction)
2161 __entity(STRING, ds->iFunction);
2162 }
2163 break;
2164
2165 case USB_DT_SS_ENDPOINT_COMP:
2166 pr_vdebug("EP SS companion descriptor\n");
2167 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2168 goto inv_length;
2169 break;
2170
2171 case USB_DT_OTHER_SPEED_CONFIG:
2172 case USB_DT_INTERFACE_POWER:
2173 case USB_DT_DEBUG:
2174 case USB_DT_SECURITY:
2175 case USB_DT_CS_RADIO_CONTROL:
2176 /* TODO */
2177 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2178 return -EINVAL;
2179
2180 default:
2181 /* We should never be here */
2182 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2183 return -EINVAL;
2184
2185inv_length:
2186 pr_vdebug("invalid length: %d (descriptor %d)\n",
2187 _ds->bLength, _ds->bDescriptorType);
2188 return -EINVAL;
2189 }
2190
2191#undef __entity
2192#undef __entity_check_DESCRIPTOR
2193#undef __entity_check_INTERFACE
2194#undef __entity_check_STRING
2195#undef __entity_check_ENDPOINT
2196
2197 return length;
2198}
2199
2200static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2201 ffs_entity_callback entity, void *priv)
2202{
2203 const unsigned _len = len;
2204 unsigned long num = 0;
2205 int current_class = -1;
2206
2207 ENTER();
2208
2209 for (;;) {
2210 int ret;
2211
2212 if (num == count)
2213 data = NULL;
2214
2215 /* Record "descriptor" entity */
2216 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2217 if (ret < 0) {
2218 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2219 num, ret);
2220 return ret;
2221 }
2222
2223 if (!data)
2224 return _len - len;
2225
2226 ret = ffs_do_single_desc(data, len, entity, priv,
2227 ¤t_class);
2228 if (ret < 0) {
2229 pr_debug("%s returns %d\n", __func__, ret);
2230 return ret;
2231 }
2232
2233 len -= ret;
2234 data += ret;
2235 ++num;
2236 }
2237}
2238
2239static int __ffs_data_do_entity(enum ffs_entity_type type,
2240 u8 *valuep, struct usb_descriptor_header *desc,
2241 void *priv)
2242{
2243 struct ffs_desc_helper *helper = priv;
2244 struct usb_endpoint_descriptor *d;
2245
2246 ENTER();
2247
2248 switch (type) {
2249 case FFS_DESCRIPTOR:
2250 break;
2251
2252 case FFS_INTERFACE:
2253 /*
2254 * Interfaces are indexed from zero so if we
2255 * encountered interface "n" then there are at least
2256 * "n+1" interfaces.
2257 */
2258 if (*valuep >= helper->interfaces_count)
2259 helper->interfaces_count = *valuep + 1;
2260 break;
2261
2262 case FFS_STRING:
2263 /*
2264 * Strings are indexed from 1 (0 is reserved
2265 * for languages list)
2266 */
2267 if (*valuep > helper->ffs->strings_count)
2268 helper->ffs->strings_count = *valuep;
2269 break;
2270
2271 case FFS_ENDPOINT:
2272 d = (void *)desc;
2273 helper->eps_count++;
2274 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2275 return -EINVAL;
2276 /* Check if descriptors for any speed were already parsed */
2277 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2278 helper->ffs->eps_addrmap[helper->eps_count] =
2279 d->bEndpointAddress;
2280 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2281 d->bEndpointAddress)
2282 return -EINVAL;
2283 break;
2284 }
2285
2286 return 0;
2287}
2288
2289static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2290 struct usb_os_desc_header *desc)
2291{
2292 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2293 u16 w_index = le16_to_cpu(desc->wIndex);
2294
2295 if (bcd_version != 1) {
2296 pr_vdebug("unsupported os descriptors version: %d",
2297 bcd_version);
2298 return -EINVAL;
2299 }
2300 switch (w_index) {
2301 case 0x4:
2302 *next_type = FFS_OS_DESC_EXT_COMPAT;
2303 break;
2304 case 0x5:
2305 *next_type = FFS_OS_DESC_EXT_PROP;
2306 break;
2307 default:
2308 pr_vdebug("unsupported os descriptor type: %d", w_index);
2309 return -EINVAL;
2310 }
2311
2312 return sizeof(*desc);
2313}
2314
2315/*
2316 * Process all extended compatibility/extended property descriptors
2317 * of a feature descriptor
2318 */
2319static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2320 enum ffs_os_desc_type type,
2321 u16 feature_count,
2322 ffs_os_desc_callback entity,
2323 void *priv,
2324 struct usb_os_desc_header *h)
2325{
2326 int ret;
2327 const unsigned _len = len;
2328
2329 ENTER();
2330
2331 /* loop over all ext compat/ext prop descriptors */
2332 while (feature_count--) {
2333 ret = entity(type, h, data, len, priv);
2334 if (ret < 0) {
2335 pr_debug("bad OS descriptor, type: %d\n", type);
2336 return ret;
2337 }
2338 data += ret;
2339 len -= ret;
2340 }
2341 return _len - len;
2342}
2343
2344/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2345static int __must_check ffs_do_os_descs(unsigned count,
2346 char *data, unsigned len,
2347 ffs_os_desc_callback entity, void *priv)
2348{
2349 const unsigned _len = len;
2350 unsigned long num = 0;
2351
2352 ENTER();
2353
2354 for (num = 0; num < count; ++num) {
2355 int ret;
2356 enum ffs_os_desc_type type;
2357 u16 feature_count;
2358 struct usb_os_desc_header *desc = (void *)data;
2359
2360 if (len < sizeof(*desc))
2361 return -EINVAL;
2362
2363 /*
2364 * Record "descriptor" entity.
2365 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2366 * Move the data pointer to the beginning of extended
2367 * compatibilities proper or extended properties proper
2368 * portions of the data
2369 */
2370 if (le32_to_cpu(desc->dwLength) > len)
2371 return -EINVAL;
2372
2373 ret = __ffs_do_os_desc_header(&type, desc);
2374 if (ret < 0) {
2375 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2376 num, ret);
2377 return ret;
2378 }
2379 /*
2380 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2381 */
2382 feature_count = le16_to_cpu(desc->wCount);
2383 if (type == FFS_OS_DESC_EXT_COMPAT &&
2384 (feature_count > 255 || desc->Reserved))
2385 return -EINVAL;
2386 len -= ret;
2387 data += ret;
2388
2389 /*
2390 * Process all function/property descriptors
2391 * of this Feature Descriptor
2392 */
2393 ret = ffs_do_single_os_desc(data, len, type,
2394 feature_count, entity, priv, desc);
2395 if (ret < 0) {
2396 pr_debug("%s returns %d\n", __func__, ret);
2397 return ret;
2398 }
2399
2400 len -= ret;
2401 data += ret;
2402 }
2403 return _len - len;
2404}
2405
2406/*
2407 * Validate contents of the buffer from userspace related to OS descriptors.
2408 */
2409static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2410 struct usb_os_desc_header *h, void *data,
2411 unsigned len, void *priv)
2412{
2413 struct ffs_data *ffs = priv;
2414 u8 length;
2415
2416 ENTER();
2417
2418 switch (type) {
2419 case FFS_OS_DESC_EXT_COMPAT: {
2420 struct usb_ext_compat_desc *d = data;
2421 int i;
2422
2423 if (len < sizeof(*d) ||
2424 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2425 return -EINVAL;
2426 if (d->Reserved1 != 1) {
2427 /*
2428 * According to the spec, Reserved1 must be set to 1
2429 * but older kernels incorrectly rejected non-zero
2430 * values. We fix it here to avoid returning EINVAL
2431 * in response to values we used to accept.
2432 */
2433 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2434 d->Reserved1 = 1;
2435 }
2436 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2437 if (d->Reserved2[i])
2438 return -EINVAL;
2439
2440 length = sizeof(struct usb_ext_compat_desc);
2441 }
2442 break;
2443 case FFS_OS_DESC_EXT_PROP: {
2444 struct usb_ext_prop_desc *d = data;
2445 u32 type, pdl;
2446 u16 pnl;
2447
2448 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2449 return -EINVAL;
2450 length = le32_to_cpu(d->dwSize);
2451 if (len < length)
2452 return -EINVAL;
2453 type = le32_to_cpu(d->dwPropertyDataType);
2454 if (type < USB_EXT_PROP_UNICODE ||
2455 type > USB_EXT_PROP_UNICODE_MULTI) {
2456 pr_vdebug("unsupported os descriptor property type: %d",
2457 type);
2458 return -EINVAL;
2459 }
2460 pnl = le16_to_cpu(d->wPropertyNameLength);
2461 if (length < 14 + pnl) {
2462 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2463 length, pnl, type);
2464 return -EINVAL;
2465 }
2466 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2467 if (length != 14 + pnl + pdl) {
2468 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2469 length, pnl, pdl, type);
2470 return -EINVAL;
2471 }
2472 ++ffs->ms_os_descs_ext_prop_count;
2473 /* property name reported to the host as "WCHAR"s */
2474 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2475 ffs->ms_os_descs_ext_prop_data_len += pdl;
2476 }
2477 break;
2478 default:
2479 pr_vdebug("unknown descriptor: %d\n", type);
2480 return -EINVAL;
2481 }
2482 return length;
2483}
2484
2485static int __ffs_data_got_descs(struct ffs_data *ffs,
2486 char *const _data, size_t len)
2487{
2488 char *data = _data, *raw_descs;
2489 unsigned os_descs_count = 0, counts[3], flags;
2490 int ret = -EINVAL, i;
2491 struct ffs_desc_helper helper;
2492
2493 ENTER();
2494
2495 if (get_unaligned_le32(data + 4) != len)
2496 goto error;
2497
2498 switch (get_unaligned_le32(data)) {
2499 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2500 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2501 data += 8;
2502 len -= 8;
2503 break;
2504 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2505 flags = get_unaligned_le32(data + 8);
2506 ffs->user_flags = flags;
2507 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2508 FUNCTIONFS_HAS_HS_DESC |
2509 FUNCTIONFS_HAS_SS_DESC |
2510 FUNCTIONFS_HAS_MS_OS_DESC |
2511 FUNCTIONFS_VIRTUAL_ADDR |
2512 FUNCTIONFS_EVENTFD |
2513 FUNCTIONFS_ALL_CTRL_RECIP |
2514 FUNCTIONFS_CONFIG0_SETUP)) {
2515 ret = -ENOSYS;
2516 goto error;
2517 }
2518 data += 12;
2519 len -= 12;
2520 break;
2521 default:
2522 goto error;
2523 }
2524
2525 if (flags & FUNCTIONFS_EVENTFD) {
2526 if (len < 4)
2527 goto error;
2528 ffs->ffs_eventfd =
2529 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2530 if (IS_ERR(ffs->ffs_eventfd)) {
2531 ret = PTR_ERR(ffs->ffs_eventfd);
2532 ffs->ffs_eventfd = NULL;
2533 goto error;
2534 }
2535 data += 4;
2536 len -= 4;
2537 }
2538
2539 /* Read fs_count, hs_count and ss_count (if present) */
2540 for (i = 0; i < 3; ++i) {
2541 if (!(flags & (1 << i))) {
2542 counts[i] = 0;
2543 } else if (len < 4) {
2544 goto error;
2545 } else {
2546 counts[i] = get_unaligned_le32(data);
2547 data += 4;
2548 len -= 4;
2549 }
2550 }
2551 if (flags & (1 << i)) {
2552 if (len < 4) {
2553 goto error;
2554 }
2555 os_descs_count = get_unaligned_le32(data);
2556 data += 4;
2557 len -= 4;
2558 }
2559
2560 /* Read descriptors */
2561 raw_descs = data;
2562 helper.ffs = ffs;
2563 for (i = 0; i < 3; ++i) {
2564 if (!counts[i])
2565 continue;
2566 helper.interfaces_count = 0;
2567 helper.eps_count = 0;
2568 ret = ffs_do_descs(counts[i], data, len,
2569 __ffs_data_do_entity, &helper);
2570 if (ret < 0)
2571 goto error;
2572 if (!ffs->eps_count && !ffs->interfaces_count) {
2573 ffs->eps_count = helper.eps_count;
2574 ffs->interfaces_count = helper.interfaces_count;
2575 } else {
2576 if (ffs->eps_count != helper.eps_count) {
2577 ret = -EINVAL;
2578 goto error;
2579 }
2580 if (ffs->interfaces_count != helper.interfaces_count) {
2581 ret = -EINVAL;
2582 goto error;
2583 }
2584 }
2585 data += ret;
2586 len -= ret;
2587 }
2588 if (os_descs_count) {
2589 ret = ffs_do_os_descs(os_descs_count, data, len,
2590 __ffs_data_do_os_desc, ffs);
2591 if (ret < 0)
2592 goto error;
2593 data += ret;
2594 len -= ret;
2595 }
2596
2597 if (raw_descs == data || len) {
2598 ret = -EINVAL;
2599 goto error;
2600 }
2601
2602 ffs->raw_descs_data = _data;
2603 ffs->raw_descs = raw_descs;
2604 ffs->raw_descs_length = data - raw_descs;
2605 ffs->fs_descs_count = counts[0];
2606 ffs->hs_descs_count = counts[1];
2607 ffs->ss_descs_count = counts[2];
2608 ffs->ms_os_descs_count = os_descs_count;
2609
2610 return 0;
2611
2612error:
2613 kfree(_data);
2614 return ret;
2615}
2616
2617static int __ffs_data_got_strings(struct ffs_data *ffs,
2618 char *const _data, size_t len)
2619{
2620 u32 str_count, needed_count, lang_count;
2621 struct usb_gadget_strings **stringtabs, *t;
2622 const char *data = _data;
2623 struct usb_string *s;
2624
2625 ENTER();
2626
2627 if (len < 16 ||
2628 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2629 get_unaligned_le32(data + 4) != len)
2630 goto error;
2631 str_count = get_unaligned_le32(data + 8);
2632 lang_count = get_unaligned_le32(data + 12);
2633
2634 /* if one is zero the other must be zero */
2635 if (!str_count != !lang_count)
2636 goto error;
2637
2638 /* Do we have at least as many strings as descriptors need? */
2639 needed_count = ffs->strings_count;
2640 if (str_count < needed_count)
2641 goto error;
2642
2643 /*
2644 * If we don't need any strings just return and free all
2645 * memory.
2646 */
2647 if (!needed_count) {
2648 kfree(_data);
2649 return 0;
2650 }
2651
2652 /* Allocate everything in one chunk so there's less maintenance. */
2653 {
2654 unsigned i = 0;
2655 vla_group(d);
2656 vla_item(d, struct usb_gadget_strings *, stringtabs,
2657 size_add(lang_count, 1));
2658 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2659 vla_item(d, struct usb_string, strings,
2660 size_mul(lang_count, (needed_count + 1)));
2661
2662 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2663
2664 if (!vlabuf) {
2665 kfree(_data);
2666 return -ENOMEM;
2667 }
2668
2669 /* Initialize the VLA pointers */
2670 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2671 t = vla_ptr(vlabuf, d, stringtab);
2672 i = lang_count;
2673 do {
2674 *stringtabs++ = t++;
2675 } while (--i);
2676 *stringtabs = NULL;
2677
2678 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2679 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2680 t = vla_ptr(vlabuf, d, stringtab);
2681 s = vla_ptr(vlabuf, d, strings);
2682 }
2683
2684 /* For each language */
2685 data += 16;
2686 len -= 16;
2687
2688 do { /* lang_count > 0 so we can use do-while */
2689 unsigned needed = needed_count;
2690 u32 str_per_lang = str_count;
2691
2692 if (len < 3)
2693 goto error_free;
2694 t->language = get_unaligned_le16(data);
2695 t->strings = s;
2696 ++t;
2697
2698 data += 2;
2699 len -= 2;
2700
2701 /* For each string */
2702 do { /* str_count > 0 so we can use do-while */
2703 size_t length = strnlen(data, len);
2704
2705 if (length == len)
2706 goto error_free;
2707
2708 /*
2709 * User may provide more strings then we need,
2710 * if that's the case we simply ignore the
2711 * rest
2712 */
2713 if (needed) {
2714 /*
2715 * s->id will be set while adding
2716 * function to configuration so for
2717 * now just leave garbage here.
2718 */
2719 s->s = data;
2720 --needed;
2721 ++s;
2722 }
2723
2724 data += length + 1;
2725 len -= length + 1;
2726 } while (--str_per_lang);
2727
2728 s->id = 0; /* terminator */
2729 s->s = NULL;
2730 ++s;
2731
2732 } while (--lang_count);
2733
2734 /* Some garbage left? */
2735 if (len)
2736 goto error_free;
2737
2738 /* Done! */
2739 ffs->stringtabs = stringtabs;
2740 ffs->raw_strings = _data;
2741
2742 return 0;
2743
2744error_free:
2745 kfree(stringtabs);
2746error:
2747 kfree(_data);
2748 return -EINVAL;
2749}
2750
2751
2752/* Events handling and management *******************************************/
2753
2754static void __ffs_event_add(struct ffs_data *ffs,
2755 enum usb_functionfs_event_type type)
2756{
2757 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2758 int neg = 0;
2759
2760 /*
2761 * Abort any unhandled setup
2762 *
2763 * We do not need to worry about some cmpxchg() changing value
2764 * of ffs->setup_state without holding the lock because when
2765 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2766 * the source does nothing.
2767 */
2768 if (ffs->setup_state == FFS_SETUP_PENDING)
2769 ffs->setup_state = FFS_SETUP_CANCELLED;
2770
2771 /*
2772 * Logic of this function guarantees that there are at most four pending
2773 * evens on ffs->ev.types queue. This is important because the queue
2774 * has space for four elements only and __ffs_ep0_read_events function
2775 * depends on that limit as well. If more event types are added, those
2776 * limits have to be revisited or guaranteed to still hold.
2777 */
2778 switch (type) {
2779 case FUNCTIONFS_RESUME:
2780 rem_type2 = FUNCTIONFS_SUSPEND;
2781 fallthrough;
2782 case FUNCTIONFS_SUSPEND:
2783 case FUNCTIONFS_SETUP:
2784 rem_type1 = type;
2785 /* Discard all similar events */
2786 break;
2787
2788 case FUNCTIONFS_BIND:
2789 case FUNCTIONFS_UNBIND:
2790 case FUNCTIONFS_DISABLE:
2791 case FUNCTIONFS_ENABLE:
2792 /* Discard everything other then power management. */
2793 rem_type1 = FUNCTIONFS_SUSPEND;
2794 rem_type2 = FUNCTIONFS_RESUME;
2795 neg = 1;
2796 break;
2797
2798 default:
2799 WARN(1, "%d: unknown event, this should not happen\n", type);
2800 return;
2801 }
2802
2803 {
2804 u8 *ev = ffs->ev.types, *out = ev;
2805 unsigned n = ffs->ev.count;
2806 for (; n; --n, ++ev)
2807 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2808 *out++ = *ev;
2809 else
2810 pr_vdebug("purging event %d\n", *ev);
2811 ffs->ev.count = out - ffs->ev.types;
2812 }
2813
2814 pr_vdebug("adding event %d\n", type);
2815 ffs->ev.types[ffs->ev.count++] = type;
2816 wake_up_locked(&ffs->ev.waitq);
2817 if (ffs->ffs_eventfd)
2818 eventfd_signal(ffs->ffs_eventfd, 1);
2819}
2820
2821static void ffs_event_add(struct ffs_data *ffs,
2822 enum usb_functionfs_event_type type)
2823{
2824 unsigned long flags;
2825 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2826 __ffs_event_add(ffs, type);
2827 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2828}
2829
2830/* Bind/unbind USB function hooks *******************************************/
2831
2832static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2833{
2834 int i;
2835
2836 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2837 if (ffs->eps_addrmap[i] == endpoint_address)
2838 return i;
2839 return -ENOENT;
2840}
2841
2842static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2843 struct usb_descriptor_header *desc,
2844 void *priv)
2845{
2846 struct usb_endpoint_descriptor *ds = (void *)desc;
2847 struct ffs_function *func = priv;
2848 struct ffs_ep *ffs_ep;
2849 unsigned ep_desc_id;
2850 int idx;
2851 static const char *speed_names[] = { "full", "high", "super" };
2852
2853 if (type != FFS_DESCRIPTOR)
2854 return 0;
2855
2856 /*
2857 * If ss_descriptors is not NULL, we are reading super speed
2858 * descriptors; if hs_descriptors is not NULL, we are reading high
2859 * speed descriptors; otherwise, we are reading full speed
2860 * descriptors.
2861 */
2862 if (func->function.ss_descriptors) {
2863 ep_desc_id = 2;
2864 func->function.ss_descriptors[(long)valuep] = desc;
2865 } else if (func->function.hs_descriptors) {
2866 ep_desc_id = 1;
2867 func->function.hs_descriptors[(long)valuep] = desc;
2868 } else {
2869 ep_desc_id = 0;
2870 func->function.fs_descriptors[(long)valuep] = desc;
2871 }
2872
2873 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2874 return 0;
2875
2876 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2877 if (idx < 0)
2878 return idx;
2879
2880 ffs_ep = func->eps + idx;
2881
2882 if (ffs_ep->descs[ep_desc_id]) {
2883 pr_err("two %sspeed descriptors for EP %d\n",
2884 speed_names[ep_desc_id],
2885 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2886 return -EINVAL;
2887 }
2888 ffs_ep->descs[ep_desc_id] = ds;
2889
2890 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2891 if (ffs_ep->ep) {
2892 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2893 if (!ds->wMaxPacketSize)
2894 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2895 } else {
2896 struct usb_request *req;
2897 struct usb_ep *ep;
2898 u8 bEndpointAddress;
2899 u16 wMaxPacketSize;
2900
2901 /*
2902 * We back up bEndpointAddress because autoconfig overwrites
2903 * it with physical endpoint address.
2904 */
2905 bEndpointAddress = ds->bEndpointAddress;
2906 /*
2907 * We back up wMaxPacketSize because autoconfig treats
2908 * endpoint descriptors as if they were full speed.
2909 */
2910 wMaxPacketSize = ds->wMaxPacketSize;
2911 pr_vdebug("autoconfig\n");
2912 ep = usb_ep_autoconfig(func->gadget, ds);
2913 if (!ep)
2914 return -ENOTSUPP;
2915 ep->driver_data = func->eps + idx;
2916
2917 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2918 if (!req)
2919 return -ENOMEM;
2920
2921 ffs_ep->ep = ep;
2922 ffs_ep->req = req;
2923 func->eps_revmap[ds->bEndpointAddress &
2924 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2925 /*
2926 * If we use virtual address mapping, we restore
2927 * original bEndpointAddress value.
2928 */
2929 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2930 ds->bEndpointAddress = bEndpointAddress;
2931 /*
2932 * Restore wMaxPacketSize which was potentially
2933 * overwritten by autoconfig.
2934 */
2935 ds->wMaxPacketSize = wMaxPacketSize;
2936 }
2937 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2938
2939 return 0;
2940}
2941
2942static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2943 struct usb_descriptor_header *desc,
2944 void *priv)
2945{
2946 struct ffs_function *func = priv;
2947 unsigned idx;
2948 u8 newValue;
2949
2950 switch (type) {
2951 default:
2952 case FFS_DESCRIPTOR:
2953 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2954 return 0;
2955
2956 case FFS_INTERFACE:
2957 idx = *valuep;
2958 if (func->interfaces_nums[idx] < 0) {
2959 int id = usb_interface_id(func->conf, &func->function);
2960 if (id < 0)
2961 return id;
2962 func->interfaces_nums[idx] = id;
2963 }
2964 newValue = func->interfaces_nums[idx];
2965 break;
2966
2967 case FFS_STRING:
2968 /* String' IDs are allocated when fsf_data is bound to cdev */
2969 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2970 break;
2971
2972 case FFS_ENDPOINT:
2973 /*
2974 * USB_DT_ENDPOINT are handled in
2975 * __ffs_func_bind_do_descs().
2976 */
2977 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2978 return 0;
2979
2980 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2981 if (!func->eps[idx].ep)
2982 return -EINVAL;
2983
2984 {
2985 struct usb_endpoint_descriptor **descs;
2986 descs = func->eps[idx].descs;
2987 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2988 }
2989 break;
2990 }
2991
2992 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2993 *valuep = newValue;
2994 return 0;
2995}
2996
2997static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2998 struct usb_os_desc_header *h, void *data,
2999 unsigned len, void *priv)
3000{
3001 struct ffs_function *func = priv;
3002 u8 length = 0;
3003
3004 switch (type) {
3005 case FFS_OS_DESC_EXT_COMPAT: {
3006 struct usb_ext_compat_desc *desc = data;
3007 struct usb_os_desc_table *t;
3008
3009 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3010 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3011 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3012 ARRAY_SIZE(desc->CompatibleID) +
3013 ARRAY_SIZE(desc->SubCompatibleID));
3014 length = sizeof(*desc);
3015 }
3016 break;
3017 case FFS_OS_DESC_EXT_PROP: {
3018 struct usb_ext_prop_desc *desc = data;
3019 struct usb_os_desc_table *t;
3020 struct usb_os_desc_ext_prop *ext_prop;
3021 char *ext_prop_name;
3022 char *ext_prop_data;
3023
3024 t = &func->function.os_desc_table[h->interface];
3025 t->if_id = func->interfaces_nums[h->interface];
3026
3027 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3028 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3029
3030 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3031 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3032 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3033 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3034 length = ext_prop->name_len + ext_prop->data_len + 14;
3035
3036 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3037 func->ffs->ms_os_descs_ext_prop_name_avail +=
3038 ext_prop->name_len;
3039
3040 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3041 func->ffs->ms_os_descs_ext_prop_data_avail +=
3042 ext_prop->data_len;
3043 memcpy(ext_prop_data,
3044 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3045 ext_prop->data_len);
3046 /* unicode data reported to the host as "WCHAR"s */
3047 switch (ext_prop->type) {
3048 case USB_EXT_PROP_UNICODE:
3049 case USB_EXT_PROP_UNICODE_ENV:
3050 case USB_EXT_PROP_UNICODE_LINK:
3051 case USB_EXT_PROP_UNICODE_MULTI:
3052 ext_prop->data_len *= 2;
3053 break;
3054 }
3055 ext_prop->data = ext_prop_data;
3056
3057 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3058 ext_prop->name_len);
3059 /* property name reported to the host as "WCHAR"s */
3060 ext_prop->name_len *= 2;
3061 ext_prop->name = ext_prop_name;
3062
3063 t->os_desc->ext_prop_len +=
3064 ext_prop->name_len + ext_prop->data_len + 14;
3065 ++t->os_desc->ext_prop_count;
3066 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3067 }
3068 break;
3069 default:
3070 pr_vdebug("unknown descriptor: %d\n", type);
3071 }
3072
3073 return length;
3074}
3075
3076static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3077 struct usb_configuration *c)
3078{
3079 struct ffs_function *func = ffs_func_from_usb(f);
3080 struct f_fs_opts *ffs_opts =
3081 container_of(f->fi, struct f_fs_opts, func_inst);
3082 struct ffs_data *ffs_data;
3083 int ret;
3084
3085 ENTER();
3086
3087 /*
3088 * Legacy gadget triggers binding in functionfs_ready_callback,
3089 * which already uses locking; taking the same lock here would
3090 * cause a deadlock.
3091 *
3092 * Configfs-enabled gadgets however do need ffs_dev_lock.
3093 */
3094 if (!ffs_opts->no_configfs)
3095 ffs_dev_lock();
3096 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3097 ffs_data = ffs_opts->dev->ffs_data;
3098 if (!ffs_opts->no_configfs)
3099 ffs_dev_unlock();
3100 if (ret)
3101 return ERR_PTR(ret);
3102
3103 func->ffs = ffs_data;
3104 func->conf = c;
3105 func->gadget = c->cdev->gadget;
3106
3107 /*
3108 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3109 * configurations are bound in sequence with list_for_each_entry,
3110 * in each configuration its functions are bound in sequence
3111 * with list_for_each_entry, so we assume no race condition
3112 * with regard to ffs_opts->bound access
3113 */
3114 if (!ffs_opts->refcnt) {
3115 ret = functionfs_bind(func->ffs, c->cdev);
3116 if (ret)
3117 return ERR_PTR(ret);
3118 }
3119 ffs_opts->refcnt++;
3120 func->function.strings = func->ffs->stringtabs;
3121
3122 return ffs_opts;
3123}
3124
3125static int _ffs_func_bind(struct usb_configuration *c,
3126 struct usb_function *f)
3127{
3128 struct ffs_function *func = ffs_func_from_usb(f);
3129 struct ffs_data *ffs = func->ffs;
3130
3131 const int full = !!func->ffs->fs_descs_count;
3132 const int high = !!func->ffs->hs_descs_count;
3133 const int super = !!func->ffs->ss_descs_count;
3134
3135 int fs_len, hs_len, ss_len, ret, i;
3136 struct ffs_ep *eps_ptr;
3137
3138 /* Make it a single chunk, less management later on */
3139 vla_group(d);
3140 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3141 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3142 full ? ffs->fs_descs_count + 1 : 0);
3143 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3144 high ? ffs->hs_descs_count + 1 : 0);
3145 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3146 super ? ffs->ss_descs_count + 1 : 0);
3147 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3148 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3149 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3150 vla_item_with_sz(d, char[16], ext_compat,
3151 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3152 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3153 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3154 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3155 ffs->ms_os_descs_ext_prop_count);
3156 vla_item_with_sz(d, char, ext_prop_name,
3157 ffs->ms_os_descs_ext_prop_name_len);
3158 vla_item_with_sz(d, char, ext_prop_data,
3159 ffs->ms_os_descs_ext_prop_data_len);
3160 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3161 char *vlabuf;
3162
3163 ENTER();
3164
3165 /* Has descriptors only for speeds gadget does not support */
3166 if (!(full | high | super))
3167 return -ENOTSUPP;
3168
3169 /* Allocate a single chunk, less management later on */
3170 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3171 if (!vlabuf)
3172 return -ENOMEM;
3173
3174 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3175 ffs->ms_os_descs_ext_prop_name_avail =
3176 vla_ptr(vlabuf, d, ext_prop_name);
3177 ffs->ms_os_descs_ext_prop_data_avail =
3178 vla_ptr(vlabuf, d, ext_prop_data);
3179
3180 /* Copy descriptors */
3181 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3182 ffs->raw_descs_length);
3183
3184 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3185 eps_ptr = vla_ptr(vlabuf, d, eps);
3186 for (i = 0; i < ffs->eps_count; i++)
3187 eps_ptr[i].num = -1;
3188
3189 /* Save pointers
3190 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3191 */
3192 func->eps = vla_ptr(vlabuf, d, eps);
3193 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3194
3195 /*
3196 * Go through all the endpoint descriptors and allocate
3197 * endpoints first, so that later we can rewrite the endpoint
3198 * numbers without worrying that it may be described later on.
3199 */
3200 if (full) {
3201 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3202 fs_len = ffs_do_descs(ffs->fs_descs_count,
3203 vla_ptr(vlabuf, d, raw_descs),
3204 d_raw_descs__sz,
3205 __ffs_func_bind_do_descs, func);
3206 if (fs_len < 0) {
3207 ret = fs_len;
3208 goto error;
3209 }
3210 } else {
3211 fs_len = 0;
3212 }
3213
3214 if (high) {
3215 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3216 hs_len = ffs_do_descs(ffs->hs_descs_count,
3217 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3218 d_raw_descs__sz - fs_len,
3219 __ffs_func_bind_do_descs, func);
3220 if (hs_len < 0) {
3221 ret = hs_len;
3222 goto error;
3223 }
3224 } else {
3225 hs_len = 0;
3226 }
3227
3228 if (super) {
3229 func->function.ss_descriptors = func->function.ssp_descriptors =
3230 vla_ptr(vlabuf, d, ss_descs);
3231 ss_len = ffs_do_descs(ffs->ss_descs_count,
3232 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3233 d_raw_descs__sz - fs_len - hs_len,
3234 __ffs_func_bind_do_descs, func);
3235 if (ss_len < 0) {
3236 ret = ss_len;
3237 goto error;
3238 }
3239 } else {
3240 ss_len = 0;
3241 }
3242
3243 /*
3244 * Now handle interface numbers allocation and interface and
3245 * endpoint numbers rewriting. We can do that in one go
3246 * now.
3247 */
3248 ret = ffs_do_descs(ffs->fs_descs_count +
3249 (high ? ffs->hs_descs_count : 0) +
3250 (super ? ffs->ss_descs_count : 0),
3251 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3252 __ffs_func_bind_do_nums, func);
3253 if (ret < 0)
3254 goto error;
3255
3256 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3257 if (c->cdev->use_os_string) {
3258 for (i = 0; i < ffs->interfaces_count; ++i) {
3259 struct usb_os_desc *desc;
3260
3261 desc = func->function.os_desc_table[i].os_desc =
3262 vla_ptr(vlabuf, d, os_desc) +
3263 i * sizeof(struct usb_os_desc);
3264 desc->ext_compat_id =
3265 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3266 INIT_LIST_HEAD(&desc->ext_prop);
3267 }
3268 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3269 vla_ptr(vlabuf, d, raw_descs) +
3270 fs_len + hs_len + ss_len,
3271 d_raw_descs__sz - fs_len - hs_len -
3272 ss_len,
3273 __ffs_func_bind_do_os_desc, func);
3274 if (ret < 0)
3275 goto error;
3276 }
3277 func->function.os_desc_n =
3278 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3279
3280 /* And we're done */
3281 ffs_event_add(ffs, FUNCTIONFS_BIND);
3282 return 0;
3283
3284error:
3285 /* XXX Do we need to release all claimed endpoints here? */
3286 return ret;
3287}
3288
3289static int ffs_func_bind(struct usb_configuration *c,
3290 struct usb_function *f)
3291{
3292 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3293 struct ffs_function *func = ffs_func_from_usb(f);
3294 int ret;
3295
3296 if (IS_ERR(ffs_opts))
3297 return PTR_ERR(ffs_opts);
3298
3299 ret = _ffs_func_bind(c, f);
3300 if (ret && !--ffs_opts->refcnt)
3301 functionfs_unbind(func->ffs);
3302
3303 return ret;
3304}
3305
3306
3307/* Other USB function hooks *************************************************/
3308
3309static void ffs_reset_work(struct work_struct *work)
3310{
3311 struct ffs_data *ffs = container_of(work,
3312 struct ffs_data, reset_work);
3313 ffs_data_reset(ffs);
3314}
3315
3316static int ffs_func_set_alt(struct usb_function *f,
3317 unsigned interface, unsigned alt)
3318{
3319 struct ffs_function *func = ffs_func_from_usb(f);
3320 struct ffs_data *ffs = func->ffs;
3321 int ret = 0, intf;
3322
3323 if (alt != (unsigned)-1) {
3324 intf = ffs_func_revmap_intf(func, interface);
3325 if (intf < 0)
3326 return intf;
3327 }
3328
3329 if (ffs->func)
3330 ffs_func_eps_disable(ffs->func);
3331
3332 if (ffs->state == FFS_DEACTIVATED) {
3333 ffs->state = FFS_CLOSING;
3334 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3335 schedule_work(&ffs->reset_work);
3336 return -ENODEV;
3337 }
3338
3339 if (ffs->state != FFS_ACTIVE)
3340 return -ENODEV;
3341
3342 if (alt == (unsigned)-1) {
3343 ffs->func = NULL;
3344 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3345 return 0;
3346 }
3347
3348 ffs->func = func;
3349 ret = ffs_func_eps_enable(func);
3350 if (ret >= 0)
3351 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3352 return ret;
3353}
3354
3355static void ffs_func_disable(struct usb_function *f)
3356{
3357 ffs_func_set_alt(f, 0, (unsigned)-1);
3358}
3359
3360static int ffs_func_setup(struct usb_function *f,
3361 const struct usb_ctrlrequest *creq)
3362{
3363 struct ffs_function *func = ffs_func_from_usb(f);
3364 struct ffs_data *ffs = func->ffs;
3365 unsigned long flags;
3366 int ret;
3367
3368 ENTER();
3369
3370 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3371 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3372 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3373 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3374 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3375
3376 /*
3377 * Most requests directed to interface go through here
3378 * (notable exceptions are set/get interface) so we need to
3379 * handle them. All other either handled by composite or
3380 * passed to usb_configuration->setup() (if one is set). No
3381 * matter, we will handle requests directed to endpoint here
3382 * as well (as it's straightforward). Other request recipient
3383 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3384 * is being used.
3385 */
3386 if (ffs->state != FFS_ACTIVE)
3387 return -ENODEV;
3388
3389 switch (creq->bRequestType & USB_RECIP_MASK) {
3390 case USB_RECIP_INTERFACE:
3391 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3392 if (ret < 0)
3393 return ret;
3394 break;
3395
3396 case USB_RECIP_ENDPOINT:
3397 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3398 if (ret < 0)
3399 return ret;
3400 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3401 ret = func->ffs->eps_addrmap[ret];
3402 break;
3403
3404 default:
3405 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3406 ret = le16_to_cpu(creq->wIndex);
3407 else
3408 return -EOPNOTSUPP;
3409 }
3410
3411 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3412 ffs->ev.setup = *creq;
3413 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3414 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3415 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3416
3417 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3418}
3419
3420static bool ffs_func_req_match(struct usb_function *f,
3421 const struct usb_ctrlrequest *creq,
3422 bool config0)
3423{
3424 struct ffs_function *func = ffs_func_from_usb(f);
3425
3426 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3427 return false;
3428
3429 switch (creq->bRequestType & USB_RECIP_MASK) {
3430 case USB_RECIP_INTERFACE:
3431 return (ffs_func_revmap_intf(func,
3432 le16_to_cpu(creq->wIndex)) >= 0);
3433 case USB_RECIP_ENDPOINT:
3434 return (ffs_func_revmap_ep(func,
3435 le16_to_cpu(creq->wIndex)) >= 0);
3436 default:
3437 return (bool) (func->ffs->user_flags &
3438 FUNCTIONFS_ALL_CTRL_RECIP);
3439 }
3440}
3441
3442static void ffs_func_suspend(struct usb_function *f)
3443{
3444 ENTER();
3445 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3446}
3447
3448static void ffs_func_resume(struct usb_function *f)
3449{
3450 ENTER();
3451 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3452}
3453
3454
3455/* Endpoint and interface numbers reverse mapping ***************************/
3456
3457static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3458{
3459 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3460 return num ? num : -EDOM;
3461}
3462
3463static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3464{
3465 short *nums = func->interfaces_nums;
3466 unsigned count = func->ffs->interfaces_count;
3467
3468 for (; count; --count, ++nums) {
3469 if (*nums >= 0 && *nums == intf)
3470 return nums - func->interfaces_nums;
3471 }
3472
3473 return -EDOM;
3474}
3475
3476
3477/* Devices management *******************************************************/
3478
3479static LIST_HEAD(ffs_devices);
3480
3481static struct ffs_dev *_ffs_do_find_dev(const char *name)
3482{
3483 struct ffs_dev *dev;
3484
3485 if (!name)
3486 return NULL;
3487
3488 list_for_each_entry(dev, &ffs_devices, entry) {
3489 if (strcmp(dev->name, name) == 0)
3490 return dev;
3491 }
3492
3493 return NULL;
3494}
3495
3496/*
3497 * ffs_lock must be taken by the caller of this function
3498 */
3499static struct ffs_dev *_ffs_get_single_dev(void)
3500{
3501 struct ffs_dev *dev;
3502
3503 if (list_is_singular(&ffs_devices)) {
3504 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3505 if (dev->single)
3506 return dev;
3507 }
3508
3509 return NULL;
3510}
3511
3512/*
3513 * ffs_lock must be taken by the caller of this function
3514 */
3515static struct ffs_dev *_ffs_find_dev(const char *name)
3516{
3517 struct ffs_dev *dev;
3518
3519 dev = _ffs_get_single_dev();
3520 if (dev)
3521 return dev;
3522
3523 return _ffs_do_find_dev(name);
3524}
3525
3526/* Configfs support *********************************************************/
3527
3528static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3529{
3530 return container_of(to_config_group(item), struct f_fs_opts,
3531 func_inst.group);
3532}
3533
3534static void ffs_attr_release(struct config_item *item)
3535{
3536 struct f_fs_opts *opts = to_ffs_opts(item);
3537
3538 usb_put_function_instance(&opts->func_inst);
3539}
3540
3541static struct configfs_item_operations ffs_item_ops = {
3542 .release = ffs_attr_release,
3543};
3544
3545static const struct config_item_type ffs_func_type = {
3546 .ct_item_ops = &ffs_item_ops,
3547 .ct_owner = THIS_MODULE,
3548};
3549
3550
3551/* Function registration interface ******************************************/
3552
3553static void ffs_free_inst(struct usb_function_instance *f)
3554{
3555 struct f_fs_opts *opts;
3556
3557 opts = to_f_fs_opts(f);
3558 ffs_release_dev(opts->dev);
3559 ffs_dev_lock();
3560 _ffs_free_dev(opts->dev);
3561 ffs_dev_unlock();
3562 kfree(opts);
3563}
3564
3565static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3566{
3567 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3568 return -ENAMETOOLONG;
3569 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3570}
3571
3572static struct usb_function_instance *ffs_alloc_inst(void)
3573{
3574 struct f_fs_opts *opts;
3575 struct ffs_dev *dev;
3576
3577 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3578 if (!opts)
3579 return ERR_PTR(-ENOMEM);
3580
3581 opts->func_inst.set_inst_name = ffs_set_inst_name;
3582 opts->func_inst.free_func_inst = ffs_free_inst;
3583 ffs_dev_lock();
3584 dev = _ffs_alloc_dev();
3585 ffs_dev_unlock();
3586 if (IS_ERR(dev)) {
3587 kfree(opts);
3588 return ERR_CAST(dev);
3589 }
3590 opts->dev = dev;
3591 dev->opts = opts;
3592
3593 config_group_init_type_name(&opts->func_inst.group, "",
3594 &ffs_func_type);
3595 return &opts->func_inst;
3596}
3597
3598static void ffs_free(struct usb_function *f)
3599{
3600 kfree(ffs_func_from_usb(f));
3601}
3602
3603static void ffs_func_unbind(struct usb_configuration *c,
3604 struct usb_function *f)
3605{
3606 struct ffs_function *func = ffs_func_from_usb(f);
3607 struct ffs_data *ffs = func->ffs;
3608 struct f_fs_opts *opts =
3609 container_of(f->fi, struct f_fs_opts, func_inst);
3610 struct ffs_ep *ep = func->eps;
3611 unsigned count = ffs->eps_count;
3612 unsigned long flags;
3613
3614 ENTER();
3615 if (ffs->func == func) {
3616 ffs_func_eps_disable(func);
3617 ffs->func = NULL;
3618 }
3619
3620 /* Drain any pending AIO completions */
3621 drain_workqueue(ffs->io_completion_wq);
3622
3623 if (!--opts->refcnt)
3624 functionfs_unbind(ffs);
3625
3626 /* cleanup after autoconfig */
3627 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3628 while (count--) {
3629 if (ep->ep && ep->req)
3630 usb_ep_free_request(ep->ep, ep->req);
3631 ep->req = NULL;
3632 ++ep;
3633 }
3634 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3635 kfree(func->eps);
3636 func->eps = NULL;
3637 /*
3638 * eps, descriptors and interfaces_nums are allocated in the
3639 * same chunk so only one free is required.
3640 */
3641 func->function.fs_descriptors = NULL;
3642 func->function.hs_descriptors = NULL;
3643 func->function.ss_descriptors = NULL;
3644 func->function.ssp_descriptors = NULL;
3645 func->interfaces_nums = NULL;
3646
3647 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3648}
3649
3650static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3651{
3652 struct ffs_function *func;
3653
3654 ENTER();
3655
3656 func = kzalloc(sizeof(*func), GFP_KERNEL);
3657 if (!func)
3658 return ERR_PTR(-ENOMEM);
3659
3660 func->function.name = "Function FS Gadget";
3661
3662 func->function.bind = ffs_func_bind;
3663 func->function.unbind = ffs_func_unbind;
3664 func->function.set_alt = ffs_func_set_alt;
3665 func->function.disable = ffs_func_disable;
3666 func->function.setup = ffs_func_setup;
3667 func->function.req_match = ffs_func_req_match;
3668 func->function.suspend = ffs_func_suspend;
3669 func->function.resume = ffs_func_resume;
3670 func->function.free_func = ffs_free;
3671
3672 return &func->function;
3673}
3674
3675/*
3676 * ffs_lock must be taken by the caller of this function
3677 */
3678static struct ffs_dev *_ffs_alloc_dev(void)
3679{
3680 struct ffs_dev *dev;
3681 int ret;
3682
3683 if (_ffs_get_single_dev())
3684 return ERR_PTR(-EBUSY);
3685
3686 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3687 if (!dev)
3688 return ERR_PTR(-ENOMEM);
3689
3690 if (list_empty(&ffs_devices)) {
3691 ret = functionfs_init();
3692 if (ret) {
3693 kfree(dev);
3694 return ERR_PTR(ret);
3695 }
3696 }
3697
3698 list_add(&dev->entry, &ffs_devices);
3699
3700 return dev;
3701}
3702
3703int ffs_name_dev(struct ffs_dev *dev, const char *name)
3704{
3705 struct ffs_dev *existing;
3706 int ret = 0;
3707
3708 ffs_dev_lock();
3709
3710 existing = _ffs_do_find_dev(name);
3711 if (!existing)
3712 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
3713 else if (existing != dev)
3714 ret = -EBUSY;
3715
3716 ffs_dev_unlock();
3717
3718 return ret;
3719}
3720EXPORT_SYMBOL_GPL(ffs_name_dev);
3721
3722int ffs_single_dev(struct ffs_dev *dev)
3723{
3724 int ret;
3725
3726 ret = 0;
3727 ffs_dev_lock();
3728
3729 if (!list_is_singular(&ffs_devices))
3730 ret = -EBUSY;
3731 else
3732 dev->single = true;
3733
3734 ffs_dev_unlock();
3735 return ret;
3736}
3737EXPORT_SYMBOL_GPL(ffs_single_dev);
3738
3739/*
3740 * ffs_lock must be taken by the caller of this function
3741 */
3742static void _ffs_free_dev(struct ffs_dev *dev)
3743{
3744 list_del(&dev->entry);
3745
3746 kfree(dev);
3747 if (list_empty(&ffs_devices))
3748 functionfs_cleanup();
3749}
3750
3751static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3752{
3753 int ret = 0;
3754 struct ffs_dev *ffs_dev;
3755
3756 ENTER();
3757 ffs_dev_lock();
3758
3759 ffs_dev = _ffs_find_dev(dev_name);
3760 if (!ffs_dev) {
3761 ret = -ENOENT;
3762 } else if (ffs_dev->mounted) {
3763 ret = -EBUSY;
3764 } else if (ffs_dev->ffs_acquire_dev_callback &&
3765 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3766 ret = -ENOENT;
3767 } else {
3768 ffs_dev->mounted = true;
3769 ffs_dev->ffs_data = ffs_data;
3770 ffs_data->private_data = ffs_dev;
3771 }
3772
3773 ffs_dev_unlock();
3774 return ret;
3775}
3776
3777static void ffs_release_dev(struct ffs_dev *ffs_dev)
3778{
3779 ENTER();
3780 ffs_dev_lock();
3781
3782 if (ffs_dev && ffs_dev->mounted) {
3783 ffs_dev->mounted = false;
3784 if (ffs_dev->ffs_data) {
3785 ffs_dev->ffs_data->private_data = NULL;
3786 ffs_dev->ffs_data = NULL;
3787 }
3788
3789 if (ffs_dev->ffs_release_dev_callback)
3790 ffs_dev->ffs_release_dev_callback(ffs_dev);
3791 }
3792
3793 ffs_dev_unlock();
3794}
3795
3796static int ffs_ready(struct ffs_data *ffs)
3797{
3798 struct ffs_dev *ffs_obj;
3799 int ret = 0;
3800
3801 ENTER();
3802 ffs_dev_lock();
3803
3804 ffs_obj = ffs->private_data;
3805 if (!ffs_obj) {
3806 ret = -EINVAL;
3807 goto done;
3808 }
3809 if (WARN_ON(ffs_obj->desc_ready)) {
3810 ret = -EBUSY;
3811 goto done;
3812 }
3813
3814 ffs_obj->desc_ready = true;
3815
3816 if (ffs_obj->ffs_ready_callback) {
3817 ret = ffs_obj->ffs_ready_callback(ffs);
3818 if (ret)
3819 goto done;
3820 }
3821
3822 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3823done:
3824 ffs_dev_unlock();
3825 return ret;
3826}
3827
3828static void ffs_closed(struct ffs_data *ffs)
3829{
3830 struct ffs_dev *ffs_obj;
3831 struct f_fs_opts *opts;
3832 struct config_item *ci;
3833
3834 ENTER();
3835 ffs_dev_lock();
3836
3837 ffs_obj = ffs->private_data;
3838 if (!ffs_obj)
3839 goto done;
3840
3841 ffs_obj->desc_ready = false;
3842
3843 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3844 ffs_obj->ffs_closed_callback)
3845 ffs_obj->ffs_closed_callback(ffs);
3846
3847 if (ffs_obj->opts)
3848 opts = ffs_obj->opts;
3849 else
3850 goto done;
3851
3852 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3853 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3854 goto done;
3855
3856 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3857 ffs_dev_unlock();
3858
3859 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3860 unregister_gadget_item(ci);
3861 return;
3862done:
3863 ffs_dev_unlock();
3864}
3865
3866/* Misc helper functions ****************************************************/
3867
3868static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3869{
3870 return nonblock
3871 ? mutex_trylock(mutex) ? 0 : -EAGAIN
3872 : mutex_lock_interruptible(mutex);
3873}
3874
3875static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3876{
3877 char *data;
3878
3879 if (!len)
3880 return NULL;
3881
3882 data = memdup_user(buf, len);
3883 if (IS_ERR(data))
3884 return data;
3885
3886 pr_vdebug("Buffer from user space:\n");
3887 ffs_dump_mem("", data, len);
3888
3889 return data;
3890}
3891
3892DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3893MODULE_LICENSE("GPL");
3894MODULE_AUTHOR("Michal Nazarewicz");