Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1/*
  2 * Driver for Nvidia TEGRA spi controller.
  3 *
  4 * Copyright (C) 2010 Google, Inc.
  5 *
  6 * Author:
  7 *     Erik Gilling <konkers@android.com>
  8 *
  9 * This software is licensed under the terms of the GNU General Public
 10 * License version 2, as published by the Free Software Foundation, and
 11 * may be copied, distributed, and modified under those terms.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/init.h>
 23#include <linux/err.h>
 24#include <linux/platform_device.h>
 25#include <linux/io.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/dmapool.h>
 28#include <linux/clk.h>
 29#include <linux/interrupt.h>
 30#include <linux/delay.h>
 31
 32#include <linux/spi/spi.h>
 33
 34#include <mach/dma.h>
 35
 36#define SLINK_COMMAND		0x000
 37#define   SLINK_BIT_LENGTH(x)		(((x) & 0x1f) << 0)
 38#define   SLINK_WORD_SIZE(x)		(((x) & 0x1f) << 5)
 39#define   SLINK_BOTH_EN			(1 << 10)
 40#define   SLINK_CS_SW			(1 << 11)
 41#define   SLINK_CS_VALUE		(1 << 12)
 42#define   SLINK_CS_POLARITY		(1 << 13)
 43#define   SLINK_IDLE_SDA_DRIVE_LOW	(0 << 16)
 44#define   SLINK_IDLE_SDA_DRIVE_HIGH	(1 << 16)
 45#define   SLINK_IDLE_SDA_PULL_LOW	(2 << 16)
 46#define   SLINK_IDLE_SDA_PULL_HIGH	(3 << 16)
 47#define   SLINK_IDLE_SDA_MASK		(3 << 16)
 48#define   SLINK_CS_POLARITY1		(1 << 20)
 49#define   SLINK_CK_SDA			(1 << 21)
 50#define   SLINK_CS_POLARITY2		(1 << 22)
 51#define   SLINK_CS_POLARITY3		(1 << 23)
 52#define   SLINK_IDLE_SCLK_DRIVE_LOW	(0 << 24)
 53#define   SLINK_IDLE_SCLK_DRIVE_HIGH	(1 << 24)
 54#define   SLINK_IDLE_SCLK_PULL_LOW	(2 << 24)
 55#define   SLINK_IDLE_SCLK_PULL_HIGH	(3 << 24)
 56#define   SLINK_IDLE_SCLK_MASK		(3 << 24)
 57#define   SLINK_M_S			(1 << 28)
 58#define   SLINK_WAIT			(1 << 29)
 59#define   SLINK_GO			(1 << 30)
 60#define   SLINK_ENB			(1 << 31)
 61
 62#define SLINK_COMMAND2		0x004
 63#define   SLINK_LSBFE			(1 << 0)
 64#define   SLINK_SSOE			(1 << 1)
 65#define   SLINK_SPIE			(1 << 4)
 66#define   SLINK_BIDIROE			(1 << 6)
 67#define   SLINK_MODFEN			(1 << 7)
 68#define   SLINK_INT_SIZE(x)		(((x) & 0x1f) << 8)
 69#define   SLINK_CS_ACTIVE_BETWEEN	(1 << 17)
 70#define   SLINK_SS_EN_CS(x)		(((x) & 0x3) << 18)
 71#define   SLINK_SS_SETUP(x)		(((x) & 0x3) << 20)
 72#define   SLINK_FIFO_REFILLS_0		(0 << 22)
 73#define   SLINK_FIFO_REFILLS_1		(1 << 22)
 74#define   SLINK_FIFO_REFILLS_2		(2 << 22)
 75#define   SLINK_FIFO_REFILLS_3		(3 << 22)
 76#define   SLINK_FIFO_REFILLS_MASK	(3 << 22)
 77#define   SLINK_WAIT_PACK_INT(x)	(((x) & 0x7) << 26)
 78#define   SLINK_SPC0			(1 << 29)
 79#define   SLINK_TXEN			(1 << 30)
 80#define   SLINK_RXEN			(1 << 31)
 81
 82#define SLINK_STATUS		0x008
 83#define   SLINK_COUNT(val)		(((val) >> 0) & 0x1f)
 84#define   SLINK_WORD(val)		(((val) >> 5) & 0x1f)
 85#define   SLINK_BLK_CNT(val)		(((val) >> 0) & 0xffff)
 86#define   SLINK_MODF			(1 << 16)
 87#define   SLINK_RX_UNF			(1 << 18)
 88#define   SLINK_TX_OVF			(1 << 19)
 89#define   SLINK_TX_FULL			(1 << 20)
 90#define   SLINK_TX_EMPTY		(1 << 21)
 91#define   SLINK_RX_FULL			(1 << 22)
 92#define   SLINK_RX_EMPTY		(1 << 23)
 93#define   SLINK_TX_UNF			(1 << 24)
 94#define   SLINK_RX_OVF			(1 << 25)
 95#define   SLINK_TX_FLUSH		(1 << 26)
 96#define   SLINK_RX_FLUSH		(1 << 27)
 97#define   SLINK_SCLK			(1 << 28)
 98#define   SLINK_ERR			(1 << 29)
 99#define   SLINK_RDY			(1 << 30)
100#define   SLINK_BSY			(1 << 31)
101
102#define SLINK_MAS_DATA		0x010
103#define SLINK_SLAVE_DATA	0x014
104
105#define SLINK_DMA_CTL		0x018
106#define   SLINK_DMA_BLOCK_SIZE(x)	(((x) & 0xffff) << 0)
107#define   SLINK_TX_TRIG_1		(0 << 16)
108#define   SLINK_TX_TRIG_4		(1 << 16)
109#define   SLINK_TX_TRIG_8		(2 << 16)
110#define   SLINK_TX_TRIG_16		(3 << 16)
111#define   SLINK_TX_TRIG_MASK		(3 << 16)
112#define   SLINK_RX_TRIG_1		(0 << 18)
113#define   SLINK_RX_TRIG_4		(1 << 18)
114#define   SLINK_RX_TRIG_8		(2 << 18)
115#define   SLINK_RX_TRIG_16		(3 << 18)
116#define   SLINK_RX_TRIG_MASK		(3 << 18)
117#define   SLINK_PACKED			(1 << 20)
118#define   SLINK_PACK_SIZE_4		(0 << 21)
119#define   SLINK_PACK_SIZE_8		(1 << 21)
120#define   SLINK_PACK_SIZE_16		(2 << 21)
121#define   SLINK_PACK_SIZE_32		(3 << 21)
122#define   SLINK_PACK_SIZE_MASK		(3 << 21)
123#define   SLINK_IE_TXC			(1 << 26)
124#define   SLINK_IE_RXC			(1 << 27)
125#define   SLINK_DMA_EN			(1 << 31)
126
127#define SLINK_STATUS2		0x01c
128#define   SLINK_TX_FIFO_EMPTY_COUNT(val)	(((val) & 0x3f) >> 0)
129#define   SLINK_RX_FIFO_FULL_COUNT(val)		(((val) & 0x3f) >> 16)
130
131#define SLINK_TX_FIFO		0x100
132#define SLINK_RX_FIFO		0x180
133
134static const unsigned long spi_tegra_req_sels[] = {
135	TEGRA_DMA_REQ_SEL_SL2B1,
136	TEGRA_DMA_REQ_SEL_SL2B2,
137	TEGRA_DMA_REQ_SEL_SL2B3,
138	TEGRA_DMA_REQ_SEL_SL2B4,
139};
140
141#define BB_LEN			32
142
143struct spi_tegra_data {
144	struct spi_master	*master;
145	struct platform_device	*pdev;
146	spinlock_t		lock;
147
148	struct clk		*clk;
149	void __iomem		*base;
150	unsigned long		phys;
151
152	u32			cur_speed;
153
154	struct list_head	queue;
155	struct spi_transfer	*cur;
156	unsigned		cur_pos;
157	unsigned		cur_len;
158	unsigned		cur_bytes_per_word;
159
160	/* The tegra spi controller has a bug which causes the first word
161	 * in PIO transactions to be garbage.  Since packed DMA transactions
162	 * require transfers to be 4 byte aligned we need a bounce buffer
163	 * for the generic case.
164	 */
165	struct tegra_dma_req	rx_dma_req;
166	struct tegra_dma_channel *rx_dma;
167	u32			*rx_bb;
168	dma_addr_t		rx_bb_phys;
169};
170
171
172static inline unsigned long spi_tegra_readl(struct spi_tegra_data *tspi,
173					    unsigned long reg)
174{
175	return readl(tspi->base + reg);
176}
177
178static inline void spi_tegra_writel(struct spi_tegra_data *tspi,
179				    unsigned long val,
180				    unsigned long reg)
181{
182	writel(val, tspi->base + reg);
183}
184
185static void spi_tegra_go(struct spi_tegra_data *tspi)
186{
187	unsigned long val;
188
189	wmb();
190
191	val = spi_tegra_readl(tspi, SLINK_DMA_CTL);
192	val &= ~SLINK_DMA_BLOCK_SIZE(~0) & ~SLINK_DMA_EN;
193	val |= SLINK_DMA_BLOCK_SIZE(tspi->rx_dma_req.size / 4 - 1);
194	spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
195
196	tegra_dma_enqueue_req(tspi->rx_dma, &tspi->rx_dma_req);
197
198	val |= SLINK_DMA_EN;
199	spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
200}
201
202static unsigned spi_tegra_fill_tx_fifo(struct spi_tegra_data *tspi,
203				  struct spi_transfer *t)
204{
205	unsigned len = min(t->len - tspi->cur_pos, BB_LEN *
206			   tspi->cur_bytes_per_word);
207	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_pos;
208	int i, j;
209	unsigned long val;
210
211	val = spi_tegra_readl(tspi, SLINK_COMMAND);
212	val &= ~SLINK_WORD_SIZE(~0);
213	val |= SLINK_WORD_SIZE(len / tspi->cur_bytes_per_word - 1);
214	spi_tegra_writel(tspi, val, SLINK_COMMAND);
215
216	for (i = 0; i < len; i += tspi->cur_bytes_per_word) {
217		val = 0;
218		for (j = 0; j < tspi->cur_bytes_per_word; j++)
219			val |= tx_buf[i + j] << j * 8;
220
221		spi_tegra_writel(tspi, val, SLINK_TX_FIFO);
222	}
223
224	tspi->rx_dma_req.size = len / tspi->cur_bytes_per_word * 4;
225
226	return len;
227}
228
229static unsigned spi_tegra_drain_rx_fifo(struct spi_tegra_data *tspi,
230				  struct spi_transfer *t)
231{
232	unsigned len = tspi->cur_len;
233	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_pos;
234	int i, j;
235	unsigned long val;
236
237	for (i = 0; i < len; i += tspi->cur_bytes_per_word) {
238		val = tspi->rx_bb[i / tspi->cur_bytes_per_word];
239		for (j = 0; j < tspi->cur_bytes_per_word; j++)
240			rx_buf[i + j] = (val >> (j * 8)) & 0xff;
241	}
242
243	return len;
244}
245
246static void spi_tegra_start_transfer(struct spi_device *spi,
247				    struct spi_transfer *t)
248{
249	struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
250	u32 speed;
251	u8 bits_per_word;
252	unsigned long val;
253
254	speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz;
255	bits_per_word = t->bits_per_word ? t->bits_per_word  :
256		spi->bits_per_word;
257
258	tspi->cur_bytes_per_word = (bits_per_word - 1) / 8 + 1;
259
260	if (speed != tspi->cur_speed)
261		clk_set_rate(tspi->clk, speed);
262
263	if (tspi->cur_speed == 0)
264		clk_enable(tspi->clk);
265
266	tspi->cur_speed = speed;
267
268	val = spi_tegra_readl(tspi, SLINK_COMMAND2);
269	val &= ~SLINK_SS_EN_CS(~0) | SLINK_RXEN | SLINK_TXEN;
270	if (t->rx_buf)
271		val |= SLINK_RXEN;
272	if (t->tx_buf)
273		val |= SLINK_TXEN;
274	val |= SLINK_SS_EN_CS(spi->chip_select);
275	val |= SLINK_SPIE;
276	spi_tegra_writel(tspi, val, SLINK_COMMAND2);
277
278	val = spi_tegra_readl(tspi, SLINK_COMMAND);
279	val &= ~SLINK_BIT_LENGTH(~0);
280	val |= SLINK_BIT_LENGTH(bits_per_word - 1);
281
282	/* FIXME: should probably control CS manually so that we can be sure
283	 * it does not go low between transfer and to support delay_usecs
284	 * correctly.
285	 */
286	val &= ~SLINK_IDLE_SCLK_MASK & ~SLINK_CK_SDA & ~SLINK_CS_SW;
287
288	if (spi->mode & SPI_CPHA)
289		val |= SLINK_CK_SDA;
290
291	if (spi->mode & SPI_CPOL)
292		val |= SLINK_IDLE_SCLK_DRIVE_HIGH;
293	else
294		val |= SLINK_IDLE_SCLK_DRIVE_LOW;
295
296	val |= SLINK_M_S;
297
298	spi_tegra_writel(tspi, val, SLINK_COMMAND);
299
300	spi_tegra_writel(tspi, SLINK_RX_FLUSH | SLINK_TX_FLUSH, SLINK_STATUS);
301
302	tspi->cur = t;
303	tspi->cur_pos = 0;
304	tspi->cur_len = spi_tegra_fill_tx_fifo(tspi, t);
305
306	spi_tegra_go(tspi);
307}
308
309static void spi_tegra_start_message(struct spi_device *spi,
310				    struct spi_message *m)
311{
312	struct spi_transfer *t;
313
314	m->actual_length = 0;
315	m->status = 0;
316
317	t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list);
318	spi_tegra_start_transfer(spi, t);
319}
320
321static void tegra_spi_rx_dma_complete(struct tegra_dma_req *req)
322{
323	struct spi_tegra_data *tspi = req->dev;
324	unsigned long flags;
325	struct spi_message *m;
326	struct spi_device *spi;
327	int timeout = 0;
328	unsigned long val;
329
330	/* the SPI controller may come back with both the BSY and RDY bits
331	 * set.  In this case we need to wait for the BSY bit to clear so
332	 * that we are sure the DMA is finished.  1000 reads was empirically
333	 * determined to be long enough.
334	 */
335	while (timeout++ < 1000) {
336		if (!(spi_tegra_readl(tspi, SLINK_STATUS) & SLINK_BSY))
337			break;
338	}
339
340	spin_lock_irqsave(&tspi->lock, flags);
341
342	val = spi_tegra_readl(tspi, SLINK_STATUS);
343	val |= SLINK_RDY;
344	spi_tegra_writel(tspi, val, SLINK_STATUS);
345
346	m = list_first_entry(&tspi->queue, struct spi_message, queue);
347
348	if (timeout >= 1000)
349		m->status = -EIO;
350
351	spi = m->state;
352
353	tspi->cur_pos += spi_tegra_drain_rx_fifo(tspi, tspi->cur);
354	m->actual_length += tspi->cur_pos;
355
356	if (tspi->cur_pos < tspi->cur->len) {
357		tspi->cur_len = spi_tegra_fill_tx_fifo(tspi, tspi->cur);
358		spi_tegra_go(tspi);
359	} else if (!list_is_last(&tspi->cur->transfer_list,
360				 &m->transfers)) {
361		tspi->cur =  list_first_entry(&tspi->cur->transfer_list,
362					      struct spi_transfer,
363					      transfer_list);
364		spi_tegra_start_transfer(spi, tspi->cur);
365	} else {
366		list_del(&m->queue);
367
368		m->complete(m->context);
369
370		if (!list_empty(&tspi->queue)) {
371			m = list_first_entry(&tspi->queue, struct spi_message,
372					     queue);
373			spi = m->state;
374			spi_tegra_start_message(spi, m);
375		} else {
376			clk_disable(tspi->clk);
377			tspi->cur_speed = 0;
378		}
379	}
380
381	spin_unlock_irqrestore(&tspi->lock, flags);
382}
383
384static int spi_tegra_setup(struct spi_device *spi)
385{
386	struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
387	unsigned long cs_bit;
388	unsigned long val;
389	unsigned long flags;
390
391	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
392		spi->bits_per_word,
393		spi->mode & SPI_CPOL ? "" : "~",
394		spi->mode & SPI_CPHA ? "" : "~",
395		spi->max_speed_hz);
396
397
398	switch (spi->chip_select) {
399	case 0:
400		cs_bit = SLINK_CS_POLARITY;
401		break;
402
403	case 1:
404		cs_bit = SLINK_CS_POLARITY1;
405		break;
406
407	case 2:
408		cs_bit = SLINK_CS_POLARITY2;
409		break;
410
411	case 4:
412		cs_bit = SLINK_CS_POLARITY3;
413		break;
414
415	default:
416		return -EINVAL;
417	}
418
419	spin_lock_irqsave(&tspi->lock, flags);
420
421	val = spi_tegra_readl(tspi, SLINK_COMMAND);
422	if (spi->mode & SPI_CS_HIGH)
423		val |= cs_bit;
424	else
425		val &= ~cs_bit;
426	spi_tegra_writel(tspi, val, SLINK_COMMAND);
427
428	spin_unlock_irqrestore(&tspi->lock, flags);
429
430	return 0;
431}
432
433static int spi_tegra_transfer(struct spi_device *spi, struct spi_message *m)
434{
435	struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
436	struct spi_transfer *t;
437	unsigned long flags;
438	int was_empty;
439
440	if (list_empty(&m->transfers) || !m->complete)
441		return -EINVAL;
442
443	list_for_each_entry(t, &m->transfers, transfer_list) {
444		if (t->bits_per_word < 0 || t->bits_per_word > 32)
445			return -EINVAL;
446
447		if (t->len == 0)
448			return -EINVAL;
449
450		if (!t->rx_buf && !t->tx_buf)
451			return -EINVAL;
452	}
453
454	m->state = spi;
455
456	spin_lock_irqsave(&tspi->lock, flags);
457	was_empty = list_empty(&tspi->queue);
458	list_add_tail(&m->queue, &tspi->queue);
459
460	if (was_empty)
461		spi_tegra_start_message(spi, m);
462
463	spin_unlock_irqrestore(&tspi->lock, flags);
464
465	return 0;
466}
467
468static int __devinit spi_tegra_probe(struct platform_device *pdev)
469{
470	struct spi_master	*master;
471	struct spi_tegra_data	*tspi;
472	struct resource		*r;
473	int ret;
474
475	master = spi_alloc_master(&pdev->dev, sizeof *tspi);
476	if (master == NULL) {
477		dev_err(&pdev->dev, "master allocation failed\n");
478		return -ENOMEM;
479	}
480
481	/* the spi->mode bits understood by this driver: */
482	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
483
484	master->bus_num = pdev->id;
485
486	master->setup = spi_tegra_setup;
487	master->transfer = spi_tegra_transfer;
488	master->num_chipselect = 4;
489
490	dev_set_drvdata(&pdev->dev, master);
491	tspi = spi_master_get_devdata(master);
492	tspi->master = master;
493	tspi->pdev = pdev;
494	spin_lock_init(&tspi->lock);
495
496	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
497	if (r == NULL) {
498		ret = -ENODEV;
499		goto err0;
500	}
501
502	if (!request_mem_region(r->start, resource_size(r),
503				dev_name(&pdev->dev))) {
504		ret = -EBUSY;
505		goto err0;
506	}
507
508	tspi->phys = r->start;
509	tspi->base = ioremap(r->start, resource_size(r));
510	if (!tspi->base) {
511		dev_err(&pdev->dev, "can't ioremap iomem\n");
512		ret = -ENOMEM;
513		goto err1;
514	}
515
516	tspi->clk = clk_get(&pdev->dev, NULL);
517	if (IS_ERR(tspi->clk)) {
518		dev_err(&pdev->dev, "can not get clock\n");
519		ret = PTR_ERR(tspi->clk);
520		goto err2;
521	}
522
523	INIT_LIST_HEAD(&tspi->queue);
524
525	tspi->rx_dma = tegra_dma_allocate_channel(TEGRA_DMA_MODE_ONESHOT);
526	if (!tspi->rx_dma) {
527		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
528		ret = -ENODEV;
529		goto err3;
530	}
531
532	tspi->rx_bb = dma_alloc_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
533					 &tspi->rx_bb_phys, GFP_KERNEL);
534	if (!tspi->rx_bb) {
535		dev_err(&pdev->dev, "can not allocate rx bounce buffer\n");
536		ret = -ENOMEM;
537		goto err4;
538	}
539
540	tspi->rx_dma_req.complete = tegra_spi_rx_dma_complete;
541	tspi->rx_dma_req.to_memory = 1;
542	tspi->rx_dma_req.dest_addr = tspi->rx_bb_phys;
543	tspi->rx_dma_req.dest_bus_width = 32;
544	tspi->rx_dma_req.source_addr = tspi->phys + SLINK_RX_FIFO;
545	tspi->rx_dma_req.source_bus_width = 32;
546	tspi->rx_dma_req.source_wrap = 4;
547	tspi->rx_dma_req.req_sel = spi_tegra_req_sels[pdev->id];
548	tspi->rx_dma_req.dev = tspi;
549
550	master->dev.of_node = pdev->dev.of_node;
551	ret = spi_register_master(master);
552
553	if (ret < 0)
554		goto err5;
555
556	return ret;
557
558err5:
559	dma_free_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
560			  tspi->rx_bb, tspi->rx_bb_phys);
561err4:
562	tegra_dma_free_channel(tspi->rx_dma);
563err3:
564	clk_put(tspi->clk);
565err2:
566	iounmap(tspi->base);
567err1:
568	release_mem_region(r->start, resource_size(r));
569err0:
570	spi_master_put(master);
571	return ret;
572}
573
574static int __devexit spi_tegra_remove(struct platform_device *pdev)
575{
576	struct spi_master	*master;
577	struct spi_tegra_data	*tspi;
578	struct resource		*r;
579
580	master = dev_get_drvdata(&pdev->dev);
581	tspi = spi_master_get_devdata(master);
582
583	spi_unregister_master(master);
584	tegra_dma_free_channel(tspi->rx_dma);
585
586	dma_free_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
587			  tspi->rx_bb, tspi->rx_bb_phys);
588
589	clk_put(tspi->clk);
590	iounmap(tspi->base);
591
592	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
593	release_mem_region(r->start, resource_size(r));
594
595	return 0;
596}
597
598MODULE_ALIAS("platform:spi_tegra");
599
600#ifdef CONFIG_OF
601static struct of_device_id spi_tegra_of_match_table[] __devinitdata = {
602	{ .compatible = "nvidia,tegra20-spi", },
603	{}
604};
605MODULE_DEVICE_TABLE(of, spi_tegra_of_match_table);
606#else /* CONFIG_OF */
607#define spi_tegra_of_match_table NULL
608#endif /* CONFIG_OF */
609
610static struct platform_driver spi_tegra_driver = {
611	.driver = {
612		.name =		"spi_tegra",
613		.owner =	THIS_MODULE,
614		.of_match_table = spi_tegra_of_match_table,
615	},
616	.probe =	spi_tegra_probe,
617	.remove =	__devexit_p(spi_tegra_remove),
618};
619module_platform_driver(spi_tegra_driver);
620
621MODULE_LICENSE("GPL");