Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * polling/bitbanging SPI master controller driver utilities
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
 
  6#include <linux/spinlock.h>
  7#include <linux/workqueue.h>
  8#include <linux/interrupt.h>
  9#include <linux/module.h>
 10#include <linux/delay.h>
 11#include <linux/errno.h>
 12#include <linux/platform_device.h>
 13#include <linux/slab.h>
 14
 15#include <linux/spi/spi.h>
 16#include <linux/spi/spi_bitbang.h>
 17
 18#define SPI_BITBANG_CS_DELAY	100
 19
 20
 21/*----------------------------------------------------------------------*/
 22
 23/*
 24 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 25 * Use this for GPIO or shift-register level hardware APIs.
 26 *
 27 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 28 * to glue code.  These bitbang setup() and cleanup() routines are always
 29 * used, though maybe they're called from controller-aware code.
 30 *
 31 * chipselect() and friends may use spi_device->controller_data and
 32 * controller registers as appropriate.
 33 *
 34 *
 35 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 36 * which means you could use a bitbang driver either to get hardware
 37 * working quickly, or testing for differences that aren't speed related.
 38 */
 39
 40struct spi_bitbang_cs {
 41	unsigned	nsecs;	/* (clock cycle time)/2 */
 42	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 43					u32 word, u8 bits, unsigned flags);
 44	unsigned	(*txrx_bufs)(struct spi_device *,
 45					u32 (*txrx_word)(
 46						struct spi_device *spi,
 47						unsigned nsecs,
 48						u32 word, u8 bits,
 49						unsigned flags),
 50					unsigned, struct spi_transfer *,
 51					unsigned);
 52};
 53
 54static unsigned bitbang_txrx_8(
 55	struct spi_device	*spi,
 56	u32			(*txrx_word)(struct spi_device *spi,
 57					unsigned nsecs,
 58					u32 word, u8 bits,
 59					unsigned flags),
 60	unsigned		ns,
 61	struct spi_transfer	*t,
 62	unsigned flags
 63)
 64{
 65	unsigned		bits = t->bits_per_word;
 66	unsigned		count = t->len;
 67	const u8		*tx = t->tx_buf;
 68	u8			*rx = t->rx_buf;
 69
 70	while (likely(count > 0)) {
 71		u8		word = 0;
 72
 73		if (tx)
 74			word = *tx++;
 75		word = txrx_word(spi, ns, word, bits, flags);
 76		if (rx)
 77			*rx++ = word;
 78		count -= 1;
 79	}
 80	return t->len - count;
 81}
 82
 83static unsigned bitbang_txrx_16(
 84	struct spi_device	*spi,
 85	u32			(*txrx_word)(struct spi_device *spi,
 86					unsigned nsecs,
 87					u32 word, u8 bits,
 88					unsigned flags),
 89	unsigned		ns,
 90	struct spi_transfer	*t,
 91	unsigned flags
 92)
 93{
 94	unsigned		bits = t->bits_per_word;
 95	unsigned		count = t->len;
 96	const u16		*tx = t->tx_buf;
 97	u16			*rx = t->rx_buf;
 98
 99	while (likely(count > 1)) {
100		u16		word = 0;
101
102		if (tx)
103			word = *tx++;
104		word = txrx_word(spi, ns, word, bits, flags);
105		if (rx)
106			*rx++ = word;
107		count -= 2;
108	}
109	return t->len - count;
110}
111
112static unsigned bitbang_txrx_32(
113	struct spi_device	*spi,
114	u32			(*txrx_word)(struct spi_device *spi,
115					unsigned nsecs,
116					u32 word, u8 bits,
117					unsigned flags),
118	unsigned		ns,
119	struct spi_transfer	*t,
120	unsigned flags
121)
122{
123	unsigned		bits = t->bits_per_word;
124	unsigned		count = t->len;
125	const u32		*tx = t->tx_buf;
126	u32			*rx = t->rx_buf;
127
128	while (likely(count > 3)) {
129		u32		word = 0;
130
131		if (tx)
132			word = *tx++;
133		word = txrx_word(spi, ns, word, bits, flags);
134		if (rx)
135			*rx++ = word;
136		count -= 4;
137	}
138	return t->len - count;
139}
140
141int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142{
143	struct spi_bitbang_cs	*cs = spi->controller_state;
144	u8			bits_per_word;
145	u32			hz;
146
147	if (t) {
148		bits_per_word = t->bits_per_word;
149		hz = t->speed_hz;
150	} else {
151		bits_per_word = 0;
152		hz = 0;
153	}
154
155	/* spi_transfer level calls that work per-word */
156	if (!bits_per_word)
157		bits_per_word = spi->bits_per_word;
158	if (bits_per_word <= 8)
159		cs->txrx_bufs = bitbang_txrx_8;
160	else if (bits_per_word <= 16)
161		cs->txrx_bufs = bitbang_txrx_16;
162	else if (bits_per_word <= 32)
163		cs->txrx_bufs = bitbang_txrx_32;
164	else
165		return -EINVAL;
166
167	/* nsecs = (clock period)/2 */
168	if (!hz)
169		hz = spi->max_speed_hz;
170	if (hz) {
171		cs->nsecs = (1000000000/2) / hz;
172		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173			return -EINVAL;
174	}
175
176	return 0;
177}
178EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179
180/*
181 * spi_bitbang_setup - default setup for per-word I/O loops
182 */
183int spi_bitbang_setup(struct spi_device *spi)
184{
185	struct spi_bitbang_cs	*cs = spi->controller_state;
186	struct spi_bitbang	*bitbang;
187	bool			initial_setup = false;
188	int			retval;
 
189
190	bitbang = spi_master_get_devdata(spi->master);
191
192	if (!cs) {
193		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
194		if (!cs)
195			return -ENOMEM;
196		spi->controller_state = cs;
197		initial_setup = true;
198	}
199
200	/* per-word shift register access, in hardware or bitbanging */
201	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202	if (!cs->txrx_word) {
203		retval = -EINVAL;
204		goto err_free;
205	}
206
207	if (bitbang->setup_transfer) {
208		retval = bitbang->setup_transfer(spi, NULL);
209		if (retval < 0)
210			goto err_free;
211	}
212
213	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
214
215	return 0;
 
 
 
 
 
 
 
 
 
 
 
216
217err_free:
218	if (initial_setup)
219		kfree(cs);
220	return retval;
221}
222EXPORT_SYMBOL_GPL(spi_bitbang_setup);
223
224/*
225 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
226 */
227void spi_bitbang_cleanup(struct spi_device *spi)
228{
229	kfree(spi->controller_state);
230}
231EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
232
233static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
234{
235	struct spi_bitbang_cs	*cs = spi->controller_state;
236	unsigned		nsecs = cs->nsecs;
237	struct spi_bitbang	*bitbang;
238
239	bitbang = spi_master_get_devdata(spi->master);
240	if (bitbang->set_line_direction) {
241		int err;
242
243		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
244		if (err < 0)
245			return err;
246	}
247
248	if (spi->mode & SPI_3WIRE) {
249		unsigned flags;
250
251		flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
252		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
253	}
254	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
255}
256
257/*----------------------------------------------------------------------*/
258
259/*
260 * SECOND PART ... simple transfer queue runner.
261 *
262 * This costs a task context per controller, running the queue by
263 * performing each transfer in sequence.  Smarter hardware can queue
264 * several DMA transfers at once, and process several controller queues
265 * in parallel; this driver doesn't match such hardware very well.
266 *
267 * Drivers can provide word-at-a-time i/o primitives, or provide
268 * transfer-at-a-time ones to leverage dma or fifo hardware.
269 */
270
271static int spi_bitbang_prepare_hardware(struct spi_master *spi)
272{
273	struct spi_bitbang	*bitbang;
 
 
274
275	bitbang = spi_master_get_devdata(spi);
276
277	mutex_lock(&bitbang->lock);
278	bitbang->busy = 1;
279	mutex_unlock(&bitbang->lock);
280
281	return 0;
282}
283
284static int spi_bitbang_transfer_one(struct spi_master *master,
285				    struct spi_device *spi,
286				    struct spi_transfer *transfer)
287{
288	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
289	int status = 0;
290
291	if (bitbang->setup_transfer) {
292		status = bitbang->setup_transfer(spi, transfer);
293		if (status < 0)
294			goto out;
295	}
296
297	if (transfer->len)
298		status = bitbang->txrx_bufs(spi, transfer);
299
300	if (status == transfer->len)
 
 
301		status = 0;
302	else if (status >= 0)
303		status = -EREMOTEIO;
304
305out:
306	spi_finalize_current_transfer(master);
307
308	return status;
309}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310
311static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
312{
313	struct spi_bitbang	*bitbang;
314
315	bitbang = spi_master_get_devdata(spi);
 
 
 
 
 
 
 
 
316
317	mutex_lock(&bitbang->lock);
 
318	bitbang->busy = 0;
319	mutex_unlock(&bitbang->lock);
320
321	return 0;
322}
323
324static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
325{
326	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
327
328	/* SPI core provides CS high / low, but bitbang driver
329	 * expects CS active
330	 * spi device driver takes care of handling SPI_CS_HIGH
331	 */
332	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
333
334	ndelay(SPI_BITBANG_CS_DELAY);
335	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
336			    BITBANG_CS_INACTIVE);
337	ndelay(SPI_BITBANG_CS_DELAY);
338}
339
340/*----------------------------------------------------------------------*/
341
342int spi_bitbang_init(struct spi_bitbang *bitbang)
343{
344	struct spi_master *master = bitbang->master;
345	bool custom_cs;
346
347	if (!master)
348		return -EINVAL;
349	/*
350	 * We only need the chipselect callback if we are actually using it.
351	 * If we just use GPIO descriptors, it is surplus. If the
352	 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
353	 * driver-specific chipselect routine.
354	 */
355	custom_cs = (!master->use_gpio_descriptors ||
356		     (master->flags & SPI_MASTER_GPIO_SS));
357
358	if (custom_cs && !bitbang->chipselect)
359		return -EINVAL;
360
361	mutex_init(&bitbang->lock);
362
363	if (!master->mode_bits)
364		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
365
366	if (master->transfer || master->transfer_one_message)
367		return -EINVAL;
368
369	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
370	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
371	master->transfer_one = spi_bitbang_transfer_one;
372	/*
373	 * When using GPIO descriptors, the ->set_cs() callback doesn't even
374	 * get called unless SPI_MASTER_GPIO_SS is set.
375	 */
376	if (custom_cs)
377		master->set_cs = spi_bitbang_set_cs;
378
379	if (!bitbang->txrx_bufs) {
380		bitbang->use_dma = 0;
381		bitbang->txrx_bufs = spi_bitbang_bufs;
382		if (!master->setup) {
383			if (!bitbang->setup_transfer)
384				bitbang->setup_transfer =
385					 spi_bitbang_setup_transfer;
386			master->setup = spi_bitbang_setup;
387			master->cleanup = spi_bitbang_cleanup;
388		}
389	}
 
390
391	return 0;
392}
393EXPORT_SYMBOL_GPL(spi_bitbang_init);
 
 
394
395/**
396 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
397 * @bitbang: driver handle
398 *
399 * Caller should have zero-initialized all parts of the structure, and then
400 * provided callbacks for chip selection and I/O loops.  If the master has
401 * a transfer method, its final step should call spi_bitbang_transfer; or,
402 * that's the default if the transfer routine is not initialized.  It should
403 * also set up the bus number and number of chipselects.
404 *
405 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
406 * hardware that basically exposes a shift register) or per-spi_transfer
407 * (which takes better advantage of hardware like fifos or DMA engines).
408 *
409 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
410 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
411 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
412 * routine isn't initialized.
413 *
414 * This routine registers the spi_master, which will process requests in a
415 * dedicated task, keeping IRQs unblocked most of the time.  To stop
416 * processing those requests, call spi_bitbang_stop().
417 *
418 * On success, this routine will take a reference to master. The caller is
419 * responsible for calling spi_bitbang_stop() to decrement the reference and
420 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
421 * leak.
422 */
423int spi_bitbang_start(struct spi_bitbang *bitbang)
424{
425	struct spi_master *master = bitbang->master;
426	int ret;
427
428	ret = spi_bitbang_init(bitbang);
429	if (ret)
430		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
432	/* driver may get busy before register() returns, especially
433	 * if someone registered boardinfo for devices
434	 */
435	ret = spi_register_master(spi_master_get(master));
436	if (ret)
437		spi_master_put(master);
438
439	return ret;
 
 
 
 
 
440}
441EXPORT_SYMBOL_GPL(spi_bitbang_start);
442
443/*
444 * spi_bitbang_stop - stops the task providing spi communication
445 */
446void spi_bitbang_stop(struct spi_bitbang *bitbang)
447{
448	spi_unregister_master(bitbang->master);
 
 
 
 
 
 
449}
450EXPORT_SYMBOL_GPL(spi_bitbang_stop);
451
452MODULE_LICENSE("GPL");
453
v3.5.6
 
  1/*
  2 * polling/bitbanging SPI master controller driver utilities
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/spinlock.h>
 21#include <linux/workqueue.h>
 22#include <linux/interrupt.h>
 23#include <linux/module.h>
 24#include <linux/delay.h>
 25#include <linux/errno.h>
 26#include <linux/platform_device.h>
 27#include <linux/slab.h>
 28
 29#include <linux/spi/spi.h>
 30#include <linux/spi/spi_bitbang.h>
 31
 
 
 32
 33/*----------------------------------------------------------------------*/
 34
 35/*
 36 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 37 * Use this for GPIO or shift-register level hardware APIs.
 38 *
 39 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 40 * to glue code.  These bitbang setup() and cleanup() routines are always
 41 * used, though maybe they're called from controller-aware code.
 42 *
 43 * chipselect() and friends may use use spi_device->controller_data and
 44 * controller registers as appropriate.
 45 *
 46 *
 47 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 48 * which means you could use a bitbang driver either to get hardware
 49 * working quickly, or testing for differences that aren't speed related.
 50 */
 51
 52struct spi_bitbang_cs {
 53	unsigned	nsecs;	/* (clock cycle time)/2 */
 54	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 55					u32 word, u8 bits);
 56	unsigned	(*txrx_bufs)(struct spi_device *,
 57					u32 (*txrx_word)(
 58						struct spi_device *spi,
 59						unsigned nsecs,
 60						u32 word, u8 bits),
 61					unsigned, struct spi_transfer *);
 
 
 62};
 63
 64static unsigned bitbang_txrx_8(
 65	struct spi_device	*spi,
 66	u32			(*txrx_word)(struct spi_device *spi,
 67					unsigned nsecs,
 68					u32 word, u8 bits),
 
 69	unsigned		ns,
 70	struct spi_transfer	*t
 71) {
 72	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 
 
 73	unsigned		count = t->len;
 74	const u8		*tx = t->tx_buf;
 75	u8			*rx = t->rx_buf;
 76
 77	while (likely(count > 0)) {
 78		u8		word = 0;
 79
 80		if (tx)
 81			word = *tx++;
 82		word = txrx_word(spi, ns, word, bits);
 83		if (rx)
 84			*rx++ = word;
 85		count -= 1;
 86	}
 87	return t->len - count;
 88}
 89
 90static unsigned bitbang_txrx_16(
 91	struct spi_device	*spi,
 92	u32			(*txrx_word)(struct spi_device *spi,
 93					unsigned nsecs,
 94					u32 word, u8 bits),
 
 95	unsigned		ns,
 96	struct spi_transfer	*t
 97) {
 98	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 
 
 99	unsigned		count = t->len;
100	const u16		*tx = t->tx_buf;
101	u16			*rx = t->rx_buf;
102
103	while (likely(count > 1)) {
104		u16		word = 0;
105
106		if (tx)
107			word = *tx++;
108		word = txrx_word(spi, ns, word, bits);
109		if (rx)
110			*rx++ = word;
111		count -= 2;
112	}
113	return t->len - count;
114}
115
116static unsigned bitbang_txrx_32(
117	struct spi_device	*spi,
118	u32			(*txrx_word)(struct spi_device *spi,
119					unsigned nsecs,
120					u32 word, u8 bits),
 
121	unsigned		ns,
122	struct spi_transfer	*t
123) {
124	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 
 
125	unsigned		count = t->len;
126	const u32		*tx = t->tx_buf;
127	u32			*rx = t->rx_buf;
128
129	while (likely(count > 3)) {
130		u32		word = 0;
131
132		if (tx)
133			word = *tx++;
134		word = txrx_word(spi, ns, word, bits);
135		if (rx)
136			*rx++ = word;
137		count -= 4;
138	}
139	return t->len - count;
140}
141
142int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
143{
144	struct spi_bitbang_cs	*cs = spi->controller_state;
145	u8			bits_per_word;
146	u32			hz;
147
148	if (t) {
149		bits_per_word = t->bits_per_word;
150		hz = t->speed_hz;
151	} else {
152		bits_per_word = 0;
153		hz = 0;
154	}
155
156	/* spi_transfer level calls that work per-word */
157	if (!bits_per_word)
158		bits_per_word = spi->bits_per_word;
159	if (bits_per_word <= 8)
160		cs->txrx_bufs = bitbang_txrx_8;
161	else if (bits_per_word <= 16)
162		cs->txrx_bufs = bitbang_txrx_16;
163	else if (bits_per_word <= 32)
164		cs->txrx_bufs = bitbang_txrx_32;
165	else
166		return -EINVAL;
167
168	/* nsecs = (clock period)/2 */
169	if (!hz)
170		hz = spi->max_speed_hz;
171	if (hz) {
172		cs->nsecs = (1000000000/2) / hz;
173		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
174			return -EINVAL;
175	}
176
177	return 0;
178}
179EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
180
181/**
182 * spi_bitbang_setup - default setup for per-word I/O loops
183 */
184int spi_bitbang_setup(struct spi_device *spi)
185{
186	struct spi_bitbang_cs	*cs = spi->controller_state;
187	struct spi_bitbang	*bitbang;
 
188	int			retval;
189	unsigned long		flags;
190
191	bitbang = spi_master_get_devdata(spi->master);
192
193	if (!cs) {
194		cs = kzalloc(sizeof *cs, GFP_KERNEL);
195		if (!cs)
196			return -ENOMEM;
197		spi->controller_state = cs;
 
198	}
199
200	/* per-word shift register access, in hardware or bitbanging */
201	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202	if (!cs->txrx_word)
203		return -EINVAL;
 
 
204
205	retval = bitbang->setup_transfer(spi, NULL);
206	if (retval < 0)
207		return retval;
 
 
208
209	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
210
211	/* NOTE we _need_ to call chipselect() early, ideally with adapter
212	 * setup, unless the hardware defaults cooperate to avoid confusion
213	 * between normal (active low) and inverted chipselects.
214	 */
215
216	/* deselect chip (low or high) */
217	spin_lock_irqsave(&bitbang->lock, flags);
218	if (!bitbang->busy) {
219		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
220		ndelay(cs->nsecs);
221	}
222	spin_unlock_irqrestore(&bitbang->lock, flags);
223
224	return 0;
 
 
 
225}
226EXPORT_SYMBOL_GPL(spi_bitbang_setup);
227
228/**
229 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
230 */
231void spi_bitbang_cleanup(struct spi_device *spi)
232{
233	kfree(spi->controller_state);
234}
235EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
236
237static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
238{
239	struct spi_bitbang_cs	*cs = spi->controller_state;
240	unsigned		nsecs = cs->nsecs;
 
 
 
 
 
241
242	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
 
 
 
 
 
 
 
 
 
 
 
243}
244
245/*----------------------------------------------------------------------*/
246
247/*
248 * SECOND PART ... simple transfer queue runner.
249 *
250 * This costs a task context per controller, running the queue by
251 * performing each transfer in sequence.  Smarter hardware can queue
252 * several DMA transfers at once, and process several controller queues
253 * in parallel; this driver doesn't match such hardware very well.
254 *
255 * Drivers can provide word-at-a-time i/o primitives, or provide
256 * transfer-at-a-time ones to leverage dma or fifo hardware.
257 */
258static void bitbang_work(struct work_struct *work)
 
259{
260	struct spi_bitbang	*bitbang =
261		container_of(work, struct spi_bitbang, work);
262	unsigned long		flags;
263
264	spin_lock_irqsave(&bitbang->lock, flags);
 
 
265	bitbang->busy = 1;
266	while (!list_empty(&bitbang->queue)) {
267		struct spi_message	*m;
268		struct spi_device	*spi;
269		unsigned		nsecs;
270		struct spi_transfer	*t = NULL;
271		unsigned		tmp;
272		unsigned		cs_change;
273		int			status;
274		int			do_setup = -1;
275
276		m = container_of(bitbang->queue.next, struct spi_message,
277				queue);
278		list_del_init(&m->queue);
279		spin_unlock_irqrestore(&bitbang->lock, flags);
280
281		/* FIXME this is made-up ... the correct value is known to
282		 * word-at-a-time bitbang code, and presumably chipselect()
283		 * should enforce these requirements too?
284		 */
285		nsecs = 100;
286
287		spi = m->spi;
288		tmp = 0;
289		cs_change = 1;
290		status = 0;
 
 
291
292		list_for_each_entry (t, &m->transfers, transfer_list) {
 
293
294			/* override speed or wordsize? */
295			if (t->speed_hz || t->bits_per_word)
296				do_setup = 1;
297
298			/* init (-1) or override (1) transfer params */
299			if (do_setup != 0) {
300				status = bitbang->setup_transfer(spi, t);
301				if (status < 0)
302					break;
303				if (do_setup == -1)
304					do_setup = 0;
305			}
306
307			/* set up default clock polarity, and activate chip;
308			 * this implicitly updates clock and spi modes as
309			 * previously recorded for this device via setup().
310			 * (and also deselects any other chip that might be
311			 * selected ...)
312			 */
313			if (cs_change) {
314				bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
315				ndelay(nsecs);
316			}
317			cs_change = t->cs_change;
318			if (!t->tx_buf && !t->rx_buf && t->len) {
319				status = -EINVAL;
320				break;
321			}
322
323			/* transfer data.  the lower level code handles any
324			 * new dma mappings it needs. our caller always gave
325			 * us dma-safe buffers.
326			 */
327			if (t->len) {
328				/* REVISIT dma API still needs a designated
329				 * DMA_ADDR_INVALID; ~0 might be better.
330				 */
331				if (!m->is_dma_mapped)
332					t->rx_dma = t->tx_dma = 0;
333				status = bitbang->txrx_bufs(spi, t);
334			}
335			if (status > 0)
336				m->actual_length += status;
337			if (status != t->len) {
338				/* always report some kind of error */
339				if (status >= 0)
340					status = -EREMOTEIO;
341				break;
342			}
343			status = 0;
344
345			/* protocol tweaks before next transfer */
346			if (t->delay_usecs)
347				udelay(t->delay_usecs);
348
349			if (!cs_change)
350				continue;
351			if (t->transfer_list.next == &m->transfers)
352				break;
353
354			/* sometimes a short mid-message deselect of the chip
355			 * may be needed to terminate a mode or command
356			 */
357			ndelay(nsecs);
358			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
359			ndelay(nsecs);
360		}
361
362		m->status = status;
363		m->complete(m->context);
 
364
365		/* normally deactivate chipselect ... unless no error and
366		 * cs_change has hinted that the next message will probably
367		 * be for this chip too.
368		 */
369		if (!(status == 0 && cs_change)) {
370			ndelay(nsecs);
371			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
372			ndelay(nsecs);
373		}
374
375		spin_lock_irqsave(&bitbang->lock, flags);
376	}
377	bitbang->busy = 0;
378	spin_unlock_irqrestore(&bitbang->lock, flags);
 
 
379}
380
381/**
382 * spi_bitbang_transfer - default submit to transfer queue
383 */
384int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385{
386	struct spi_bitbang	*bitbang;
387	unsigned long		flags;
388	int			status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389
390	m->actual_length = 0;
391	m->status = -EINPROGRESS;
392
393	bitbang = spi_master_get_devdata(spi->master);
 
 
 
 
 
 
 
 
394
395	spin_lock_irqsave(&bitbang->lock, flags);
396	if (!spi->max_speed_hz)
397		status = -ENETDOWN;
398	else {
399		list_add_tail(&m->queue, &bitbang->queue);
400		queue_work(bitbang->workqueue, &bitbang->work);
 
 
 
 
401	}
402	spin_unlock_irqrestore(&bitbang->lock, flags);
403
404	return status;
405}
406EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
407
408/*----------------------------------------------------------------------*/
409
410/**
411 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
412 * @bitbang: driver handle
413 *
414 * Caller should have zero-initialized all parts of the structure, and then
415 * provided callbacks for chip selection and I/O loops.  If the master has
416 * a transfer method, its final step should call spi_bitbang_transfer; or,
417 * that's the default if the transfer routine is not initialized.  It should
418 * also set up the bus number and number of chipselects.
419 *
420 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
421 * hardware that basically exposes a shift register) or per-spi_transfer
422 * (which takes better advantage of hardware like fifos or DMA engines).
423 *
424 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
425 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
426 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
427 * routine isn't initialized.
428 *
429 * This routine registers the spi_master, which will process requests in a
430 * dedicated task, keeping IRQs unblocked most of the time.  To stop
431 * processing those requests, call spi_bitbang_stop().
 
 
 
 
 
432 */
433int spi_bitbang_start(struct spi_bitbang *bitbang)
434{
435	int	status;
 
436
437	if (!bitbang->master || !bitbang->chipselect)
438		return -EINVAL;
439
440	INIT_WORK(&bitbang->work, bitbang_work);
441	spin_lock_init(&bitbang->lock);
442	INIT_LIST_HEAD(&bitbang->queue);
443
444	if (!bitbang->master->mode_bits)
445		bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
446
447	if (!bitbang->master->transfer)
448		bitbang->master->transfer = spi_bitbang_transfer;
449	if (!bitbang->txrx_bufs) {
450		bitbang->use_dma = 0;
451		bitbang->txrx_bufs = spi_bitbang_bufs;
452		if (!bitbang->master->setup) {
453			if (!bitbang->setup_transfer)
454				bitbang->setup_transfer =
455					 spi_bitbang_setup_transfer;
456			bitbang->master->setup = spi_bitbang_setup;
457			bitbang->master->cleanup = spi_bitbang_cleanup;
458		}
459	} else if (!bitbang->master->setup)
460		return -EINVAL;
461	if (bitbang->master->transfer == spi_bitbang_transfer &&
462			!bitbang->setup_transfer)
463		return -EINVAL;
464
465	/* this task is the only thing to touch the SPI bits */
466	bitbang->busy = 0;
467	bitbang->workqueue = create_singlethread_workqueue(
468			dev_name(bitbang->master->dev.parent));
469	if (bitbang->workqueue == NULL) {
470		status = -EBUSY;
471		goto err1;
472	}
473
474	/* driver may get busy before register() returns, especially
475	 * if someone registered boardinfo for devices
476	 */
477	status = spi_register_master(bitbang->master);
478	if (status < 0)
479		goto err2;
480
481	return status;
482
483err2:
484	destroy_workqueue(bitbang->workqueue);
485err1:
486	return status;
487}
488EXPORT_SYMBOL_GPL(spi_bitbang_start);
489
490/**
491 * spi_bitbang_stop - stops the task providing spi communication
492 */
493int spi_bitbang_stop(struct spi_bitbang *bitbang)
494{
495	spi_unregister_master(bitbang->master);
496
497	WARN_ON(!list_empty(&bitbang->queue));
498
499	destroy_workqueue(bitbang->workqueue);
500
501	return 0;
502}
503EXPORT_SYMBOL_GPL(spi_bitbang_stop);
504
505MODULE_LICENSE("GPL");
506