Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Driver for the Intel SCU IPC mechanism
  4 *
  5 * (C) Copyright 2008-2010,2015 Intel Corporation
  6 * Author: Sreedhara DS (sreedhara.ds@intel.com)
  7 *
 
 
 
 
 
  8 * SCU running in ARC processor communicates with other entity running in IA
  9 * core through IPC mechanism which in turn messaging between IA core ad SCU.
 10 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
 11 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
 12 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
 13 * along with other APIs.
 14 */
 15
 16#include <linux/delay.h>
 17#include <linux/device.h>
 18#include <linux/errno.h>
 19#include <linux/init.h>
 
 
 
 20#include <linux/interrupt.h>
 21#include <linux/io.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24
 25#include <asm/intel_scu_ipc.h>
 26
 27/* IPC defines the following message types */
 28#define IPCMSG_PCNTRL         0xff /* Power controller unit read/write */
 
 
 
 
 29
 30/* Command id associated with message IPCMSG_PCNTRL */
 31#define IPC_CMD_PCNTRL_W      0 /* Register write */
 32#define IPC_CMD_PCNTRL_R      1 /* Register read */
 33#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
 34
 35/*
 36 * IPC register summary
 37 *
 38 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
 39 * To read or write information to the SCU, driver writes to IPC-1 memory
 40 * mapped registers. The following is the IPC mechanism
 
 41 *
 42 * 1. IA core cDMI interface claims this transaction and converts it to a
 43 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
 44 *
 45 * 2. South Complex cDMI block receives this message and writes it to
 46 *    the IPC-1 register block, causing an interrupt to the SCU
 47 *
 48 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
 49 *    message handler is called within firmware.
 50 */
 51
 
 
 52#define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
 53#define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
 54#define IPC_IOC	          0x100		/* IPC command register IOC bit */
 
 
 
 
 55
 56struct intel_scu_ipc_dev {
 57	struct device dev;
 58	struct resource mem;
 59	struct module *owner;
 60	int irq;
 61	void __iomem *ipc_base;
 62	struct completion cmd_complete;
 63};
 64
 65#define IPC_STATUS		0x04
 66#define IPC_STATUS_IRQ		BIT(2)
 67#define IPC_STATUS_ERR		BIT(1)
 68#define IPC_STATUS_BUSY		BIT(0)
 69
 70/*
 71 * IPC Write/Read Buffers:
 72 * 16 byte buffer for sending and receiving data to and from SCU.
 
 73 */
 74#define IPC_WRITE_BUFFER	0x80
 75#define IPC_READ_BUFFER		0x90
 76
 77/* Timeout in jiffies */
 78#define IPC_TIMEOUT		(10 * HZ)
 79
 80static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */
 81static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
 82
 83static struct class intel_scu_ipc_class = {
 84	.name = "intel_scu_ipc",
 85	.owner = THIS_MODULE,
 86};
 87
 88/**
 89 * intel_scu_ipc_dev_get() - Get SCU IPC instance
 90 *
 91 * The recommended new API takes SCU IPC instance as parameter and this
 92 * function can be called by driver to get the instance. This also makes
 93 * sure the driver providing the IPC functionality cannot be unloaded
 94 * while the caller has the instance.
 95 *
 96 * Call intel_scu_ipc_dev_put() to release the instance.
 97 *
 98 * Returns %NULL if SCU IPC is not currently available.
 99 */
100struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void)
101{
102	struct intel_scu_ipc_dev *scu = NULL;
103
104	mutex_lock(&ipclock);
105	if (ipcdev) {
106		get_device(&ipcdev->dev);
107		/*
108		 * Prevent the IPC provider from being unloaded while it
109		 * is being used.
110		 */
111		if (!try_module_get(ipcdev->owner))
112			put_device(&ipcdev->dev);
113		else
114			scu = ipcdev;
115	}
116
117	mutex_unlock(&ipclock);
118	return scu;
119}
120EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get);
121
122/**
123 * intel_scu_ipc_dev_put() - Put SCU IPC instance
124 * @scu: SCU IPC instance
125 *
126 * This function releases the SCU IPC instance retrieved from
127 * intel_scu_ipc_dev_get() and allows the driver providing IPC to be
128 * unloaded.
129 */
130void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu)
131{
132	if (scu) {
133		module_put(scu->owner);
134		put_device(&scu->dev);
135	}
136}
137EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put);
138
139struct intel_scu_ipc_devres {
140	struct intel_scu_ipc_dev *scu;
141};
142
143static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res)
144{
145	struct intel_scu_ipc_devres *dr = res;
146	struct intel_scu_ipc_dev *scu = dr->scu;
147
148	intel_scu_ipc_dev_put(scu);
149}
150
151/**
152 * devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device
153 * @dev: Device requesting the SCU IPC device
154 *
155 * The recommended new API takes SCU IPC instance as parameter and this
156 * function can be called by driver to get the instance. This also makes
157 * sure the driver providing the IPC functionality cannot be unloaded
158 * while the caller has the instance.
159 *
160 * Returns %NULL if SCU IPC is not currently available.
161 */
162struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev)
163{
164	struct intel_scu_ipc_devres *dr;
165	struct intel_scu_ipc_dev *scu;
166
167	dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL);
168	if (!dr)
169		return NULL;
170
171	scu = intel_scu_ipc_dev_get();
172	if (!scu) {
173		devres_free(dr);
174		return NULL;
175	}
176
177	dr->scu = scu;
178	devres_add(dev, dr);
179
180	return scu;
181}
182EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get);
183
184/*
185 * Send ipc command
186 * Command Register (Write Only):
187 * A write to this register results in an interrupt to the SCU core processor
188 * Format:
189 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
190 */
191static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
192{
193	reinit_completion(&scu->cmd_complete);
194	writel(cmd | IPC_IOC, scu->ipc_base);
195}
196
197/*
198 * Write ipc data
199 * IPC Write Buffer (Write Only):
200 * 16-byte buffer for sending data associated with IPC command to
201 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
202 */
203static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
204{
205	writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
206}
207
208/*
209 * Status Register (Read Only):
210 * Driver will read this register to get the ready/busy status of the IPC
211 * block and error status of the IPC command that was just processed by SCU
212 * Format:
213 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
214 */
215static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
216{
217	return __raw_readl(scu->ipc_base + IPC_STATUS);
218}
219
220/* Read ipc byte data */
221static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
222{
223	return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
224}
225
226/* Read ipc u32 data */
227static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
228{
229	return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
230}
231
232/* Wait till scu status is busy */
233static inline int busy_loop(struct intel_scu_ipc_dev *scu)
234{
235	unsigned long end = jiffies + IPC_TIMEOUT;
236
237	do {
238		u32 status;
239
240		status = ipc_read_status(scu);
241		if (!(status & IPC_STATUS_BUSY))
242			return (status & IPC_STATUS_ERR) ? -EIO : 0;
243
244		usleep_range(50, 100);
245	} while (time_before(jiffies, end));
246
247	return -ETIMEDOUT;
248}
249
250/* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
251static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
252{
253	int status;
254
255	if (!wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT))
256		return -ETIMEDOUT;
257
258	status = ipc_read_status(scu);
259	if (status & IPC_STATUS_ERR)
 
 
 
 
 
 
 
 
 
 
260		return -EIO;
261
262	return 0;
263}
264
265static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
266{
267	return scu->irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
268}
269
270/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
271static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
272			u32 count, u32 op, u32 id)
273{
274	int nc;
275	u32 offset = 0;
276	int err;
277	u8 cbuf[IPC_WWBUF_SIZE];
278	u32 *wbuf = (u32 *)&cbuf;
279
 
 
280	memset(cbuf, 0, sizeof(cbuf));
281
282	mutex_lock(&ipclock);
283	if (!scu)
284		scu = ipcdev;
285	if (!scu) {
286		mutex_unlock(&ipclock);
287		return -ENODEV;
288	}
289
290	for (nc = 0; nc < count; nc++, offset += 2) {
291		cbuf[offset] = addr[nc];
292		cbuf[offset + 1] = addr[nc] >> 8;
293	}
294
295	if (id == IPC_CMD_PCNTRL_R) {
296		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
297			ipc_data_writel(scu, wbuf[nc], offset);
298		ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
299	} else if (id == IPC_CMD_PCNTRL_W) {
300		for (nc = 0; nc < count; nc++, offset += 1)
301			cbuf[offset] = data[nc];
302		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
303			ipc_data_writel(scu, wbuf[nc], offset);
304		ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
305	} else if (id == IPC_CMD_PCNTRL_M) {
306		cbuf[offset] = data[0];
307		cbuf[offset + 1] = data[1];
308		ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
309		ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
310	}
311
312	err = intel_scu_ipc_check_status(scu);
313	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
314		/* Workaround: values are read as 0 without memcpy_fromio */
315		memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
316		for (nc = 0; nc < count; nc++)
317			data[nc] = ipc_data_readb(scu, nc);
318	}
319	mutex_unlock(&ipclock);
320	return err;
321}
322
323/**
324 * intel_scu_ipc_dev_ioread8() - Read a byte via the SCU
325 * @scu: Optional SCU IPC instance
326 * @addr: Register on SCU
327 * @data: Return pointer for read byte
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328 *
329 * Read a single register. Returns %0 on success or an error code. All
330 * locking between SCU accesses is handled for the caller.
331 *
332 * This function may sleep.
333 */
334int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data)
335{
336	return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 
337}
338EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8);
339
340/**
341 * intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU
342 * @scu: Optional SCU IPC instance
343 * @addr: Register on SCU
344 * @data: Byte to write
345 *
346 * Write a single register. Returns %0 on success or an error code. All
347 * locking between SCU accesses is handled for the caller.
348 *
349 * This function may sleep.
350 */
351int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data)
352{
353	return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 
354}
355EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8);
356
357/**
358 * intel_scu_ipc_dev_readv() - Read a set of registers
359 * @scu: Optional SCU IPC instance
360 * @addr: Register list
361 * @data: Bytes to return
362 * @len: Length of array
363 *
364 * Read registers. Returns %0 on success or an error code. All locking
365 * between SCU accesses is handled for the caller.
366 *
367 * The largest array length permitted by the hardware is 5 items.
368 *
369 * This function may sleep.
370 */
371int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
372			    size_t len)
373{
374	return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
375}
376EXPORT_SYMBOL(intel_scu_ipc_dev_readv);
377
378/**
379 * intel_scu_ipc_dev_writev() - Write a set of registers
380 * @scu: Optional SCU IPC instance
381 * @addr: Register list
382 * @data: Bytes to write
383 * @len: Length of array
384 *
385 * Write registers. Returns %0 on success or an error code. All locking
386 * between SCU accesses is handled for the caller.
387 *
388 * The largest array length permitted by the hardware is 5 items.
 
 
389 *
390 * This function may sleep.
391 */
392int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
393			     size_t len)
394{
395	return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
396}
397EXPORT_SYMBOL(intel_scu_ipc_dev_writev);
 
398
399/**
400 * intel_scu_ipc_dev_update() - Update a register
401 * @scu: Optional SCU IPC instance
402 * @addr: Register address
403 * @data: Bits to update
404 * @mask: Mask of bits to update
405 *
406 * Read-modify-write power control unit register. The first data argument
407 * must be register value and second is mask value mask is a bitmap that
408 * indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
409 * modify this bit. returns %0 on success or an error code.
 
410 *
411 * This function may sleep. Locking between SCU accesses is handled
412 * for the caller.
413 */
414int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data,
415			     u8 mask)
416{
417	u8 tmp[2] = { data, mask };
418	return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
419}
420EXPORT_SYMBOL(intel_scu_ipc_dev_update);
421
422/**
423 * intel_scu_ipc_dev_simple_command() - Send a simple command
424 * @scu: Optional SCU IPC instance
425 * @cmd: Command
426 * @sub: Sub type
427 *
428 * Issue a simple command to the SCU. Do not use this interface if you must
429 * then access data as any data values may be overwritten by another SCU
430 * access by the time this function returns.
431 *
432 * This function may sleep. Locking for SCU accesses is handled for the
433 * caller.
434 */
435int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd,
436				     int sub)
437{
438	u32 cmdval;
439	int err;
440
441	mutex_lock(&ipclock);
442	if (!scu)
443		scu = ipcdev;
444	if (!scu) {
445		mutex_unlock(&ipclock);
446		return -ENODEV;
447	}
448	scu = ipcdev;
449	cmdval = sub << 12 | cmd;
450	ipc_command(scu, cmdval);
451	err = intel_scu_ipc_check_status(scu);
452	mutex_unlock(&ipclock);
453	if (err)
454		dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
455	return err;
456}
457EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command);
458
459/**
460 * intel_scu_ipc_dev_command_with_size() - Command with data
461 * @scu: Optional SCU IPC instance
462 * @cmd: Command
463 * @sub: Sub type
464 * @in: Input data
465 * @inlen: Input length in bytes
466 * @size: Input size written to the IPC command register in whatever
467 *	  units (dword, byte) the particular firmware requires. Normally
468 *	  should be the same as @inlen.
469 * @out: Output data
470 * @outlen: Output length in bytes
471 *
472 * Issue a command to the SCU which involves data transfers. Do the
473 * data copies under the lock but leave it for the caller to interpret.
474 */
475int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd,
476					int sub, const void *in, size_t inlen,
477					size_t size, void *out, size_t outlen)
478{
479	size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32));
480	size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32));
481	u32 cmdval, inbuf[4] = {};
482	int i, err;
483
484	if (inbuflen > 4 || outbuflen > 4)
485		return -EINVAL;
 
 
486
487	mutex_lock(&ipclock);
488	if (!scu)
489		scu = ipcdev;
490	if (!scu) {
491		mutex_unlock(&ipclock);
492		return -ENODEV;
493	}
494
495	memcpy(inbuf, in, inlen);
496	for (i = 0; i < inbuflen; i++)
497		ipc_data_writel(scu, inbuf[i], 4 * i);
 
 
 
 
 
498
499	cmdval = (size << 16) | (sub << 12) | cmd;
500	ipc_command(scu, cmdval);
501	err = intel_scu_ipc_check_status(scu);
 
502
503	if (!err) {
504		u32 outbuf[4] = {};
 
505
506		for (i = 0; i < outbuflen; i++)
507			outbuf[i] = ipc_data_readl(scu, 4 * i);
 
 
 
 
 
 
 
 
 
 
 
 
 
508
509		memcpy(out, outbuf, outlen);
 
 
 
510	}
 
 
 
 
 
 
 
 
 
 
 
 
 
511
 
 
 
512	mutex_unlock(&ipclock);
513	if (err)
514		dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
515	return err;
516}
517EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size);
518
519/*
520 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
521 * When ioc bit is set to 1, caller api must wait for interrupt handler called
522 * which in turn unlocks the caller api. Currently this is not used
523 *
524 * This is edge triggered so we need take no action to clear anything
525 */
526static irqreturn_t ioc(int irq, void *dev_id)
527{
528	struct intel_scu_ipc_dev *scu = dev_id;
529	int status = ipc_read_status(scu);
530
531	writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
532	complete(&scu->cmd_complete);
533
534	return IRQ_HANDLED;
535}
536
537static void intel_scu_ipc_release(struct device *dev)
538{
539	struct intel_scu_ipc_dev *scu;
540
541	scu = container_of(dev, struct intel_scu_ipc_dev, dev);
542	if (scu->irq > 0)
543		free_irq(scu->irq, scu);
544	iounmap(scu->ipc_base);
545	release_mem_region(scu->mem.start, resource_size(&scu->mem));
546	kfree(scu);
547}
548
549/**
550 * __intel_scu_ipc_register() - Register SCU IPC device
551 * @parent: Parent device
552 * @scu_data: Data used to configure SCU IPC
553 * @owner: Module registering the SCU IPC device
554 *
555 * Call this function to register SCU IPC mechanism under @parent.
556 * Returns pointer to the new SCU IPC device or ERR_PTR() in case of
557 * failure. The caller may use the returned instance if it needs to do
558 * SCU IPC calls itself.
559 */
560struct intel_scu_ipc_dev *
561__intel_scu_ipc_register(struct device *parent,
562			 const struct intel_scu_ipc_data *scu_data,
563			 struct module *owner)
564{
565	int err;
566	struct intel_scu_ipc_dev *scu;
567	void __iomem *ipc_base;
568
569	mutex_lock(&ipclock);
570	/* We support only one IPC */
571	if (ipcdev) {
572		err = -EBUSY;
573		goto err_unlock;
574	}
575
576	scu = kzalloc(sizeof(*scu), GFP_KERNEL);
577	if (!scu) {
578		err = -ENOMEM;
579		goto err_unlock;
580	}
581
582	scu->owner = owner;
583	scu->dev.parent = parent;
584	scu->dev.class = &intel_scu_ipc_class;
585	scu->dev.release = intel_scu_ipc_release;
586
587	if (!request_mem_region(scu_data->mem.start, resource_size(&scu_data->mem),
588				"intel_scu_ipc")) {
589		err = -EBUSY;
590		goto err_free;
591	}
592
593	ipc_base = ioremap(scu_data->mem.start, resource_size(&scu_data->mem));
594	if (!ipc_base) {
595		err = -ENOMEM;
596		goto err_release;
597	}
598
599	scu->ipc_base = ipc_base;
600	scu->mem = scu_data->mem;
601	scu->irq = scu_data->irq;
602	init_completion(&scu->cmd_complete);
603
604	if (scu->irq > 0) {
605		err = request_irq(scu->irq, ioc, 0, "intel_scu_ipc", scu);
606		if (err)
607			goto err_unmap;
608	}
609
610	/*
611	 * After this point intel_scu_ipc_release() takes care of
612	 * releasing the SCU IPC resources once refcount drops to zero.
613	 */
614	dev_set_name(&scu->dev, "intel_scu_ipc");
615	err = device_register(&scu->dev);
616	if (err) {
617		put_device(&scu->dev);
618		goto err_unlock;
619	}
620
621	/* Assign device at last */
622	ipcdev = scu;
623	mutex_unlock(&ipclock);
624
625	return scu;
 
 
626
627err_unmap:
628	iounmap(ipc_base);
629err_release:
630	release_mem_region(scu_data->mem.start, resource_size(&scu_data->mem));
631err_free:
632	kfree(scu);
633err_unlock:
634	mutex_unlock(&ipclock);
635
636	return ERR_PTR(err);
637}
638EXPORT_SYMBOL_GPL(__intel_scu_ipc_register);
639
640/**
641 * intel_scu_ipc_unregister() - Unregister SCU IPC
642 * @scu: SCU IPC handle
643 *
644 * This unregisters the SCU IPC device and releases the acquired
645 * resources once the refcount goes to zero.
646 */
647void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu)
648{
649	mutex_lock(&ipclock);
650	if (!WARN_ON(!ipcdev)) {
651		ipcdev = NULL;
652		device_unregister(&scu->dev);
653	}
654	mutex_unlock(&ipclock);
655}
656EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister);
657
658static void devm_intel_scu_ipc_unregister(struct device *dev, void *res)
659{
660	struct intel_scu_ipc_devres *dr = res;
661	struct intel_scu_ipc_dev *scu = dr->scu;
662
663	intel_scu_ipc_unregister(scu);
664}
665
666/**
667 * __devm_intel_scu_ipc_register() - Register managed SCU IPC device
668 * @parent: Parent device
669 * @scu_data: Data used to configure SCU IPC
670 * @owner: Module registering the SCU IPC device
 
 
671 *
672 * Call this function to register managed SCU IPC mechanism under
673 * @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in
674 * case of failure. The caller may use the returned instance if it needs
675 * to do SCU IPC calls itself.
676 */
677struct intel_scu_ipc_dev *
678__devm_intel_scu_ipc_register(struct device *parent,
679			      const struct intel_scu_ipc_data *scu_data,
680			      struct module *owner)
681{
682	struct intel_scu_ipc_devres *dr;
683	struct intel_scu_ipc_dev *scu;
684
685	dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL);
686	if (!dr)
687		return NULL;
 
 
688
689	scu = __intel_scu_ipc_register(parent, scu_data, owner);
690	if (IS_ERR(scu)) {
691		devres_free(dr);
692		return scu;
693	}
694
695	dr->scu = scu;
696	devres_add(parent, dr);
 
 
 
 
697
698	return scu;
699}
700EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register);
701
702static int __init intel_scu_ipc_init(void)
703{
704	return class_register(&intel_scu_ipc_class);
 
 
 
705}
706subsys_initcall(intel_scu_ipc_init);
707
708static void __exit intel_scu_ipc_exit(void)
709{
710	class_unregister(&intel_scu_ipc_class);
711}
 
 
 
 
 
 
712module_exit(intel_scu_ipc_exit);
v3.5.6
 
  1/*
  2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
  3 *
  4 * (C) Copyright 2008-2010 Intel Corporation
  5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 *
 12 * SCU running in ARC processor communicates with other entity running in IA
 13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
 14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
 15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
 16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
 17 * along with other APIs.
 18 */
 
 19#include <linux/delay.h>
 
 20#include <linux/errno.h>
 21#include <linux/init.h>
 22#include <linux/device.h>
 23#include <linux/pm.h>
 24#include <linux/pci.h>
 25#include <linux/interrupt.h>
 26#include <linux/sfi.h>
 27#include <linux/module.h>
 28#include <asm/mrst.h>
 
 29#include <asm/intel_scu_ipc.h>
 30
 31/* IPC defines the following message types */
 32#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
 33#define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
 34#define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
 35#define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
 36#define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
 37
 38/* Command id associated with message IPCMSG_PCNTRL */
 39#define IPC_CMD_PCNTRL_W      0 /* Register write */
 40#define IPC_CMD_PCNTRL_R      1 /* Register read */
 41#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
 42
 43/*
 44 * IPC register summary
 45 *
 46 * IPC register blocks are memory mapped at fixed address of 0xFF11C000
 47 * To read or write information to the SCU, driver writes to IPC-1 memory
 48 * mapped registers (base address 0xFF11C000). The following is the IPC
 49 * mechanism
 50 *
 51 * 1. IA core cDMI interface claims this transaction and converts it to a
 52 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
 53 *
 54 * 2. South Complex cDMI block receives this message and writes it to
 55 *    the IPC-1 register block, causing an interrupt to the SCU
 56 *
 57 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
 58 *    message handler is called within firmware.
 59 */
 60
 61#define IPC_BASE_ADDR     0xFF11C000	/* IPC1 base register address */
 62#define IPC_MAX_ADDR      0x100		/* Maximum IPC regisers */
 63#define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
 64#define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
 65#define IPC_I2C_BASE      0xFF12B000	/* I2C control register base address */
 66#define IPC_I2C_MAX_ADDR  0x10		/* Maximum I2C regisers */
 67
 68static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
 69static void ipc_remove(struct pci_dev *pdev);
 70
 71struct intel_scu_ipc_dev {
 72	struct pci_dev *pdev;
 
 
 
 73	void __iomem *ipc_base;
 74	void __iomem *i2c_base;
 75};
 76
 77static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
 78
 79static int platform;		/* Platform type */
 
 80
 81/*
 82 * IPC Read Buffer (Read Only):
 83 * 16 byte buffer for receiving data from SCU, if IPC command
 84 * processing results in response data
 85 */
 
 86#define IPC_READ_BUFFER		0x90
 87
 88#define IPC_I2C_CNTRL_ADDR	0
 89#define I2C_DATA_ADDR		0x04
 90
 
 91static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
 92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93/*
 
 94 * Command Register (Write Only):
 95 * A write to this register results in an interrupt to the SCU core processor
 96 * Format:
 97 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
 98 */
 99static inline void ipc_command(u32 cmd) /* Send ipc command */
100{
101	writel(cmd, ipcdev.ipc_base);
 
102}
103
104/*
 
105 * IPC Write Buffer (Write Only):
106 * 16-byte buffer for sending data associated with IPC command to
107 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
108 */
109static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
110{
111	writel(data, ipcdev.ipc_base + 0x80 + offset);
112}
113
114/*
115 * Status Register (Read Only):
116 * Driver will read this register to get the ready/busy status of the IPC
117 * block and error status of the IPC command that was just processed by SCU
118 * Format:
119 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
120 */
 
 
 
 
121
122static inline u8 ipc_read_status(void)
 
123{
124	return __raw_readl(ipcdev.ipc_base + 0x04);
125}
126
127static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
 
128{
129	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
130}
131
132static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
 
133{
134	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
 
 
 
 
 
 
 
 
 
 
 
 
135}
136
137static inline int busy_loop(void) /* Wait till scu status is busy */
 
138{
139	u32 status = 0;
140	u32 loop_count = 0;
 
 
141
142	status = ipc_read_status();
143	while (status & 1) {
144		udelay(1); /* scu processing time is in few u secods */
145		status = ipc_read_status();
146		loop_count++;
147		/* break if scu doesn't reset busy bit after huge retry */
148		if (loop_count > 100000) {
149			dev_err(&ipcdev.pdev->dev, "IPC timed out");
150			return -ETIMEDOUT;
151		}
152	}
153	if ((status >> 1) & 1)
154		return -EIO;
155
156	return 0;
157}
158
 
 
 
 
 
159/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
160static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
 
161{
162	int nc;
163	u32 offset = 0;
164	int err;
165	u8 cbuf[IPC_WWBUF_SIZE] = { };
166	u32 *wbuf = (u32 *)&cbuf;
167
168	mutex_lock(&ipclock);
169
170	memset(cbuf, 0, sizeof(cbuf));
171
172	if (ipcdev.pdev == NULL) {
 
 
 
173		mutex_unlock(&ipclock);
174		return -ENODEV;
175	}
176
177	for (nc = 0; nc < count; nc++, offset += 2) {
178		cbuf[offset] = addr[nc];
179		cbuf[offset + 1] = addr[nc] >> 8;
180	}
181
182	if (id == IPC_CMD_PCNTRL_R) {
183		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
184			ipc_data_writel(wbuf[nc], offset);
185		ipc_command((count*2) << 16 |  id << 12 | 0 << 8 | op);
186	} else if (id == IPC_CMD_PCNTRL_W) {
187		for (nc = 0; nc < count; nc++, offset += 1)
188			cbuf[offset] = data[nc];
189		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
190			ipc_data_writel(wbuf[nc], offset);
191		ipc_command((count*3) << 16 |  id << 12 | 0 << 8 | op);
192	} else if (id == IPC_CMD_PCNTRL_M) {
193		cbuf[offset] = data[0];
194		cbuf[offset + 1] = data[1];
195		ipc_data_writel(wbuf[0], 0); /* Write wbuff */
196		ipc_command(4 << 16 |  id << 12 | 0 << 8 | op);
197	}
198
199	err = busy_loop();
200	if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
201		/* Workaround: values are read as 0 without memcpy_fromio */
202		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
203		for (nc = 0; nc < count; nc++)
204			data[nc] = ipc_data_readb(nc);
205	}
206	mutex_unlock(&ipclock);
207	return err;
208}
209
210/**
211 *	intel_scu_ipc_ioread8		-	read a word via the SCU
212 *	@addr: register on SCU
213 *	@data: return pointer for read byte
214 *
215 *	Read a single register. Returns 0 on success or an error code. All
216 *	locking between SCU accesses is handled for the caller.
217 *
218 *	This function may sleep.
219 */
220int intel_scu_ipc_ioread8(u16 addr, u8 *data)
221{
222	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
223}
224EXPORT_SYMBOL(intel_scu_ipc_ioread8);
225
226/**
227 *	intel_scu_ipc_ioread16		-	read a word via the SCU
228 *	@addr: register on SCU
229 *	@data: return pointer for read word
230 *
231 *	Read a register pair. Returns 0 on success or an error code. All
232 *	locking between SCU accesses is handled for the caller.
233 *
234 *	This function may sleep.
235 */
236int intel_scu_ipc_ioread16(u16 addr, u16 *data)
237{
238	u16 x[2] = {addr, addr + 1 };
239	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
240}
241EXPORT_SYMBOL(intel_scu_ipc_ioread16);
242
243/**
244 *	intel_scu_ipc_ioread32		-	read a dword via the SCU
245 *	@addr: register on SCU
246 *	@data: return pointer for read dword
247 *
248 *	Read four registers. Returns 0 on success or an error code. All
249 *	locking between SCU accesses is handled for the caller.
250 *
251 *	This function may sleep.
252 */
253int intel_scu_ipc_ioread32(u16 addr, u32 *data)
254{
255	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
256	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
257}
258EXPORT_SYMBOL(intel_scu_ipc_ioread32);
259
260/**
261 *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
262 *	@addr: register on SCU
263 *	@data: byte to write
264 *
265 *	Write a single register. Returns 0 on success or an error code. All
266 *	locking between SCU accesses is handled for the caller.
267 *
268 *	This function may sleep.
269 */
270int intel_scu_ipc_iowrite8(u16 addr, u8 data)
271{
272	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
273}
274EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
275
276/**
277 *	intel_scu_ipc_iowrite16		-	write a word via the SCU
278 *	@addr: register on SCU
279 *	@data: word to write
280 *
281 *	Write two registers. Returns 0 on success or an error code. All
282 *	locking between SCU accesses is handled for the caller.
283 *
284 *	This function may sleep.
285 */
286int intel_scu_ipc_iowrite16(u16 addr, u16 data)
287{
288	u16 x[2] = {addr, addr + 1 };
289	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
290}
291EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
292
293/**
294 *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
295 *	@addr: register on SCU
296 *	@data: dword to write
 
297 *
298 *	Write four registers. Returns 0 on success or an error code. All
299 *	locking between SCU accesses is handled for the caller.
300 *
301 *	This function may sleep.
302 */
303int intel_scu_ipc_iowrite32(u16 addr, u32 data)
304{
305	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
306	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
307}
308EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
309
310/**
311 *	intel_scu_ipc_readvv		-	read a set of registers
312 *	@addr: register list
313 *	@data: bytes to return
314 *	@len: length of array
 
315 *
316 *	Read registers. Returns 0 on success or an error code. All
317 *	locking between SCU accesses is handled for the caller.
318 *
319 *	The largest array length permitted by the hardware is 5 items.
320 *
321 *	This function may sleep.
322 */
323int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
 
324{
325	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
326}
327EXPORT_SYMBOL(intel_scu_ipc_readv);
328
329/**
330 *	intel_scu_ipc_writev		-	write a set of registers
331 *	@addr: register list
332 *	@data: bytes to write
333 *	@len: length of array
 
334 *
335 *	Write registers. Returns 0 on success or an error code. All
336 *	locking between SCU accesses is handled for the caller.
337 *
338 *	The largest array length permitted by the hardware is 5 items.
339 *
340 *	This function may sleep.
341 *
 
342 */
343int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
 
344{
345	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
346}
347EXPORT_SYMBOL(intel_scu_ipc_writev);
348
349
350/**
351 *	intel_scu_ipc_update_register	-	r/m/w a register
352 *	@addr: register address
353 *	@bits: bits to update
354 *	@mask: mask of bits to update
 
355 *
356 *	Read-modify-write power control unit register. The first data argument
357 *	must be register value and second is mask value
358 *	mask is a bitmap that indicates which bits to update.
359 *	0 = masked. Don't modify this bit, 1 = modify this bit.
360 *	returns 0 on success or an error code.
361 *
362 *	This function may sleep. Locking between SCU accesses is handled
363 *	for the caller.
364 */
365int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
 
366{
367	u8 data[2] = { bits, mask };
368	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
369}
370EXPORT_SYMBOL(intel_scu_ipc_update_register);
371
372/**
373 *	intel_scu_ipc_simple_command	-	send a simple command
374 *	@cmd: command
375 *	@sub: sub type
 
376 *
377 *	Issue a simple command to the SCU. Do not use this interface if
378 *	you must then access data as any data values may be overwritten
379 *	by another SCU access by the time this function returns.
380 *
381 *	This function may sleep. Locking for SCU accesses is handled for
382 *	the caller.
383 */
384int intel_scu_ipc_simple_command(int cmd, int sub)
 
385{
 
386	int err;
387
388	mutex_lock(&ipclock);
389	if (ipcdev.pdev == NULL) {
 
 
390		mutex_unlock(&ipclock);
391		return -ENODEV;
392	}
393	ipc_command(sub << 12 | cmd);
394	err = busy_loop();
 
 
395	mutex_unlock(&ipclock);
 
 
396	return err;
397}
398EXPORT_SYMBOL(intel_scu_ipc_simple_command);
399
400/**
401 *	intel_scu_ipc_command	-	command with data
402 *	@cmd: command
403 *	@sub: sub type
404 *	@in: input data
405 *	@inlen: input length in dwords
406 *	@out: output data
407 *	@outlein: output length in dwords
408 *
409 *	Issue a command to the SCU which involves data transfers. Do the
410 *	data copies under the lock but leave it for the caller to interpret
411 */
 
 
 
 
 
 
 
 
 
 
 
 
412
413int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
414							u32 *out, int outlen)
415{
416	int i, err;
417
418	mutex_lock(&ipclock);
419	if (ipcdev.pdev == NULL) {
 
 
420		mutex_unlock(&ipclock);
421		return -ENODEV;
422	}
423
424	for (i = 0; i < inlen; i++)
425		ipc_data_writel(*in++, 4 * i);
426
427	ipc_command((inlen << 16) | (sub << 12) | cmd);
428	err = busy_loop();
429
430	for (i = 0; i < outlen; i++)
431		*out++ = ipc_data_readl(4 * i);
432
433	mutex_unlock(&ipclock);
434	return err;
435}
436EXPORT_SYMBOL(intel_scu_ipc_command);
437
438/*I2C commands */
439#define IPC_I2C_WRITE 1 /* I2C Write command */
440#define IPC_I2C_READ  2 /* I2C Read command */
441
442/**
443 *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
444 *	@addr: I2C address + command bits
445 *	@data: data to read/write
446 *
447 *	Perform an an I2C read/write operation via the SCU. All locking is
448 *	handled for the caller. This function may sleep.
449 *
450 *	Returns an error code or 0 on success.
451 *
452 *	This has to be in the IPC driver for the locking.
453 */
454int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
455{
456	u32 cmd = 0;
457
458	mutex_lock(&ipclock);
459	if (ipcdev.pdev == NULL) {
460		mutex_unlock(&ipclock);
461		return -ENODEV;
462	}
463	cmd = (addr >> 24) & 0xFF;
464	if (cmd == IPC_I2C_READ) {
465		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
466		/* Write not getting updated without delay */
467		mdelay(1);
468		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
469	} else if (cmd == IPC_I2C_WRITE) {
470		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
471		mdelay(1);
472		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
473	} else {
474		dev_err(&ipcdev.pdev->dev,
475			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
476
477		mutex_unlock(&ipclock);
478		return -EIO;
479	}
480	mutex_unlock(&ipclock);
481	return 0;
 
 
482}
483EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
484
485/*
486 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
487 * When ioc bit is set to 1, caller api must wait for interrupt handler called
488 * which in turn unlocks the caller api. Currently this is not used
489 *
490 * This is edge triggered so we need take no action to clear anything
491 */
492static irqreturn_t ioc(int irq, void *dev_id)
493{
 
 
 
 
 
 
494	return IRQ_HANDLED;
495}
496
 
 
 
 
 
 
 
 
 
 
 
 
497/**
498 *	ipc_probe	-	probe an Intel SCU IPC
499 *	@dev: the PCI device matching
500 *	@id: entry in the match table
 
501 *
502 *	Enable and install an intel SCU IPC. This appears in the PCI space
503 *	but uses some hard coded addresses as well.
 
 
504 */
505static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
 
 
 
506{
507	int err;
508	resource_size_t pci_resource;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
510	if (ipcdev.pdev)		/* We support only one SCU */
511		return -EBUSY;
 
 
 
 
 
 
 
 
512
513	ipcdev.pdev = pci_dev_get(dev);
 
 
 
 
514
515	err = pci_enable_device(dev);
516	if (err)
517		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518
519	err = pci_request_regions(dev, "intel_scu_ipc");
520	if (err)
521		return err;
522
523	pci_resource = pci_resource_start(dev, 0);
524	if (!pci_resource)
525		return -ENOMEM;
526
527	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
528		return -EBUSY;
 
 
 
 
 
 
529
530	ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR);
531	if (!ipcdev.ipc_base)
532		return -ENOMEM;
533
534	ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR);
535	if (!ipcdev.i2c_base) {
536		iounmap(ipcdev.ipc_base);
537		return -ENOMEM;
 
 
 
 
 
 
 
 
 
538	}
 
 
 
539
540	intel_scu_devices_create();
 
 
 
541
542	return 0;
543}
544
545/**
546 *	ipc_remove	-	remove a bound IPC device
547 *	@pdev: PCI device
548 *
549 *	In practice the SCU is not removable but this function is also
550 *	called for each device on a module unload or cleanup which is the
551 *	path that will get used.
552 *
553 *	Free up the mappings and release the PCI resources
 
 
 
554 */
555static void ipc_remove(struct pci_dev *pdev)
 
 
 
556{
557	free_irq(pdev->irq, &ipcdev);
558	pci_release_regions(pdev);
559	pci_dev_put(ipcdev.pdev);
560	iounmap(ipcdev.ipc_base);
561	iounmap(ipcdev.i2c_base);
562	ipcdev.pdev = NULL;
563	intel_scu_devices_destroy();
564}
565
566static DEFINE_PCI_DEVICE_TABLE(pci_ids) = {
567	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
568	{ 0,}
569};
570MODULE_DEVICE_TABLE(pci, pci_ids);
571
572static struct pci_driver ipc_driver = {
573	.name = "intel_scu_ipc",
574	.id_table = pci_ids,
575	.probe = ipc_probe,
576	.remove = ipc_remove,
577};
578
 
 
 
579
580static int __init intel_scu_ipc_init(void)
581{
582	platform = mrst_identify_cpu();
583	if (platform == 0)
584		return -ENODEV;
585	return  pci_register_driver(&ipc_driver);
586}
 
587
588static void __exit intel_scu_ipc_exit(void)
589{
590	pci_unregister_driver(&ipc_driver);
591}
592
593MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
594MODULE_DESCRIPTION("Intel SCU IPC driver");
595MODULE_LICENSE("GPL");
596
597module_init(intel_scu_ipc_init);
598module_exit(intel_scu_ipc_exit);