Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3   md.c : Multiple Devices driver for Linux
   4     Copyright (C) 1998, 1999, 2000 Ingo Molnar
   5
   6     completely rewritten, based on the MD driver code from Marc Zyngier
   7
   8   Changes:
   9
  10   - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  11   - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  12   - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  13   - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  14   - kmod support by: Cyrus Durgin
  15   - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  16   - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  17
  18   - lots of fixes and improvements to the RAID1/RAID5 and generic
  19     RAID code (such as request based resynchronization):
  20
  21     Neil Brown <neilb@cse.unsw.edu.au>.
  22
  23   - persistent bitmap code
  24     Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  25
  26
  27   Errors, Warnings, etc.
  28   Please use:
  29     pr_crit() for error conditions that risk data loss
  30     pr_err() for error conditions that are unexpected, like an IO error
  31         or internal inconsistency
  32     pr_warn() for error conditions that could have been predicated, like
  33         adding a device to an array when it has incompatible metadata
  34     pr_info() for every interesting, very rare events, like an array starting
  35         or stopping, or resync starting or stopping
  36     pr_debug() for everything else.
  37
  38*/
  39
  40#include <linux/sched/mm.h>
  41#include <linux/sched/signal.h>
  42#include <linux/kthread.h>
  43#include <linux/blkdev.h>
  44#include <linux/blk-integrity.h>
  45#include <linux/badblocks.h>
  46#include <linux/sysctl.h>
  47#include <linux/seq_file.h>
  48#include <linux/fs.h>
  49#include <linux/poll.h>
  50#include <linux/ctype.h>
  51#include <linux/string.h>
  52#include <linux/hdreg.h>
  53#include <linux/proc_fs.h>
  54#include <linux/random.h>
  55#include <linux/major.h>
  56#include <linux/module.h>
  57#include <linux/reboot.h>
  58#include <linux/file.h>
  59#include <linux/compat.h>
  60#include <linux/delay.h>
  61#include <linux/raid/md_p.h>
  62#include <linux/raid/md_u.h>
  63#include <linux/raid/detect.h>
  64#include <linux/slab.h>
  65#include <linux/percpu-refcount.h>
  66#include <linux/part_stat.h>
  67
  68#include <trace/events/block.h>
  69#include "md.h"
  70#include "md-bitmap.h"
  71#include "md-cluster.h"
 
 
 
  72
  73/* pers_list is a list of registered personalities protected
  74 * by pers_lock.
  75 * pers_lock does extra service to protect accesses to
  76 * mddev->thread when the mutex cannot be held.
  77 */
  78static LIST_HEAD(pers_list);
  79static DEFINE_SPINLOCK(pers_lock);
  80
  81static struct kobj_type md_ktype;
  82
  83struct md_cluster_operations *md_cluster_ops;
  84EXPORT_SYMBOL(md_cluster_ops);
  85static struct module *md_cluster_mod;
  86
  87static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  88static struct workqueue_struct *md_wq;
  89static struct workqueue_struct *md_misc_wq;
  90static struct workqueue_struct *md_rdev_misc_wq;
  91
  92static int remove_and_add_spares(struct mddev *mddev,
  93				 struct md_rdev *this);
  94static void mddev_detach(struct mddev *mddev);
  95
  96enum md_ro_state {
  97	MD_RDWR,
  98	MD_RDONLY,
  99	MD_AUTO_READ,
 100	MD_MAX_STATE
 101};
 102
 103static bool md_is_rdwr(struct mddev *mddev)
 104{
 105	return (mddev->ro == MD_RDWR);
 106}
 107
 108/*
 109 * Default number of read corrections we'll attempt on an rdev
 110 * before ejecting it from the array. We divide the read error
 111 * count by 2 for every hour elapsed between read errors.
 112 */
 113#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
 114/* Default safemode delay: 200 msec */
 115#define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
 116/*
 117 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
 118 * is 1000 KB/sec, so the extra system load does not show up that much.
 119 * Increase it if you want to have more _guaranteed_ speed. Note that
 120 * the RAID driver will use the maximum available bandwidth if the IO
 121 * subsystem is idle. There is also an 'absolute maximum' reconstruction
 122 * speed limit - in case reconstruction slows down your system despite
 123 * idle IO detection.
 124 *
 125 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
 126 * or /sys/block/mdX/md/sync_speed_{min,max}
 127 */
 128
 129static int sysctl_speed_limit_min = 1000;
 130static int sysctl_speed_limit_max = 200000;
 131static inline int speed_min(struct mddev *mddev)
 132{
 133	return mddev->sync_speed_min ?
 134		mddev->sync_speed_min : sysctl_speed_limit_min;
 135}
 136
 137static inline int speed_max(struct mddev *mddev)
 138{
 139	return mddev->sync_speed_max ?
 140		mddev->sync_speed_max : sysctl_speed_limit_max;
 141}
 142
 143static void rdev_uninit_serial(struct md_rdev *rdev)
 144{
 145	if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
 146		return;
 147
 148	kvfree(rdev->serial);
 149	rdev->serial = NULL;
 150}
 151
 152static void rdevs_uninit_serial(struct mddev *mddev)
 153{
 154	struct md_rdev *rdev;
 155
 156	rdev_for_each(rdev, mddev)
 157		rdev_uninit_serial(rdev);
 158}
 159
 160static int rdev_init_serial(struct md_rdev *rdev)
 161{
 162	/* serial_nums equals with BARRIER_BUCKETS_NR */
 163	int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
 164	struct serial_in_rdev *serial = NULL;
 165
 166	if (test_bit(CollisionCheck, &rdev->flags))
 167		return 0;
 168
 169	serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
 170			  GFP_KERNEL);
 171	if (!serial)
 172		return -ENOMEM;
 173
 174	for (i = 0; i < serial_nums; i++) {
 175		struct serial_in_rdev *serial_tmp = &serial[i];
 176
 177		spin_lock_init(&serial_tmp->serial_lock);
 178		serial_tmp->serial_rb = RB_ROOT_CACHED;
 179		init_waitqueue_head(&serial_tmp->serial_io_wait);
 180	}
 181
 182	rdev->serial = serial;
 183	set_bit(CollisionCheck, &rdev->flags);
 184
 185	return 0;
 186}
 187
 188static int rdevs_init_serial(struct mddev *mddev)
 189{
 190	struct md_rdev *rdev;
 191	int ret = 0;
 192
 193	rdev_for_each(rdev, mddev) {
 194		ret = rdev_init_serial(rdev);
 195		if (ret)
 196			break;
 197	}
 198
 199	/* Free all resources if pool is not existed */
 200	if (ret && !mddev->serial_info_pool)
 201		rdevs_uninit_serial(mddev);
 202
 203	return ret;
 204}
 205
 206/*
 207 * rdev needs to enable serial stuffs if it meets the conditions:
 208 * 1. it is multi-queue device flaged with writemostly.
 209 * 2. the write-behind mode is enabled.
 210 */
 211static int rdev_need_serial(struct md_rdev *rdev)
 212{
 213	return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
 214		rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
 215		test_bit(WriteMostly, &rdev->flags));
 216}
 217
 218/*
 219 * Init resource for rdev(s), then create serial_info_pool if:
 220 * 1. rdev is the first device which return true from rdev_enable_serial.
 221 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
 222 */
 223void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
 224			      bool is_suspend)
 225{
 226	int ret = 0;
 227
 228	if (rdev && !rdev_need_serial(rdev) &&
 229	    !test_bit(CollisionCheck, &rdev->flags))
 230		return;
 231
 232	if (!is_suspend)
 233		mddev_suspend(mddev);
 234
 235	if (!rdev)
 236		ret = rdevs_init_serial(mddev);
 237	else
 238		ret = rdev_init_serial(rdev);
 239	if (ret)
 240		goto abort;
 241
 242	if (mddev->serial_info_pool == NULL) {
 243		/*
 244		 * already in memalloc noio context by
 245		 * mddev_suspend()
 246		 */
 247		mddev->serial_info_pool =
 248			mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
 249						sizeof(struct serial_info));
 250		if (!mddev->serial_info_pool) {
 251			rdevs_uninit_serial(mddev);
 252			pr_err("can't alloc memory pool for serialization\n");
 253		}
 254	}
 255
 256abort:
 257	if (!is_suspend)
 258		mddev_resume(mddev);
 259}
 260
 261/*
 262 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
 263 * 1. rdev is the last device flaged with CollisionCheck.
 264 * 2. when bitmap is destroyed while policy is not enabled.
 265 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
 266 */
 267void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
 268			       bool is_suspend)
 269{
 270	if (rdev && !test_bit(CollisionCheck, &rdev->flags))
 271		return;
 272
 273	if (mddev->serial_info_pool) {
 274		struct md_rdev *temp;
 275		int num = 0; /* used to track if other rdevs need the pool */
 276
 277		if (!is_suspend)
 278			mddev_suspend(mddev);
 279		rdev_for_each(temp, mddev) {
 280			if (!rdev) {
 281				if (!mddev->serialize_policy ||
 282				    !rdev_need_serial(temp))
 283					rdev_uninit_serial(temp);
 284				else
 285					num++;
 286			} else if (temp != rdev &&
 287				   test_bit(CollisionCheck, &temp->flags))
 288				num++;
 289		}
 290
 291		if (rdev)
 292			rdev_uninit_serial(rdev);
 293
 294		if (num)
 295			pr_info("The mempool could be used by other devices\n");
 296		else {
 297			mempool_destroy(mddev->serial_info_pool);
 298			mddev->serial_info_pool = NULL;
 299		}
 300		if (!is_suspend)
 301			mddev_resume(mddev);
 302	}
 303}
 304
 305static struct ctl_table_header *raid_table_header;
 306
 307static struct ctl_table raid_table[] = {
 308	{
 309		.procname	= "speed_limit_min",
 310		.data		= &sysctl_speed_limit_min,
 311		.maxlen		= sizeof(int),
 312		.mode		= S_IRUGO|S_IWUSR,
 313		.proc_handler	= proc_dointvec,
 314	},
 315	{
 316		.procname	= "speed_limit_max",
 317		.data		= &sysctl_speed_limit_max,
 318		.maxlen		= sizeof(int),
 319		.mode		= S_IRUGO|S_IWUSR,
 320		.proc_handler	= proc_dointvec,
 321	},
 322	{ }
 323};
 324
 325static struct ctl_table raid_dir_table[] = {
 326	{
 327		.procname	= "raid",
 328		.maxlen		= 0,
 329		.mode		= S_IRUGO|S_IXUGO,
 330		.child		= raid_table,
 331	},
 332	{ }
 333};
 334
 335static struct ctl_table raid_root_table[] = {
 336	{
 337		.procname	= "dev",
 338		.maxlen		= 0,
 339		.mode		= 0555,
 340		.child		= raid_dir_table,
 341	},
 342	{  }
 343};
 344
 
 
 345static int start_readonly;
 346
 347/*
 348 * The original mechanism for creating an md device is to create
 349 * a device node in /dev and to open it.  This causes races with device-close.
 350 * The preferred method is to write to the "new_array" module parameter.
 351 * This can avoid races.
 352 * Setting create_on_open to false disables the original mechanism
 353 * so all the races disappear.
 354 */
 355static bool create_on_open = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356
 357/*
 358 * We have a system wide 'event count' that is incremented
 359 * on any 'interesting' event, and readers of /proc/mdstat
 360 * can use 'poll' or 'select' to find out when the event
 361 * count increases.
 362 *
 363 * Events are:
 364 *  start array, stop array, error, add device, remove device,
 365 *  start build, activate spare
 366 */
 367static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
 368static atomic_t md_event_count;
 369void md_new_event(void)
 370{
 371	atomic_inc(&md_event_count);
 372	wake_up(&md_event_waiters);
 373}
 374EXPORT_SYMBOL_GPL(md_new_event);
 375
 
 
 
 
 
 
 
 
 
 376/*
 377 * Enables to iterate over all existing md arrays
 378 * all_mddevs_lock protects this list.
 379 */
 380static LIST_HEAD(all_mddevs);
 381static DEFINE_SPINLOCK(all_mddevs_lock);
 382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383/* Rather than calling directly into the personality make_request function,
 384 * IO requests come here first so that we can check if the device is
 385 * being suspended pending a reconfiguration.
 386 * We hold a refcount over the call to ->make_request.  By the time that
 387 * call has finished, the bio has been linked into some internal structure
 388 * and so is visible to ->quiesce(), so we don't need the refcount any more.
 389 */
 390static bool is_suspended(struct mddev *mddev, struct bio *bio)
 391{
 392	if (mddev->suspended)
 393		return true;
 394	if (bio_data_dir(bio) != WRITE)
 395		return false;
 396	if (mddev->suspend_lo >= mddev->suspend_hi)
 397		return false;
 398	if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
 399		return false;
 400	if (bio_end_sector(bio) < mddev->suspend_lo)
 401		return false;
 402	return true;
 403}
 404
 405void md_handle_request(struct mddev *mddev, struct bio *bio)
 406{
 407check_suspended:
 
 
 
 408	rcu_read_lock();
 409	if (is_suspended(mddev, bio)) {
 410		DEFINE_WAIT(__wait);
 411		/* Bail out if REQ_NOWAIT is set for the bio */
 412		if (bio->bi_opf & REQ_NOWAIT) {
 413			rcu_read_unlock();
 414			bio_wouldblock_error(bio);
 415			return;
 416		}
 417		for (;;) {
 418			prepare_to_wait(&mddev->sb_wait, &__wait,
 419					TASK_UNINTERRUPTIBLE);
 420			if (!is_suspended(mddev, bio))
 421				break;
 422			rcu_read_unlock();
 423			schedule();
 424			rcu_read_lock();
 425		}
 426		finish_wait(&mddev->sb_wait, &__wait);
 427	}
 428	atomic_inc(&mddev->active_io);
 429	rcu_read_unlock();
 430
 431	if (!mddev->pers->make_request(mddev, bio)) {
 432		atomic_dec(&mddev->active_io);
 433		wake_up(&mddev->sb_wait);
 434		goto check_suspended;
 435	}
 
 
 
 
 
 
 436
 437	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
 438		wake_up(&mddev->sb_wait);
 439}
 440EXPORT_SYMBOL(md_handle_request);
 441
 442static void md_submit_bio(struct bio *bio)
 443{
 444	const int rw = bio_data_dir(bio);
 445	struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
 446
 447	if (mddev == NULL || mddev->pers == NULL) {
 448		bio_io_error(bio);
 449		return;
 450	}
 451
 452	if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
 453		bio_io_error(bio);
 454		return;
 455	}
 456
 457	bio = bio_split_to_limits(bio);
 458	if (!bio)
 459		return;
 460
 461	if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
 462		if (bio_sectors(bio) != 0)
 463			bio->bi_status = BLK_STS_IOERR;
 464		bio_endio(bio);
 465		return;
 466	}
 467
 468	/* bio could be mergeable after passing to underlayer */
 469	bio->bi_opf &= ~REQ_NOMERGE;
 470
 471	md_handle_request(mddev, bio);
 472}
 473
 474/* mddev_suspend makes sure no new requests are submitted
 475 * to the device, and that any requests that have been submitted
 476 * are completely handled.
 477 * Once mddev_detach() is called and completes, the module will be
 478 * completely unused.
 479 */
 480void mddev_suspend(struct mddev *mddev)
 481{
 482	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
 483	lockdep_assert_held(&mddev->reconfig_mutex);
 484	if (mddev->suspended++)
 485		return;
 486	synchronize_rcu();
 487	wake_up(&mddev->sb_wait);
 488	set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
 489	smp_mb__after_atomic();
 490	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
 491	mddev->pers->quiesce(mddev, 1);
 492	clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
 493	wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
 494
 495	del_timer_sync(&mddev->safemode_timer);
 496	/* restrict memory reclaim I/O during raid array is suspend */
 497	mddev->noio_flag = memalloc_noio_save();
 498}
 499EXPORT_SYMBOL_GPL(mddev_suspend);
 500
 501void mddev_resume(struct mddev *mddev)
 502{
 503	/* entred the memalloc scope from mddev_suspend() */
 504	memalloc_noio_restore(mddev->noio_flag);
 505	lockdep_assert_held(&mddev->reconfig_mutex);
 506	if (--mddev->suspended)
 507		return;
 508	wake_up(&mddev->sb_wait);
 509	mddev->pers->quiesce(mddev, 0);
 510
 511	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 512	md_wakeup_thread(mddev->thread);
 513	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
 514}
 515EXPORT_SYMBOL_GPL(mddev_resume);
 516
 
 
 
 
 
 
 517/*
 518 * Generic flush handling for md
 519 */
 520
 521static void md_end_flush(struct bio *bio)
 522{
 523	struct md_rdev *rdev = bio->bi_private;
 524	struct mddev *mddev = rdev->mddev;
 525
 526	bio_put(bio);
 527
 528	rdev_dec_pending(rdev, mddev);
 529
 530	if (atomic_dec_and_test(&mddev->flush_pending)) {
 531		/* The pre-request flush has finished */
 532		queue_work(md_wq, &mddev->flush_work);
 533	}
 
 534}
 535
 536static void md_submit_flush_data(struct work_struct *ws);
 537
 538static void submit_flushes(struct work_struct *ws)
 539{
 540	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
 541	struct md_rdev *rdev;
 542
 543	mddev->start_flush = ktime_get_boottime();
 544	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
 545	atomic_set(&mddev->flush_pending, 1);
 546	rcu_read_lock();
 547	rdev_for_each_rcu(rdev, mddev)
 548		if (rdev->raid_disk >= 0 &&
 549		    !test_bit(Faulty, &rdev->flags)) {
 550			/* Take two references, one is dropped
 551			 * when request finishes, one after
 552			 * we reclaim rcu_read_lock
 553			 */
 554			struct bio *bi;
 555			atomic_inc(&rdev->nr_pending);
 556			atomic_inc(&rdev->nr_pending);
 557			rcu_read_unlock();
 558			bi = bio_alloc_bioset(rdev->bdev, 0,
 559					      REQ_OP_WRITE | REQ_PREFLUSH,
 560					      GFP_NOIO, &mddev->bio_set);
 561			bi->bi_end_io = md_end_flush;
 562			bi->bi_private = rdev;
 
 563			atomic_inc(&mddev->flush_pending);
 564			submit_bio(bi);
 565			rcu_read_lock();
 566			rdev_dec_pending(rdev, mddev);
 567		}
 568	rcu_read_unlock();
 569	if (atomic_dec_and_test(&mddev->flush_pending))
 570		queue_work(md_wq, &mddev->flush_work);
 571}
 572
 573static void md_submit_flush_data(struct work_struct *ws)
 574{
 575	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
 576	struct bio *bio = mddev->flush_bio;
 577
 578	/*
 579	 * must reset flush_bio before calling into md_handle_request to avoid a
 580	 * deadlock, because other bios passed md_handle_request suspend check
 581	 * could wait for this and below md_handle_request could wait for those
 582	 * bios because of suspend check
 583	 */
 584	spin_lock_irq(&mddev->lock);
 585	mddev->prev_flush_start = mddev->start_flush;
 586	mddev->flush_bio = NULL;
 587	spin_unlock_irq(&mddev->lock);
 588	wake_up(&mddev->sb_wait);
 589
 590	if (bio->bi_iter.bi_size == 0) {
 591		/* an empty barrier - all done */
 592		bio_endio(bio);
 593	} else {
 594		bio->bi_opf &= ~REQ_PREFLUSH;
 595		md_handle_request(mddev, bio);
 596	}
 
 
 
 597}
 598
 599/*
 600 * Manages consolidation of flushes and submitting any flushes needed for
 601 * a bio with REQ_PREFLUSH.  Returns true if the bio is finished or is
 602 * being finished in another context.  Returns false if the flushing is
 603 * complete but still needs the I/O portion of the bio to be processed.
 604 */
 605bool md_flush_request(struct mddev *mddev, struct bio *bio)
 606{
 607	ktime_t req_start = ktime_get_boottime();
 608	spin_lock_irq(&mddev->lock);
 609	/* flush requests wait until ongoing flush completes,
 610	 * hence coalescing all the pending requests.
 611	 */
 612	wait_event_lock_irq(mddev->sb_wait,
 613			    !mddev->flush_bio ||
 614			    ktime_before(req_start, mddev->prev_flush_start),
 615			    mddev->lock);
 616	/* new request after previous flush is completed */
 617	if (ktime_after(req_start, mddev->prev_flush_start)) {
 618		WARN_ON(mddev->flush_bio);
 619		mddev->flush_bio = bio;
 620		bio = NULL;
 621	}
 622	spin_unlock_irq(&mddev->lock);
 623
 624	if (!bio) {
 625		INIT_WORK(&mddev->flush_work, submit_flushes);
 626		queue_work(md_wq, &mddev->flush_work);
 627	} else {
 628		/* flush was performed for some other bio while we waited. */
 629		if (bio->bi_iter.bi_size == 0)
 630			/* an empty barrier - all done */
 631			bio_endio(bio);
 632		else {
 633			bio->bi_opf &= ~REQ_PREFLUSH;
 634			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635		}
 636	}
 637	return true;
 
 
 
 
 
 
 
 
 
 638}
 639EXPORT_SYMBOL(md_flush_request);
 640
 641static inline struct mddev *mddev_get(struct mddev *mddev)
 642{
 643	lockdep_assert_held(&all_mddevs_lock);
 644
 645	if (test_bit(MD_DELETED, &mddev->flags))
 646		return NULL;
 647	atomic_inc(&mddev->active);
 648	return mddev;
 649}
 650
 651static void mddev_delayed_delete(struct work_struct *ws);
 652
 653void mddev_put(struct mddev *mddev)
 654{
 
 
 655	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
 656		return;
 657	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
 658	    mddev->ctime == 0 && !mddev->hold_active) {
 659		/* Array is not configured at all, and not held active,
 660		 * so destroy it */
 661		set_bit(MD_DELETED, &mddev->flags);
 662
 663		/*
 664		 * Call queue_work inside the spinlock so that
 665		 * flush_workqueue() after mddev_find will succeed in waiting
 666		 * for the work to be done.
 667		 */
 668		INIT_WORK(&mddev->del_work, mddev_delayed_delete);
 669		queue_work(md_misc_wq, &mddev->del_work);
 
 
 
 
 670	}
 671	spin_unlock(&all_mddevs_lock);
 
 
 672}
 673
 674static void md_safemode_timeout(struct timer_list *t);
 675
 676void mddev_init(struct mddev *mddev)
 677{
 678	mutex_init(&mddev->open_mutex);
 679	mutex_init(&mddev->reconfig_mutex);
 680	mutex_init(&mddev->bitmap_info.mutex);
 681	INIT_LIST_HEAD(&mddev->disks);
 682	INIT_LIST_HEAD(&mddev->all_mddevs);
 683	timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
 684	atomic_set(&mddev->active, 1);
 685	atomic_set(&mddev->openers, 0);
 686	atomic_set(&mddev->active_io, 0);
 687	spin_lock_init(&mddev->lock);
 
 688	atomic_set(&mddev->flush_pending, 0);
 689	init_waitqueue_head(&mddev->sb_wait);
 690	init_waitqueue_head(&mddev->recovery_wait);
 691	mddev->reshape_position = MaxSector;
 692	mddev->reshape_backwards = 0;
 693	mddev->last_sync_action = "none";
 694	mddev->resync_min = 0;
 695	mddev->resync_max = MaxSector;
 696	mddev->level = LEVEL_NONE;
 697}
 698EXPORT_SYMBOL_GPL(mddev_init);
 699
 700static struct mddev *mddev_find_locked(dev_t unit)
 701{
 702	struct mddev *mddev;
 703
 704	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
 705		if (mddev->unit == unit)
 706			return mddev;
 707
 708	return NULL;
 709}
 710
 711/* find an unused unit number */
 712static dev_t mddev_alloc_unit(void)
 713{
 714	static int next_minor = 512;
 715	int start = next_minor;
 716	bool is_free = 0;
 717	dev_t dev = 0;
 
 718
 719	while (!is_free) {
 720		dev = MKDEV(MD_MAJOR, next_minor);
 721		next_minor++;
 722		if (next_minor > MINORMASK)
 723			next_minor = 0;
 724		if (next_minor == start)
 725			return 0;		/* Oh dear, all in use. */
 726		is_free = !mddev_find_locked(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727	}
 728
 729	return dev;
 730}
 731
 732static struct mddev *mddev_alloc(dev_t unit)
 733{
 734	struct mddev *new;
 735	int error;
 736
 737	if (unit && MAJOR(unit) != MD_MAJOR)
 738		unit &= ~((1 << MdpMinorShift) - 1);
 739
 740	new = kzalloc(sizeof(*new), GFP_KERNEL);
 741	if (!new)
 742		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 743	mddev_init(new);
 744
 745	spin_lock(&all_mddevs_lock);
 746	if (unit) {
 747		error = -EEXIST;
 748		if (mddev_find_locked(unit))
 749			goto out_free_new;
 750		new->unit = unit;
 751		if (MAJOR(unit) == MD_MAJOR)
 752			new->md_minor = MINOR(unit);
 753		else
 754			new->md_minor = MINOR(unit) >> MdpMinorShift;
 755		new->hold_active = UNTIL_IOCTL;
 756	} else {
 757		error = -ENODEV;
 758		new->unit = mddev_alloc_unit();
 759		if (!new->unit)
 760			goto out_free_new;
 761		new->md_minor = MINOR(new->unit);
 762		new->hold_active = UNTIL_STOP;
 763	}
 764
 765	list_add(&new->all_mddevs, &all_mddevs);
 766	spin_unlock(&all_mddevs_lock);
 767	return new;
 768out_free_new:
 769	spin_unlock(&all_mddevs_lock);
 770	kfree(new);
 771	return ERR_PTR(error);
 772}
 773
 774static void mddev_free(struct mddev *mddev)
 775{
 776	spin_lock(&all_mddevs_lock);
 777	list_del(&mddev->all_mddevs);
 778	spin_unlock(&all_mddevs_lock);
 779
 780	kfree(mddev);
 
 
 781}
 782
 783static const struct attribute_group md_redundancy_group;
 784
 785void mddev_unlock(struct mddev *mddev)
 786{
 787	if (mddev->to_remove) {
 788		/* These cannot be removed under reconfig_mutex as
 789		 * an access to the files will try to take reconfig_mutex
 790		 * while holding the file unremovable, which leads to
 791		 * a deadlock.
 792		 * So hold set sysfs_active while the remove in happeing,
 793		 * and anything else which might set ->to_remove or my
 794		 * otherwise change the sysfs namespace will fail with
 795		 * -EBUSY if sysfs_active is still set.
 796		 * We set sysfs_active under reconfig_mutex and elsewhere
 797		 * test it under the same mutex to ensure its correct value
 798		 * is seen.
 799		 */
 800		const struct attribute_group *to_remove = mddev->to_remove;
 801		mddev->to_remove = NULL;
 802		mddev->sysfs_active = 1;
 803		mutex_unlock(&mddev->reconfig_mutex);
 804
 805		if (mddev->kobj.sd) {
 806			if (to_remove != &md_redundancy_group)
 807				sysfs_remove_group(&mddev->kobj, to_remove);
 808			if (mddev->pers == NULL ||
 809			    mddev->pers->sync_request == NULL) {
 810				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
 811				if (mddev->sysfs_action)
 812					sysfs_put(mddev->sysfs_action);
 813				if (mddev->sysfs_completed)
 814					sysfs_put(mddev->sysfs_completed);
 815				if (mddev->sysfs_degraded)
 816					sysfs_put(mddev->sysfs_degraded);
 817				mddev->sysfs_action = NULL;
 818				mddev->sysfs_completed = NULL;
 819				mddev->sysfs_degraded = NULL;
 820			}
 821		}
 822		mddev->sysfs_active = 0;
 823	} else
 824		mutex_unlock(&mddev->reconfig_mutex);
 825
 826	/* As we've dropped the mutex we need a spinlock to
 827	 * make sure the thread doesn't disappear
 828	 */
 829	spin_lock(&pers_lock);
 830	md_wakeup_thread(mddev->thread);
 831	wake_up(&mddev->sb_wait);
 832	spin_unlock(&pers_lock);
 833}
 834EXPORT_SYMBOL_GPL(mddev_unlock);
 835
 836struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
 837{
 838	struct md_rdev *rdev;
 839
 840	rdev_for_each_rcu(rdev, mddev)
 841		if (rdev->desc_nr == nr)
 842			return rdev;
 843
 844	return NULL;
 845}
 846EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
 847
 848static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
 849{
 850	struct md_rdev *rdev;
 851
 852	rdev_for_each(rdev, mddev)
 853		if (rdev->bdev->bd_dev == dev)
 854			return rdev;
 855
 856	return NULL;
 857}
 858
 859struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
 860{
 861	struct md_rdev *rdev;
 862
 863	rdev_for_each_rcu(rdev, mddev)
 864		if (rdev->bdev->bd_dev == dev)
 865			return rdev;
 866
 867	return NULL;
 868}
 869EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
 870
 871static struct md_personality *find_pers(int level, char *clevel)
 872{
 873	struct md_personality *pers;
 874	list_for_each_entry(pers, &pers_list, list) {
 875		if (level != LEVEL_NONE && pers->level == level)
 876			return pers;
 877		if (strcmp(pers->name, clevel)==0)
 878			return pers;
 879	}
 880	return NULL;
 881}
 882
 883/* return the offset of the super block in 512byte sectors */
 884static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
 885{
 886	return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
 
 887}
 888
 889static int alloc_disk_sb(struct md_rdev *rdev)
 890{
 
 
 
 891	rdev->sb_page = alloc_page(GFP_KERNEL);
 892	if (!rdev->sb_page)
 
 893		return -ENOMEM;
 
 
 894	return 0;
 895}
 896
 897void md_rdev_clear(struct md_rdev *rdev)
 898{
 899	if (rdev->sb_page) {
 900		put_page(rdev->sb_page);
 901		rdev->sb_loaded = 0;
 902		rdev->sb_page = NULL;
 903		rdev->sb_start = 0;
 904		rdev->sectors = 0;
 905	}
 906	if (rdev->bb_page) {
 907		put_page(rdev->bb_page);
 908		rdev->bb_page = NULL;
 909	}
 910	badblocks_exit(&rdev->badblocks);
 
 911}
 912EXPORT_SYMBOL_GPL(md_rdev_clear);
 913
 914static void super_written(struct bio *bio)
 915{
 916	struct md_rdev *rdev = bio->bi_private;
 917	struct mddev *mddev = rdev->mddev;
 918
 919	if (bio->bi_status) {
 920		pr_err("md: %s gets error=%d\n", __func__,
 921		       blk_status_to_errno(bio->bi_status));
 
 922		md_error(mddev, rdev);
 923		if (!test_bit(Faulty, &rdev->flags)
 924		    && (bio->bi_opf & MD_FAILFAST)) {
 925			set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
 926			set_bit(LastDev, &rdev->flags);
 927		}
 928	} else
 929		clear_bit(LastDev, &rdev->flags);
 930
 931	bio_put(bio);
 932
 933	rdev_dec_pending(rdev, mddev);
 934
 935	if (atomic_dec_and_test(&mddev->pending_writes))
 936		wake_up(&mddev->sb_wait);
 
 937}
 938
 939void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
 940		   sector_t sector, int size, struct page *page)
 941{
 942	/* write first size bytes of page to sector of rdev
 943	 * Increment mddev->pending_writes before returning
 944	 * and decrement it on completion, waking up sb_wait
 945	 * if zero is reached.
 946	 * If an error occurred, call md_error
 947	 */
 948	struct bio *bio;
 949
 950	if (!page)
 951		return;
 952
 953	if (test_bit(Faulty, &rdev->flags))
 954		return;
 955
 956	bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
 957			       1,
 958			       REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
 959			       GFP_NOIO, &mddev->sync_set);
 960
 961	atomic_inc(&rdev->nr_pending);
 962
 963	bio->bi_iter.bi_sector = sector;
 964	bio_add_page(bio, page, size, 0);
 965	bio->bi_private = rdev;
 966	bio->bi_end_io = super_written;
 967
 968	if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
 969	    test_bit(FailFast, &rdev->flags) &&
 970	    !test_bit(LastDev, &rdev->flags))
 971		bio->bi_opf |= MD_FAILFAST;
 972
 973	atomic_inc(&mddev->pending_writes);
 974	submit_bio(bio);
 975}
 976
 977int md_super_wait(struct mddev *mddev)
 978{
 979	/* wait for all superblock writes that were scheduled to complete */
 980	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
 981	if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
 982		return -EAGAIN;
 983	return 0;
 
 
 
 
 
 
 
 
 
 984}
 985
 986int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
 987		 struct page *page, blk_opf_t opf, bool metadata_op)
 988{
 989	struct bio bio;
 990	struct bio_vec bvec;
 
 991
 992	if (metadata_op && rdev->meta_bdev)
 993		bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
 994	else
 995		bio_init(&bio, rdev->bdev, &bvec, 1, opf);
 996
 
 
 997	if (metadata_op)
 998		bio.bi_iter.bi_sector = sector + rdev->sb_start;
 999	else if (rdev->mddev->reshape_position != MaxSector &&
1000		 (rdev->mddev->reshape_backwards ==
1001		  (sector >= rdev->mddev->reshape_position)))
1002		bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1003	else
1004		bio.bi_iter.bi_sector = sector + rdev->data_offset;
1005	bio_add_page(&bio, page, size, 0);
1006
1007	submit_bio_wait(&bio);
 
 
 
1008
1009	return !bio.bi_status;
 
 
1010}
1011EXPORT_SYMBOL_GPL(sync_page_io);
1012
1013static int read_disk_sb(struct md_rdev *rdev, int size)
1014{
 
 
 
 
 
1015	if (rdev->sb_loaded)
1016		return 0;
1017
1018	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
 
1019		goto fail;
1020	rdev->sb_loaded = 1;
1021	return 0;
1022
1023fail:
1024	pr_err("md: disabled device %pg, could not read superblock.\n",
1025	       rdev->bdev);
1026	return -EINVAL;
1027}
1028
1029static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1030{
1031	return	sb1->set_uuid0 == sb2->set_uuid0 &&
1032		sb1->set_uuid1 == sb2->set_uuid1 &&
1033		sb1->set_uuid2 == sb2->set_uuid2 &&
1034		sb1->set_uuid3 == sb2->set_uuid3;
1035}
1036
1037static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1038{
1039	int ret;
1040	mdp_super_t *tmp1, *tmp2;
1041
1042	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1043	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1044
1045	if (!tmp1 || !tmp2) {
1046		ret = 0;
 
1047		goto abort;
1048	}
1049
1050	*tmp1 = *sb1;
1051	*tmp2 = *sb2;
1052
1053	/*
1054	 * nr_disks is not constant
1055	 */
1056	tmp1->nr_disks = 0;
1057	tmp2->nr_disks = 0;
1058
1059	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1060abort:
1061	kfree(tmp1);
1062	kfree(tmp2);
1063	return ret;
1064}
1065
 
1066static u32 md_csum_fold(u32 csum)
1067{
1068	csum = (csum & 0xffff) + (csum >> 16);
1069	return (csum & 0xffff) + (csum >> 16);
1070}
1071
1072static unsigned int calc_sb_csum(mdp_super_t *sb)
1073{
1074	u64 newcsum = 0;
1075	u32 *sb32 = (u32*)sb;
1076	int i;
1077	unsigned int disk_csum, csum;
1078
1079	disk_csum = sb->sb_csum;
1080	sb->sb_csum = 0;
1081
1082	for (i = 0; i < MD_SB_BYTES/4 ; i++)
1083		newcsum += sb32[i];
1084	csum = (newcsum & 0xffffffff) + (newcsum>>32);
1085
 
1086#ifdef CONFIG_ALPHA
1087	/* This used to use csum_partial, which was wrong for several
1088	 * reasons including that different results are returned on
1089	 * different architectures.  It isn't critical that we get exactly
1090	 * the same return value as before (we always csum_fold before
1091	 * testing, and that removes any differences).  However as we
1092	 * know that csum_partial always returned a 16bit value on
1093	 * alphas, do a fold to maximise conformity to previous behaviour.
1094	 */
1095	sb->sb_csum = md_csum_fold(disk_csum);
1096#else
1097	sb->sb_csum = disk_csum;
1098#endif
1099	return csum;
1100}
1101
 
1102/*
1103 * Handle superblock details.
1104 * We want to be able to handle multiple superblock formats
1105 * so we have a common interface to them all, and an array of
1106 * different handlers.
1107 * We rely on user-space to write the initial superblock, and support
1108 * reading and updating of superblocks.
1109 * Interface methods are:
1110 *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1111 *      loads and validates a superblock on dev.
1112 *      if refdev != NULL, compare superblocks on both devices
1113 *    Return:
1114 *      0 - dev has a superblock that is compatible with refdev
1115 *      1 - dev has a superblock that is compatible and newer than refdev
1116 *          so dev should be used as the refdev in future
1117 *     -EINVAL superblock incompatible or invalid
1118 *     -othererror e.g. -EIO
1119 *
1120 *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1121 *      Verify that dev is acceptable into mddev.
1122 *       The first time, mddev->raid_disks will be 0, and data from
1123 *       dev should be merged in.  Subsequent calls check that dev
1124 *       is new enough.  Return 0 or -EINVAL
1125 *
1126 *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1127 *     Update the superblock for rdev with data in mddev
1128 *     This does not write to disc.
1129 *
1130 */
1131
1132struct super_type  {
1133	char		    *name;
1134	struct module	    *owner;
1135	int		    (*load_super)(struct md_rdev *rdev,
1136					  struct md_rdev *refdev,
1137					  int minor_version);
1138	int		    (*validate_super)(struct mddev *mddev,
1139					      struct md_rdev *rdev);
1140	void		    (*sync_super)(struct mddev *mddev,
1141					  struct md_rdev *rdev);
1142	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1143						sector_t num_sectors);
1144	int		    (*allow_new_offset)(struct md_rdev *rdev,
1145						unsigned long long new_offset);
1146};
1147
1148/*
1149 * Check that the given mddev has no bitmap.
1150 *
1151 * This function is called from the run method of all personalities that do not
1152 * support bitmaps. It prints an error message and returns non-zero if mddev
1153 * has a bitmap. Otherwise, it returns 0.
1154 *
1155 */
1156int md_check_no_bitmap(struct mddev *mddev)
1157{
1158	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1159		return 0;
1160	pr_warn("%s: bitmaps are not supported for %s\n",
1161		mdname(mddev), mddev->pers->name);
1162	return 1;
1163}
1164EXPORT_SYMBOL(md_check_no_bitmap);
1165
1166/*
1167 * load_super for 0.90.0
1168 */
1169static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1170{
 
1171	mdp_super_t *sb;
1172	int ret;
1173	bool spare_disk = true;
1174
1175	/*
1176	 * Calculate the position of the superblock (512byte sectors),
1177	 * it's at the end of the disk.
1178	 *
1179	 * It also happens to be a multiple of 4Kb.
1180	 */
1181	rdev->sb_start = calc_dev_sboffset(rdev);
1182
1183	ret = read_disk_sb(rdev, MD_SB_BYTES);
1184	if (ret)
1185		return ret;
1186
1187	ret = -EINVAL;
1188
 
1189	sb = page_address(rdev->sb_page);
1190
1191	if (sb->md_magic != MD_SB_MAGIC) {
1192		pr_warn("md: invalid raid superblock magic on %pg\n",
1193			rdev->bdev);
1194		goto abort;
1195	}
1196
1197	if (sb->major_version != 0 ||
1198	    sb->minor_version < 90 ||
1199	    sb->minor_version > 91) {
1200		pr_warn("Bad version number %d.%d on %pg\n",
1201			sb->major_version, sb->minor_version, rdev->bdev);
 
1202		goto abort;
1203	}
1204
1205	if (sb->raid_disks <= 0)
1206		goto abort;
1207
1208	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1209		pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
 
1210		goto abort;
1211	}
1212
1213	rdev->preferred_minor = sb->md_minor;
1214	rdev->data_offset = 0;
1215	rdev->new_data_offset = 0;
1216	rdev->sb_size = MD_SB_BYTES;
1217	rdev->badblocks.shift = -1;
1218
1219	if (sb->level == LEVEL_MULTIPATH)
1220		rdev->desc_nr = -1;
1221	else
1222		rdev->desc_nr = sb->this_disk.number;
1223
1224	/* not spare disk, or LEVEL_MULTIPATH */
1225	if (sb->level == LEVEL_MULTIPATH ||
1226		(rdev->desc_nr >= 0 &&
1227		 rdev->desc_nr < MD_SB_DISKS &&
1228		 sb->disks[rdev->desc_nr].state &
1229		 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1230		spare_disk = false;
1231
1232	if (!refdev) {
1233		if (!spare_disk)
1234			ret = 1;
1235		else
1236			ret = 0;
1237	} else {
1238		__u64 ev1, ev2;
1239		mdp_super_t *refsb = page_address(refdev->sb_page);
1240		if (!md_uuid_equal(refsb, sb)) {
1241			pr_warn("md: %pg has different UUID to %pg\n",
1242				rdev->bdev, refdev->bdev);
1243			goto abort;
1244		}
1245		if (!md_sb_equal(refsb, sb)) {
1246			pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1247				rdev->bdev, refdev->bdev);
 
1248			goto abort;
1249		}
1250		ev1 = md_event(sb);
1251		ev2 = md_event(refsb);
1252
1253		if (!spare_disk && ev1 > ev2)
1254			ret = 1;
1255		else
1256			ret = 0;
1257	}
1258	rdev->sectors = rdev->sb_start;
1259	/* Limit to 4TB as metadata cannot record more than that.
1260	 * (not needed for Linear and RAID0 as metadata doesn't
1261	 * record this size)
1262	 */
1263	if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1264		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1265
1266	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1267		/* "this cannot possibly happen" ... */
1268		ret = -EINVAL;
1269
1270 abort:
1271	return ret;
1272}
1273
1274/*
1275 * validate_super for 0.90.0
1276 */
1277static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1278{
1279	mdp_disk_t *desc;
1280	mdp_super_t *sb = page_address(rdev->sb_page);
1281	__u64 ev1 = md_event(sb);
1282
1283	rdev->raid_disk = -1;
1284	clear_bit(Faulty, &rdev->flags);
1285	clear_bit(In_sync, &rdev->flags);
1286	clear_bit(Bitmap_sync, &rdev->flags);
1287	clear_bit(WriteMostly, &rdev->flags);
1288
1289	if (mddev->raid_disks == 0) {
1290		mddev->major_version = 0;
1291		mddev->minor_version = sb->minor_version;
1292		mddev->patch_version = sb->patch_version;
1293		mddev->external = 0;
1294		mddev->chunk_sectors = sb->chunk_size >> 9;
1295		mddev->ctime = sb->ctime;
1296		mddev->utime = sb->utime;
1297		mddev->level = sb->level;
1298		mddev->clevel[0] = 0;
1299		mddev->layout = sb->layout;
1300		mddev->raid_disks = sb->raid_disks;
1301		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1302		mddev->events = ev1;
1303		mddev->bitmap_info.offset = 0;
1304		mddev->bitmap_info.space = 0;
1305		/* bitmap can use 60 K after the 4K superblocks */
1306		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1307		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1308		mddev->reshape_backwards = 0;
1309
1310		if (mddev->minor_version >= 91) {
1311			mddev->reshape_position = sb->reshape_position;
1312			mddev->delta_disks = sb->delta_disks;
1313			mddev->new_level = sb->new_level;
1314			mddev->new_layout = sb->new_layout;
1315			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1316			if (mddev->delta_disks < 0)
1317				mddev->reshape_backwards = 1;
1318		} else {
1319			mddev->reshape_position = MaxSector;
1320			mddev->delta_disks = 0;
1321			mddev->new_level = mddev->level;
1322			mddev->new_layout = mddev->layout;
1323			mddev->new_chunk_sectors = mddev->chunk_sectors;
1324		}
1325		if (mddev->level == 0)
1326			mddev->layout = -1;
1327
1328		if (sb->state & (1<<MD_SB_CLEAN))
1329			mddev->recovery_cp = MaxSector;
1330		else {
1331			if (sb->events_hi == sb->cp_events_hi &&
1332				sb->events_lo == sb->cp_events_lo) {
1333				mddev->recovery_cp = sb->recovery_cp;
1334			} else
1335				mddev->recovery_cp = 0;
1336		}
1337
1338		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1339		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1340		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1341		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1342
1343		mddev->max_disks = MD_SB_DISKS;
1344
1345		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1346		    mddev->bitmap_info.file == NULL) {
1347			mddev->bitmap_info.offset =
1348				mddev->bitmap_info.default_offset;
1349			mddev->bitmap_info.space =
1350				mddev->bitmap_info.default_space;
1351		}
1352
1353	} else if (mddev->pers == NULL) {
1354		/* Insist on good event counter while assembling, except
1355		 * for spares (which don't need an event count) */
1356		++ev1;
1357		if (sb->disks[rdev->desc_nr].state & (
1358			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1359			if (ev1 < mddev->events)
1360				return -EINVAL;
1361	} else if (mddev->bitmap) {
1362		/* if adding to array with a bitmap, then we can accept an
1363		 * older device ... but not too old.
1364		 */
1365		if (ev1 < mddev->bitmap->events_cleared)
1366			return 0;
1367		if (ev1 < mddev->events)
1368			set_bit(Bitmap_sync, &rdev->flags);
1369	} else {
1370		if (ev1 < mddev->events)
1371			/* just a hot-add of a new device, leave raid_disk at -1 */
1372			return 0;
1373	}
1374
1375	if (mddev->level != LEVEL_MULTIPATH) {
1376		desc = sb->disks + rdev->desc_nr;
1377
1378		if (desc->state & (1<<MD_DISK_FAULTY))
1379			set_bit(Faulty, &rdev->flags);
1380		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1381			    desc->raid_disk < mddev->raid_disks */) {
1382			set_bit(In_sync, &rdev->flags);
1383			rdev->raid_disk = desc->raid_disk;
1384			rdev->saved_raid_disk = desc->raid_disk;
1385		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1386			/* active but not in sync implies recovery up to
1387			 * reshape position.  We don't know exactly where
1388			 * that is, so set to zero for now */
1389			if (mddev->minor_version >= 91) {
1390				rdev->recovery_offset = 0;
1391				rdev->raid_disk = desc->raid_disk;
1392			}
1393		}
1394		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1395			set_bit(WriteMostly, &rdev->flags);
1396		if (desc->state & (1<<MD_DISK_FAILFAST))
1397			set_bit(FailFast, &rdev->flags);
1398	} else /* MULTIPATH are always insync */
1399		set_bit(In_sync, &rdev->flags);
1400	return 0;
1401}
1402
1403/*
1404 * sync_super for 0.90.0
1405 */
1406static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1407{
1408	mdp_super_t *sb;
1409	struct md_rdev *rdev2;
1410	int next_spare = mddev->raid_disks;
1411
 
1412	/* make rdev->sb match mddev data..
1413	 *
1414	 * 1/ zero out disks
1415	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1416	 * 3/ any empty disks < next_spare become removed
1417	 *
1418	 * disks[0] gets initialised to REMOVED because
1419	 * we cannot be sure from other fields if it has
1420	 * been initialised or not.
1421	 */
1422	int i;
1423	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1424
1425	rdev->sb_size = MD_SB_BYTES;
1426
1427	sb = page_address(rdev->sb_page);
1428
1429	memset(sb, 0, sizeof(*sb));
1430
1431	sb->md_magic = MD_SB_MAGIC;
1432	sb->major_version = mddev->major_version;
1433	sb->patch_version = mddev->patch_version;
1434	sb->gvalid_words  = 0; /* ignored */
1435	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1436	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1437	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1438	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1439
1440	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1441	sb->level = mddev->level;
1442	sb->size = mddev->dev_sectors / 2;
1443	sb->raid_disks = mddev->raid_disks;
1444	sb->md_minor = mddev->md_minor;
1445	sb->not_persistent = 0;
1446	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1447	sb->state = 0;
1448	sb->events_hi = (mddev->events>>32);
1449	sb->events_lo = (u32)mddev->events;
1450
1451	if (mddev->reshape_position == MaxSector)
1452		sb->minor_version = 90;
1453	else {
1454		sb->minor_version = 91;
1455		sb->reshape_position = mddev->reshape_position;
1456		sb->new_level = mddev->new_level;
1457		sb->delta_disks = mddev->delta_disks;
1458		sb->new_layout = mddev->new_layout;
1459		sb->new_chunk = mddev->new_chunk_sectors << 9;
1460	}
1461	mddev->minor_version = sb->minor_version;
1462	if (mddev->in_sync)
1463	{
1464		sb->recovery_cp = mddev->recovery_cp;
1465		sb->cp_events_hi = (mddev->events>>32);
1466		sb->cp_events_lo = (u32)mddev->events;
1467		if (mddev->recovery_cp == MaxSector)
1468			sb->state = (1<< MD_SB_CLEAN);
1469	} else
1470		sb->recovery_cp = 0;
1471
1472	sb->layout = mddev->layout;
1473	sb->chunk_size = mddev->chunk_sectors << 9;
1474
1475	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1476		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1477
1478	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1479	rdev_for_each(rdev2, mddev) {
1480		mdp_disk_t *d;
1481		int desc_nr;
1482		int is_active = test_bit(In_sync, &rdev2->flags);
1483
1484		if (rdev2->raid_disk >= 0 &&
1485		    sb->minor_version >= 91)
1486			/* we have nowhere to store the recovery_offset,
1487			 * but if it is not below the reshape_position,
1488			 * we can piggy-back on that.
1489			 */
1490			is_active = 1;
1491		if (rdev2->raid_disk < 0 ||
1492		    test_bit(Faulty, &rdev2->flags))
1493			is_active = 0;
1494		if (is_active)
1495			desc_nr = rdev2->raid_disk;
1496		else
1497			desc_nr = next_spare++;
1498		rdev2->desc_nr = desc_nr;
1499		d = &sb->disks[rdev2->desc_nr];
1500		nr_disks++;
1501		d->number = rdev2->desc_nr;
1502		d->major = MAJOR(rdev2->bdev->bd_dev);
1503		d->minor = MINOR(rdev2->bdev->bd_dev);
1504		if (is_active)
1505			d->raid_disk = rdev2->raid_disk;
1506		else
1507			d->raid_disk = rdev2->desc_nr; /* compatibility */
1508		if (test_bit(Faulty, &rdev2->flags))
1509			d->state = (1<<MD_DISK_FAULTY);
1510		else if (is_active) {
1511			d->state = (1<<MD_DISK_ACTIVE);
1512			if (test_bit(In_sync, &rdev2->flags))
1513				d->state |= (1<<MD_DISK_SYNC);
1514			active++;
1515			working++;
1516		} else {
1517			d->state = 0;
1518			spare++;
1519			working++;
1520		}
1521		if (test_bit(WriteMostly, &rdev2->flags))
1522			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1523		if (test_bit(FailFast, &rdev2->flags))
1524			d->state |= (1<<MD_DISK_FAILFAST);
1525	}
1526	/* now set the "removed" and "faulty" bits on any missing devices */
1527	for (i=0 ; i < mddev->raid_disks ; i++) {
1528		mdp_disk_t *d = &sb->disks[i];
1529		if (d->state == 0 && d->number == 0) {
1530			d->number = i;
1531			d->raid_disk = i;
1532			d->state = (1<<MD_DISK_REMOVED);
1533			d->state |= (1<<MD_DISK_FAULTY);
1534			failed++;
1535		}
1536	}
1537	sb->nr_disks = nr_disks;
1538	sb->active_disks = active;
1539	sb->working_disks = working;
1540	sb->failed_disks = failed;
1541	sb->spare_disks = spare;
1542
1543	sb->this_disk = sb->disks[rdev->desc_nr];
1544	sb->sb_csum = calc_sb_csum(sb);
1545}
1546
1547/*
1548 * rdev_size_change for 0.90.0
1549 */
1550static unsigned long long
1551super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1552{
1553	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1554		return 0; /* component must fit device */
1555	if (rdev->mddev->bitmap_info.offset)
1556		return 0; /* can't move bitmap */
1557	rdev->sb_start = calc_dev_sboffset(rdev);
1558	if (!num_sectors || num_sectors > rdev->sb_start)
1559		num_sectors = rdev->sb_start;
1560	/* Limit to 4TB as metadata cannot record more than that.
1561	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1562	 */
1563	if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1564		num_sectors = (sector_t)(2ULL << 32) - 2;
1565	do {
1566		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1567		       rdev->sb_page);
1568	} while (md_super_wait(rdev->mddev) < 0);
1569	return num_sectors;
1570}
1571
1572static int
1573super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1574{
1575	/* non-zero offset changes not possible with v0.90 */
1576	return new_offset == 0;
1577}
1578
1579/*
1580 * version 1 superblock
1581 */
1582
1583static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1584{
1585	__le32 disk_csum;
1586	u32 csum;
1587	unsigned long long newcsum;
1588	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1589	__le32 *isuper = (__le32*)sb;
 
1590
1591	disk_csum = sb->sb_csum;
1592	sb->sb_csum = 0;
1593	newcsum = 0;
1594	for (; size >= 4; size -= 4)
1595		newcsum += le32_to_cpu(*isuper++);
1596
1597	if (size == 2)
1598		newcsum += le16_to_cpu(*(__le16*) isuper);
1599
1600	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1601	sb->sb_csum = disk_csum;
1602	return cpu_to_le32(csum);
1603}
1604
 
 
1605static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1606{
1607	struct mdp_superblock_1 *sb;
1608	int ret;
1609	sector_t sb_start;
1610	sector_t sectors;
 
1611	int bmask;
1612	bool spare_disk = true;
1613
1614	/*
1615	 * Calculate the position of the superblock in 512byte sectors.
1616	 * It is always aligned to a 4K boundary and
1617	 * depeding on minor_version, it can be:
1618	 * 0: At least 8K, but less than 12K, from end of device
1619	 * 1: At start of device
1620	 * 2: 4K from start of device.
1621	 */
1622	switch(minor_version) {
1623	case 0:
1624		sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
 
1625		sb_start &= ~(sector_t)(4*2-1);
1626		break;
1627	case 1:
1628		sb_start = 0;
1629		break;
1630	case 2:
1631		sb_start = 8;
1632		break;
1633	default:
1634		return -EINVAL;
1635	}
1636	rdev->sb_start = sb_start;
1637
1638	/* superblock is rarely larger than 1K, but it can be larger,
1639	 * and it is safe to read 4k, so we do that
1640	 */
1641	ret = read_disk_sb(rdev, 4096);
1642	if (ret) return ret;
1643
 
1644	sb = page_address(rdev->sb_page);
1645
1646	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1647	    sb->major_version != cpu_to_le32(1) ||
1648	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1649	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1650	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1651		return -EINVAL;
1652
1653	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1654		pr_warn("md: invalid superblock checksum on %pg\n",
1655			rdev->bdev);
1656		return -EINVAL;
1657	}
1658	if (le64_to_cpu(sb->data_size) < 10) {
1659		pr_warn("md: data_size too small on %pg\n",
1660			rdev->bdev);
1661		return -EINVAL;
1662	}
1663	if (sb->pad0 ||
1664	    sb->pad3[0] ||
1665	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1666		/* Some padding is non-zero, might be a new feature */
1667		return -EINVAL;
1668
1669	rdev->preferred_minor = 0xffff;
1670	rdev->data_offset = le64_to_cpu(sb->data_offset);
1671	rdev->new_data_offset = rdev->data_offset;
1672	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1673	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1674		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1675	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1676
1677	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1678	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1679	if (rdev->sb_size & bmask)
1680		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1681
1682	if (minor_version
1683	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1684		return -EINVAL;
1685	if (minor_version
1686	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1687		return -EINVAL;
1688
1689	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1690		rdev->desc_nr = -1;
1691	else
1692		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1693
1694	if (!rdev->bb_page) {
1695		rdev->bb_page = alloc_page(GFP_KERNEL);
1696		if (!rdev->bb_page)
1697			return -ENOMEM;
1698	}
1699	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1700	    rdev->badblocks.count == 0) {
1701		/* need to load the bad block list.
1702		 * Currently we limit it to one page.
1703		 */
1704		s32 offset;
1705		sector_t bb_sector;
1706		__le64 *bbp;
1707		int i;
1708		int sectors = le16_to_cpu(sb->bblog_size);
1709		if (sectors > (PAGE_SIZE / 512))
1710			return -EINVAL;
1711		offset = le32_to_cpu(sb->bblog_offset);
1712		if (offset == 0)
1713			return -EINVAL;
1714		bb_sector = (long long)offset;
1715		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1716				  rdev->bb_page, REQ_OP_READ, true))
1717			return -EIO;
1718		bbp = (__le64 *)page_address(rdev->bb_page);
1719		rdev->badblocks.shift = sb->bblog_shift;
1720		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1721			u64 bb = le64_to_cpu(*bbp);
1722			int count = bb & (0x3ff);
1723			u64 sector = bb >> 10;
1724			sector <<= sb->bblog_shift;
1725			count <<= sb->bblog_shift;
1726			if (bb + 1 == 0)
1727				break;
1728			if (badblocks_set(&rdev->badblocks, sector, count, 1))
 
1729				return -EINVAL;
1730		}
1731	} else if (sb->bblog_offset != 0)
1732		rdev->badblocks.shift = 0;
1733
1734	if ((le32_to_cpu(sb->feature_map) &
1735	    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1736		rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1737		rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1738		rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1739	}
1740
1741	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1742	    sb->level != 0)
1743		return -EINVAL;
1744
1745	/* not spare disk, or LEVEL_MULTIPATH */
1746	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1747		(rdev->desc_nr >= 0 &&
1748		rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1749		(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1750		 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1751		spare_disk = false;
1752
1753	if (!refdev) {
1754		if (!spare_disk)
1755			ret = 1;
1756		else
1757			ret = 0;
1758	} else {
1759		__u64 ev1, ev2;
1760		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1761
1762		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1763		    sb->level != refsb->level ||
1764		    sb->layout != refsb->layout ||
1765		    sb->chunksize != refsb->chunksize) {
1766			pr_warn("md: %pg has strangely different superblock to %pg\n",
1767				rdev->bdev,
1768				refdev->bdev);
 
1769			return -EINVAL;
1770		}
1771		ev1 = le64_to_cpu(sb->events);
1772		ev2 = le64_to_cpu(refsb->events);
1773
1774		if (!spare_disk && ev1 > ev2)
1775			ret = 1;
1776		else
1777			ret = 0;
1778	}
1779	if (minor_version)
1780		sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1781	else
 
1782		sectors = rdev->sb_start;
1783	if (sectors < le64_to_cpu(sb->data_size))
1784		return -EINVAL;
1785	rdev->sectors = le64_to_cpu(sb->data_size);
1786	return ret;
1787}
1788
1789static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1790{
1791	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1792	__u64 ev1 = le64_to_cpu(sb->events);
1793
1794	rdev->raid_disk = -1;
1795	clear_bit(Faulty, &rdev->flags);
1796	clear_bit(In_sync, &rdev->flags);
1797	clear_bit(Bitmap_sync, &rdev->flags);
1798	clear_bit(WriteMostly, &rdev->flags);
1799
1800	if (mddev->raid_disks == 0) {
1801		mddev->major_version = 1;
1802		mddev->patch_version = 0;
1803		mddev->external = 0;
1804		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1805		mddev->ctime = le64_to_cpu(sb->ctime);
1806		mddev->utime = le64_to_cpu(sb->utime);
1807		mddev->level = le32_to_cpu(sb->level);
1808		mddev->clevel[0] = 0;
1809		mddev->layout = le32_to_cpu(sb->layout);
1810		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1811		mddev->dev_sectors = le64_to_cpu(sb->size);
1812		mddev->events = ev1;
1813		mddev->bitmap_info.offset = 0;
1814		mddev->bitmap_info.space = 0;
1815		/* Default location for bitmap is 1K after superblock
1816		 * using 3K - total of 4K
1817		 */
1818		mddev->bitmap_info.default_offset = 1024 >> 9;
1819		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1820		mddev->reshape_backwards = 0;
1821
1822		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1823		memcpy(mddev->uuid, sb->set_uuid, 16);
1824
1825		mddev->max_disks =  (4096-256)/2;
1826
1827		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1828		    mddev->bitmap_info.file == NULL) {
1829			mddev->bitmap_info.offset =
1830				(__s32)le32_to_cpu(sb->bitmap_offset);
1831			/* Metadata doesn't record how much space is available.
1832			 * For 1.0, we assume we can use up to the superblock
1833			 * if before, else to 4K beyond superblock.
1834			 * For others, assume no change is possible.
1835			 */
1836			if (mddev->minor_version > 0)
1837				mddev->bitmap_info.space = 0;
1838			else if (mddev->bitmap_info.offset > 0)
1839				mddev->bitmap_info.space =
1840					8 - mddev->bitmap_info.offset;
1841			else
1842				mddev->bitmap_info.space =
1843					-mddev->bitmap_info.offset;
1844		}
1845
1846		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1847			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1848			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1849			mddev->new_level = le32_to_cpu(sb->new_level);
1850			mddev->new_layout = le32_to_cpu(sb->new_layout);
1851			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1852			if (mddev->delta_disks < 0 ||
1853			    (mddev->delta_disks == 0 &&
1854			     (le32_to_cpu(sb->feature_map)
1855			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1856				mddev->reshape_backwards = 1;
1857		} else {
1858			mddev->reshape_position = MaxSector;
1859			mddev->delta_disks = 0;
1860			mddev->new_level = mddev->level;
1861			mddev->new_layout = mddev->layout;
1862			mddev->new_chunk_sectors = mddev->chunk_sectors;
1863		}
1864
1865		if (mddev->level == 0 &&
1866		    !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1867			mddev->layout = -1;
1868
1869		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1870			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1871
1872		if (le32_to_cpu(sb->feature_map) &
1873		    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1874			if (le32_to_cpu(sb->feature_map) &
1875			    (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1876				return -EINVAL;
1877			if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1878			    (le32_to_cpu(sb->feature_map) &
1879					    MD_FEATURE_MULTIPLE_PPLS))
1880				return -EINVAL;
1881			set_bit(MD_HAS_PPL, &mddev->flags);
1882		}
1883	} else if (mddev->pers == NULL) {
1884		/* Insist of good event counter while assembling, except for
1885		 * spares (which don't need an event count) */
1886		++ev1;
1887		if (rdev->desc_nr >= 0 &&
1888		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1889		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1890		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1891			if (ev1 < mddev->events)
1892				return -EINVAL;
1893	} else if (mddev->bitmap) {
1894		/* If adding to array with a bitmap, then we can accept an
1895		 * older device, but not too old.
1896		 */
1897		if (ev1 < mddev->bitmap->events_cleared)
1898			return 0;
1899		if (ev1 < mddev->events)
1900			set_bit(Bitmap_sync, &rdev->flags);
1901	} else {
1902		if (ev1 < mddev->events)
1903			/* just a hot-add of a new device, leave raid_disk at -1 */
1904			return 0;
1905	}
1906	if (mddev->level != LEVEL_MULTIPATH) {
1907		int role;
1908		if (rdev->desc_nr < 0 ||
1909		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1910			role = MD_DISK_ROLE_SPARE;
1911			rdev->desc_nr = -1;
1912		} else
1913			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1914		switch(role) {
1915		case MD_DISK_ROLE_SPARE: /* spare */
1916			break;
1917		case MD_DISK_ROLE_FAULTY: /* faulty */
1918			set_bit(Faulty, &rdev->flags);
1919			break;
1920		case MD_DISK_ROLE_JOURNAL: /* journal device */
1921			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1922				/* journal device without journal feature */
1923				pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1924				return -EINVAL;
1925			}
1926			set_bit(Journal, &rdev->flags);
1927			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1928			rdev->raid_disk = 0;
1929			break;
1930		default:
1931			rdev->saved_raid_disk = role;
1932			if ((le32_to_cpu(sb->feature_map) &
1933			     MD_FEATURE_RECOVERY_OFFSET)) {
1934				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1935				if (!(le32_to_cpu(sb->feature_map) &
1936				      MD_FEATURE_RECOVERY_BITMAP))
1937					rdev->saved_raid_disk = -1;
1938			} else {
1939				/*
1940				 * If the array is FROZEN, then the device can't
1941				 * be in_sync with rest of array.
1942				 */
1943				if (!test_bit(MD_RECOVERY_FROZEN,
1944					      &mddev->recovery))
1945					set_bit(In_sync, &rdev->flags);
1946			}
1947			rdev->raid_disk = role;
1948			break;
1949		}
1950		if (sb->devflags & WriteMostly1)
1951			set_bit(WriteMostly, &rdev->flags);
1952		if (sb->devflags & FailFast1)
1953			set_bit(FailFast, &rdev->flags);
1954		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1955			set_bit(Replacement, &rdev->flags);
1956	} else /* MULTIPATH are always insync */
1957		set_bit(In_sync, &rdev->flags);
1958
1959	return 0;
1960}
1961
1962static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1963{
1964	struct mdp_superblock_1 *sb;
1965	struct md_rdev *rdev2;
1966	int max_dev, i;
1967	/* make rdev->sb match mddev and rdev data. */
1968
1969	sb = page_address(rdev->sb_page);
1970
1971	sb->feature_map = 0;
1972	sb->pad0 = 0;
1973	sb->recovery_offset = cpu_to_le64(0);
1974	memset(sb->pad3, 0, sizeof(sb->pad3));
1975
1976	sb->utime = cpu_to_le64((__u64)mddev->utime);
1977	sb->events = cpu_to_le64(mddev->events);
1978	if (mddev->in_sync)
1979		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1980	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1981		sb->resync_offset = cpu_to_le64(MaxSector);
1982	else
1983		sb->resync_offset = cpu_to_le64(0);
1984
1985	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1986
1987	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1988	sb->size = cpu_to_le64(mddev->dev_sectors);
1989	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1990	sb->level = cpu_to_le32(mddev->level);
1991	sb->layout = cpu_to_le32(mddev->layout);
1992	if (test_bit(FailFast, &rdev->flags))
1993		sb->devflags |= FailFast1;
1994	else
1995		sb->devflags &= ~FailFast1;
1996
1997	if (test_bit(WriteMostly, &rdev->flags))
1998		sb->devflags |= WriteMostly1;
1999	else
2000		sb->devflags &= ~WriteMostly1;
2001	sb->data_offset = cpu_to_le64(rdev->data_offset);
2002	sb->data_size = cpu_to_le64(rdev->sectors);
2003
2004	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2005		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2006		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2007	}
2008
2009	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2010	    !test_bit(In_sync, &rdev->flags)) {
2011		sb->feature_map |=
2012			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2013		sb->recovery_offset =
2014			cpu_to_le64(rdev->recovery_offset);
2015		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2016			sb->feature_map |=
2017				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2018	}
2019	/* Note: recovery_offset and journal_tail share space  */
2020	if (test_bit(Journal, &rdev->flags))
2021		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2022	if (test_bit(Replacement, &rdev->flags))
2023		sb->feature_map |=
2024			cpu_to_le32(MD_FEATURE_REPLACEMENT);
2025
2026	if (mddev->reshape_position != MaxSector) {
2027		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2028		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2029		sb->new_layout = cpu_to_le32(mddev->new_layout);
2030		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2031		sb->new_level = cpu_to_le32(mddev->new_level);
2032		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2033		if (mddev->delta_disks == 0 &&
2034		    mddev->reshape_backwards)
2035			sb->feature_map
2036				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2037		if (rdev->new_data_offset != rdev->data_offset) {
2038			sb->feature_map
2039				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2040			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2041							     - rdev->data_offset));
2042		}
2043	}
2044
2045	if (mddev_is_clustered(mddev))
2046		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2047
2048	if (rdev->badblocks.count == 0)
2049		/* Nothing to do for bad blocks*/ ;
2050	else if (sb->bblog_offset == 0)
2051		/* Cannot record bad blocks on this device */
2052		md_error(mddev, rdev);
2053	else {
2054		struct badblocks *bb = &rdev->badblocks;
2055		__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2056		u64 *p = bb->page;
2057		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2058		if (bb->changed) {
2059			unsigned seq;
2060
2061retry:
2062			seq = read_seqbegin(&bb->lock);
2063
2064			memset(bbp, 0xff, PAGE_SIZE);
2065
2066			for (i = 0 ; i < bb->count ; i++) {
2067				u64 internal_bb = p[i];
2068				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2069						| BB_LEN(internal_bb));
2070				bbp[i] = cpu_to_le64(store_bb);
2071			}
2072			bb->changed = 0;
2073			if (read_seqretry(&bb->lock, seq))
2074				goto retry;
2075
2076			bb->sector = (rdev->sb_start +
2077				      (int)le32_to_cpu(sb->bblog_offset));
2078			bb->size = le16_to_cpu(sb->bblog_size);
2079		}
2080	}
2081
2082	max_dev = 0;
2083	rdev_for_each(rdev2, mddev)
2084		if (rdev2->desc_nr+1 > max_dev)
2085			max_dev = rdev2->desc_nr+1;
2086
2087	if (max_dev > le32_to_cpu(sb->max_dev)) {
2088		int bmask;
2089		sb->max_dev = cpu_to_le32(max_dev);
2090		rdev->sb_size = max_dev * 2 + 256;
2091		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2092		if (rdev->sb_size & bmask)
2093			rdev->sb_size = (rdev->sb_size | bmask) + 1;
2094	} else
2095		max_dev = le32_to_cpu(sb->max_dev);
2096
2097	for (i=0; i<max_dev;i++)
2098		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2099
2100	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2101		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2102
2103	if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2104		if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2105			sb->feature_map |=
2106			    cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2107		else
2108			sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2109		sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2110		sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2111	}
2112
2113	rdev_for_each(rdev2, mddev) {
2114		i = rdev2->desc_nr;
2115		if (test_bit(Faulty, &rdev2->flags))
2116			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2117		else if (test_bit(In_sync, &rdev2->flags))
2118			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2119		else if (test_bit(Journal, &rdev2->flags))
2120			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2121		else if (rdev2->raid_disk >= 0)
2122			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2123		else
2124			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2125	}
2126
2127	sb->sb_csum = calc_sb_1_csum(sb);
2128}
2129
2130static sector_t super_1_choose_bm_space(sector_t dev_size)
2131{
2132	sector_t bm_space;
2133
2134	/* if the device is bigger than 8Gig, save 64k for bitmap
2135	 * usage, if bigger than 200Gig, save 128k
2136	 */
2137	if (dev_size < 64*2)
2138		bm_space = 0;
2139	else if (dev_size - 64*2 >= 200*1024*1024*2)
2140		bm_space = 128*2;
2141	else if (dev_size - 4*2 > 8*1024*1024*2)
2142		bm_space = 64*2;
2143	else
2144		bm_space = 4*2;
2145	return bm_space;
2146}
2147
2148static unsigned long long
2149super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2150{
2151	struct mdp_superblock_1 *sb;
2152	sector_t max_sectors;
2153	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2154		return 0; /* component must fit device */
2155	if (rdev->data_offset != rdev->new_data_offset)
2156		return 0; /* too confusing */
2157	if (rdev->sb_start < rdev->data_offset) {
2158		/* minor versions 1 and 2; superblock before data */
2159		max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
 
2160		if (!num_sectors || num_sectors > max_sectors)
2161			num_sectors = max_sectors;
2162	} else if (rdev->mddev->bitmap_info.offset) {
2163		/* minor version 0 with bitmap we can't move */
2164		return 0;
2165	} else {
2166		/* minor version 0; superblock after data */
2167		sector_t sb_start, bm_space;
2168		sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2169
2170		/* 8K is for superblock */
2171		sb_start = dev_size - 8*2;
2172		sb_start &= ~(sector_t)(4*2 - 1);
2173
2174		bm_space = super_1_choose_bm_space(dev_size);
2175
2176		/* Space that can be used to store date needs to decrease
2177		 * superblock bitmap space and bad block space(4K)
2178		 */
2179		max_sectors = sb_start - bm_space - 4*2;
2180
2181		if (!num_sectors || num_sectors > max_sectors)
2182			num_sectors = max_sectors;
2183		rdev->sb_start = sb_start;
2184	}
2185	sb = page_address(rdev->sb_page);
2186	sb->data_size = cpu_to_le64(num_sectors);
2187	sb->super_offset = cpu_to_le64(rdev->sb_start);
2188	sb->sb_csum = calc_sb_1_csum(sb);
2189	do {
2190		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2191			       rdev->sb_page);
2192	} while (md_super_wait(rdev->mddev) < 0);
2193	return num_sectors;
2194
2195}
2196
2197static int
2198super_1_allow_new_offset(struct md_rdev *rdev,
2199			 unsigned long long new_offset)
2200{
2201	/* All necessary checks on new >= old have been done */
2202	struct bitmap *bitmap;
2203	if (new_offset >= rdev->data_offset)
2204		return 1;
2205
2206	/* with 1.0 metadata, there is no metadata to tread on
2207	 * so we can always move back */
2208	if (rdev->mddev->minor_version == 0)
2209		return 1;
2210
2211	/* otherwise we must be sure not to step on
2212	 * any metadata, so stay:
2213	 * 36K beyond start of superblock
2214	 * beyond end of badblocks
2215	 * beyond write-intent bitmap
2216	 */
2217	if (rdev->sb_start + (32+4)*2 > new_offset)
2218		return 0;
2219	bitmap = rdev->mddev->bitmap;
2220	if (bitmap && !rdev->mddev->bitmap_info.file &&
2221	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
2222	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2223		return 0;
2224	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2225		return 0;
2226
2227	return 1;
2228}
2229
2230static struct super_type super_types[] = {
2231	[0] = {
2232		.name	= "0.90.0",
2233		.owner	= THIS_MODULE,
2234		.load_super	    = super_90_load,
2235		.validate_super	    = super_90_validate,
2236		.sync_super	    = super_90_sync,
2237		.rdev_size_change   = super_90_rdev_size_change,
2238		.allow_new_offset   = super_90_allow_new_offset,
2239	},
2240	[1] = {
2241		.name	= "md-1",
2242		.owner	= THIS_MODULE,
2243		.load_super	    = super_1_load,
2244		.validate_super	    = super_1_validate,
2245		.sync_super	    = super_1_sync,
2246		.rdev_size_change   = super_1_rdev_size_change,
2247		.allow_new_offset   = super_1_allow_new_offset,
2248	},
2249};
2250
2251static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2252{
2253	if (mddev->sync_super) {
2254		mddev->sync_super(mddev, rdev);
2255		return;
2256	}
2257
2258	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2259
2260	super_types[mddev->major_version].sync_super(mddev, rdev);
2261}
2262
2263static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2264{
2265	struct md_rdev *rdev, *rdev2;
2266
2267	rcu_read_lock();
2268	rdev_for_each_rcu(rdev, mddev1) {
2269		if (test_bit(Faulty, &rdev->flags) ||
2270		    test_bit(Journal, &rdev->flags) ||
2271		    rdev->raid_disk == -1)
2272			continue;
2273		rdev_for_each_rcu(rdev2, mddev2) {
2274			if (test_bit(Faulty, &rdev2->flags) ||
2275			    test_bit(Journal, &rdev2->flags) ||
2276			    rdev2->raid_disk == -1)
2277				continue;
2278			if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2279				rcu_read_unlock();
2280				return 1;
2281			}
2282		}
2283	}
2284	rcu_read_unlock();
2285	return 0;
2286}
2287
2288static LIST_HEAD(pending_raid_disks);
2289
2290/*
2291 * Try to register data integrity profile for an mddev
2292 *
2293 * This is called when an array is started and after a disk has been kicked
2294 * from the array. It only succeeds if all working and active component devices
2295 * are integrity capable with matching profiles.
2296 */
2297int md_integrity_register(struct mddev *mddev)
2298{
2299	struct md_rdev *rdev, *reference = NULL;
2300
2301	if (list_empty(&mddev->disks))
2302		return 0; /* nothing to do */
2303	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2304		return 0; /* shouldn't register, or already is */
2305	rdev_for_each(rdev, mddev) {
2306		/* skip spares and non-functional disks */
2307		if (test_bit(Faulty, &rdev->flags))
2308			continue;
2309		if (rdev->raid_disk < 0)
2310			continue;
2311		if (!reference) {
2312			/* Use the first rdev as the reference */
2313			reference = rdev;
2314			continue;
2315		}
2316		/* does this rdev's profile match the reference profile? */
2317		if (blk_integrity_compare(reference->bdev->bd_disk,
2318				rdev->bdev->bd_disk) < 0)
2319			return -EINVAL;
2320	}
2321	if (!reference || !bdev_get_integrity(reference->bdev))
2322		return 0;
2323	/*
2324	 * All component devices are integrity capable and have matching
2325	 * profiles, register the common profile for the md device.
2326	 */
2327	blk_integrity_register(mddev->gendisk,
2328			       bdev_get_integrity(reference->bdev));
2329
2330	pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2331	if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2332	    (mddev->level != 1 && mddev->level != 10 &&
2333	     bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2334		/*
2335		 * No need to handle the failure of bioset_integrity_create,
2336		 * because the function is called by md_run() -> pers->run(),
2337		 * md_run calls bioset_exit -> bioset_integrity_free in case
2338		 * of failure case.
2339		 */
2340		pr_err("md: failed to create integrity pool for %s\n",
2341		       mdname(mddev));
2342		return -EINVAL;
2343	}
2344	return 0;
2345}
2346EXPORT_SYMBOL(md_integrity_register);
2347
2348/*
2349 * Attempt to add an rdev, but only if it is consistent with the current
2350 * integrity profile
2351 */
2352int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2353{
2354	struct blk_integrity *bi_mddev;
2355
2356	if (!mddev->gendisk)
2357		return 0;
2358
2359	bi_mddev = blk_get_integrity(mddev->gendisk);
2360
2361	if (!bi_mddev) /* nothing to do */
2362		return 0;
2363
2364	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2365		pr_err("%s: incompatible integrity profile for %pg\n",
2366		       mdname(mddev), rdev->bdev);
2367		return -ENXIO;
2368	}
2369
2370	return 0;
2371}
2372EXPORT_SYMBOL(md_integrity_add_rdev);
2373
2374static bool rdev_read_only(struct md_rdev *rdev)
2375{
2376	return bdev_read_only(rdev->bdev) ||
2377		(rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2378}
2379
2380static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2381{
2382	char b[BDEVNAME_SIZE];
 
 
2383	int err;
2384
 
 
 
 
 
2385	/* prevent duplicates */
2386	if (find_rdev(mddev, rdev->bdev->bd_dev))
2387		return -EEXIST;
2388
2389	if (rdev_read_only(rdev) && mddev->pers)
2390		return -EROFS;
2391
2392	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2393	if (!test_bit(Journal, &rdev->flags) &&
2394	    rdev->sectors &&
2395	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2396		if (mddev->pers) {
2397			/* Cannot change size, so fail
2398			 * If mddev->level <= 0, then we don't care
2399			 * about aligning sizes (e.g. linear)
2400			 */
2401			if (mddev->level > 0)
2402				return -ENOSPC;
2403		} else
2404			mddev->dev_sectors = rdev->sectors;
2405	}
2406
2407	/* Verify rdev->desc_nr is unique.
2408	 * If it is -1, assign a free number, else
2409	 * check number is not in use
2410	 */
2411	rcu_read_lock();
2412	if (rdev->desc_nr < 0) {
2413		int choice = 0;
2414		if (mddev->pers)
2415			choice = mddev->raid_disks;
2416		while (md_find_rdev_nr_rcu(mddev, choice))
2417			choice++;
2418		rdev->desc_nr = choice;
2419	} else {
2420		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2421			rcu_read_unlock();
2422			return -EBUSY;
2423		}
2424	}
2425	rcu_read_unlock();
2426	if (!test_bit(Journal, &rdev->flags) &&
2427	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2428		pr_warn("md: %s: array is limited to %d devices\n",
2429			mdname(mddev), mddev->max_disks);
2430		return -EBUSY;
2431	}
2432	snprintf(b, sizeof(b), "%pg", rdev->bdev);
2433	strreplace(b, '/', '!');
 
2434
2435	rdev->mddev = mddev;
2436	pr_debug("md: bind<%s>\n", b);
2437
2438	if (mddev->raid_disks)
2439		mddev_create_serial_pool(mddev, rdev, false);
2440
2441	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2442		goto fail;
2443
2444	/* failure here is OK */
2445	err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
 
2446	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2447	rdev->sysfs_unack_badblocks =
2448		sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2449	rdev->sysfs_badblocks =
2450		sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2451
2452	list_add_rcu(&rdev->same_set, &mddev->disks);
2453	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2454
2455	/* May as well allow recovery to be retried once */
2456	mddev->recovery_disabled++;
2457
2458	return 0;
2459
2460 fail:
2461	pr_warn("md: failed to register dev-%s for %s\n",
2462		b, mdname(mddev));
2463	return err;
2464}
2465
2466static void rdev_delayed_delete(struct work_struct *ws)
2467{
2468	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2469	kobject_del(&rdev->kobj);
2470	kobject_put(&rdev->kobj);
2471}
2472
2473void md_autodetect_dev(dev_t dev);
2474
2475static void export_rdev(struct md_rdev *rdev)
2476{
2477	pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2478	md_rdev_clear(rdev);
2479#ifndef MODULE
2480	if (test_bit(AutoDetected, &rdev->flags))
2481		md_autodetect_dev(rdev->bdev->bd_dev);
2482#endif
2483	blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2484	rdev->bdev = NULL;
2485	kobject_put(&rdev->kobj);
2486}
2487
2488static void md_kick_rdev_from_array(struct md_rdev *rdev)
2489{
 
 
 
 
 
2490	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2491	list_del_rcu(&rdev->same_set);
2492	pr_debug("md: unbind<%pg>\n", rdev->bdev);
2493	mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2494	rdev->mddev = NULL;
2495	sysfs_remove_link(&rdev->kobj, "block");
2496	sysfs_put(rdev->sysfs_state);
2497	sysfs_put(rdev->sysfs_unack_badblocks);
2498	sysfs_put(rdev->sysfs_badblocks);
2499	rdev->sysfs_state = NULL;
2500	rdev->sysfs_unack_badblocks = NULL;
2501	rdev->sysfs_badblocks = NULL;
2502	rdev->badblocks.count = 0;
2503	/* We need to delay this, otherwise we can deadlock when
2504	 * writing to 'remove' to "dev/state".  We also need
2505	 * to delay it due to rcu usage.
2506	 */
2507	synchronize_rcu();
2508	INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2509	kobject_get(&rdev->kobj);
2510	queue_work(md_rdev_misc_wq, &rdev->del_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511	export_rdev(rdev);
2512}
2513
2514static void export_array(struct mddev *mddev)
2515{
2516	struct md_rdev *rdev;
2517
2518	while (!list_empty(&mddev->disks)) {
2519		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2520					same_set);
2521		md_kick_rdev_from_array(rdev);
 
 
2522	}
 
 
2523	mddev->raid_disks = 0;
2524	mddev->major_version = 0;
2525}
2526
2527static bool set_in_sync(struct mddev *mddev)
2528{
2529	lockdep_assert_held(&mddev->lock);
2530	if (!mddev->in_sync) {
2531		mddev->sync_checkers++;
2532		spin_unlock(&mddev->lock);
2533		percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2534		spin_lock(&mddev->lock);
2535		if (!mddev->in_sync &&
2536		    percpu_ref_is_zero(&mddev->writes_pending)) {
2537			mddev->in_sync = 1;
2538			/*
2539			 * Ensure ->in_sync is visible before we clear
2540			 * ->sync_checkers.
2541			 */
2542			smp_mb();
2543			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2544			sysfs_notify_dirent_safe(mddev->sysfs_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545		}
2546		if (--mddev->sync_checkers == 0)
2547			percpu_ref_switch_to_percpu(&mddev->writes_pending);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548	}
2549	if (mddev->safemode == 1)
2550		mddev->safemode = 0;
2551	return mddev->in_sync;
2552}
2553
2554static void sync_sbs(struct mddev *mddev, int nospares)
 
2555{
2556	/* Update each superblock (in-memory image), but
2557	 * if we are allowed to, skip spares which already
2558	 * have the right event counter, or have one earlier
2559	 * (which would mean they aren't being marked as dirty
2560	 * with the rest of the array)
2561	 */
2562	struct md_rdev *rdev;
2563	rdev_for_each(rdev, mddev) {
2564		if (rdev->sb_events == mddev->events ||
2565		    (nospares &&
2566		     rdev->raid_disk < 0 &&
2567		     rdev->sb_events+1 == mddev->events)) {
2568			/* Don't update this superblock */
2569			rdev->sb_loaded = 2;
2570		} else {
2571			sync_super(mddev, rdev);
2572			rdev->sb_loaded = 1;
2573		}
2574	}
2575}
2576
2577static bool does_sb_need_changing(struct mddev *mddev)
2578{
2579	struct md_rdev *rdev = NULL, *iter;
2580	struct mdp_superblock_1 *sb;
2581	int role;
2582
2583	/* Find a good rdev */
2584	rdev_for_each(iter, mddev)
2585		if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2586			rdev = iter;
2587			break;
2588		}
2589
2590	/* No good device found. */
2591	if (!rdev)
2592		return false;
2593
2594	sb = page_address(rdev->sb_page);
2595	/* Check if a device has become faulty or a spare become active */
2596	rdev_for_each(rdev, mddev) {
2597		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2598		/* Device activated? */
2599		if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2600		    !test_bit(Faulty, &rdev->flags))
2601			return true;
2602		/* Device turned faulty? */
2603		if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2604			return true;
2605	}
2606
2607	/* Check if any mddev parameters have changed */
2608	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2609	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2610	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2611	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2612	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2613		return true;
2614
2615	return false;
2616}
2617
2618void md_update_sb(struct mddev *mddev, int force_change)
2619{
2620	struct md_rdev *rdev;
2621	int sync_req;
2622	int nospares = 0;
2623	int any_badblocks_changed = 0;
2624	int ret = -1;
2625
2626	if (!md_is_rdwr(mddev)) {
2627		if (force_change)
2628			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2629		return;
2630	}
2631
2632repeat:
2633	if (mddev_is_clustered(mddev)) {
2634		if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2635			force_change = 1;
2636		if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2637			nospares = 1;
2638		ret = md_cluster_ops->metadata_update_start(mddev);
2639		/* Has someone else has updated the sb */
2640		if (!does_sb_need_changing(mddev)) {
2641			if (ret == 0)
2642				md_cluster_ops->metadata_update_cancel(mddev);
2643			bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2644							 BIT(MD_SB_CHANGE_DEVS) |
2645							 BIT(MD_SB_CHANGE_CLEAN));
2646			return;
2647		}
2648	}
2649
2650	/*
2651	 * First make sure individual recovery_offsets are correct
2652	 * curr_resync_completed can only be used during recovery.
2653	 * During reshape/resync it might use array-addresses rather
2654	 * that device addresses.
2655	 */
2656	rdev_for_each(rdev, mddev) {
2657		if (rdev->raid_disk >= 0 &&
2658		    mddev->delta_disks >= 0 &&
2659		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2660		    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2661		    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2662		    !test_bit(Journal, &rdev->flags) &&
2663		    !test_bit(In_sync, &rdev->flags) &&
2664		    mddev->curr_resync_completed > rdev->recovery_offset)
2665				rdev->recovery_offset = mddev->curr_resync_completed;
2666
2667	}
2668	if (!mddev->persistent) {
2669		clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2670		clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2671		if (!mddev->external) {
2672			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2673			rdev_for_each(rdev, mddev) {
2674				if (rdev->badblocks.changed) {
2675					rdev->badblocks.changed = 0;
2676					ack_all_badblocks(&rdev->badblocks);
2677					md_error(mddev, rdev);
2678				}
2679				clear_bit(Blocked, &rdev->flags);
2680				clear_bit(BlockedBadBlocks, &rdev->flags);
2681				wake_up(&rdev->blocked_wait);
2682			}
2683		}
2684		wake_up(&mddev->sb_wait);
2685		return;
2686	}
2687
2688	spin_lock(&mddev->lock);
2689
2690	mddev->utime = ktime_get_real_seconds();
2691
2692	if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2693		force_change = 1;
2694	if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2695		/* just a clean<-> dirty transition, possibly leave spares alone,
2696		 * though if events isn't the right even/odd, we will have to do
2697		 * spares after all
2698		 */
2699		nospares = 1;
2700	if (force_change)
2701		nospares = 0;
2702	if (mddev->degraded)
2703		/* If the array is degraded, then skipping spares is both
2704		 * dangerous and fairly pointless.
2705		 * Dangerous because a device that was removed from the array
2706		 * might have a event_count that still looks up-to-date,
2707		 * so it can be re-added without a resync.
2708		 * Pointless because if there are any spares to skip,
2709		 * then a recovery will happen and soon that array won't
2710		 * be degraded any more and the spare can go back to sleep then.
2711		 */
2712		nospares = 0;
2713
2714	sync_req = mddev->in_sync;
2715
2716	/* If this is just a dirty<->clean transition, and the array is clean
2717	 * and 'events' is odd, we can roll back to the previous clean state */
2718	if (nospares
2719	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2720	    && mddev->can_decrease_events
2721	    && mddev->events != 1) {
2722		mddev->events--;
2723		mddev->can_decrease_events = 0;
2724	} else {
2725		/* otherwise we have to go forward and ... */
2726		mddev->events ++;
2727		mddev->can_decrease_events = nospares;
2728	}
2729
2730	/*
2731	 * This 64-bit counter should never wrap.
2732	 * Either we are in around ~1 trillion A.C., assuming
2733	 * 1 reboot per second, or we have a bug...
2734	 */
2735	WARN_ON(mddev->events == 0);
 
 
 
2736
2737	rdev_for_each(rdev, mddev) {
2738		if (rdev->badblocks.changed)
2739			any_badblocks_changed++;
2740		if (test_bit(Faulty, &rdev->flags))
2741			set_bit(FaultRecorded, &rdev->flags);
2742	}
2743
2744	sync_sbs(mddev, nospares);
2745	spin_unlock(&mddev->lock);
2746
2747	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2748		 mdname(mddev), mddev->in_sync);
2749
2750	if (mddev->queue)
2751		blk_add_trace_msg(mddev->queue, "md md_update_sb");
2752rewrite:
2753	md_bitmap_update_sb(mddev->bitmap);
2754	rdev_for_each(rdev, mddev) {
 
 
2755		if (rdev->sb_loaded != 1)
2756			continue; /* no noise on spare devices */
2757
2758		if (!test_bit(Faulty, &rdev->flags)) {
 
2759			md_super_write(mddev,rdev,
2760				       rdev->sb_start, rdev->sb_size,
2761				       rdev->sb_page);
2762			pr_debug("md: (write) %pg's sb offset: %llu\n",
2763				 rdev->bdev,
2764				 (unsigned long long)rdev->sb_start);
2765			rdev->sb_events = mddev->events;
2766			if (rdev->badblocks.size) {
2767				md_super_write(mddev, rdev,
2768					       rdev->badblocks.sector,
2769					       rdev->badblocks.size << 9,
2770					       rdev->bb_page);
2771				rdev->badblocks.size = 0;
2772			}
2773
2774		} else
2775			pr_debug("md: %pg (skipping faulty)\n",
2776				 rdev->bdev);
 
 
2777
2778		if (mddev->level == LEVEL_MULTIPATH)
2779			/* only need to write one superblock... */
2780			break;
2781	}
2782	if (md_super_wait(mddev) < 0)
2783		goto rewrite;
2784	/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2785
2786	if (mddev_is_clustered(mddev) && ret == 0)
2787		md_cluster_ops->metadata_update_finish(mddev);
2788
 
2789	if (mddev->in_sync != sync_req ||
2790	    !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2791			       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2792		/* have to write it out again */
 
2793		goto repeat;
 
 
 
2794	wake_up(&mddev->sb_wait);
2795	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2796		sysfs_notify_dirent_safe(mddev->sysfs_completed);
2797
2798	rdev_for_each(rdev, mddev) {
2799		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2800			clear_bit(Blocked, &rdev->flags);
2801
2802		if (any_badblocks_changed)
2803			ack_all_badblocks(&rdev->badblocks);
2804		clear_bit(BlockedBadBlocks, &rdev->flags);
2805		wake_up(&rdev->blocked_wait);
2806	}
2807}
2808EXPORT_SYMBOL(md_update_sb);
2809
2810static int add_bound_rdev(struct md_rdev *rdev)
2811{
2812	struct mddev *mddev = rdev->mddev;
2813	int err = 0;
2814	bool add_journal = test_bit(Journal, &rdev->flags);
2815
2816	if (!mddev->pers->hot_remove_disk || add_journal) {
2817		/* If there is hot_add_disk but no hot_remove_disk
2818		 * then added disks for geometry changes,
2819		 * and should be added immediately.
2820		 */
2821		super_types[mddev->major_version].
2822			validate_super(mddev, rdev);
2823		if (add_journal)
2824			mddev_suspend(mddev);
2825		err = mddev->pers->hot_add_disk(mddev, rdev);
2826		if (add_journal)
2827			mddev_resume(mddev);
2828		if (err) {
2829			md_kick_rdev_from_array(rdev);
2830			return err;
2831		}
2832	}
2833	sysfs_notify_dirent_safe(rdev->sysfs_state);
2834
2835	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2836	if (mddev->degraded)
2837		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2838	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2839	md_new_event();
2840	md_wakeup_thread(mddev->thread);
2841	return 0;
2842}
2843
2844/* words written to sysfs files may, or may not, be \n terminated.
2845 * We want to accept with case. For this we use cmd_match.
2846 */
2847static int cmd_match(const char *cmd, const char *str)
2848{
2849	/* See if cmd, written into a sysfs file, matches
2850	 * str.  They must either be the same, or cmd can
2851	 * have a trailing newline
2852	 */
2853	while (*cmd && *str && *cmd == *str) {
2854		cmd++;
2855		str++;
2856	}
2857	if (*cmd == '\n')
2858		cmd++;
2859	if (*str || *cmd)
2860		return 0;
2861	return 1;
2862}
2863
2864struct rdev_sysfs_entry {
2865	struct attribute attr;
2866	ssize_t (*show)(struct md_rdev *, char *);
2867	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2868};
2869
2870static ssize_t
2871state_show(struct md_rdev *rdev, char *page)
2872{
2873	char *sep = ",";
2874	size_t len = 0;
2875	unsigned long flags = READ_ONCE(rdev->flags);
2876
2877	if (test_bit(Faulty, &flags) ||
2878	    (!test_bit(ExternalBbl, &flags) &&
2879	    rdev->badblocks.unacked_exist))
2880		len += sprintf(page+len, "faulty%s", sep);
2881	if (test_bit(In_sync, &flags))
2882		len += sprintf(page+len, "in_sync%s", sep);
2883	if (test_bit(Journal, &flags))
2884		len += sprintf(page+len, "journal%s", sep);
2885	if (test_bit(WriteMostly, &flags))
2886		len += sprintf(page+len, "write_mostly%s", sep);
2887	if (test_bit(Blocked, &flags) ||
 
 
 
2888	    (rdev->badblocks.unacked_exist
2889	     && !test_bit(Faulty, &flags)))
2890		len += sprintf(page+len, "blocked%s", sep);
2891	if (!test_bit(Faulty, &flags) &&
2892	    !test_bit(Journal, &flags) &&
2893	    !test_bit(In_sync, &flags))
2894		len += sprintf(page+len, "spare%s", sep);
2895	if (test_bit(WriteErrorSeen, &flags))
2896		len += sprintf(page+len, "write_error%s", sep);
2897	if (test_bit(WantReplacement, &flags))
2898		len += sprintf(page+len, "want_replacement%s", sep);
2899	if (test_bit(Replacement, &flags))
2900		len += sprintf(page+len, "replacement%s", sep);
2901	if (test_bit(ExternalBbl, &flags))
2902		len += sprintf(page+len, "external_bbl%s", sep);
2903	if (test_bit(FailFast, &flags))
2904		len += sprintf(page+len, "failfast%s", sep);
2905
2906	if (len)
2907		len -= strlen(sep);
 
 
2908
2909	return len+sprintf(page+len, "\n");
2910}
2911
2912static ssize_t
2913state_store(struct md_rdev *rdev, const char *buf, size_t len)
2914{
2915	/* can write
2916	 *  faulty  - simulates an error
2917	 *  remove  - disconnects the device
2918	 *  writemostly - sets write_mostly
2919	 *  -writemostly - clears write_mostly
2920	 *  blocked - sets the Blocked flags
2921	 *  -blocked - clears the Blocked and possibly simulates an error
2922	 *  insync - sets Insync providing device isn't active
2923	 *  -insync - clear Insync for a device with a slot assigned,
2924	 *            so that it gets rebuilt based on bitmap
2925	 *  write_error - sets WriteErrorSeen
2926	 *  -write_error - clears WriteErrorSeen
2927	 *  {,-}failfast - set/clear FailFast
2928	 */
2929
2930	struct mddev *mddev = rdev->mddev;
2931	int err = -EINVAL;
2932	bool need_update_sb = false;
2933
2934	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2935		md_error(rdev->mddev, rdev);
2936
2937		if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2938			err = -EBUSY;
2939		else
2940			err = 0;
 
 
2941	} else if (cmd_match(buf, "remove")) {
2942		if (rdev->mddev->pers) {
2943			clear_bit(Blocked, &rdev->flags);
2944			remove_and_add_spares(rdev->mddev, rdev);
2945		}
2946		if (rdev->raid_disk >= 0)
2947			err = -EBUSY;
2948		else {
 
 
 
 
 
2949			err = 0;
2950			if (mddev_is_clustered(mddev))
2951				err = md_cluster_ops->remove_disk(mddev, rdev);
2952
2953			if (err == 0) {
2954				md_kick_rdev_from_array(rdev);
2955				if (mddev->pers) {
2956					set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2957					md_wakeup_thread(mddev->thread);
2958				}
2959				md_new_event();
2960			}
2961		}
2962	} else if (cmd_match(buf, "writemostly")) {
2963		set_bit(WriteMostly, &rdev->flags);
2964		mddev_create_serial_pool(rdev->mddev, rdev, false);
2965		need_update_sb = true;
2966		err = 0;
2967	} else if (cmd_match(buf, "-writemostly")) {
2968		mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2969		clear_bit(WriteMostly, &rdev->flags);
2970		need_update_sb = true;
2971		err = 0;
2972	} else if (cmd_match(buf, "blocked")) {
2973		set_bit(Blocked, &rdev->flags);
2974		err = 0;
2975	} else if (cmd_match(buf, "-blocked")) {
2976		if (!test_bit(Faulty, &rdev->flags) &&
2977		    !test_bit(ExternalBbl, &rdev->flags) &&
2978		    rdev->badblocks.unacked_exist) {
2979			/* metadata handler doesn't understand badblocks,
2980			 * so we need to fail the device
2981			 */
2982			md_error(rdev->mddev, rdev);
2983		}
2984		clear_bit(Blocked, &rdev->flags);
2985		clear_bit(BlockedBadBlocks, &rdev->flags);
2986		wake_up(&rdev->blocked_wait);
2987		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2988		md_wakeup_thread(rdev->mddev->thread);
2989
2990		err = 0;
2991	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2992		set_bit(In_sync, &rdev->flags);
2993		err = 0;
2994	} else if (cmd_match(buf, "failfast")) {
2995		set_bit(FailFast, &rdev->flags);
2996		need_update_sb = true;
2997		err = 0;
2998	} else if (cmd_match(buf, "-failfast")) {
2999		clear_bit(FailFast, &rdev->flags);
3000		need_update_sb = true;
3001		err = 0;
3002	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3003		   !test_bit(Journal, &rdev->flags)) {
3004		if (rdev->mddev->pers == NULL) {
3005			clear_bit(In_sync, &rdev->flags);
3006			rdev->saved_raid_disk = rdev->raid_disk;
3007			rdev->raid_disk = -1;
3008			err = 0;
3009		}
3010	} else if (cmd_match(buf, "write_error")) {
3011		set_bit(WriteErrorSeen, &rdev->flags);
3012		err = 0;
3013	} else if (cmd_match(buf, "-write_error")) {
3014		clear_bit(WriteErrorSeen, &rdev->flags);
3015		err = 0;
3016	} else if (cmd_match(buf, "want_replacement")) {
3017		/* Any non-spare device that is not a replacement can
3018		 * become want_replacement at any time, but we then need to
3019		 * check if recovery is needed.
3020		 */
3021		if (rdev->raid_disk >= 0 &&
3022		    !test_bit(Journal, &rdev->flags) &&
3023		    !test_bit(Replacement, &rdev->flags))
3024			set_bit(WantReplacement, &rdev->flags);
3025		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3026		md_wakeup_thread(rdev->mddev->thread);
3027		err = 0;
3028	} else if (cmd_match(buf, "-want_replacement")) {
3029		/* Clearing 'want_replacement' is always allowed.
3030		 * Once replacements starts it is too late though.
3031		 */
3032		err = 0;
3033		clear_bit(WantReplacement, &rdev->flags);
3034	} else if (cmd_match(buf, "replacement")) {
3035		/* Can only set a device as a replacement when array has not
3036		 * yet been started.  Once running, replacement is automatic
3037		 * from spares, or by assigning 'slot'.
3038		 */
3039		if (rdev->mddev->pers)
3040			err = -EBUSY;
3041		else {
3042			set_bit(Replacement, &rdev->flags);
3043			err = 0;
3044		}
3045	} else if (cmd_match(buf, "-replacement")) {
3046		/* Similarly, can only clear Replacement before start */
3047		if (rdev->mddev->pers)
3048			err = -EBUSY;
3049		else {
3050			clear_bit(Replacement, &rdev->flags);
3051			err = 0;
3052		}
3053	} else if (cmd_match(buf, "re-add")) {
3054		if (!rdev->mddev->pers)
3055			err = -EINVAL;
3056		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3057				rdev->saved_raid_disk >= 0) {
3058			/* clear_bit is performed _after_ all the devices
3059			 * have their local Faulty bit cleared. If any writes
3060			 * happen in the meantime in the local node, they
3061			 * will land in the local bitmap, which will be synced
3062			 * by this node eventually
3063			 */
3064			if (!mddev_is_clustered(rdev->mddev) ||
3065			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3066				clear_bit(Faulty, &rdev->flags);
3067				err = add_bound_rdev(rdev);
3068			}
3069		} else
3070			err = -EBUSY;
3071	} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3072		set_bit(ExternalBbl, &rdev->flags);
3073		rdev->badblocks.shift = 0;
3074		err = 0;
3075	} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3076		clear_bit(ExternalBbl, &rdev->flags);
3077		err = 0;
3078	}
3079	if (need_update_sb)
3080		md_update_sb(mddev, 1);
3081	if (!err)
3082		sysfs_notify_dirent_safe(rdev->sysfs_state);
3083	return err ? err : len;
3084}
3085static struct rdev_sysfs_entry rdev_state =
3086__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3087
3088static ssize_t
3089errors_show(struct md_rdev *rdev, char *page)
3090{
3091	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3092}
3093
3094static ssize_t
3095errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3096{
3097	unsigned int n;
3098	int rv;
3099
3100	rv = kstrtouint(buf, 10, &n);
3101	if (rv < 0)
3102		return rv;
3103	atomic_set(&rdev->corrected_errors, n);
3104	return len;
3105}
3106static struct rdev_sysfs_entry rdev_errors =
3107__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3108
3109static ssize_t
3110slot_show(struct md_rdev *rdev, char *page)
3111{
3112	if (test_bit(Journal, &rdev->flags))
3113		return sprintf(page, "journal\n");
3114	else if (rdev->raid_disk < 0)
3115		return sprintf(page, "none\n");
3116	else
3117		return sprintf(page, "%d\n", rdev->raid_disk);
3118}
3119
3120static ssize_t
3121slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3122{
3123	int slot;
3124	int err;
3125
3126	if (test_bit(Journal, &rdev->flags))
3127		return -EBUSY;
3128	if (strncmp(buf, "none", 4)==0)
3129		slot = -1;
3130	else {
3131		err = kstrtouint(buf, 10, (unsigned int *)&slot);
3132		if (err < 0)
3133			return err;
3134	}
3135	if (rdev->mddev->pers && slot == -1) {
3136		/* Setting 'slot' on an active array requires also
3137		 * updating the 'rd%d' link, and communicating
3138		 * with the personality with ->hot_*_disk.
3139		 * For now we only support removing
3140		 * failed/spare devices.  This normally happens automatically,
3141		 * but not when the metadata is externally managed.
3142		 */
3143		if (rdev->raid_disk == -1)
3144			return -EEXIST;
3145		/* personality does all needed checks */
3146		if (rdev->mddev->pers->hot_remove_disk == NULL)
3147			return -EINVAL;
3148		clear_bit(Blocked, &rdev->flags);
3149		remove_and_add_spares(rdev->mddev, rdev);
3150		if (rdev->raid_disk >= 0)
3151			return -EBUSY;
 
 
3152		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3153		md_wakeup_thread(rdev->mddev->thread);
3154	} else if (rdev->mddev->pers) {
3155		/* Activating a spare .. or possibly reactivating
3156		 * if we ever get bitmaps working here.
3157		 */
3158		int err;
3159
3160		if (rdev->raid_disk != -1)
3161			return -EBUSY;
3162
3163		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3164			return -EBUSY;
3165
3166		if (rdev->mddev->pers->hot_add_disk == NULL)
3167			return -EINVAL;
3168
3169		if (slot >= rdev->mddev->raid_disks &&
3170		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3171			return -ENOSPC;
3172
3173		rdev->raid_disk = slot;
3174		if (test_bit(In_sync, &rdev->flags))
3175			rdev->saved_raid_disk = slot;
3176		else
3177			rdev->saved_raid_disk = -1;
3178		clear_bit(In_sync, &rdev->flags);
3179		clear_bit(Bitmap_sync, &rdev->flags);
3180		err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3181		if (err) {
3182			rdev->raid_disk = -1;
3183			return err;
3184		} else
3185			sysfs_notify_dirent_safe(rdev->sysfs_state);
3186		/* failure here is OK */;
3187		sysfs_link_rdev(rdev->mddev, rdev);
3188		/* don't wakeup anyone, leave that to userspace. */
3189	} else {
3190		if (slot >= rdev->mddev->raid_disks &&
3191		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3192			return -ENOSPC;
3193		rdev->raid_disk = slot;
3194		/* assume it is working */
3195		clear_bit(Faulty, &rdev->flags);
3196		clear_bit(WriteMostly, &rdev->flags);
3197		set_bit(In_sync, &rdev->flags);
3198		sysfs_notify_dirent_safe(rdev->sysfs_state);
3199	}
3200	return len;
3201}
3202
 
3203static struct rdev_sysfs_entry rdev_slot =
3204__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3205
3206static ssize_t
3207offset_show(struct md_rdev *rdev, char *page)
3208{
3209	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3210}
3211
3212static ssize_t
3213offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3214{
3215	unsigned long long offset;
3216	if (kstrtoull(buf, 10, &offset) < 0)
3217		return -EINVAL;
3218	if (rdev->mddev->pers && rdev->raid_disk >= 0)
3219		return -EBUSY;
3220	if (rdev->sectors && rdev->mddev->external)
3221		/* Must set offset before size, so overlap checks
3222		 * can be sane */
3223		return -EBUSY;
3224	rdev->data_offset = offset;
3225	rdev->new_data_offset = offset;
3226	return len;
3227}
3228
3229static struct rdev_sysfs_entry rdev_offset =
3230__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3231
3232static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3233{
3234	return sprintf(page, "%llu\n",
3235		       (unsigned long long)rdev->new_data_offset);
3236}
3237
3238static ssize_t new_offset_store(struct md_rdev *rdev,
3239				const char *buf, size_t len)
3240{
3241	unsigned long long new_offset;
3242	struct mddev *mddev = rdev->mddev;
3243
3244	if (kstrtoull(buf, 10, &new_offset) < 0)
3245		return -EINVAL;
3246
3247	if (mddev->sync_thread ||
3248	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3249		return -EBUSY;
3250	if (new_offset == rdev->data_offset)
3251		/* reset is always permitted */
3252		;
3253	else if (new_offset > rdev->data_offset) {
3254		/* must not push array size beyond rdev_sectors */
3255		if (new_offset - rdev->data_offset
3256		    + mddev->dev_sectors > rdev->sectors)
3257				return -E2BIG;
3258	}
3259	/* Metadata worries about other space details. */
3260
3261	/* decreasing the offset is inconsistent with a backwards
3262	 * reshape.
3263	 */
3264	if (new_offset < rdev->data_offset &&
3265	    mddev->reshape_backwards)
3266		return -EINVAL;
3267	/* Increasing offset is inconsistent with forwards
3268	 * reshape.  reshape_direction should be set to
3269	 * 'backwards' first.
3270	 */
3271	if (new_offset > rdev->data_offset &&
3272	    !mddev->reshape_backwards)
3273		return -EINVAL;
3274
3275	if (mddev->pers && mddev->persistent &&
3276	    !super_types[mddev->major_version]
3277	    .allow_new_offset(rdev, new_offset))
3278		return -E2BIG;
3279	rdev->new_data_offset = new_offset;
3280	if (new_offset > rdev->data_offset)
3281		mddev->reshape_backwards = 1;
3282	else if (new_offset < rdev->data_offset)
3283		mddev->reshape_backwards = 0;
3284
3285	return len;
3286}
3287static struct rdev_sysfs_entry rdev_new_offset =
3288__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3289
3290static ssize_t
3291rdev_size_show(struct md_rdev *rdev, char *page)
3292{
3293	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3294}
3295
3296static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
3297{
3298	/* check if two start/length pairs overlap */
3299	if (a->data_offset + a->sectors <= b->data_offset)
3300		return false;
3301	if (b->data_offset + b->sectors <= a->data_offset)
3302		return false;
3303	return true;
3304}
3305
3306static bool md_rdev_overlaps(struct md_rdev *rdev)
3307{
3308	struct mddev *mddev;
3309	struct md_rdev *rdev2;
3310
3311	spin_lock(&all_mddevs_lock);
3312	list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
3313		if (test_bit(MD_DELETED, &mddev->flags))
3314			continue;
3315		rdev_for_each(rdev2, mddev) {
3316			if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
3317			    md_rdevs_overlap(rdev, rdev2)) {
3318				spin_unlock(&all_mddevs_lock);
3319				return true;
3320			}
3321		}
3322	}
3323	spin_unlock(&all_mddevs_lock);
3324	return false;
3325}
3326
3327static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3328{
3329	unsigned long long blocks;
3330	sector_t new;
3331
3332	if (kstrtoull(buf, 10, &blocks) < 0)
3333		return -EINVAL;
3334
3335	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3336		return -EINVAL; /* sector conversion overflow */
3337
3338	new = blocks * 2;
3339	if (new != blocks * 2)
3340		return -EINVAL; /* unsigned long long to sector_t overflow */
3341
3342	*sectors = new;
3343	return 0;
3344}
3345
3346static ssize_t
3347rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3348{
3349	struct mddev *my_mddev = rdev->mddev;
3350	sector_t oldsectors = rdev->sectors;
3351	sector_t sectors;
3352
3353	if (test_bit(Journal, &rdev->flags))
3354		return -EBUSY;
3355	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3356		return -EINVAL;
3357	if (rdev->data_offset != rdev->new_data_offset)
3358		return -EINVAL; /* too confusing */
3359	if (my_mddev->pers && rdev->raid_disk >= 0) {
3360		if (my_mddev->persistent) {
3361			sectors = super_types[my_mddev->major_version].
3362				rdev_size_change(rdev, sectors);
3363			if (!sectors)
3364				return -EBUSY;
3365		} else if (!sectors)
3366			sectors = bdev_nr_sectors(rdev->bdev) -
3367				rdev->data_offset;
3368		if (!my_mddev->pers->resize)
3369			/* Cannot change size for RAID0 or Linear etc */
3370			return -EINVAL;
3371	}
3372	if (sectors < my_mddev->dev_sectors)
3373		return -EINVAL; /* component must fit device */
3374
3375	rdev->sectors = sectors;
 
 
 
 
 
 
 
 
 
3376
3377	/*
3378	 * Check that all other rdevs with the same bdev do not overlap.  This
3379	 * check does not provide a hard guarantee, it just helps avoid
3380	 * dangerous mistakes.
3381	 */
3382	if (sectors > oldsectors && my_mddev->external &&
3383	    md_rdev_overlaps(rdev)) {
3384		/*
3385		 * Someone else could have slipped in a size change here, but
3386		 * doing so is just silly.  We put oldsectors back because we
3387		 * know it is safe, and trust userspace not to race with itself.
3388		 */
3389		rdev->sectors = oldsectors;
3390		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3391	}
3392	return len;
3393}
3394
3395static struct rdev_sysfs_entry rdev_size =
3396__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3397
 
3398static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3399{
3400	unsigned long long recovery_start = rdev->recovery_offset;
3401
3402	if (test_bit(In_sync, &rdev->flags) ||
3403	    recovery_start == MaxSector)
3404		return sprintf(page, "none\n");
3405
3406	return sprintf(page, "%llu\n", recovery_start);
3407}
3408
3409static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3410{
3411	unsigned long long recovery_start;
3412
3413	if (cmd_match(buf, "none"))
3414		recovery_start = MaxSector;
3415	else if (kstrtoull(buf, 10, &recovery_start))
3416		return -EINVAL;
3417
3418	if (rdev->mddev->pers &&
3419	    rdev->raid_disk >= 0)
3420		return -EBUSY;
3421
3422	rdev->recovery_offset = recovery_start;
3423	if (recovery_start == MaxSector)
3424		set_bit(In_sync, &rdev->flags);
3425	else
3426		clear_bit(In_sync, &rdev->flags);
3427	return len;
3428}
3429
3430static struct rdev_sysfs_entry rdev_recovery_start =
3431__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3432
3433/* sysfs access to bad-blocks list.
3434 * We present two files.
3435 * 'bad-blocks' lists sector numbers and lengths of ranges that
3436 *    are recorded as bad.  The list is truncated to fit within
3437 *    the one-page limit of sysfs.
3438 *    Writing "sector length" to this file adds an acknowledged
3439 *    bad block list.
3440 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3441 *    been acknowledged.  Writing to this file adds bad blocks
3442 *    without acknowledging them.  This is largely for testing.
3443 */
3444static ssize_t bb_show(struct md_rdev *rdev, char *page)
3445{
3446	return badblocks_show(&rdev->badblocks, page, 0);
3447}
3448static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3449{
3450	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3451	/* Maybe that ack was all we needed */
3452	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3453		wake_up(&rdev->blocked_wait);
3454	return rv;
3455}
3456static struct rdev_sysfs_entry rdev_bad_blocks =
3457__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3458
 
3459static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3460{
3461	return badblocks_show(&rdev->badblocks, page, 1);
3462}
3463static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3464{
3465	return badblocks_store(&rdev->badblocks, page, len, 1);
3466}
3467static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3468__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3469
3470static ssize_t
3471ppl_sector_show(struct md_rdev *rdev, char *page)
3472{
3473	return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3474}
3475
3476static ssize_t
3477ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3478{
3479	unsigned long long sector;
3480
3481	if (kstrtoull(buf, 10, &sector) < 0)
3482		return -EINVAL;
3483	if (sector != (sector_t)sector)
3484		return -EINVAL;
3485
3486	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3487	    rdev->raid_disk >= 0)
3488		return -EBUSY;
3489
3490	if (rdev->mddev->persistent) {
3491		if (rdev->mddev->major_version == 0)
3492			return -EINVAL;
3493		if ((sector > rdev->sb_start &&
3494		     sector - rdev->sb_start > S16_MAX) ||
3495		    (sector < rdev->sb_start &&
3496		     rdev->sb_start - sector > -S16_MIN))
3497			return -EINVAL;
3498		rdev->ppl.offset = sector - rdev->sb_start;
3499	} else if (!rdev->mddev->external) {
3500		return -EBUSY;
3501	}
3502	rdev->ppl.sector = sector;
3503	return len;
3504}
3505
3506static struct rdev_sysfs_entry rdev_ppl_sector =
3507__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3508
3509static ssize_t
3510ppl_size_show(struct md_rdev *rdev, char *page)
3511{
3512	return sprintf(page, "%u\n", rdev->ppl.size);
3513}
3514
3515static ssize_t
3516ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3517{
3518	unsigned int size;
3519
3520	if (kstrtouint(buf, 10, &size) < 0)
3521		return -EINVAL;
3522
3523	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3524	    rdev->raid_disk >= 0)
3525		return -EBUSY;
3526
3527	if (rdev->mddev->persistent) {
3528		if (rdev->mddev->major_version == 0)
3529			return -EINVAL;
3530		if (size > U16_MAX)
3531			return -EINVAL;
3532	} else if (!rdev->mddev->external) {
3533		return -EBUSY;
3534	}
3535	rdev->ppl.size = size;
3536	return len;
3537}
3538
3539static struct rdev_sysfs_entry rdev_ppl_size =
3540__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3541
3542static struct attribute *rdev_default_attrs[] = {
3543	&rdev_state.attr,
3544	&rdev_errors.attr,
3545	&rdev_slot.attr,
3546	&rdev_offset.attr,
3547	&rdev_new_offset.attr,
3548	&rdev_size.attr,
3549	&rdev_recovery_start.attr,
3550	&rdev_bad_blocks.attr,
3551	&rdev_unack_bad_blocks.attr,
3552	&rdev_ppl_sector.attr,
3553	&rdev_ppl_size.attr,
3554	NULL,
3555};
3556ATTRIBUTE_GROUPS(rdev_default);
3557static ssize_t
3558rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3559{
3560	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3561	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
 
 
3562
3563	if (!entry->show)
3564		return -EIO;
3565	if (!rdev->mddev)
3566		return -ENODEV;
3567	return entry->show(rdev, page);
 
 
 
 
 
 
 
3568}
3569
3570static ssize_t
3571rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3572	      const char *page, size_t length)
3573{
3574	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3575	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3576	ssize_t rv;
3577	struct mddev *mddev = rdev->mddev;
3578
3579	if (!entry->store)
3580		return -EIO;
3581	if (!capable(CAP_SYS_ADMIN))
3582		return -EACCES;
3583	rv = mddev ? mddev_lock(mddev) : -ENODEV;
3584	if (!rv) {
3585		if (rdev->mddev == NULL)
3586			rv = -ENODEV;
3587		else
3588			rv = entry->store(rdev, page, length);
3589		mddev_unlock(mddev);
3590	}
3591	return rv;
3592}
3593
3594static void rdev_free(struct kobject *ko)
3595{
3596	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3597	kfree(rdev);
3598}
3599static const struct sysfs_ops rdev_sysfs_ops = {
3600	.show		= rdev_attr_show,
3601	.store		= rdev_attr_store,
3602};
3603static struct kobj_type rdev_ktype = {
3604	.release	= rdev_free,
3605	.sysfs_ops	= &rdev_sysfs_ops,
3606	.default_groups	= rdev_default_groups,
3607};
3608
3609int md_rdev_init(struct md_rdev *rdev)
3610{
3611	rdev->desc_nr = -1;
3612	rdev->saved_raid_disk = -1;
3613	rdev->raid_disk = -1;
3614	rdev->flags = 0;
3615	rdev->data_offset = 0;
3616	rdev->new_data_offset = 0;
3617	rdev->sb_events = 0;
3618	rdev->last_read_error = 0;
 
3619	rdev->sb_loaded = 0;
3620	rdev->bb_page = NULL;
3621	atomic_set(&rdev->nr_pending, 0);
3622	atomic_set(&rdev->read_errors, 0);
3623	atomic_set(&rdev->corrected_errors, 0);
3624
3625	INIT_LIST_HEAD(&rdev->same_set);
3626	init_waitqueue_head(&rdev->blocked_wait);
3627
3628	/* Add space to store bad block list.
3629	 * This reserves the space even on arrays where it cannot
3630	 * be used - I wonder if that matters
3631	 */
3632	return badblocks_init(&rdev->badblocks, 0);
 
 
 
 
 
 
 
3633}
3634EXPORT_SYMBOL_GPL(md_rdev_init);
3635/*
3636 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3637 *
3638 * mark the device faulty if:
3639 *
3640 *   - the device is nonexistent (zero size)
3641 *   - the device has no valid superblock
3642 *
3643 * a faulty rdev _never_ has rdev->sb set.
3644 */
3645static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3646{
3647	static struct md_rdev claim_rdev; /* just for claiming the bdev */
 
3648	struct md_rdev *rdev;
3649	sector_t size;
3650	int err;
3651
3652	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3653	if (!rdev)
 
3654		return ERR_PTR(-ENOMEM);
 
3655
3656	err = md_rdev_init(rdev);
3657	if (err)
3658		goto out_free_rdev;
3659	err = alloc_disk_sb(rdev);
3660	if (err)
3661		goto out_clear_rdev;
3662
3663	rdev->bdev = blkdev_get_by_dev(newdev,
3664			FMODE_READ | FMODE_WRITE | FMODE_EXCL,
3665			super_format == -2 ? &claim_rdev : rdev);
3666	if (IS_ERR(rdev->bdev)) {
3667		pr_warn("md: could not open device unknown-block(%u,%u).\n",
3668			MAJOR(newdev), MINOR(newdev));
3669		err = PTR_ERR(rdev->bdev);
3670		goto out_clear_rdev;
3671	}
3672
3673	kobject_init(&rdev->kobj, &rdev_ktype);
3674
3675	size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3676	if (!size) {
3677		pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3678			rdev->bdev);
 
3679		err = -EINVAL;
3680		goto out_blkdev_put;
3681	}
3682
3683	if (super_format >= 0) {
3684		err = super_types[super_format].
3685			load_super(rdev, NULL, super_minor);
3686		if (err == -EINVAL) {
3687			pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3688				rdev->bdev,
3689				super_format, super_minor);
3690			goto out_blkdev_put;
 
 
3691		}
3692		if (err < 0) {
3693			pr_warn("md: could not read %pg's sb, not importing!\n",
3694				rdev->bdev);
3695			goto out_blkdev_put;
 
3696		}
3697	}
 
 
 
3698
3699	return rdev;
3700
3701out_blkdev_put:
3702	blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3703out_clear_rdev:
3704	md_rdev_clear(rdev);
3705out_free_rdev:
3706	kfree(rdev);
3707	return ERR_PTR(err);
3708}
3709
3710/*
3711 * Check a full RAID array for plausibility
3712 */
3713
3714static int analyze_sbs(struct mddev *mddev)
 
3715{
3716	int i;
3717	struct md_rdev *rdev, *freshest, *tmp;
 
3718
3719	freshest = NULL;
3720	rdev_for_each_safe(rdev, tmp, mddev)
3721		switch (super_types[mddev->major_version].
3722			load_super(rdev, freshest, mddev->minor_version)) {
3723		case 1:
3724			freshest = rdev;
3725			break;
3726		case 0:
3727			break;
3728		default:
3729			pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3730				rdev->bdev);
3731			md_kick_rdev_from_array(rdev);
 
 
3732		}
3733
3734	/* Cannot find a valid fresh disk */
3735	if (!freshest) {
3736		pr_warn("md: cannot find a valid disk\n");
3737		return -EINVAL;
3738	}
3739
3740	super_types[mddev->major_version].
3741		validate_super(mddev, freshest);
3742
3743	i = 0;
3744	rdev_for_each_safe(rdev, tmp, mddev) {
3745		if (mddev->max_disks &&
3746		    (rdev->desc_nr >= mddev->max_disks ||
3747		     i > mddev->max_disks)) {
3748			pr_warn("md: %s: %pg: only %d devices permitted\n",
3749				mdname(mddev), rdev->bdev,
3750				mddev->max_disks);
3751			md_kick_rdev_from_array(rdev);
 
3752			continue;
3753		}
3754		if (rdev != freshest) {
3755			if (super_types[mddev->major_version].
3756			    validate_super(mddev, rdev)) {
3757				pr_warn("md: kicking non-fresh %pg from array!\n",
3758					rdev->bdev);
3759				md_kick_rdev_from_array(rdev);
 
3760				continue;
3761			}
3762		}
3763		if (mddev->level == LEVEL_MULTIPATH) {
3764			rdev->desc_nr = i++;
3765			rdev->raid_disk = rdev->desc_nr;
3766			set_bit(In_sync, &rdev->flags);
3767		} else if (rdev->raid_disk >=
3768			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3769			   !test_bit(Journal, &rdev->flags)) {
3770			rdev->raid_disk = -1;
3771			clear_bit(In_sync, &rdev->flags);
3772		}
3773	}
3774
3775	return 0;
3776}
3777
3778/* Read a fixed-point number.
3779 * Numbers in sysfs attributes should be in "standard" units where
3780 * possible, so time should be in seconds.
3781 * However we internally use a a much smaller unit such as
3782 * milliseconds or jiffies.
3783 * This function takes a decimal number with a possible fractional
3784 * component, and produces an integer which is the result of
3785 * multiplying that number by 10^'scale'.
3786 * all without any floating-point arithmetic.
3787 */
3788int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3789{
3790	unsigned long result = 0;
3791	long decimals = -1;
3792	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3793		if (*cp == '.')
3794			decimals = 0;
3795		else if (decimals < scale) {
3796			unsigned int value;
3797			value = *cp - '0';
3798			result = result * 10 + value;
3799			if (decimals >= 0)
3800				decimals++;
3801		}
3802		cp++;
3803	}
3804	if (*cp == '\n')
3805		cp++;
3806	if (*cp)
3807		return -EINVAL;
3808	if (decimals < 0)
3809		decimals = 0;
3810	*res = result * int_pow(10, scale - decimals);
 
 
 
 
3811	return 0;
3812}
3813
 
 
 
3814static ssize_t
3815safe_delay_show(struct mddev *mddev, char *page)
3816{
3817	int msec = (mddev->safemode_delay*1000)/HZ;
3818	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3819}
3820static ssize_t
3821safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3822{
3823	unsigned long msec;
3824
3825	if (mddev_is_clustered(mddev)) {
3826		pr_warn("md: Safemode is disabled for clustered mode\n");
3827		return -EINVAL;
3828	}
3829
3830	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3831		return -EINVAL;
3832	if (msec == 0)
3833		mddev->safemode_delay = 0;
3834	else {
3835		unsigned long old_delay = mddev->safemode_delay;
3836		unsigned long new_delay = (msec*HZ)/1000;
3837
3838		if (new_delay == 0)
3839			new_delay = 1;
3840		mddev->safemode_delay = new_delay;
3841		if (new_delay < old_delay || old_delay == 0)
3842			mod_timer(&mddev->safemode_timer, jiffies+1);
3843	}
3844	return len;
3845}
3846static struct md_sysfs_entry md_safe_delay =
3847__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3848
3849static ssize_t
3850level_show(struct mddev *mddev, char *page)
3851{
3852	struct md_personality *p;
3853	int ret;
3854	spin_lock(&mddev->lock);
3855	p = mddev->pers;
3856	if (p)
3857		ret = sprintf(page, "%s\n", p->name);
3858	else if (mddev->clevel[0])
3859		ret = sprintf(page, "%s\n", mddev->clevel);
3860	else if (mddev->level != LEVEL_NONE)
3861		ret = sprintf(page, "%d\n", mddev->level);
3862	else
3863		ret = 0;
3864	spin_unlock(&mddev->lock);
3865	return ret;
3866}
3867
3868static ssize_t
3869level_store(struct mddev *mddev, const char *buf, size_t len)
3870{
3871	char clevel[16];
3872	ssize_t rv;
3873	size_t slen = len;
3874	struct md_personality *pers, *oldpers;
3875	long level;
3876	void *priv, *oldpriv;
3877	struct md_rdev *rdev;
3878
3879	if (slen == 0 || slen >= sizeof(clevel))
3880		return -EINVAL;
3881
3882	rv = mddev_lock(mddev);
3883	if (rv)
3884		return rv;
3885
3886	if (mddev->pers == NULL) {
3887		strncpy(mddev->clevel, buf, slen);
3888		if (mddev->clevel[slen-1] == '\n')
3889			slen--;
3890		mddev->clevel[slen] = 0;
 
 
 
 
3891		mddev->level = LEVEL_NONE;
3892		rv = len;
3893		goto out_unlock;
3894	}
3895	rv = -EROFS;
3896	if (!md_is_rdwr(mddev))
3897		goto out_unlock;
3898
3899	/* request to change the personality.  Need to ensure:
3900	 *  - array is not engaged in resync/recovery/reshape
3901	 *  - old personality can be suspended
3902	 *  - new personality will access other array.
3903	 */
3904
3905	rv = -EBUSY;
3906	if (mddev->sync_thread ||
3907	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3908	    mddev->reshape_position != MaxSector ||
3909	    mddev->sysfs_active)
3910		goto out_unlock;
3911
3912	rv = -EINVAL;
3913	if (!mddev->pers->quiesce) {
3914		pr_warn("md: %s: %s does not support online personality change\n",
3915			mdname(mddev), mddev->pers->name);
3916		goto out_unlock;
3917	}
3918
3919	/* Now find the new personality */
3920	strncpy(clevel, buf, slen);
3921	if (clevel[slen-1] == '\n')
3922		slen--;
3923	clevel[slen] = 0;
3924	if (kstrtol(clevel, 10, &level))
 
 
3925		level = LEVEL_NONE;
3926
3927	if (request_module("md-%s", clevel) != 0)
3928		request_module("md-level-%s", clevel);
3929	spin_lock(&pers_lock);
3930	pers = find_pers(level, clevel);
3931	if (!pers || !try_module_get(pers->owner)) {
3932		spin_unlock(&pers_lock);
3933		pr_warn("md: personality %s not loaded\n", clevel);
3934		rv = -EINVAL;
3935		goto out_unlock;
3936	}
3937	spin_unlock(&pers_lock);
3938
3939	if (pers == mddev->pers) {
3940		/* Nothing to do! */
3941		module_put(pers->owner);
3942		rv = len;
3943		goto out_unlock;
3944	}
3945	if (!pers->takeover) {
3946		module_put(pers->owner);
3947		pr_warn("md: %s: %s does not support personality takeover\n",
3948			mdname(mddev), clevel);
3949		rv = -EINVAL;
3950		goto out_unlock;
3951	}
3952
3953	rdev_for_each(rdev, mddev)
3954		rdev->new_raid_disk = rdev->raid_disk;
3955
3956	/* ->takeover must set new_* and/or delta_disks
3957	 * if it succeeds, and may set them when it fails.
3958	 */
3959	priv = pers->takeover(mddev);
3960	if (IS_ERR(priv)) {
3961		mddev->new_level = mddev->level;
3962		mddev->new_layout = mddev->layout;
3963		mddev->new_chunk_sectors = mddev->chunk_sectors;
3964		mddev->raid_disks -= mddev->delta_disks;
3965		mddev->delta_disks = 0;
3966		mddev->reshape_backwards = 0;
3967		module_put(pers->owner);
3968		pr_warn("md: %s: %s would not accept array\n",
3969			mdname(mddev), clevel);
3970		rv = PTR_ERR(priv);
3971		goto out_unlock;
3972	}
3973
3974	/* Looks like we have a winner */
3975	mddev_suspend(mddev);
3976	mddev_detach(mddev);
3977
3978	spin_lock(&mddev->lock);
3979	oldpers = mddev->pers;
3980	oldpriv = mddev->private;
3981	mddev->pers = pers;
3982	mddev->private = priv;
3983	strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3984	mddev->level = mddev->new_level;
3985	mddev->layout = mddev->new_layout;
3986	mddev->chunk_sectors = mddev->new_chunk_sectors;
3987	mddev->delta_disks = 0;
3988	mddev->reshape_backwards = 0;
3989	mddev->degraded = 0;
3990	spin_unlock(&mddev->lock);
 
 
3991
3992	if (oldpers->sync_request == NULL &&
3993	    mddev->external) {
3994		/* We are converting from a no-redundancy array
3995		 * to a redundancy array and metadata is managed
3996		 * externally so we need to be sure that writes
3997		 * won't block due to a need to transition
3998		 *      clean->dirty
3999		 * until external management is started.
4000		 */
4001		mddev->in_sync = 0;
4002		mddev->safemode_delay = 0;
4003		mddev->safemode = 0;
4004	}
4005
4006	oldpers->free(mddev, oldpriv);
4007
4008	if (oldpers->sync_request == NULL &&
4009	    pers->sync_request != NULL) {
4010		/* need to add the md_redundancy_group */
4011		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4012			pr_warn("md: cannot register extra attributes for %s\n",
4013				mdname(mddev));
4014		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4015		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4016		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4017	}
4018	if (oldpers->sync_request != NULL &&
4019	    pers->sync_request == NULL) {
4020		/* need to remove the md_redundancy_group */
4021		if (mddev->to_remove == NULL)
4022			mddev->to_remove = &md_redundancy_group;
4023	}
4024
4025	module_put(oldpers->owner);
4026
4027	rdev_for_each(rdev, mddev) {
4028		if (rdev->raid_disk < 0)
4029			continue;
4030		if (rdev->new_raid_disk >= mddev->raid_disks)
4031			rdev->new_raid_disk = -1;
4032		if (rdev->new_raid_disk == rdev->raid_disk)
4033			continue;
4034		sysfs_unlink_rdev(mddev, rdev);
4035	}
4036	rdev_for_each(rdev, mddev) {
4037		if (rdev->raid_disk < 0)
4038			continue;
4039		if (rdev->new_raid_disk == rdev->raid_disk)
4040			continue;
4041		rdev->raid_disk = rdev->new_raid_disk;
4042		if (rdev->raid_disk < 0)
4043			clear_bit(In_sync, &rdev->flags);
4044		else {
4045			if (sysfs_link_rdev(mddev, rdev))
4046				pr_warn("md: cannot register rd%d for %s after level change\n",
4047					rdev->raid_disk, mdname(mddev));
 
4048		}
4049	}
4050
4051	if (pers->sync_request == NULL) {
 
 
 
 
 
 
 
 
 
 
4052		/* this is now an array without redundancy, so
4053		 * it must always be in_sync
4054		 */
4055		mddev->in_sync = 1;
4056		del_timer_sync(&mddev->safemode_timer);
4057	}
4058	blk_set_stacking_limits(&mddev->queue->limits);
4059	pers->run(mddev);
4060	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4061	mddev_resume(mddev);
4062	if (!mddev->thread)
4063		md_update_sb(mddev, 1);
4064	sysfs_notify_dirent_safe(mddev->sysfs_level);
4065	md_new_event();
4066	rv = len;
4067out_unlock:
4068	mddev_unlock(mddev);
4069	return rv;
4070}
4071
4072static struct md_sysfs_entry md_level =
4073__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4074
 
4075static ssize_t
4076layout_show(struct mddev *mddev, char *page)
4077{
4078	/* just a number, not meaningful for all levels */
4079	if (mddev->reshape_position != MaxSector &&
4080	    mddev->layout != mddev->new_layout)
4081		return sprintf(page, "%d (%d)\n",
4082			       mddev->new_layout, mddev->layout);
4083	return sprintf(page, "%d\n", mddev->layout);
4084}
4085
4086static ssize_t
4087layout_store(struct mddev *mddev, const char *buf, size_t len)
4088{
4089	unsigned int n;
4090	int err;
4091
4092	err = kstrtouint(buf, 10, &n);
4093	if (err < 0)
4094		return err;
4095	err = mddev_lock(mddev);
4096	if (err)
4097		return err;
4098
4099	if (mddev->pers) {
 
4100		if (mddev->pers->check_reshape == NULL)
4101			err = -EBUSY;
4102		else if (!md_is_rdwr(mddev))
4103			err = -EROFS;
4104		else {
4105			mddev->new_layout = n;
4106			err = mddev->pers->check_reshape(mddev);
4107			if (err)
4108				mddev->new_layout = mddev->layout;
4109		}
4110	} else {
4111		mddev->new_layout = n;
4112		if (mddev->reshape_position == MaxSector)
4113			mddev->layout = n;
4114	}
4115	mddev_unlock(mddev);
4116	return err ?: len;
4117}
4118static struct md_sysfs_entry md_layout =
4119__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4120
 
4121static ssize_t
4122raid_disks_show(struct mddev *mddev, char *page)
4123{
4124	if (mddev->raid_disks == 0)
4125		return 0;
4126	if (mddev->reshape_position != MaxSector &&
4127	    mddev->delta_disks != 0)
4128		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4129			       mddev->raid_disks - mddev->delta_disks);
4130	return sprintf(page, "%d\n", mddev->raid_disks);
4131}
4132
4133static int update_raid_disks(struct mddev *mddev, int raid_disks);
4134
4135static ssize_t
4136raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4137{
4138	unsigned int n;
4139	int err;
 
4140
4141	err = kstrtouint(buf, 10, &n);
4142	if (err < 0)
4143		return err;
4144
4145	err = mddev_lock(mddev);
4146	if (err)
4147		return err;
4148	if (mddev->pers)
4149		err = update_raid_disks(mddev, n);
4150	else if (mddev->reshape_position != MaxSector) {
4151		struct md_rdev *rdev;
4152		int olddisks = mddev->raid_disks - mddev->delta_disks;
4153
4154		err = -EINVAL;
4155		rdev_for_each(rdev, mddev) {
4156			if (olddisks < n &&
4157			    rdev->data_offset < rdev->new_data_offset)
4158				goto out_unlock;
4159			if (olddisks > n &&
4160			    rdev->data_offset > rdev->new_data_offset)
4161				goto out_unlock;
4162		}
4163		err = 0;
4164		mddev->delta_disks = n - olddisks;
4165		mddev->raid_disks = n;
4166		mddev->reshape_backwards = (mddev->delta_disks < 0);
4167	} else
4168		mddev->raid_disks = n;
4169out_unlock:
4170	mddev_unlock(mddev);
4171	return err ? err : len;
4172}
4173static struct md_sysfs_entry md_raid_disks =
4174__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4175
4176static ssize_t
4177uuid_show(struct mddev *mddev, char *page)
4178{
4179	return sprintf(page, "%pU\n", mddev->uuid);
4180}
4181static struct md_sysfs_entry md_uuid =
4182__ATTR(uuid, S_IRUGO, uuid_show, NULL);
4183
4184static ssize_t
4185chunk_size_show(struct mddev *mddev, char *page)
4186{
4187	if (mddev->reshape_position != MaxSector &&
4188	    mddev->chunk_sectors != mddev->new_chunk_sectors)
4189		return sprintf(page, "%d (%d)\n",
4190			       mddev->new_chunk_sectors << 9,
4191			       mddev->chunk_sectors << 9);
4192	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4193}
4194
4195static ssize_t
4196chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4197{
4198	unsigned long n;
4199	int err;
4200
4201	err = kstrtoul(buf, 10, &n);
4202	if (err < 0)
4203		return err;
4204
4205	err = mddev_lock(mddev);
4206	if (err)
4207		return err;
4208	if (mddev->pers) {
 
4209		if (mddev->pers->check_reshape == NULL)
4210			err = -EBUSY;
4211		else if (!md_is_rdwr(mddev))
4212			err = -EROFS;
4213		else {
4214			mddev->new_chunk_sectors = n >> 9;
4215			err = mddev->pers->check_reshape(mddev);
4216			if (err)
4217				mddev->new_chunk_sectors = mddev->chunk_sectors;
4218		}
4219	} else {
4220		mddev->new_chunk_sectors = n >> 9;
4221		if (mddev->reshape_position == MaxSector)
4222			mddev->chunk_sectors = n >> 9;
4223	}
4224	mddev_unlock(mddev);
4225	return err ?: len;
4226}
4227static struct md_sysfs_entry md_chunk_size =
4228__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4229
4230static ssize_t
4231resync_start_show(struct mddev *mddev, char *page)
4232{
4233	if (mddev->recovery_cp == MaxSector)
4234		return sprintf(page, "none\n");
4235	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4236}
4237
4238static ssize_t
4239resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4240{
4241	unsigned long long n;
4242	int err;
4243
 
 
4244	if (cmd_match(buf, "none"))
4245		n = MaxSector;
4246	else {
4247		err = kstrtoull(buf, 10, &n);
4248		if (err < 0)
4249			return err;
4250		if (n != (sector_t)n)
4251			return -EINVAL;
4252	}
4253
4254	err = mddev_lock(mddev);
4255	if (err)
4256		return err;
4257	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4258		err = -EBUSY;
4259
4260	if (!err) {
4261		mddev->recovery_cp = n;
4262		if (mddev->pers)
4263			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4264	}
4265	mddev_unlock(mddev);
4266	return err ?: len;
4267}
4268static struct md_sysfs_entry md_resync_start =
4269__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4270		resync_start_show, resync_start_store);
4271
4272/*
4273 * The array state can be:
4274 *
4275 * clear
4276 *     No devices, no size, no level
4277 *     Equivalent to STOP_ARRAY ioctl
4278 * inactive
4279 *     May have some settings, but array is not active
4280 *        all IO results in error
4281 *     When written, doesn't tear down array, but just stops it
4282 * suspended (not supported yet)
4283 *     All IO requests will block. The array can be reconfigured.
4284 *     Writing this, if accepted, will block until array is quiescent
4285 * readonly
4286 *     no resync can happen.  no superblocks get written.
4287 *     write requests fail
4288 * read-auto
4289 *     like readonly, but behaves like 'clean' on a write request.
4290 *
4291 * clean - no pending writes, but otherwise active.
4292 *     When written to inactive array, starts without resync
4293 *     If a write request arrives then
4294 *       if metadata is known, mark 'dirty' and switch to 'active'.
4295 *       if not known, block and switch to write-pending
4296 *     If written to an active array that has pending writes, then fails.
4297 * active
4298 *     fully active: IO and resync can be happening.
4299 *     When written to inactive array, starts with resync
4300 *
4301 * write-pending
4302 *     clean, but writes are blocked waiting for 'active' to be written.
4303 *
4304 * active-idle
4305 *     like active, but no writes have been seen for a while (100msec).
4306 *
4307 * broken
4308*     Array is failed. It's useful because mounted-arrays aren't stopped
4309*     when array is failed, so this state will at least alert the user that
4310*     something is wrong.
4311 */
4312enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4313		   write_pending, active_idle, broken, bad_word};
4314static char *array_states[] = {
4315	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4316	"write-pending", "active-idle", "broken", NULL };
4317
4318static int match_word(const char *word, char **list)
4319{
4320	int n;
4321	for (n=0; list[n]; n++)
4322		if (cmd_match(word, list[n]))
4323			break;
4324	return n;
4325}
4326
4327static ssize_t
4328array_state_show(struct mddev *mddev, char *page)
4329{
4330	enum array_state st = inactive;
4331
4332	if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4333		switch(mddev->ro) {
4334		case MD_RDONLY:
4335			st = readonly;
4336			break;
4337		case MD_AUTO_READ:
4338			st = read_auto;
4339			break;
4340		case MD_RDWR:
4341			spin_lock(&mddev->lock);
4342			if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4343				st = write_pending;
4344			else if (mddev->in_sync)
4345				st = clean;
 
 
4346			else if (mddev->safemode)
4347				st = active_idle;
4348			else
4349				st = active;
4350			spin_unlock(&mddev->lock);
4351		}
4352
4353		if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4354			st = broken;
4355	} else {
4356		if (list_empty(&mddev->disks) &&
4357		    mddev->raid_disks == 0 &&
4358		    mddev->dev_sectors == 0)
4359			st = clear;
4360		else
4361			st = inactive;
4362	}
4363	return sprintf(page, "%s\n", array_states[st]);
4364}
4365
4366static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4367static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
 
4368static int restart_array(struct mddev *mddev);
4369
4370static ssize_t
4371array_state_store(struct mddev *mddev, const char *buf, size_t len)
4372{
4373	int err = 0;
4374	enum array_state st = match_word(buf, array_states);
4375
4376	if (mddev->pers && (st == active || st == clean) &&
4377	    mddev->ro != MD_RDONLY) {
4378		/* don't take reconfig_mutex when toggling between
4379		 * clean and active
4380		 */
4381		spin_lock(&mddev->lock);
4382		if (st == active) {
4383			restart_array(mddev);
4384			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4385			md_wakeup_thread(mddev->thread);
4386			wake_up(&mddev->sb_wait);
4387		} else /* st == clean */ {
4388			restart_array(mddev);
4389			if (!set_in_sync(mddev))
4390				err = -EBUSY;
4391		}
4392		if (!err)
4393			sysfs_notify_dirent_safe(mddev->sysfs_state);
4394		spin_unlock(&mddev->lock);
4395		return err ?: len;
4396	}
4397	err = mddev_lock(mddev);
4398	if (err)
4399		return err;
4400	err = -EINVAL;
4401	switch(st) {
4402	case bad_word:
4403		break;
4404	case clear:
4405		/* stopping an active array */
 
 
4406		err = do_md_stop(mddev, 0, NULL);
4407		break;
4408	case inactive:
4409		/* stopping an active array */
4410		if (mddev->pers)
 
 
4411			err = do_md_stop(mddev, 2, NULL);
4412		else
4413			err = 0; /* already inactive */
4414		break;
4415	case suspended:
4416		break; /* not supported yet */
4417	case readonly:
4418		if (mddev->pers)
4419			err = md_set_readonly(mddev, NULL);
4420		else {
4421			mddev->ro = MD_RDONLY;
4422			set_disk_ro(mddev->gendisk, 1);
4423			err = do_md_run(mddev);
4424		}
4425		break;
4426	case read_auto:
4427		if (mddev->pers) {
4428			if (md_is_rdwr(mddev))
4429				err = md_set_readonly(mddev, NULL);
4430			else if (mddev->ro == MD_RDONLY)
4431				err = restart_array(mddev);
4432			if (err == 0) {
4433				mddev->ro = MD_AUTO_READ;
4434				set_disk_ro(mddev->gendisk, 0);
4435			}
4436		} else {
4437			mddev->ro = MD_AUTO_READ;
4438			err = do_md_run(mddev);
4439		}
4440		break;
4441	case clean:
4442		if (mddev->pers) {
4443			err = restart_array(mddev);
4444			if (err)
4445				break;
4446			spin_lock(&mddev->lock);
4447			if (!set_in_sync(mddev))
 
 
 
 
 
 
4448				err = -EBUSY;
4449			spin_unlock(&mddev->lock);
4450		} else
4451			err = -EINVAL;
4452		break;
4453	case active:
4454		if (mddev->pers) {
4455			err = restart_array(mddev);
4456			if (err)
4457				break;
4458			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4459			wake_up(&mddev->sb_wait);
4460			err = 0;
4461		} else {
4462			mddev->ro = MD_RDWR;
4463			set_disk_ro(mddev->gendisk, 0);
4464			err = do_md_run(mddev);
4465		}
4466		break;
4467	case write_pending:
4468	case active_idle:
4469	case broken:
4470		/* these cannot be set */
4471		break;
4472	}
4473
4474	if (!err) {
 
4475		if (mddev->hold_active == UNTIL_IOCTL)
4476			mddev->hold_active = 0;
4477		sysfs_notify_dirent_safe(mddev->sysfs_state);
 
4478	}
4479	mddev_unlock(mddev);
4480	return err ?: len;
4481}
4482static struct md_sysfs_entry md_array_state =
4483__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4484
4485static ssize_t
4486max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4487	return sprintf(page, "%d\n",
4488		       atomic_read(&mddev->max_corr_read_errors));
4489}
4490
4491static ssize_t
4492max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4493{
4494	unsigned int n;
4495	int rv;
4496
4497	rv = kstrtouint(buf, 10, &n);
4498	if (rv < 0)
4499		return rv;
4500	atomic_set(&mddev->max_corr_read_errors, n);
4501	return len;
4502}
4503
4504static struct md_sysfs_entry max_corr_read_errors =
4505__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4506	max_corrected_read_errors_store);
4507
4508static ssize_t
4509null_show(struct mddev *mddev, char *page)
4510{
4511	return -EINVAL;
4512}
4513
4514/* need to ensure rdev_delayed_delete() has completed */
4515static void flush_rdev_wq(struct mddev *mddev)
4516{
4517	struct md_rdev *rdev;
4518
4519	rcu_read_lock();
4520	rdev_for_each_rcu(rdev, mddev)
4521		if (work_pending(&rdev->del_work)) {
4522			flush_workqueue(md_rdev_misc_wq);
4523			break;
4524		}
4525	rcu_read_unlock();
4526}
4527
4528static ssize_t
4529new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4530{
4531	/* buf must be %d:%d\n? giving major and minor numbers */
4532	/* The new device is added to the array.
4533	 * If the array has a persistent superblock, we read the
4534	 * superblock to initialise info and check validity.
4535	 * Otherwise, only checking done is that in bind_rdev_to_array,
4536	 * which mainly checks size.
4537	 */
4538	char *e;
4539	int major = simple_strtoul(buf, &e, 10);
4540	int minor;
4541	dev_t dev;
4542	struct md_rdev *rdev;
4543	int err;
4544
4545	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4546		return -EINVAL;
4547	minor = simple_strtoul(e+1, &e, 10);
4548	if (*e && *e != '\n')
4549		return -EINVAL;
4550	dev = MKDEV(major, minor);
4551	if (major != MAJOR(dev) ||
4552	    minor != MINOR(dev))
4553		return -EOVERFLOW;
4554
4555	flush_rdev_wq(mddev);
4556	err = mddev_lock(mddev);
4557	if (err)
4558		return err;
4559	if (mddev->persistent) {
4560		rdev = md_import_device(dev, mddev->major_version,
4561					mddev->minor_version);
4562		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4563			struct md_rdev *rdev0
4564				= list_entry(mddev->disks.next,
4565					     struct md_rdev, same_set);
4566			err = super_types[mddev->major_version]
4567				.load_super(rdev, rdev0, mddev->minor_version);
4568			if (err < 0)
4569				goto out;
4570		}
4571	} else if (mddev->external)
4572		rdev = md_import_device(dev, -2, -1);
4573	else
4574		rdev = md_import_device(dev, -1, -1);
4575
4576	if (IS_ERR(rdev)) {
4577		mddev_unlock(mddev);
4578		return PTR_ERR(rdev);
4579	}
4580	err = bind_rdev_to_array(rdev, mddev);
4581 out:
4582	if (err)
4583		export_rdev(rdev);
4584	mddev_unlock(mddev);
4585	if (!err)
4586		md_new_event();
4587	return err ? err : len;
4588}
4589
4590static struct md_sysfs_entry md_new_device =
4591__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4592
4593static ssize_t
4594bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4595{
4596	char *end;
4597	unsigned long chunk, end_chunk;
4598	int err;
4599
4600	err = mddev_lock(mddev);
4601	if (err)
4602		return err;
4603	if (!mddev->bitmap)
4604		goto out;
4605	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4606	while (*buf) {
4607		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4608		if (buf == end) break;
4609		if (*end == '-') { /* range */
4610			buf = end + 1;
4611			end_chunk = simple_strtoul(buf, &end, 0);
4612			if (buf == end) break;
4613		}
4614		if (*end && !isspace(*end)) break;
4615		md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4616		buf = skip_spaces(end);
4617	}
4618	md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4619out:
4620	mddev_unlock(mddev);
4621	return len;
4622}
4623
4624static struct md_sysfs_entry md_bitmap =
4625__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4626
4627static ssize_t
4628size_show(struct mddev *mddev, char *page)
4629{
4630	return sprintf(page, "%llu\n",
4631		(unsigned long long)mddev->dev_sectors / 2);
4632}
4633
4634static int update_size(struct mddev *mddev, sector_t num_sectors);
4635
4636static ssize_t
4637size_store(struct mddev *mddev, const char *buf, size_t len)
4638{
4639	/* If array is inactive, we can reduce the component size, but
4640	 * not increase it (except from 0).
4641	 * If array is active, we can try an on-line resize
4642	 */
4643	sector_t sectors;
4644	int err = strict_blocks_to_sectors(buf, &sectors);
4645
4646	if (err < 0)
4647		return err;
4648	err = mddev_lock(mddev);
4649	if (err)
4650		return err;
4651	if (mddev->pers) {
4652		err = update_size(mddev, sectors);
4653		if (err == 0)
4654			md_update_sb(mddev, 1);
4655	} else {
4656		if (mddev->dev_sectors == 0 ||
4657		    mddev->dev_sectors > sectors)
4658			mddev->dev_sectors = sectors;
4659		else
4660			err = -ENOSPC;
4661	}
4662	mddev_unlock(mddev);
4663	return err ? err : len;
4664}
4665
4666static struct md_sysfs_entry md_size =
4667__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4668
4669/* Metadata version.
 
4670 * This is one of
4671 *   'none' for arrays with no metadata (good luck...)
4672 *   'external' for arrays with externally managed metadata,
4673 * or N.M for internally known formats
4674 */
4675static ssize_t
4676metadata_show(struct mddev *mddev, char *page)
4677{
4678	if (mddev->persistent)
4679		return sprintf(page, "%d.%d\n",
4680			       mddev->major_version, mddev->minor_version);
4681	else if (mddev->external)
4682		return sprintf(page, "external:%s\n", mddev->metadata_type);
4683	else
4684		return sprintf(page, "none\n");
4685}
4686
4687static ssize_t
4688metadata_store(struct mddev *mddev, const char *buf, size_t len)
4689{
4690	int major, minor;
4691	char *e;
4692	int err;
4693	/* Changing the details of 'external' metadata is
4694	 * always permitted.  Otherwise there must be
4695	 * no devices attached to the array.
4696	 */
4697
4698	err = mddev_lock(mddev);
4699	if (err)
4700		return err;
4701	err = -EBUSY;
4702	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4703		;
4704	else if (!list_empty(&mddev->disks))
4705		goto out_unlock;
4706
4707	err = 0;
4708	if (cmd_match(buf, "none")) {
4709		mddev->persistent = 0;
4710		mddev->external = 0;
4711		mddev->major_version = 0;
4712		mddev->minor_version = 90;
4713		goto out_unlock;
4714	}
4715	if (strncmp(buf, "external:", 9) == 0) {
4716		size_t namelen = len-9;
4717		if (namelen >= sizeof(mddev->metadata_type))
4718			namelen = sizeof(mddev->metadata_type)-1;
4719		strncpy(mddev->metadata_type, buf+9, namelen);
4720		mddev->metadata_type[namelen] = 0;
4721		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4722			mddev->metadata_type[--namelen] = 0;
4723		mddev->persistent = 0;
4724		mddev->external = 1;
4725		mddev->major_version = 0;
4726		mddev->minor_version = 90;
4727		goto out_unlock;
4728	}
4729	major = simple_strtoul(buf, &e, 10);
4730	err = -EINVAL;
4731	if (e==buf || *e != '.')
4732		goto out_unlock;
4733	buf = e+1;
4734	minor = simple_strtoul(buf, &e, 10);
4735	if (e==buf || (*e && *e != '\n') )
4736		goto out_unlock;
4737	err = -ENOENT;
4738	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4739		goto out_unlock;
4740	mddev->major_version = major;
4741	mddev->minor_version = minor;
4742	mddev->persistent = 1;
4743	mddev->external = 0;
4744	err = 0;
4745out_unlock:
4746	mddev_unlock(mddev);
4747	return err ?: len;
4748}
4749
4750static struct md_sysfs_entry md_metadata =
4751__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4752
4753static ssize_t
4754action_show(struct mddev *mddev, char *page)
4755{
4756	char *type = "idle";
4757	unsigned long recovery = mddev->recovery;
4758	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4759		type = "frozen";
4760	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4761	    (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4762		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4763			type = "reshape";
4764		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4765			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4766				type = "resync";
4767			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4768				type = "check";
4769			else
4770				type = "repair";
4771		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4772			type = "recover";
4773		else if (mddev->reshape_position != MaxSector)
4774			type = "reshape";
4775	}
4776	return sprintf(page, "%s\n", type);
4777}
4778
 
 
4779static ssize_t
4780action_store(struct mddev *mddev, const char *page, size_t len)
4781{
4782	if (!mddev->pers || !mddev->pers->sync_request)
4783		return -EINVAL;
4784
 
 
 
 
4785
4786	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4787		if (cmd_match(page, "frozen"))
4788			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4789		else
4790			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4791		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4792		    mddev_lock(mddev) == 0) {
4793			if (work_pending(&mddev->del_work))
4794				flush_workqueue(md_misc_wq);
4795			if (mddev->sync_thread) {
4796				sector_t save_rp = mddev->reshape_position;
4797
4798				mddev_unlock(mddev);
4799				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4800				md_unregister_thread(&mddev->sync_thread);
4801				mddev_lock_nointr(mddev);
4802				/*
4803				 * set RECOVERY_INTR again and restore reshape
4804				 * position in case others changed them after
4805				 * got lock, eg, reshape_position_store and
4806				 * md_check_recovery.
4807				 */
4808				mddev->reshape_position = save_rp;
4809				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4810				md_reap_sync_thread(mddev);
4811			}
4812			mddev_unlock(mddev);
4813		}
4814	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
 
4815		return -EBUSY;
4816	else if (cmd_match(page, "resync"))
4817		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4818	else if (cmd_match(page, "recover")) {
4819		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4820		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
 
4821	} else if (cmd_match(page, "reshape")) {
4822		int err;
4823		if (mddev->pers->start_reshape == NULL)
4824			return -EINVAL;
4825		err = mddev_lock(mddev);
4826		if (!err) {
4827			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4828				err =  -EBUSY;
4829			else {
4830				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4831				err = mddev->pers->start_reshape(mddev);
4832			}
4833			mddev_unlock(mddev);
4834		}
4835		if (err)
4836			return err;
4837		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4838	} else {
4839		if (cmd_match(page, "check"))
4840			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4841		else if (!cmd_match(page, "repair"))
4842			return -EINVAL;
4843		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4844		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4845		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4846	}
4847	if (mddev->ro == MD_AUTO_READ) {
4848		/* A write to sync_action is enough to justify
4849		 * canceling read-auto mode
4850		 */
4851		mddev->ro = MD_RDWR;
4852		md_wakeup_thread(mddev->sync_thread);
4853	}
4854	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4855	md_wakeup_thread(mddev->thread);
4856	sysfs_notify_dirent_safe(mddev->sysfs_action);
4857	return len;
4858}
4859
4860static struct md_sysfs_entry md_scan_mode =
4861__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4862
4863static ssize_t
4864last_sync_action_show(struct mddev *mddev, char *page)
4865{
4866	return sprintf(page, "%s\n", mddev->last_sync_action);
4867}
4868
4869static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4870
4871static ssize_t
4872mismatch_cnt_show(struct mddev *mddev, char *page)
4873{
4874	return sprintf(page, "%llu\n",
4875		       (unsigned long long)
4876		       atomic64_read(&mddev->resync_mismatches));
4877}
4878
 
 
 
 
4879static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4880
4881static ssize_t
4882sync_min_show(struct mddev *mddev, char *page)
4883{
4884	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4885		       mddev->sync_speed_min ? "local": "system");
4886}
4887
4888static ssize_t
4889sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4890{
4891	unsigned int min;
4892	int rv;
4893
4894	if (strncmp(buf, "system", 6)==0) {
4895		min = 0;
4896	} else {
4897		rv = kstrtouint(buf, 10, &min);
4898		if (rv < 0)
4899			return rv;
4900		if (min == 0)
4901			return -EINVAL;
4902	}
 
 
 
4903	mddev->sync_speed_min = min;
4904	return len;
4905}
4906
4907static struct md_sysfs_entry md_sync_min =
4908__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4909
4910static ssize_t
4911sync_max_show(struct mddev *mddev, char *page)
4912{
4913	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4914		       mddev->sync_speed_max ? "local": "system");
4915}
4916
4917static ssize_t
4918sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4919{
4920	unsigned int max;
4921	int rv;
4922
4923	if (strncmp(buf, "system", 6)==0) {
4924		max = 0;
4925	} else {
4926		rv = kstrtouint(buf, 10, &max);
4927		if (rv < 0)
4928			return rv;
4929		if (max == 0)
4930			return -EINVAL;
4931	}
 
 
 
4932	mddev->sync_speed_max = max;
4933	return len;
4934}
4935
4936static struct md_sysfs_entry md_sync_max =
4937__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4938
4939static ssize_t
4940degraded_show(struct mddev *mddev, char *page)
4941{
4942	return sprintf(page, "%d\n", mddev->degraded);
4943}
4944static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4945
4946static ssize_t
4947sync_force_parallel_show(struct mddev *mddev, char *page)
4948{
4949	return sprintf(page, "%d\n", mddev->parallel_resync);
4950}
4951
4952static ssize_t
4953sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4954{
4955	long n;
4956
4957	if (kstrtol(buf, 10, &n))
4958		return -EINVAL;
4959
4960	if (n != 0 && n != 1)
4961		return -EINVAL;
4962
4963	mddev->parallel_resync = n;
4964
4965	if (mddev->sync_thread)
4966		wake_up(&resync_wait);
4967
4968	return len;
4969}
4970
4971/* force parallel resync, even with shared block devices */
4972static struct md_sysfs_entry md_sync_force_parallel =
4973__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4974       sync_force_parallel_show, sync_force_parallel_store);
4975
4976static ssize_t
4977sync_speed_show(struct mddev *mddev, char *page)
4978{
4979	unsigned long resync, dt, db;
4980	if (mddev->curr_resync == MD_RESYNC_NONE)
4981		return sprintf(page, "none\n");
4982	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4983	dt = (jiffies - mddev->resync_mark) / HZ;
4984	if (!dt) dt++;
4985	db = resync - mddev->resync_mark_cnt;
4986	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4987}
4988
4989static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4990
4991static ssize_t
4992sync_completed_show(struct mddev *mddev, char *page)
4993{
4994	unsigned long long max_sectors, resync;
4995
4996	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4997		return sprintf(page, "none\n");
4998
4999	if (mddev->curr_resync == MD_RESYNC_YIELDED ||
5000	    mddev->curr_resync == MD_RESYNC_DELAYED)
5001		return sprintf(page, "delayed\n");
5002
5003	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5004	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5005		max_sectors = mddev->resync_max_sectors;
5006	else
5007		max_sectors = mddev->dev_sectors;
5008
5009	resync = mddev->curr_resync_completed;
5010	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5011}
5012
5013static struct md_sysfs_entry md_sync_completed =
5014	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5015
5016static ssize_t
5017min_sync_show(struct mddev *mddev, char *page)
5018{
5019	return sprintf(page, "%llu\n",
5020		       (unsigned long long)mddev->resync_min);
5021}
5022static ssize_t
5023min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5024{
5025	unsigned long long min;
5026	int err;
5027
5028	if (kstrtoull(buf, 10, &min))
5029		return -EINVAL;
5030
5031	spin_lock(&mddev->lock);
5032	err = -EINVAL;
5033	if (min > mddev->resync_max)
5034		goto out_unlock;
5035
5036	err = -EBUSY;
5037	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5038		goto out_unlock;
5039
5040	/* Round down to multiple of 4K for safety */
5041	mddev->resync_min = round_down(min, 8);
5042	err = 0;
 
 
 
 
5043
5044out_unlock:
5045	spin_unlock(&mddev->lock);
5046	return err ?: len;
5047}
5048
5049static struct md_sysfs_entry md_min_sync =
5050__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5051
5052static ssize_t
5053max_sync_show(struct mddev *mddev, char *page)
5054{
5055	if (mddev->resync_max == MaxSector)
5056		return sprintf(page, "max\n");
5057	else
5058		return sprintf(page, "%llu\n",
5059			       (unsigned long long)mddev->resync_max);
5060}
5061static ssize_t
5062max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5063{
5064	int err;
5065	spin_lock(&mddev->lock);
5066	if (strncmp(buf, "max", 3) == 0)
5067		mddev->resync_max = MaxSector;
5068	else {
5069		unsigned long long max;
5070		int chunk;
5071
5072		err = -EINVAL;
5073		if (kstrtoull(buf, 10, &max))
5074			goto out_unlock;
5075		if (max < mddev->resync_min)
5076			goto out_unlock;
5077
5078		err = -EBUSY;
5079		if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5080		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5081			goto out_unlock;
5082
5083		/* Must be a multiple of chunk_size */
5084		chunk = mddev->chunk_sectors;
5085		if (chunk) {
5086			sector_t temp = max;
5087
5088			err = -EINVAL;
5089			if (sector_div(temp, chunk))
5090				goto out_unlock;
5091		}
5092		mddev->resync_max = max;
5093	}
5094	wake_up(&mddev->recovery_wait);
5095	err = 0;
5096out_unlock:
5097	spin_unlock(&mddev->lock);
5098	return err ?: len;
5099}
5100
5101static struct md_sysfs_entry md_max_sync =
5102__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5103
5104static ssize_t
5105suspend_lo_show(struct mddev *mddev, char *page)
5106{
5107	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5108}
5109
5110static ssize_t
5111suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5112{
5113	unsigned long long new;
5114	int err;
 
5115
5116	err = kstrtoull(buf, 10, &new);
5117	if (err < 0)
5118		return err;
5119	if (new != (sector_t)new)
5120		return -EINVAL;
5121
5122	err = mddev_lock(mddev);
5123	if (err)
5124		return err;
5125	err = -EINVAL;
5126	if (mddev->pers == NULL ||
5127	    mddev->pers->quiesce == NULL)
5128		goto unlock;
5129	mddev_suspend(mddev);
5130	mddev->suspend_lo = new;
5131	mddev_resume(mddev);
5132
5133	err = 0;
5134unlock:
5135	mddev_unlock(mddev);
5136	return err ?: len;
 
 
 
5137}
5138static struct md_sysfs_entry md_suspend_lo =
5139__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5140
 
5141static ssize_t
5142suspend_hi_show(struct mddev *mddev, char *page)
5143{
5144	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5145}
5146
5147static ssize_t
5148suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5149{
5150	unsigned long long new;
5151	int err;
 
5152
5153	err = kstrtoull(buf, 10, &new);
5154	if (err < 0)
5155		return err;
5156	if (new != (sector_t)new)
5157		return -EINVAL;
5158
5159	err = mddev_lock(mddev);
5160	if (err)
5161		return err;
5162	err = -EINVAL;
5163	if (mddev->pers == NULL)
5164		goto unlock;
5165
5166	mddev_suspend(mddev);
5167	mddev->suspend_hi = new;
5168	mddev_resume(mddev);
5169
5170	err = 0;
5171unlock:
5172	mddev_unlock(mddev);
5173	return err ?: len;
 
 
 
5174}
5175static struct md_sysfs_entry md_suspend_hi =
5176__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5177
5178static ssize_t
5179reshape_position_show(struct mddev *mddev, char *page)
5180{
5181	if (mddev->reshape_position != MaxSector)
5182		return sprintf(page, "%llu\n",
5183			       (unsigned long long)mddev->reshape_position);
5184	strcpy(page, "none\n");
5185	return 5;
5186}
5187
5188static ssize_t
5189reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5190{
5191	struct md_rdev *rdev;
5192	unsigned long long new;
5193	int err;
5194
5195	err = kstrtoull(buf, 10, &new);
5196	if (err < 0)
5197		return err;
5198	if (new != (sector_t)new)
5199		return -EINVAL;
5200	err = mddev_lock(mddev);
5201	if (err)
5202		return err;
5203	err = -EBUSY;
5204	if (mddev->pers)
5205		goto unlock;
 
 
5206	mddev->reshape_position = new;
5207	mddev->delta_disks = 0;
5208	mddev->reshape_backwards = 0;
5209	mddev->new_level = mddev->level;
5210	mddev->new_layout = mddev->layout;
5211	mddev->new_chunk_sectors = mddev->chunk_sectors;
5212	rdev_for_each(rdev, mddev)
5213		rdev->new_data_offset = rdev->data_offset;
5214	err = 0;
5215unlock:
5216	mddev_unlock(mddev);
5217	return err ?: len;
5218}
5219
5220static struct md_sysfs_entry md_reshape_position =
5221__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5222       reshape_position_store);
5223
5224static ssize_t
5225reshape_direction_show(struct mddev *mddev, char *page)
5226{
5227	return sprintf(page, "%s\n",
5228		       mddev->reshape_backwards ? "backwards" : "forwards");
5229}
5230
5231static ssize_t
5232reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5233{
5234	int backwards = 0;
5235	int err;
5236
5237	if (cmd_match(buf, "forwards"))
5238		backwards = 0;
5239	else if (cmd_match(buf, "backwards"))
5240		backwards = 1;
5241	else
5242		return -EINVAL;
5243	if (mddev->reshape_backwards == backwards)
5244		return len;
5245
5246	err = mddev_lock(mddev);
5247	if (err)
5248		return err;
5249	/* check if we are allowed to change */
5250	if (mddev->delta_disks)
5251		err = -EBUSY;
5252	else if (mddev->persistent &&
 
5253	    mddev->major_version == 0)
5254		err =  -EINVAL;
5255	else
5256		mddev->reshape_backwards = backwards;
5257	mddev_unlock(mddev);
5258	return err ?: len;
5259}
5260
5261static struct md_sysfs_entry md_reshape_direction =
5262__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5263       reshape_direction_store);
5264
5265static ssize_t
5266array_size_show(struct mddev *mddev, char *page)
5267{
5268	if (mddev->external_size)
5269		return sprintf(page, "%llu\n",
5270			       (unsigned long long)mddev->array_sectors/2);
5271	else
5272		return sprintf(page, "default\n");
5273}
5274
5275static ssize_t
5276array_size_store(struct mddev *mddev, const char *buf, size_t len)
5277{
5278	sector_t sectors;
5279	int err;
5280
5281	err = mddev_lock(mddev);
5282	if (err)
5283		return err;
5284
5285	/* cluster raid doesn't support change array_sectors */
5286	if (mddev_is_clustered(mddev)) {
5287		mddev_unlock(mddev);
5288		return -EINVAL;
5289	}
5290
5291	if (strncmp(buf, "default", 7) == 0) {
5292		if (mddev->pers)
5293			sectors = mddev->pers->size(mddev, 0, 0);
5294		else
5295			sectors = mddev->array_sectors;
5296
5297		mddev->external_size = 0;
5298	} else {
5299		if (strict_blocks_to_sectors(buf, &sectors) < 0)
5300			err = -EINVAL;
5301		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5302			err = -E2BIG;
5303		else
5304			mddev->external_size = 1;
5305	}
5306
5307	if (!err) {
5308		mddev->array_sectors = sectors;
5309		if (mddev->pers)
5310			set_capacity_and_notify(mddev->gendisk,
5311						mddev->array_sectors);
5312	}
5313	mddev_unlock(mddev);
5314	return err ?: len;
5315}
5316
5317static struct md_sysfs_entry md_array_size =
5318__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5319       array_size_store);
5320
5321static ssize_t
5322consistency_policy_show(struct mddev *mddev, char *page)
5323{
5324	int ret;
5325
5326	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5327		ret = sprintf(page, "journal\n");
5328	} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5329		ret = sprintf(page, "ppl\n");
5330	} else if (mddev->bitmap) {
5331		ret = sprintf(page, "bitmap\n");
5332	} else if (mddev->pers) {
5333		if (mddev->pers->sync_request)
5334			ret = sprintf(page, "resync\n");
5335		else
5336			ret = sprintf(page, "none\n");
5337	} else {
5338		ret = sprintf(page, "unknown\n");
5339	}
5340
5341	return ret;
5342}
5343
5344static ssize_t
5345consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5346{
5347	int err = 0;
5348
5349	if (mddev->pers) {
5350		if (mddev->pers->change_consistency_policy)
5351			err = mddev->pers->change_consistency_policy(mddev, buf);
5352		else
5353			err = -EBUSY;
5354	} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5355		set_bit(MD_HAS_PPL, &mddev->flags);
5356	} else {
5357		err = -EINVAL;
5358	}
5359
5360	return err ? err : len;
5361}
5362
5363static struct md_sysfs_entry md_consistency_policy =
5364__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5365       consistency_policy_store);
5366
5367static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5368{
5369	return sprintf(page, "%d\n", mddev->fail_last_dev);
5370}
5371
5372/*
5373 * Setting fail_last_dev to true to allow last device to be forcibly removed
5374 * from RAID1/RAID10.
5375 */
5376static ssize_t
5377fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5378{
5379	int ret;
5380	bool value;
5381
5382	ret = kstrtobool(buf, &value);
5383	if (ret)
5384		return ret;
5385
5386	if (value != mddev->fail_last_dev)
5387		mddev->fail_last_dev = value;
5388
5389	return len;
5390}
5391static struct md_sysfs_entry md_fail_last_dev =
5392__ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5393       fail_last_dev_store);
5394
5395static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5396{
5397	if (mddev->pers == NULL || (mddev->pers->level != 1))
5398		return sprintf(page, "n/a\n");
5399	else
5400		return sprintf(page, "%d\n", mddev->serialize_policy);
5401}
5402
5403/*
5404 * Setting serialize_policy to true to enforce write IO is not reordered
5405 * for raid1.
5406 */
5407static ssize_t
5408serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5409{
5410	int err;
5411	bool value;
5412
5413	err = kstrtobool(buf, &value);
5414	if (err)
5415		return err;
5416
5417	if (value == mddev->serialize_policy)
5418		return len;
5419
5420	err = mddev_lock(mddev);
5421	if (err)
5422		return err;
5423	if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5424		pr_err("md: serialize_policy is only effective for raid1\n");
5425		err = -EINVAL;
5426		goto unlock;
5427	}
5428
5429	mddev_suspend(mddev);
5430	if (value)
5431		mddev_create_serial_pool(mddev, NULL, true);
5432	else
5433		mddev_destroy_serial_pool(mddev, NULL, true);
5434	mddev->serialize_policy = value;
5435	mddev_resume(mddev);
5436unlock:
5437	mddev_unlock(mddev);
5438	return err ?: len;
5439}
5440
5441static struct md_sysfs_entry md_serialize_policy =
5442__ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5443       serialize_policy_store);
5444
 
 
 
5445
5446static struct attribute *md_default_attrs[] = {
5447	&md_level.attr,
5448	&md_layout.attr,
5449	&md_raid_disks.attr,
5450	&md_uuid.attr,
5451	&md_chunk_size.attr,
5452	&md_size.attr,
5453	&md_resync_start.attr,
5454	&md_metadata.attr,
5455	&md_new_device.attr,
5456	&md_safe_delay.attr,
5457	&md_array_state.attr,
5458	&md_reshape_position.attr,
5459	&md_reshape_direction.attr,
5460	&md_array_size.attr,
5461	&max_corr_read_errors.attr,
5462	&md_consistency_policy.attr,
5463	&md_fail_last_dev.attr,
5464	&md_serialize_policy.attr,
5465	NULL,
5466};
5467
5468static const struct attribute_group md_default_group = {
5469	.attrs = md_default_attrs,
5470};
5471
5472static struct attribute *md_redundancy_attrs[] = {
5473	&md_scan_mode.attr,
5474	&md_last_scan_mode.attr,
5475	&md_mismatches.attr,
5476	&md_sync_min.attr,
5477	&md_sync_max.attr,
5478	&md_sync_speed.attr,
5479	&md_sync_force_parallel.attr,
5480	&md_sync_completed.attr,
5481	&md_min_sync.attr,
5482	&md_max_sync.attr,
5483	&md_suspend_lo.attr,
5484	&md_suspend_hi.attr,
5485	&md_bitmap.attr,
5486	&md_degraded.attr,
5487	NULL,
5488};
5489static const struct attribute_group md_redundancy_group = {
5490	.name = NULL,
5491	.attrs = md_redundancy_attrs,
5492};
5493
5494static const struct attribute_group *md_attr_groups[] = {
5495	&md_default_group,
5496	&md_bitmap_group,
5497	NULL,
5498};
5499
5500static ssize_t
5501md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5502{
5503	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5504	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5505	ssize_t rv;
5506
5507	if (!entry->show)
5508		return -EIO;
5509	spin_lock(&all_mddevs_lock);
5510	if (!mddev_get(mddev)) {
5511		spin_unlock(&all_mddevs_lock);
5512		return -EBUSY;
5513	}
 
5514	spin_unlock(&all_mddevs_lock);
5515
5516	rv = entry->show(mddev, page);
 
 
 
 
5517	mddev_put(mddev);
5518	return rv;
5519}
5520
5521static ssize_t
5522md_attr_store(struct kobject *kobj, struct attribute *attr,
5523	      const char *page, size_t length)
5524{
5525	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5526	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5527	ssize_t rv;
5528
5529	if (!entry->store)
5530		return -EIO;
5531	if (!capable(CAP_SYS_ADMIN))
5532		return -EACCES;
5533	spin_lock(&all_mddevs_lock);
5534	if (!mddev_get(mddev)) {
5535		spin_unlock(&all_mddevs_lock);
5536		return -EBUSY;
5537	}
 
5538	spin_unlock(&all_mddevs_lock);
5539	rv = entry->store(mddev, page, length);
 
 
 
 
5540	mddev_put(mddev);
5541	return rv;
5542}
5543
5544static void md_kobj_release(struct kobject *ko)
5545{
5546	struct mddev *mddev = container_of(ko, struct mddev, kobj);
5547
5548	if (mddev->sysfs_state)
5549		sysfs_put(mddev->sysfs_state);
5550	if (mddev->sysfs_level)
5551		sysfs_put(mddev->sysfs_level);
5552
5553	del_gendisk(mddev->gendisk);
5554	put_disk(mddev->gendisk);
 
 
 
 
 
 
5555}
5556
5557static const struct sysfs_ops md_sysfs_ops = {
5558	.show	= md_attr_show,
5559	.store	= md_attr_store,
5560};
5561static struct kobj_type md_ktype = {
5562	.release	= md_kobj_release,
5563	.sysfs_ops	= &md_sysfs_ops,
5564	.default_groups	= md_attr_groups,
5565};
5566
5567int mdp_major = 0;
5568
5569static void mddev_delayed_delete(struct work_struct *ws)
5570{
5571	struct mddev *mddev = container_of(ws, struct mddev, del_work);
5572
 
 
5573	kobject_put(&mddev->kobj);
5574}
5575
5576static void no_op(struct percpu_ref *r) {}
5577
5578int mddev_init_writes_pending(struct mddev *mddev)
5579{
5580	if (mddev->writes_pending.percpu_count_ptr)
5581		return 0;
5582	if (percpu_ref_init(&mddev->writes_pending, no_op,
5583			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5584		return -ENOMEM;
5585	/* We want to start with the refcount at zero */
5586	percpu_ref_put(&mddev->writes_pending);
5587	return 0;
5588}
5589EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5590
5591struct mddev *md_alloc(dev_t dev, char *name)
5592{
5593	/*
5594	 * If dev is zero, name is the name of a device to allocate with
5595	 * an arbitrary minor number.  It will be "md_???"
5596	 * If dev is non-zero it must be a device number with a MAJOR of
5597	 * MD_MAJOR or mdp_major.  In this case, if "name" is NULL, then
5598	 * the device is being created by opening a node in /dev.
5599	 * If "name" is not NULL, the device is being created by
5600	 * writing to /sys/module/md_mod/parameters/new_array.
5601	 */
5602	static DEFINE_MUTEX(disks_mutex);
5603	struct mddev *mddev;
5604	struct gendisk *disk;
5605	int partitioned;
5606	int shift;
5607	int unit;
5608	int error ;
5609
5610	/*
5611	 * Wait for any previous instance of this device to be completely
5612	 * removed (mddev_delayed_delete).
5613	 */
5614	flush_workqueue(md_misc_wq);
5615	flush_workqueue(md_rdev_misc_wq);
5616
5617	mutex_lock(&disks_mutex);
5618	mddev = mddev_alloc(dev);
5619	if (IS_ERR(mddev)) {
5620		error = PTR_ERR(mddev);
5621		goto out_unlock;
5622	}
5623
5624	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5625	shift = partitioned ? MdpMinorShift : 0;
5626	unit = MINOR(mddev->unit) >> shift;
5627
5628	if (name && !dev) {
 
 
 
 
 
 
 
 
 
 
5629		/* Need to ensure that 'name' is not a duplicate.
5630		 */
5631		struct mddev *mddev2;
5632		spin_lock(&all_mddevs_lock);
5633
5634		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5635			if (mddev2->gendisk &&
5636			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5637				spin_unlock(&all_mddevs_lock);
5638				error = -EEXIST;
5639				goto out_free_mddev;
5640			}
5641		spin_unlock(&all_mddevs_lock);
5642	}
5643	if (name && dev)
5644		/*
5645		 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5646		 */
5647		mddev->hold_active = UNTIL_STOP;
5648
5649	error = -ENOMEM;
5650	disk = blk_alloc_disk(NUMA_NO_NODE);
5651	if (!disk)
5652		goto out_free_mddev;
 
5653
 
 
 
 
 
 
 
 
 
5654	disk->major = MAJOR(mddev->unit);
5655	disk->first_minor = unit << shift;
5656	disk->minors = 1 << shift;
5657	if (name)
5658		strcpy(disk->disk_name, name);
5659	else if (partitioned)
5660		sprintf(disk->disk_name, "md_d%d", unit);
5661	else
5662		sprintf(disk->disk_name, "md%d", unit);
5663	disk->fops = &md_fops;
5664	disk->private_data = mddev;
5665
5666	mddev->queue = disk->queue;
5667	blk_set_stacking_limits(&mddev->queue->limits);
5668	blk_queue_write_cache(mddev->queue, true, true);
5669	disk->events |= DISK_EVENT_MEDIA_CHANGE;
 
 
5670	mddev->gendisk = disk;
5671	error = add_disk(disk);
5672	if (error)
5673		goto out_put_disk;
 
 
5674
5675	kobject_init(&mddev->kobj, &md_ktype);
5676	error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5677	if (error) {
5678		/*
5679		 * The disk is already live at this point.  Clear the hold flag
5680		 * and let mddev_put take care of the deletion, as it isn't any
5681		 * different from a normal close on last release now.
5682		 */
5683		mddev->hold_active = 0;
5684		mutex_unlock(&disks_mutex);
5685		mddev_put(mddev);
5686		return ERR_PTR(error);
5687	}
5688
5689	kobject_uevent(&mddev->kobj, KOBJ_ADD);
5690	mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5691	mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5692	mutex_unlock(&disks_mutex);
5693	return mddev;
5694
5695out_put_disk:
5696	put_disk(disk);
5697out_free_mddev:
5698	mddev_free(mddev);
5699out_unlock:
5700	mutex_unlock(&disks_mutex);
5701	return ERR_PTR(error);
5702}
5703
5704static int md_alloc_and_put(dev_t dev, char *name)
5705{
5706	struct mddev *mddev = md_alloc(dev, name);
5707
5708	if (IS_ERR(mddev))
5709		return PTR_ERR(mddev);
5710	mddev_put(mddev);
5711	return 0;
5712}
5713
5714static void md_probe(dev_t dev)
5715{
5716	if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5717		return;
5718	if (create_on_open)
5719		md_alloc_and_put(dev, NULL);
5720}
5721
5722static int add_named_array(const char *val, const struct kernel_param *kp)
5723{
5724	/*
5725	 * val must be "md_*" or "mdNNN".
5726	 * For "md_*" we allocate an array with a large free minor number, and
5727	 * set the name to val.  val must not already be an active name.
5728	 * For "mdNNN" we allocate an array with the minor number NNN
5729	 * which must not already be in use.
5730	 */
5731	int len = strlen(val);
5732	char buf[DISK_NAME_LEN];
5733	unsigned long devnum;
5734
5735	while (len && val[len-1] == '\n')
5736		len--;
5737	if (len >= DISK_NAME_LEN)
5738		return -E2BIG;
5739	strscpy(buf, val, len+1);
5740	if (strncmp(buf, "md_", 3) == 0)
5741		return md_alloc_and_put(0, buf);
5742	if (strncmp(buf, "md", 2) == 0 &&
5743	    isdigit(buf[2]) &&
5744	    kstrtoul(buf+2, 10, &devnum) == 0 &&
5745	    devnum <= MINORMASK)
5746		return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
5747
5748	return -EINVAL;
5749}
5750
5751static void md_safemode_timeout(struct timer_list *t)
5752{
5753	struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5754
5755	mddev->safemode = 1;
5756	if (mddev->external)
5757		sysfs_notify_dirent_safe(mddev->sysfs_state);
5758
 
 
 
 
 
5759	md_wakeup_thread(mddev->thread);
5760}
5761
5762static int start_dirty_degraded;
5763
5764int md_run(struct mddev *mddev)
5765{
5766	int err;
5767	struct md_rdev *rdev;
5768	struct md_personality *pers;
5769	bool nowait = true;
5770
5771	if (list_empty(&mddev->disks))
5772		/* cannot run an array with no devices.. */
5773		return -EINVAL;
5774
5775	if (mddev->pers)
5776		return -EBUSY;
5777	/* Cannot run until previous stop completes properly */
5778	if (mddev->sysfs_active)
5779		return -EBUSY;
5780
5781	/*
5782	 * Analyze all RAID superblock(s)
5783	 */
5784	if (!mddev->raid_disks) {
5785		if (!mddev->persistent)
5786			return -EINVAL;
5787		err = analyze_sbs(mddev);
5788		if (err)
5789			return -EINVAL;
5790	}
5791
5792	if (mddev->level != LEVEL_NONE)
5793		request_module("md-level-%d", mddev->level);
5794	else if (mddev->clevel[0])
5795		request_module("md-%s", mddev->clevel);
5796
5797	/*
5798	 * Drop all container device buffers, from now on
5799	 * the only valid external interface is through the md
5800	 * device.
5801	 */
5802	mddev->has_superblocks = false;
5803	rdev_for_each(rdev, mddev) {
5804		if (test_bit(Faulty, &rdev->flags))
5805			continue;
5806		sync_blockdev(rdev->bdev);
5807		invalidate_bdev(rdev->bdev);
5808		if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5809			mddev->ro = MD_RDONLY;
5810			if (mddev->gendisk)
5811				set_disk_ro(mddev->gendisk, 1);
5812		}
5813
5814		if (rdev->sb_page)
5815			mddev->has_superblocks = true;
5816
5817		/* perform some consistency tests on the device.
5818		 * We don't want the data to overlap the metadata,
5819		 * Internal Bitmap issues have been handled elsewhere.
5820		 */
5821		if (rdev->meta_bdev) {
5822			/* Nothing to check */;
5823		} else if (rdev->data_offset < rdev->sb_start) {
5824			if (mddev->dev_sectors &&
5825			    rdev->data_offset + mddev->dev_sectors
5826			    > rdev->sb_start) {
5827				pr_warn("md: %s: data overlaps metadata\n",
5828					mdname(mddev));
5829				return -EINVAL;
5830			}
5831		} else {
5832			if (rdev->sb_start + rdev->sb_size/512
5833			    > rdev->data_offset) {
5834				pr_warn("md: %s: metadata overlaps data\n",
5835					mdname(mddev));
5836				return -EINVAL;
5837			}
5838		}
5839		sysfs_notify_dirent_safe(rdev->sysfs_state);
5840		nowait = nowait && bdev_nowait(rdev->bdev);
5841	}
5842
5843	if (!bioset_initialized(&mddev->bio_set)) {
5844		err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5845		if (err)
5846			return err;
5847	}
5848	if (!bioset_initialized(&mddev->sync_set)) {
5849		err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5850		if (err)
5851			goto exit_bio_set;
5852	}
5853
5854	spin_lock(&pers_lock);
5855	pers = find_pers(mddev->level, mddev->clevel);
5856	if (!pers || !try_module_get(pers->owner)) {
5857		spin_unlock(&pers_lock);
5858		if (mddev->level != LEVEL_NONE)
5859			pr_warn("md: personality for level %d is not loaded!\n",
5860				mddev->level);
5861		else
5862			pr_warn("md: personality for level %s is not loaded!\n",
5863				mddev->clevel);
5864		err = -EINVAL;
5865		goto abort;
5866	}
 
5867	spin_unlock(&pers_lock);
5868	if (mddev->level != pers->level) {
5869		mddev->level = pers->level;
5870		mddev->new_level = pers->level;
5871	}
5872	strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5873
5874	if (mddev->reshape_position != MaxSector &&
5875	    pers->start_reshape == NULL) {
5876		/* This personality cannot handle reshaping... */
 
5877		module_put(pers->owner);
5878		err = -EINVAL;
5879		goto abort;
5880	}
5881
5882	if (pers->sync_request) {
5883		/* Warn if this is a potentially silly
5884		 * configuration.
5885		 */
 
5886		struct md_rdev *rdev2;
5887		int warned = 0;
5888
5889		rdev_for_each(rdev, mddev)
5890			rdev_for_each(rdev2, mddev) {
5891				if (rdev < rdev2 &&
5892				    rdev->bdev->bd_disk ==
5893				    rdev2->bdev->bd_disk) {
5894					pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
5895						mdname(mddev),
5896						rdev->bdev,
5897						rdev2->bdev);
 
 
 
5898					warned = 1;
5899				}
5900			}
5901
5902		if (warned)
5903			pr_warn("True protection against single-disk failure might be compromised.\n");
 
 
5904	}
5905
5906	mddev->recovery = 0;
5907	/* may be over-ridden by personality */
5908	mddev->resync_max_sectors = mddev->dev_sectors;
5909
5910	mddev->ok_start_degraded = start_dirty_degraded;
5911
5912	if (start_readonly && md_is_rdwr(mddev))
5913		mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
5914
5915	err = pers->run(mddev);
5916	if (err)
5917		pr_warn("md: pers->run() failed ...\n");
5918	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5919		WARN_ONCE(!mddev->external_size,
5920			  "%s: default size too small, but 'external_size' not in effect?\n",
5921			  __func__);
5922		pr_warn("md: invalid array_size %llu > default size %llu\n",
5923			(unsigned long long)mddev->array_sectors / 2,
5924			(unsigned long long)pers->size(mddev, 0, 0) / 2);
5925		err = -EINVAL;
 
5926	}
5927	if (err == 0 && pers->sync_request &&
5928	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5929		struct bitmap *bitmap;
5930
5931		bitmap = md_bitmap_create(mddev, -1);
5932		if (IS_ERR(bitmap)) {
5933			err = PTR_ERR(bitmap);
5934			pr_warn("%s: failed to create bitmap (%d)\n",
5935				mdname(mddev), err);
5936		} else
5937			mddev->bitmap = bitmap;
5938
5939	}
5940	if (err)
5941		goto bitmap_abort;
5942
5943	if (mddev->bitmap_info.max_write_behind > 0) {
5944		bool create_pool = false;
5945
5946		rdev_for_each(rdev, mddev) {
5947			if (test_bit(WriteMostly, &rdev->flags) &&
5948			    rdev_init_serial(rdev))
5949				create_pool = true;
5950		}
5951		if (create_pool && mddev->serial_info_pool == NULL) {
5952			mddev->serial_info_pool =
5953				mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5954						    sizeof(struct serial_info));
5955			if (!mddev->serial_info_pool) {
5956				err = -ENOMEM;
5957				goto bitmap_abort;
5958			}
5959		}
5960	}
5961
5962	if (mddev->queue) {
5963		bool nonrot = true;
5964
5965		rdev_for_each(rdev, mddev) {
5966			if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
5967				nonrot = false;
5968				break;
5969			}
5970		}
5971		if (mddev->degraded)
5972			nonrot = false;
5973		if (nonrot)
5974			blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
5975		else
5976			blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
5977		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
5978
5979		/* Set the NOWAIT flags if all underlying devices support it */
5980		if (nowait)
5981			blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
5982	}
5983	if (pers->sync_request) {
5984		if (mddev->kobj.sd &&
5985		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5986			pr_warn("md: cannot register extra attributes for %s\n",
5987				mdname(mddev));
 
5988		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5989		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
5990		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
5991	} else if (mddev->ro == MD_AUTO_READ)
5992		mddev->ro = MD_RDWR;
5993
 
5994	atomic_set(&mddev->max_corr_read_errors,
5995		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5996	mddev->safemode = 0;
5997	if (mddev_is_clustered(mddev))
5998		mddev->safemode_delay = 0;
5999	else
6000		mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6001	mddev->in_sync = 1;
6002	smp_wmb();
6003	spin_lock(&mddev->lock);
6004	mddev->pers = pers;
6005	spin_unlock(&mddev->lock);
6006	rdev_for_each(rdev, mddev)
6007		if (rdev->raid_disk >= 0)
6008			sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6009
6010	if (mddev->degraded && md_is_rdwr(mddev))
6011		/* This ensures that recovering status is reported immediately
6012		 * via sysfs - until a lack of spares is confirmed.
6013		 */
6014		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6015	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6016
6017	if (mddev->sb_flags)
6018		md_update_sb(mddev, 0);
6019
6020	md_new_event();
 
 
 
6021	return 0;
6022
6023bitmap_abort:
6024	mddev_detach(mddev);
6025	if (mddev->private)
6026		pers->free(mddev, mddev->private);
6027	mddev->private = NULL;
6028	module_put(pers->owner);
6029	md_bitmap_destroy(mddev);
6030abort:
6031	bioset_exit(&mddev->sync_set);
6032exit_bio_set:
6033	bioset_exit(&mddev->bio_set);
6034	return err;
6035}
6036EXPORT_SYMBOL_GPL(md_run);
6037
6038int do_md_run(struct mddev *mddev)
6039{
6040	int err;
6041
6042	set_bit(MD_NOT_READY, &mddev->flags);
6043	err = md_run(mddev);
6044	if (err)
6045		goto out;
6046	err = md_bitmap_load(mddev);
6047	if (err) {
6048		md_bitmap_destroy(mddev);
6049		goto out;
6050	}
6051
6052	if (mddev_is_clustered(mddev))
6053		md_allow_write(mddev);
6054
6055	/* run start up tasks that require md_thread */
6056	md_start(mddev);
6057
6058	md_wakeup_thread(mddev->thread);
6059	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6060
6061	set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6062	clear_bit(MD_NOT_READY, &mddev->flags);
6063	mddev->changed = 1;
6064	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6065	sysfs_notify_dirent_safe(mddev->sysfs_state);
6066	sysfs_notify_dirent_safe(mddev->sysfs_action);
6067	sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6068out:
6069	clear_bit(MD_NOT_READY, &mddev->flags);
6070	return err;
6071}
6072
6073int md_start(struct mddev *mddev)
6074{
6075	int ret = 0;
6076
6077	if (mddev->pers->start) {
6078		set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6079		md_wakeup_thread(mddev->thread);
6080		ret = mddev->pers->start(mddev);
6081		clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6082		md_wakeup_thread(mddev->sync_thread);
6083	}
6084	return ret;
6085}
6086EXPORT_SYMBOL_GPL(md_start);
6087
6088static int restart_array(struct mddev *mddev)
6089{
6090	struct gendisk *disk = mddev->gendisk;
6091	struct md_rdev *rdev;
6092	bool has_journal = false;
6093	bool has_readonly = false;
6094
6095	/* Complain if it has no devices */
6096	if (list_empty(&mddev->disks))
6097		return -ENXIO;
6098	if (!mddev->pers)
6099		return -EINVAL;
6100	if (md_is_rdwr(mddev))
6101		return -EBUSY;
6102
6103	rcu_read_lock();
6104	rdev_for_each_rcu(rdev, mddev) {
6105		if (test_bit(Journal, &rdev->flags) &&
6106		    !test_bit(Faulty, &rdev->flags))
6107			has_journal = true;
6108		if (rdev_read_only(rdev))
6109			has_readonly = true;
6110	}
6111	rcu_read_unlock();
6112	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6113		/* Don't restart rw with journal missing/faulty */
6114			return -EINVAL;
6115	if (has_readonly)
6116		return -EROFS;
6117
6118	mddev->safemode = 0;
6119	mddev->ro = MD_RDWR;
6120	set_disk_ro(disk, 0);
6121	pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
 
6122	/* Kick recovery or resync if necessary */
6123	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6124	md_wakeup_thread(mddev->thread);
6125	md_wakeup_thread(mddev->sync_thread);
6126	sysfs_notify_dirent_safe(mddev->sysfs_state);
6127	return 0;
6128}
6129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6130static void md_clean(struct mddev *mddev)
6131{
6132	mddev->array_sectors = 0;
6133	mddev->external_size = 0;
6134	mddev->dev_sectors = 0;
6135	mddev->raid_disks = 0;
6136	mddev->recovery_cp = 0;
6137	mddev->resync_min = 0;
6138	mddev->resync_max = MaxSector;
6139	mddev->reshape_position = MaxSector;
6140	mddev->external = 0;
6141	mddev->persistent = 0;
6142	mddev->level = LEVEL_NONE;
6143	mddev->clevel[0] = 0;
6144	mddev->flags = 0;
6145	mddev->sb_flags = 0;
6146	mddev->ro = MD_RDWR;
6147	mddev->metadata_type[0] = 0;
6148	mddev->chunk_sectors = 0;
6149	mddev->ctime = mddev->utime = 0;
6150	mddev->layout = 0;
6151	mddev->max_disks = 0;
6152	mddev->events = 0;
6153	mddev->can_decrease_events = 0;
6154	mddev->delta_disks = 0;
6155	mddev->reshape_backwards = 0;
6156	mddev->new_level = LEVEL_NONE;
6157	mddev->new_layout = 0;
6158	mddev->new_chunk_sectors = 0;
6159	mddev->curr_resync = 0;
6160	atomic64_set(&mddev->resync_mismatches, 0);
6161	mddev->suspend_lo = mddev->suspend_hi = 0;
6162	mddev->sync_speed_min = mddev->sync_speed_max = 0;
6163	mddev->recovery = 0;
6164	mddev->in_sync = 0;
6165	mddev->changed = 0;
6166	mddev->degraded = 0;
6167	mddev->safemode = 0;
6168	mddev->private = NULL;
6169	mddev->cluster_info = NULL;
6170	mddev->bitmap_info.offset = 0;
6171	mddev->bitmap_info.default_offset = 0;
6172	mddev->bitmap_info.default_space = 0;
6173	mddev->bitmap_info.chunksize = 0;
6174	mddev->bitmap_info.daemon_sleep = 0;
6175	mddev->bitmap_info.max_write_behind = 0;
6176	mddev->bitmap_info.nodes = 0;
6177}
6178
6179static void __md_stop_writes(struct mddev *mddev)
6180{
6181	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6182	if (work_pending(&mddev->del_work))
6183		flush_workqueue(md_misc_wq);
6184	if (mddev->sync_thread) {
 
6185		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6186		md_unregister_thread(&mddev->sync_thread);
6187		md_reap_sync_thread(mddev);
6188	}
6189
6190	del_timer_sync(&mddev->safemode_timer);
6191
6192	if (mddev->pers && mddev->pers->quiesce) {
6193		mddev->pers->quiesce(mddev, 1);
6194		mddev->pers->quiesce(mddev, 0);
6195	}
6196	md_bitmap_flush(mddev);
6197
6198	if (md_is_rdwr(mddev) &&
6199	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6200	     mddev->sb_flags)) {
6201		/* mark array as shutdown cleanly */
6202		if (!mddev_is_clustered(mddev))
6203			mddev->in_sync = 1;
6204		md_update_sb(mddev, 1);
6205	}
6206	/* disable policy to guarantee rdevs free resources for serialization */
6207	mddev->serialize_policy = 0;
6208	mddev_destroy_serial_pool(mddev, NULL, true);
6209}
6210
6211void md_stop_writes(struct mddev *mddev)
6212{
6213	mddev_lock_nointr(mddev);
6214	__md_stop_writes(mddev);
6215	mddev_unlock(mddev);
6216}
6217EXPORT_SYMBOL_GPL(md_stop_writes);
6218
6219static void mddev_detach(struct mddev *mddev)
6220{
6221	md_bitmap_wait_behind_writes(mddev);
6222	if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6223		mddev->pers->quiesce(mddev, 1);
6224		mddev->pers->quiesce(mddev, 0);
6225	}
6226	md_unregister_thread(&mddev->thread);
6227	if (mddev->queue)
6228		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6229}
6230
6231static void __md_stop(struct mddev *mddev)
6232{
6233	struct md_personality *pers = mddev->pers;
6234	md_bitmap_destroy(mddev);
6235	mddev_detach(mddev);
6236	/* Ensure ->event_work is done */
6237	if (mddev->event_work.func)
6238		flush_workqueue(md_misc_wq);
6239	spin_lock(&mddev->lock);
6240	mddev->pers = NULL;
6241	spin_unlock(&mddev->lock);
6242	if (mddev->private)
6243		pers->free(mddev, mddev->private);
6244	mddev->private = NULL;
6245	if (pers->sync_request && mddev->to_remove == NULL)
6246		mddev->to_remove = &md_redundancy_group;
6247	module_put(pers->owner);
 
6248	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6249}
6250
6251void md_stop(struct mddev *mddev)
6252{
6253	/* stop the array and free an attached data structures.
6254	 * This is called from dm-raid
6255	 */
6256	__md_stop_writes(mddev);
6257	__md_stop(mddev);
6258	bioset_exit(&mddev->bio_set);
6259	bioset_exit(&mddev->sync_set);
6260}
6261
6262EXPORT_SYMBOL_GPL(md_stop);
6263
6264static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6265{
6266	int err = 0;
6267	int did_freeze = 0;
6268
6269	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6270		did_freeze = 1;
6271		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6272		md_wakeup_thread(mddev->thread);
6273	}
6274	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6275		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6276	if (mddev->sync_thread)
6277		/* Thread might be blocked waiting for metadata update
6278		 * which will now never happen */
6279		wake_up_process(mddev->sync_thread->tsk);
6280
6281	if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6282		return -EBUSY;
6283	mddev_unlock(mddev);
6284	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6285					  &mddev->recovery));
6286	wait_event(mddev->sb_wait,
6287		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6288	mddev_lock_nointr(mddev);
6289
6290	mutex_lock(&mddev->open_mutex);
6291	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6292	    mddev->sync_thread ||
6293	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6294		pr_warn("md: %s still in use.\n",mdname(mddev));
6295		if (did_freeze) {
6296			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6297			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6298			md_wakeup_thread(mddev->thread);
6299		}
6300		err = -EBUSY;
6301		goto out;
6302	}
 
 
6303	if (mddev->pers) {
6304		__md_stop_writes(mddev);
6305
6306		err  = -ENXIO;
6307		if (mddev->ro == MD_RDONLY)
6308			goto out;
6309		mddev->ro = MD_RDONLY;
6310		set_disk_ro(mddev->gendisk, 1);
6311		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6312		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6313		md_wakeup_thread(mddev->thread);
6314		sysfs_notify_dirent_safe(mddev->sysfs_state);
6315		err = 0;
6316	}
6317out:
6318	mutex_unlock(&mddev->open_mutex);
6319	return err;
6320}
6321
6322/* mode:
6323 *   0 - completely stop and dis-assemble array
6324 *   2 - stop but do not disassemble array
6325 */
6326static int do_md_stop(struct mddev *mddev, int mode,
6327		      struct block_device *bdev)
6328{
6329	struct gendisk *disk = mddev->gendisk;
6330	struct md_rdev *rdev;
6331	int did_freeze = 0;
6332
6333	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6334		did_freeze = 1;
6335		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6336		md_wakeup_thread(mddev->thread);
6337	}
6338	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6339		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6340	if (mddev->sync_thread)
6341		/* Thread might be blocked waiting for metadata update
6342		 * which will now never happen */
6343		wake_up_process(mddev->sync_thread->tsk);
6344
6345	mddev_unlock(mddev);
6346	wait_event(resync_wait, (mddev->sync_thread == NULL &&
6347				 !test_bit(MD_RECOVERY_RUNNING,
6348					   &mddev->recovery)));
6349	mddev_lock_nointr(mddev);
6350
6351	mutex_lock(&mddev->open_mutex);
6352	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6353	    mddev->sysfs_active ||
6354	    mddev->sync_thread ||
6355	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6356		pr_warn("md: %s still in use.\n",mdname(mddev));
6357		mutex_unlock(&mddev->open_mutex);
6358		if (did_freeze) {
6359			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6360			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6361			md_wakeup_thread(mddev->thread);
6362		}
6363		return -EBUSY;
6364	}
 
 
 
 
 
 
 
 
6365	if (mddev->pers) {
6366		if (!md_is_rdwr(mddev))
6367			set_disk_ro(disk, 0);
6368
6369		__md_stop_writes(mddev);
6370		__md_stop(mddev);
 
 
6371
6372		/* tell userspace to handle 'inactive' */
6373		sysfs_notify_dirent_safe(mddev->sysfs_state);
6374
6375		rdev_for_each(rdev, mddev)
6376			if (rdev->raid_disk >= 0)
6377				sysfs_unlink_rdev(mddev, rdev);
6378
6379		set_capacity_and_notify(disk, 0);
6380		mutex_unlock(&mddev->open_mutex);
6381		mddev->changed = 1;
 
6382
6383		if (!md_is_rdwr(mddev))
6384			mddev->ro = MD_RDWR;
6385	} else
6386		mutex_unlock(&mddev->open_mutex);
6387	/*
6388	 * Free resources if final stop
6389	 */
6390	if (mode == 0) {
6391		pr_info("md: %s stopped.\n", mdname(mddev));
6392
 
6393		if (mddev->bitmap_info.file) {
6394			struct file *f = mddev->bitmap_info.file;
6395			spin_lock(&mddev->lock);
6396			mddev->bitmap_info.file = NULL;
6397			spin_unlock(&mddev->lock);
6398			fput(f);
6399		}
6400		mddev->bitmap_info.offset = 0;
6401
6402		export_array(mddev);
6403
6404		md_clean(mddev);
 
6405		if (mddev->hold_active == UNTIL_STOP)
6406			mddev->hold_active = 0;
6407	}
6408	md_new_event();
 
6409	sysfs_notify_dirent_safe(mddev->sysfs_state);
6410	return 0;
6411}
6412
6413#ifndef MODULE
6414static void autorun_array(struct mddev *mddev)
6415{
6416	struct md_rdev *rdev;
6417	int err;
6418
6419	if (list_empty(&mddev->disks))
6420		return;
6421
6422	pr_info("md: running: ");
6423
6424	rdev_for_each(rdev, mddev) {
6425		pr_cont("<%pg>", rdev->bdev);
 
6426	}
6427	pr_cont("\n");
6428
6429	err = do_md_run(mddev);
6430	if (err) {
6431		pr_warn("md: do_md_run() returned %d\n", err);
6432		do_md_stop(mddev, 0, NULL);
6433	}
6434}
6435
6436/*
6437 * lets try to run arrays based on all disks that have arrived
6438 * until now. (those are in pending_raid_disks)
6439 *
6440 * the method: pick the first pending disk, collect all disks with
6441 * the same UUID, remove all from the pending list and put them into
6442 * the 'same_array' list. Then order this list based on superblock
6443 * update time (freshest comes first), kick out 'old' disks and
6444 * compare superblocks. If everything's fine then run it.
6445 *
6446 * If "unit" is allocated, then bump its reference count
6447 */
6448static void autorun_devices(int part)
6449{
6450	struct md_rdev *rdev0, *rdev, *tmp;
6451	struct mddev *mddev;
 
6452
6453	pr_info("md: autorun ...\n");
6454	while (!list_empty(&pending_raid_disks)) {
6455		int unit;
6456		dev_t dev;
6457		LIST_HEAD(candidates);
6458		rdev0 = list_entry(pending_raid_disks.next,
6459					 struct md_rdev, same_set);
6460
6461		pr_debug("md: considering %pg ...\n", rdev0->bdev);
 
6462		INIT_LIST_HEAD(&candidates);
6463		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6464			if (super_90_load(rdev, rdev0, 0) >= 0) {
6465				pr_debug("md:  adding %pg ...\n",
6466					 rdev->bdev);
6467				list_move(&rdev->same_set, &candidates);
6468			}
6469		/*
6470		 * now we have a set of devices, with all of them having
6471		 * mostly sane superblocks. It's time to allocate the
6472		 * mddev.
6473		 */
6474		if (part) {
6475			dev = MKDEV(mdp_major,
6476				    rdev0->preferred_minor << MdpMinorShift);
6477			unit = MINOR(dev) >> MdpMinorShift;
6478		} else {
6479			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6480			unit = MINOR(dev);
6481		}
6482		if (rdev0->preferred_minor != unit) {
6483			pr_warn("md: unit number in %pg is bad: %d\n",
6484				rdev0->bdev, rdev0->preferred_minor);
6485			break;
6486		}
6487
6488		mddev = md_alloc(dev, NULL);
6489		if (IS_ERR(mddev))
 
 
 
 
 
6490			break;
6491
6492		if (mddev_lock(mddev))
6493			pr_warn("md: %s locked, cannot run\n", mdname(mddev));
 
6494		else if (mddev->raid_disks || mddev->major_version
6495			 || !list_empty(&mddev->disks)) {
6496			pr_warn("md: %s already running, cannot run %pg\n",
6497				mdname(mddev), rdev0->bdev);
 
6498			mddev_unlock(mddev);
6499		} else {
6500			pr_debug("md: created %s\n", mdname(mddev));
6501			mddev->persistent = 1;
6502			rdev_for_each_list(rdev, tmp, &candidates) {
6503				list_del_init(&rdev->same_set);
6504				if (bind_rdev_to_array(rdev, mddev))
6505					export_rdev(rdev);
6506			}
6507			autorun_array(mddev);
6508			mddev_unlock(mddev);
6509		}
6510		/* on success, candidates will be empty, on error
6511		 * it won't...
6512		 */
6513		rdev_for_each_list(rdev, tmp, &candidates) {
6514			list_del_init(&rdev->same_set);
6515			export_rdev(rdev);
6516		}
6517		mddev_put(mddev);
6518	}
6519	pr_info("md: ... autorun DONE.\n");
6520}
6521#endif /* !MODULE */
6522
6523static int get_version(void __user *arg)
6524{
6525	mdu_version_t ver;
6526
6527	ver.major = MD_MAJOR_VERSION;
6528	ver.minor = MD_MINOR_VERSION;
6529	ver.patchlevel = MD_PATCHLEVEL_VERSION;
6530
6531	if (copy_to_user(arg, &ver, sizeof(ver)))
6532		return -EFAULT;
6533
6534	return 0;
6535}
6536
6537static int get_array_info(struct mddev *mddev, void __user *arg)
6538{
6539	mdu_array_info_t info;
6540	int nr,working,insync,failed,spare;
6541	struct md_rdev *rdev;
6542
6543	nr = working = insync = failed = spare = 0;
6544	rcu_read_lock();
6545	rdev_for_each_rcu(rdev, mddev) {
6546		nr++;
6547		if (test_bit(Faulty, &rdev->flags))
6548			failed++;
6549		else {
6550			working++;
6551			if (test_bit(In_sync, &rdev->flags))
6552				insync++;
6553			else if (test_bit(Journal, &rdev->flags))
6554				/* TODO: add journal count to md_u.h */
6555				;
6556			else
6557				spare++;
6558		}
6559	}
6560	rcu_read_unlock();
6561
6562	info.major_version = mddev->major_version;
6563	info.minor_version = mddev->minor_version;
6564	info.patch_version = MD_PATCHLEVEL_VERSION;
6565	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6566	info.level         = mddev->level;
6567	info.size          = mddev->dev_sectors / 2;
6568	if (info.size != mddev->dev_sectors / 2) /* overflow */
6569		info.size = -1;
6570	info.nr_disks      = nr;
6571	info.raid_disks    = mddev->raid_disks;
6572	info.md_minor      = mddev->md_minor;
6573	info.not_persistent= !mddev->persistent;
6574
6575	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6576	info.state         = 0;
6577	if (mddev->in_sync)
6578		info.state = (1<<MD_SB_CLEAN);
6579	if (mddev->bitmap && mddev->bitmap_info.offset)
6580		info.state |= (1<<MD_SB_BITMAP_PRESENT);
6581	if (mddev_is_clustered(mddev))
6582		info.state |= (1<<MD_SB_CLUSTERED);
6583	info.active_disks  = insync;
6584	info.working_disks = working;
6585	info.failed_disks  = failed;
6586	info.spare_disks   = spare;
6587
6588	info.layout        = mddev->layout;
6589	info.chunk_size    = mddev->chunk_sectors << 9;
6590
6591	if (copy_to_user(arg, &info, sizeof(info)))
6592		return -EFAULT;
6593
6594	return 0;
6595}
6596
6597static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6598{
6599	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6600	char *ptr;
6601	int err;
 
 
 
 
 
6602
6603	file = kzalloc(sizeof(*file), GFP_NOIO);
6604	if (!file)
6605		return -ENOMEM;
6606
6607	err = 0;
6608	spin_lock(&mddev->lock);
6609	/* bitmap enabled */
6610	if (mddev->bitmap_info.file) {
6611		ptr = file_path(mddev->bitmap_info.file, file->pathname,
6612				sizeof(file->pathname));
6613		if (IS_ERR(ptr))
6614			err = PTR_ERR(ptr);
6615		else
6616			memmove(file->pathname, ptr,
6617				sizeof(file->pathname)-(ptr-file->pathname));
6618	}
6619	spin_unlock(&mddev->lock);
6620
6621	if (err == 0 &&
6622	    copy_to_user(arg, file, sizeof(*file)))
6623		err = -EFAULT;
 
 
 
 
 
 
 
6624
 
 
 
 
 
 
6625	kfree(file);
6626	return err;
6627}
6628
6629static int get_disk_info(struct mddev *mddev, void __user * arg)
6630{
6631	mdu_disk_info_t info;
6632	struct md_rdev *rdev;
6633
6634	if (copy_from_user(&info, arg, sizeof(info)))
6635		return -EFAULT;
6636
6637	rcu_read_lock();
6638	rdev = md_find_rdev_nr_rcu(mddev, info.number);
6639	if (rdev) {
6640		info.major = MAJOR(rdev->bdev->bd_dev);
6641		info.minor = MINOR(rdev->bdev->bd_dev);
6642		info.raid_disk = rdev->raid_disk;
6643		info.state = 0;
6644		if (test_bit(Faulty, &rdev->flags))
6645			info.state |= (1<<MD_DISK_FAULTY);
6646		else if (test_bit(In_sync, &rdev->flags)) {
6647			info.state |= (1<<MD_DISK_ACTIVE);
6648			info.state |= (1<<MD_DISK_SYNC);
6649		}
6650		if (test_bit(Journal, &rdev->flags))
6651			info.state |= (1<<MD_DISK_JOURNAL);
6652		if (test_bit(WriteMostly, &rdev->flags))
6653			info.state |= (1<<MD_DISK_WRITEMOSTLY);
6654		if (test_bit(FailFast, &rdev->flags))
6655			info.state |= (1<<MD_DISK_FAILFAST);
6656	} else {
6657		info.major = info.minor = 0;
6658		info.raid_disk = -1;
6659		info.state = (1<<MD_DISK_REMOVED);
6660	}
6661	rcu_read_unlock();
6662
6663	if (copy_to_user(arg, &info, sizeof(info)))
6664		return -EFAULT;
6665
6666	return 0;
6667}
6668
6669int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6670{
 
6671	struct md_rdev *rdev;
6672	dev_t dev = MKDEV(info->major,info->minor);
6673
6674	if (mddev_is_clustered(mddev) &&
6675		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6676		pr_warn("%s: Cannot add to clustered mddev.\n",
6677			mdname(mddev));
6678		return -EINVAL;
6679	}
6680
6681	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6682		return -EOVERFLOW;
6683
6684	if (!mddev->raid_disks) {
6685		int err;
6686		/* expecting a device which has a superblock */
6687		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6688		if (IS_ERR(rdev)) {
6689			pr_warn("md: md_import_device returned %ld\n",
 
6690				PTR_ERR(rdev));
6691			return PTR_ERR(rdev);
6692		}
6693		if (!list_empty(&mddev->disks)) {
6694			struct md_rdev *rdev0
6695				= list_entry(mddev->disks.next,
6696					     struct md_rdev, same_set);
6697			err = super_types[mddev->major_version]
6698				.load_super(rdev, rdev0, mddev->minor_version);
6699			if (err < 0) {
6700				pr_warn("md: %pg has different UUID to %pg\n",
6701					rdev->bdev,
6702					rdev0->bdev);
 
6703				export_rdev(rdev);
6704				return -EINVAL;
6705			}
6706		}
6707		err = bind_rdev_to_array(rdev, mddev);
6708		if (err)
6709			export_rdev(rdev);
6710		return err;
6711	}
6712
6713	/*
6714	 * md_add_new_disk can be used once the array is assembled
6715	 * to add "hot spares".  They must already have a superblock
6716	 * written
6717	 */
6718	if (mddev->pers) {
6719		int err;
6720		if (!mddev->pers->hot_add_disk) {
6721			pr_warn("%s: personality does not support diskops!\n",
6722				mdname(mddev));
 
6723			return -EINVAL;
6724		}
6725		if (mddev->persistent)
6726			rdev = md_import_device(dev, mddev->major_version,
6727						mddev->minor_version);
6728		else
6729			rdev = md_import_device(dev, -1, -1);
6730		if (IS_ERR(rdev)) {
6731			pr_warn("md: md_import_device returned %ld\n",
 
6732				PTR_ERR(rdev));
6733			return PTR_ERR(rdev);
6734		}
6735		/* set saved_raid_disk if appropriate */
6736		if (!mddev->persistent) {
6737			if (info->state & (1<<MD_DISK_SYNC)  &&
6738			    info->raid_disk < mddev->raid_disks) {
6739				rdev->raid_disk = info->raid_disk;
6740				set_bit(In_sync, &rdev->flags);
6741				clear_bit(Bitmap_sync, &rdev->flags);
6742			} else
6743				rdev->raid_disk = -1;
6744			rdev->saved_raid_disk = rdev->raid_disk;
6745		} else
6746			super_types[mddev->major_version].
6747				validate_super(mddev, rdev);
6748		if ((info->state & (1<<MD_DISK_SYNC)) &&
6749		     rdev->raid_disk != info->raid_disk) {
6750			/* This was a hot-add request, but events doesn't
6751			 * match, so reject it.
6752			 */
6753			export_rdev(rdev);
6754			return -EINVAL;
6755		}
6756
 
 
 
 
 
6757		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6758		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6759			set_bit(WriteMostly, &rdev->flags);
6760		else
6761			clear_bit(WriteMostly, &rdev->flags);
6762		if (info->state & (1<<MD_DISK_FAILFAST))
6763			set_bit(FailFast, &rdev->flags);
6764		else
6765			clear_bit(FailFast, &rdev->flags);
6766
6767		if (info->state & (1<<MD_DISK_JOURNAL)) {
6768			struct md_rdev *rdev2;
6769			bool has_journal = false;
6770
6771			/* make sure no existing journal disk */
6772			rdev_for_each(rdev2, mddev) {
6773				if (test_bit(Journal, &rdev2->flags)) {
6774					has_journal = true;
6775					break;
6776				}
6777			}
6778			if (has_journal || mddev->bitmap) {
6779				export_rdev(rdev);
6780				return -EBUSY;
6781			}
6782			set_bit(Journal, &rdev->flags);
6783		}
6784		/*
6785		 * check whether the device shows up in other nodes
6786		 */
6787		if (mddev_is_clustered(mddev)) {
6788			if (info->state & (1 << MD_DISK_CANDIDATE))
6789				set_bit(Candidate, &rdev->flags);
6790			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6791				/* --add initiated by this node */
6792				err = md_cluster_ops->add_new_disk(mddev, rdev);
6793				if (err) {
6794					export_rdev(rdev);
6795					return err;
6796				}
6797			}
6798		}
6799
6800		rdev->raid_disk = -1;
6801		err = bind_rdev_to_array(rdev, mddev);
6802
 
 
 
 
 
 
 
 
 
 
6803		if (err)
6804			export_rdev(rdev);
 
 
6805
6806		if (mddev_is_clustered(mddev)) {
6807			if (info->state & (1 << MD_DISK_CANDIDATE)) {
6808				if (!err) {
6809					err = md_cluster_ops->new_disk_ack(mddev,
6810						err == 0);
6811					if (err)
6812						md_kick_rdev_from_array(rdev);
6813				}
6814			} else {
6815				if (err)
6816					md_cluster_ops->add_new_disk_cancel(mddev);
6817				else
6818					err = add_bound_rdev(rdev);
6819			}
6820
6821		} else if (!err)
6822			err = add_bound_rdev(rdev);
6823
6824		return err;
6825	}
6826
6827	/* otherwise, md_add_new_disk is only allowed
6828	 * for major_version==0 superblocks
6829	 */
6830	if (mddev->major_version != 0) {
6831		pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
 
6832		return -EINVAL;
6833	}
6834
6835	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6836		int err;
6837		rdev = md_import_device(dev, -1, 0);
6838		if (IS_ERR(rdev)) {
6839			pr_warn("md: error, md_import_device() returned %ld\n",
 
6840				PTR_ERR(rdev));
6841			return PTR_ERR(rdev);
6842		}
6843		rdev->desc_nr = info->number;
6844		if (info->raid_disk < mddev->raid_disks)
6845			rdev->raid_disk = info->raid_disk;
6846		else
6847			rdev->raid_disk = -1;
6848
6849		if (rdev->raid_disk < mddev->raid_disks)
6850			if (info->state & (1<<MD_DISK_SYNC))
6851				set_bit(In_sync, &rdev->flags);
6852
6853		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6854			set_bit(WriteMostly, &rdev->flags);
6855		if (info->state & (1<<MD_DISK_FAILFAST))
6856			set_bit(FailFast, &rdev->flags);
6857
6858		if (!mddev->persistent) {
6859			pr_debug("md: nonpersistent superblock ...\n");
6860			rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6861		} else
6862			rdev->sb_start = calc_dev_sboffset(rdev);
6863		rdev->sectors = rdev->sb_start;
6864
6865		err = bind_rdev_to_array(rdev, mddev);
6866		if (err) {
6867			export_rdev(rdev);
6868			return err;
6869		}
6870	}
6871
6872	return 0;
6873}
6874
6875static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6876{
 
6877	struct md_rdev *rdev;
6878
6879	if (!mddev->pers)
6880		return -ENODEV;
6881
6882	rdev = find_rdev(mddev, dev);
6883	if (!rdev)
6884		return -ENXIO;
6885
6886	if (rdev->raid_disk < 0)
6887		goto kick_rdev;
6888
6889	clear_bit(Blocked, &rdev->flags);
6890	remove_and_add_spares(mddev, rdev);
6891
6892	if (rdev->raid_disk >= 0)
6893		goto busy;
6894
6895kick_rdev:
6896	if (mddev_is_clustered(mddev)) {
6897		if (md_cluster_ops->remove_disk(mddev, rdev))
6898			goto busy;
6899	}
6900
6901	md_kick_rdev_from_array(rdev);
6902	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6903	if (mddev->thread)
6904		md_wakeup_thread(mddev->thread);
6905	else
6906		md_update_sb(mddev, 1);
6907	md_new_event();
6908
6909	return 0;
6910busy:
6911	pr_debug("md: cannot remove active disk %pg from %s ...\n",
6912		 rdev->bdev, mdname(mddev));
6913	return -EBUSY;
6914}
6915
6916static int hot_add_disk(struct mddev *mddev, dev_t dev)
6917{
 
6918	int err;
6919	struct md_rdev *rdev;
6920
6921	if (!mddev->pers)
6922		return -ENODEV;
6923
6924	if (mddev->major_version != 0) {
6925		pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
 
6926			mdname(mddev));
6927		return -EINVAL;
6928	}
6929	if (!mddev->pers->hot_add_disk) {
6930		pr_warn("%s: personality does not support diskops!\n",
 
6931			mdname(mddev));
6932		return -EINVAL;
6933	}
6934
6935	rdev = md_import_device(dev, -1, 0);
6936	if (IS_ERR(rdev)) {
6937		pr_warn("md: error, md_import_device() returned %ld\n",
 
6938			PTR_ERR(rdev));
6939		return -EINVAL;
6940	}
6941
6942	if (mddev->persistent)
6943		rdev->sb_start = calc_dev_sboffset(rdev);
6944	else
6945		rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6946
6947	rdev->sectors = rdev->sb_start;
6948
6949	if (test_bit(Faulty, &rdev->flags)) {
6950		pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
6951			rdev->bdev, mdname(mddev));
 
6952		err = -EINVAL;
6953		goto abort_export;
6954	}
6955
6956	clear_bit(In_sync, &rdev->flags);
6957	rdev->desc_nr = -1;
6958	rdev->saved_raid_disk = -1;
6959	err = bind_rdev_to_array(rdev, mddev);
6960	if (err)
6961		goto abort_export;
6962
6963	/*
6964	 * The rest should better be atomic, we can have disk failures
6965	 * noticed in interrupt contexts ...
6966	 */
6967
6968	rdev->raid_disk = -1;
6969
6970	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6971	if (!mddev->thread)
6972		md_update_sb(mddev, 1);
6973	/*
6974	 * If the new disk does not support REQ_NOWAIT,
6975	 * disable on the whole MD.
6976	 */
6977	if (!bdev_nowait(rdev->bdev)) {
6978		pr_info("%s: Disabling nowait because %pg does not support nowait\n",
6979			mdname(mddev), rdev->bdev);
6980		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
6981	}
6982	/*
6983	 * Kick recovery, maybe this spare has to be added to the
6984	 * array immediately.
6985	 */
6986	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6987	md_wakeup_thread(mddev->thread);
6988	md_new_event();
6989	return 0;
6990
6991abort_export:
6992	export_rdev(rdev);
6993	return err;
6994}
6995
6996static int set_bitmap_file(struct mddev *mddev, int fd)
6997{
6998	int err = 0;
6999
7000	if (mddev->pers) {
7001		if (!mddev->pers->quiesce || !mddev->thread)
7002			return -EBUSY;
7003		if (mddev->recovery || mddev->sync_thread)
7004			return -EBUSY;
7005		/* we should be able to change the bitmap.. */
7006	}
7007
7008	if (fd >= 0) {
7009		struct inode *inode;
7010		struct file *f;
7011
7012		if (mddev->bitmap || mddev->bitmap_info.file)
 
7013			return -EEXIST; /* cannot add when bitmap is present */
7014		f = fget(fd);
7015
7016		if (f == NULL) {
7017			pr_warn("%s: error: failed to get bitmap file\n",
7018				mdname(mddev));
7019			return -EBADF;
7020		}
7021
7022		inode = f->f_mapping->host;
7023		if (!S_ISREG(inode->i_mode)) {
7024			pr_warn("%s: error: bitmap file must be a regular file\n",
7025				mdname(mddev));
7026			err = -EBADF;
7027		} else if (!(f->f_mode & FMODE_WRITE)) {
7028			pr_warn("%s: error: bitmap file must open for write\n",
7029				mdname(mddev));
7030			err = -EBADF;
7031		} else if (atomic_read(&inode->i_writecount) != 1) {
7032			pr_warn("%s: error: bitmap file is already in use\n",
7033				mdname(mddev));
7034			err = -EBUSY;
7035		}
7036		if (err) {
7037			fput(f);
 
 
 
7038			return err;
7039		}
7040		mddev->bitmap_info.file = f;
7041		mddev->bitmap_info.offset = 0; /* file overrides offset */
7042	} else if (mddev->bitmap == NULL)
7043		return -ENOENT; /* cannot remove what isn't there */
7044	err = 0;
7045	if (mddev->pers) {
 
7046		if (fd >= 0) {
7047			struct bitmap *bitmap;
7048
7049			bitmap = md_bitmap_create(mddev, -1);
7050			mddev_suspend(mddev);
7051			if (!IS_ERR(bitmap)) {
7052				mddev->bitmap = bitmap;
7053				err = md_bitmap_load(mddev);
7054			} else
7055				err = PTR_ERR(bitmap);
7056			if (err) {
7057				md_bitmap_destroy(mddev);
7058				fd = -1;
7059			}
7060			mddev_resume(mddev);
7061		} else if (fd < 0) {
7062			mddev_suspend(mddev);
7063			md_bitmap_destroy(mddev);
7064			mddev_resume(mddev);
7065		}
 
7066	}
7067	if (fd < 0) {
7068		struct file *f = mddev->bitmap_info.file;
7069		if (f) {
7070			spin_lock(&mddev->lock);
7071			mddev->bitmap_info.file = NULL;
7072			spin_unlock(&mddev->lock);
7073			fput(f);
7074		}
 
7075	}
7076
7077	return err;
7078}
7079
7080/*
7081 * md_set_array_info is used two different ways
7082 * The original usage is when creating a new array.
7083 * In this usage, raid_disks is > 0 and it together with
7084 *  level, size, not_persistent,layout,chunksize determine the
7085 *  shape of the array.
7086 *  This will always create an array with a type-0.90.0 superblock.
7087 * The newer usage is when assembling an array.
7088 *  In this case raid_disks will be 0, and the major_version field is
7089 *  use to determine which style super-blocks are to be found on the devices.
7090 *  The minor and patch _version numbers are also kept incase the
7091 *  super_block handler wishes to interpret them.
7092 */
7093int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7094{
 
7095	if (info->raid_disks == 0) {
7096		/* just setting version number for superblock loading */
7097		if (info->major_version < 0 ||
7098		    info->major_version >= ARRAY_SIZE(super_types) ||
7099		    super_types[info->major_version].name == NULL) {
7100			/* maybe try to auto-load a module? */
7101			pr_warn("md: superblock version %d not known\n",
 
7102				info->major_version);
7103			return -EINVAL;
7104		}
7105		mddev->major_version = info->major_version;
7106		mddev->minor_version = info->minor_version;
7107		mddev->patch_version = info->patch_version;
7108		mddev->persistent = !info->not_persistent;
7109		/* ensure mddev_put doesn't delete this now that there
7110		 * is some minimal configuration.
7111		 */
7112		mddev->ctime         = ktime_get_real_seconds();
7113		return 0;
7114	}
7115	mddev->major_version = MD_MAJOR_VERSION;
7116	mddev->minor_version = MD_MINOR_VERSION;
7117	mddev->patch_version = MD_PATCHLEVEL_VERSION;
7118	mddev->ctime         = ktime_get_real_seconds();
7119
7120	mddev->level         = info->level;
7121	mddev->clevel[0]     = 0;
7122	mddev->dev_sectors   = 2 * (sector_t)info->size;
7123	mddev->raid_disks    = info->raid_disks;
7124	/* don't set md_minor, it is determined by which /dev/md* was
7125	 * openned
7126	 */
7127	if (info->state & (1<<MD_SB_CLEAN))
7128		mddev->recovery_cp = MaxSector;
7129	else
7130		mddev->recovery_cp = 0;
7131	mddev->persistent    = ! info->not_persistent;
7132	mddev->external	     = 0;
7133
7134	mddev->layout        = info->layout;
7135	if (mddev->level == 0)
7136		/* Cannot trust RAID0 layout info here */
7137		mddev->layout = -1;
7138	mddev->chunk_sectors = info->chunk_size >> 9;
7139
7140	if (mddev->persistent) {
7141		mddev->max_disks = MD_SB_DISKS;
7142		mddev->flags = 0;
7143		mddev->sb_flags = 0;
7144	}
7145	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7146
7147	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7148	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7149	mddev->bitmap_info.offset = 0;
7150
7151	mddev->reshape_position = MaxSector;
7152
7153	/*
7154	 * Generate a 128 bit UUID
7155	 */
7156	get_random_bytes(mddev->uuid, 16);
7157
7158	mddev->new_level = mddev->level;
7159	mddev->new_chunk_sectors = mddev->chunk_sectors;
7160	mddev->new_layout = mddev->layout;
7161	mddev->delta_disks = 0;
7162	mddev->reshape_backwards = 0;
7163
7164	return 0;
7165}
7166
7167void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7168{
7169	lockdep_assert_held(&mddev->reconfig_mutex);
7170
7171	if (mddev->external_size)
7172		return;
7173
7174	mddev->array_sectors = array_sectors;
7175}
7176EXPORT_SYMBOL(md_set_array_sectors);
7177
7178static int update_size(struct mddev *mddev, sector_t num_sectors)
7179{
7180	struct md_rdev *rdev;
7181	int rv;
7182	int fit = (num_sectors == 0);
7183	sector_t old_dev_sectors = mddev->dev_sectors;
7184
7185	if (mddev->pers->resize == NULL)
7186		return -EINVAL;
7187	/* The "num_sectors" is the number of sectors of each device that
7188	 * is used.  This can only make sense for arrays with redundancy.
7189	 * linear and raid0 always use whatever space is available. We can only
7190	 * consider changing this number if no resync or reconstruction is
7191	 * happening, and if the new size is acceptable. It must fit before the
7192	 * sb_start or, if that is <data_offset, it must fit before the size
7193	 * of each device.  If num_sectors is zero, we find the largest size
7194	 * that fits.
7195	 */
7196	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7197	    mddev->sync_thread)
7198		return -EBUSY;
7199	if (!md_is_rdwr(mddev))
7200		return -EROFS;
7201
7202	rdev_for_each(rdev, mddev) {
7203		sector_t avail = rdev->sectors;
7204
7205		if (fit && (num_sectors == 0 || num_sectors > avail))
7206			num_sectors = avail;
7207		if (avail < num_sectors)
7208			return -ENOSPC;
7209	}
7210	rv = mddev->pers->resize(mddev, num_sectors);
7211	if (!rv) {
7212		if (mddev_is_clustered(mddev))
7213			md_cluster_ops->update_size(mddev, old_dev_sectors);
7214		else if (mddev->queue) {
7215			set_capacity_and_notify(mddev->gendisk,
7216						mddev->array_sectors);
7217		}
7218	}
7219	return rv;
7220}
7221
7222static int update_raid_disks(struct mddev *mddev, int raid_disks)
7223{
7224	int rv;
7225	struct md_rdev *rdev;
7226	/* change the number of raid disks */
7227	if (mddev->pers->check_reshape == NULL)
7228		return -EINVAL;
7229	if (!md_is_rdwr(mddev))
7230		return -EROFS;
7231	if (raid_disks <= 0 ||
7232	    (mddev->max_disks && raid_disks >= mddev->max_disks))
7233		return -EINVAL;
7234	if (mddev->sync_thread ||
7235	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7236	    test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7237	    mddev->reshape_position != MaxSector)
7238		return -EBUSY;
7239
7240	rdev_for_each(rdev, mddev) {
7241		if (mddev->raid_disks < raid_disks &&
7242		    rdev->data_offset < rdev->new_data_offset)
7243			return -EINVAL;
7244		if (mddev->raid_disks > raid_disks &&
7245		    rdev->data_offset > rdev->new_data_offset)
7246			return -EINVAL;
7247	}
7248
7249	mddev->delta_disks = raid_disks - mddev->raid_disks;
7250	if (mddev->delta_disks < 0)
7251		mddev->reshape_backwards = 1;
7252	else if (mddev->delta_disks > 0)
7253		mddev->reshape_backwards = 0;
7254
7255	rv = mddev->pers->check_reshape(mddev);
7256	if (rv < 0) {
7257		mddev->delta_disks = 0;
7258		mddev->reshape_backwards = 0;
7259	}
7260	return rv;
7261}
7262
 
7263/*
7264 * update_array_info is used to change the configuration of an
7265 * on-line array.
7266 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7267 * fields in the info are checked against the array.
7268 * Any differences that cannot be handled will cause an error.
7269 * Normally, only one change can be managed at a time.
7270 */
7271static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7272{
7273	int rv = 0;
7274	int cnt = 0;
7275	int state = 0;
7276
7277	/* calculate expected state,ignoring low bits */
7278	if (mddev->bitmap && mddev->bitmap_info.offset)
7279		state |= (1 << MD_SB_BITMAP_PRESENT);
7280
7281	if (mddev->major_version != info->major_version ||
7282	    mddev->minor_version != info->minor_version ||
7283/*	    mddev->patch_version != info->patch_version || */
7284	    mddev->ctime         != info->ctime         ||
7285	    mddev->level         != info->level         ||
7286/*	    mddev->layout        != info->layout        || */
7287	    mddev->persistent	 != !info->not_persistent ||
7288	    mddev->chunk_sectors != info->chunk_size >> 9 ||
7289	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7290	    ((state^info->state) & 0xfffffe00)
7291		)
7292		return -EINVAL;
7293	/* Check there is only one change */
7294	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7295		cnt++;
7296	if (mddev->raid_disks != info->raid_disks)
7297		cnt++;
7298	if (mddev->layout != info->layout)
7299		cnt++;
7300	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7301		cnt++;
7302	if (cnt == 0)
7303		return 0;
7304	if (cnt > 1)
7305		return -EINVAL;
7306
7307	if (mddev->layout != info->layout) {
7308		/* Change layout
7309		 * we don't need to do anything at the md level, the
7310		 * personality will take care of it all.
7311		 */
7312		if (mddev->pers->check_reshape == NULL)
7313			return -EINVAL;
7314		else {
7315			mddev->new_layout = info->layout;
7316			rv = mddev->pers->check_reshape(mddev);
7317			if (rv)
7318				mddev->new_layout = mddev->layout;
7319			return rv;
7320		}
7321	}
7322	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7323		rv = update_size(mddev, (sector_t)info->size * 2);
7324
7325	if (mddev->raid_disks    != info->raid_disks)
7326		rv = update_raid_disks(mddev, info->raid_disks);
7327
7328	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7329		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7330			rv = -EINVAL;
7331			goto err;
7332		}
7333		if (mddev->recovery || mddev->sync_thread) {
7334			rv = -EBUSY;
7335			goto err;
7336		}
7337		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7338			struct bitmap *bitmap;
7339			/* add the bitmap */
7340			if (mddev->bitmap) {
7341				rv = -EEXIST;
7342				goto err;
7343			}
7344			if (mddev->bitmap_info.default_offset == 0) {
7345				rv = -EINVAL;
7346				goto err;
7347			}
7348			mddev->bitmap_info.offset =
7349				mddev->bitmap_info.default_offset;
7350			mddev->bitmap_info.space =
7351				mddev->bitmap_info.default_space;
7352			bitmap = md_bitmap_create(mddev, -1);
7353			mddev_suspend(mddev);
7354			if (!IS_ERR(bitmap)) {
7355				mddev->bitmap = bitmap;
7356				rv = md_bitmap_load(mddev);
7357			} else
7358				rv = PTR_ERR(bitmap);
7359			if (rv)
7360				md_bitmap_destroy(mddev);
7361			mddev_resume(mddev);
7362		} else {
7363			/* remove the bitmap */
7364			if (!mddev->bitmap) {
7365				rv = -ENOENT;
7366				goto err;
7367			}
7368			if (mddev->bitmap->storage.file) {
7369				rv = -EINVAL;
7370				goto err;
7371			}
7372			if (mddev->bitmap_info.nodes) {
7373				/* hold PW on all the bitmap lock */
7374				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7375					pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7376					rv = -EPERM;
7377					md_cluster_ops->unlock_all_bitmaps(mddev);
7378					goto err;
7379				}
7380
7381				mddev->bitmap_info.nodes = 0;
7382				md_cluster_ops->leave(mddev);
7383				module_put(md_cluster_mod);
7384				mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7385			}
7386			mddev_suspend(mddev);
7387			md_bitmap_destroy(mddev);
7388			mddev_resume(mddev);
7389			mddev->bitmap_info.offset = 0;
7390		}
7391	}
7392	md_update_sb(mddev, 1);
7393	return rv;
7394err:
7395	return rv;
7396}
7397
7398static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7399{
7400	struct md_rdev *rdev;
7401	int err = 0;
7402
7403	if (mddev->pers == NULL)
7404		return -ENODEV;
7405
7406	rcu_read_lock();
7407	rdev = md_find_rdev_rcu(mddev, dev);
7408	if (!rdev)
7409		err =  -ENODEV;
7410	else {
7411		md_error(mddev, rdev);
7412		if (test_bit(MD_BROKEN, &mddev->flags))
7413			err = -EBUSY;
7414	}
7415	rcu_read_unlock();
7416	return err;
7417}
7418
7419/*
7420 * We have a problem here : there is no easy way to give a CHS
7421 * virtual geometry. We currently pretend that we have a 2 heads
7422 * 4 sectors (with a BIG number of cylinders...). This drives
7423 * dosfs just mad... ;-)
7424 */
7425static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7426{
7427	struct mddev *mddev = bdev->bd_disk->private_data;
7428
7429	geo->heads = 2;
7430	geo->sectors = 4;
7431	geo->cylinders = mddev->array_sectors / 8;
7432	return 0;
7433}
7434
7435static inline bool md_ioctl_valid(unsigned int cmd)
7436{
7437	switch (cmd) {
7438	case ADD_NEW_DISK:
7439	case GET_ARRAY_INFO:
7440	case GET_BITMAP_FILE:
7441	case GET_DISK_INFO:
7442	case HOT_ADD_DISK:
7443	case HOT_REMOVE_DISK:
7444	case RAID_VERSION:
7445	case RESTART_ARRAY_RW:
7446	case RUN_ARRAY:
7447	case SET_ARRAY_INFO:
7448	case SET_BITMAP_FILE:
7449	case SET_DISK_FAULTY:
7450	case STOP_ARRAY:
7451	case STOP_ARRAY_RO:
7452	case CLUSTERED_DISK_NACK:
7453		return true;
7454	default:
7455		return false;
7456	}
7457}
7458
7459static int __md_set_array_info(struct mddev *mddev, void __user *argp)
7460{
7461	mdu_array_info_t info;
7462	int err;
7463
7464	if (!argp)
7465		memset(&info, 0, sizeof(info));
7466	else if (copy_from_user(&info, argp, sizeof(info)))
7467		return -EFAULT;
7468
7469	if (mddev->pers) {
7470		err = update_array_info(mddev, &info);
7471		if (err)
7472			pr_warn("md: couldn't update array info. %d\n", err);
7473		return err;
7474	}
7475
7476	if (!list_empty(&mddev->disks)) {
7477		pr_warn("md: array %s already has disks!\n", mdname(mddev));
7478		return -EBUSY;
7479	}
7480
7481	if (mddev->raid_disks) {
7482		pr_warn("md: array %s already initialised!\n", mdname(mddev));
7483		return -EBUSY;
7484	}
7485
7486	err = md_set_array_info(mddev, &info);
7487	if (err)
7488		pr_warn("md: couldn't set array info. %d\n", err);
7489
7490	return err;
7491}
7492
7493static int md_ioctl(struct block_device *bdev, fmode_t mode,
7494			unsigned int cmd, unsigned long arg)
7495{
7496	int err = 0;
7497	void __user *argp = (void __user *)arg;
7498	struct mddev *mddev = NULL;
7499	bool did_set_md_closing = false;
7500
7501	if (!md_ioctl_valid(cmd))
7502		return -ENOTTY;
7503
7504	switch (cmd) {
7505	case RAID_VERSION:
7506	case GET_ARRAY_INFO:
7507	case GET_DISK_INFO:
7508		break;
7509	default:
7510		if (!capable(CAP_SYS_ADMIN))
7511			return -EACCES;
7512	}
7513
7514	/*
7515	 * Commands dealing with the RAID driver but not any
7516	 * particular array:
7517	 */
7518	switch (cmd) {
7519	case RAID_VERSION:
7520		err = get_version(argp);
7521		goto out;
7522	default:;
 
 
 
 
 
 
 
 
 
 
 
 
 
7523	}
7524
7525	/*
7526	 * Commands creating/starting a new array:
7527	 */
7528
7529	mddev = bdev->bd_disk->private_data;
7530
7531	if (!mddev) {
7532		BUG();
7533		goto out;
7534	}
7535
7536	/* Some actions do not requires the mutex */
7537	switch (cmd) {
7538	case GET_ARRAY_INFO:
7539		if (!mddev->raid_disks && !mddev->external)
7540			err = -ENODEV;
7541		else
7542			err = get_array_info(mddev, argp);
7543		goto out;
7544
7545	case GET_DISK_INFO:
7546		if (!mddev->raid_disks && !mddev->external)
7547			err = -ENODEV;
7548		else
7549			err = get_disk_info(mddev, argp);
7550		goto out;
7551
7552	case SET_DISK_FAULTY:
7553		err = set_disk_faulty(mddev, new_decode_dev(arg));
7554		goto out;
7555
7556	case GET_BITMAP_FILE:
7557		err = get_bitmap_file(mddev, argp);
7558		goto out;
7559
7560	}
7561
7562	if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7563		flush_rdev_wq(mddev);
7564
7565	if (cmd == HOT_REMOVE_DISK)
7566		/* need to ensure recovery thread has run */
7567		wait_event_interruptible_timeout(mddev->sb_wait,
7568						 !test_bit(MD_RECOVERY_NEEDED,
7569							   &mddev->recovery),
7570						 msecs_to_jiffies(5000));
7571	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7572		/* Need to flush page cache, and ensure no-one else opens
7573		 * and writes
7574		 */
7575		mutex_lock(&mddev->open_mutex);
7576		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7577			mutex_unlock(&mddev->open_mutex);
7578			err = -EBUSY;
7579			goto out;
7580		}
7581		if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7582			mutex_unlock(&mddev->open_mutex);
7583			err = -EBUSY;
7584			goto out;
7585		}
7586		did_set_md_closing = true;
7587		mutex_unlock(&mddev->open_mutex);
7588		sync_blockdev(bdev);
7589	}
7590	err = mddev_lock(mddev);
7591	if (err) {
7592		pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7593			 err, cmd);
7594		goto out;
 
7595	}
7596
7597	if (cmd == SET_ARRAY_INFO) {
7598		err = __md_set_array_info(mddev, argp);
7599		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7600	}
7601
7602	/*
7603	 * Commands querying/configuring an existing array:
7604	 */
7605	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7606	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7607	if ((!mddev->raid_disks && !mddev->external)
7608	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7609	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7610	    && cmd != GET_BITMAP_FILE) {
7611		err = -ENODEV;
7612		goto unlock;
7613	}
7614
7615	/*
7616	 * Commands even a read-only array can execute:
7617	 */
7618	switch (cmd) {
7619	case RESTART_ARRAY_RW:
7620		err = restart_array(mddev);
7621		goto unlock;
7622
7623	case STOP_ARRAY:
7624		err = do_md_stop(mddev, 0, bdev);
7625		goto unlock;
7626
7627	case STOP_ARRAY_RO:
7628		err = md_set_readonly(mddev, bdev);
7629		goto unlock;
7630
7631	case HOT_REMOVE_DISK:
7632		err = hot_remove_disk(mddev, new_decode_dev(arg));
7633		goto unlock;
7634
7635	case ADD_NEW_DISK:
7636		/* We can support ADD_NEW_DISK on read-only arrays
7637		 * only if we are re-adding a preexisting device.
7638		 * So require mddev->pers and MD_DISK_SYNC.
7639		 */
7640		if (mddev->pers) {
7641			mdu_disk_info_t info;
7642			if (copy_from_user(&info, argp, sizeof(info)))
 
 
 
 
 
 
 
 
 
 
7643				err = -EFAULT;
7644			else if (!(info.state & (1<<MD_DISK_SYNC)))
7645				/* Need to clear read-only for this */
7646				break;
7647			else
7648				err = md_add_new_disk(mddev, &info);
7649			goto unlock;
7650		}
7651		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7652	}
7653
7654	/*
7655	 * The remaining ioctls are changing the state of the
7656	 * superblock, so we do not allow them on read-only arrays.
7657	 */
7658	if (!md_is_rdwr(mddev) && mddev->pers) {
7659		if (mddev->ro != MD_AUTO_READ) {
 
 
 
 
 
 
 
 
7660			err = -EROFS;
7661			goto unlock;
7662		}
7663		mddev->ro = MD_RDWR;
7664		sysfs_notify_dirent_safe(mddev->sysfs_state);
7665		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7666		/* mddev_unlock will wake thread */
7667		/* If a device failed while we were read-only, we
7668		 * need to make sure the metadata is updated now.
7669		 */
7670		if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7671			mddev_unlock(mddev);
7672			wait_event(mddev->sb_wait,
7673				   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7674				   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7675			mddev_lock_nointr(mddev);
7676		}
7677	}
7678
7679	switch (cmd) {
7680	case ADD_NEW_DISK:
7681	{
7682		mdu_disk_info_t info;
7683		if (copy_from_user(&info, argp, sizeof(info)))
7684			err = -EFAULT;
7685		else
7686			err = md_add_new_disk(mddev, &info);
7687		goto unlock;
7688	}
 
 
7689
7690	case CLUSTERED_DISK_NACK:
7691		if (mddev_is_clustered(mddev))
7692			md_cluster_ops->new_disk_ack(mddev, false);
7693		else
7694			err = -EINVAL;
7695		goto unlock;
7696
7697	case HOT_ADD_DISK:
7698		err = hot_add_disk(mddev, new_decode_dev(arg));
7699		goto unlock;
7700
7701	case RUN_ARRAY:
7702		err = do_md_run(mddev);
7703		goto unlock;
7704
7705	case SET_BITMAP_FILE:
7706		err = set_bitmap_file(mddev, (int)arg);
7707		goto unlock;
7708
7709	default:
7710		err = -EINVAL;
7711		goto unlock;
 
 
 
 
7712	}
7713
7714unlock:
 
7715	if (mddev->hold_active == UNTIL_IOCTL &&
7716	    err != -EINVAL)
7717		mddev->hold_active = 0;
7718	mddev_unlock(mddev);
7719out:
7720	if(did_set_md_closing)
7721		clear_bit(MD_CLOSING, &mddev->flags);
 
 
 
7722	return err;
7723}
7724#ifdef CONFIG_COMPAT
7725static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7726		    unsigned int cmd, unsigned long arg)
7727{
7728	switch (cmd) {
7729	case HOT_REMOVE_DISK:
7730	case HOT_ADD_DISK:
7731	case SET_DISK_FAULTY:
7732	case SET_BITMAP_FILE:
7733		/* These take in integer arg, do not convert */
7734		break;
7735	default:
7736		arg = (unsigned long)compat_ptr(arg);
7737		break;
7738	}
7739
7740	return md_ioctl(bdev, mode, cmd, arg);
7741}
7742#endif /* CONFIG_COMPAT */
7743
7744static int md_set_read_only(struct block_device *bdev, bool ro)
7745{
7746	struct mddev *mddev = bdev->bd_disk->private_data;
7747	int err;
7748
7749	err = mddev_lock(mddev);
7750	if (err)
7751		return err;
7752
7753	if (!mddev->raid_disks && !mddev->external) {
7754		err = -ENODEV;
7755		goto out_unlock;
7756	}
7757
7758	/*
7759	 * Transitioning to read-auto need only happen for arrays that call
7760	 * md_write_start and which are not ready for writes yet.
7761	 */
7762	if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7763		err = restart_array(mddev);
7764		if (err)
7765			goto out_unlock;
7766		mddev->ro = MD_AUTO_READ;
7767	}
7768
7769out_unlock:
7770	mddev_unlock(mddev);
7771	return err;
7772}
7773
7774static int md_open(struct block_device *bdev, fmode_t mode)
7775{
7776	struct mddev *mddev;
7777	int err;
7778
7779	spin_lock(&all_mddevs_lock);
7780	mddev = mddev_get(bdev->bd_disk->private_data);
7781	spin_unlock(&all_mddevs_lock);
7782	if (!mddev)
7783		return -ENODEV;
7784
7785	err = mutex_lock_interruptible(&mddev->open_mutex);
7786	if (err)
7787		goto out;
 
 
 
 
 
 
 
 
7788
7789	err = -ENODEV;
7790	if (test_bit(MD_CLOSING, &mddev->flags))
7791		goto out_unlock;
7792
 
7793	atomic_inc(&mddev->openers);
7794	mutex_unlock(&mddev->open_mutex);
7795
7796	bdev_check_media_change(bdev);
7797	return 0;
7798
7799out_unlock:
7800	mutex_unlock(&mddev->open_mutex);
7801out:
7802	mddev_put(mddev);
7803	return err;
7804}
7805
7806static void md_release(struct gendisk *disk, fmode_t mode)
7807{
7808	struct mddev *mddev = disk->private_data;
7809
7810	BUG_ON(!mddev);
7811	atomic_dec(&mddev->openers);
7812	mddev_put(mddev);
 
 
7813}
7814
7815static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7816{
7817	struct mddev *mddev = disk->private_data;
7818	unsigned int ret = 0;
7819
7820	if (mddev->changed)
7821		ret = DISK_EVENT_MEDIA_CHANGE;
7822	mddev->changed = 0;
7823	return ret;
7824}
7825
7826static void md_free_disk(struct gendisk *disk)
7827{
7828	struct mddev *mddev = disk->private_data;
7829
7830	percpu_ref_exit(&mddev->writes_pending);
7831	bioset_exit(&mddev->bio_set);
7832	bioset_exit(&mddev->sync_set);
7833
7834	mddev_free(mddev);
7835}
7836
7837const struct block_device_operations md_fops =
7838{
7839	.owner		= THIS_MODULE,
7840	.submit_bio	= md_submit_bio,
7841	.open		= md_open,
7842	.release	= md_release,
7843	.ioctl		= md_ioctl,
7844#ifdef CONFIG_COMPAT
7845	.compat_ioctl	= md_compat_ioctl,
7846#endif
7847	.getgeo		= md_getgeo,
7848	.check_events	= md_check_events,
7849	.set_read_only	= md_set_read_only,
7850	.free_disk	= md_free_disk,
7851};
7852
7853static int md_thread(void *arg)
7854{
7855	struct md_thread *thread = arg;
7856
7857	/*
7858	 * md_thread is a 'system-thread', it's priority should be very
7859	 * high. We avoid resource deadlocks individually in each
7860	 * raid personality. (RAID5 does preallocation) We also use RR and
7861	 * the very same RT priority as kswapd, thus we will never get
7862	 * into a priority inversion deadlock.
7863	 *
7864	 * we definitely have to have equal or higher priority than
7865	 * bdflush, otherwise bdflush will deadlock if there are too
7866	 * many dirty RAID5 blocks.
7867	 */
7868
7869	allow_signal(SIGKILL);
7870	while (!kthread_should_stop()) {
7871
7872		/* We need to wait INTERRUPTIBLE so that
7873		 * we don't add to the load-average.
7874		 * That means we need to be sure no signals are
7875		 * pending
7876		 */
7877		if (signal_pending(current))
7878			flush_signals(current);
7879
7880		wait_event_interruptible_timeout
7881			(thread->wqueue,
7882			 test_bit(THREAD_WAKEUP, &thread->flags)
7883			 || kthread_should_stop() || kthread_should_park(),
7884			 thread->timeout);
7885
7886		clear_bit(THREAD_WAKEUP, &thread->flags);
7887		if (kthread_should_park())
7888			kthread_parkme();
7889		if (!kthread_should_stop())
7890			thread->run(thread);
7891	}
7892
7893	return 0;
7894}
7895
7896void md_wakeup_thread(struct md_thread *thread)
7897{
7898	if (thread) {
7899		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7900		set_bit(THREAD_WAKEUP, &thread->flags);
7901		wake_up(&thread->wqueue);
7902	}
7903}
7904EXPORT_SYMBOL(md_wakeup_thread);
7905
7906struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7907		struct mddev *mddev, const char *name)
7908{
7909	struct md_thread *thread;
7910
7911	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7912	if (!thread)
7913		return NULL;
7914
7915	init_waitqueue_head(&thread->wqueue);
7916
7917	thread->run = run;
7918	thread->mddev = mddev;
7919	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7920	thread->tsk = kthread_run(md_thread, thread,
7921				  "%s_%s",
7922				  mdname(thread->mddev),
7923				  name);
7924	if (IS_ERR(thread->tsk)) {
7925		kfree(thread);
7926		return NULL;
7927	}
7928	return thread;
7929}
7930EXPORT_SYMBOL(md_register_thread);
7931
7932void md_unregister_thread(struct md_thread **threadp)
7933{
7934	struct md_thread *thread;
7935
7936	/*
7937	 * Locking ensures that mddev_unlock does not wake_up a
 
7938	 * non-existent thread
7939	 */
7940	spin_lock(&pers_lock);
7941	thread = *threadp;
7942	if (!thread) {
7943		spin_unlock(&pers_lock);
7944		return;
7945	}
7946	*threadp = NULL;
7947	spin_unlock(&pers_lock);
7948
7949	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7950	kthread_stop(thread->tsk);
7951	kfree(thread);
7952}
7953EXPORT_SYMBOL(md_unregister_thread);
7954
7955void md_error(struct mddev *mddev, struct md_rdev *rdev)
7956{
 
 
 
 
 
7957	if (!rdev || test_bit(Faulty, &rdev->flags))
7958		return;
7959
7960	if (!mddev->pers || !mddev->pers->error_handler)
7961		return;
7962	mddev->pers->error_handler(mddev, rdev);
7963
7964	if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
7965		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7966	sysfs_notify_dirent_safe(rdev->sysfs_state);
7967	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7968	if (!test_bit(MD_BROKEN, &mddev->flags)) {
7969		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7970		md_wakeup_thread(mddev->thread);
7971	}
7972	if (mddev->event_work.func)
7973		queue_work(md_misc_wq, &mddev->event_work);
7974	md_new_event();
7975}
7976EXPORT_SYMBOL(md_error);
7977
7978/* seq_file implementation /proc/mdstat */
7979
7980static void status_unused(struct seq_file *seq)
7981{
7982	int i = 0;
7983	struct md_rdev *rdev;
7984
7985	seq_printf(seq, "unused devices: ");
7986
7987	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
 
7988		i++;
7989		seq_printf(seq, "%pg ", rdev->bdev);
 
7990	}
7991	if (!i)
7992		seq_printf(seq, "<none>");
7993
7994	seq_printf(seq, "\n");
7995}
7996
7997static int status_resync(struct seq_file *seq, struct mddev *mddev)
 
7998{
7999	sector_t max_sectors, resync, res;
8000	unsigned long dt, db = 0;
8001	sector_t rt, curr_mark_cnt, resync_mark_cnt;
8002	int scale, recovery_active;
8003	unsigned int per_milli;
8004
 
 
8005	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8006	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8007		max_sectors = mddev->resync_max_sectors;
8008	else
8009		max_sectors = mddev->dev_sectors;
8010
8011	resync = mddev->curr_resync;
8012	if (resync < MD_RESYNC_ACTIVE) {
8013		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8014			/* Still cleaning up */
8015			resync = max_sectors;
8016	} else if (resync > max_sectors) {
8017		resync = max_sectors;
8018	} else {
8019		resync -= atomic_read(&mddev->recovery_active);
8020		if (resync < MD_RESYNC_ACTIVE) {
8021			/*
8022			 * Resync has started, but the subtraction has
8023			 * yielded one of the special values. Force it
8024			 * to active to ensure the status reports an
8025			 * active resync.
8026			 */
8027			resync = MD_RESYNC_ACTIVE;
8028		}
8029	}
8030
8031	if (resync == MD_RESYNC_NONE) {
8032		if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8033			struct md_rdev *rdev;
8034
8035			rdev_for_each(rdev, mddev)
8036				if (rdev->raid_disk >= 0 &&
8037				    !test_bit(Faulty, &rdev->flags) &&
8038				    rdev->recovery_offset != MaxSector &&
8039				    rdev->recovery_offset) {
8040					seq_printf(seq, "\trecover=REMOTE");
8041					return 1;
8042				}
8043			if (mddev->reshape_position != MaxSector)
8044				seq_printf(seq, "\treshape=REMOTE");
8045			else
8046				seq_printf(seq, "\tresync=REMOTE");
8047			return 1;
8048		}
8049		if (mddev->recovery_cp < MaxSector) {
8050			seq_printf(seq, "\tresync=PENDING");
8051			return 1;
8052		}
8053		return 0;
8054	}
8055	if (resync < MD_RESYNC_ACTIVE) {
8056		seq_printf(seq, "\tresync=DELAYED");
8057		return 1;
8058	}
8059
8060	WARN_ON(max_sectors == 0);
8061	/* Pick 'scale' such that (resync>>scale)*1000 will fit
8062	 * in a sector_t, and (max_sectors>>scale) will fit in a
8063	 * u32, as those are the requirements for sector_div.
8064	 * Thus 'scale' must be at least 10
8065	 */
8066	scale = 10;
8067	if (sizeof(sector_t) > sizeof(unsigned long)) {
8068		while ( max_sectors/2 > (1ULL<<(scale+32)))
8069			scale++;
8070	}
8071	res = (resync>>scale)*1000;
8072	sector_div(res, (u32)((max_sectors>>scale)+1));
8073
8074	per_milli = res;
8075	{
8076		int i, x = per_milli/50, y = 20-x;
8077		seq_printf(seq, "[");
8078		for (i = 0; i < x; i++)
8079			seq_printf(seq, "=");
8080		seq_printf(seq, ">");
8081		for (i = 0; i < y; i++)
8082			seq_printf(seq, ".");
8083		seq_printf(seq, "] ");
8084	}
8085	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8086		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8087		    "reshape" :
8088		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8089		     "check" :
8090		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8091		      "resync" : "recovery"))),
8092		   per_milli/10, per_milli % 10,
8093		   (unsigned long long) resync/2,
8094		   (unsigned long long) max_sectors/2);
8095
8096	/*
8097	 * dt: time from mark until now
8098	 * db: blocks written from mark until now
8099	 * rt: remaining time
8100	 *
8101	 * rt is a sector_t, which is always 64bit now. We are keeping
8102	 * the original algorithm, but it is not really necessary.
8103	 *
8104	 * Original algorithm:
8105	 *   So we divide before multiply in case it is 32bit and close
8106	 *   to the limit.
8107	 *   We scale the divisor (db) by 32 to avoid losing precision
8108	 *   near the end of resync when the number of remaining sectors
8109	 *   is close to 'db'.
8110	 *   We then divide rt by 32 after multiplying by db to compensate.
8111	 *   The '+1' avoids division by zero if db is very small.
8112	 */
8113	dt = ((jiffies - mddev->resync_mark) / HZ);
8114	if (!dt) dt++;
8115
8116	curr_mark_cnt = mddev->curr_mark_cnt;
8117	recovery_active = atomic_read(&mddev->recovery_active);
8118	resync_mark_cnt = mddev->resync_mark_cnt;
8119
8120	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8121		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8122
8123	rt = max_sectors - resync;    /* number of remaining sectors */
8124	rt = div64_u64(rt, db/32+1);
8125	rt *= dt;
8126	rt >>= 5;
8127
8128	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8129		   ((unsigned long)rt % 60)/6);
8130
8131	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8132	return 1;
8133}
8134
8135static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8136{
8137	struct list_head *tmp;
8138	loff_t l = *pos;
8139	struct mddev *mddev;
8140
8141	if (l == 0x10000) {
8142		++*pos;
8143		return (void *)2;
8144	}
8145	if (l > 0x10000)
8146		return NULL;
8147	if (!l--)
8148		/* header */
8149		return (void*)1;
8150
8151	spin_lock(&all_mddevs_lock);
8152	list_for_each(tmp,&all_mddevs)
8153		if (!l--) {
8154			mddev = list_entry(tmp, struct mddev, all_mddevs);
8155			if (!mddev_get(mddev))
8156				continue;
8157			spin_unlock(&all_mddevs_lock);
8158			return mddev;
8159		}
8160	spin_unlock(&all_mddevs_lock);
8161	if (!l--)
8162		return (void*)2;/* tail */
8163	return NULL;
8164}
8165
8166static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8167{
8168	struct list_head *tmp;
8169	struct mddev *next_mddev, *mddev = v;
8170	struct mddev *to_put = NULL;
8171
8172	++*pos;
8173	if (v == (void*)2)
8174		return NULL;
8175
8176	spin_lock(&all_mddevs_lock);
8177	if (v == (void*)1) {
8178		tmp = all_mddevs.next;
8179	} else {
8180		to_put = mddev;
8181		tmp = mddev->all_mddevs.next;
8182	}
8183
8184	for (;;) {
8185		if (tmp == &all_mddevs) {
8186			next_mddev = (void*)2;
8187			*pos = 0x10000;
8188			break;
8189		}
8190		next_mddev = list_entry(tmp, struct mddev, all_mddevs);
8191		if (mddev_get(next_mddev))
8192			break;
8193		mddev = next_mddev;
8194		tmp = mddev->all_mddevs.next;
8195	}
 
 
 
 
 
8196	spin_unlock(&all_mddevs_lock);
8197
8198	if (to_put)
8199		mddev_put(mddev);
8200	return next_mddev;
8201
8202}
8203
8204static void md_seq_stop(struct seq_file *seq, void *v)
8205{
8206	struct mddev *mddev = v;
8207
8208	if (mddev && v != (void*)1 && v != (void*)2)
8209		mddev_put(mddev);
8210}
8211
8212static int md_seq_show(struct seq_file *seq, void *v)
8213{
8214	struct mddev *mddev = v;
8215	sector_t sectors;
8216	struct md_rdev *rdev;
8217
8218	if (v == (void*)1) {
8219		struct md_personality *pers;
8220		seq_printf(seq, "Personalities : ");
8221		spin_lock(&pers_lock);
8222		list_for_each_entry(pers, &pers_list, list)
8223			seq_printf(seq, "[%s] ", pers->name);
8224
8225		spin_unlock(&pers_lock);
8226		seq_printf(seq, "\n");
8227		seq->poll_event = atomic_read(&md_event_count);
8228		return 0;
8229	}
8230	if (v == (void*)2) {
8231		status_unused(seq);
8232		return 0;
8233	}
8234
8235	spin_lock(&mddev->lock);
 
 
8236	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8237		seq_printf(seq, "%s : %sactive", mdname(mddev),
8238						mddev->pers ? "" : "in");
8239		if (mddev->pers) {
8240			if (mddev->ro == MD_RDONLY)
8241				seq_printf(seq, " (read-only)");
8242			if (mddev->ro == MD_AUTO_READ)
8243				seq_printf(seq, " (auto-read-only)");
8244			seq_printf(seq, " %s", mddev->pers->name);
8245		}
8246
8247		sectors = 0;
8248		rcu_read_lock();
8249		rdev_for_each_rcu(rdev, mddev) {
8250			seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8251
8252			if (test_bit(WriteMostly, &rdev->flags))
8253				seq_printf(seq, "(W)");
8254			if (test_bit(Journal, &rdev->flags))
8255				seq_printf(seq, "(J)");
8256			if (test_bit(Faulty, &rdev->flags)) {
8257				seq_printf(seq, "(F)");
8258				continue;
8259			}
8260			if (rdev->raid_disk < 0)
8261				seq_printf(seq, "(S)"); /* spare */
8262			if (test_bit(Replacement, &rdev->flags))
8263				seq_printf(seq, "(R)");
8264			sectors += rdev->sectors;
8265		}
8266		rcu_read_unlock();
8267
8268		if (!list_empty(&mddev->disks)) {
8269			if (mddev->pers)
8270				seq_printf(seq, "\n      %llu blocks",
8271					   (unsigned long long)
8272					   mddev->array_sectors / 2);
8273			else
8274				seq_printf(seq, "\n      %llu blocks",
8275					   (unsigned long long)sectors / 2);
8276		}
8277		if (mddev->persistent) {
8278			if (mddev->major_version != 0 ||
8279			    mddev->minor_version != 90) {
8280				seq_printf(seq," super %d.%d",
8281					   mddev->major_version,
8282					   mddev->minor_version);
8283			}
8284		} else if (mddev->external)
8285			seq_printf(seq, " super external:%s",
8286				   mddev->metadata_type);
8287		else
8288			seq_printf(seq, " super non-persistent");
8289
8290		if (mddev->pers) {
8291			mddev->pers->status(seq, mddev);
8292			seq_printf(seq, "\n      ");
8293			if (mddev->pers->sync_request) {
8294				if (status_resync(seq, mddev))
 
8295					seq_printf(seq, "\n      ");
 
 
 
 
8296			}
8297		} else
8298			seq_printf(seq, "\n       ");
8299
8300		md_bitmap_status(seq, mddev->bitmap);
8301
8302		seq_printf(seq, "\n");
8303	}
8304	spin_unlock(&mddev->lock);
8305
8306	return 0;
8307}
8308
8309static const struct seq_operations md_seq_ops = {
8310	.start  = md_seq_start,
8311	.next   = md_seq_next,
8312	.stop   = md_seq_stop,
8313	.show   = md_seq_show,
8314};
8315
8316static int md_seq_open(struct inode *inode, struct file *file)
8317{
8318	struct seq_file *seq;
8319	int error;
8320
8321	error = seq_open(file, &md_seq_ops);
8322	if (error)
8323		return error;
8324
8325	seq = file->private_data;
8326	seq->poll_event = atomic_read(&md_event_count);
8327	return error;
8328}
8329
8330static int md_unloading;
8331static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8332{
8333	struct seq_file *seq = filp->private_data;
8334	__poll_t mask;
8335
8336	if (md_unloading)
8337		return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8338	poll_wait(filp, &md_event_waiters, wait);
8339
8340	/* always allow read */
8341	mask = EPOLLIN | EPOLLRDNORM;
8342
8343	if (seq->poll_event != atomic_read(&md_event_count))
8344		mask |= EPOLLERR | EPOLLPRI;
8345	return mask;
8346}
8347
8348static const struct proc_ops mdstat_proc_ops = {
8349	.proc_open	= md_seq_open,
8350	.proc_read	= seq_read,
8351	.proc_lseek	= seq_lseek,
8352	.proc_release	= seq_release,
8353	.proc_poll	= mdstat_poll,
 
8354};
8355
8356int register_md_personality(struct md_personality *p)
8357{
8358	pr_debug("md: %s personality registered for level %d\n",
8359		 p->name, p->level);
8360	spin_lock(&pers_lock);
8361	list_add_tail(&p->list, &pers_list);
 
8362	spin_unlock(&pers_lock);
8363	return 0;
8364}
8365EXPORT_SYMBOL(register_md_personality);
8366
8367int unregister_md_personality(struct md_personality *p)
8368{
8369	pr_debug("md: %s personality unregistered\n", p->name);
8370	spin_lock(&pers_lock);
8371	list_del_init(&p->list);
8372	spin_unlock(&pers_lock);
8373	return 0;
8374}
8375EXPORT_SYMBOL(unregister_md_personality);
8376
8377int register_md_cluster_operations(struct md_cluster_operations *ops,
8378				   struct module *module)
8379{
8380	int ret = 0;
8381	spin_lock(&pers_lock);
8382	if (md_cluster_ops != NULL)
8383		ret = -EALREADY;
8384	else {
8385		md_cluster_ops = ops;
8386		md_cluster_mod = module;
8387	}
8388	spin_unlock(&pers_lock);
8389	return ret;
8390}
8391EXPORT_SYMBOL(register_md_cluster_operations);
8392
8393int unregister_md_cluster_operations(void)
8394{
8395	spin_lock(&pers_lock);
8396	md_cluster_ops = NULL;
8397	spin_unlock(&pers_lock);
8398	return 0;
8399}
8400EXPORT_SYMBOL(unregister_md_cluster_operations);
8401
8402int md_setup_cluster(struct mddev *mddev, int nodes)
8403{
8404	int ret;
8405	if (!md_cluster_ops)
8406		request_module("md-cluster");
8407	spin_lock(&pers_lock);
8408	/* ensure module won't be unloaded */
8409	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8410		pr_warn("can't find md-cluster module or get its reference.\n");
8411		spin_unlock(&pers_lock);
8412		return -ENOENT;
8413	}
8414	spin_unlock(&pers_lock);
8415
8416	ret = md_cluster_ops->join(mddev, nodes);
8417	if (!ret)
8418		mddev->safemode_delay = 0;
8419	return ret;
8420}
8421
8422void md_cluster_stop(struct mddev *mddev)
8423{
8424	if (!md_cluster_ops)
8425		return;
8426	md_cluster_ops->leave(mddev);
8427	module_put(md_cluster_mod);
8428}
8429
8430static int is_mddev_idle(struct mddev *mddev, int init)
8431{
8432	struct md_rdev *rdev;
8433	int idle;
8434	int curr_events;
8435
8436	idle = 1;
8437	rcu_read_lock();
8438	rdev_for_each_rcu(rdev, mddev) {
8439		struct gendisk *disk = rdev->bdev->bd_disk;
8440		curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
 
8441			      atomic_read(&disk->sync_io);
8442		/* sync IO will cause sync_io to increase before the disk_stats
8443		 * as sync_io is counted when a request starts, and
8444		 * disk_stats is counted when it completes.
8445		 * So resync activity will cause curr_events to be smaller than
8446		 * when there was no such activity.
8447		 * non-sync IO will cause disk_stat to increase without
8448		 * increasing sync_io so curr_events will (eventually)
8449		 * be larger than it was before.  Once it becomes
8450		 * substantially larger, the test below will cause
8451		 * the array to appear non-idle, and resync will slow
8452		 * down.
8453		 * If there is a lot of outstanding resync activity when
8454		 * we set last_event to curr_events, then all that activity
8455		 * completing might cause the array to appear non-idle
8456		 * and resync will be slowed down even though there might
8457		 * not have been non-resync activity.  This will only
8458		 * happen once though.  'last_events' will soon reflect
8459		 * the state where there is little or no outstanding
8460		 * resync requests, and further resync activity will
8461		 * always make curr_events less than last_events.
8462		 *
8463		 */
8464		if (init || curr_events - rdev->last_events > 64) {
8465			rdev->last_events = curr_events;
8466			idle = 0;
8467		}
8468	}
8469	rcu_read_unlock();
8470	return idle;
8471}
8472
8473void md_done_sync(struct mddev *mddev, int blocks, int ok)
8474{
8475	/* another "blocks" (512byte) blocks have been synced */
8476	atomic_sub(blocks, &mddev->recovery_active);
8477	wake_up(&mddev->recovery_wait);
8478	if (!ok) {
8479		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8480		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8481		md_wakeup_thread(mddev->thread);
8482		// stop recovery, signal do_sync ....
8483	}
8484}
8485EXPORT_SYMBOL(md_done_sync);
8486
8487/* md_write_start(mddev, bi)
8488 * If we need to update some array metadata (e.g. 'active' flag
8489 * in superblock) before writing, schedule a superblock update
8490 * and wait for it to complete.
8491 * A return value of 'false' means that the write wasn't recorded
8492 * and cannot proceed as the array is being suspend.
8493 */
8494bool md_write_start(struct mddev *mddev, struct bio *bi)
8495{
8496	int did_change = 0;
8497
8498	if (bio_data_dir(bi) != WRITE)
8499		return true;
8500
8501	BUG_ON(mddev->ro == MD_RDONLY);
8502	if (mddev->ro == MD_AUTO_READ) {
8503		/* need to switch to read/write */
8504		mddev->ro = MD_RDWR;
8505		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8506		md_wakeup_thread(mddev->thread);
8507		md_wakeup_thread(mddev->sync_thread);
8508		did_change = 1;
8509	}
8510	rcu_read_lock();
8511	percpu_ref_get(&mddev->writes_pending);
8512	smp_mb(); /* Match smp_mb in set_in_sync() */
8513	if (mddev->safemode == 1)
8514		mddev->safemode = 0;
8515	/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8516	if (mddev->in_sync || mddev->sync_checkers) {
8517		spin_lock(&mddev->lock);
8518		if (mddev->in_sync) {
8519			mddev->in_sync = 0;
8520			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8521			set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8522			md_wakeup_thread(mddev->thread);
8523			did_change = 1;
8524		}
8525		spin_unlock(&mddev->lock);
8526	}
8527	rcu_read_unlock();
8528	if (did_change)
8529		sysfs_notify_dirent_safe(mddev->sysfs_state);
8530	if (!mddev->has_superblocks)
8531		return true;
8532	wait_event(mddev->sb_wait,
8533		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8534		   mddev->suspended);
8535	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8536		percpu_ref_put(&mddev->writes_pending);
8537		return false;
8538	}
8539	return true;
8540}
8541EXPORT_SYMBOL(md_write_start);
8542
8543/* md_write_inc can only be called when md_write_start() has
8544 * already been called at least once of the current request.
8545 * It increments the counter and is useful when a single request
8546 * is split into several parts.  Each part causes an increment and
8547 * so needs a matching md_write_end().
8548 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8549 * a spinlocked region.
8550 */
8551void md_write_inc(struct mddev *mddev, struct bio *bi)
8552{
8553	if (bio_data_dir(bi) != WRITE)
8554		return;
8555	WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8556	percpu_ref_get(&mddev->writes_pending);
8557}
8558EXPORT_SYMBOL(md_write_inc);
8559
8560void md_write_end(struct mddev *mddev)
8561{
8562	percpu_ref_put(&mddev->writes_pending);
8563
8564	if (mddev->safemode == 2)
8565		md_wakeup_thread(mddev->thread);
8566	else if (mddev->safemode_delay)
8567		/* The roundup() ensures this only performs locking once
8568		 * every ->safemode_delay jiffies
8569		 */
8570		mod_timer(&mddev->safemode_timer,
8571			  roundup(jiffies, mddev->safemode_delay) +
8572			  mddev->safemode_delay);
8573}
8574
8575EXPORT_SYMBOL(md_write_end);
8576
8577/* This is used by raid0 and raid10 */
8578void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8579			struct bio *bio, sector_t start, sector_t size)
8580{
8581	struct bio *discard_bio = NULL;
8582
8583	if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8584			&discard_bio) || !discard_bio)
8585		return;
8586
8587	bio_chain(discard_bio, bio);
8588	bio_clone_blkg_association(discard_bio, bio);
8589	if (mddev->gendisk)
8590		trace_block_bio_remap(discard_bio,
8591				disk_devt(mddev->gendisk),
8592				bio->bi_iter.bi_sector);
8593	submit_bio_noacct(discard_bio);
8594}
8595EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8596
8597int acct_bioset_init(struct mddev *mddev)
8598{
8599	int err = 0;
8600
8601	if (!bioset_initialized(&mddev->io_acct_set))
8602		err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8603			offsetof(struct md_io_acct, bio_clone), 0);
8604	return err;
8605}
8606EXPORT_SYMBOL_GPL(acct_bioset_init);
8607
8608void acct_bioset_exit(struct mddev *mddev)
8609{
8610	bioset_exit(&mddev->io_acct_set);
8611}
8612EXPORT_SYMBOL_GPL(acct_bioset_exit);
8613
8614static void md_end_io_acct(struct bio *bio)
8615{
8616	struct md_io_acct *md_io_acct = bio->bi_private;
8617	struct bio *orig_bio = md_io_acct->orig_bio;
8618
8619	orig_bio->bi_status = bio->bi_status;
8620
8621	bio_end_io_acct(orig_bio, md_io_acct->start_time);
8622	bio_put(bio);
8623	bio_endio(orig_bio);
8624}
8625
8626/*
8627 * Used by personalities that don't already clone the bio and thus can't
8628 * easily add the timestamp to their extended bio structure.
8629 */
8630void md_account_bio(struct mddev *mddev, struct bio **bio)
8631{
8632	struct block_device *bdev = (*bio)->bi_bdev;
8633	struct md_io_acct *md_io_acct;
8634	struct bio *clone;
8635
8636	if (!blk_queue_io_stat(bdev->bd_disk->queue))
8637		return;
8638
8639	clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set);
8640	md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8641	md_io_acct->orig_bio = *bio;
8642	md_io_acct->start_time = bio_start_io_acct(*bio);
8643
8644	clone->bi_end_io = md_end_io_acct;
8645	clone->bi_private = md_io_acct;
8646	*bio = clone;
8647}
8648EXPORT_SYMBOL_GPL(md_account_bio);
8649
8650/* md_allow_write(mddev)
8651 * Calling this ensures that the array is marked 'active' so that writes
8652 * may proceed without blocking.  It is important to call this before
8653 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8654 * Must be called with mddev_lock held.
 
 
 
8655 */
8656void md_allow_write(struct mddev *mddev)
8657{
8658	if (!mddev->pers)
8659		return;
8660	if (!md_is_rdwr(mddev))
8661		return;
8662	if (!mddev->pers->sync_request)
8663		return;
8664
8665	spin_lock(&mddev->lock);
8666	if (mddev->in_sync) {
8667		mddev->in_sync = 0;
8668		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8669		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8670		if (mddev->safemode_delay &&
8671		    mddev->safemode == 0)
8672			mddev->safemode = 1;
8673		spin_unlock(&mddev->lock);
8674		md_update_sb(mddev, 0);
8675		sysfs_notify_dirent_safe(mddev->sysfs_state);
8676		/* wait for the dirty state to be recorded in the metadata */
8677		wait_event(mddev->sb_wait,
8678			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8679	} else
8680		spin_unlock(&mddev->lock);
 
 
 
 
 
8681}
8682EXPORT_SYMBOL_GPL(md_allow_write);
8683
8684#define SYNC_MARKS	10
8685#define	SYNC_MARK_STEP	(3*HZ)
8686#define UPDATE_FREQUENCY (5*60*HZ)
8687void md_do_sync(struct md_thread *thread)
8688{
8689	struct mddev *mddev = thread->mddev;
8690	struct mddev *mddev2;
8691	unsigned int currspeed = 0, window;
8692	sector_t max_sectors,j, io_sectors, recovery_done;
 
8693	unsigned long mark[SYNC_MARKS];
8694	unsigned long update_time;
8695	sector_t mark_cnt[SYNC_MARKS];
8696	int last_mark,m;
 
8697	sector_t last_check;
8698	int skipped = 0;
8699	struct md_rdev *rdev;
8700	char *desc, *action = NULL;
8701	struct blk_plug plug;
8702	int ret;
8703
8704	/* just incase thread restarts... */
8705	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8706	    test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8707		return;
8708	if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8709		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8710		return;
8711	}
8712
8713	if (mddev_is_clustered(mddev)) {
8714		ret = md_cluster_ops->resync_start(mddev);
8715		if (ret)
8716			goto skip;
8717
8718		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8719		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8720			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8721			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8722		     && ((unsigned long long)mddev->curr_resync_completed
8723			 < (unsigned long long)mddev->resync_max_sectors))
8724			goto skip;
8725	}
8726
8727	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8728		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8729			desc = "data-check";
8730			action = "check";
8731		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8732			desc = "requested-resync";
8733			action = "repair";
8734		} else
8735			desc = "resync";
8736	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8737		desc = "reshape";
8738	else
8739		desc = "recovery";
8740
8741	mddev->last_sync_action = action ?: desc;
8742
8743	/*
 
 
 
 
8744	 * Before starting a resync we must have set curr_resync to
8745	 * 2, and then checked that every "conflicting" array has curr_resync
8746	 * less than ours.  When we find one that is the same or higher
8747	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
8748	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8749	 * This will mean we have to start checking from the beginning again.
8750	 *
8751	 */
8752
8753	do {
8754		int mddev2_minor = -1;
8755		mddev->curr_resync = MD_RESYNC_DELAYED;
8756
8757	try_again:
 
 
 
8758		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8759			goto skip;
8760		spin_lock(&all_mddevs_lock);
8761		list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
8762			if (test_bit(MD_DELETED, &mddev2->flags))
8763				continue;
8764			if (mddev2 == mddev)
8765				continue;
8766			if (!mddev->parallel_resync
8767			&&  mddev2->curr_resync
8768			&&  match_mddev_units(mddev, mddev2)) {
8769				DEFINE_WAIT(wq);
8770				if (mddev < mddev2 &&
8771				    mddev->curr_resync == MD_RESYNC_DELAYED) {
8772					/* arbitrarily yield */
8773					mddev->curr_resync = MD_RESYNC_YIELDED;
8774					wake_up(&resync_wait);
8775				}
8776				if (mddev > mddev2 &&
8777				    mddev->curr_resync == MD_RESYNC_YIELDED)
8778					/* no need to wait here, we can wait the next
8779					 * time 'round when curr_resync == 2
8780					 */
8781					continue;
8782				/* We need to wait 'interruptible' so as not to
8783				 * contribute to the load average, and not to
8784				 * be caught by 'softlockup'
8785				 */
8786				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8787				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8788				    mddev2->curr_resync >= mddev->curr_resync) {
8789					if (mddev2_minor != mddev2->md_minor) {
8790						mddev2_minor = mddev2->md_minor;
8791						pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8792							desc, mdname(mddev),
8793							mdname(mddev2));
8794					}
8795					spin_unlock(&all_mddevs_lock);
8796
8797					if (signal_pending(current))
8798						flush_signals(current);
8799					schedule();
8800					finish_wait(&resync_wait, &wq);
8801					goto try_again;
8802				}
8803				finish_wait(&resync_wait, &wq);
8804			}
8805		}
8806		spin_unlock(&all_mddevs_lock);
8807	} while (mddev->curr_resync < MD_RESYNC_DELAYED);
8808
8809	j = 0;
8810	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8811		/* resync follows the size requested by the personality,
8812		 * which defaults to physical size, but can be virtual size
8813		 */
8814		max_sectors = mddev->resync_max_sectors;
8815		atomic64_set(&mddev->resync_mismatches, 0);
8816		/* we don't use the checkpoint if there's a bitmap */
8817		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8818			j = mddev->resync_min;
8819		else if (!mddev->bitmap)
8820			j = mddev->recovery_cp;
8821
8822	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8823		max_sectors = mddev->resync_max_sectors;
8824		/*
8825		 * If the original node aborts reshaping then we continue the
8826		 * reshaping, so set j again to avoid restart reshape from the
8827		 * first beginning
8828		 */
8829		if (mddev_is_clustered(mddev) &&
8830		    mddev->reshape_position != MaxSector)
8831			j = mddev->reshape_position;
8832	} else {
8833		/* recovery follows the physical size of devices */
8834		max_sectors = mddev->dev_sectors;
8835		j = MaxSector;
8836		rcu_read_lock();
8837		rdev_for_each_rcu(rdev, mddev)
8838			if (rdev->raid_disk >= 0 &&
8839			    !test_bit(Journal, &rdev->flags) &&
8840			    !test_bit(Faulty, &rdev->flags) &&
8841			    !test_bit(In_sync, &rdev->flags) &&
8842			    rdev->recovery_offset < j)
8843				j = rdev->recovery_offset;
8844		rcu_read_unlock();
8845
8846		/* If there is a bitmap, we need to make sure all
8847		 * writes that started before we added a spare
8848		 * complete before we start doing a recovery.
8849		 * Otherwise the write might complete and (via
8850		 * bitmap_endwrite) set a bit in the bitmap after the
8851		 * recovery has checked that bit and skipped that
8852		 * region.
8853		 */
8854		if (mddev->bitmap) {
8855			mddev->pers->quiesce(mddev, 1);
8856			mddev->pers->quiesce(mddev, 0);
8857		}
8858	}
8859
8860	pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8861	pr_debug("md: minimum _guaranteed_  speed: %d KB/sec/disk.\n", speed_min(mddev));
8862	pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8863		 speed_max(mddev), desc);
 
 
8864
8865	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8866
8867	io_sectors = 0;
8868	for (m = 0; m < SYNC_MARKS; m++) {
8869		mark[m] = jiffies;
8870		mark_cnt[m] = io_sectors;
8871	}
8872	last_mark = 0;
8873	mddev->resync_mark = mark[last_mark];
8874	mddev->resync_mark_cnt = mark_cnt[last_mark];
8875
8876	/*
8877	 * Tune reconstruction:
8878	 */
8879	window = 32 * (PAGE_SIZE / 512);
8880	pr_debug("md: using %dk window, over a total of %lluk.\n",
8881		 window/2, (unsigned long long)max_sectors/2);
8882
8883	atomic_set(&mddev->recovery_active, 0);
8884	last_check = 0;
8885
8886	if (j>2) {
8887		pr_debug("md: resuming %s of %s from checkpoint.\n",
8888			 desc, mdname(mddev));
 
8889		mddev->curr_resync = j;
8890	} else
8891		mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
8892	mddev->curr_resync_completed = j;
8893	sysfs_notify_dirent_safe(mddev->sysfs_completed);
8894	md_new_event();
8895	update_time = jiffies;
8896
8897	blk_start_plug(&plug);
8898	while (j < max_sectors) {
8899		sector_t sectors;
8900
8901		skipped = 0;
8902
8903		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8904		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8905		      (mddev->curr_resync - mddev->curr_resync_completed)
8906		      > (max_sectors >> 4)) ||
8907		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8908		     (j - mddev->curr_resync_completed)*2
8909		     >= mddev->resync_max - mddev->curr_resync_completed ||
8910		     mddev->curr_resync_completed > mddev->resync_max
8911			    )) {
8912			/* time to update curr_resync_completed */
8913			wait_event(mddev->recovery_wait,
8914				   atomic_read(&mddev->recovery_active) == 0);
8915			mddev->curr_resync_completed = j;
8916			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8917			    j > mddev->recovery_cp)
8918				mddev->recovery_cp = j;
8919			update_time = jiffies;
8920			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8921			sysfs_notify_dirent_safe(mddev->sysfs_completed);
8922		}
8923
8924		while (j >= mddev->resync_max &&
8925		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8926			/* As this condition is controlled by user-space,
8927			 * we can block indefinitely, so use '_interruptible'
8928			 * to avoid triggering warnings.
8929			 */
8930			flush_signals(current); /* just in case */
8931			wait_event_interruptible(mddev->recovery_wait,
8932						 mddev->resync_max > j
8933						 || test_bit(MD_RECOVERY_INTR,
8934							     &mddev->recovery));
8935		}
8936
8937		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8938			break;
8939
8940		sectors = mddev->pers->sync_request(mddev, j, &skipped);
 
8941		if (sectors == 0) {
8942			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8943			break;
8944		}
8945
8946		if (!skipped) { /* actual IO requested */
8947			io_sectors += sectors;
8948			atomic_add(sectors, &mddev->recovery_active);
8949		}
8950
8951		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8952			break;
8953
8954		j += sectors;
8955		if (j > max_sectors)
8956			/* when skipping, extra large numbers can be returned. */
8957			j = max_sectors;
8958		if (j > 2)
8959			mddev->curr_resync = j;
8960		mddev->curr_mark_cnt = io_sectors;
8961		if (last_check == 0)
8962			/* this is the earliest that rebuild will be
8963			 * visible in /proc/mdstat
8964			 */
8965			md_new_event();
8966
8967		if (last_check + window > io_sectors || j == max_sectors)
8968			continue;
8969
8970		last_check = io_sectors;
8971	repeat:
8972		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8973			/* step marks */
8974			int next = (last_mark+1) % SYNC_MARKS;
8975
8976			mddev->resync_mark = mark[next];
8977			mddev->resync_mark_cnt = mark_cnt[next];
8978			mark[next] = jiffies;
8979			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8980			last_mark = next;
8981		}
8982
8983		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8984			break;
 
 
8985
8986		/*
8987		 * this loop exits only if either when we are slower than
8988		 * the 'hard' speed limit, or the system was IO-idle for
8989		 * a jiffy.
8990		 * the system might be non-idle CPU-wise, but we only care
8991		 * about not overloading the IO subsystem. (things like an
8992		 * e2fsck being done on the RAID array should execute fast)
8993		 */
8994		cond_resched();
8995
8996		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8997		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8998			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8999
9000		if (currspeed > speed_min(mddev)) {
9001			if (currspeed > speed_max(mddev)) {
 
9002				msleep(500);
9003				goto repeat;
9004			}
9005			if (!is_mddev_idle(mddev, 0)) {
9006				/*
9007				 * Give other IO more of a chance.
9008				 * The faster the devices, the less we wait.
9009				 */
9010				wait_event(mddev->recovery_wait,
9011					   !atomic_read(&mddev->recovery_active));
9012			}
9013		}
9014	}
9015	pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9016		test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9017		? "interrupted" : "done");
9018	/*
9019	 * this also signals 'finished resyncing' to md_stop
9020	 */
 
9021	blk_finish_plug(&plug);
9022	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9023
9024	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9025	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9026	    mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9027		mddev->curr_resync_completed = mddev->curr_resync;
9028		sysfs_notify_dirent_safe(mddev->sysfs_completed);
9029	}
9030	mddev->pers->sync_request(mddev, max_sectors, &skipped);
9031
9032	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9033	    mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9034		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9035			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9036				if (mddev->curr_resync >= mddev->recovery_cp) {
9037					pr_debug("md: checkpointing %s of %s.\n",
9038						 desc, mdname(mddev));
9039					if (test_bit(MD_RECOVERY_ERROR,
9040						&mddev->recovery))
9041						mddev->recovery_cp =
9042							mddev->curr_resync_completed;
9043					else
9044						mddev->recovery_cp =
9045							mddev->curr_resync;
9046				}
9047			} else
9048				mddev->recovery_cp = MaxSector;
9049		} else {
9050			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9051				mddev->curr_resync = MaxSector;
9052			if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9053			    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9054				rcu_read_lock();
9055				rdev_for_each_rcu(rdev, mddev)
9056					if (rdev->raid_disk >= 0 &&
9057					    mddev->delta_disks >= 0 &&
9058					    !test_bit(Journal, &rdev->flags) &&
9059					    !test_bit(Faulty, &rdev->flags) &&
9060					    !test_bit(In_sync, &rdev->flags) &&
9061					    rdev->recovery_offset < mddev->curr_resync)
9062						rdev->recovery_offset = mddev->curr_resync;
9063				rcu_read_unlock();
9064			}
9065		}
9066	}
9067 skip:
9068	/* set CHANGE_PENDING here since maybe another update is needed,
9069	 * so other nodes are informed. It should be harmless for normal
9070	 * raid */
9071	set_mask_bits(&mddev->sb_flags, 0,
9072		      BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9073
9074	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9075			!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9076			mddev->delta_disks > 0 &&
9077			mddev->pers->finish_reshape &&
9078			mddev->pers->size &&
9079			mddev->queue) {
9080		mddev_lock_nointr(mddev);
9081		md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9082		mddev_unlock(mddev);
9083		if (!mddev_is_clustered(mddev))
9084			set_capacity_and_notify(mddev->gendisk,
9085						mddev->array_sectors);
9086	}
9087
9088	spin_lock(&mddev->lock);
9089	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9090		/* We completed so min/max setting can be forgotten if used. */
9091		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9092			mddev->resync_min = 0;
9093		mddev->resync_max = MaxSector;
9094	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9095		mddev->resync_min = mddev->curr_resync_completed;
9096	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9097	mddev->curr_resync = MD_RESYNC_NONE;
9098	spin_unlock(&mddev->lock);
9099
9100	wake_up(&resync_wait);
 
9101	md_wakeup_thread(mddev->thread);
9102	return;
 
 
 
 
 
 
 
 
 
 
9103}
9104EXPORT_SYMBOL_GPL(md_do_sync);
9105
9106static int remove_and_add_spares(struct mddev *mddev,
9107				 struct md_rdev *this)
9108{
9109	struct md_rdev *rdev;
9110	int spares = 0;
9111	int removed = 0;
9112	bool remove_some = false;
9113
9114	if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9115		/* Mustn't remove devices when resync thread is running */
9116		return 0;
9117
9118	rdev_for_each(rdev, mddev) {
9119		if ((this == NULL || rdev == this) &&
9120		    rdev->raid_disk >= 0 &&
9121		    !test_bit(Blocked, &rdev->flags) &&
9122		    test_bit(Faulty, &rdev->flags) &&
 
9123		    atomic_read(&rdev->nr_pending)==0) {
9124			/* Faulty non-Blocked devices with nr_pending == 0
9125			 * never get nr_pending incremented,
9126			 * never get Faulty cleared, and never get Blocked set.
9127			 * So we can synchronize_rcu now rather than once per device
9128			 */
9129			remove_some = true;
9130			set_bit(RemoveSynchronized, &rdev->flags);
9131		}
9132	}
9133
9134	if (remove_some)
9135		synchronize_rcu();
9136	rdev_for_each(rdev, mddev) {
9137		if ((this == NULL || rdev == this) &&
9138		    rdev->raid_disk >= 0 &&
9139		    !test_bit(Blocked, &rdev->flags) &&
9140		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
9141		     (!test_bit(In_sync, &rdev->flags) &&
9142		      !test_bit(Journal, &rdev->flags))) &&
9143		    atomic_read(&rdev->nr_pending)==0)) {
9144			if (mddev->pers->hot_remove_disk(
9145				    mddev, rdev) == 0) {
9146				sysfs_unlink_rdev(mddev, rdev);
9147				rdev->saved_raid_disk = rdev->raid_disk;
9148				rdev->raid_disk = -1;
9149				removed++;
9150			}
9151		}
9152		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9153			clear_bit(RemoveSynchronized, &rdev->flags);
9154	}
9155
9156	if (removed && mddev->kobj.sd)
9157		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9158
9159	if (this && removed)
9160		goto no_add;
9161
9162	rdev_for_each(rdev, mddev) {
9163		if (this && this != rdev)
9164			continue;
9165		if (test_bit(Candidate, &rdev->flags))
9166			continue;
9167		if (rdev->raid_disk >= 0 &&
9168		    !test_bit(In_sync, &rdev->flags) &&
9169		    !test_bit(Journal, &rdev->flags) &&
9170		    !test_bit(Faulty, &rdev->flags))
9171			spares++;
9172		if (rdev->raid_disk >= 0)
9173			continue;
9174		if (test_bit(Faulty, &rdev->flags))
9175			continue;
9176		if (!test_bit(Journal, &rdev->flags)) {
9177			if (!md_is_rdwr(mddev) &&
9178			    !(rdev->saved_raid_disk >= 0 &&
9179			      !test_bit(Bitmap_sync, &rdev->flags)))
9180				continue;
9181
9182			rdev->recovery_offset = 0;
9183		}
9184		if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9185			/* failure here is OK */
9186			sysfs_link_rdev(mddev, rdev);
9187			if (!test_bit(Journal, &rdev->flags))
9188				spares++;
9189			md_new_event();
9190			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
 
9191		}
9192	}
9193no_add:
9194	if (removed)
9195		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9196	return spares;
9197}
9198
9199static void md_start_sync(struct work_struct *ws)
9200{
9201	struct mddev *mddev = container_of(ws, struct mddev, del_work);
9202
9203	mddev->sync_thread = md_register_thread(md_do_sync,
9204						mddev,
9205						"resync");
9206	if (!mddev->sync_thread) {
9207		pr_warn("%s: could not start resync thread...\n",
9208			mdname(mddev));
9209		/* leave the spares where they are, it shouldn't hurt */
9210		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9211		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9212		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9213		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9214		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9215		wake_up(&resync_wait);
9216		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9217				       &mddev->recovery))
9218			if (mddev->sysfs_action)
9219				sysfs_notify_dirent_safe(mddev->sysfs_action);
9220	} else
9221		md_wakeup_thread(mddev->sync_thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9222	sysfs_notify_dirent_safe(mddev->sysfs_action);
9223	md_new_event();
 
 
9224}
9225
9226/*
9227 * This routine is regularly called by all per-raid-array threads to
9228 * deal with generic issues like resync and super-block update.
9229 * Raid personalities that don't have a thread (linear/raid0) do not
9230 * need this as they never do any recovery or update the superblock.
9231 *
9232 * It does not do any resync itself, but rather "forks" off other threads
9233 * to do that as needed.
9234 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9235 * "->recovery" and create a thread at ->sync_thread.
9236 * When the thread finishes it sets MD_RECOVERY_DONE
9237 * and wakeups up this thread which will reap the thread and finish up.
9238 * This thread also removes any faulty devices (with nr_pending == 0).
9239 *
9240 * The overall approach is:
9241 *  1/ if the superblock needs updating, update it.
9242 *  2/ If a recovery thread is running, don't do anything else.
9243 *  3/ If recovery has finished, clean up, possibly marking spares active.
9244 *  4/ If there are any faulty devices, remove them.
9245 *  5/ If array is degraded, try to add spares devices
9246 *  6/ If array has spares or is not in-sync, start a resync thread.
9247 */
9248void md_check_recovery(struct mddev *mddev)
9249{
9250	if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9251		/* Write superblock - thread that called mddev_suspend()
9252		 * holds reconfig_mutex for us.
9253		 */
9254		set_bit(MD_UPDATING_SB, &mddev->flags);
9255		smp_mb__after_atomic();
9256		if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9257			md_update_sb(mddev, 0);
9258		clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9259		wake_up(&mddev->sb_wait);
9260	}
9261
9262	if (mddev->suspended)
9263		return;
9264
9265	if (mddev->bitmap)
9266		md_bitmap_daemon_work(mddev);
9267
9268	if (signal_pending(current)) {
9269		if (mddev->pers->sync_request && !mddev->external) {
9270			pr_debug("md: %s in immediate safe mode\n",
9271				 mdname(mddev));
9272			mddev->safemode = 2;
9273		}
9274		flush_signals(current);
9275	}
9276
9277	if (!md_is_rdwr(mddev) &&
9278	    !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9279		return;
9280	if ( ! (
9281		(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9282		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9283		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9284		(mddev->external == 0 && mddev->safemode == 1) ||
9285		(mddev->safemode == 2
9286		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9287		))
9288		return;
9289
9290	if (mddev_trylock(mddev)) {
9291		int spares = 0;
9292		bool try_set_sync = mddev->safemode != 0;
9293
9294		if (!mddev->external && mddev->safemode == 1)
9295			mddev->safemode = 0;
9296
9297		if (!md_is_rdwr(mddev)) {
9298			struct md_rdev *rdev;
9299			if (!mddev->external && mddev->in_sync)
9300				/* 'Blocked' flag not needed as failed devices
9301				 * will be recorded if array switched to read/write.
9302				 * Leaving it set will prevent the device
9303				 * from being removed.
9304				 */
9305				rdev_for_each(rdev, mddev)
9306					clear_bit(Blocked, &rdev->flags);
9307			/* On a read-only array we can:
9308			 * - remove failed devices
9309			 * - add already-in_sync devices if the array itself
9310			 *   is in-sync.
9311			 * As we only add devices that are already in-sync,
9312			 * we can activate the spares immediately.
9313			 */
9314			remove_and_add_spares(mddev, NULL);
9315			/* There is no thread, but we need to call
9316			 * ->spare_active and clear saved_raid_disk
9317			 */
9318			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9319			md_unregister_thread(&mddev->sync_thread);
9320			md_reap_sync_thread(mddev);
9321			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
 
 
 
 
9322			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9323			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9324			goto unlock;
9325		}
9326
9327		if (mddev_is_clustered(mddev)) {
9328			struct md_rdev *rdev, *tmp;
9329			/* kick the device if another node issued a
9330			 * remove disk.
9331			 */
9332			rdev_for_each_safe(rdev, tmp, mddev) {
9333				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9334						rdev->raid_disk < 0)
9335					md_kick_rdev_from_array(rdev);
9336			}
9337		}
9338
9339		if (try_set_sync && !mddev->external && !mddev->in_sync) {
9340			spin_lock(&mddev->lock);
9341			set_in_sync(mddev);
9342			spin_unlock(&mddev->lock);
9343		}
9344
9345		if (mddev->sb_flags)
9346			md_update_sb(mddev, 0);
9347
9348		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9349		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9350			/* resync/recovery still happening */
9351			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9352			goto unlock;
9353		}
9354		if (mddev->sync_thread) {
9355			md_unregister_thread(&mddev->sync_thread);
9356			md_reap_sync_thread(mddev);
9357			goto unlock;
9358		}
9359		/* Set RUNNING before clearing NEEDED to avoid
9360		 * any transients in the value of "sync_action".
9361		 */
9362		mddev->curr_resync_completed = 0;
9363		spin_lock(&mddev->lock);
9364		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9365		spin_unlock(&mddev->lock);
9366		/* Clear some bits that don't mean anything, but
9367		 * might be left set
9368		 */
9369		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9370		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9371
9372		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9373		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9374			goto not_running;
9375		/* no recovery is running.
9376		 * remove any failed drives, then
9377		 * add spares if possible.
9378		 * Spares are also removed and re-added, to allow
9379		 * the personality to fail the re-add.
9380		 */
9381
9382		if (mddev->reshape_position != MaxSector) {
9383			if (mddev->pers->check_reshape == NULL ||
9384			    mddev->pers->check_reshape(mddev) != 0)
9385				/* Cannot proceed */
9386				goto not_running;
9387			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9388			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9389		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
9390			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9391			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9392			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9393			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9394		} else if (mddev->recovery_cp < MaxSector) {
9395			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9396			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9397		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9398			/* nothing to be done ... */
9399			goto not_running;
9400
9401		if (mddev->pers->sync_request) {
9402			if (spares) {
9403				/* We are adding a device or devices to an array
9404				 * which has the bitmap stored on all devices.
9405				 * So make sure all bitmap pages get written
9406				 */
9407				md_bitmap_write_all(mddev->bitmap);
9408			}
9409			INIT_WORK(&mddev->del_work, md_start_sync);
9410			queue_work(md_misc_wq, &mddev->del_work);
9411			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9412		}
9413	not_running:
9414		if (!mddev->sync_thread) {
9415			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9416			wake_up(&resync_wait);
9417			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9418					       &mddev->recovery))
9419				if (mddev->sysfs_action)
9420					sysfs_notify_dirent_safe(mddev->sysfs_action);
9421		}
9422	unlock:
9423		wake_up(&mddev->sb_wait);
9424		mddev_unlock(mddev);
9425	}
9426}
9427EXPORT_SYMBOL(md_check_recovery);
9428
9429void md_reap_sync_thread(struct mddev *mddev)
9430{
9431	struct md_rdev *rdev;
9432	sector_t old_dev_sectors = mddev->dev_sectors;
9433	bool is_reshaped = false;
9434
9435	/* sync_thread should be unregistered, collect result */
9436	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9437	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9438	    mddev->degraded != mddev->raid_disks) {
9439		/* success...*/
9440		/* activate any spares */
9441		if (mddev->pers->spare_active(mddev)) {
9442			sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9443			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9444		}
9445	}
9446	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9447	    mddev->pers->finish_reshape) {
9448		mddev->pers->finish_reshape(mddev);
9449		if (mddev_is_clustered(mddev))
9450			is_reshaped = true;
9451	}
9452
9453	/* If array is no-longer degraded, then any saved_raid_disk
9454	 * information must be scrapped.
9455	 */
9456	if (!mddev->degraded)
9457		rdev_for_each(rdev, mddev)
9458			rdev->saved_raid_disk = -1;
9459
9460	md_update_sb(mddev, 1);
9461	/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9462	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9463	 * clustered raid */
9464	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9465		md_cluster_ops->resync_finish(mddev);
9466	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9467	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9468	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9469	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9470	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9471	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9472	/*
9473	 * We call md_cluster_ops->update_size here because sync_size could
9474	 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9475	 * so it is time to update size across cluster.
9476	 */
9477	if (mddev_is_clustered(mddev) && is_reshaped
9478				      && !test_bit(MD_CLOSING, &mddev->flags))
9479		md_cluster_ops->update_size(mddev, old_dev_sectors);
9480	wake_up(&resync_wait);
9481	/* flag recovery needed just to double check */
9482	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9483	sysfs_notify_dirent_safe(mddev->sysfs_completed);
9484	sysfs_notify_dirent_safe(mddev->sysfs_action);
9485	md_new_event();
9486	if (mddev->event_work.func)
9487		queue_work(md_misc_wq, &mddev->event_work);
9488}
9489EXPORT_SYMBOL(md_reap_sync_thread);
9490
9491void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9492{
9493	sysfs_notify_dirent_safe(rdev->sysfs_state);
9494	wait_event_timeout(rdev->blocked_wait,
9495			   !test_bit(Blocked, &rdev->flags) &&
9496			   !test_bit(BlockedBadBlocks, &rdev->flags),
9497			   msecs_to_jiffies(5000));
9498	rdev_dec_pending(rdev, mddev);
9499}
9500EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9501
9502void md_finish_reshape(struct mddev *mddev)
9503{
9504	/* called be personality module when reshape completes. */
9505	struct md_rdev *rdev;
9506
9507	rdev_for_each(rdev, mddev) {
9508		if (rdev->data_offset > rdev->new_data_offset)
9509			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9510		else
9511			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9512		rdev->data_offset = rdev->new_data_offset;
9513	}
9514}
9515EXPORT_SYMBOL(md_finish_reshape);
9516
9517/* Bad block management */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9518
9519/* Returns 1 on success, 0 on failure */
9520int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9521		       int is_new)
9522{
9523	struct mddev *mddev = rdev->mddev;
9524	int rv;
9525	if (is_new)
9526		s += rdev->new_data_offset;
9527	else
9528		s += rdev->data_offset;
9529	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9530	if (rv == 0) {
 
9531		/* Make sure they get written out promptly */
9532		if (test_bit(ExternalBbl, &rdev->flags))
9533			sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9534		sysfs_notify_dirent_safe(rdev->sysfs_state);
9535		set_mask_bits(&mddev->sb_flags, 0,
9536			      BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9537		md_wakeup_thread(rdev->mddev->thread);
9538		return 1;
9539	} else
9540		return 0;
9541}
9542EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9544int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9545			 int is_new)
9546{
9547	int rv;
9548	if (is_new)
9549		s += rdev->new_data_offset;
9550	else
9551		s += rdev->data_offset;
9552	rv = badblocks_clear(&rdev->badblocks, s, sectors);
9553	if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9554		sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9555	return rv;
9556}
9557EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9559static int md_notify_reboot(struct notifier_block *this,
9560			    unsigned long code, void *x)
9561{
9562	struct mddev *mddev, *n;
 
9563	int need_delay = 0;
9564
9565	spin_lock(&all_mddevs_lock);
9566	list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9567		if (!mddev_get(mddev))
9568			continue;
9569		spin_unlock(&all_mddevs_lock);
9570		if (mddev_trylock(mddev)) {
9571			if (mddev->pers)
9572				__md_stop_writes(mddev);
9573			if (mddev->persistent)
9574				mddev->safemode = 2;
9575			mddev_unlock(mddev);
9576		}
9577		need_delay = 1;
9578		mddev_put(mddev);
9579		spin_lock(&all_mddevs_lock);
9580	}
9581	spin_unlock(&all_mddevs_lock);
9582
9583	/*
9584	 * certain more exotic SCSI devices are known to be
9585	 * volatile wrt too early system reboots. While the
9586	 * right place to handle this issue is the given
9587	 * driver, we do want to have a safe RAID driver ...
9588	 */
9589	if (need_delay)
9590		msleep(1000);
9591
9592	return NOTIFY_DONE;
9593}
9594
9595static struct notifier_block md_notifier = {
9596	.notifier_call	= md_notify_reboot,
9597	.next		= NULL,
9598	.priority	= INT_MAX, /* before any real devices */
9599};
9600
9601static void md_geninit(void)
9602{
9603	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9604
9605	proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9606}
9607
9608static int __init md_init(void)
9609{
9610	int ret = -ENOMEM;
9611
9612	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9613	if (!md_wq)
9614		goto err_wq;
9615
9616	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9617	if (!md_misc_wq)
9618		goto err_misc_wq;
9619
9620	md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9621	if (!md_rdev_misc_wq)
9622		goto err_rdev_misc_wq;
9623
9624	ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9625	if (ret < 0)
9626		goto err_md;
9627
9628	ret = __register_blkdev(0, "mdp", md_probe);
9629	if (ret < 0)
9630		goto err_mdp;
9631	mdp_major = ret;
9632
 
 
 
 
 
9633	register_reboot_notifier(&md_notifier);
9634	raid_table_header = register_sysctl_table(raid_root_table);
9635
9636	md_geninit();
9637	return 0;
9638
9639err_mdp:
9640	unregister_blkdev(MD_MAJOR, "md");
9641err_md:
9642	destroy_workqueue(md_rdev_misc_wq);
9643err_rdev_misc_wq:
9644	destroy_workqueue(md_misc_wq);
9645err_misc_wq:
9646	destroy_workqueue(md_wq);
9647err_wq:
9648	return ret;
9649}
9650
9651static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9652{
9653	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9654	struct md_rdev *rdev2, *tmp;
9655	int role, ret;
9656
9657	/*
9658	 * If size is changed in another node then we need to
9659	 * do resize as well.
9660	 */
9661	if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9662		ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9663		if (ret)
9664			pr_info("md-cluster: resize failed\n");
9665		else
9666			md_bitmap_update_sb(mddev->bitmap);
9667	}
9668
9669	/* Check for change of roles in the active devices */
9670	rdev_for_each_safe(rdev2, tmp, mddev) {
9671		if (test_bit(Faulty, &rdev2->flags))
9672			continue;
9673
9674		/* Check if the roles changed */
9675		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9676
9677		if (test_bit(Candidate, &rdev2->flags)) {
9678			if (role == MD_DISK_ROLE_FAULTY) {
9679				pr_info("md: Removing Candidate device %pg because add failed\n",
9680					rdev2->bdev);
9681				md_kick_rdev_from_array(rdev2);
9682				continue;
9683			}
9684			else
9685				clear_bit(Candidate, &rdev2->flags);
9686		}
9687
9688		if (role != rdev2->raid_disk) {
9689			/*
9690			 * got activated except reshape is happening.
9691			 */
9692			if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9693			    !(le32_to_cpu(sb->feature_map) &
9694			      MD_FEATURE_RESHAPE_ACTIVE)) {
9695				rdev2->saved_raid_disk = role;
9696				ret = remove_and_add_spares(mddev, rdev2);
9697				pr_info("Activated spare: %pg\n",
9698					rdev2->bdev);
9699				/* wakeup mddev->thread here, so array could
9700				 * perform resync with the new activated disk */
9701				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9702				md_wakeup_thread(mddev->thread);
9703			}
9704			/* device faulty
9705			 * We just want to do the minimum to mark the disk
9706			 * as faulty. The recovery is performed by the
9707			 * one who initiated the error.
9708			 */
9709			if (role == MD_DISK_ROLE_FAULTY ||
9710			    role == MD_DISK_ROLE_JOURNAL) {
9711				md_error(mddev, rdev2);
9712				clear_bit(Blocked, &rdev2->flags);
9713			}
9714		}
9715	}
9716
9717	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9718		ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9719		if (ret)
9720			pr_warn("md: updating array disks failed. %d\n", ret);
9721	}
9722
9723	/*
9724	 * Since mddev->delta_disks has already updated in update_raid_disks,
9725	 * so it is time to check reshape.
9726	 */
9727	if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9728	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9729		/*
9730		 * reshape is happening in the remote node, we need to
9731		 * update reshape_position and call start_reshape.
9732		 */
9733		mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9734		if (mddev->pers->update_reshape_pos)
9735			mddev->pers->update_reshape_pos(mddev);
9736		if (mddev->pers->start_reshape)
9737			mddev->pers->start_reshape(mddev);
9738	} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9739		   mddev->reshape_position != MaxSector &&
9740		   !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9741		/* reshape is just done in another node. */
9742		mddev->reshape_position = MaxSector;
9743		if (mddev->pers->update_reshape_pos)
9744			mddev->pers->update_reshape_pos(mddev);
9745	}
9746
9747	/* Finally set the event to be up to date */
9748	mddev->events = le64_to_cpu(sb->events);
9749}
9750
9751static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9752{
9753	int err;
9754	struct page *swapout = rdev->sb_page;
9755	struct mdp_superblock_1 *sb;
9756
9757	/* Store the sb page of the rdev in the swapout temporary
9758	 * variable in case we err in the future
9759	 */
9760	rdev->sb_page = NULL;
9761	err = alloc_disk_sb(rdev);
9762	if (err == 0) {
9763		ClearPageUptodate(rdev->sb_page);
9764		rdev->sb_loaded = 0;
9765		err = super_types[mddev->major_version].
9766			load_super(rdev, NULL, mddev->minor_version);
9767	}
9768	if (err < 0) {
9769		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9770				__func__, __LINE__, rdev->desc_nr, err);
9771		if (rdev->sb_page)
9772			put_page(rdev->sb_page);
9773		rdev->sb_page = swapout;
9774		rdev->sb_loaded = 1;
9775		return err;
9776	}
9777
9778	sb = page_address(rdev->sb_page);
9779	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9780	 * is not set
9781	 */
9782
9783	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9784		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9785
9786	/* The other node finished recovery, call spare_active to set
9787	 * device In_sync and mddev->degraded
9788	 */
9789	if (rdev->recovery_offset == MaxSector &&
9790	    !test_bit(In_sync, &rdev->flags) &&
9791	    mddev->pers->spare_active(mddev))
9792		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9793
9794	put_page(swapout);
9795	return 0;
9796}
9797
9798void md_reload_sb(struct mddev *mddev, int nr)
9799{
9800	struct md_rdev *rdev = NULL, *iter;
9801	int err;
9802
9803	/* Find the rdev */
9804	rdev_for_each_rcu(iter, mddev) {
9805		if (iter->desc_nr == nr) {
9806			rdev = iter;
9807			break;
9808		}
9809	}
9810
9811	if (!rdev) {
9812		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9813		return;
9814	}
9815
9816	err = read_rdev(mddev, rdev);
9817	if (err < 0)
9818		return;
9819
9820	check_sb_changes(mddev, rdev);
9821
9822	/* Read all rdev's to update recovery_offset */
9823	rdev_for_each_rcu(rdev, mddev) {
9824		if (!test_bit(Faulty, &rdev->flags))
9825			read_rdev(mddev, rdev);
9826	}
9827}
9828EXPORT_SYMBOL(md_reload_sb);
9829
9830#ifndef MODULE
9831
9832/*
9833 * Searches all registered partitions for autorun RAID arrays
9834 * at boot time.
9835 */
9836
9837static DEFINE_MUTEX(detected_devices_mutex);
9838static LIST_HEAD(all_detected_devices);
9839struct detected_devices_node {
9840	struct list_head list;
9841	dev_t dev;
9842};
9843
9844void md_autodetect_dev(dev_t dev)
9845{
9846	struct detected_devices_node *node_detected_dev;
9847
9848	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9849	if (node_detected_dev) {
9850		node_detected_dev->dev = dev;
9851		mutex_lock(&detected_devices_mutex);
9852		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9853		mutex_unlock(&detected_devices_mutex);
 
 
9854	}
9855}
9856
9857void md_autostart_arrays(int part)
 
9858{
9859	struct md_rdev *rdev;
9860	struct detected_devices_node *node_detected_dev;
9861	dev_t dev;
9862	int i_scanned, i_passed;
9863
9864	i_scanned = 0;
9865	i_passed = 0;
9866
9867	pr_info("md: Autodetecting RAID arrays.\n");
9868
9869	mutex_lock(&detected_devices_mutex);
9870	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9871		i_scanned++;
9872		node_detected_dev = list_entry(all_detected_devices.next,
9873					struct detected_devices_node, list);
9874		list_del(&node_detected_dev->list);
9875		dev = node_detected_dev->dev;
9876		kfree(node_detected_dev);
9877		mutex_unlock(&detected_devices_mutex);
9878		rdev = md_import_device(dev,0, 90);
9879		mutex_lock(&detected_devices_mutex);
9880		if (IS_ERR(rdev))
9881			continue;
9882
9883		if (test_bit(Faulty, &rdev->flags))
 
9884			continue;
9885
9886		set_bit(AutoDetected, &rdev->flags);
9887		list_add(&rdev->same_set, &pending_raid_disks);
9888		i_passed++;
9889	}
9890	mutex_unlock(&detected_devices_mutex);
9891
9892	pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
 
9893
9894	autorun_devices(part);
9895}
9896
9897#endif /* !MODULE */
9898
9899static __exit void md_exit(void)
9900{
9901	struct mddev *mddev, *n;
9902	int delay = 1;
 
 
 
9903
9904	unregister_blkdev(MD_MAJOR,"md");
9905	unregister_blkdev(mdp_major, "mdp");
9906	unregister_reboot_notifier(&md_notifier);
9907	unregister_sysctl_table(raid_table_header);
9908
9909	/* We cannot unload the modules while some process is
9910	 * waiting for us in select() or poll() - wake them up
9911	 */
9912	md_unloading = 1;
9913	while (waitqueue_active(&md_event_waiters)) {
9914		/* not safe to leave yet */
9915		wake_up(&md_event_waiters);
9916		msleep(delay);
9917		delay += delay;
9918	}
9919	remove_proc_entry("mdstat", NULL);
9920
9921	spin_lock(&all_mddevs_lock);
9922	list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9923		if (!mddev_get(mddev))
9924			continue;
9925		spin_unlock(&all_mddevs_lock);
9926		export_array(mddev);
9927		mddev->ctime = 0;
9928		mddev->hold_active = 0;
9929		/*
9930		 * As the mddev is now fully clear, mddev_put will schedule
9931		 * the mddev for destruction by a workqueue, and the
9932		 * destroy_workqueue() below will wait for that to complete.
9933		 */
9934		mddev_put(mddev);
9935		spin_lock(&all_mddevs_lock);
9936	}
9937	spin_unlock(&all_mddevs_lock);
9938
9939	destroy_workqueue(md_rdev_misc_wq);
9940	destroy_workqueue(md_misc_wq);
9941	destroy_workqueue(md_wq);
9942}
9943
9944subsys_initcall(md_init);
9945module_exit(md_exit)
9946
9947static int get_ro(char *buffer, const struct kernel_param *kp)
9948{
9949	return sprintf(buffer, "%d\n", start_readonly);
9950}
9951static int set_ro(const char *val, const struct kernel_param *kp)
9952{
9953	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
 
 
 
 
 
 
9954}
9955
9956module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9957module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
 
9958module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9959module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9960
 
 
 
 
 
 
 
 
 
 
9961MODULE_LICENSE("GPL");
9962MODULE_DESCRIPTION("MD RAID framework");
9963MODULE_ALIAS("md");
9964MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
v3.5.6
 
   1/*
   2   md.c : Multiple Devices driver for Linux
   3	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
   4
   5     completely rewritten, based on the MD driver code from Marc Zyngier
   6
   7   Changes:
   8
   9   - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  10   - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  11   - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  12   - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  13   - kmod support by: Cyrus Durgin
  14   - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  15   - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  16
  17   - lots of fixes and improvements to the RAID1/RAID5 and generic
  18     RAID code (such as request based resynchronization):
  19
  20     Neil Brown <neilb@cse.unsw.edu.au>.
  21
  22   - persistent bitmap code
  23     Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  24
  25   This program is free software; you can redistribute it and/or modify
  26   it under the terms of the GNU General Public License as published by
  27   the Free Software Foundation; either version 2, or (at your option)
  28   any later version.
  29
  30   You should have received a copy of the GNU General Public License
  31   (for example /usr/src/linux/COPYING); if not, write to the Free
  32   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 
 
 
 
  33*/
  34
 
 
  35#include <linux/kthread.h>
  36#include <linux/blkdev.h>
 
 
  37#include <linux/sysctl.h>
  38#include <linux/seq_file.h>
  39#include <linux/fs.h>
  40#include <linux/poll.h>
  41#include <linux/ctype.h>
  42#include <linux/string.h>
  43#include <linux/hdreg.h>
  44#include <linux/proc_fs.h>
  45#include <linux/random.h>
 
  46#include <linux/module.h>
  47#include <linux/reboot.h>
  48#include <linux/file.h>
  49#include <linux/compat.h>
  50#include <linux/delay.h>
  51#include <linux/raid/md_p.h>
  52#include <linux/raid/md_u.h>
 
  53#include <linux/slab.h>
 
 
 
 
  54#include "md.h"
  55#include "bitmap.h"
  56
  57#ifndef MODULE
  58static void autostart_arrays(int part);
  59#endif
  60
  61/* pers_list is a list of registered personalities protected
  62 * by pers_lock.
  63 * pers_lock does extra service to protect accesses to
  64 * mddev->thread when the mutex cannot be held.
  65 */
  66static LIST_HEAD(pers_list);
  67static DEFINE_SPINLOCK(pers_lock);
  68
  69static void md_print_devices(void);
 
 
 
 
  70
  71static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  72static struct workqueue_struct *md_wq;
  73static struct workqueue_struct *md_misc_wq;
 
  74
  75#define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76
  77/*
  78 * Default number of read corrections we'll attempt on an rdev
  79 * before ejecting it from the array. We divide the read error
  80 * count by 2 for every hour elapsed between read errors.
  81 */
  82#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
 
 
  83/*
  84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  85 * is 1000 KB/sec, so the extra system load does not show up that much.
  86 * Increase it if you want to have more _guaranteed_ speed. Note that
  87 * the RAID driver will use the maximum available bandwidth if the IO
  88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
  89 * speed limit - in case reconstruction slows down your system despite
  90 * idle IO detection.
  91 *
  92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  93 * or /sys/block/mdX/md/sync_speed_{min,max}
  94 */
  95
  96static int sysctl_speed_limit_min = 1000;
  97static int sysctl_speed_limit_max = 200000;
  98static inline int speed_min(struct mddev *mddev)
  99{
 100	return mddev->sync_speed_min ?
 101		mddev->sync_speed_min : sysctl_speed_limit_min;
 102}
 103
 104static inline int speed_max(struct mddev *mddev)
 105{
 106	return mddev->sync_speed_max ?
 107		mddev->sync_speed_max : sysctl_speed_limit_max;
 108}
 109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110static struct ctl_table_header *raid_table_header;
 111
 112static ctl_table raid_table[] = {
 113	{
 114		.procname	= "speed_limit_min",
 115		.data		= &sysctl_speed_limit_min,
 116		.maxlen		= sizeof(int),
 117		.mode		= S_IRUGO|S_IWUSR,
 118		.proc_handler	= proc_dointvec,
 119	},
 120	{
 121		.procname	= "speed_limit_max",
 122		.data		= &sysctl_speed_limit_max,
 123		.maxlen		= sizeof(int),
 124		.mode		= S_IRUGO|S_IWUSR,
 125		.proc_handler	= proc_dointvec,
 126	},
 127	{ }
 128};
 129
 130static ctl_table raid_dir_table[] = {
 131	{
 132		.procname	= "raid",
 133		.maxlen		= 0,
 134		.mode		= S_IRUGO|S_IXUGO,
 135		.child		= raid_table,
 136	},
 137	{ }
 138};
 139
 140static ctl_table raid_root_table[] = {
 141	{
 142		.procname	= "dev",
 143		.maxlen		= 0,
 144		.mode		= 0555,
 145		.child		= raid_dir_table,
 146	},
 147	{  }
 148};
 149
 150static const struct block_device_operations md_fops;
 151
 152static int start_readonly;
 153
 154/* bio_clone_mddev
 155 * like bio_clone, but with a local bio set
 
 
 
 
 
 156 */
 157
 158static void mddev_bio_destructor(struct bio *bio)
 159{
 160	struct mddev *mddev, **mddevp;
 161
 162	mddevp = (void*)bio;
 163	mddev = mddevp[-1];
 164
 165	bio_free(bio, mddev->bio_set);
 166}
 167
 168struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
 169			    struct mddev *mddev)
 170{
 171	struct bio *b;
 172	struct mddev **mddevp;
 173
 174	if (!mddev || !mddev->bio_set)
 175		return bio_alloc(gfp_mask, nr_iovecs);
 176
 177	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
 178			     mddev->bio_set);
 179	if (!b)
 180		return NULL;
 181	mddevp = (void*)b;
 182	mddevp[-1] = mddev;
 183	b->bi_destructor = mddev_bio_destructor;
 184	return b;
 185}
 186EXPORT_SYMBOL_GPL(bio_alloc_mddev);
 187
 188struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
 189			    struct mddev *mddev)
 190{
 191	struct bio *b;
 192	struct mddev **mddevp;
 193
 194	if (!mddev || !mddev->bio_set)
 195		return bio_clone(bio, gfp_mask);
 196
 197	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
 198			     mddev->bio_set);
 199	if (!b)
 200		return NULL;
 201	mddevp = (void*)b;
 202	mddevp[-1] = mddev;
 203	b->bi_destructor = mddev_bio_destructor;
 204	__bio_clone(b, bio);
 205	if (bio_integrity(bio)) {
 206		int ret;
 207
 208		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
 209
 210		if (ret < 0) {
 211			bio_put(b);
 212			return NULL;
 213		}
 214	}
 215
 216	return b;
 217}
 218EXPORT_SYMBOL_GPL(bio_clone_mddev);
 219
 220void md_trim_bio(struct bio *bio, int offset, int size)
 221{
 222	/* 'bio' is a cloned bio which we need to trim to match
 223	 * the given offset and size.
 224	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
 225	 */
 226	int i;
 227	struct bio_vec *bvec;
 228	int sofar = 0;
 229
 230	size <<= 9;
 231	if (offset == 0 && size == bio->bi_size)
 232		return;
 233
 234	bio->bi_sector += offset;
 235	bio->bi_size = size;
 236	offset <<= 9;
 237	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 238
 239	while (bio->bi_idx < bio->bi_vcnt &&
 240	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
 241		/* remove this whole bio_vec */
 242		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
 243		bio->bi_idx++;
 244	}
 245	if (bio->bi_idx < bio->bi_vcnt) {
 246		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
 247		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
 248	}
 249	/* avoid any complications with bi_idx being non-zero*/
 250	if (bio->bi_idx) {
 251		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
 252			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
 253		bio->bi_vcnt -= bio->bi_idx;
 254		bio->bi_idx = 0;
 255	}
 256	/* Make sure vcnt and last bv are not too big */
 257	bio_for_each_segment(bvec, bio, i) {
 258		if (sofar + bvec->bv_len > size)
 259			bvec->bv_len = size - sofar;
 260		if (bvec->bv_len == 0) {
 261			bio->bi_vcnt = i;
 262			break;
 263		}
 264		sofar += bvec->bv_len;
 265	}
 266}
 267EXPORT_SYMBOL_GPL(md_trim_bio);
 268
 269/*
 270 * We have a system wide 'event count' that is incremented
 271 * on any 'interesting' event, and readers of /proc/mdstat
 272 * can use 'poll' or 'select' to find out when the event
 273 * count increases.
 274 *
 275 * Events are:
 276 *  start array, stop array, error, add device, remove device,
 277 *  start build, activate spare
 278 */
 279static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
 280static atomic_t md_event_count;
 281void md_new_event(struct mddev *mddev)
 282{
 283	atomic_inc(&md_event_count);
 284	wake_up(&md_event_waiters);
 285}
 286EXPORT_SYMBOL_GPL(md_new_event);
 287
 288/* Alternate version that can be called from interrupts
 289 * when calling sysfs_notify isn't needed.
 290 */
 291static void md_new_event_inintr(struct mddev *mddev)
 292{
 293	atomic_inc(&md_event_count);
 294	wake_up(&md_event_waiters);
 295}
 296
 297/*
 298 * Enables to iterate over all existing md arrays
 299 * all_mddevs_lock protects this list.
 300 */
 301static LIST_HEAD(all_mddevs);
 302static DEFINE_SPINLOCK(all_mddevs_lock);
 303
 304
 305/*
 306 * iterates through all used mddevs in the system.
 307 * We take care to grab the all_mddevs_lock whenever navigating
 308 * the list, and to always hold a refcount when unlocked.
 309 * Any code which breaks out of this loop while own
 310 * a reference to the current mddev and must mddev_put it.
 311 */
 312#define for_each_mddev(_mddev,_tmp)					\
 313									\
 314	for (({ spin_lock(&all_mddevs_lock); 				\
 315		_tmp = all_mddevs.next;					\
 316		_mddev = NULL;});					\
 317	     ({ if (_tmp != &all_mddevs)				\
 318			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
 319		spin_unlock(&all_mddevs_lock);				\
 320		if (_mddev) mddev_put(_mddev);				\
 321		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
 322		_tmp != &all_mddevs;});					\
 323	     ({ spin_lock(&all_mddevs_lock);				\
 324		_tmp = _tmp->next;})					\
 325		)
 326
 327
 328/* Rather than calling directly into the personality make_request function,
 329 * IO requests come here first so that we can check if the device is
 330 * being suspended pending a reconfiguration.
 331 * We hold a refcount over the call to ->make_request.  By the time that
 332 * call has finished, the bio has been linked into some internal structure
 333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
 334 */
 335static void md_make_request(struct request_queue *q, struct bio *bio)
 336{
 337	const int rw = bio_data_dir(bio);
 338	struct mddev *mddev = q->queuedata;
 339	int cpu;
 340	unsigned int sectors;
 
 
 
 
 
 
 
 
 341
 342	if (mddev == NULL || mddev->pers == NULL
 343	    || !mddev->ready) {
 344		bio_io_error(bio);
 345		return;
 346	}
 347	smp_rmb(); /* Ensure implications of  'active' are visible */
 348	rcu_read_lock();
 349	if (mddev->suspended) {
 350		DEFINE_WAIT(__wait);
 
 
 
 
 
 
 351		for (;;) {
 352			prepare_to_wait(&mddev->sb_wait, &__wait,
 353					TASK_UNINTERRUPTIBLE);
 354			if (!mddev->suspended)
 355				break;
 356			rcu_read_unlock();
 357			schedule();
 358			rcu_read_lock();
 359		}
 360		finish_wait(&mddev->sb_wait, &__wait);
 361	}
 362	atomic_inc(&mddev->active_io);
 363	rcu_read_unlock();
 364
 365	/*
 366	 * save the sectors now since our bio can
 367	 * go away inside make_request
 368	 */
 369	sectors = bio_sectors(bio);
 370	mddev->pers->make_request(mddev, bio);
 371
 372	cpu = part_stat_lock();
 373	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
 374	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
 375	part_stat_unlock();
 376
 377	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
 378		wake_up(&mddev->sb_wait);
 379}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380
 381/* mddev_suspend makes sure no new requests are submitted
 382 * to the device, and that any requests that have been submitted
 383 * are completely handled.
 384 * Once ->stop is called and completes, the module will be completely
 385 * unused.
 386 */
 387void mddev_suspend(struct mddev *mddev)
 388{
 389	BUG_ON(mddev->suspended);
 390	mddev->suspended = 1;
 
 
 391	synchronize_rcu();
 
 
 
 392	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
 393	mddev->pers->quiesce(mddev, 1);
 
 
 394
 395	del_timer_sync(&mddev->safemode_timer);
 
 
 396}
 397EXPORT_SYMBOL_GPL(mddev_suspend);
 398
 399void mddev_resume(struct mddev *mddev)
 400{
 401	mddev->suspended = 0;
 
 
 
 
 402	wake_up(&mddev->sb_wait);
 403	mddev->pers->quiesce(mddev, 0);
 404
 405	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 406	md_wakeup_thread(mddev->thread);
 407	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
 408}
 409EXPORT_SYMBOL_GPL(mddev_resume);
 410
 411int mddev_congested(struct mddev *mddev, int bits)
 412{
 413	return mddev->suspended;
 414}
 415EXPORT_SYMBOL(mddev_congested);
 416
 417/*
 418 * Generic flush handling for md
 419 */
 420
 421static void md_end_flush(struct bio *bio, int err)
 422{
 423	struct md_rdev *rdev = bio->bi_private;
 424	struct mddev *mddev = rdev->mddev;
 425
 
 
 426	rdev_dec_pending(rdev, mddev);
 427
 428	if (atomic_dec_and_test(&mddev->flush_pending)) {
 429		/* The pre-request flush has finished */
 430		queue_work(md_wq, &mddev->flush_work);
 431	}
 432	bio_put(bio);
 433}
 434
 435static void md_submit_flush_data(struct work_struct *ws);
 436
 437static void submit_flushes(struct work_struct *ws)
 438{
 439	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
 440	struct md_rdev *rdev;
 441
 
 442	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
 443	atomic_set(&mddev->flush_pending, 1);
 444	rcu_read_lock();
 445	rdev_for_each_rcu(rdev, mddev)
 446		if (rdev->raid_disk >= 0 &&
 447		    !test_bit(Faulty, &rdev->flags)) {
 448			/* Take two references, one is dropped
 449			 * when request finishes, one after
 450			 * we reclaim rcu_read_lock
 451			 */
 452			struct bio *bi;
 453			atomic_inc(&rdev->nr_pending);
 454			atomic_inc(&rdev->nr_pending);
 455			rcu_read_unlock();
 456			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
 
 
 457			bi->bi_end_io = md_end_flush;
 458			bi->bi_private = rdev;
 459			bi->bi_bdev = rdev->bdev;
 460			atomic_inc(&mddev->flush_pending);
 461			submit_bio(WRITE_FLUSH, bi);
 462			rcu_read_lock();
 463			rdev_dec_pending(rdev, mddev);
 464		}
 465	rcu_read_unlock();
 466	if (atomic_dec_and_test(&mddev->flush_pending))
 467		queue_work(md_wq, &mddev->flush_work);
 468}
 469
 470static void md_submit_flush_data(struct work_struct *ws)
 471{
 472	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
 473	struct bio *bio = mddev->flush_bio;
 474
 475	if (bio->bi_size == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 476		/* an empty barrier - all done */
 477		bio_endio(bio, 0);
 478	else {
 479		bio->bi_rw &= ~REQ_FLUSH;
 480		mddev->pers->make_request(mddev, bio);
 481	}
 482
 483	mddev->flush_bio = NULL;
 484	wake_up(&mddev->sb_wait);
 485}
 486
 487void md_flush_request(struct mddev *mddev, struct bio *bio)
 488{
 489	spin_lock_irq(&mddev->write_lock);
 
 
 
 
 
 
 
 
 
 
 490	wait_event_lock_irq(mddev->sb_wait,
 491			    !mddev->flush_bio,
 492			    mddev->write_lock, /*nothing*/);
 493	mddev->flush_bio = bio;
 494	spin_unlock_irq(&mddev->write_lock);
 
 
 
 
 
 
 495
 496	INIT_WORK(&mddev->flush_work, submit_flushes);
 497	queue_work(md_wq, &mddev->flush_work);
 498}
 499EXPORT_SYMBOL(md_flush_request);
 500
 501/* Support for plugging.
 502 * This mirrors the plugging support in request_queue, but does not
 503 * require having a whole queue or request structures.
 504 * We allocate an md_plug_cb for each md device and each thread it gets
 505 * plugged on.  This links tot the private plug_handle structure in the
 506 * personality data where we keep a count of the number of outstanding
 507 * plugs so other code can see if a plug is active.
 508 */
 509struct md_plug_cb {
 510	struct blk_plug_cb cb;
 511	struct mddev *mddev;
 512};
 513
 514static void plugger_unplug(struct blk_plug_cb *cb)
 515{
 516	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
 517	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
 518		md_wakeup_thread(mdcb->mddev->thread);
 519	kfree(mdcb);
 520}
 521
 522/* Check that an unplug wakeup will come shortly.
 523 * If not, wakeup the md thread immediately
 524 */
 525int mddev_check_plugged(struct mddev *mddev)
 526{
 527	struct blk_plug *plug = current->plug;
 528	struct md_plug_cb *mdcb;
 529
 530	if (!plug)
 531		return 0;
 532
 533	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
 534		if (mdcb->cb.callback == plugger_unplug &&
 535		    mdcb->mddev == mddev) {
 536			/* Already on the list, move to top */
 537			if (mdcb != list_first_entry(&plug->cb_list,
 538						    struct md_plug_cb,
 539						    cb.list))
 540				list_move(&mdcb->cb.list, &plug->cb_list);
 541			return 1;
 542		}
 543	}
 544	/* Not currently on the callback list */
 545	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
 546	if (!mdcb)
 547		return 0;
 548
 549	mdcb->mddev = mddev;
 550	mdcb->cb.callback = plugger_unplug;
 551	atomic_inc(&mddev->plug_cnt);
 552	list_add(&mdcb->cb.list, &plug->cb_list);
 553	return 1;
 554}
 555EXPORT_SYMBOL_GPL(mddev_check_plugged);
 556
 557static inline struct mddev *mddev_get(struct mddev *mddev)
 558{
 
 
 
 
 559	atomic_inc(&mddev->active);
 560	return mddev;
 561}
 562
 563static void mddev_delayed_delete(struct work_struct *ws);
 564
 565static void mddev_put(struct mddev *mddev)
 566{
 567	struct bio_set *bs = NULL;
 568
 569	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
 570		return;
 571	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
 572	    mddev->ctime == 0 && !mddev->hold_active) {
 573		/* Array is not configured at all, and not held active,
 574		 * so destroy it */
 575		list_del_init(&mddev->all_mddevs);
 576		bs = mddev->bio_set;
 577		mddev->bio_set = NULL;
 578		if (mddev->gendisk) {
 579			/* We did a probe so need to clean up.  Call
 580			 * queue_work inside the spinlock so that
 581			 * flush_workqueue() after mddev_find will
 582			 * succeed in waiting for the work to be done.
 583			 */
 584			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
 585			queue_work(md_misc_wq, &mddev->del_work);
 586		} else
 587			kfree(mddev);
 588	}
 589	spin_unlock(&all_mddevs_lock);
 590	if (bs)
 591		bioset_free(bs);
 592}
 593
 
 
 594void mddev_init(struct mddev *mddev)
 595{
 596	mutex_init(&mddev->open_mutex);
 597	mutex_init(&mddev->reconfig_mutex);
 598	mutex_init(&mddev->bitmap_info.mutex);
 599	INIT_LIST_HEAD(&mddev->disks);
 600	INIT_LIST_HEAD(&mddev->all_mddevs);
 601	init_timer(&mddev->safemode_timer);
 602	atomic_set(&mddev->active, 1);
 603	atomic_set(&mddev->openers, 0);
 604	atomic_set(&mddev->active_io, 0);
 605	atomic_set(&mddev->plug_cnt, 0);
 606	spin_lock_init(&mddev->write_lock);
 607	atomic_set(&mddev->flush_pending, 0);
 608	init_waitqueue_head(&mddev->sb_wait);
 609	init_waitqueue_head(&mddev->recovery_wait);
 610	mddev->reshape_position = MaxSector;
 611	mddev->reshape_backwards = 0;
 
 612	mddev->resync_min = 0;
 613	mddev->resync_max = MaxSector;
 614	mddev->level = LEVEL_NONE;
 615}
 616EXPORT_SYMBOL_GPL(mddev_init);
 617
 618static struct mddev * mddev_find(dev_t unit)
 619{
 620	struct mddev *mddev, *new = NULL;
 621
 622	if (unit && MAJOR(unit) != MD_MAJOR)
 623		unit &= ~((1<<MdpMinorShift)-1);
 
 624
 625 retry:
 626	spin_lock(&all_mddevs_lock);
 627
 628	if (unit) {
 629		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
 630			if (mddev->unit == unit) {
 631				mddev_get(mddev);
 632				spin_unlock(&all_mddevs_lock);
 633				kfree(new);
 634				return mddev;
 635			}
 636
 637		if (new) {
 638			list_add(&new->all_mddevs, &all_mddevs);
 639			spin_unlock(&all_mddevs_lock);
 640			new->hold_active = UNTIL_IOCTL;
 641			return new;
 642		}
 643	} else if (new) {
 644		/* find an unused unit number */
 645		static int next_minor = 512;
 646		int start = next_minor;
 647		int is_free = 0;
 648		int dev = 0;
 649		while (!is_free) {
 650			dev = MKDEV(MD_MAJOR, next_minor);
 651			next_minor++;
 652			if (next_minor > MINORMASK)
 653				next_minor = 0;
 654			if (next_minor == start) {
 655				/* Oh dear, all in use. */
 656				spin_unlock(&all_mddevs_lock);
 657				kfree(new);
 658				return NULL;
 659			}
 660				
 661			is_free = 1;
 662			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
 663				if (mddev->unit == dev) {
 664					is_free = 0;
 665					break;
 666				}
 667		}
 668		new->unit = dev;
 669		new->md_minor = MINOR(dev);
 670		new->hold_active = UNTIL_STOP;
 671		list_add(&new->all_mddevs, &all_mddevs);
 672		spin_unlock(&all_mddevs_lock);
 673		return new;
 674	}
 675	spin_unlock(&all_mddevs_lock);
 
 
 
 
 
 
 
 
 
 
 676
 677	new = kzalloc(sizeof(*new), GFP_KERNEL);
 678	if (!new)
 679		return NULL;
 680
 681	new->unit = unit;
 682	if (MAJOR(unit) == MD_MAJOR)
 683		new->md_minor = MINOR(unit);
 684	else
 685		new->md_minor = MINOR(unit) >> MdpMinorShift;
 686
 687	mddev_init(new);
 688
 689	goto retry;
 690}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691
 692static inline int mddev_lock(struct mddev * mddev)
 693{
 694	return mutex_lock_interruptible(&mddev->reconfig_mutex);
 
 
 
 
 695}
 696
 697static inline int mddev_is_locked(struct mddev *mddev)
 698{
 699	return mutex_is_locked(&mddev->reconfig_mutex);
 700}
 
 701
 702static inline int mddev_trylock(struct mddev * mddev)
 703{
 704	return mutex_trylock(&mddev->reconfig_mutex);
 705}
 706
 707static struct attribute_group md_redundancy_group;
 708
 709static void mddev_unlock(struct mddev * mddev)
 710{
 711	if (mddev->to_remove) {
 712		/* These cannot be removed under reconfig_mutex as
 713		 * an access to the files will try to take reconfig_mutex
 714		 * while holding the file unremovable, which leads to
 715		 * a deadlock.
 716		 * So hold set sysfs_active while the remove in happeing,
 717		 * and anything else which might set ->to_remove or my
 718		 * otherwise change the sysfs namespace will fail with
 719		 * -EBUSY if sysfs_active is still set.
 720		 * We set sysfs_active under reconfig_mutex and elsewhere
 721		 * test it under the same mutex to ensure its correct value
 722		 * is seen.
 723		 */
 724		struct attribute_group *to_remove = mddev->to_remove;
 725		mddev->to_remove = NULL;
 726		mddev->sysfs_active = 1;
 727		mutex_unlock(&mddev->reconfig_mutex);
 728
 729		if (mddev->kobj.sd) {
 730			if (to_remove != &md_redundancy_group)
 731				sysfs_remove_group(&mddev->kobj, to_remove);
 732			if (mddev->pers == NULL ||
 733			    mddev->pers->sync_request == NULL) {
 734				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
 735				if (mddev->sysfs_action)
 736					sysfs_put(mddev->sysfs_action);
 
 
 
 
 737				mddev->sysfs_action = NULL;
 
 
 738			}
 739		}
 740		mddev->sysfs_active = 0;
 741	} else
 742		mutex_unlock(&mddev->reconfig_mutex);
 743
 744	/* As we've dropped the mutex we need a spinlock to
 745	 * make sure the thread doesn't disappear
 746	 */
 747	spin_lock(&pers_lock);
 748	md_wakeup_thread(mddev->thread);
 
 749	spin_unlock(&pers_lock);
 750}
 
 751
 752static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
 753{
 754	struct md_rdev *rdev;
 755
 756	rdev_for_each(rdev, mddev)
 757		if (rdev->desc_nr == nr)
 758			return rdev;
 759
 760	return NULL;
 761}
 
 762
 763static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
 764{
 765	struct md_rdev *rdev;
 766
 767	rdev_for_each(rdev, mddev)
 768		if (rdev->bdev->bd_dev == dev)
 769			return rdev;
 770
 771	return NULL;
 772}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 774static struct md_personality *find_pers(int level, char *clevel)
 775{
 776	struct md_personality *pers;
 777	list_for_each_entry(pers, &pers_list, list) {
 778		if (level != LEVEL_NONE && pers->level == level)
 779			return pers;
 780		if (strcmp(pers->name, clevel)==0)
 781			return pers;
 782	}
 783	return NULL;
 784}
 785
 786/* return the offset of the super block in 512byte sectors */
 787static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
 788{
 789	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
 790	return MD_NEW_SIZE_SECTORS(num_sectors);
 791}
 792
 793static int alloc_disk_sb(struct md_rdev * rdev)
 794{
 795	if (rdev->sb_page)
 796		MD_BUG();
 797
 798	rdev->sb_page = alloc_page(GFP_KERNEL);
 799	if (!rdev->sb_page) {
 800		printk(KERN_ALERT "md: out of memory.\n");
 801		return -ENOMEM;
 802	}
 803
 804	return 0;
 805}
 806
 807void md_rdev_clear(struct md_rdev *rdev)
 808{
 809	if (rdev->sb_page) {
 810		put_page(rdev->sb_page);
 811		rdev->sb_loaded = 0;
 812		rdev->sb_page = NULL;
 813		rdev->sb_start = 0;
 814		rdev->sectors = 0;
 815	}
 816	if (rdev->bb_page) {
 817		put_page(rdev->bb_page);
 818		rdev->bb_page = NULL;
 819	}
 820	kfree(rdev->badblocks.page);
 821	rdev->badblocks.page = NULL;
 822}
 823EXPORT_SYMBOL_GPL(md_rdev_clear);
 824
 825static void super_written(struct bio *bio, int error)
 826{
 827	struct md_rdev *rdev = bio->bi_private;
 828	struct mddev *mddev = rdev->mddev;
 829
 830	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
 831		printk("md: super_written gets error=%d, uptodate=%d\n",
 832		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
 833		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
 834		md_error(mddev, rdev);
 835	}
 
 
 
 
 
 
 
 
 
 
 836
 837	if (atomic_dec_and_test(&mddev->pending_writes))
 838		wake_up(&mddev->sb_wait);
 839	bio_put(bio);
 840}
 841
 842void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
 843		   sector_t sector, int size, struct page *page)
 844{
 845	/* write first size bytes of page to sector of rdev
 846	 * Increment mddev->pending_writes before returning
 847	 * and decrement it on completion, waking up sb_wait
 848	 * if zero is reached.
 849	 * If an error occurred, call md_error
 850	 */
 851	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
 
 
 
 852
 853	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
 854	bio->bi_sector = sector;
 
 
 
 
 
 
 
 
 
 855	bio_add_page(bio, page, size, 0);
 856	bio->bi_private = rdev;
 857	bio->bi_end_io = super_written;
 858
 
 
 
 
 
 859	atomic_inc(&mddev->pending_writes);
 860	submit_bio(WRITE_FLUSH_FUA, bio);
 861}
 862
 863void md_super_wait(struct mddev *mddev)
 864{
 865	/* wait for all superblock writes that were scheduled to complete */
 866	DEFINE_WAIT(wq);
 867	for(;;) {
 868		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
 869		if (atomic_read(&mddev->pending_writes)==0)
 870			break;
 871		schedule();
 872	}
 873	finish_wait(&mddev->sb_wait, &wq);
 874}
 875
 876static void bi_complete(struct bio *bio, int error)
 877{
 878	complete((struct completion*)bio->bi_private);
 879}
 880
 881int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
 882		 struct page *page, int rw, bool metadata_op)
 883{
 884	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
 885	struct completion event;
 886	int ret;
 887
 888	rw |= REQ_SYNC;
 
 
 
 889
 890	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
 891		rdev->meta_bdev : rdev->bdev;
 892	if (metadata_op)
 893		bio->bi_sector = sector + rdev->sb_start;
 894	else if (rdev->mddev->reshape_position != MaxSector &&
 895		 (rdev->mddev->reshape_backwards ==
 896		  (sector >= rdev->mddev->reshape_position)))
 897		bio->bi_sector = sector + rdev->new_data_offset;
 898	else
 899		bio->bi_sector = sector + rdev->data_offset;
 900	bio_add_page(bio, page, size, 0);
 901	init_completion(&event);
 902	bio->bi_private = &event;
 903	bio->bi_end_io = bi_complete;
 904	submit_bio(rw, bio);
 905	wait_for_completion(&event);
 906
 907	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
 908	bio_put(bio);
 909	return ret;
 910}
 911EXPORT_SYMBOL_GPL(sync_page_io);
 912
 913static int read_disk_sb(struct md_rdev * rdev, int size)
 914{
 915	char b[BDEVNAME_SIZE];
 916	if (!rdev->sb_page) {
 917		MD_BUG();
 918		return -EINVAL;
 919	}
 920	if (rdev->sb_loaded)
 921		return 0;
 922
 923
 924	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
 925		goto fail;
 926	rdev->sb_loaded = 1;
 927	return 0;
 928
 929fail:
 930	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
 931		bdevname(rdev->bdev,b));
 932	return -EINVAL;
 933}
 934
 935static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
 936{
 937	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
 938		sb1->set_uuid1 == sb2->set_uuid1 &&
 939		sb1->set_uuid2 == sb2->set_uuid2 &&
 940		sb1->set_uuid3 == sb2->set_uuid3;
 941}
 942
 943static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
 944{
 945	int ret;
 946	mdp_super_t *tmp1, *tmp2;
 947
 948	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
 949	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
 950
 951	if (!tmp1 || !tmp2) {
 952		ret = 0;
 953		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
 954		goto abort;
 955	}
 956
 957	*tmp1 = *sb1;
 958	*tmp2 = *sb2;
 959
 960	/*
 961	 * nr_disks is not constant
 962	 */
 963	tmp1->nr_disks = 0;
 964	tmp2->nr_disks = 0;
 965
 966	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
 967abort:
 968	kfree(tmp1);
 969	kfree(tmp2);
 970	return ret;
 971}
 972
 973
 974static u32 md_csum_fold(u32 csum)
 975{
 976	csum = (csum & 0xffff) + (csum >> 16);
 977	return (csum & 0xffff) + (csum >> 16);
 978}
 979
 980static unsigned int calc_sb_csum(mdp_super_t * sb)
 981{
 982	u64 newcsum = 0;
 983	u32 *sb32 = (u32*)sb;
 984	int i;
 985	unsigned int disk_csum, csum;
 986
 987	disk_csum = sb->sb_csum;
 988	sb->sb_csum = 0;
 989
 990	for (i = 0; i < MD_SB_BYTES/4 ; i++)
 991		newcsum += sb32[i];
 992	csum = (newcsum & 0xffffffff) + (newcsum>>32);
 993
 994
 995#ifdef CONFIG_ALPHA
 996	/* This used to use csum_partial, which was wrong for several
 997	 * reasons including that different results are returned on
 998	 * different architectures.  It isn't critical that we get exactly
 999	 * the same return value as before (we always csum_fold before
1000	 * testing, and that removes any differences).  However as we
1001	 * know that csum_partial always returned a 16bit value on
1002	 * alphas, do a fold to maximise conformity to previous behaviour.
1003	 */
1004	sb->sb_csum = md_csum_fold(disk_csum);
1005#else
1006	sb->sb_csum = disk_csum;
1007#endif
1008	return csum;
1009}
1010
1011
1012/*
1013 * Handle superblock details.
1014 * We want to be able to handle multiple superblock formats
1015 * so we have a common interface to them all, and an array of
1016 * different handlers.
1017 * We rely on user-space to write the initial superblock, and support
1018 * reading and updating of superblocks.
1019 * Interface methods are:
1020 *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1021 *      loads and validates a superblock on dev.
1022 *      if refdev != NULL, compare superblocks on both devices
1023 *    Return:
1024 *      0 - dev has a superblock that is compatible with refdev
1025 *      1 - dev has a superblock that is compatible and newer than refdev
1026 *          so dev should be used as the refdev in future
1027 *     -EINVAL superblock incompatible or invalid
1028 *     -othererror e.g. -EIO
1029 *
1030 *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1031 *      Verify that dev is acceptable into mddev.
1032 *       The first time, mddev->raid_disks will be 0, and data from
1033 *       dev should be merged in.  Subsequent calls check that dev
1034 *       is new enough.  Return 0 or -EINVAL
1035 *
1036 *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1037 *     Update the superblock for rdev with data in mddev
1038 *     This does not write to disc.
1039 *
1040 */
1041
1042struct super_type  {
1043	char		    *name;
1044	struct module	    *owner;
1045	int		    (*load_super)(struct md_rdev *rdev,
1046					  struct md_rdev *refdev,
1047					  int minor_version);
1048	int		    (*validate_super)(struct mddev *mddev,
1049					      struct md_rdev *rdev);
1050	void		    (*sync_super)(struct mddev *mddev,
1051					  struct md_rdev *rdev);
1052	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1053						sector_t num_sectors);
1054	int		    (*allow_new_offset)(struct md_rdev *rdev,
1055						unsigned long long new_offset);
1056};
1057
1058/*
1059 * Check that the given mddev has no bitmap.
1060 *
1061 * This function is called from the run method of all personalities that do not
1062 * support bitmaps. It prints an error message and returns non-zero if mddev
1063 * has a bitmap. Otherwise, it returns 0.
1064 *
1065 */
1066int md_check_no_bitmap(struct mddev *mddev)
1067{
1068	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1069		return 0;
1070	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1071		mdname(mddev), mddev->pers->name);
1072	return 1;
1073}
1074EXPORT_SYMBOL(md_check_no_bitmap);
1075
1076/*
1077 * load_super for 0.90.0 
1078 */
1079static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1080{
1081	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1082	mdp_super_t *sb;
1083	int ret;
 
1084
1085	/*
1086	 * Calculate the position of the superblock (512byte sectors),
1087	 * it's at the end of the disk.
1088	 *
1089	 * It also happens to be a multiple of 4Kb.
1090	 */
1091	rdev->sb_start = calc_dev_sboffset(rdev);
1092
1093	ret = read_disk_sb(rdev, MD_SB_BYTES);
1094	if (ret) return ret;
 
1095
1096	ret = -EINVAL;
1097
1098	bdevname(rdev->bdev, b);
1099	sb = page_address(rdev->sb_page);
1100
1101	if (sb->md_magic != MD_SB_MAGIC) {
1102		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1103		       b);
1104		goto abort;
1105	}
1106
1107	if (sb->major_version != 0 ||
1108	    sb->minor_version < 90 ||
1109	    sb->minor_version > 91) {
1110		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1111			sb->major_version, sb->minor_version,
1112			b);
1113		goto abort;
1114	}
1115
1116	if (sb->raid_disks <= 0)
1117		goto abort;
1118
1119	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1120		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1121			b);
1122		goto abort;
1123	}
1124
1125	rdev->preferred_minor = sb->md_minor;
1126	rdev->data_offset = 0;
1127	rdev->new_data_offset = 0;
1128	rdev->sb_size = MD_SB_BYTES;
1129	rdev->badblocks.shift = -1;
1130
1131	if (sb->level == LEVEL_MULTIPATH)
1132		rdev->desc_nr = -1;
1133	else
1134		rdev->desc_nr = sb->this_disk.number;
1135
 
 
 
 
 
 
 
 
1136	if (!refdev) {
1137		ret = 1;
 
 
 
1138	} else {
1139		__u64 ev1, ev2;
1140		mdp_super_t *refsb = page_address(refdev->sb_page);
1141		if (!uuid_equal(refsb, sb)) {
1142			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1143				b, bdevname(refdev->bdev,b2));
1144			goto abort;
1145		}
1146		if (!sb_equal(refsb, sb)) {
1147			printk(KERN_WARNING "md: %s has same UUID"
1148			       " but different superblock to %s\n",
1149			       b, bdevname(refdev->bdev, b2));
1150			goto abort;
1151		}
1152		ev1 = md_event(sb);
1153		ev2 = md_event(refsb);
1154		if (ev1 > ev2)
 
1155			ret = 1;
1156		else 
1157			ret = 0;
1158	}
1159	rdev->sectors = rdev->sb_start;
1160	/* Limit to 4TB as metadata cannot record more than that.
1161	 * (not needed for Linear and RAID0 as metadata doesn't
1162	 * record this size)
1163	 */
1164	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1165		rdev->sectors = (2ULL << 32) - 2;
1166
1167	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1168		/* "this cannot possibly happen" ... */
1169		ret = -EINVAL;
1170
1171 abort:
1172	return ret;
1173}
1174
1175/*
1176 * validate_super for 0.90.0
1177 */
1178static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1179{
1180	mdp_disk_t *desc;
1181	mdp_super_t *sb = page_address(rdev->sb_page);
1182	__u64 ev1 = md_event(sb);
1183
1184	rdev->raid_disk = -1;
1185	clear_bit(Faulty, &rdev->flags);
1186	clear_bit(In_sync, &rdev->flags);
 
1187	clear_bit(WriteMostly, &rdev->flags);
1188
1189	if (mddev->raid_disks == 0) {
1190		mddev->major_version = 0;
1191		mddev->minor_version = sb->minor_version;
1192		mddev->patch_version = sb->patch_version;
1193		mddev->external = 0;
1194		mddev->chunk_sectors = sb->chunk_size >> 9;
1195		mddev->ctime = sb->ctime;
1196		mddev->utime = sb->utime;
1197		mddev->level = sb->level;
1198		mddev->clevel[0] = 0;
1199		mddev->layout = sb->layout;
1200		mddev->raid_disks = sb->raid_disks;
1201		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1202		mddev->events = ev1;
1203		mddev->bitmap_info.offset = 0;
1204		mddev->bitmap_info.space = 0;
1205		/* bitmap can use 60 K after the 4K superblocks */
1206		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1207		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1208		mddev->reshape_backwards = 0;
1209
1210		if (mddev->minor_version >= 91) {
1211			mddev->reshape_position = sb->reshape_position;
1212			mddev->delta_disks = sb->delta_disks;
1213			mddev->new_level = sb->new_level;
1214			mddev->new_layout = sb->new_layout;
1215			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1216			if (mddev->delta_disks < 0)
1217				mddev->reshape_backwards = 1;
1218		} else {
1219			mddev->reshape_position = MaxSector;
1220			mddev->delta_disks = 0;
1221			mddev->new_level = mddev->level;
1222			mddev->new_layout = mddev->layout;
1223			mddev->new_chunk_sectors = mddev->chunk_sectors;
1224		}
 
 
1225
1226		if (sb->state & (1<<MD_SB_CLEAN))
1227			mddev->recovery_cp = MaxSector;
1228		else {
1229			if (sb->events_hi == sb->cp_events_hi && 
1230				sb->events_lo == sb->cp_events_lo) {
1231				mddev->recovery_cp = sb->recovery_cp;
1232			} else
1233				mddev->recovery_cp = 0;
1234		}
1235
1236		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1237		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1238		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1239		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1240
1241		mddev->max_disks = MD_SB_DISKS;
1242
1243		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1244		    mddev->bitmap_info.file == NULL) {
1245			mddev->bitmap_info.offset =
1246				mddev->bitmap_info.default_offset;
1247			mddev->bitmap_info.space =
1248				mddev->bitmap_info.space;
1249		}
1250
1251	} else if (mddev->pers == NULL) {
1252		/* Insist on good event counter while assembling, except
1253		 * for spares (which don't need an event count) */
1254		++ev1;
1255		if (sb->disks[rdev->desc_nr].state & (
1256			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1257			if (ev1 < mddev->events) 
1258				return -EINVAL;
1259	} else if (mddev->bitmap) {
1260		/* if adding to array with a bitmap, then we can accept an
1261		 * older device ... but not too old.
1262		 */
1263		if (ev1 < mddev->bitmap->events_cleared)
1264			return 0;
 
 
1265	} else {
1266		if (ev1 < mddev->events)
1267			/* just a hot-add of a new device, leave raid_disk at -1 */
1268			return 0;
1269	}
1270
1271	if (mddev->level != LEVEL_MULTIPATH) {
1272		desc = sb->disks + rdev->desc_nr;
1273
1274		if (desc->state & (1<<MD_DISK_FAULTY))
1275			set_bit(Faulty, &rdev->flags);
1276		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1277			    desc->raid_disk < mddev->raid_disks */) {
1278			set_bit(In_sync, &rdev->flags);
1279			rdev->raid_disk = desc->raid_disk;
 
1280		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1281			/* active but not in sync implies recovery up to
1282			 * reshape position.  We don't know exactly where
1283			 * that is, so set to zero for now */
1284			if (mddev->minor_version >= 91) {
1285				rdev->recovery_offset = 0;
1286				rdev->raid_disk = desc->raid_disk;
1287			}
1288		}
1289		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1290			set_bit(WriteMostly, &rdev->flags);
 
 
1291	} else /* MULTIPATH are always insync */
1292		set_bit(In_sync, &rdev->flags);
1293	return 0;
1294}
1295
1296/*
1297 * sync_super for 0.90.0
1298 */
1299static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1300{
1301	mdp_super_t *sb;
1302	struct md_rdev *rdev2;
1303	int next_spare = mddev->raid_disks;
1304
1305
1306	/* make rdev->sb match mddev data..
1307	 *
1308	 * 1/ zero out disks
1309	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1310	 * 3/ any empty disks < next_spare become removed
1311	 *
1312	 * disks[0] gets initialised to REMOVED because
1313	 * we cannot be sure from other fields if it has
1314	 * been initialised or not.
1315	 */
1316	int i;
1317	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1318
1319	rdev->sb_size = MD_SB_BYTES;
1320
1321	sb = page_address(rdev->sb_page);
1322
1323	memset(sb, 0, sizeof(*sb));
1324
1325	sb->md_magic = MD_SB_MAGIC;
1326	sb->major_version = mddev->major_version;
1327	sb->patch_version = mddev->patch_version;
1328	sb->gvalid_words  = 0; /* ignored */
1329	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1330	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1331	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1332	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1333
1334	sb->ctime = mddev->ctime;
1335	sb->level = mddev->level;
1336	sb->size = mddev->dev_sectors / 2;
1337	sb->raid_disks = mddev->raid_disks;
1338	sb->md_minor = mddev->md_minor;
1339	sb->not_persistent = 0;
1340	sb->utime = mddev->utime;
1341	sb->state = 0;
1342	sb->events_hi = (mddev->events>>32);
1343	sb->events_lo = (u32)mddev->events;
1344
1345	if (mddev->reshape_position == MaxSector)
1346		sb->minor_version = 90;
1347	else {
1348		sb->minor_version = 91;
1349		sb->reshape_position = mddev->reshape_position;
1350		sb->new_level = mddev->new_level;
1351		sb->delta_disks = mddev->delta_disks;
1352		sb->new_layout = mddev->new_layout;
1353		sb->new_chunk = mddev->new_chunk_sectors << 9;
1354	}
1355	mddev->minor_version = sb->minor_version;
1356	if (mddev->in_sync)
1357	{
1358		sb->recovery_cp = mddev->recovery_cp;
1359		sb->cp_events_hi = (mddev->events>>32);
1360		sb->cp_events_lo = (u32)mddev->events;
1361		if (mddev->recovery_cp == MaxSector)
1362			sb->state = (1<< MD_SB_CLEAN);
1363	} else
1364		sb->recovery_cp = 0;
1365
1366	sb->layout = mddev->layout;
1367	sb->chunk_size = mddev->chunk_sectors << 9;
1368
1369	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1370		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1371
1372	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1373	rdev_for_each(rdev2, mddev) {
1374		mdp_disk_t *d;
1375		int desc_nr;
1376		int is_active = test_bit(In_sync, &rdev2->flags);
1377
1378		if (rdev2->raid_disk >= 0 &&
1379		    sb->minor_version >= 91)
1380			/* we have nowhere to store the recovery_offset,
1381			 * but if it is not below the reshape_position,
1382			 * we can piggy-back on that.
1383			 */
1384			is_active = 1;
1385		if (rdev2->raid_disk < 0 ||
1386		    test_bit(Faulty, &rdev2->flags))
1387			is_active = 0;
1388		if (is_active)
1389			desc_nr = rdev2->raid_disk;
1390		else
1391			desc_nr = next_spare++;
1392		rdev2->desc_nr = desc_nr;
1393		d = &sb->disks[rdev2->desc_nr];
1394		nr_disks++;
1395		d->number = rdev2->desc_nr;
1396		d->major = MAJOR(rdev2->bdev->bd_dev);
1397		d->minor = MINOR(rdev2->bdev->bd_dev);
1398		if (is_active)
1399			d->raid_disk = rdev2->raid_disk;
1400		else
1401			d->raid_disk = rdev2->desc_nr; /* compatibility */
1402		if (test_bit(Faulty, &rdev2->flags))
1403			d->state = (1<<MD_DISK_FAULTY);
1404		else if (is_active) {
1405			d->state = (1<<MD_DISK_ACTIVE);
1406			if (test_bit(In_sync, &rdev2->flags))
1407				d->state |= (1<<MD_DISK_SYNC);
1408			active++;
1409			working++;
1410		} else {
1411			d->state = 0;
1412			spare++;
1413			working++;
1414		}
1415		if (test_bit(WriteMostly, &rdev2->flags))
1416			d->state |= (1<<MD_DISK_WRITEMOSTLY);
 
 
1417	}
1418	/* now set the "removed" and "faulty" bits on any missing devices */
1419	for (i=0 ; i < mddev->raid_disks ; i++) {
1420		mdp_disk_t *d = &sb->disks[i];
1421		if (d->state == 0 && d->number == 0) {
1422			d->number = i;
1423			d->raid_disk = i;
1424			d->state = (1<<MD_DISK_REMOVED);
1425			d->state |= (1<<MD_DISK_FAULTY);
1426			failed++;
1427		}
1428	}
1429	sb->nr_disks = nr_disks;
1430	sb->active_disks = active;
1431	sb->working_disks = working;
1432	sb->failed_disks = failed;
1433	sb->spare_disks = spare;
1434
1435	sb->this_disk = sb->disks[rdev->desc_nr];
1436	sb->sb_csum = calc_sb_csum(sb);
1437}
1438
1439/*
1440 * rdev_size_change for 0.90.0
1441 */
1442static unsigned long long
1443super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1444{
1445	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1446		return 0; /* component must fit device */
1447	if (rdev->mddev->bitmap_info.offset)
1448		return 0; /* can't move bitmap */
1449	rdev->sb_start = calc_dev_sboffset(rdev);
1450	if (!num_sectors || num_sectors > rdev->sb_start)
1451		num_sectors = rdev->sb_start;
1452	/* Limit to 4TB as metadata cannot record more than that.
1453	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1454	 */
1455	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1456		num_sectors = (2ULL << 32) - 2;
1457	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
 
1458		       rdev->sb_page);
1459	md_super_wait(rdev->mddev);
1460	return num_sectors;
1461}
1462
1463static int
1464super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1465{
1466	/* non-zero offset changes not possible with v0.90 */
1467	return new_offset == 0;
1468}
1469
1470/*
1471 * version 1 superblock
1472 */
1473
1474static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1475{
1476	__le32 disk_csum;
1477	u32 csum;
1478	unsigned long long newcsum;
1479	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1480	__le32 *isuper = (__le32*)sb;
1481	int i;
1482
1483	disk_csum = sb->sb_csum;
1484	sb->sb_csum = 0;
1485	newcsum = 0;
1486	for (i=0; size>=4; size -= 4 )
1487		newcsum += le32_to_cpu(*isuper++);
1488
1489	if (size == 2)
1490		newcsum += le16_to_cpu(*(__le16*) isuper);
1491
1492	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1493	sb->sb_csum = disk_csum;
1494	return cpu_to_le32(csum);
1495}
1496
1497static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1498			    int acknowledged);
1499static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1500{
1501	struct mdp_superblock_1 *sb;
1502	int ret;
1503	sector_t sb_start;
1504	sector_t sectors;
1505	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1506	int bmask;
 
1507
1508	/*
1509	 * Calculate the position of the superblock in 512byte sectors.
1510	 * It is always aligned to a 4K boundary and
1511	 * depeding on minor_version, it can be:
1512	 * 0: At least 8K, but less than 12K, from end of device
1513	 * 1: At start of device
1514	 * 2: 4K from start of device.
1515	 */
1516	switch(minor_version) {
1517	case 0:
1518		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1519		sb_start -= 8*2;
1520		sb_start &= ~(sector_t)(4*2-1);
1521		break;
1522	case 1:
1523		sb_start = 0;
1524		break;
1525	case 2:
1526		sb_start = 8;
1527		break;
1528	default:
1529		return -EINVAL;
1530	}
1531	rdev->sb_start = sb_start;
1532
1533	/* superblock is rarely larger than 1K, but it can be larger,
1534	 * and it is safe to read 4k, so we do that
1535	 */
1536	ret = read_disk_sb(rdev, 4096);
1537	if (ret) return ret;
1538
1539
1540	sb = page_address(rdev->sb_page);
1541
1542	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1543	    sb->major_version != cpu_to_le32(1) ||
1544	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1545	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1546	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1547		return -EINVAL;
1548
1549	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1550		printk("md: invalid superblock checksum on %s\n",
1551			bdevname(rdev->bdev,b));
1552		return -EINVAL;
1553	}
1554	if (le64_to_cpu(sb->data_size) < 10) {
1555		printk("md: data_size too small on %s\n",
1556		       bdevname(rdev->bdev,b));
1557		return -EINVAL;
1558	}
1559	if (sb->pad0 ||
1560	    sb->pad3[0] ||
1561	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1562		/* Some padding is non-zero, might be a new feature */
1563		return -EINVAL;
1564
1565	rdev->preferred_minor = 0xffff;
1566	rdev->data_offset = le64_to_cpu(sb->data_offset);
1567	rdev->new_data_offset = rdev->data_offset;
1568	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1569	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1570		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1571	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1572
1573	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1574	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1575	if (rdev->sb_size & bmask)
1576		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1577
1578	if (minor_version
1579	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1580		return -EINVAL;
1581	if (minor_version
1582	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1583		return -EINVAL;
1584
1585	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1586		rdev->desc_nr = -1;
1587	else
1588		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1589
1590	if (!rdev->bb_page) {
1591		rdev->bb_page = alloc_page(GFP_KERNEL);
1592		if (!rdev->bb_page)
1593			return -ENOMEM;
1594	}
1595	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1596	    rdev->badblocks.count == 0) {
1597		/* need to load the bad block list.
1598		 * Currently we limit it to one page.
1599		 */
1600		s32 offset;
1601		sector_t bb_sector;
1602		u64 *bbp;
1603		int i;
1604		int sectors = le16_to_cpu(sb->bblog_size);
1605		if (sectors > (PAGE_SIZE / 512))
1606			return -EINVAL;
1607		offset = le32_to_cpu(sb->bblog_offset);
1608		if (offset == 0)
1609			return -EINVAL;
1610		bb_sector = (long long)offset;
1611		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1612				  rdev->bb_page, READ, true))
1613			return -EIO;
1614		bbp = (u64 *)page_address(rdev->bb_page);
1615		rdev->badblocks.shift = sb->bblog_shift;
1616		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1617			u64 bb = le64_to_cpu(*bbp);
1618			int count = bb & (0x3ff);
1619			u64 sector = bb >> 10;
1620			sector <<= sb->bblog_shift;
1621			count <<= sb->bblog_shift;
1622			if (bb + 1 == 0)
1623				break;
1624			if (md_set_badblocks(&rdev->badblocks,
1625					     sector, count, 1) == 0)
1626				return -EINVAL;
1627		}
1628	} else if (sb->bblog_offset == 0)
1629		rdev->badblocks.shift = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630
1631	if (!refdev) {
1632		ret = 1;
 
 
 
1633	} else {
1634		__u64 ev1, ev2;
1635		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1636
1637		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1638		    sb->level != refsb->level ||
1639		    sb->layout != refsb->layout ||
1640		    sb->chunksize != refsb->chunksize) {
1641			printk(KERN_WARNING "md: %s has strangely different"
1642				" superblock to %s\n",
1643				bdevname(rdev->bdev,b),
1644				bdevname(refdev->bdev,b2));
1645			return -EINVAL;
1646		}
1647		ev1 = le64_to_cpu(sb->events);
1648		ev2 = le64_to_cpu(refsb->events);
1649
1650		if (ev1 > ev2)
1651			ret = 1;
1652		else
1653			ret = 0;
1654	}
1655	if (minor_version) {
1656		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1657		sectors -= rdev->data_offset;
1658	} else
1659		sectors = rdev->sb_start;
1660	if (sectors < le64_to_cpu(sb->data_size))
1661		return -EINVAL;
1662	rdev->sectors = le64_to_cpu(sb->data_size);
1663	return ret;
1664}
1665
1666static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1667{
1668	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1669	__u64 ev1 = le64_to_cpu(sb->events);
1670
1671	rdev->raid_disk = -1;
1672	clear_bit(Faulty, &rdev->flags);
1673	clear_bit(In_sync, &rdev->flags);
 
1674	clear_bit(WriteMostly, &rdev->flags);
1675
1676	if (mddev->raid_disks == 0) {
1677		mddev->major_version = 1;
1678		mddev->patch_version = 0;
1679		mddev->external = 0;
1680		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1681		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1682		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1683		mddev->level = le32_to_cpu(sb->level);
1684		mddev->clevel[0] = 0;
1685		mddev->layout = le32_to_cpu(sb->layout);
1686		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1687		mddev->dev_sectors = le64_to_cpu(sb->size);
1688		mddev->events = ev1;
1689		mddev->bitmap_info.offset = 0;
1690		mddev->bitmap_info.space = 0;
1691		/* Default location for bitmap is 1K after superblock
1692		 * using 3K - total of 4K
1693		 */
1694		mddev->bitmap_info.default_offset = 1024 >> 9;
1695		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1696		mddev->reshape_backwards = 0;
1697
1698		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1699		memcpy(mddev->uuid, sb->set_uuid, 16);
1700
1701		mddev->max_disks =  (4096-256)/2;
1702
1703		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1704		    mddev->bitmap_info.file == NULL) {
1705			mddev->bitmap_info.offset =
1706				(__s32)le32_to_cpu(sb->bitmap_offset);
1707			/* Metadata doesn't record how much space is available.
1708			 * For 1.0, we assume we can use up to the superblock
1709			 * if before, else to 4K beyond superblock.
1710			 * For others, assume no change is possible.
1711			 */
1712			if (mddev->minor_version > 0)
1713				mddev->bitmap_info.space = 0;
1714			else if (mddev->bitmap_info.offset > 0)
1715				mddev->bitmap_info.space =
1716					8 - mddev->bitmap_info.offset;
1717			else
1718				mddev->bitmap_info.space =
1719					-mddev->bitmap_info.offset;
1720		}
1721
1722		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1723			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1724			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1725			mddev->new_level = le32_to_cpu(sb->new_level);
1726			mddev->new_layout = le32_to_cpu(sb->new_layout);
1727			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1728			if (mddev->delta_disks < 0 ||
1729			    (mddev->delta_disks == 0 &&
1730			     (le32_to_cpu(sb->feature_map)
1731			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1732				mddev->reshape_backwards = 1;
1733		} else {
1734			mddev->reshape_position = MaxSector;
1735			mddev->delta_disks = 0;
1736			mddev->new_level = mddev->level;
1737			mddev->new_layout = mddev->layout;
1738			mddev->new_chunk_sectors = mddev->chunk_sectors;
1739		}
1740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741	} else if (mddev->pers == NULL) {
1742		/* Insist of good event counter while assembling, except for
1743		 * spares (which don't need an event count) */
1744		++ev1;
1745		if (rdev->desc_nr >= 0 &&
1746		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1747		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
 
1748			if (ev1 < mddev->events)
1749				return -EINVAL;
1750	} else if (mddev->bitmap) {
1751		/* If adding to array with a bitmap, then we can accept an
1752		 * older device, but not too old.
1753		 */
1754		if (ev1 < mddev->bitmap->events_cleared)
1755			return 0;
 
 
1756	} else {
1757		if (ev1 < mddev->events)
1758			/* just a hot-add of a new device, leave raid_disk at -1 */
1759			return 0;
1760	}
1761	if (mddev->level != LEVEL_MULTIPATH) {
1762		int role;
1763		if (rdev->desc_nr < 0 ||
1764		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1765			role = 0xffff;
1766			rdev->desc_nr = -1;
1767		} else
1768			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1769		switch(role) {
1770		case 0xffff: /* spare */
1771			break;
1772		case 0xfffe: /* faulty */
1773			set_bit(Faulty, &rdev->flags);
1774			break;
 
 
 
 
 
 
 
 
 
 
1775		default:
 
1776			if ((le32_to_cpu(sb->feature_map) &
1777			     MD_FEATURE_RECOVERY_OFFSET))
1778				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1779			else
1780				set_bit(In_sync, &rdev->flags);
 
 
 
 
 
 
 
 
 
 
1781			rdev->raid_disk = role;
1782			break;
1783		}
1784		if (sb->devflags & WriteMostly1)
1785			set_bit(WriteMostly, &rdev->flags);
 
 
1786		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1787			set_bit(Replacement, &rdev->flags);
1788	} else /* MULTIPATH are always insync */
1789		set_bit(In_sync, &rdev->flags);
1790
1791	return 0;
1792}
1793
1794static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1795{
1796	struct mdp_superblock_1 *sb;
1797	struct md_rdev *rdev2;
1798	int max_dev, i;
1799	/* make rdev->sb match mddev and rdev data. */
1800
1801	sb = page_address(rdev->sb_page);
1802
1803	sb->feature_map = 0;
1804	sb->pad0 = 0;
1805	sb->recovery_offset = cpu_to_le64(0);
1806	memset(sb->pad3, 0, sizeof(sb->pad3));
1807
1808	sb->utime = cpu_to_le64((__u64)mddev->utime);
1809	sb->events = cpu_to_le64(mddev->events);
1810	if (mddev->in_sync)
1811		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
 
 
1812	else
1813		sb->resync_offset = cpu_to_le64(0);
1814
1815	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1816
1817	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1818	sb->size = cpu_to_le64(mddev->dev_sectors);
1819	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1820	sb->level = cpu_to_le32(mddev->level);
1821	sb->layout = cpu_to_le32(mddev->layout);
 
 
 
 
1822
1823	if (test_bit(WriteMostly, &rdev->flags))
1824		sb->devflags |= WriteMostly1;
1825	else
1826		sb->devflags &= ~WriteMostly1;
1827	sb->data_offset = cpu_to_le64(rdev->data_offset);
1828	sb->data_size = cpu_to_le64(rdev->sectors);
1829
1830	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1831		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1832		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1833	}
1834
1835	if (rdev->raid_disk >= 0 &&
1836	    !test_bit(In_sync, &rdev->flags)) {
1837		sb->feature_map |=
1838			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1839		sb->recovery_offset =
1840			cpu_to_le64(rdev->recovery_offset);
1841	}
 
 
 
 
 
 
1842	if (test_bit(Replacement, &rdev->flags))
1843		sb->feature_map |=
1844			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1845
1846	if (mddev->reshape_position != MaxSector) {
1847		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1848		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1849		sb->new_layout = cpu_to_le32(mddev->new_layout);
1850		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1851		sb->new_level = cpu_to_le32(mddev->new_level);
1852		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1853		if (mddev->delta_disks == 0 &&
1854		    mddev->reshape_backwards)
1855			sb->feature_map
1856				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1857		if (rdev->new_data_offset != rdev->data_offset) {
1858			sb->feature_map
1859				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1860			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1861							     - rdev->data_offset));
1862		}
1863	}
1864
 
 
 
1865	if (rdev->badblocks.count == 0)
1866		/* Nothing to do for bad blocks*/ ;
1867	else if (sb->bblog_offset == 0)
1868		/* Cannot record bad blocks on this device */
1869		md_error(mddev, rdev);
1870	else {
1871		struct badblocks *bb = &rdev->badblocks;
1872		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1873		u64 *p = bb->page;
1874		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1875		if (bb->changed) {
1876			unsigned seq;
1877
1878retry:
1879			seq = read_seqbegin(&bb->lock);
1880
1881			memset(bbp, 0xff, PAGE_SIZE);
1882
1883			for (i = 0 ; i < bb->count ; i++) {
1884				u64 internal_bb = *p++;
1885				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1886						| BB_LEN(internal_bb));
1887				*bbp++ = cpu_to_le64(store_bb);
1888			}
1889			bb->changed = 0;
1890			if (read_seqretry(&bb->lock, seq))
1891				goto retry;
1892
1893			bb->sector = (rdev->sb_start +
1894				      (int)le32_to_cpu(sb->bblog_offset));
1895			bb->size = le16_to_cpu(sb->bblog_size);
1896		}
1897	}
1898
1899	max_dev = 0;
1900	rdev_for_each(rdev2, mddev)
1901		if (rdev2->desc_nr+1 > max_dev)
1902			max_dev = rdev2->desc_nr+1;
1903
1904	if (max_dev > le32_to_cpu(sb->max_dev)) {
1905		int bmask;
1906		sb->max_dev = cpu_to_le32(max_dev);
1907		rdev->sb_size = max_dev * 2 + 256;
1908		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1909		if (rdev->sb_size & bmask)
1910			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1911	} else
1912		max_dev = le32_to_cpu(sb->max_dev);
1913
1914	for (i=0; i<max_dev;i++)
1915		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1916	
 
 
 
 
 
 
 
 
 
 
 
 
 
1917	rdev_for_each(rdev2, mddev) {
1918		i = rdev2->desc_nr;
1919		if (test_bit(Faulty, &rdev2->flags))
1920			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1921		else if (test_bit(In_sync, &rdev2->flags))
1922			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
 
 
1923		else if (rdev2->raid_disk >= 0)
1924			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1925		else
1926			sb->dev_roles[i] = cpu_to_le16(0xffff);
1927	}
1928
1929	sb->sb_csum = calc_sb_1_csum(sb);
1930}
1931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1932static unsigned long long
1933super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1934{
1935	struct mdp_superblock_1 *sb;
1936	sector_t max_sectors;
1937	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1938		return 0; /* component must fit device */
1939	if (rdev->data_offset != rdev->new_data_offset)
1940		return 0; /* too confusing */
1941	if (rdev->sb_start < rdev->data_offset) {
1942		/* minor versions 1 and 2; superblock before data */
1943		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1944		max_sectors -= rdev->data_offset;
1945		if (!num_sectors || num_sectors > max_sectors)
1946			num_sectors = max_sectors;
1947	} else if (rdev->mddev->bitmap_info.offset) {
1948		/* minor version 0 with bitmap we can't move */
1949		return 0;
1950	} else {
1951		/* minor version 0; superblock after data */
1952		sector_t sb_start;
1953		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
 
 
 
1954		sb_start &= ~(sector_t)(4*2 - 1);
1955		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
 
 
 
 
 
 
 
1956		if (!num_sectors || num_sectors > max_sectors)
1957			num_sectors = max_sectors;
1958		rdev->sb_start = sb_start;
1959	}
1960	sb = page_address(rdev->sb_page);
1961	sb->data_size = cpu_to_le64(num_sectors);
1962	sb->super_offset = rdev->sb_start;
1963	sb->sb_csum = calc_sb_1_csum(sb);
1964	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1965		       rdev->sb_page);
1966	md_super_wait(rdev->mddev);
 
1967	return num_sectors;
1968
1969}
1970
1971static int
1972super_1_allow_new_offset(struct md_rdev *rdev,
1973			 unsigned long long new_offset)
1974{
1975	/* All necessary checks on new >= old have been done */
1976	struct bitmap *bitmap;
1977	if (new_offset >= rdev->data_offset)
1978		return 1;
1979
1980	/* with 1.0 metadata, there is no metadata to tread on
1981	 * so we can always move back */
1982	if (rdev->mddev->minor_version == 0)
1983		return 1;
1984
1985	/* otherwise we must be sure not to step on
1986	 * any metadata, so stay:
1987	 * 36K beyond start of superblock
1988	 * beyond end of badblocks
1989	 * beyond write-intent bitmap
1990	 */
1991	if (rdev->sb_start + (32+4)*2 > new_offset)
1992		return 0;
1993	bitmap = rdev->mddev->bitmap;
1994	if (bitmap && !rdev->mddev->bitmap_info.file &&
1995	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1996	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1997		return 0;
1998	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1999		return 0;
2000
2001	return 1;
2002}
2003
2004static struct super_type super_types[] = {
2005	[0] = {
2006		.name	= "0.90.0",
2007		.owner	= THIS_MODULE,
2008		.load_super	    = super_90_load,
2009		.validate_super	    = super_90_validate,
2010		.sync_super	    = super_90_sync,
2011		.rdev_size_change   = super_90_rdev_size_change,
2012		.allow_new_offset   = super_90_allow_new_offset,
2013	},
2014	[1] = {
2015		.name	= "md-1",
2016		.owner	= THIS_MODULE,
2017		.load_super	    = super_1_load,
2018		.validate_super	    = super_1_validate,
2019		.sync_super	    = super_1_sync,
2020		.rdev_size_change   = super_1_rdev_size_change,
2021		.allow_new_offset   = super_1_allow_new_offset,
2022	},
2023};
2024
2025static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2026{
2027	if (mddev->sync_super) {
2028		mddev->sync_super(mddev, rdev);
2029		return;
2030	}
2031
2032	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2033
2034	super_types[mddev->major_version].sync_super(mddev, rdev);
2035}
2036
2037static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2038{
2039	struct md_rdev *rdev, *rdev2;
2040
2041	rcu_read_lock();
2042	rdev_for_each_rcu(rdev, mddev1)
2043		rdev_for_each_rcu(rdev2, mddev2)
2044			if (rdev->bdev->bd_contains ==
2045			    rdev2->bdev->bd_contains) {
 
 
 
 
 
 
 
2046				rcu_read_unlock();
2047				return 1;
2048			}
 
 
2049	rcu_read_unlock();
2050	return 0;
2051}
2052
2053static LIST_HEAD(pending_raid_disks);
2054
2055/*
2056 * Try to register data integrity profile for an mddev
2057 *
2058 * This is called when an array is started and after a disk has been kicked
2059 * from the array. It only succeeds if all working and active component devices
2060 * are integrity capable with matching profiles.
2061 */
2062int md_integrity_register(struct mddev *mddev)
2063{
2064	struct md_rdev *rdev, *reference = NULL;
2065
2066	if (list_empty(&mddev->disks))
2067		return 0; /* nothing to do */
2068	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2069		return 0; /* shouldn't register, or already is */
2070	rdev_for_each(rdev, mddev) {
2071		/* skip spares and non-functional disks */
2072		if (test_bit(Faulty, &rdev->flags))
2073			continue;
2074		if (rdev->raid_disk < 0)
2075			continue;
2076		if (!reference) {
2077			/* Use the first rdev as the reference */
2078			reference = rdev;
2079			continue;
2080		}
2081		/* does this rdev's profile match the reference profile? */
2082		if (blk_integrity_compare(reference->bdev->bd_disk,
2083				rdev->bdev->bd_disk) < 0)
2084			return -EINVAL;
2085	}
2086	if (!reference || !bdev_get_integrity(reference->bdev))
2087		return 0;
2088	/*
2089	 * All component devices are integrity capable and have matching
2090	 * profiles, register the common profile for the md device.
2091	 */
2092	if (blk_integrity_register(mddev->gendisk,
2093			bdev_get_integrity(reference->bdev)) != 0) {
2094		printk(KERN_ERR "md: failed to register integrity for %s\n",
2095			mdname(mddev));
2096		return -EINVAL;
2097	}
2098	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2099	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2100		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
 
 
 
 
 
2101		       mdname(mddev));
2102		return -EINVAL;
2103	}
2104	return 0;
2105}
2106EXPORT_SYMBOL(md_integrity_register);
2107
2108/* Disable data integrity if non-capable/non-matching disk is being added */
2109void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
 
 
 
2110{
2111	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2112	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
 
 
 
 
2113
2114	if (!bi_mddev) /* nothing to do */
2115		return;
2116	if (rdev->raid_disk < 0) /* skip spares */
2117		return;
2118	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2119					     rdev->bdev->bd_disk) >= 0)
2120		return;
2121	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2122	blk_integrity_unregister(mddev->gendisk);
 
2123}
2124EXPORT_SYMBOL(md_integrity_add_rdev);
2125
2126static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
 
 
 
 
 
 
2127{
2128	char b[BDEVNAME_SIZE];
2129	struct kobject *ko;
2130	char *s;
2131	int err;
2132
2133	if (rdev->mddev) {
2134		MD_BUG();
2135		return -EINVAL;
2136	}
2137
2138	/* prevent duplicates */
2139	if (find_rdev(mddev, rdev->bdev->bd_dev))
2140		return -EEXIST;
2141
 
 
 
2142	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2143	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2144			rdev->sectors < mddev->dev_sectors)) {
 
2145		if (mddev->pers) {
2146			/* Cannot change size, so fail
2147			 * If mddev->level <= 0, then we don't care
2148			 * about aligning sizes (e.g. linear)
2149			 */
2150			if (mddev->level > 0)
2151				return -ENOSPC;
2152		} else
2153			mddev->dev_sectors = rdev->sectors;
2154	}
2155
2156	/* Verify rdev->desc_nr is unique.
2157	 * If it is -1, assign a free number, else
2158	 * check number is not in use
2159	 */
 
2160	if (rdev->desc_nr < 0) {
2161		int choice = 0;
2162		if (mddev->pers) choice = mddev->raid_disks;
2163		while (find_rdev_nr(mddev, choice))
 
2164			choice++;
2165		rdev->desc_nr = choice;
2166	} else {
2167		if (find_rdev_nr(mddev, rdev->desc_nr))
 
2168			return -EBUSY;
 
2169	}
2170	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2171		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2172		       mdname(mddev), mddev->max_disks);
 
 
2173		return -EBUSY;
2174	}
2175	bdevname(rdev->bdev,b);
2176	while ( (s=strchr(b, '/')) != NULL)
2177		*s = '!';
2178
2179	rdev->mddev = mddev;
2180	printk(KERN_INFO "md: bind<%s>\n", b);
 
 
 
2181
2182	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2183		goto fail;
2184
2185	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2186	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2187		/* failure here is OK */;
2188	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
 
 
 
 
2189
2190	list_add_rcu(&rdev->same_set, &mddev->disks);
2191	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2192
2193	/* May as well allow recovery to be retried once */
2194	mddev->recovery_disabled++;
2195
2196	return 0;
2197
2198 fail:
2199	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2200	       b, mdname(mddev));
2201	return err;
2202}
2203
2204static void md_delayed_delete(struct work_struct *ws)
2205{
2206	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2207	kobject_del(&rdev->kobj);
2208	kobject_put(&rdev->kobj);
2209}
2210
2211static void unbind_rdev_from_array(struct md_rdev * rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212{
2213	char b[BDEVNAME_SIZE];
2214	if (!rdev->mddev) {
2215		MD_BUG();
2216		return;
2217	}
2218	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2219	list_del_rcu(&rdev->same_set);
2220	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
 
2221	rdev->mddev = NULL;
2222	sysfs_remove_link(&rdev->kobj, "block");
2223	sysfs_put(rdev->sysfs_state);
 
 
2224	rdev->sysfs_state = NULL;
 
 
2225	rdev->badblocks.count = 0;
2226	/* We need to delay this, otherwise we can deadlock when
2227	 * writing to 'remove' to "dev/state".  We also need
2228	 * to delay it due to rcu usage.
2229	 */
2230	synchronize_rcu();
2231	INIT_WORK(&rdev->del_work, md_delayed_delete);
2232	kobject_get(&rdev->kobj);
2233	queue_work(md_misc_wq, &rdev->del_work);
2234}
2235
2236/*
2237 * prevent the device from being mounted, repartitioned or
2238 * otherwise reused by a RAID array (or any other kernel
2239 * subsystem), by bd_claiming the device.
2240 */
2241static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2242{
2243	int err = 0;
2244	struct block_device *bdev;
2245	char b[BDEVNAME_SIZE];
2246
2247	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2248				 shared ? (struct md_rdev *)lock_rdev : rdev);
2249	if (IS_ERR(bdev)) {
2250		printk(KERN_ERR "md: could not open %s.\n",
2251			__bdevname(dev, b));
2252		return PTR_ERR(bdev);
2253	}
2254	rdev->bdev = bdev;
2255	return err;
2256}
2257
2258static void unlock_rdev(struct md_rdev *rdev)
2259{
2260	struct block_device *bdev = rdev->bdev;
2261	rdev->bdev = NULL;
2262	if (!bdev)
2263		MD_BUG();
2264	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2265}
2266
2267void md_autodetect_dev(dev_t dev);
2268
2269static void export_rdev(struct md_rdev * rdev)
2270{
2271	char b[BDEVNAME_SIZE];
2272	printk(KERN_INFO "md: export_rdev(%s)\n",
2273		bdevname(rdev->bdev,b));
2274	if (rdev->mddev)
2275		MD_BUG();
2276	md_rdev_clear(rdev);
2277#ifndef MODULE
2278	if (test_bit(AutoDetected, &rdev->flags))
2279		md_autodetect_dev(rdev->bdev->bd_dev);
2280#endif
2281	unlock_rdev(rdev);
2282	kobject_put(&rdev->kobj);
2283}
2284
2285static void kick_rdev_from_array(struct md_rdev * rdev)
2286{
2287	unbind_rdev_from_array(rdev);
2288	export_rdev(rdev);
2289}
2290
2291static void export_array(struct mddev *mddev)
2292{
2293	struct md_rdev *rdev, *tmp;
2294
2295	rdev_for_each_safe(rdev, tmp, mddev) {
2296		if (!rdev->mddev) {
2297			MD_BUG();
2298			continue;
2299		}
2300		kick_rdev_from_array(rdev);
2301	}
2302	if (!list_empty(&mddev->disks))
2303		MD_BUG();
2304	mddev->raid_disks = 0;
2305	mddev->major_version = 0;
2306}
2307
2308static void print_desc(mdp_disk_t *desc)
2309{
2310	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2311		desc->major,desc->minor,desc->raid_disk,desc->state);
2312}
2313
2314static void print_sb_90(mdp_super_t *sb)
2315{
2316	int i;
2317
2318	printk(KERN_INFO 
2319		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2320		sb->major_version, sb->minor_version, sb->patch_version,
2321		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2322		sb->ctime);
2323	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2324		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2325		sb->md_minor, sb->layout, sb->chunk_size);
2326	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2327		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2328		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2329		sb->failed_disks, sb->spare_disks,
2330		sb->sb_csum, (unsigned long)sb->events_lo);
2331
2332	printk(KERN_INFO);
2333	for (i = 0; i < MD_SB_DISKS; i++) {
2334		mdp_disk_t *desc;
2335
2336		desc = sb->disks + i;
2337		if (desc->number || desc->major || desc->minor ||
2338		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2339			printk("     D %2d: ", i);
2340			print_desc(desc);
2341		}
2342	}
2343	printk(KERN_INFO "md:     THIS: ");
2344	print_desc(&sb->this_disk);
2345}
2346
2347static void print_sb_1(struct mdp_superblock_1 *sb)
2348{
2349	__u8 *uuid;
2350
2351	uuid = sb->set_uuid;
2352	printk(KERN_INFO
2353	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2354	       "md:    Name: \"%s\" CT:%llu\n",
2355		le32_to_cpu(sb->major_version),
2356		le32_to_cpu(sb->feature_map),
2357		uuid,
2358		sb->set_name,
2359		(unsigned long long)le64_to_cpu(sb->ctime)
2360		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2361
2362	uuid = sb->device_uuid;
2363	printk(KERN_INFO
2364	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2365			" RO:%llu\n"
2366	       "md:     Dev:%08x UUID: %pU\n"
2367	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2368	       "md:         (MaxDev:%u) \n",
2369		le32_to_cpu(sb->level),
2370		(unsigned long long)le64_to_cpu(sb->size),
2371		le32_to_cpu(sb->raid_disks),
2372		le32_to_cpu(sb->layout),
2373		le32_to_cpu(sb->chunksize),
2374		(unsigned long long)le64_to_cpu(sb->data_offset),
2375		(unsigned long long)le64_to_cpu(sb->data_size),
2376		(unsigned long long)le64_to_cpu(sb->super_offset),
2377		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2378		le32_to_cpu(sb->dev_number),
2379		uuid,
2380		sb->devflags,
2381		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2382		(unsigned long long)le64_to_cpu(sb->events),
2383		(unsigned long long)le64_to_cpu(sb->resync_offset),
2384		le32_to_cpu(sb->sb_csum),
2385		le32_to_cpu(sb->max_dev)
2386		);
2387}
2388
2389static void print_rdev(struct md_rdev *rdev, int major_version)
2390{
2391	char b[BDEVNAME_SIZE];
2392	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2393		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2394	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2395	        rdev->desc_nr);
2396	if (rdev->sb_loaded) {
2397		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2398		switch (major_version) {
2399		case 0:
2400			print_sb_90(page_address(rdev->sb_page));
2401			break;
2402		case 1:
2403			print_sb_1(page_address(rdev->sb_page));
2404			break;
2405		}
2406	} else
2407		printk(KERN_INFO "md: no rdev superblock!\n");
2408}
2409
2410static void md_print_devices(void)
2411{
2412	struct list_head *tmp;
2413	struct md_rdev *rdev;
2414	struct mddev *mddev;
2415	char b[BDEVNAME_SIZE];
2416
2417	printk("\n");
2418	printk("md:	**********************************\n");
2419	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2420	printk("md:	**********************************\n");
2421	for_each_mddev(mddev, tmp) {
2422
2423		if (mddev->bitmap)
2424			bitmap_print_sb(mddev->bitmap);
2425		else
2426			printk("%s: ", mdname(mddev));
2427		rdev_for_each(rdev, mddev)
2428			printk("<%s>", bdevname(rdev->bdev,b));
2429		printk("\n");
2430
2431		rdev_for_each(rdev, mddev)
2432			print_rdev(rdev, mddev->major_version);
2433	}
2434	printk("md:	**********************************\n");
2435	printk("\n");
 
2436}
2437
2438
2439static void sync_sbs(struct mddev * mddev, int nospares)
2440{
2441	/* Update each superblock (in-memory image), but
2442	 * if we are allowed to, skip spares which already
2443	 * have the right event counter, or have one earlier
2444	 * (which would mean they aren't being marked as dirty
2445	 * with the rest of the array)
2446	 */
2447	struct md_rdev *rdev;
2448	rdev_for_each(rdev, mddev) {
2449		if (rdev->sb_events == mddev->events ||
2450		    (nospares &&
2451		     rdev->raid_disk < 0 &&
2452		     rdev->sb_events+1 == mddev->events)) {
2453			/* Don't update this superblock */
2454			rdev->sb_loaded = 2;
2455		} else {
2456			sync_super(mddev, rdev);
2457			rdev->sb_loaded = 1;
2458		}
2459	}
2460}
2461
2462static void md_update_sb(struct mddev * mddev, int force_change)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463{
2464	struct md_rdev *rdev;
2465	int sync_req;
2466	int nospares = 0;
2467	int any_badblocks_changed = 0;
 
 
 
 
 
 
 
2468
2469repeat:
2470	/* First make sure individual recovery_offsets are correct */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2471	rdev_for_each(rdev, mddev) {
2472		if (rdev->raid_disk >= 0 &&
2473		    mddev->delta_disks >= 0 &&
 
 
 
 
2474		    !test_bit(In_sync, &rdev->flags) &&
2475		    mddev->curr_resync_completed > rdev->recovery_offset)
2476				rdev->recovery_offset = mddev->curr_resync_completed;
2477
2478	}	
2479	if (!mddev->persistent) {
2480		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2481		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2482		if (!mddev->external) {
2483			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2484			rdev_for_each(rdev, mddev) {
2485				if (rdev->badblocks.changed) {
2486					rdev->badblocks.changed = 0;
2487					md_ack_all_badblocks(&rdev->badblocks);
2488					md_error(mddev, rdev);
2489				}
2490				clear_bit(Blocked, &rdev->flags);
2491				clear_bit(BlockedBadBlocks, &rdev->flags);
2492				wake_up(&rdev->blocked_wait);
2493			}
2494		}
2495		wake_up(&mddev->sb_wait);
2496		return;
2497	}
2498
2499	spin_lock_irq(&mddev->write_lock);
2500
2501	mddev->utime = get_seconds();
2502
2503	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2504		force_change = 1;
2505	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2506		/* just a clean<-> dirty transition, possibly leave spares alone,
2507		 * though if events isn't the right even/odd, we will have to do
2508		 * spares after all
2509		 */
2510		nospares = 1;
2511	if (force_change)
2512		nospares = 0;
2513	if (mddev->degraded)
2514		/* If the array is degraded, then skipping spares is both
2515		 * dangerous and fairly pointless.
2516		 * Dangerous because a device that was removed from the array
2517		 * might have a event_count that still looks up-to-date,
2518		 * so it can be re-added without a resync.
2519		 * Pointless because if there are any spares to skip,
2520		 * then a recovery will happen and soon that array won't
2521		 * be degraded any more and the spare can go back to sleep then.
2522		 */
2523		nospares = 0;
2524
2525	sync_req = mddev->in_sync;
2526
2527	/* If this is just a dirty<->clean transition, and the array is clean
2528	 * and 'events' is odd, we can roll back to the previous clean state */
2529	if (nospares
2530	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2531	    && mddev->can_decrease_events
2532	    && mddev->events != 1) {
2533		mddev->events--;
2534		mddev->can_decrease_events = 0;
2535	} else {
2536		/* otherwise we have to go forward and ... */
2537		mddev->events ++;
2538		mddev->can_decrease_events = nospares;
2539	}
2540
2541	if (!mddev->events) {
2542		/*
2543		 * oops, this 64-bit counter should never wrap.
2544		 * Either we are in around ~1 trillion A.C., assuming
2545		 * 1 reboot per second, or we have a bug:
2546		 */
2547		MD_BUG();
2548		mddev->events --;
2549	}
2550
2551	rdev_for_each(rdev, mddev) {
2552		if (rdev->badblocks.changed)
2553			any_badblocks_changed++;
2554		if (test_bit(Faulty, &rdev->flags))
2555			set_bit(FaultRecorded, &rdev->flags);
2556	}
2557
2558	sync_sbs(mddev, nospares);
2559	spin_unlock_irq(&mddev->write_lock);
2560
2561	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2562		 mdname(mddev), mddev->in_sync);
2563
2564	bitmap_update_sb(mddev->bitmap);
 
 
 
2565	rdev_for_each(rdev, mddev) {
2566		char b[BDEVNAME_SIZE];
2567
2568		if (rdev->sb_loaded != 1)
2569			continue; /* no noise on spare devices */
2570
2571		if (!test_bit(Faulty, &rdev->flags) &&
2572		    rdev->saved_raid_disk == -1) {
2573			md_super_write(mddev,rdev,
2574				       rdev->sb_start, rdev->sb_size,
2575				       rdev->sb_page);
2576			pr_debug("md: (write) %s's sb offset: %llu\n",
2577				 bdevname(rdev->bdev, b),
2578				 (unsigned long long)rdev->sb_start);
2579			rdev->sb_events = mddev->events;
2580			if (rdev->badblocks.size) {
2581				md_super_write(mddev, rdev,
2582					       rdev->badblocks.sector,
2583					       rdev->badblocks.size << 9,
2584					       rdev->bb_page);
2585				rdev->badblocks.size = 0;
2586			}
2587
2588		} else if (test_bit(Faulty, &rdev->flags))
2589			pr_debug("md: %s (skipping faulty)\n",
2590				 bdevname(rdev->bdev, b));
2591		else
2592			pr_debug("(skipping incremental s/r ");
2593
2594		if (mddev->level == LEVEL_MULTIPATH)
2595			/* only need to write one superblock... */
2596			break;
2597	}
2598	md_super_wait(mddev);
2599	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
 
 
 
 
2600
2601	spin_lock_irq(&mddev->write_lock);
2602	if (mddev->in_sync != sync_req ||
2603	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
 
2604		/* have to write it out again */
2605		spin_unlock_irq(&mddev->write_lock);
2606		goto repeat;
2607	}
2608	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2609	spin_unlock_irq(&mddev->write_lock);
2610	wake_up(&mddev->sb_wait);
2611	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2612		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2613
2614	rdev_for_each(rdev, mddev) {
2615		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2616			clear_bit(Blocked, &rdev->flags);
2617
2618		if (any_badblocks_changed)
2619			md_ack_all_badblocks(&rdev->badblocks);
2620		clear_bit(BlockedBadBlocks, &rdev->flags);
2621		wake_up(&rdev->blocked_wait);
2622	}
2623}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624
2625/* words written to sysfs files may, or may not, be \n terminated.
2626 * We want to accept with case. For this we use cmd_match.
2627 */
2628static int cmd_match(const char *cmd, const char *str)
2629{
2630	/* See if cmd, written into a sysfs file, matches
2631	 * str.  They must either be the same, or cmd can
2632	 * have a trailing newline
2633	 */
2634	while (*cmd && *str && *cmd == *str) {
2635		cmd++;
2636		str++;
2637	}
2638	if (*cmd == '\n')
2639		cmd++;
2640	if (*str || *cmd)
2641		return 0;
2642	return 1;
2643}
2644
2645struct rdev_sysfs_entry {
2646	struct attribute attr;
2647	ssize_t (*show)(struct md_rdev *, char *);
2648	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2649};
2650
2651static ssize_t
2652state_show(struct md_rdev *rdev, char *page)
2653{
2654	char *sep = "";
2655	size_t len = 0;
 
2656
2657	if (test_bit(Faulty, &rdev->flags) ||
2658	    rdev->badblocks.unacked_exist) {
2659		len+= sprintf(page+len, "%sfaulty",sep);
2660		sep = ",";
2661	}
2662	if (test_bit(In_sync, &rdev->flags)) {
2663		len += sprintf(page+len, "%sin_sync",sep);
2664		sep = ",";
2665	}
2666	if (test_bit(WriteMostly, &rdev->flags)) {
2667		len += sprintf(page+len, "%swrite_mostly",sep);
2668		sep = ",";
2669	}
2670	if (test_bit(Blocked, &rdev->flags) ||
2671	    (rdev->badblocks.unacked_exist
2672	     && !test_bit(Faulty, &rdev->flags))) {
2673		len += sprintf(page+len, "%sblocked", sep);
2674		sep = ",";
2675	}
2676	if (!test_bit(Faulty, &rdev->flags) &&
2677	    !test_bit(In_sync, &rdev->flags)) {
2678		len += sprintf(page+len, "%sspare", sep);
2679		sep = ",";
2680	}
2681	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2682		len += sprintf(page+len, "%swrite_error", sep);
2683		sep = ",";
2684	}
2685	if (test_bit(WantReplacement, &rdev->flags)) {
2686		len += sprintf(page+len, "%swant_replacement", sep);
2687		sep = ",";
2688	}
2689	if (test_bit(Replacement, &rdev->flags)) {
2690		len += sprintf(page+len, "%sreplacement", sep);
2691		sep = ",";
2692	}
2693
2694	return len+sprintf(page+len, "\n");
2695}
2696
2697static ssize_t
2698state_store(struct md_rdev *rdev, const char *buf, size_t len)
2699{
2700	/* can write
2701	 *  faulty  - simulates an error
2702	 *  remove  - disconnects the device
2703	 *  writemostly - sets write_mostly
2704	 *  -writemostly - clears write_mostly
2705	 *  blocked - sets the Blocked flags
2706	 *  -blocked - clears the Blocked and possibly simulates an error
2707	 *  insync - sets Insync providing device isn't active
 
 
2708	 *  write_error - sets WriteErrorSeen
2709	 *  -write_error - clears WriteErrorSeen
 
2710	 */
 
 
2711	int err = -EINVAL;
 
 
2712	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2713		md_error(rdev->mddev, rdev);
2714		if (test_bit(Faulty, &rdev->flags))
 
 
 
2715			err = 0;
2716		else
2717			err = -EBUSY;
2718	} else if (cmd_match(buf, "remove")) {
 
 
 
 
2719		if (rdev->raid_disk >= 0)
2720			err = -EBUSY;
2721		else {
2722			struct mddev *mddev = rdev->mddev;
2723			kick_rdev_from_array(rdev);
2724			if (mddev->pers)
2725				md_update_sb(mddev, 1);
2726			md_new_event(mddev);
2727			err = 0;
 
 
 
 
 
 
 
 
 
 
 
2728		}
2729	} else if (cmd_match(buf, "writemostly")) {
2730		set_bit(WriteMostly, &rdev->flags);
 
 
2731		err = 0;
2732	} else if (cmd_match(buf, "-writemostly")) {
 
2733		clear_bit(WriteMostly, &rdev->flags);
 
2734		err = 0;
2735	} else if (cmd_match(buf, "blocked")) {
2736		set_bit(Blocked, &rdev->flags);
2737		err = 0;
2738	} else if (cmd_match(buf, "-blocked")) {
2739		if (!test_bit(Faulty, &rdev->flags) &&
 
2740		    rdev->badblocks.unacked_exist) {
2741			/* metadata handler doesn't understand badblocks,
2742			 * so we need to fail the device
2743			 */
2744			md_error(rdev->mddev, rdev);
2745		}
2746		clear_bit(Blocked, &rdev->flags);
2747		clear_bit(BlockedBadBlocks, &rdev->flags);
2748		wake_up(&rdev->blocked_wait);
2749		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2750		md_wakeup_thread(rdev->mddev->thread);
2751
2752		err = 0;
2753	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2754		set_bit(In_sync, &rdev->flags);
2755		err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2756	} else if (cmd_match(buf, "write_error")) {
2757		set_bit(WriteErrorSeen, &rdev->flags);
2758		err = 0;
2759	} else if (cmd_match(buf, "-write_error")) {
2760		clear_bit(WriteErrorSeen, &rdev->flags);
2761		err = 0;
2762	} else if (cmd_match(buf, "want_replacement")) {
2763		/* Any non-spare device that is not a replacement can
2764		 * become want_replacement at any time, but we then need to
2765		 * check if recovery is needed.
2766		 */
2767		if (rdev->raid_disk >= 0 &&
 
2768		    !test_bit(Replacement, &rdev->flags))
2769			set_bit(WantReplacement, &rdev->flags);
2770		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2771		md_wakeup_thread(rdev->mddev->thread);
2772		err = 0;
2773	} else if (cmd_match(buf, "-want_replacement")) {
2774		/* Clearing 'want_replacement' is always allowed.
2775		 * Once replacements starts it is too late though.
2776		 */
2777		err = 0;
2778		clear_bit(WantReplacement, &rdev->flags);
2779	} else if (cmd_match(buf, "replacement")) {
2780		/* Can only set a device as a replacement when array has not
2781		 * yet been started.  Once running, replacement is automatic
2782		 * from spares, or by assigning 'slot'.
2783		 */
2784		if (rdev->mddev->pers)
2785			err = -EBUSY;
2786		else {
2787			set_bit(Replacement, &rdev->flags);
2788			err = 0;
2789		}
2790	} else if (cmd_match(buf, "-replacement")) {
2791		/* Similarly, can only clear Replacement before start */
2792		if (rdev->mddev->pers)
2793			err = -EBUSY;
2794		else {
2795			clear_bit(Replacement, &rdev->flags);
2796			err = 0;
2797		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2798	}
 
 
2799	if (!err)
2800		sysfs_notify_dirent_safe(rdev->sysfs_state);
2801	return err ? err : len;
2802}
2803static struct rdev_sysfs_entry rdev_state =
2804__ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2805
2806static ssize_t
2807errors_show(struct md_rdev *rdev, char *page)
2808{
2809	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2810}
2811
2812static ssize_t
2813errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2814{
2815	char *e;
2816	unsigned long n = simple_strtoul(buf, &e, 10);
2817	if (*buf && (*e == 0 || *e == '\n')) {
2818		atomic_set(&rdev->corrected_errors, n);
2819		return len;
2820	}
2821	return -EINVAL;
 
2822}
2823static struct rdev_sysfs_entry rdev_errors =
2824__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2825
2826static ssize_t
2827slot_show(struct md_rdev *rdev, char *page)
2828{
2829	if (rdev->raid_disk < 0)
 
 
2830		return sprintf(page, "none\n");
2831	else
2832		return sprintf(page, "%d\n", rdev->raid_disk);
2833}
2834
2835static ssize_t
2836slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2837{
2838	char *e;
2839	int err;
2840	int slot = simple_strtoul(buf, &e, 10);
 
 
2841	if (strncmp(buf, "none", 4)==0)
2842		slot = -1;
2843	else if (e==buf || (*e && *e!= '\n'))
2844		return -EINVAL;
 
 
 
2845	if (rdev->mddev->pers && slot == -1) {
2846		/* Setting 'slot' on an active array requires also
2847		 * updating the 'rd%d' link, and communicating
2848		 * with the personality with ->hot_*_disk.
2849		 * For now we only support removing
2850		 * failed/spare devices.  This normally happens automatically,
2851		 * but not when the metadata is externally managed.
2852		 */
2853		if (rdev->raid_disk == -1)
2854			return -EEXIST;
2855		/* personality does all needed checks */
2856		if (rdev->mddev->pers->hot_remove_disk == NULL)
2857			return -EINVAL;
2858		err = rdev->mddev->pers->
2859			hot_remove_disk(rdev->mddev, rdev);
2860		if (err)
2861			return err;
2862		sysfs_unlink_rdev(rdev->mddev, rdev);
2863		rdev->raid_disk = -1;
2864		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2865		md_wakeup_thread(rdev->mddev->thread);
2866	} else if (rdev->mddev->pers) {
2867		/* Activating a spare .. or possibly reactivating
2868		 * if we ever get bitmaps working here.
2869		 */
 
2870
2871		if (rdev->raid_disk != -1)
2872			return -EBUSY;
2873
2874		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2875			return -EBUSY;
2876
2877		if (rdev->mddev->pers->hot_add_disk == NULL)
2878			return -EINVAL;
2879
2880		if (slot >= rdev->mddev->raid_disks &&
2881		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2882			return -ENOSPC;
2883
2884		rdev->raid_disk = slot;
2885		if (test_bit(In_sync, &rdev->flags))
2886			rdev->saved_raid_disk = slot;
2887		else
2888			rdev->saved_raid_disk = -1;
2889		clear_bit(In_sync, &rdev->flags);
2890		err = rdev->mddev->pers->
2891			hot_add_disk(rdev->mddev, rdev);
2892		if (err) {
2893			rdev->raid_disk = -1;
2894			return err;
2895		} else
2896			sysfs_notify_dirent_safe(rdev->sysfs_state);
2897		if (sysfs_link_rdev(rdev->mddev, rdev))
2898			/* failure here is OK */;
2899		/* don't wakeup anyone, leave that to userspace. */
2900	} else {
2901		if (slot >= rdev->mddev->raid_disks &&
2902		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2903			return -ENOSPC;
2904		rdev->raid_disk = slot;
2905		/* assume it is working */
2906		clear_bit(Faulty, &rdev->flags);
2907		clear_bit(WriteMostly, &rdev->flags);
2908		set_bit(In_sync, &rdev->flags);
2909		sysfs_notify_dirent_safe(rdev->sysfs_state);
2910	}
2911	return len;
2912}
2913
2914
2915static struct rdev_sysfs_entry rdev_slot =
2916__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2917
2918static ssize_t
2919offset_show(struct md_rdev *rdev, char *page)
2920{
2921	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2922}
2923
2924static ssize_t
2925offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2926{
2927	unsigned long long offset;
2928	if (strict_strtoull(buf, 10, &offset) < 0)
2929		return -EINVAL;
2930	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2931		return -EBUSY;
2932	if (rdev->sectors && rdev->mddev->external)
2933		/* Must set offset before size, so overlap checks
2934		 * can be sane */
2935		return -EBUSY;
2936	rdev->data_offset = offset;
2937	rdev->new_data_offset = offset;
2938	return len;
2939}
2940
2941static struct rdev_sysfs_entry rdev_offset =
2942__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2943
2944static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2945{
2946	return sprintf(page, "%llu\n",
2947		       (unsigned long long)rdev->new_data_offset);
2948}
2949
2950static ssize_t new_offset_store(struct md_rdev *rdev,
2951				const char *buf, size_t len)
2952{
2953	unsigned long long new_offset;
2954	struct mddev *mddev = rdev->mddev;
2955
2956	if (strict_strtoull(buf, 10, &new_offset) < 0)
2957		return -EINVAL;
2958
2959	if (mddev->sync_thread)
 
2960		return -EBUSY;
2961	if (new_offset == rdev->data_offset)
2962		/* reset is always permitted */
2963		;
2964	else if (new_offset > rdev->data_offset) {
2965		/* must not push array size beyond rdev_sectors */
2966		if (new_offset - rdev->data_offset
2967		    + mddev->dev_sectors > rdev->sectors)
2968				return -E2BIG;
2969	}
2970	/* Metadata worries about other space details. */
2971
2972	/* decreasing the offset is inconsistent with a backwards
2973	 * reshape.
2974	 */
2975	if (new_offset < rdev->data_offset &&
2976	    mddev->reshape_backwards)
2977		return -EINVAL;
2978	/* Increasing offset is inconsistent with forwards
2979	 * reshape.  reshape_direction should be set to
2980	 * 'backwards' first.
2981	 */
2982	if (new_offset > rdev->data_offset &&
2983	    !mddev->reshape_backwards)
2984		return -EINVAL;
2985
2986	if (mddev->pers && mddev->persistent &&
2987	    !super_types[mddev->major_version]
2988	    .allow_new_offset(rdev, new_offset))
2989		return -E2BIG;
2990	rdev->new_data_offset = new_offset;
2991	if (new_offset > rdev->data_offset)
2992		mddev->reshape_backwards = 1;
2993	else if (new_offset < rdev->data_offset)
2994		mddev->reshape_backwards = 0;
2995
2996	return len;
2997}
2998static struct rdev_sysfs_entry rdev_new_offset =
2999__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3000
3001static ssize_t
3002rdev_size_show(struct md_rdev *rdev, char *page)
3003{
3004	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3005}
3006
3007static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3008{
3009	/* check if two start/length pairs overlap */
3010	if (s1+l1 <= s2)
3011		return 0;
3012	if (s2+l2 <= s1)
3013		return 0;
3014	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015}
3016
3017static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3018{
3019	unsigned long long blocks;
3020	sector_t new;
3021
3022	if (strict_strtoull(buf, 10, &blocks) < 0)
3023		return -EINVAL;
3024
3025	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3026		return -EINVAL; /* sector conversion overflow */
3027
3028	new = blocks * 2;
3029	if (new != blocks * 2)
3030		return -EINVAL; /* unsigned long long to sector_t overflow */
3031
3032	*sectors = new;
3033	return 0;
3034}
3035
3036static ssize_t
3037rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3038{
3039	struct mddev *my_mddev = rdev->mddev;
3040	sector_t oldsectors = rdev->sectors;
3041	sector_t sectors;
3042
 
 
3043	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3044		return -EINVAL;
3045	if (rdev->data_offset != rdev->new_data_offset)
3046		return -EINVAL; /* too confusing */
3047	if (my_mddev->pers && rdev->raid_disk >= 0) {
3048		if (my_mddev->persistent) {
3049			sectors = super_types[my_mddev->major_version].
3050				rdev_size_change(rdev, sectors);
3051			if (!sectors)
3052				return -EBUSY;
3053		} else if (!sectors)
3054			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3055				rdev->data_offset;
 
 
 
3056	}
3057	if (sectors < my_mddev->dev_sectors)
3058		return -EINVAL; /* component must fit device */
3059
3060	rdev->sectors = sectors;
3061	if (sectors > oldsectors && my_mddev->external) {
3062		/* need to check that all other rdevs with the same ->bdev
3063		 * do not overlap.  We need to unlock the mddev to avoid
3064		 * a deadlock.  We have already changed rdev->sectors, and if
3065		 * we have to change it back, we will have the lock again.
3066		 */
3067		struct mddev *mddev;
3068		int overlap = 0;
3069		struct list_head *tmp;
3070
3071		mddev_unlock(my_mddev);
3072		for_each_mddev(mddev, tmp) {
3073			struct md_rdev *rdev2;
3074
3075			mddev_lock(mddev);
3076			rdev_for_each(rdev2, mddev)
3077				if (rdev->bdev == rdev2->bdev &&
3078				    rdev != rdev2 &&
3079				    overlaps(rdev->data_offset, rdev->sectors,
3080					     rdev2->data_offset,
3081					     rdev2->sectors)) {
3082					overlap = 1;
3083					break;
3084				}
3085			mddev_unlock(mddev);
3086			if (overlap) {
3087				mddev_put(mddev);
3088				break;
3089			}
3090		}
3091		mddev_lock(my_mddev);
3092		if (overlap) {
3093			/* Someone else could have slipped in a size
3094			 * change here, but doing so is just silly.
3095			 * We put oldsectors back because we *know* it is
3096			 * safe, and trust userspace not to race with
3097			 * itself
3098			 */
3099			rdev->sectors = oldsectors;
3100			return -EBUSY;
3101		}
3102	}
3103	return len;
3104}
3105
3106static struct rdev_sysfs_entry rdev_size =
3107__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3108
3109
3110static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3111{
3112	unsigned long long recovery_start = rdev->recovery_offset;
3113
3114	if (test_bit(In_sync, &rdev->flags) ||
3115	    recovery_start == MaxSector)
3116		return sprintf(page, "none\n");
3117
3118	return sprintf(page, "%llu\n", recovery_start);
3119}
3120
3121static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3122{
3123	unsigned long long recovery_start;
3124
3125	if (cmd_match(buf, "none"))
3126		recovery_start = MaxSector;
3127	else if (strict_strtoull(buf, 10, &recovery_start))
3128		return -EINVAL;
3129
3130	if (rdev->mddev->pers &&
3131	    rdev->raid_disk >= 0)
3132		return -EBUSY;
3133
3134	rdev->recovery_offset = recovery_start;
3135	if (recovery_start == MaxSector)
3136		set_bit(In_sync, &rdev->flags);
3137	else
3138		clear_bit(In_sync, &rdev->flags);
3139	return len;
3140}
3141
3142static struct rdev_sysfs_entry rdev_recovery_start =
3143__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3144
3145
3146static ssize_t
3147badblocks_show(struct badblocks *bb, char *page, int unack);
3148static ssize_t
3149badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3150
 
 
 
 
 
3151static ssize_t bb_show(struct md_rdev *rdev, char *page)
3152{
3153	return badblocks_show(&rdev->badblocks, page, 0);
3154}
3155static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3156{
3157	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3158	/* Maybe that ack was all we needed */
3159	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3160		wake_up(&rdev->blocked_wait);
3161	return rv;
3162}
3163static struct rdev_sysfs_entry rdev_bad_blocks =
3164__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3165
3166
3167static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3168{
3169	return badblocks_show(&rdev->badblocks, page, 1);
3170}
3171static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3172{
3173	return badblocks_store(&rdev->badblocks, page, len, 1);
3174}
3175static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3176__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3178static struct attribute *rdev_default_attrs[] = {
3179	&rdev_state.attr,
3180	&rdev_errors.attr,
3181	&rdev_slot.attr,
3182	&rdev_offset.attr,
3183	&rdev_new_offset.attr,
3184	&rdev_size.attr,
3185	&rdev_recovery_start.attr,
3186	&rdev_bad_blocks.attr,
3187	&rdev_unack_bad_blocks.attr,
 
 
3188	NULL,
3189};
 
3190static ssize_t
3191rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3192{
3193	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3194	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3195	struct mddev *mddev = rdev->mddev;
3196	ssize_t rv;
3197
3198	if (!entry->show)
3199		return -EIO;
3200
3201	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3202	if (!rv) {
3203		if (rdev->mddev == NULL)
3204			rv = -EBUSY;
3205		else
3206			rv = entry->show(rdev, page);
3207		mddev_unlock(mddev);
3208	}
3209	return rv;
3210}
3211
3212static ssize_t
3213rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3214	      const char *page, size_t length)
3215{
3216	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3217	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3218	ssize_t rv;
3219	struct mddev *mddev = rdev->mddev;
3220
3221	if (!entry->store)
3222		return -EIO;
3223	if (!capable(CAP_SYS_ADMIN))
3224		return -EACCES;
3225	rv = mddev ? mddev_lock(mddev): -EBUSY;
3226	if (!rv) {
3227		if (rdev->mddev == NULL)
3228			rv = -EBUSY;
3229		else
3230			rv = entry->store(rdev, page, length);
3231		mddev_unlock(mddev);
3232	}
3233	return rv;
3234}
3235
3236static void rdev_free(struct kobject *ko)
3237{
3238	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3239	kfree(rdev);
3240}
3241static const struct sysfs_ops rdev_sysfs_ops = {
3242	.show		= rdev_attr_show,
3243	.store		= rdev_attr_store,
3244};
3245static struct kobj_type rdev_ktype = {
3246	.release	= rdev_free,
3247	.sysfs_ops	= &rdev_sysfs_ops,
3248	.default_attrs	= rdev_default_attrs,
3249};
3250
3251int md_rdev_init(struct md_rdev *rdev)
3252{
3253	rdev->desc_nr = -1;
3254	rdev->saved_raid_disk = -1;
3255	rdev->raid_disk = -1;
3256	rdev->flags = 0;
3257	rdev->data_offset = 0;
3258	rdev->new_data_offset = 0;
3259	rdev->sb_events = 0;
3260	rdev->last_read_error.tv_sec  = 0;
3261	rdev->last_read_error.tv_nsec = 0;
3262	rdev->sb_loaded = 0;
3263	rdev->bb_page = NULL;
3264	atomic_set(&rdev->nr_pending, 0);
3265	atomic_set(&rdev->read_errors, 0);
3266	atomic_set(&rdev->corrected_errors, 0);
3267
3268	INIT_LIST_HEAD(&rdev->same_set);
3269	init_waitqueue_head(&rdev->blocked_wait);
3270
3271	/* Add space to store bad block list.
3272	 * This reserves the space even on arrays where it cannot
3273	 * be used - I wonder if that matters
3274	 */
3275	rdev->badblocks.count = 0;
3276	rdev->badblocks.shift = 0;
3277	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3278	seqlock_init(&rdev->badblocks.lock);
3279	if (rdev->badblocks.page == NULL)
3280		return -ENOMEM;
3281
3282	return 0;
3283}
3284EXPORT_SYMBOL_GPL(md_rdev_init);
3285/*
3286 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3287 *
3288 * mark the device faulty if:
3289 *
3290 *   - the device is nonexistent (zero size)
3291 *   - the device has no valid superblock
3292 *
3293 * a faulty rdev _never_ has rdev->sb set.
3294 */
3295static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3296{
3297	char b[BDEVNAME_SIZE];
3298	int err;
3299	struct md_rdev *rdev;
3300	sector_t size;
 
3301
3302	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3303	if (!rdev) {
3304		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3305		return ERR_PTR(-ENOMEM);
3306	}
3307
3308	err = md_rdev_init(rdev);
3309	if (err)
3310		goto abort_free;
3311	err = alloc_disk_sb(rdev);
3312	if (err)
3313		goto abort_free;
3314
3315	err = lock_rdev(rdev, newdev, super_format == -2);
3316	if (err)
3317		goto abort_free;
 
 
 
 
 
 
3318
3319	kobject_init(&rdev->kobj, &rdev_ktype);
3320
3321	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3322	if (!size) {
3323		printk(KERN_WARNING 
3324			"md: %s has zero or unknown size, marking faulty!\n",
3325			bdevname(rdev->bdev,b));
3326		err = -EINVAL;
3327		goto abort_free;
3328	}
3329
3330	if (super_format >= 0) {
3331		err = super_types[super_format].
3332			load_super(rdev, NULL, super_minor);
3333		if (err == -EINVAL) {
3334			printk(KERN_WARNING
3335				"md: %s does not have a valid v%d.%d "
3336			       "superblock, not importing!\n",
3337				bdevname(rdev->bdev,b),
3338			       super_format, super_minor);
3339			goto abort_free;
3340		}
3341		if (err < 0) {
3342			printk(KERN_WARNING 
3343				"md: could not read %s's sb, not importing!\n",
3344				bdevname(rdev->bdev,b));
3345			goto abort_free;
3346		}
3347	}
3348	if (super_format == -1)
3349		/* hot-add for 0.90, or non-persistent: so no badblocks */
3350		rdev->badblocks.shift = -1;
3351
3352	return rdev;
3353
3354abort_free:
3355	if (rdev->bdev)
3356		unlock_rdev(rdev);
3357	md_rdev_clear(rdev);
 
3358	kfree(rdev);
3359	return ERR_PTR(err);
3360}
3361
3362/*
3363 * Check a full RAID array for plausibility
3364 */
3365
3366
3367static void analyze_sbs(struct mddev * mddev)
3368{
3369	int i;
3370	struct md_rdev *rdev, *freshest, *tmp;
3371	char b[BDEVNAME_SIZE];
3372
3373	freshest = NULL;
3374	rdev_for_each_safe(rdev, tmp, mddev)
3375		switch (super_types[mddev->major_version].
3376			load_super(rdev, freshest, mddev->minor_version)) {
3377		case 1:
3378			freshest = rdev;
3379			break;
3380		case 0:
3381			break;
3382		default:
3383			printk( KERN_ERR \
3384				"md: fatal superblock inconsistency in %s"
3385				" -- removing from array\n", 
3386				bdevname(rdev->bdev,b));
3387			kick_rdev_from_array(rdev);
3388		}
3389
 
 
 
 
 
3390
3391	super_types[mddev->major_version].
3392		validate_super(mddev, freshest);
3393
3394	i = 0;
3395	rdev_for_each_safe(rdev, tmp, mddev) {
3396		if (mddev->max_disks &&
3397		    (rdev->desc_nr >= mddev->max_disks ||
3398		     i > mddev->max_disks)) {
3399			printk(KERN_WARNING
3400			       "md: %s: %s: only %d devices permitted\n",
3401			       mdname(mddev), bdevname(rdev->bdev, b),
3402			       mddev->max_disks);
3403			kick_rdev_from_array(rdev);
3404			continue;
3405		}
3406		if (rdev != freshest)
3407			if (super_types[mddev->major_version].
3408			    validate_super(mddev, rdev)) {
3409				printk(KERN_WARNING "md: kicking non-fresh %s"
3410					" from array!\n",
3411					bdevname(rdev->bdev,b));
3412				kick_rdev_from_array(rdev);
3413				continue;
3414			}
 
3415		if (mddev->level == LEVEL_MULTIPATH) {
3416			rdev->desc_nr = i++;
3417			rdev->raid_disk = rdev->desc_nr;
3418			set_bit(In_sync, &rdev->flags);
3419		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
 
 
3420			rdev->raid_disk = -1;
3421			clear_bit(In_sync, &rdev->flags);
3422		}
3423	}
 
 
3424}
3425
3426/* Read a fixed-point number.
3427 * Numbers in sysfs attributes should be in "standard" units where
3428 * possible, so time should be in seconds.
3429 * However we internally use a a much smaller unit such as 
3430 * milliseconds or jiffies.
3431 * This function takes a decimal number with a possible fractional
3432 * component, and produces an integer which is the result of
3433 * multiplying that number by 10^'scale'.
3434 * all without any floating-point arithmetic.
3435 */
3436int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3437{
3438	unsigned long result = 0;
3439	long decimals = -1;
3440	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3441		if (*cp == '.')
3442			decimals = 0;
3443		else if (decimals < scale) {
3444			unsigned int value;
3445			value = *cp - '0';
3446			result = result * 10 + value;
3447			if (decimals >= 0)
3448				decimals++;
3449		}
3450		cp++;
3451	}
3452	if (*cp == '\n')
3453		cp++;
3454	if (*cp)
3455		return -EINVAL;
3456	if (decimals < 0)
3457		decimals = 0;
3458	while (decimals < scale) {
3459		result *= 10;
3460		decimals ++;
3461	}
3462	*res = result;
3463	return 0;
3464}
3465
3466
3467static void md_safemode_timeout(unsigned long data);
3468
3469static ssize_t
3470safe_delay_show(struct mddev *mddev, char *page)
3471{
3472	int msec = (mddev->safemode_delay*1000)/HZ;
3473	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3474}
3475static ssize_t
3476safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3477{
3478	unsigned long msec;
3479
 
 
 
 
 
3480	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3481		return -EINVAL;
3482	if (msec == 0)
3483		mddev->safemode_delay = 0;
3484	else {
3485		unsigned long old_delay = mddev->safemode_delay;
3486		mddev->safemode_delay = (msec*HZ)/1000;
3487		if (mddev->safemode_delay == 0)
3488			mddev->safemode_delay = 1;
3489		if (mddev->safemode_delay < old_delay)
3490			md_safemode_timeout((unsigned long)mddev);
 
 
3491	}
3492	return len;
3493}
3494static struct md_sysfs_entry md_safe_delay =
3495__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3496
3497static ssize_t
3498level_show(struct mddev *mddev, char *page)
3499{
3500	struct md_personality *p = mddev->pers;
 
 
 
3501	if (p)
3502		return sprintf(page, "%s\n", p->name);
3503	else if (mddev->clevel[0])
3504		return sprintf(page, "%s\n", mddev->clevel);
3505	else if (mddev->level != LEVEL_NONE)
3506		return sprintf(page, "%d\n", mddev->level);
3507	else
3508		return 0;
 
 
3509}
3510
3511static ssize_t
3512level_store(struct mddev *mddev, const char *buf, size_t len)
3513{
3514	char clevel[16];
3515	ssize_t rv = len;
3516	struct md_personality *pers;
 
3517	long level;
3518	void *priv;
3519	struct md_rdev *rdev;
3520
 
 
 
 
 
 
 
3521	if (mddev->pers == NULL) {
3522		if (len == 0)
3523			return 0;
3524		if (len >= sizeof(mddev->clevel))
3525			return -ENOSPC;
3526		strncpy(mddev->clevel, buf, len);
3527		if (mddev->clevel[len-1] == '\n')
3528			len--;
3529		mddev->clevel[len] = 0;
3530		mddev->level = LEVEL_NONE;
3531		return rv;
 
3532	}
 
 
 
3533
3534	/* request to change the personality.  Need to ensure:
3535	 *  - array is not engaged in resync/recovery/reshape
3536	 *  - old personality can be suspended
3537	 *  - new personality will access other array.
3538	 */
3539
 
3540	if (mddev->sync_thread ||
 
3541	    mddev->reshape_position != MaxSector ||
3542	    mddev->sysfs_active)
3543		return -EBUSY;
3544
 
3545	if (!mddev->pers->quiesce) {
3546		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3547		       mdname(mddev), mddev->pers->name);
3548		return -EINVAL;
3549	}
3550
3551	/* Now find the new personality */
3552	if (len == 0 || len >= sizeof(clevel))
3553		return -EINVAL;
3554	strncpy(clevel, buf, len);
3555	if (clevel[len-1] == '\n')
3556		len--;
3557	clevel[len] = 0;
3558	if (strict_strtol(clevel, 10, &level))
3559		level = LEVEL_NONE;
3560
3561	if (request_module("md-%s", clevel) != 0)
3562		request_module("md-level-%s", clevel);
3563	spin_lock(&pers_lock);
3564	pers = find_pers(level, clevel);
3565	if (!pers || !try_module_get(pers->owner)) {
3566		spin_unlock(&pers_lock);
3567		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3568		return -EINVAL;
 
3569	}
3570	spin_unlock(&pers_lock);
3571
3572	if (pers == mddev->pers) {
3573		/* Nothing to do! */
3574		module_put(pers->owner);
3575		return rv;
 
3576	}
3577	if (!pers->takeover) {
3578		module_put(pers->owner);
3579		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3580		       mdname(mddev), clevel);
3581		return -EINVAL;
 
3582	}
3583
3584	rdev_for_each(rdev, mddev)
3585		rdev->new_raid_disk = rdev->raid_disk;
3586
3587	/* ->takeover must set new_* and/or delta_disks
3588	 * if it succeeds, and may set them when it fails.
3589	 */
3590	priv = pers->takeover(mddev);
3591	if (IS_ERR(priv)) {
3592		mddev->new_level = mddev->level;
3593		mddev->new_layout = mddev->layout;
3594		mddev->new_chunk_sectors = mddev->chunk_sectors;
3595		mddev->raid_disks -= mddev->delta_disks;
3596		mddev->delta_disks = 0;
3597		mddev->reshape_backwards = 0;
3598		module_put(pers->owner);
3599		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3600		       mdname(mddev), clevel);
3601		return PTR_ERR(priv);
 
3602	}
3603
3604	/* Looks like we have a winner */
3605	mddev_suspend(mddev);
3606	mddev->pers->stop(mddev);
3607	
3608	if (mddev->pers->sync_request == NULL &&
3609	    pers->sync_request != NULL) {
3610		/* need to add the md_redundancy_group */
3611		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3612			printk(KERN_WARNING
3613			       "md: cannot register extra attributes for %s\n",
3614			       mdname(mddev));
3615		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3616	}		
3617	if (mddev->pers->sync_request != NULL &&
3618	    pers->sync_request == NULL) {
3619		/* need to remove the md_redundancy_group */
3620		if (mddev->to_remove == NULL)
3621			mddev->to_remove = &md_redundancy_group;
3622	}
3623
3624	if (mddev->pers->sync_request == NULL &&
3625	    mddev->external) {
3626		/* We are converting from a no-redundancy array
3627		 * to a redundancy array and metadata is managed
3628		 * externally so we need to be sure that writes
3629		 * won't block due to a need to transition
3630		 *      clean->dirty
3631		 * until external management is started.
3632		 */
3633		mddev->in_sync = 0;
3634		mddev->safemode_delay = 0;
3635		mddev->safemode = 0;
3636	}
3637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3638	rdev_for_each(rdev, mddev) {
3639		if (rdev->raid_disk < 0)
3640			continue;
3641		if (rdev->new_raid_disk >= mddev->raid_disks)
3642			rdev->new_raid_disk = -1;
3643		if (rdev->new_raid_disk == rdev->raid_disk)
3644			continue;
3645		sysfs_unlink_rdev(mddev, rdev);
3646	}
3647	rdev_for_each(rdev, mddev) {
3648		if (rdev->raid_disk < 0)
3649			continue;
3650		if (rdev->new_raid_disk == rdev->raid_disk)
3651			continue;
3652		rdev->raid_disk = rdev->new_raid_disk;
3653		if (rdev->raid_disk < 0)
3654			clear_bit(In_sync, &rdev->flags);
3655		else {
3656			if (sysfs_link_rdev(mddev, rdev))
3657				printk(KERN_WARNING "md: cannot register rd%d"
3658				       " for %s after level change\n",
3659				       rdev->raid_disk, mdname(mddev));
3660		}
3661	}
3662
3663	module_put(mddev->pers->owner);
3664	mddev->pers = pers;
3665	mddev->private = priv;
3666	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3667	mddev->level = mddev->new_level;
3668	mddev->layout = mddev->new_layout;
3669	mddev->chunk_sectors = mddev->new_chunk_sectors;
3670	mddev->delta_disks = 0;
3671	mddev->reshape_backwards = 0;
3672	mddev->degraded = 0;
3673	if (mddev->pers->sync_request == NULL) {
3674		/* this is now an array without redundancy, so
3675		 * it must always be in_sync
3676		 */
3677		mddev->in_sync = 1;
3678		del_timer_sync(&mddev->safemode_timer);
3679	}
 
3680	pers->run(mddev);
3681	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3682	mddev_resume(mddev);
3683	sysfs_notify(&mddev->kobj, NULL, "level");
3684	md_new_event(mddev);
 
 
 
 
 
3685	return rv;
3686}
3687
3688static struct md_sysfs_entry md_level =
3689__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3690
3691
3692static ssize_t
3693layout_show(struct mddev *mddev, char *page)
3694{
3695	/* just a number, not meaningful for all levels */
3696	if (mddev->reshape_position != MaxSector &&
3697	    mddev->layout != mddev->new_layout)
3698		return sprintf(page, "%d (%d)\n",
3699			       mddev->new_layout, mddev->layout);
3700	return sprintf(page, "%d\n", mddev->layout);
3701}
3702
3703static ssize_t
3704layout_store(struct mddev *mddev, const char *buf, size_t len)
3705{
3706	char *e;
3707	unsigned long n = simple_strtoul(buf, &e, 10);
3708
3709	if (!*buf || (*e && *e != '\n'))
3710		return -EINVAL;
 
 
 
 
3711
3712	if (mddev->pers) {
3713		int err;
3714		if (mddev->pers->check_reshape == NULL)
3715			return -EBUSY;
3716		mddev->new_layout = n;
3717		err = mddev->pers->check_reshape(mddev);
3718		if (err) {
3719			mddev->new_layout = mddev->layout;
3720			return err;
 
 
3721		}
3722	} else {
3723		mddev->new_layout = n;
3724		if (mddev->reshape_position == MaxSector)
3725			mddev->layout = n;
3726	}
3727	return len;
 
3728}
3729static struct md_sysfs_entry md_layout =
3730__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3731
3732
3733static ssize_t
3734raid_disks_show(struct mddev *mddev, char *page)
3735{
3736	if (mddev->raid_disks == 0)
3737		return 0;
3738	if (mddev->reshape_position != MaxSector &&
3739	    mddev->delta_disks != 0)
3740		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3741			       mddev->raid_disks - mddev->delta_disks);
3742	return sprintf(page, "%d\n", mddev->raid_disks);
3743}
3744
3745static int update_raid_disks(struct mddev *mddev, int raid_disks);
3746
3747static ssize_t
3748raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3749{
3750	char *e;
3751	int rv = 0;
3752	unsigned long n = simple_strtoul(buf, &e, 10);
3753
3754	if (!*buf || (*e && *e != '\n'))
3755		return -EINVAL;
 
3756
 
 
 
3757	if (mddev->pers)
3758		rv = update_raid_disks(mddev, n);
3759	else if (mddev->reshape_position != MaxSector) {
3760		struct md_rdev *rdev;
3761		int olddisks = mddev->raid_disks - mddev->delta_disks;
3762
 
3763		rdev_for_each(rdev, mddev) {
3764			if (olddisks < n &&
3765			    rdev->data_offset < rdev->new_data_offset)
3766				return -EINVAL;
3767			if (olddisks > n &&
3768			    rdev->data_offset > rdev->new_data_offset)
3769				return -EINVAL;
3770		}
 
3771		mddev->delta_disks = n - olddisks;
3772		mddev->raid_disks = n;
3773		mddev->reshape_backwards = (mddev->delta_disks < 0);
3774	} else
3775		mddev->raid_disks = n;
3776	return rv ? rv : len;
 
 
3777}
3778static struct md_sysfs_entry md_raid_disks =
3779__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3780
3781static ssize_t
 
 
 
 
 
 
 
 
3782chunk_size_show(struct mddev *mddev, char *page)
3783{
3784	if (mddev->reshape_position != MaxSector &&
3785	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3786		return sprintf(page, "%d (%d)\n",
3787			       mddev->new_chunk_sectors << 9,
3788			       mddev->chunk_sectors << 9);
3789	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3790}
3791
3792static ssize_t
3793chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3794{
3795	char *e;
3796	unsigned long n = simple_strtoul(buf, &e, 10);
3797
3798	if (!*buf || (*e && *e != '\n'))
3799		return -EINVAL;
 
3800
 
 
 
3801	if (mddev->pers) {
3802		int err;
3803		if (mddev->pers->check_reshape == NULL)
3804			return -EBUSY;
3805		mddev->new_chunk_sectors = n >> 9;
3806		err = mddev->pers->check_reshape(mddev);
3807		if (err) {
3808			mddev->new_chunk_sectors = mddev->chunk_sectors;
3809			return err;
 
 
3810		}
3811	} else {
3812		mddev->new_chunk_sectors = n >> 9;
3813		if (mddev->reshape_position == MaxSector)
3814			mddev->chunk_sectors = n >> 9;
3815	}
3816	return len;
 
3817}
3818static struct md_sysfs_entry md_chunk_size =
3819__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3820
3821static ssize_t
3822resync_start_show(struct mddev *mddev, char *page)
3823{
3824	if (mddev->recovery_cp == MaxSector)
3825		return sprintf(page, "none\n");
3826	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3827}
3828
3829static ssize_t
3830resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3831{
3832	char *e;
3833	unsigned long long n = simple_strtoull(buf, &e, 10);
3834
3835	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3836		return -EBUSY;
3837	if (cmd_match(buf, "none"))
3838		n = MaxSector;
3839	else if (!*buf || (*e && *e != '\n'))
3840		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
3841
3842	mddev->recovery_cp = n;
3843	return len;
 
 
 
 
 
3844}
3845static struct md_sysfs_entry md_resync_start =
3846__ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
 
3847
3848/*
3849 * The array state can be:
3850 *
3851 * clear
3852 *     No devices, no size, no level
3853 *     Equivalent to STOP_ARRAY ioctl
3854 * inactive
3855 *     May have some settings, but array is not active
3856 *        all IO results in error
3857 *     When written, doesn't tear down array, but just stops it
3858 * suspended (not supported yet)
3859 *     All IO requests will block. The array can be reconfigured.
3860 *     Writing this, if accepted, will block until array is quiescent
3861 * readonly
3862 *     no resync can happen.  no superblocks get written.
3863 *     write requests fail
3864 * read-auto
3865 *     like readonly, but behaves like 'clean' on a write request.
3866 *
3867 * clean - no pending writes, but otherwise active.
3868 *     When written to inactive array, starts without resync
3869 *     If a write request arrives then
3870 *       if metadata is known, mark 'dirty' and switch to 'active'.
3871 *       if not known, block and switch to write-pending
3872 *     If written to an active array that has pending writes, then fails.
3873 * active
3874 *     fully active: IO and resync can be happening.
3875 *     When written to inactive array, starts with resync
3876 *
3877 * write-pending
3878 *     clean, but writes are blocked waiting for 'active' to be written.
3879 *
3880 * active-idle
3881 *     like active, but no writes have been seen for a while (100msec).
3882 *
 
 
 
 
3883 */
3884enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3885		   write_pending, active_idle, bad_word};
3886static char *array_states[] = {
3887	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3888	"write-pending", "active-idle", NULL };
3889
3890static int match_word(const char *word, char **list)
3891{
3892	int n;
3893	for (n=0; list[n]; n++)
3894		if (cmd_match(word, list[n]))
3895			break;
3896	return n;
3897}
3898
3899static ssize_t
3900array_state_show(struct mddev *mddev, char *page)
3901{
3902	enum array_state st = inactive;
3903
3904	if (mddev->pers)
3905		switch(mddev->ro) {
3906		case 1:
3907			st = readonly;
3908			break;
3909		case 2:
3910			st = read_auto;
3911			break;
3912		case 0:
3913			if (mddev->in_sync)
 
 
 
3914				st = clean;
3915			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3916				st = write_pending;
3917			else if (mddev->safemode)
3918				st = active_idle;
3919			else
3920				st = active;
 
3921		}
3922	else {
 
 
 
3923		if (list_empty(&mddev->disks) &&
3924		    mddev->raid_disks == 0 &&
3925		    mddev->dev_sectors == 0)
3926			st = clear;
3927		else
3928			st = inactive;
3929	}
3930	return sprintf(page, "%s\n", array_states[st]);
3931}
3932
3933static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3934static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3935static int do_md_run(struct mddev * mddev);
3936static int restart_array(struct mddev *mddev);
3937
3938static ssize_t
3939array_state_store(struct mddev *mddev, const char *buf, size_t len)
3940{
3941	int err = -EINVAL;
3942	enum array_state st = match_word(buf, array_states);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3943	switch(st) {
3944	case bad_word:
3945		break;
3946	case clear:
3947		/* stopping an active array */
3948		if (atomic_read(&mddev->openers) > 0)
3949			return -EBUSY;
3950		err = do_md_stop(mddev, 0, NULL);
3951		break;
3952	case inactive:
3953		/* stopping an active array */
3954		if (mddev->pers) {
3955			if (atomic_read(&mddev->openers) > 0)
3956				return -EBUSY;
3957			err = do_md_stop(mddev, 2, NULL);
3958		} else
3959			err = 0; /* already inactive */
3960		break;
3961	case suspended:
3962		break; /* not supported yet */
3963	case readonly:
3964		if (mddev->pers)
3965			err = md_set_readonly(mddev, NULL);
3966		else {
3967			mddev->ro = 1;
3968			set_disk_ro(mddev->gendisk, 1);
3969			err = do_md_run(mddev);
3970		}
3971		break;
3972	case read_auto:
3973		if (mddev->pers) {
3974			if (mddev->ro == 0)
3975				err = md_set_readonly(mddev, NULL);
3976			else if (mddev->ro == 1)
3977				err = restart_array(mddev);
3978			if (err == 0) {
3979				mddev->ro = 2;
3980				set_disk_ro(mddev->gendisk, 0);
3981			}
3982		} else {
3983			mddev->ro = 2;
3984			err = do_md_run(mddev);
3985		}
3986		break;
3987	case clean:
3988		if (mddev->pers) {
3989			restart_array(mddev);
3990			spin_lock_irq(&mddev->write_lock);
3991			if (atomic_read(&mddev->writes_pending) == 0) {
3992				if (mddev->in_sync == 0) {
3993					mddev->in_sync = 1;
3994					if (mddev->safemode == 1)
3995						mddev->safemode = 0;
3996					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3997				}
3998				err = 0;
3999			} else
4000				err = -EBUSY;
4001			spin_unlock_irq(&mddev->write_lock);
4002		} else
4003			err = -EINVAL;
4004		break;
4005	case active:
4006		if (mddev->pers) {
4007			restart_array(mddev);
4008			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
 
 
4009			wake_up(&mddev->sb_wait);
4010			err = 0;
4011		} else {
4012			mddev->ro = 0;
4013			set_disk_ro(mddev->gendisk, 0);
4014			err = do_md_run(mddev);
4015		}
4016		break;
4017	case write_pending:
4018	case active_idle:
 
4019		/* these cannot be set */
4020		break;
4021	}
4022	if (err)
4023		return err;
4024	else {
4025		if (mddev->hold_active == UNTIL_IOCTL)
4026			mddev->hold_active = 0;
4027		sysfs_notify_dirent_safe(mddev->sysfs_state);
4028		return len;
4029	}
 
 
4030}
4031static struct md_sysfs_entry md_array_state =
4032__ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4033
4034static ssize_t
4035max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4036	return sprintf(page, "%d\n",
4037		       atomic_read(&mddev->max_corr_read_errors));
4038}
4039
4040static ssize_t
4041max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4042{
4043	char *e;
4044	unsigned long n = simple_strtoul(buf, &e, 10);
4045
4046	if (*buf && (*e == 0 || *e == '\n')) {
4047		atomic_set(&mddev->max_corr_read_errors, n);
4048		return len;
4049	}
4050	return -EINVAL;
4051}
4052
4053static struct md_sysfs_entry max_corr_read_errors =
4054__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4055	max_corrected_read_errors_store);
4056
4057static ssize_t
4058null_show(struct mddev *mddev, char *page)
4059{
4060	return -EINVAL;
4061}
4062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4063static ssize_t
4064new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4065{
4066	/* buf must be %d:%d\n? giving major and minor numbers */
4067	/* The new device is added to the array.
4068	 * If the array has a persistent superblock, we read the
4069	 * superblock to initialise info and check validity.
4070	 * Otherwise, only checking done is that in bind_rdev_to_array,
4071	 * which mainly checks size.
4072	 */
4073	char *e;
4074	int major = simple_strtoul(buf, &e, 10);
4075	int minor;
4076	dev_t dev;
4077	struct md_rdev *rdev;
4078	int err;
4079
4080	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4081		return -EINVAL;
4082	minor = simple_strtoul(e+1, &e, 10);
4083	if (*e && *e != '\n')
4084		return -EINVAL;
4085	dev = MKDEV(major, minor);
4086	if (major != MAJOR(dev) ||
4087	    minor != MINOR(dev))
4088		return -EOVERFLOW;
4089
4090
 
 
 
4091	if (mddev->persistent) {
4092		rdev = md_import_device(dev, mddev->major_version,
4093					mddev->minor_version);
4094		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4095			struct md_rdev *rdev0
4096				= list_entry(mddev->disks.next,
4097					     struct md_rdev, same_set);
4098			err = super_types[mddev->major_version]
4099				.load_super(rdev, rdev0, mddev->minor_version);
4100			if (err < 0)
4101				goto out;
4102		}
4103	} else if (mddev->external)
4104		rdev = md_import_device(dev, -2, -1);
4105	else
4106		rdev = md_import_device(dev, -1, -1);
4107
4108	if (IS_ERR(rdev))
 
4109		return PTR_ERR(rdev);
 
4110	err = bind_rdev_to_array(rdev, mddev);
4111 out:
4112	if (err)
4113		export_rdev(rdev);
 
 
 
4114	return err ? err : len;
4115}
4116
4117static struct md_sysfs_entry md_new_device =
4118__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4119
4120static ssize_t
4121bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4122{
4123	char *end;
4124	unsigned long chunk, end_chunk;
 
4125
 
 
 
4126	if (!mddev->bitmap)
4127		goto out;
4128	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4129	while (*buf) {
4130		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4131		if (buf == end) break;
4132		if (*end == '-') { /* range */
4133			buf = end + 1;
4134			end_chunk = simple_strtoul(buf, &end, 0);
4135			if (buf == end) break;
4136		}
4137		if (*end && !isspace(*end)) break;
4138		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4139		buf = skip_spaces(end);
4140	}
4141	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4142out:
 
4143	return len;
4144}
4145
4146static struct md_sysfs_entry md_bitmap =
4147__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4148
4149static ssize_t
4150size_show(struct mddev *mddev, char *page)
4151{
4152	return sprintf(page, "%llu\n",
4153		(unsigned long long)mddev->dev_sectors / 2);
4154}
4155
4156static int update_size(struct mddev *mddev, sector_t num_sectors);
4157
4158static ssize_t
4159size_store(struct mddev *mddev, const char *buf, size_t len)
4160{
4161	/* If array is inactive, we can reduce the component size, but
4162	 * not increase it (except from 0).
4163	 * If array is active, we can try an on-line resize
4164	 */
4165	sector_t sectors;
4166	int err = strict_blocks_to_sectors(buf, &sectors);
4167
4168	if (err < 0)
4169		return err;
 
 
 
4170	if (mddev->pers) {
4171		err = update_size(mddev, sectors);
4172		md_update_sb(mddev, 1);
 
4173	} else {
4174		if (mddev->dev_sectors == 0 ||
4175		    mddev->dev_sectors > sectors)
4176			mddev->dev_sectors = sectors;
4177		else
4178			err = -ENOSPC;
4179	}
 
4180	return err ? err : len;
4181}
4182
4183static struct md_sysfs_entry md_size =
4184__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4185
4186
4187/* Metdata version.
4188 * This is one of
4189 *   'none' for arrays with no metadata (good luck...)
4190 *   'external' for arrays with externally managed metadata,
4191 * or N.M for internally known formats
4192 */
4193static ssize_t
4194metadata_show(struct mddev *mddev, char *page)
4195{
4196	if (mddev->persistent)
4197		return sprintf(page, "%d.%d\n",
4198			       mddev->major_version, mddev->minor_version);
4199	else if (mddev->external)
4200		return sprintf(page, "external:%s\n", mddev->metadata_type);
4201	else
4202		return sprintf(page, "none\n");
4203}
4204
4205static ssize_t
4206metadata_store(struct mddev *mddev, const char *buf, size_t len)
4207{
4208	int major, minor;
4209	char *e;
 
4210	/* Changing the details of 'external' metadata is
4211	 * always permitted.  Otherwise there must be
4212	 * no devices attached to the array.
4213	 */
 
 
 
 
 
4214	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4215		;
4216	else if (!list_empty(&mddev->disks))
4217		return -EBUSY;
4218
 
4219	if (cmd_match(buf, "none")) {
4220		mddev->persistent = 0;
4221		mddev->external = 0;
4222		mddev->major_version = 0;
4223		mddev->minor_version = 90;
4224		return len;
4225	}
4226	if (strncmp(buf, "external:", 9) == 0) {
4227		size_t namelen = len-9;
4228		if (namelen >= sizeof(mddev->metadata_type))
4229			namelen = sizeof(mddev->metadata_type)-1;
4230		strncpy(mddev->metadata_type, buf+9, namelen);
4231		mddev->metadata_type[namelen] = 0;
4232		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4233			mddev->metadata_type[--namelen] = 0;
4234		mddev->persistent = 0;
4235		mddev->external = 1;
4236		mddev->major_version = 0;
4237		mddev->minor_version = 90;
4238		return len;
4239	}
4240	major = simple_strtoul(buf, &e, 10);
 
4241	if (e==buf || *e != '.')
4242		return -EINVAL;
4243	buf = e+1;
4244	minor = simple_strtoul(buf, &e, 10);
4245	if (e==buf || (*e && *e != '\n') )
4246		return -EINVAL;
 
4247	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4248		return -ENOENT;
4249	mddev->major_version = major;
4250	mddev->minor_version = minor;
4251	mddev->persistent = 1;
4252	mddev->external = 0;
4253	return len;
 
 
 
4254}
4255
4256static struct md_sysfs_entry md_metadata =
4257__ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4258
4259static ssize_t
4260action_show(struct mddev *mddev, char *page)
4261{
4262	char *type = "idle";
4263	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
 
4264		type = "frozen";
4265	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4266	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4267		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4268			type = "reshape";
4269		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4270			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4271				type = "resync";
4272			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4273				type = "check";
4274			else
4275				type = "repair";
4276		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4277			type = "recover";
 
 
4278	}
4279	return sprintf(page, "%s\n", type);
4280}
4281
4282static void reap_sync_thread(struct mddev *mddev);
4283
4284static ssize_t
4285action_store(struct mddev *mddev, const char *page, size_t len)
4286{
4287	if (!mddev->pers || !mddev->pers->sync_request)
4288		return -EINVAL;
4289
4290	if (cmd_match(page, "frozen"))
4291		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4292	else
4293		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4294
4295	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4296		if (mddev->sync_thread) {
4297			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4298			reap_sync_thread(mddev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4299		}
4300	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4301		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4302		return -EBUSY;
4303	else if (cmd_match(page, "resync"))
4304		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4305	else if (cmd_match(page, "recover")) {
 
4306		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4307		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4308	} else if (cmd_match(page, "reshape")) {
4309		int err;
4310		if (mddev->pers->start_reshape == NULL)
4311			return -EINVAL;
4312		err = mddev->pers->start_reshape(mddev);
 
 
 
 
 
 
 
 
 
4313		if (err)
4314			return err;
4315		sysfs_notify(&mddev->kobj, NULL, "degraded");
4316	} else {
4317		if (cmd_match(page, "check"))
4318			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4319		else if (!cmd_match(page, "repair"))
4320			return -EINVAL;
 
4321		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4322		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4323	}
 
 
 
 
 
 
 
4324	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4325	md_wakeup_thread(mddev->thread);
4326	sysfs_notify_dirent_safe(mddev->sysfs_action);
4327	return len;
4328}
4329
 
 
 
 
 
 
 
 
 
 
 
4330static ssize_t
4331mismatch_cnt_show(struct mddev *mddev, char *page)
4332{
4333	return sprintf(page, "%llu\n",
4334		       (unsigned long long) mddev->resync_mismatches);
 
4335}
4336
4337static struct md_sysfs_entry md_scan_mode =
4338__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4339
4340
4341static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4342
4343static ssize_t
4344sync_min_show(struct mddev *mddev, char *page)
4345{
4346	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4347		       mddev->sync_speed_min ? "local": "system");
4348}
4349
4350static ssize_t
4351sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4352{
4353	int min;
4354	char *e;
 
4355	if (strncmp(buf, "system", 6)==0) {
4356		mddev->sync_speed_min = 0;
4357		return len;
 
 
 
 
 
4358	}
4359	min = simple_strtoul(buf, &e, 10);
4360	if (buf == e || (*e && *e != '\n') || min <= 0)
4361		return -EINVAL;
4362	mddev->sync_speed_min = min;
4363	return len;
4364}
4365
4366static struct md_sysfs_entry md_sync_min =
4367__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4368
4369static ssize_t
4370sync_max_show(struct mddev *mddev, char *page)
4371{
4372	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4373		       mddev->sync_speed_max ? "local": "system");
4374}
4375
4376static ssize_t
4377sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4378{
4379	int max;
4380	char *e;
 
4381	if (strncmp(buf, "system", 6)==0) {
4382		mddev->sync_speed_max = 0;
4383		return len;
 
 
 
 
 
4384	}
4385	max = simple_strtoul(buf, &e, 10);
4386	if (buf == e || (*e && *e != '\n') || max <= 0)
4387		return -EINVAL;
4388	mddev->sync_speed_max = max;
4389	return len;
4390}
4391
4392static struct md_sysfs_entry md_sync_max =
4393__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4394
4395static ssize_t
4396degraded_show(struct mddev *mddev, char *page)
4397{
4398	return sprintf(page, "%d\n", mddev->degraded);
4399}
4400static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4401
4402static ssize_t
4403sync_force_parallel_show(struct mddev *mddev, char *page)
4404{
4405	return sprintf(page, "%d\n", mddev->parallel_resync);
4406}
4407
4408static ssize_t
4409sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4410{
4411	long n;
4412
4413	if (strict_strtol(buf, 10, &n))
4414		return -EINVAL;
4415
4416	if (n != 0 && n != 1)
4417		return -EINVAL;
4418
4419	mddev->parallel_resync = n;
4420
4421	if (mddev->sync_thread)
4422		wake_up(&resync_wait);
4423
4424	return len;
4425}
4426
4427/* force parallel resync, even with shared block devices */
4428static struct md_sysfs_entry md_sync_force_parallel =
4429__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4430       sync_force_parallel_show, sync_force_parallel_store);
4431
4432static ssize_t
4433sync_speed_show(struct mddev *mddev, char *page)
4434{
4435	unsigned long resync, dt, db;
4436	if (mddev->curr_resync == 0)
4437		return sprintf(page, "none\n");
4438	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4439	dt = (jiffies - mddev->resync_mark) / HZ;
4440	if (!dt) dt++;
4441	db = resync - mddev->resync_mark_cnt;
4442	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4443}
4444
4445static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4446
4447static ssize_t
4448sync_completed_show(struct mddev *mddev, char *page)
4449{
4450	unsigned long long max_sectors, resync;
4451
4452	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4453		return sprintf(page, "none\n");
4454
 
 
 
 
4455	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4456	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4457		max_sectors = mddev->resync_max_sectors;
4458	else
4459		max_sectors = mddev->dev_sectors;
4460
4461	resync = mddev->curr_resync_completed;
4462	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4463}
4464
4465static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
 
4466
4467static ssize_t
4468min_sync_show(struct mddev *mddev, char *page)
4469{
4470	return sprintf(page, "%llu\n",
4471		       (unsigned long long)mddev->resync_min);
4472}
4473static ssize_t
4474min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4475{
4476	unsigned long long min;
4477	if (strict_strtoull(buf, 10, &min))
 
 
4478		return -EINVAL;
 
 
 
4479	if (min > mddev->resync_max)
4480		return -EINVAL;
 
 
4481	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4482		return -EBUSY;
4483
4484	/* Must be a multiple of chunk_size */
4485	if (mddev->chunk_sectors) {
4486		sector_t temp = min;
4487		if (sector_div(temp, mddev->chunk_sectors))
4488			return -EINVAL;
4489	}
4490	mddev->resync_min = min;
4491
4492	return len;
 
 
4493}
4494
4495static struct md_sysfs_entry md_min_sync =
4496__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4497
4498static ssize_t
4499max_sync_show(struct mddev *mddev, char *page)
4500{
4501	if (mddev->resync_max == MaxSector)
4502		return sprintf(page, "max\n");
4503	else
4504		return sprintf(page, "%llu\n",
4505			       (unsigned long long)mddev->resync_max);
4506}
4507static ssize_t
4508max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4509{
 
 
4510	if (strncmp(buf, "max", 3) == 0)
4511		mddev->resync_max = MaxSector;
4512	else {
4513		unsigned long long max;
4514		if (strict_strtoull(buf, 10, &max))
4515			return -EINVAL;
 
 
 
4516		if (max < mddev->resync_min)
4517			return -EINVAL;
4518		if (max < mddev->resync_max &&
4519		    mddev->ro == 0 &&
 
4520		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4521			return -EBUSY;
4522
4523		/* Must be a multiple of chunk_size */
4524		if (mddev->chunk_sectors) {
 
4525			sector_t temp = max;
4526			if (sector_div(temp, mddev->chunk_sectors))
4527				return -EINVAL;
 
 
4528		}
4529		mddev->resync_max = max;
4530	}
4531	wake_up(&mddev->recovery_wait);
4532	return len;
 
 
 
4533}
4534
4535static struct md_sysfs_entry md_max_sync =
4536__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4537
4538static ssize_t
4539suspend_lo_show(struct mddev *mddev, char *page)
4540{
4541	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4542}
4543
4544static ssize_t
4545suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4546{
4547	char *e;
4548	unsigned long long new = simple_strtoull(buf, &e, 10);
4549	unsigned long long old = mddev->suspend_lo;
4550
4551	if (mddev->pers == NULL || 
4552	    mddev->pers->quiesce == NULL)
4553		return -EINVAL;
4554	if (buf == e || (*e && *e != '\n'))
4555		return -EINVAL;
4556
 
 
 
 
 
 
 
 
4557	mddev->suspend_lo = new;
4558	if (new >= old)
4559		/* Shrinking suspended region */
4560		mddev->pers->quiesce(mddev, 2);
4561	else {
4562		/* Expanding suspended region - need to wait */
4563		mddev->pers->quiesce(mddev, 1);
4564		mddev->pers->quiesce(mddev, 0);
4565	}
4566	return len;
4567}
4568static struct md_sysfs_entry md_suspend_lo =
4569__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4570
4571
4572static ssize_t
4573suspend_hi_show(struct mddev *mddev, char *page)
4574{
4575	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4576}
4577
4578static ssize_t
4579suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4580{
4581	char *e;
4582	unsigned long long new = simple_strtoull(buf, &e, 10);
4583	unsigned long long old = mddev->suspend_hi;
4584
4585	if (mddev->pers == NULL ||
4586	    mddev->pers->quiesce == NULL)
4587		return -EINVAL;
4588	if (buf == e || (*e && *e != '\n'))
4589		return -EINVAL;
4590
 
 
 
 
 
 
 
 
4591	mddev->suspend_hi = new;
4592	if (new <= old)
4593		/* Shrinking suspended region */
4594		mddev->pers->quiesce(mddev, 2);
4595	else {
4596		/* Expanding suspended region - need to wait */
4597		mddev->pers->quiesce(mddev, 1);
4598		mddev->pers->quiesce(mddev, 0);
4599	}
4600	return len;
4601}
4602static struct md_sysfs_entry md_suspend_hi =
4603__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4604
4605static ssize_t
4606reshape_position_show(struct mddev *mddev, char *page)
4607{
4608	if (mddev->reshape_position != MaxSector)
4609		return sprintf(page, "%llu\n",
4610			       (unsigned long long)mddev->reshape_position);
4611	strcpy(page, "none\n");
4612	return 5;
4613}
4614
4615static ssize_t
4616reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4617{
4618	struct md_rdev *rdev;
4619	char *e;
4620	unsigned long long new = simple_strtoull(buf, &e, 10);
 
 
 
 
 
 
 
 
 
 
4621	if (mddev->pers)
4622		return -EBUSY;
4623	if (buf == e || (*e && *e != '\n'))
4624		return -EINVAL;
4625	mddev->reshape_position = new;
4626	mddev->delta_disks = 0;
4627	mddev->reshape_backwards = 0;
4628	mddev->new_level = mddev->level;
4629	mddev->new_layout = mddev->layout;
4630	mddev->new_chunk_sectors = mddev->chunk_sectors;
4631	rdev_for_each(rdev, mddev)
4632		rdev->new_data_offset = rdev->data_offset;
4633	return len;
 
 
 
4634}
4635
4636static struct md_sysfs_entry md_reshape_position =
4637__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4638       reshape_position_store);
4639
4640static ssize_t
4641reshape_direction_show(struct mddev *mddev, char *page)
4642{
4643	return sprintf(page, "%s\n",
4644		       mddev->reshape_backwards ? "backwards" : "forwards");
4645}
4646
4647static ssize_t
4648reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4649{
4650	int backwards = 0;
 
 
4651	if (cmd_match(buf, "forwards"))
4652		backwards = 0;
4653	else if (cmd_match(buf, "backwards"))
4654		backwards = 1;
4655	else
4656		return -EINVAL;
4657	if (mddev->reshape_backwards == backwards)
4658		return len;
4659
 
 
 
4660	/* check if we are allowed to change */
4661	if (mddev->delta_disks)
4662		return -EBUSY;
4663
4664	if (mddev->persistent &&
4665	    mddev->major_version == 0)
4666		return -EINVAL;
4667
4668	mddev->reshape_backwards = backwards;
4669	return len;
 
4670}
4671
4672static struct md_sysfs_entry md_reshape_direction =
4673__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4674       reshape_direction_store);
4675
4676static ssize_t
4677array_size_show(struct mddev *mddev, char *page)
4678{
4679	if (mddev->external_size)
4680		return sprintf(page, "%llu\n",
4681			       (unsigned long long)mddev->array_sectors/2);
4682	else
4683		return sprintf(page, "default\n");
4684}
4685
4686static ssize_t
4687array_size_store(struct mddev *mddev, const char *buf, size_t len)
4688{
4689	sector_t sectors;
 
 
 
 
 
 
 
 
 
 
 
4690
4691	if (strncmp(buf, "default", 7) == 0) {
4692		if (mddev->pers)
4693			sectors = mddev->pers->size(mddev, 0, 0);
4694		else
4695			sectors = mddev->array_sectors;
4696
4697		mddev->external_size = 0;
4698	} else {
4699		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4700			return -EINVAL;
4701		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4702			return -E2BIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4703
4704		mddev->external_size = 1;
 
 
 
 
 
 
 
 
 
 
 
 
4705	}
4706
4707	mddev->array_sectors = sectors;
 
 
 
 
 
 
 
4708	if (mddev->pers) {
4709		set_capacity(mddev->gendisk, mddev->array_sectors);
4710		revalidate_disk(mddev->gendisk);
 
 
 
 
 
 
4711	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4712	return len;
4713}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4714
4715static struct md_sysfs_entry md_array_size =
4716__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4717       array_size_store);
4718
4719static struct attribute *md_default_attrs[] = {
4720	&md_level.attr,
4721	&md_layout.attr,
4722	&md_raid_disks.attr,
 
4723	&md_chunk_size.attr,
4724	&md_size.attr,
4725	&md_resync_start.attr,
4726	&md_metadata.attr,
4727	&md_new_device.attr,
4728	&md_safe_delay.attr,
4729	&md_array_state.attr,
4730	&md_reshape_position.attr,
4731	&md_reshape_direction.attr,
4732	&md_array_size.attr,
4733	&max_corr_read_errors.attr,
 
 
 
4734	NULL,
4735};
4736
 
 
 
 
4737static struct attribute *md_redundancy_attrs[] = {
4738	&md_scan_mode.attr,
 
4739	&md_mismatches.attr,
4740	&md_sync_min.attr,
4741	&md_sync_max.attr,
4742	&md_sync_speed.attr,
4743	&md_sync_force_parallel.attr,
4744	&md_sync_completed.attr,
4745	&md_min_sync.attr,
4746	&md_max_sync.attr,
4747	&md_suspend_lo.attr,
4748	&md_suspend_hi.attr,
4749	&md_bitmap.attr,
4750	&md_degraded.attr,
4751	NULL,
4752};
4753static struct attribute_group md_redundancy_group = {
4754	.name = NULL,
4755	.attrs = md_redundancy_attrs,
4756};
4757
 
 
 
 
 
4758
4759static ssize_t
4760md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4761{
4762	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4763	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4764	ssize_t rv;
4765
4766	if (!entry->show)
4767		return -EIO;
4768	spin_lock(&all_mddevs_lock);
4769	if (list_empty(&mddev->all_mddevs)) {
4770		spin_unlock(&all_mddevs_lock);
4771		return -EBUSY;
4772	}
4773	mddev_get(mddev);
4774	spin_unlock(&all_mddevs_lock);
4775
4776	rv = mddev_lock(mddev);
4777	if (!rv) {
4778		rv = entry->show(mddev, page);
4779		mddev_unlock(mddev);
4780	}
4781	mddev_put(mddev);
4782	return rv;
4783}
4784
4785static ssize_t
4786md_attr_store(struct kobject *kobj, struct attribute *attr,
4787	      const char *page, size_t length)
4788{
4789	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4790	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4791	ssize_t rv;
4792
4793	if (!entry->store)
4794		return -EIO;
4795	if (!capable(CAP_SYS_ADMIN))
4796		return -EACCES;
4797	spin_lock(&all_mddevs_lock);
4798	if (list_empty(&mddev->all_mddevs)) {
4799		spin_unlock(&all_mddevs_lock);
4800		return -EBUSY;
4801	}
4802	mddev_get(mddev);
4803	spin_unlock(&all_mddevs_lock);
4804	rv = mddev_lock(mddev);
4805	if (!rv) {
4806		rv = entry->store(mddev, page, length);
4807		mddev_unlock(mddev);
4808	}
4809	mddev_put(mddev);
4810	return rv;
4811}
4812
4813static void md_free(struct kobject *ko)
4814{
4815	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4816
4817	if (mddev->sysfs_state)
4818		sysfs_put(mddev->sysfs_state);
 
 
4819
4820	if (mddev->gendisk) {
4821		del_gendisk(mddev->gendisk);
4822		put_disk(mddev->gendisk);
4823	}
4824	if (mddev->queue)
4825		blk_cleanup_queue(mddev->queue);
4826
4827	kfree(mddev);
4828}
4829
4830static const struct sysfs_ops md_sysfs_ops = {
4831	.show	= md_attr_show,
4832	.store	= md_attr_store,
4833};
4834static struct kobj_type md_ktype = {
4835	.release	= md_free,
4836	.sysfs_ops	= &md_sysfs_ops,
4837	.default_attrs	= md_default_attrs,
4838};
4839
4840int mdp_major = 0;
4841
4842static void mddev_delayed_delete(struct work_struct *ws)
4843{
4844	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4845
4846	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4847	kobject_del(&mddev->kobj);
4848	kobject_put(&mddev->kobj);
4849}
4850
4851static int md_alloc(dev_t dev, char *name)
 
 
4852{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4853	static DEFINE_MUTEX(disks_mutex);
4854	struct mddev *mddev = mddev_find(dev);
4855	struct gendisk *disk;
4856	int partitioned;
4857	int shift;
4858	int unit;
4859	int error;
 
 
 
 
 
 
 
4860
4861	if (!mddev)
4862		return -ENODEV;
 
 
 
 
4863
4864	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4865	shift = partitioned ? MdpMinorShift : 0;
4866	unit = MINOR(mddev->unit) >> shift;
4867
4868	/* wait for any previous instance of this device to be
4869	 * completely removed (mddev_delayed_delete).
4870	 */
4871	flush_workqueue(md_misc_wq);
4872
4873	mutex_lock(&disks_mutex);
4874	error = -EEXIST;
4875	if (mddev->gendisk)
4876		goto abort;
4877
4878	if (name) {
4879		/* Need to ensure that 'name' is not a duplicate.
4880		 */
4881		struct mddev *mddev2;
4882		spin_lock(&all_mddevs_lock);
4883
4884		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4885			if (mddev2->gendisk &&
4886			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4887				spin_unlock(&all_mddevs_lock);
4888				goto abort;
 
4889			}
4890		spin_unlock(&all_mddevs_lock);
4891	}
 
 
 
 
 
4892
4893	error = -ENOMEM;
4894	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4895	if (!mddev->queue)
4896		goto abort;
4897	mddev->queue->queuedata = mddev;
4898
4899	blk_queue_make_request(mddev->queue, md_make_request);
4900	blk_set_stacking_limits(&mddev->queue->limits);
4901
4902	disk = alloc_disk(1 << shift);
4903	if (!disk) {
4904		blk_cleanup_queue(mddev->queue);
4905		mddev->queue = NULL;
4906		goto abort;
4907	}
4908	disk->major = MAJOR(mddev->unit);
4909	disk->first_minor = unit << shift;
 
4910	if (name)
4911		strcpy(disk->disk_name, name);
4912	else if (partitioned)
4913		sprintf(disk->disk_name, "md_d%d", unit);
4914	else
4915		sprintf(disk->disk_name, "md%d", unit);
4916	disk->fops = &md_fops;
4917	disk->private_data = mddev;
4918	disk->queue = mddev->queue;
4919	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4920	/* Allow extended partitions.  This makes the
4921	 * 'mdp' device redundant, but we can't really
4922	 * remove it now.
4923	 */
4924	disk->flags |= GENHD_FL_EXT_DEVT;
4925	mddev->gendisk = disk;
4926	/* As soon as we call add_disk(), another thread could get
4927	 * through to md_open, so make sure it doesn't get too far
4928	 */
4929	mutex_lock(&mddev->open_mutex);
4930	add_disk(disk);
4931
4932	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4933				     &disk_to_dev(disk)->kobj, "%s", "md");
4934	if (error) {
4935		/* This isn't possible, but as kobject_init_and_add is marked
4936		 * __must_check, we must do something with the result
 
 
4937		 */
4938		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4939		       disk->disk_name);
4940		error = 0;
4941	}
4942	if (mddev->kobj.sd &&
4943	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4944		printk(KERN_DEBUG "pointless warning\n");
4945	mutex_unlock(&mddev->open_mutex);
4946 abort:
 
 
 
 
 
 
 
 
4947	mutex_unlock(&disks_mutex);
4948	if (!error && mddev->kobj.sd) {
4949		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4950		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4951	}
 
 
 
 
 
4952	mddev_put(mddev);
4953	return error;
4954}
4955
4956static struct kobject *md_probe(dev_t dev, int *part, void *data)
4957{
4958	md_alloc(dev, NULL);
4959	return NULL;
 
 
4960}
4961
4962static int add_named_array(const char *val, struct kernel_param *kp)
4963{
4964	/* val must be "md_*" where * is not all digits.
4965	 * We allocate an array with a large free minor number, and
 
4966	 * set the name to val.  val must not already be an active name.
 
 
4967	 */
4968	int len = strlen(val);
4969	char buf[DISK_NAME_LEN];
 
4970
4971	while (len && val[len-1] == '\n')
4972		len--;
4973	if (len >= DISK_NAME_LEN)
4974		return -E2BIG;
4975	strlcpy(buf, val, len+1);
4976	if (strncmp(buf, "md_", 3) != 0)
4977		return -EINVAL;
4978	return md_alloc(0, buf);
 
 
 
 
 
 
4979}
4980
4981static void md_safemode_timeout(unsigned long data)
4982{
4983	struct mddev *mddev = (struct mddev *) data;
 
 
 
 
4984
4985	if (!atomic_read(&mddev->writes_pending)) {
4986		mddev->safemode = 1;
4987		if (mddev->external)
4988			sysfs_notify_dirent_safe(mddev->sysfs_state);
4989	}
4990	md_wakeup_thread(mddev->thread);
4991}
4992
4993static int start_dirty_degraded;
4994
4995int md_run(struct mddev *mddev)
4996{
4997	int err;
4998	struct md_rdev *rdev;
4999	struct md_personality *pers;
 
5000
5001	if (list_empty(&mddev->disks))
5002		/* cannot run an array with no devices.. */
5003		return -EINVAL;
5004
5005	if (mddev->pers)
5006		return -EBUSY;
5007	/* Cannot run until previous stop completes properly */
5008	if (mddev->sysfs_active)
5009		return -EBUSY;
5010
5011	/*
5012	 * Analyze all RAID superblock(s)
5013	 */
5014	if (!mddev->raid_disks) {
5015		if (!mddev->persistent)
5016			return -EINVAL;
5017		analyze_sbs(mddev);
 
 
5018	}
5019
5020	if (mddev->level != LEVEL_NONE)
5021		request_module("md-level-%d", mddev->level);
5022	else if (mddev->clevel[0])
5023		request_module("md-%s", mddev->clevel);
5024
5025	/*
5026	 * Drop all container device buffers, from now on
5027	 * the only valid external interface is through the md
5028	 * device.
5029	 */
 
5030	rdev_for_each(rdev, mddev) {
5031		if (test_bit(Faulty, &rdev->flags))
5032			continue;
5033		sync_blockdev(rdev->bdev);
5034		invalidate_bdev(rdev->bdev);
 
 
 
 
 
 
 
 
5035
5036		/* perform some consistency tests on the device.
5037		 * We don't want the data to overlap the metadata,
5038		 * Internal Bitmap issues have been handled elsewhere.
5039		 */
5040		if (rdev->meta_bdev) {
5041			/* Nothing to check */;
5042		} else if (rdev->data_offset < rdev->sb_start) {
5043			if (mddev->dev_sectors &&
5044			    rdev->data_offset + mddev->dev_sectors
5045			    > rdev->sb_start) {
5046				printk("md: %s: data overlaps metadata\n",
5047				       mdname(mddev));
5048				return -EINVAL;
5049			}
5050		} else {
5051			if (rdev->sb_start + rdev->sb_size/512
5052			    > rdev->data_offset) {
5053				printk("md: %s: metadata overlaps data\n",
5054				       mdname(mddev));
5055				return -EINVAL;
5056			}
5057		}
5058		sysfs_notify_dirent_safe(rdev->sysfs_state);
 
5059	}
5060
5061	if (mddev->bio_set == NULL)
5062		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5063					       sizeof(struct mddev *));
 
 
 
 
 
 
 
5064
5065	spin_lock(&pers_lock);
5066	pers = find_pers(mddev->level, mddev->clevel);
5067	if (!pers || !try_module_get(pers->owner)) {
5068		spin_unlock(&pers_lock);
5069		if (mddev->level != LEVEL_NONE)
5070			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5071			       mddev->level);
5072		else
5073			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5074			       mddev->clevel);
5075		return -EINVAL;
 
5076	}
5077	mddev->pers = pers;
5078	spin_unlock(&pers_lock);
5079	if (mddev->level != pers->level) {
5080		mddev->level = pers->level;
5081		mddev->new_level = pers->level;
5082	}
5083	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5084
5085	if (mddev->reshape_position != MaxSector &&
5086	    pers->start_reshape == NULL) {
5087		/* This personality cannot handle reshaping... */
5088		mddev->pers = NULL;
5089		module_put(pers->owner);
5090		return -EINVAL;
 
5091	}
5092
5093	if (pers->sync_request) {
5094		/* Warn if this is a potentially silly
5095		 * configuration.
5096		 */
5097		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5098		struct md_rdev *rdev2;
5099		int warned = 0;
5100
5101		rdev_for_each(rdev, mddev)
5102			rdev_for_each(rdev2, mddev) {
5103				if (rdev < rdev2 &&
5104				    rdev->bdev->bd_contains ==
5105				    rdev2->bdev->bd_contains) {
5106					printk(KERN_WARNING
5107					       "%s: WARNING: %s appears to be"
5108					       " on the same physical disk as"
5109					       " %s.\n",
5110					       mdname(mddev),
5111					       bdevname(rdev->bdev,b),
5112					       bdevname(rdev2->bdev,b2));
5113					warned = 1;
5114				}
5115			}
5116
5117		if (warned)
5118			printk(KERN_WARNING
5119			       "True protection against single-disk"
5120			       " failure might be compromised.\n");
5121	}
5122
5123	mddev->recovery = 0;
5124	/* may be over-ridden by personality */
5125	mddev->resync_max_sectors = mddev->dev_sectors;
5126
5127	mddev->ok_start_degraded = start_dirty_degraded;
5128
5129	if (start_readonly && mddev->ro == 0)
5130		mddev->ro = 2; /* read-only, but switch on first write */
5131
5132	err = mddev->pers->run(mddev);
5133	if (err)
5134		printk(KERN_ERR "md: pers->run() failed ...\n");
5135	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5136		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5137			  " but 'external_size' not in effect?\n", __func__);
5138		printk(KERN_ERR
5139		       "md: invalid array_size %llu > default size %llu\n",
5140		       (unsigned long long)mddev->array_sectors / 2,
5141		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5142		err = -EINVAL;
5143		mddev->pers->stop(mddev);
5144	}
5145	if (err == 0 && mddev->pers->sync_request &&
5146	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5147		err = bitmap_create(mddev);
5148		if (err) {
5149			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5150			       mdname(mddev), err);
5151			mddev->pers->stop(mddev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5152		}
5153	}
5154	if (err) {
5155		module_put(mddev->pers->owner);
5156		mddev->pers = NULL;
5157		bitmap_destroy(mddev);
5158		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5159	}
5160	if (mddev->pers->sync_request) {
5161		if (mddev->kobj.sd &&
5162		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5163			printk(KERN_WARNING
5164			       "md: cannot register extra attributes for %s\n",
5165			       mdname(mddev));
5166		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5167	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5168		mddev->ro = 0;
 
 
5169
5170 	atomic_set(&mddev->writes_pending,0);
5171	atomic_set(&mddev->max_corr_read_errors,
5172		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5173	mddev->safemode = 0;
5174	mddev->safemode_timer.function = md_safemode_timeout;
5175	mddev->safemode_timer.data = (unsigned long) mddev;
5176	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
 
5177	mddev->in_sync = 1;
5178	smp_wmb();
5179	mddev->ready = 1;
 
 
5180	rdev_for_each(rdev, mddev)
5181		if (rdev->raid_disk >= 0)
5182			if (sysfs_link_rdev(mddev, rdev))
5183				/* failure here is OK */;
5184	
 
 
 
 
5185	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5186	
5187	if (mddev->flags)
5188		md_update_sb(mddev, 0);
5189
5190	md_new_event(mddev);
5191	sysfs_notify_dirent_safe(mddev->sysfs_state);
5192	sysfs_notify_dirent_safe(mddev->sysfs_action);
5193	sysfs_notify(&mddev->kobj, NULL, "degraded");
5194	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
5195}
5196EXPORT_SYMBOL_GPL(md_run);
5197
5198static int do_md_run(struct mddev *mddev)
5199{
5200	int err;
5201
 
5202	err = md_run(mddev);
5203	if (err)
5204		goto out;
5205	err = bitmap_load(mddev);
5206	if (err) {
5207		bitmap_destroy(mddev);
5208		goto out;
5209	}
5210
 
 
 
 
 
 
5211	md_wakeup_thread(mddev->thread);
5212	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5213
5214	set_capacity(mddev->gendisk, mddev->array_sectors);
5215	revalidate_disk(mddev->gendisk);
5216	mddev->changed = 1;
5217	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
 
 
 
5218out:
 
5219	return err;
5220}
5221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5222static int restart_array(struct mddev *mddev)
5223{
5224	struct gendisk *disk = mddev->gendisk;
 
 
 
5225
5226	/* Complain if it has no devices */
5227	if (list_empty(&mddev->disks))
5228		return -ENXIO;
5229	if (!mddev->pers)
5230		return -EINVAL;
5231	if (!mddev->ro)
5232		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5233	mddev->safemode = 0;
5234	mddev->ro = 0;
5235	set_disk_ro(disk, 0);
5236	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5237		mdname(mddev));
5238	/* Kick recovery or resync if necessary */
5239	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5240	md_wakeup_thread(mddev->thread);
5241	md_wakeup_thread(mddev->sync_thread);
5242	sysfs_notify_dirent_safe(mddev->sysfs_state);
5243	return 0;
5244}
5245
5246/* similar to deny_write_access, but accounts for our holding a reference
5247 * to the file ourselves */
5248static int deny_bitmap_write_access(struct file * file)
5249{
5250	struct inode *inode = file->f_mapping->host;
5251
5252	spin_lock(&inode->i_lock);
5253	if (atomic_read(&inode->i_writecount) > 1) {
5254		spin_unlock(&inode->i_lock);
5255		return -ETXTBSY;
5256	}
5257	atomic_set(&inode->i_writecount, -1);
5258	spin_unlock(&inode->i_lock);
5259
5260	return 0;
5261}
5262
5263void restore_bitmap_write_access(struct file *file)
5264{
5265	struct inode *inode = file->f_mapping->host;
5266
5267	spin_lock(&inode->i_lock);
5268	atomic_set(&inode->i_writecount, 1);
5269	spin_unlock(&inode->i_lock);
5270}
5271
5272static void md_clean(struct mddev *mddev)
5273{
5274	mddev->array_sectors = 0;
5275	mddev->external_size = 0;
5276	mddev->dev_sectors = 0;
5277	mddev->raid_disks = 0;
5278	mddev->recovery_cp = 0;
5279	mddev->resync_min = 0;
5280	mddev->resync_max = MaxSector;
5281	mddev->reshape_position = MaxSector;
5282	mddev->external = 0;
5283	mddev->persistent = 0;
5284	mddev->level = LEVEL_NONE;
5285	mddev->clevel[0] = 0;
5286	mddev->flags = 0;
5287	mddev->ro = 0;
 
5288	mddev->metadata_type[0] = 0;
5289	mddev->chunk_sectors = 0;
5290	mddev->ctime = mddev->utime = 0;
5291	mddev->layout = 0;
5292	mddev->max_disks = 0;
5293	mddev->events = 0;
5294	mddev->can_decrease_events = 0;
5295	mddev->delta_disks = 0;
5296	mddev->reshape_backwards = 0;
5297	mddev->new_level = LEVEL_NONE;
5298	mddev->new_layout = 0;
5299	mddev->new_chunk_sectors = 0;
5300	mddev->curr_resync = 0;
5301	mddev->resync_mismatches = 0;
5302	mddev->suspend_lo = mddev->suspend_hi = 0;
5303	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5304	mddev->recovery = 0;
5305	mddev->in_sync = 0;
5306	mddev->changed = 0;
5307	mddev->degraded = 0;
5308	mddev->safemode = 0;
5309	mddev->merge_check_needed = 0;
 
5310	mddev->bitmap_info.offset = 0;
5311	mddev->bitmap_info.default_offset = 0;
5312	mddev->bitmap_info.default_space = 0;
5313	mddev->bitmap_info.chunksize = 0;
5314	mddev->bitmap_info.daemon_sleep = 0;
5315	mddev->bitmap_info.max_write_behind = 0;
 
5316}
5317
5318static void __md_stop_writes(struct mddev *mddev)
5319{
 
 
 
5320	if (mddev->sync_thread) {
5321		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5322		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5323		reap_sync_thread(mddev);
 
5324	}
5325
5326	del_timer_sync(&mddev->safemode_timer);
5327
5328	bitmap_flush(mddev);
5329	md_super_wait(mddev);
 
 
 
5330
5331	if (!mddev->in_sync || mddev->flags) {
 
 
5332		/* mark array as shutdown cleanly */
5333		mddev->in_sync = 1;
 
5334		md_update_sb(mddev, 1);
5335	}
 
 
 
5336}
5337
5338void md_stop_writes(struct mddev *mddev)
5339{
5340	mddev_lock(mddev);
5341	__md_stop_writes(mddev);
5342	mddev_unlock(mddev);
5343}
5344EXPORT_SYMBOL_GPL(md_stop_writes);
5345
5346void md_stop(struct mddev *mddev)
 
 
 
 
 
 
 
 
 
 
 
 
5347{
5348	mddev->ready = 0;
5349	mddev->pers->stop(mddev);
5350	if (mddev->pers->sync_request && mddev->to_remove == NULL)
 
 
 
 
 
 
 
 
 
 
5351		mddev->to_remove = &md_redundancy_group;
5352	module_put(mddev->pers->owner);
5353	mddev->pers = NULL;
5354	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5355}
 
 
 
 
 
 
 
 
 
 
 
 
5356EXPORT_SYMBOL_GPL(md_stop);
5357
5358static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5359{
5360	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5361	mutex_lock(&mddev->open_mutex);
5362	if (atomic_read(&mddev->openers) > !!bdev) {
5363		printk("md: %s still in use.\n",mdname(mddev));
 
 
 
 
 
 
 
5364		err = -EBUSY;
5365		goto out;
5366	}
5367	if (bdev)
5368		sync_blockdev(bdev);
5369	if (mddev->pers) {
5370		__md_stop_writes(mddev);
5371
5372		err  = -ENXIO;
5373		if (mddev->ro==1)
5374			goto out;
5375		mddev->ro = 1;
5376		set_disk_ro(mddev->gendisk, 1);
5377		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
 
 
5378		sysfs_notify_dirent_safe(mddev->sysfs_state);
5379		err = 0;	
5380	}
5381out:
5382	mutex_unlock(&mddev->open_mutex);
5383	return err;
5384}
5385
5386/* mode:
5387 *   0 - completely stop and dis-assemble array
5388 *   2 - stop but do not disassemble array
5389 */
5390static int do_md_stop(struct mddev * mddev, int mode,
5391		      struct block_device *bdev)
5392{
5393	struct gendisk *disk = mddev->gendisk;
5394	struct md_rdev *rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5395
5396	mutex_lock(&mddev->open_mutex);
5397	if (atomic_read(&mddev->openers) > !!bdev ||
5398	    mddev->sysfs_active) {
5399		printk("md: %s still in use.\n",mdname(mddev));
 
 
5400		mutex_unlock(&mddev->open_mutex);
 
 
 
 
 
5401		return -EBUSY;
5402	}
5403	if (bdev)
5404		/* It is possible IO was issued on some other
5405		 * open file which was closed before we took ->open_mutex.
5406		 * As that was not the last close __blkdev_put will not
5407		 * have called sync_blockdev, so we must.
5408		 */
5409		sync_blockdev(bdev);
5410
5411	if (mddev->pers) {
5412		if (mddev->ro)
5413			set_disk_ro(disk, 0);
5414
5415		__md_stop_writes(mddev);
5416		md_stop(mddev);
5417		mddev->queue->merge_bvec_fn = NULL;
5418		mddev->queue->backing_dev_info.congested_fn = NULL;
5419
5420		/* tell userspace to handle 'inactive' */
5421		sysfs_notify_dirent_safe(mddev->sysfs_state);
5422
5423		rdev_for_each(rdev, mddev)
5424			if (rdev->raid_disk >= 0)
5425				sysfs_unlink_rdev(mddev, rdev);
5426
5427		set_capacity(disk, 0);
5428		mutex_unlock(&mddev->open_mutex);
5429		mddev->changed = 1;
5430		revalidate_disk(disk);
5431
5432		if (mddev->ro)
5433			mddev->ro = 0;
5434	} else
5435		mutex_unlock(&mddev->open_mutex);
5436	/*
5437	 * Free resources if final stop
5438	 */
5439	if (mode == 0) {
5440		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5441
5442		bitmap_destroy(mddev);
5443		if (mddev->bitmap_info.file) {
5444			restore_bitmap_write_access(mddev->bitmap_info.file);
5445			fput(mddev->bitmap_info.file);
5446			mddev->bitmap_info.file = NULL;
 
 
5447		}
5448		mddev->bitmap_info.offset = 0;
5449
5450		export_array(mddev);
5451
5452		md_clean(mddev);
5453		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5454		if (mddev->hold_active == UNTIL_STOP)
5455			mddev->hold_active = 0;
5456	}
5457	blk_integrity_unregister(disk);
5458	md_new_event(mddev);
5459	sysfs_notify_dirent_safe(mddev->sysfs_state);
5460	return 0;
5461}
5462
5463#ifndef MODULE
5464static void autorun_array(struct mddev *mddev)
5465{
5466	struct md_rdev *rdev;
5467	int err;
5468
5469	if (list_empty(&mddev->disks))
5470		return;
5471
5472	printk(KERN_INFO "md: running: ");
5473
5474	rdev_for_each(rdev, mddev) {
5475		char b[BDEVNAME_SIZE];
5476		printk("<%s>", bdevname(rdev->bdev,b));
5477	}
5478	printk("\n");
5479
5480	err = do_md_run(mddev);
5481	if (err) {
5482		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5483		do_md_stop(mddev, 0, NULL);
5484	}
5485}
5486
5487/*
5488 * lets try to run arrays based on all disks that have arrived
5489 * until now. (those are in pending_raid_disks)
5490 *
5491 * the method: pick the first pending disk, collect all disks with
5492 * the same UUID, remove all from the pending list and put them into
5493 * the 'same_array' list. Then order this list based on superblock
5494 * update time (freshest comes first), kick out 'old' disks and
5495 * compare superblocks. If everything's fine then run it.
5496 *
5497 * If "unit" is allocated, then bump its reference count
5498 */
5499static void autorun_devices(int part)
5500{
5501	struct md_rdev *rdev0, *rdev, *tmp;
5502	struct mddev *mddev;
5503	char b[BDEVNAME_SIZE];
5504
5505	printk(KERN_INFO "md: autorun ...\n");
5506	while (!list_empty(&pending_raid_disks)) {
5507		int unit;
5508		dev_t dev;
5509		LIST_HEAD(candidates);
5510		rdev0 = list_entry(pending_raid_disks.next,
5511					 struct md_rdev, same_set);
5512
5513		printk(KERN_INFO "md: considering %s ...\n",
5514			bdevname(rdev0->bdev,b));
5515		INIT_LIST_HEAD(&candidates);
5516		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5517			if (super_90_load(rdev, rdev0, 0) >= 0) {
5518				printk(KERN_INFO "md:  adding %s ...\n",
5519					bdevname(rdev->bdev,b));
5520				list_move(&rdev->same_set, &candidates);
5521			}
5522		/*
5523		 * now we have a set of devices, with all of them having
5524		 * mostly sane superblocks. It's time to allocate the
5525		 * mddev.
5526		 */
5527		if (part) {
5528			dev = MKDEV(mdp_major,
5529				    rdev0->preferred_minor << MdpMinorShift);
5530			unit = MINOR(dev) >> MdpMinorShift;
5531		} else {
5532			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5533			unit = MINOR(dev);
5534		}
5535		if (rdev0->preferred_minor != unit) {
5536			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5537			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5538			break;
5539		}
5540
5541		md_probe(dev, NULL, NULL);
5542		mddev = mddev_find(dev);
5543		if (!mddev || !mddev->gendisk) {
5544			if (mddev)
5545				mddev_put(mddev);
5546			printk(KERN_ERR
5547				"md: cannot allocate memory for md drive.\n");
5548			break;
5549		}
5550		if (mddev_lock(mddev)) 
5551			printk(KERN_WARNING "md: %s locked, cannot run\n",
5552			       mdname(mddev));
5553		else if (mddev->raid_disks || mddev->major_version
5554			 || !list_empty(&mddev->disks)) {
5555			printk(KERN_WARNING 
5556				"md: %s already running, cannot run %s\n",
5557				mdname(mddev), bdevname(rdev0->bdev,b));
5558			mddev_unlock(mddev);
5559		} else {
5560			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5561			mddev->persistent = 1;
5562			rdev_for_each_list(rdev, tmp, &candidates) {
5563				list_del_init(&rdev->same_set);
5564				if (bind_rdev_to_array(rdev, mddev))
5565					export_rdev(rdev);
5566			}
5567			autorun_array(mddev);
5568			mddev_unlock(mddev);
5569		}
5570		/* on success, candidates will be empty, on error
5571		 * it won't...
5572		 */
5573		rdev_for_each_list(rdev, tmp, &candidates) {
5574			list_del_init(&rdev->same_set);
5575			export_rdev(rdev);
5576		}
5577		mddev_put(mddev);
5578	}
5579	printk(KERN_INFO "md: ... autorun DONE.\n");
5580}
5581#endif /* !MODULE */
5582
5583static int get_version(void __user * arg)
5584{
5585	mdu_version_t ver;
5586
5587	ver.major = MD_MAJOR_VERSION;
5588	ver.minor = MD_MINOR_VERSION;
5589	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5590
5591	if (copy_to_user(arg, &ver, sizeof(ver)))
5592		return -EFAULT;
5593
5594	return 0;
5595}
5596
5597static int get_array_info(struct mddev * mddev, void __user * arg)
5598{
5599	mdu_array_info_t info;
5600	int nr,working,insync,failed,spare;
5601	struct md_rdev *rdev;
5602
5603	nr=working=insync=failed=spare=0;
5604	rdev_for_each(rdev, mddev) {
 
5605		nr++;
5606		if (test_bit(Faulty, &rdev->flags))
5607			failed++;
5608		else {
5609			working++;
5610			if (test_bit(In_sync, &rdev->flags))
5611				insync++;	
 
 
 
5612			else
5613				spare++;
5614		}
5615	}
 
5616
5617	info.major_version = mddev->major_version;
5618	info.minor_version = mddev->minor_version;
5619	info.patch_version = MD_PATCHLEVEL_VERSION;
5620	info.ctime         = mddev->ctime;
5621	info.level         = mddev->level;
5622	info.size          = mddev->dev_sectors / 2;
5623	if (info.size != mddev->dev_sectors / 2) /* overflow */
5624		info.size = -1;
5625	info.nr_disks      = nr;
5626	info.raid_disks    = mddev->raid_disks;
5627	info.md_minor      = mddev->md_minor;
5628	info.not_persistent= !mddev->persistent;
5629
5630	info.utime         = mddev->utime;
5631	info.state         = 0;
5632	if (mddev->in_sync)
5633		info.state = (1<<MD_SB_CLEAN);
5634	if (mddev->bitmap && mddev->bitmap_info.offset)
5635		info.state = (1<<MD_SB_BITMAP_PRESENT);
 
 
5636	info.active_disks  = insync;
5637	info.working_disks = working;
5638	info.failed_disks  = failed;
5639	info.spare_disks   = spare;
5640
5641	info.layout        = mddev->layout;
5642	info.chunk_size    = mddev->chunk_sectors << 9;
5643
5644	if (copy_to_user(arg, &info, sizeof(info)))
5645		return -EFAULT;
5646
5647	return 0;
5648}
5649
5650static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5651{
5652	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5653	char *ptr, *buf = NULL;
5654	int err = -ENOMEM;
5655
5656	if (md_allow_write(mddev))
5657		file = kmalloc(sizeof(*file), GFP_NOIO);
5658	else
5659		file = kmalloc(sizeof(*file), GFP_KERNEL);
5660
 
5661	if (!file)
5662		goto out;
5663
5664	/* bitmap disabled, zero the first byte and copy out */
5665	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5666		file->pathname[0] = '\0';
5667		goto copy_out;
 
 
 
 
 
 
 
5668	}
 
5669
5670	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5671	if (!buf)
5672		goto out;
5673
5674	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5675		     buf, sizeof(file->pathname));
5676	if (IS_ERR(ptr))
5677		goto out;
5678
5679	strcpy(file->pathname, ptr);
5680
5681copy_out:
5682	err = 0;
5683	if (copy_to_user(arg, file, sizeof(*file)))
5684		err = -EFAULT;
5685out:
5686	kfree(buf);
5687	kfree(file);
5688	return err;
5689}
5690
5691static int get_disk_info(struct mddev * mddev, void __user * arg)
5692{
5693	mdu_disk_info_t info;
5694	struct md_rdev *rdev;
5695
5696	if (copy_from_user(&info, arg, sizeof(info)))
5697		return -EFAULT;
5698
5699	rdev = find_rdev_nr(mddev, info.number);
 
5700	if (rdev) {
5701		info.major = MAJOR(rdev->bdev->bd_dev);
5702		info.minor = MINOR(rdev->bdev->bd_dev);
5703		info.raid_disk = rdev->raid_disk;
5704		info.state = 0;
5705		if (test_bit(Faulty, &rdev->flags))
5706			info.state |= (1<<MD_DISK_FAULTY);
5707		else if (test_bit(In_sync, &rdev->flags)) {
5708			info.state |= (1<<MD_DISK_ACTIVE);
5709			info.state |= (1<<MD_DISK_SYNC);
5710		}
 
 
5711		if (test_bit(WriteMostly, &rdev->flags))
5712			info.state |= (1<<MD_DISK_WRITEMOSTLY);
 
 
5713	} else {
5714		info.major = info.minor = 0;
5715		info.raid_disk = -1;
5716		info.state = (1<<MD_DISK_REMOVED);
5717	}
 
5718
5719	if (copy_to_user(arg, &info, sizeof(info)))
5720		return -EFAULT;
5721
5722	return 0;
5723}
5724
5725static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5726{
5727	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5728	struct md_rdev *rdev;
5729	dev_t dev = MKDEV(info->major,info->minor);
5730
 
 
 
 
 
 
 
5731	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5732		return -EOVERFLOW;
5733
5734	if (!mddev->raid_disks) {
5735		int err;
5736		/* expecting a device which has a superblock */
5737		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5738		if (IS_ERR(rdev)) {
5739			printk(KERN_WARNING 
5740				"md: md_import_device returned %ld\n",
5741				PTR_ERR(rdev));
5742			return PTR_ERR(rdev);
5743		}
5744		if (!list_empty(&mddev->disks)) {
5745			struct md_rdev *rdev0
5746				= list_entry(mddev->disks.next,
5747					     struct md_rdev, same_set);
5748			err = super_types[mddev->major_version]
5749				.load_super(rdev, rdev0, mddev->minor_version);
5750			if (err < 0) {
5751				printk(KERN_WARNING 
5752					"md: %s has different UUID to %s\n",
5753					bdevname(rdev->bdev,b), 
5754					bdevname(rdev0->bdev,b2));
5755				export_rdev(rdev);
5756				return -EINVAL;
5757			}
5758		}
5759		err = bind_rdev_to_array(rdev, mddev);
5760		if (err)
5761			export_rdev(rdev);
5762		return err;
5763	}
5764
5765	/*
5766	 * add_new_disk can be used once the array is assembled
5767	 * to add "hot spares".  They must already have a superblock
5768	 * written
5769	 */
5770	if (mddev->pers) {
5771		int err;
5772		if (!mddev->pers->hot_add_disk) {
5773			printk(KERN_WARNING 
5774				"%s: personality does not support diskops!\n",
5775			       mdname(mddev));
5776			return -EINVAL;
5777		}
5778		if (mddev->persistent)
5779			rdev = md_import_device(dev, mddev->major_version,
5780						mddev->minor_version);
5781		else
5782			rdev = md_import_device(dev, -1, -1);
5783		if (IS_ERR(rdev)) {
5784			printk(KERN_WARNING 
5785				"md: md_import_device returned %ld\n",
5786				PTR_ERR(rdev));
5787			return PTR_ERR(rdev);
5788		}
5789		/* set saved_raid_disk if appropriate */
5790		if (!mddev->persistent) {
5791			if (info->state & (1<<MD_DISK_SYNC)  &&
5792			    info->raid_disk < mddev->raid_disks) {
5793				rdev->raid_disk = info->raid_disk;
5794				set_bit(In_sync, &rdev->flags);
 
5795			} else
5796				rdev->raid_disk = -1;
 
5797		} else
5798			super_types[mddev->major_version].
5799				validate_super(mddev, rdev);
5800		if ((info->state & (1<<MD_DISK_SYNC)) &&
5801		     rdev->raid_disk != info->raid_disk) {
5802			/* This was a hot-add request, but events doesn't
5803			 * match, so reject it.
5804			 */
5805			export_rdev(rdev);
5806			return -EINVAL;
5807		}
5808
5809		if (test_bit(In_sync, &rdev->flags))
5810			rdev->saved_raid_disk = rdev->raid_disk;
5811		else
5812			rdev->saved_raid_disk = -1;
5813
5814		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5815		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5816			set_bit(WriteMostly, &rdev->flags);
5817		else
5818			clear_bit(WriteMostly, &rdev->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5819
5820		rdev->raid_disk = -1;
5821		err = bind_rdev_to_array(rdev, mddev);
5822		if (!err && !mddev->pers->hot_remove_disk) {
5823			/* If there is hot_add_disk but no hot_remove_disk
5824			 * then added disks for geometry changes,
5825			 * and should be added immediately.
5826			 */
5827			super_types[mddev->major_version].
5828				validate_super(mddev, rdev);
5829			err = mddev->pers->hot_add_disk(mddev, rdev);
5830			if (err)
5831				unbind_rdev_from_array(rdev);
5832		}
5833		if (err)
5834			export_rdev(rdev);
5835		else
5836			sysfs_notify_dirent_safe(rdev->sysfs_state);
5837
5838		md_update_sb(mddev, 1);
5839		if (mddev->degraded)
5840			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5841		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5842		if (!err)
5843			md_new_event(mddev);
5844		md_wakeup_thread(mddev->thread);
 
 
 
 
 
 
 
 
 
 
 
5845		return err;
5846	}
5847
5848	/* otherwise, add_new_disk is only allowed
5849	 * for major_version==0 superblocks
5850	 */
5851	if (mddev->major_version != 0) {
5852		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5853		       mdname(mddev));
5854		return -EINVAL;
5855	}
5856
5857	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5858		int err;
5859		rdev = md_import_device(dev, -1, 0);
5860		if (IS_ERR(rdev)) {
5861			printk(KERN_WARNING 
5862				"md: error, md_import_device() returned %ld\n",
5863				PTR_ERR(rdev));
5864			return PTR_ERR(rdev);
5865		}
5866		rdev->desc_nr = info->number;
5867		if (info->raid_disk < mddev->raid_disks)
5868			rdev->raid_disk = info->raid_disk;
5869		else
5870			rdev->raid_disk = -1;
5871
5872		if (rdev->raid_disk < mddev->raid_disks)
5873			if (info->state & (1<<MD_DISK_SYNC))
5874				set_bit(In_sync, &rdev->flags);
5875
5876		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5877			set_bit(WriteMostly, &rdev->flags);
 
 
5878
5879		if (!mddev->persistent) {
5880			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5881			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5882		} else
5883			rdev->sb_start = calc_dev_sboffset(rdev);
5884		rdev->sectors = rdev->sb_start;
5885
5886		err = bind_rdev_to_array(rdev, mddev);
5887		if (err) {
5888			export_rdev(rdev);
5889			return err;
5890		}
5891	}
5892
5893	return 0;
5894}
5895
5896static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5897{
5898	char b[BDEVNAME_SIZE];
5899	struct md_rdev *rdev;
5900
 
 
 
5901	rdev = find_rdev(mddev, dev);
5902	if (!rdev)
5903		return -ENXIO;
5904
 
 
 
 
 
 
5905	if (rdev->raid_disk >= 0)
5906		goto busy;
5907
5908	kick_rdev_from_array(rdev);
5909	md_update_sb(mddev, 1);
5910	md_new_event(mddev);
 
 
 
 
 
 
 
 
 
 
5911
5912	return 0;
5913busy:
5914	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5915		bdevname(rdev->bdev,b), mdname(mddev));
5916	return -EBUSY;
5917}
5918
5919static int hot_add_disk(struct mddev * mddev, dev_t dev)
5920{
5921	char b[BDEVNAME_SIZE];
5922	int err;
5923	struct md_rdev *rdev;
5924
5925	if (!mddev->pers)
5926		return -ENODEV;
5927
5928	if (mddev->major_version != 0) {
5929		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5930			" version-0 superblocks.\n",
5931			mdname(mddev));
5932		return -EINVAL;
5933	}
5934	if (!mddev->pers->hot_add_disk) {
5935		printk(KERN_WARNING 
5936			"%s: personality does not support diskops!\n",
5937			mdname(mddev));
5938		return -EINVAL;
5939	}
5940
5941	rdev = md_import_device(dev, -1, 0);
5942	if (IS_ERR(rdev)) {
5943		printk(KERN_WARNING 
5944			"md: error, md_import_device() returned %ld\n",
5945			PTR_ERR(rdev));
5946		return -EINVAL;
5947	}
5948
5949	if (mddev->persistent)
5950		rdev->sb_start = calc_dev_sboffset(rdev);
5951	else
5952		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5953
5954	rdev->sectors = rdev->sb_start;
5955
5956	if (test_bit(Faulty, &rdev->flags)) {
5957		printk(KERN_WARNING 
5958			"md: can not hot-add faulty %s disk to %s!\n",
5959			bdevname(rdev->bdev,b), mdname(mddev));
5960		err = -EINVAL;
5961		goto abort_export;
5962	}
 
5963	clear_bit(In_sync, &rdev->flags);
5964	rdev->desc_nr = -1;
5965	rdev->saved_raid_disk = -1;
5966	err = bind_rdev_to_array(rdev, mddev);
5967	if (err)
5968		goto abort_export;
5969
5970	/*
5971	 * The rest should better be atomic, we can have disk failures
5972	 * noticed in interrupt contexts ...
5973	 */
5974
5975	rdev->raid_disk = -1;
5976
5977	md_update_sb(mddev, 1);
5978
 
 
 
 
 
 
 
 
 
 
5979	/*
5980	 * Kick recovery, maybe this spare has to be added to the
5981	 * array immediately.
5982	 */
5983	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5984	md_wakeup_thread(mddev->thread);
5985	md_new_event(mddev);
5986	return 0;
5987
5988abort_export:
5989	export_rdev(rdev);
5990	return err;
5991}
5992
5993static int set_bitmap_file(struct mddev *mddev, int fd)
5994{
5995	int err;
5996
5997	if (mddev->pers) {
5998		if (!mddev->pers->quiesce)
5999			return -EBUSY;
6000		if (mddev->recovery || mddev->sync_thread)
6001			return -EBUSY;
6002		/* we should be able to change the bitmap.. */
6003	}
6004
 
 
 
6005
6006	if (fd >= 0) {
6007		if (mddev->bitmap)
6008			return -EEXIST; /* cannot add when bitmap is present */
6009		mddev->bitmap_info.file = fget(fd);
6010
6011		if (mddev->bitmap_info.file == NULL) {
6012			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6013			       mdname(mddev));
6014			return -EBADF;
6015		}
6016
6017		err = deny_bitmap_write_access(mddev->bitmap_info.file);
 
 
 
 
 
 
 
 
 
 
 
 
 
6018		if (err) {
6019			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6020			       mdname(mddev));
6021			fput(mddev->bitmap_info.file);
6022			mddev->bitmap_info.file = NULL;
6023			return err;
6024		}
 
6025		mddev->bitmap_info.offset = 0; /* file overrides offset */
6026	} else if (mddev->bitmap == NULL)
6027		return -ENOENT; /* cannot remove what isn't there */
6028	err = 0;
6029	if (mddev->pers) {
6030		mddev->pers->quiesce(mddev, 1);
6031		if (fd >= 0) {
6032			err = bitmap_create(mddev);
6033			if (!err)
6034				err = bitmap_load(mddev);
6035		}
6036		if (fd < 0 || err) {
6037			bitmap_destroy(mddev);
6038			fd = -1; /* make sure to put the file */
 
 
 
 
 
 
 
 
 
 
 
6039		}
6040		mddev->pers->quiesce(mddev, 0);
6041	}
6042	if (fd < 0) {
6043		if (mddev->bitmap_info.file) {
6044			restore_bitmap_write_access(mddev->bitmap_info.file);
6045			fput(mddev->bitmap_info.file);
 
 
 
6046		}
6047		mddev->bitmap_info.file = NULL;
6048	}
6049
6050	return err;
6051}
6052
6053/*
6054 * set_array_info is used two different ways
6055 * The original usage is when creating a new array.
6056 * In this usage, raid_disks is > 0 and it together with
6057 *  level, size, not_persistent,layout,chunksize determine the
6058 *  shape of the array.
6059 *  This will always create an array with a type-0.90.0 superblock.
6060 * The newer usage is when assembling an array.
6061 *  In this case raid_disks will be 0, and the major_version field is
6062 *  use to determine which style super-blocks are to be found on the devices.
6063 *  The minor and patch _version numbers are also kept incase the
6064 *  super_block handler wishes to interpret them.
6065 */
6066static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6067{
6068
6069	if (info->raid_disks == 0) {
6070		/* just setting version number for superblock loading */
6071		if (info->major_version < 0 ||
6072		    info->major_version >= ARRAY_SIZE(super_types) ||
6073		    super_types[info->major_version].name == NULL) {
6074			/* maybe try to auto-load a module? */
6075			printk(KERN_INFO 
6076				"md: superblock version %d not known\n",
6077				info->major_version);
6078			return -EINVAL;
6079		}
6080		mddev->major_version = info->major_version;
6081		mddev->minor_version = info->minor_version;
6082		mddev->patch_version = info->patch_version;
6083		mddev->persistent = !info->not_persistent;
6084		/* ensure mddev_put doesn't delete this now that there
6085		 * is some minimal configuration.
6086		 */
6087		mddev->ctime         = get_seconds();
6088		return 0;
6089	}
6090	mddev->major_version = MD_MAJOR_VERSION;
6091	mddev->minor_version = MD_MINOR_VERSION;
6092	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6093	mddev->ctime         = get_seconds();
6094
6095	mddev->level         = info->level;
6096	mddev->clevel[0]     = 0;
6097	mddev->dev_sectors   = 2 * (sector_t)info->size;
6098	mddev->raid_disks    = info->raid_disks;
6099	/* don't set md_minor, it is determined by which /dev/md* was
6100	 * openned
6101	 */
6102	if (info->state & (1<<MD_SB_CLEAN))
6103		mddev->recovery_cp = MaxSector;
6104	else
6105		mddev->recovery_cp = 0;
6106	mddev->persistent    = ! info->not_persistent;
6107	mddev->external	     = 0;
6108
6109	mddev->layout        = info->layout;
 
 
 
6110	mddev->chunk_sectors = info->chunk_size >> 9;
6111
6112	mddev->max_disks     = MD_SB_DISKS;
6113
6114	if (mddev->persistent)
6115		mddev->flags         = 0;
6116	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
6117
6118	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6119	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6120	mddev->bitmap_info.offset = 0;
6121
6122	mddev->reshape_position = MaxSector;
6123
6124	/*
6125	 * Generate a 128 bit UUID
6126	 */
6127	get_random_bytes(mddev->uuid, 16);
6128
6129	mddev->new_level = mddev->level;
6130	mddev->new_chunk_sectors = mddev->chunk_sectors;
6131	mddev->new_layout = mddev->layout;
6132	mddev->delta_disks = 0;
6133	mddev->reshape_backwards = 0;
6134
6135	return 0;
6136}
6137
6138void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6139{
6140	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6141
6142	if (mddev->external_size)
6143		return;
6144
6145	mddev->array_sectors = array_sectors;
6146}
6147EXPORT_SYMBOL(md_set_array_sectors);
6148
6149static int update_size(struct mddev *mddev, sector_t num_sectors)
6150{
6151	struct md_rdev *rdev;
6152	int rv;
6153	int fit = (num_sectors == 0);
 
6154
6155	if (mddev->pers->resize == NULL)
6156		return -EINVAL;
6157	/* The "num_sectors" is the number of sectors of each device that
6158	 * is used.  This can only make sense for arrays with redundancy.
6159	 * linear and raid0 always use whatever space is available. We can only
6160	 * consider changing this number if no resync or reconstruction is
6161	 * happening, and if the new size is acceptable. It must fit before the
6162	 * sb_start or, if that is <data_offset, it must fit before the size
6163	 * of each device.  If num_sectors is zero, we find the largest size
6164	 * that fits.
6165	 */
6166	if (mddev->sync_thread)
 
6167		return -EBUSY;
 
 
6168
6169	rdev_for_each(rdev, mddev) {
6170		sector_t avail = rdev->sectors;
6171
6172		if (fit && (num_sectors == 0 || num_sectors > avail))
6173			num_sectors = avail;
6174		if (avail < num_sectors)
6175			return -ENOSPC;
6176	}
6177	rv = mddev->pers->resize(mddev, num_sectors);
6178	if (!rv)
6179		revalidate_disk(mddev->gendisk);
 
 
 
 
 
 
6180	return rv;
6181}
6182
6183static int update_raid_disks(struct mddev *mddev, int raid_disks)
6184{
6185	int rv;
6186	struct md_rdev *rdev;
6187	/* change the number of raid disks */
6188	if (mddev->pers->check_reshape == NULL)
6189		return -EINVAL;
 
 
6190	if (raid_disks <= 0 ||
6191	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6192		return -EINVAL;
6193	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
 
 
 
6194		return -EBUSY;
6195
6196	rdev_for_each(rdev, mddev) {
6197		if (mddev->raid_disks < raid_disks &&
6198		    rdev->data_offset < rdev->new_data_offset)
6199			return -EINVAL;
6200		if (mddev->raid_disks > raid_disks &&
6201		    rdev->data_offset > rdev->new_data_offset)
6202			return -EINVAL;
6203	}
6204
6205	mddev->delta_disks = raid_disks - mddev->raid_disks;
6206	if (mddev->delta_disks < 0)
6207		mddev->reshape_backwards = 1;
6208	else if (mddev->delta_disks > 0)
6209		mddev->reshape_backwards = 0;
6210
6211	rv = mddev->pers->check_reshape(mddev);
6212	if (rv < 0) {
6213		mddev->delta_disks = 0;
6214		mddev->reshape_backwards = 0;
6215	}
6216	return rv;
6217}
6218
6219
6220/*
6221 * update_array_info is used to change the configuration of an
6222 * on-line array.
6223 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6224 * fields in the info are checked against the array.
6225 * Any differences that cannot be handled will cause an error.
6226 * Normally, only one change can be managed at a time.
6227 */
6228static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6229{
6230	int rv = 0;
6231	int cnt = 0;
6232	int state = 0;
6233
6234	/* calculate expected state,ignoring low bits */
6235	if (mddev->bitmap && mddev->bitmap_info.offset)
6236		state |= (1 << MD_SB_BITMAP_PRESENT);
6237
6238	if (mddev->major_version != info->major_version ||
6239	    mddev->minor_version != info->minor_version ||
6240/*	    mddev->patch_version != info->patch_version || */
6241	    mddev->ctime         != info->ctime         ||
6242	    mddev->level         != info->level         ||
6243/*	    mddev->layout        != info->layout        || */
6244	    !mddev->persistent	 != info->not_persistent||
6245	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6246	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6247	    ((state^info->state) & 0xfffffe00)
6248		)
6249		return -EINVAL;
6250	/* Check there is only one change */
6251	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6252		cnt++;
6253	if (mddev->raid_disks != info->raid_disks)
6254		cnt++;
6255	if (mddev->layout != info->layout)
6256		cnt++;
6257	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6258		cnt++;
6259	if (cnt == 0)
6260		return 0;
6261	if (cnt > 1)
6262		return -EINVAL;
6263
6264	if (mddev->layout != info->layout) {
6265		/* Change layout
6266		 * we don't need to do anything at the md level, the
6267		 * personality will take care of it all.
6268		 */
6269		if (mddev->pers->check_reshape == NULL)
6270			return -EINVAL;
6271		else {
6272			mddev->new_layout = info->layout;
6273			rv = mddev->pers->check_reshape(mddev);
6274			if (rv)
6275				mddev->new_layout = mddev->layout;
6276			return rv;
6277		}
6278	}
6279	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6280		rv = update_size(mddev, (sector_t)info->size * 2);
6281
6282	if (mddev->raid_disks    != info->raid_disks)
6283		rv = update_raid_disks(mddev, info->raid_disks);
6284
6285	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6286		if (mddev->pers->quiesce == NULL)
6287			return -EINVAL;
6288		if (mddev->recovery || mddev->sync_thread)
6289			return -EBUSY;
 
 
 
 
6290		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
 
6291			/* add the bitmap */
6292			if (mddev->bitmap)
6293				return -EEXIST;
6294			if (mddev->bitmap_info.default_offset == 0)
6295				return -EINVAL;
 
 
 
 
6296			mddev->bitmap_info.offset =
6297				mddev->bitmap_info.default_offset;
6298			mddev->bitmap_info.space =
6299				mddev->bitmap_info.default_space;
6300			mddev->pers->quiesce(mddev, 1);
6301			rv = bitmap_create(mddev);
6302			if (!rv)
6303				rv = bitmap_load(mddev);
 
 
 
6304			if (rv)
6305				bitmap_destroy(mddev);
6306			mddev->pers->quiesce(mddev, 0);
6307		} else {
6308			/* remove the bitmap */
6309			if (!mddev->bitmap)
6310				return -ENOENT;
6311			if (mddev->bitmap->storage.file)
6312				return -EINVAL;
6313			mddev->pers->quiesce(mddev, 1);
6314			bitmap_destroy(mddev);
6315			mddev->pers->quiesce(mddev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6316			mddev->bitmap_info.offset = 0;
6317		}
6318	}
6319	md_update_sb(mddev, 1);
6320	return rv;
 
 
6321}
6322
6323static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6324{
6325	struct md_rdev *rdev;
 
6326
6327	if (mddev->pers == NULL)
6328		return -ENODEV;
6329
6330	rdev = find_rdev(mddev, dev);
 
6331	if (!rdev)
6332		return -ENODEV;
6333
6334	md_error(mddev, rdev);
6335	if (!test_bit(Faulty, &rdev->flags))
6336		return -EBUSY;
6337	return 0;
 
 
6338}
6339
6340/*
6341 * We have a problem here : there is no easy way to give a CHS
6342 * virtual geometry. We currently pretend that we have a 2 heads
6343 * 4 sectors (with a BIG number of cylinders...). This drives
6344 * dosfs just mad... ;-)
6345 */
6346static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6347{
6348	struct mddev *mddev = bdev->bd_disk->private_data;
6349
6350	geo->heads = 2;
6351	geo->sectors = 4;
6352	geo->cylinders = mddev->array_sectors / 8;
6353	return 0;
6354}
6355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6356static int md_ioctl(struct block_device *bdev, fmode_t mode,
6357			unsigned int cmd, unsigned long arg)
6358{
6359	int err = 0;
6360	void __user *argp = (void __user *)arg;
6361	struct mddev *mddev = NULL;
6362	int ro;
 
 
 
6363
6364	switch (cmd) {
6365	case RAID_VERSION:
6366	case GET_ARRAY_INFO:
6367	case GET_DISK_INFO:
6368		break;
6369	default:
6370		if (!capable(CAP_SYS_ADMIN))
6371			return -EACCES;
6372	}
6373
6374	/*
6375	 * Commands dealing with the RAID driver but not any
6376	 * particular array:
6377	 */
6378	switch (cmd)
6379	{
6380		case RAID_VERSION:
6381			err = get_version(argp);
6382			goto done;
6383
6384		case PRINT_RAID_DEBUG:
6385			err = 0;
6386			md_print_devices();
6387			goto done;
6388
6389#ifndef MODULE
6390		case RAID_AUTORUN:
6391			err = 0;
6392			autostart_arrays(arg);
6393			goto done;
6394#endif
6395		default:;
6396	}
6397
6398	/*
6399	 * Commands creating/starting a new array:
6400	 */
6401
6402	mddev = bdev->bd_disk->private_data;
6403
6404	if (!mddev) {
6405		BUG();
6406		goto abort;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6407	}
6408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6409	err = mddev_lock(mddev);
6410	if (err) {
6411		printk(KERN_INFO 
6412			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6413			err, cmd);
6414		goto abort;
6415	}
6416
6417	switch (cmd)
6418	{
6419		case SET_ARRAY_INFO:
6420			{
6421				mdu_array_info_t info;
6422				if (!arg)
6423					memset(&info, 0, sizeof(info));
6424				else if (copy_from_user(&info, argp, sizeof(info))) {
6425					err = -EFAULT;
6426					goto abort_unlock;
6427				}
6428				if (mddev->pers) {
6429					err = update_array_info(mddev, &info);
6430					if (err) {
6431						printk(KERN_WARNING "md: couldn't update"
6432						       " array info. %d\n", err);
6433						goto abort_unlock;
6434					}
6435					goto done_unlock;
6436				}
6437				if (!list_empty(&mddev->disks)) {
6438					printk(KERN_WARNING
6439					       "md: array %s already has disks!\n",
6440					       mdname(mddev));
6441					err = -EBUSY;
6442					goto abort_unlock;
6443				}
6444				if (mddev->raid_disks) {
6445					printk(KERN_WARNING
6446					       "md: array %s already initialised!\n",
6447					       mdname(mddev));
6448					err = -EBUSY;
6449					goto abort_unlock;
6450				}
6451				err = set_array_info(mddev, &info);
6452				if (err) {
6453					printk(KERN_WARNING "md: couldn't set"
6454					       " array info. %d\n", err);
6455					goto abort_unlock;
6456				}
6457			}
6458			goto done_unlock;
6459
6460		default:;
6461	}
6462
6463	/*
6464	 * Commands querying/configuring an existing array:
6465	 */
6466	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6467	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6468	if ((!mddev->raid_disks && !mddev->external)
6469	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6470	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6471	    && cmd != GET_BITMAP_FILE) {
6472		err = -ENODEV;
6473		goto abort_unlock;
6474	}
6475
6476	/*
6477	 * Commands even a read-only array can execute:
6478	 */
6479	switch (cmd)
6480	{
6481		case GET_ARRAY_INFO:
6482			err = get_array_info(mddev, argp);
6483			goto done_unlock;
 
 
 
 
 
 
 
6484
6485		case GET_BITMAP_FILE:
6486			err = get_bitmap_file(mddev, argp);
6487			goto done_unlock;
6488
6489		case GET_DISK_INFO:
6490			err = get_disk_info(mddev, argp);
6491			goto done_unlock;
6492
6493		case RESTART_ARRAY_RW:
6494			err = restart_array(mddev);
6495			goto done_unlock;
6496
6497		case STOP_ARRAY:
6498			err = do_md_stop(mddev, 0, bdev);
6499			goto done_unlock;
6500
6501		case STOP_ARRAY_RO:
6502			err = md_set_readonly(mddev, bdev);
6503			goto done_unlock;
6504
6505		case BLKROSET:
6506			if (get_user(ro, (int __user *)(arg))) {
6507				err = -EFAULT;
6508				goto done_unlock;
6509			}
6510			err = -EINVAL;
6511
6512			/* if the bdev is going readonly the value of mddev->ro
6513			 * does not matter, no writes are coming
6514			 */
6515			if (ro)
6516				goto done_unlock;
6517
6518			/* are we are already prepared for writes? */
6519			if (mddev->ro != 1)
6520				goto done_unlock;
6521
6522			/* transitioning to readauto need only happen for
6523			 * arrays that call md_write_start
6524			 */
6525			if (mddev->pers) {
6526				err = restart_array(mddev);
6527				if (err == 0) {
6528					mddev->ro = 2;
6529					set_disk_ro(mddev->gendisk, 0);
6530				}
6531			}
6532			goto done_unlock;
6533	}
6534
6535	/*
6536	 * The remaining ioctls are changing the state of the
6537	 * superblock, so we do not allow them on read-only arrays.
6538	 * However non-MD ioctls (e.g. get-size) will still come through
6539	 * here and hit the 'default' below, so only disallow
6540	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6541	 */
6542	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6543		if (mddev->ro == 2) {
6544			mddev->ro = 0;
6545			sysfs_notify_dirent_safe(mddev->sysfs_state);
6546			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6547			md_wakeup_thread(mddev->thread);
6548		} else {
6549			err = -EROFS;
6550			goto abort_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6551		}
6552	}
6553
6554	switch (cmd)
 
6555	{
6556		case ADD_NEW_DISK:
6557		{
6558			mdu_disk_info_t info;
6559			if (copy_from_user(&info, argp, sizeof(info)))
6560				err = -EFAULT;
6561			else
6562				err = add_new_disk(mddev, &info);
6563			goto done_unlock;
6564		}
6565
6566		case HOT_REMOVE_DISK:
6567			err = hot_remove_disk(mddev, new_decode_dev(arg));
6568			goto done_unlock;
 
 
 
6569
6570		case HOT_ADD_DISK:
6571			err = hot_add_disk(mddev, new_decode_dev(arg));
6572			goto done_unlock;
6573
6574		case SET_DISK_FAULTY:
6575			err = set_disk_faulty(mddev, new_decode_dev(arg));
6576			goto done_unlock;
6577
6578		case RUN_ARRAY:
6579			err = do_md_run(mddev);
6580			goto done_unlock;
6581
6582		case SET_BITMAP_FILE:
6583			err = set_bitmap_file(mddev, (int)arg);
6584			goto done_unlock;
6585
6586		default:
6587			err = -EINVAL;
6588			goto abort_unlock;
6589	}
6590
6591done_unlock:
6592abort_unlock:
6593	if (mddev->hold_active == UNTIL_IOCTL &&
6594	    err != -EINVAL)
6595		mddev->hold_active = 0;
6596	mddev_unlock(mddev);
6597
6598	return err;
6599done:
6600	if (err)
6601		MD_BUG();
6602abort:
6603	return err;
6604}
6605#ifdef CONFIG_COMPAT
6606static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6607		    unsigned int cmd, unsigned long arg)
6608{
6609	switch (cmd) {
6610	case HOT_REMOVE_DISK:
6611	case HOT_ADD_DISK:
6612	case SET_DISK_FAULTY:
6613	case SET_BITMAP_FILE:
6614		/* These take in integer arg, do not convert */
6615		break;
6616	default:
6617		arg = (unsigned long)compat_ptr(arg);
6618		break;
6619	}
6620
6621	return md_ioctl(bdev, mode, cmd, arg);
6622}
6623#endif /* CONFIG_COMPAT */
6624
6625static int md_open(struct block_device *bdev, fmode_t mode)
6626{
 
 
 
 
 
 
 
 
 
 
 
 
6627	/*
6628	 * Succeed if we can lock the mddev, which confirms that
6629	 * it isn't being stopped right now.
6630	 */
6631	struct mddev *mddev = mddev_find(bdev->bd_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6632	int err;
6633
 
 
 
6634	if (!mddev)
6635		return -ENODEV;
6636
6637	if (mddev->gendisk != bdev->bd_disk) {
6638		/* we are racing with mddev_put which is discarding this
6639		 * bd_disk.
6640		 */
6641		mddev_put(mddev);
6642		/* Wait until bdev->bd_disk is definitely gone */
6643		flush_workqueue(md_misc_wq);
6644		/* Then retry the open from the top */
6645		return -ERESTARTSYS;
6646	}
6647	BUG_ON(mddev != bdev->bd_disk->private_data);
6648
6649	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6650		goto out;
 
6651
6652	err = 0;
6653	atomic_inc(&mddev->openers);
6654	mutex_unlock(&mddev->open_mutex);
6655
6656	check_disk_change(bdev);
6657 out:
 
 
 
 
 
6658	return err;
6659}
6660
6661static int md_release(struct gendisk *disk, fmode_t mode)
6662{
6663 	struct mddev *mddev = disk->private_data;
6664
6665	BUG_ON(!mddev);
6666	atomic_dec(&mddev->openers);
6667	mddev_put(mddev);
6668
6669	return 0;
6670}
6671
6672static int md_media_changed(struct gendisk *disk)
6673{
6674	struct mddev *mddev = disk->private_data;
 
6675
6676	return mddev->changed;
 
 
 
6677}
6678
6679static int md_revalidate(struct gendisk *disk)
6680{
6681	struct mddev *mddev = disk->private_data;
6682
6683	mddev->changed = 0;
6684	return 0;
 
 
 
6685}
6686static const struct block_device_operations md_fops =
 
6687{
6688	.owner		= THIS_MODULE,
 
6689	.open		= md_open,
6690	.release	= md_release,
6691	.ioctl		= md_ioctl,
6692#ifdef CONFIG_COMPAT
6693	.compat_ioctl	= md_compat_ioctl,
6694#endif
6695	.getgeo		= md_getgeo,
6696	.media_changed  = md_media_changed,
6697	.revalidate_disk= md_revalidate,
 
6698};
6699
6700static int md_thread(void * arg)
6701{
6702	struct md_thread *thread = arg;
6703
6704	/*
6705	 * md_thread is a 'system-thread', it's priority should be very
6706	 * high. We avoid resource deadlocks individually in each
6707	 * raid personality. (RAID5 does preallocation) We also use RR and
6708	 * the very same RT priority as kswapd, thus we will never get
6709	 * into a priority inversion deadlock.
6710	 *
6711	 * we definitely have to have equal or higher priority than
6712	 * bdflush, otherwise bdflush will deadlock if there are too
6713	 * many dirty RAID5 blocks.
6714	 */
6715
6716	allow_signal(SIGKILL);
6717	while (!kthread_should_stop()) {
6718
6719		/* We need to wait INTERRUPTIBLE so that
6720		 * we don't add to the load-average.
6721		 * That means we need to be sure no signals are
6722		 * pending
6723		 */
6724		if (signal_pending(current))
6725			flush_signals(current);
6726
6727		wait_event_interruptible_timeout
6728			(thread->wqueue,
6729			 test_bit(THREAD_WAKEUP, &thread->flags)
6730			 || kthread_should_stop(),
6731			 thread->timeout);
6732
6733		clear_bit(THREAD_WAKEUP, &thread->flags);
 
 
6734		if (!kthread_should_stop())
6735			thread->run(thread->mddev);
6736	}
6737
6738	return 0;
6739}
6740
6741void md_wakeup_thread(struct md_thread *thread)
6742{
6743	if (thread) {
6744		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6745		set_bit(THREAD_WAKEUP, &thread->flags);
6746		wake_up(&thread->wqueue);
6747	}
6748}
 
6749
6750struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6751				 const char *name)
6752{
6753	struct md_thread *thread;
6754
6755	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6756	if (!thread)
6757		return NULL;
6758
6759	init_waitqueue_head(&thread->wqueue);
6760
6761	thread->run = run;
6762	thread->mddev = mddev;
6763	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6764	thread->tsk = kthread_run(md_thread, thread,
6765				  "%s_%s",
6766				  mdname(thread->mddev),
6767				  name);
6768	if (IS_ERR(thread->tsk)) {
6769		kfree(thread);
6770		return NULL;
6771	}
6772	return thread;
6773}
 
6774
6775void md_unregister_thread(struct md_thread **threadp)
6776{
6777	struct md_thread *thread = *threadp;
6778	if (!thread)
6779		return;
6780	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6781	/* Locking ensures that mddev_unlock does not wake_up a
6782	 * non-existent thread
6783	 */
6784	spin_lock(&pers_lock);
 
 
 
 
 
6785	*threadp = NULL;
6786	spin_unlock(&pers_lock);
6787
 
6788	kthread_stop(thread->tsk);
6789	kfree(thread);
6790}
 
6791
6792void md_error(struct mddev *mddev, struct md_rdev *rdev)
6793{
6794	if (!mddev) {
6795		MD_BUG();
6796		return;
6797	}
6798
6799	if (!rdev || test_bit(Faulty, &rdev->flags))
6800		return;
6801
6802	if (!mddev->pers || !mddev->pers->error_handler)
6803		return;
6804	mddev->pers->error_handler(mddev,rdev);
6805	if (mddev->degraded)
 
6806		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6807	sysfs_notify_dirent_safe(rdev->sysfs_state);
6808	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6809	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6810	md_wakeup_thread(mddev->thread);
 
 
6811	if (mddev->event_work.func)
6812		queue_work(md_misc_wq, &mddev->event_work);
6813	md_new_event_inintr(mddev);
6814}
 
6815
6816/* seq_file implementation /proc/mdstat */
6817
6818static void status_unused(struct seq_file *seq)
6819{
6820	int i = 0;
6821	struct md_rdev *rdev;
6822
6823	seq_printf(seq, "unused devices: ");
6824
6825	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6826		char b[BDEVNAME_SIZE];
6827		i++;
6828		seq_printf(seq, "%s ",
6829			      bdevname(rdev->bdev,b));
6830	}
6831	if (!i)
6832		seq_printf(seq, "<none>");
6833
6834	seq_printf(seq, "\n");
6835}
6836
6837
6838static void status_resync(struct seq_file *seq, struct mddev * mddev)
6839{
6840	sector_t max_sectors, resync, res;
6841	unsigned long dt, db;
6842	sector_t rt;
6843	int scale;
6844	unsigned int per_milli;
6845
6846	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6847
6848	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6849	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6850		max_sectors = mddev->resync_max_sectors;
6851	else
6852		max_sectors = mddev->dev_sectors;
6853
6854	/*
6855	 * Should not happen.
6856	 */
6857	if (!max_sectors) {
6858		MD_BUG();
6859		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6860	}
 
 
6861	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6862	 * in a sector_t, and (max_sectors>>scale) will fit in a
6863	 * u32, as those are the requirements for sector_div.
6864	 * Thus 'scale' must be at least 10
6865	 */
6866	scale = 10;
6867	if (sizeof(sector_t) > sizeof(unsigned long)) {
6868		while ( max_sectors/2 > (1ULL<<(scale+32)))
6869			scale++;
6870	}
6871	res = (resync>>scale)*1000;
6872	sector_div(res, (u32)((max_sectors>>scale)+1));
6873
6874	per_milli = res;
6875	{
6876		int i, x = per_milli/50, y = 20-x;
6877		seq_printf(seq, "[");
6878		for (i = 0; i < x; i++)
6879			seq_printf(seq, "=");
6880		seq_printf(seq, ">");
6881		for (i = 0; i < y; i++)
6882			seq_printf(seq, ".");
6883		seq_printf(seq, "] ");
6884	}
6885	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6886		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6887		    "reshape" :
6888		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6889		     "check" :
6890		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6891		      "resync" : "recovery"))),
6892		   per_milli/10, per_milli % 10,
6893		   (unsigned long long) resync/2,
6894		   (unsigned long long) max_sectors/2);
6895
6896	/*
6897	 * dt: time from mark until now
6898	 * db: blocks written from mark until now
6899	 * rt: remaining time
6900	 *
6901	 * rt is a sector_t, so could be 32bit or 64bit.
6902	 * So we divide before multiply in case it is 32bit and close
6903	 * to the limit.
6904	 * We scale the divisor (db) by 32 to avoid losing precision
6905	 * near the end of resync when the number of remaining sectors
6906	 * is close to 'db'.
6907	 * We then divide rt by 32 after multiplying by db to compensate.
6908	 * The '+1' avoids division by zero if db is very small.
 
 
 
6909	 */
6910	dt = ((jiffies - mddev->resync_mark) / HZ);
6911	if (!dt) dt++;
6912	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6913		- mddev->resync_mark_cnt;
 
 
 
 
 
6914
6915	rt = max_sectors - resync;    /* number of remaining sectors */
6916	sector_div(rt, db/32+1);
6917	rt *= dt;
6918	rt >>= 5;
6919
6920	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6921		   ((unsigned long)rt % 60)/6);
6922
6923	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
 
6924}
6925
6926static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6927{
6928	struct list_head *tmp;
6929	loff_t l = *pos;
6930	struct mddev *mddev;
6931
6932	if (l >= 0x10000)
 
 
 
 
6933		return NULL;
6934	if (!l--)
6935		/* header */
6936		return (void*)1;
6937
6938	spin_lock(&all_mddevs_lock);
6939	list_for_each(tmp,&all_mddevs)
6940		if (!l--) {
6941			mddev = list_entry(tmp, struct mddev, all_mddevs);
6942			mddev_get(mddev);
 
6943			spin_unlock(&all_mddevs_lock);
6944			return mddev;
6945		}
6946	spin_unlock(&all_mddevs_lock);
6947	if (!l--)
6948		return (void*)2;/* tail */
6949	return NULL;
6950}
6951
6952static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6953{
6954	struct list_head *tmp;
6955	struct mddev *next_mddev, *mddev = v;
6956	
 
6957	++*pos;
6958	if (v == (void*)2)
6959		return NULL;
6960
6961	spin_lock(&all_mddevs_lock);
6962	if (v == (void*)1)
6963		tmp = all_mddevs.next;
6964	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6965		tmp = mddev->all_mddevs.next;
6966	if (tmp != &all_mddevs)
6967		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6968	else {
6969		next_mddev = (void*)2;
6970		*pos = 0x10000;
6971	}		
6972	spin_unlock(&all_mddevs_lock);
6973
6974	if (v != (void*)1)
6975		mddev_put(mddev);
6976	return next_mddev;
6977
6978}
6979
6980static void md_seq_stop(struct seq_file *seq, void *v)
6981{
6982	struct mddev *mddev = v;
6983
6984	if (mddev && v != (void*)1 && v != (void*)2)
6985		mddev_put(mddev);
6986}
6987
6988static int md_seq_show(struct seq_file *seq, void *v)
6989{
6990	struct mddev *mddev = v;
6991	sector_t sectors;
6992	struct md_rdev *rdev;
6993
6994	if (v == (void*)1) {
6995		struct md_personality *pers;
6996		seq_printf(seq, "Personalities : ");
6997		spin_lock(&pers_lock);
6998		list_for_each_entry(pers, &pers_list, list)
6999			seq_printf(seq, "[%s] ", pers->name);
7000
7001		spin_unlock(&pers_lock);
7002		seq_printf(seq, "\n");
7003		seq->poll_event = atomic_read(&md_event_count);
7004		return 0;
7005	}
7006	if (v == (void*)2) {
7007		status_unused(seq);
7008		return 0;
7009	}
7010
7011	if (mddev_lock(mddev) < 0)
7012		return -EINTR;
7013
7014	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7015		seq_printf(seq, "%s : %sactive", mdname(mddev),
7016						mddev->pers ? "" : "in");
7017		if (mddev->pers) {
7018			if (mddev->ro==1)
7019				seq_printf(seq, " (read-only)");
7020			if (mddev->ro==2)
7021				seq_printf(seq, " (auto-read-only)");
7022			seq_printf(seq, " %s", mddev->pers->name);
7023		}
7024
7025		sectors = 0;
7026		rdev_for_each(rdev, mddev) {
7027			char b[BDEVNAME_SIZE];
7028			seq_printf(seq, " %s[%d]",
7029				bdevname(rdev->bdev,b), rdev->desc_nr);
7030			if (test_bit(WriteMostly, &rdev->flags))
7031				seq_printf(seq, "(W)");
 
 
7032			if (test_bit(Faulty, &rdev->flags)) {
7033				seq_printf(seq, "(F)");
7034				continue;
7035			}
7036			if (rdev->raid_disk < 0)
7037				seq_printf(seq, "(S)"); /* spare */
7038			if (test_bit(Replacement, &rdev->flags))
7039				seq_printf(seq, "(R)");
7040			sectors += rdev->sectors;
7041		}
 
7042
7043		if (!list_empty(&mddev->disks)) {
7044			if (mddev->pers)
7045				seq_printf(seq, "\n      %llu blocks",
7046					   (unsigned long long)
7047					   mddev->array_sectors / 2);
7048			else
7049				seq_printf(seq, "\n      %llu blocks",
7050					   (unsigned long long)sectors / 2);
7051		}
7052		if (mddev->persistent) {
7053			if (mddev->major_version != 0 ||
7054			    mddev->minor_version != 90) {
7055				seq_printf(seq," super %d.%d",
7056					   mddev->major_version,
7057					   mddev->minor_version);
7058			}
7059		} else if (mddev->external)
7060			seq_printf(seq, " super external:%s",
7061				   mddev->metadata_type);
7062		else
7063			seq_printf(seq, " super non-persistent");
7064
7065		if (mddev->pers) {
7066			mddev->pers->status(seq, mddev);
7067	 		seq_printf(seq, "\n      ");
7068			if (mddev->pers->sync_request) {
7069				if (mddev->curr_resync > 2) {
7070					status_resync(seq, mddev);
7071					seq_printf(seq, "\n      ");
7072				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7073					seq_printf(seq, "\tresync=DELAYED\n      ");
7074				else if (mddev->recovery_cp < MaxSector)
7075					seq_printf(seq, "\tresync=PENDING\n      ");
7076			}
7077		} else
7078			seq_printf(seq, "\n       ");
7079
7080		bitmap_status(seq, mddev->bitmap);
7081
7082		seq_printf(seq, "\n");
7083	}
7084	mddev_unlock(mddev);
7085	
7086	return 0;
7087}
7088
7089static const struct seq_operations md_seq_ops = {
7090	.start  = md_seq_start,
7091	.next   = md_seq_next,
7092	.stop   = md_seq_stop,
7093	.show   = md_seq_show,
7094};
7095
7096static int md_seq_open(struct inode *inode, struct file *file)
7097{
7098	struct seq_file *seq;
7099	int error;
7100
7101	error = seq_open(file, &md_seq_ops);
7102	if (error)
7103		return error;
7104
7105	seq = file->private_data;
7106	seq->poll_event = atomic_read(&md_event_count);
7107	return error;
7108}
7109
7110static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
 
7111{
7112	struct seq_file *seq = filp->private_data;
7113	int mask;
7114
 
 
7115	poll_wait(filp, &md_event_waiters, wait);
7116
7117	/* always allow read */
7118	mask = POLLIN | POLLRDNORM;
7119
7120	if (seq->poll_event != atomic_read(&md_event_count))
7121		mask |= POLLERR | POLLPRI;
7122	return mask;
7123}
7124
7125static const struct file_operations md_seq_fops = {
7126	.owner		= THIS_MODULE,
7127	.open           = md_seq_open,
7128	.read           = seq_read,
7129	.llseek         = seq_lseek,
7130	.release	= seq_release_private,
7131	.poll		= mdstat_poll,
7132};
7133
7134int register_md_personality(struct md_personality *p)
7135{
 
 
7136	spin_lock(&pers_lock);
7137	list_add_tail(&p->list, &pers_list);
7138	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7139	spin_unlock(&pers_lock);
7140	return 0;
7141}
 
7142
7143int unregister_md_personality(struct md_personality *p)
7144{
7145	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7146	spin_lock(&pers_lock);
7147	list_del_init(&p->list);
7148	spin_unlock(&pers_lock);
7149	return 0;
7150}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7151
7152static int is_mddev_idle(struct mddev *mddev, int init)
7153{
7154	struct md_rdev * rdev;
7155	int idle;
7156	int curr_events;
7157
7158	idle = 1;
7159	rcu_read_lock();
7160	rdev_for_each_rcu(rdev, mddev) {
7161		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7162		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7163			      (int)part_stat_read(&disk->part0, sectors[1]) -
7164			      atomic_read(&disk->sync_io);
7165		/* sync IO will cause sync_io to increase before the disk_stats
7166		 * as sync_io is counted when a request starts, and
7167		 * disk_stats is counted when it completes.
7168		 * So resync activity will cause curr_events to be smaller than
7169		 * when there was no such activity.
7170		 * non-sync IO will cause disk_stat to increase without
7171		 * increasing sync_io so curr_events will (eventually)
7172		 * be larger than it was before.  Once it becomes
7173		 * substantially larger, the test below will cause
7174		 * the array to appear non-idle, and resync will slow
7175		 * down.
7176		 * If there is a lot of outstanding resync activity when
7177		 * we set last_event to curr_events, then all that activity
7178		 * completing might cause the array to appear non-idle
7179		 * and resync will be slowed down even though there might
7180		 * not have been non-resync activity.  This will only
7181		 * happen once though.  'last_events' will soon reflect
7182		 * the state where there is little or no outstanding
7183		 * resync requests, and further resync activity will
7184		 * always make curr_events less than last_events.
7185		 *
7186		 */
7187		if (init || curr_events - rdev->last_events > 64) {
7188			rdev->last_events = curr_events;
7189			idle = 0;
7190		}
7191	}
7192	rcu_read_unlock();
7193	return idle;
7194}
7195
7196void md_done_sync(struct mddev *mddev, int blocks, int ok)
7197{
7198	/* another "blocks" (512byte) blocks have been synced */
7199	atomic_sub(blocks, &mddev->recovery_active);
7200	wake_up(&mddev->recovery_wait);
7201	if (!ok) {
7202		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 
7203		md_wakeup_thread(mddev->thread);
7204		// stop recovery, signal do_sync ....
7205	}
7206}
7207
7208
7209/* md_write_start(mddev, bi)
7210 * If we need to update some array metadata (e.g. 'active' flag
7211 * in superblock) before writing, schedule a superblock update
7212 * and wait for it to complete.
 
 
7213 */
7214void md_write_start(struct mddev *mddev, struct bio *bi)
7215{
7216	int did_change = 0;
 
7217	if (bio_data_dir(bi) != WRITE)
7218		return;
7219
7220	BUG_ON(mddev->ro == 1);
7221	if (mddev->ro == 2) {
7222		/* need to switch to read/write */
7223		mddev->ro = 0;
7224		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7225		md_wakeup_thread(mddev->thread);
7226		md_wakeup_thread(mddev->sync_thread);
7227		did_change = 1;
7228	}
7229	atomic_inc(&mddev->writes_pending);
 
 
7230	if (mddev->safemode == 1)
7231		mddev->safemode = 0;
7232	if (mddev->in_sync) {
7233		spin_lock_irq(&mddev->write_lock);
 
7234		if (mddev->in_sync) {
7235			mddev->in_sync = 0;
7236			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7237			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7238			md_wakeup_thread(mddev->thread);
7239			did_change = 1;
7240		}
7241		spin_unlock_irq(&mddev->write_lock);
7242	}
 
7243	if (did_change)
7244		sysfs_notify_dirent_safe(mddev->sysfs_state);
 
 
7245	wait_event(mddev->sb_wait,
7246		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
 
 
 
 
 
 
7247}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7248
7249void md_write_end(struct mddev *mddev)
7250{
7251	if (atomic_dec_and_test(&mddev->writes_pending)) {
7252		if (mddev->safemode == 2)
7253			md_wakeup_thread(mddev->thread);
7254		else if (mddev->safemode_delay)
7255			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7256	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7257}
 
7258
7259/* md_allow_write(mddev)
7260 * Calling this ensures that the array is marked 'active' so that writes
7261 * may proceed without blocking.  It is important to call this before
7262 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7263 * Must be called with mddev_lock held.
7264 *
7265 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7266 * is dropped, so return -EAGAIN after notifying userspace.
7267 */
7268int md_allow_write(struct mddev *mddev)
7269{
7270	if (!mddev->pers)
7271		return 0;
7272	if (mddev->ro)
7273		return 0;
7274	if (!mddev->pers->sync_request)
7275		return 0;
7276
7277	spin_lock_irq(&mddev->write_lock);
7278	if (mddev->in_sync) {
7279		mddev->in_sync = 0;
7280		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7281		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7282		if (mddev->safemode_delay &&
7283		    mddev->safemode == 0)
7284			mddev->safemode = 1;
7285		spin_unlock_irq(&mddev->write_lock);
7286		md_update_sb(mddev, 0);
7287		sysfs_notify_dirent_safe(mddev->sysfs_state);
 
 
 
7288	} else
7289		spin_unlock_irq(&mddev->write_lock);
7290
7291	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7292		return -EAGAIN;
7293	else
7294		return 0;
7295}
7296EXPORT_SYMBOL_GPL(md_allow_write);
7297
7298#define SYNC_MARKS	10
7299#define	SYNC_MARK_STEP	(3*HZ)
7300void md_do_sync(struct mddev *mddev)
 
7301{
 
7302	struct mddev *mddev2;
7303	unsigned int currspeed = 0,
7304		 window;
7305	sector_t max_sectors,j, io_sectors;
7306	unsigned long mark[SYNC_MARKS];
 
7307	sector_t mark_cnt[SYNC_MARKS];
7308	int last_mark,m;
7309	struct list_head *tmp;
7310	sector_t last_check;
7311	int skipped = 0;
7312	struct md_rdev *rdev;
7313	char *desc;
7314	struct blk_plug plug;
 
7315
7316	/* just incase thread restarts... */
7317	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
 
7318		return;
7319	if (mddev->ro) /* never try to sync a read-only array */
 
7320		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7321
7322	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7323		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7324			desc = "data-check";
7325		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
 
7326			desc = "requested-resync";
7327		else
 
7328			desc = "resync";
7329	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7330		desc = "reshape";
7331	else
7332		desc = "recovery";
7333
7334	/* we overload curr_resync somewhat here.
7335	 * 0 == not engaged in resync at all
7336	 * 2 == checking that there is no conflict with another sync
7337	 * 1 == like 2, but have yielded to allow conflicting resync to
7338	 *		commense
7339	 * other == active in resync - this many blocks
7340	 *
7341	 * Before starting a resync we must have set curr_resync to
7342	 * 2, and then checked that every "conflicting" array has curr_resync
7343	 * less than ours.  When we find one that is the same or higher
7344	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7345	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7346	 * This will mean we have to start checking from the beginning again.
7347	 *
7348	 */
7349
7350	do {
7351		mddev->curr_resync = 2;
 
7352
7353	try_again:
7354		if (kthread_should_stop())
7355			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7356
7357		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7358			goto skip;
7359		for_each_mddev(mddev2, tmp) {
 
 
 
7360			if (mddev2 == mddev)
7361				continue;
7362			if (!mddev->parallel_resync
7363			&&  mddev2->curr_resync
7364			&&  match_mddev_units(mddev, mddev2)) {
7365				DEFINE_WAIT(wq);
7366				if (mddev < mddev2 && mddev->curr_resync == 2) {
 
7367					/* arbitrarily yield */
7368					mddev->curr_resync = 1;
7369					wake_up(&resync_wait);
7370				}
7371				if (mddev > mddev2 && mddev->curr_resync == 1)
 
7372					/* no need to wait here, we can wait the next
7373					 * time 'round when curr_resync == 2
7374					 */
7375					continue;
7376				/* We need to wait 'interruptible' so as not to
7377				 * contribute to the load average, and not to
7378				 * be caught by 'softlockup'
7379				 */
7380				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7381				if (!kthread_should_stop() &&
7382				    mddev2->curr_resync >= mddev->curr_resync) {
7383					printk(KERN_INFO "md: delaying %s of %s"
7384					       " until %s has finished (they"
7385					       " share one or more physical units)\n",
7386					       desc, mdname(mddev), mdname(mddev2));
7387					mddev_put(mddev2);
 
 
 
7388					if (signal_pending(current))
7389						flush_signals(current);
7390					schedule();
7391					finish_wait(&resync_wait, &wq);
7392					goto try_again;
7393				}
7394				finish_wait(&resync_wait, &wq);
7395			}
7396		}
7397	} while (mddev->curr_resync < 2);
 
7398
7399	j = 0;
7400	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7401		/* resync follows the size requested by the personality,
7402		 * which defaults to physical size, but can be virtual size
7403		 */
7404		max_sectors = mddev->resync_max_sectors;
7405		mddev->resync_mismatches = 0;
7406		/* we don't use the checkpoint if there's a bitmap */
7407		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7408			j = mddev->resync_min;
7409		else if (!mddev->bitmap)
7410			j = mddev->recovery_cp;
7411
7412	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7413		max_sectors = mddev->resync_max_sectors;
7414	else {
 
 
 
 
 
 
 
 
7415		/* recovery follows the physical size of devices */
7416		max_sectors = mddev->dev_sectors;
7417		j = MaxSector;
7418		rcu_read_lock();
7419		rdev_for_each_rcu(rdev, mddev)
7420			if (rdev->raid_disk >= 0 &&
 
7421			    !test_bit(Faulty, &rdev->flags) &&
7422			    !test_bit(In_sync, &rdev->flags) &&
7423			    rdev->recovery_offset < j)
7424				j = rdev->recovery_offset;
7425		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
7426	}
7427
7428	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7429	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7430		" %d KB/sec/disk.\n", speed_min(mddev));
7431	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7432	       "(but not more than %d KB/sec) for %s.\n",
7433	       speed_max(mddev), desc);
7434
7435	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7436
7437	io_sectors = 0;
7438	for (m = 0; m < SYNC_MARKS; m++) {
7439		mark[m] = jiffies;
7440		mark_cnt[m] = io_sectors;
7441	}
7442	last_mark = 0;
7443	mddev->resync_mark = mark[last_mark];
7444	mddev->resync_mark_cnt = mark_cnt[last_mark];
7445
7446	/*
7447	 * Tune reconstruction:
7448	 */
7449	window = 32*(PAGE_SIZE/512);
7450	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7451		window/2, (unsigned long long)max_sectors/2);
7452
7453	atomic_set(&mddev->recovery_active, 0);
7454	last_check = 0;
7455
7456	if (j>2) {
7457		printk(KERN_INFO 
7458		       "md: resuming %s of %s from checkpoint.\n",
7459		       desc, mdname(mddev));
7460		mddev->curr_resync = j;
7461	}
 
7462	mddev->curr_resync_completed = j;
 
 
 
7463
7464	blk_start_plug(&plug);
7465	while (j < max_sectors) {
7466		sector_t sectors;
7467
7468		skipped = 0;
7469
7470		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7471		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7472		      (mddev->curr_resync - mddev->curr_resync_completed)
7473		      > (max_sectors >> 4)) ||
 
7474		     (j - mddev->curr_resync_completed)*2
7475		     >= mddev->resync_max - mddev->curr_resync_completed
 
7476			    )) {
7477			/* time to update curr_resync_completed */
7478			wait_event(mddev->recovery_wait,
7479				   atomic_read(&mddev->recovery_active) == 0);
7480			mddev->curr_resync_completed = j;
7481			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7482			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
 
 
 
 
7483		}
7484
7485		while (j >= mddev->resync_max && !kthread_should_stop()) {
 
7486			/* As this condition is controlled by user-space,
7487			 * we can block indefinitely, so use '_interruptible'
7488			 * to avoid triggering warnings.
7489			 */
7490			flush_signals(current); /* just in case */
7491			wait_event_interruptible(mddev->recovery_wait,
7492						 mddev->resync_max > j
7493						 || kthread_should_stop());
 
7494		}
7495
7496		if (kthread_should_stop())
7497			goto interrupted;
7498
7499		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7500						  currspeed < speed_min(mddev));
7501		if (sectors == 0) {
7502			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7503			goto out;
7504		}
7505
7506		if (!skipped) { /* actual IO requested */
7507			io_sectors += sectors;
7508			atomic_add(sectors, &mddev->recovery_active);
7509		}
7510
7511		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7512			break;
7513
7514		j += sectors;
7515		if (j>1) mddev->curr_resync = j;
 
 
 
 
7516		mddev->curr_mark_cnt = io_sectors;
7517		if (last_check == 0)
7518			/* this is the earliest that rebuild will be
7519			 * visible in /proc/mdstat
7520			 */
7521			md_new_event(mddev);
7522
7523		if (last_check + window > io_sectors || j == max_sectors)
7524			continue;
7525
7526		last_check = io_sectors;
7527	repeat:
7528		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7529			/* step marks */
7530			int next = (last_mark+1) % SYNC_MARKS;
7531
7532			mddev->resync_mark = mark[next];
7533			mddev->resync_mark_cnt = mark_cnt[next];
7534			mark[next] = jiffies;
7535			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7536			last_mark = next;
7537		}
7538
7539
7540		if (kthread_should_stop())
7541			goto interrupted;
7542
7543
7544		/*
7545		 * this loop exits only if either when we are slower than
7546		 * the 'hard' speed limit, or the system was IO-idle for
7547		 * a jiffy.
7548		 * the system might be non-idle CPU-wise, but we only care
7549		 * about not overloading the IO subsystem. (things like an
7550		 * e2fsck being done on the RAID array should execute fast)
7551		 */
7552		cond_resched();
7553
7554		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
 
7555			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7556
7557		if (currspeed > speed_min(mddev)) {
7558			if ((currspeed > speed_max(mddev)) ||
7559					!is_mddev_idle(mddev, 0)) {
7560				msleep(500);
7561				goto repeat;
7562			}
 
 
 
 
 
 
 
 
7563		}
7564	}
7565	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
 
 
7566	/*
7567	 * this also signals 'finished resyncing' to md_stop
7568	 */
7569 out:
7570	blk_finish_plug(&plug);
7571	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7572
7573	/* tell personality that we are finished */
7574	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
 
 
 
 
 
7575
7576	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7577	    mddev->curr_resync > 2) {
7578		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7579			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7580				if (mddev->curr_resync >= mddev->recovery_cp) {
7581					printk(KERN_INFO
7582					       "md: checkpointing %s of %s.\n",
7583					       desc, mdname(mddev));
7584					mddev->recovery_cp =
7585						mddev->curr_resync_completed;
 
 
 
 
7586				}
7587			} else
7588				mddev->recovery_cp = MaxSector;
7589		} else {
7590			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7591				mddev->curr_resync = MaxSector;
7592			rcu_read_lock();
7593			rdev_for_each_rcu(rdev, mddev)
7594				if (rdev->raid_disk >= 0 &&
7595				    mddev->delta_disks >= 0 &&
7596				    !test_bit(Faulty, &rdev->flags) &&
7597				    !test_bit(In_sync, &rdev->flags) &&
7598				    rdev->recovery_offset < mddev->curr_resync)
7599					rdev->recovery_offset = mddev->curr_resync;
7600			rcu_read_unlock();
 
 
 
 
7601		}
7602	}
7603 skip:
7604	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7605
 
7606	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7607		/* We completed so min/max setting can be forgotten if used. */
7608		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7609			mddev->resync_min = 0;
7610		mddev->resync_max = MaxSector;
7611	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7612		mddev->resync_min = mddev->curr_resync_completed;
7613	mddev->curr_resync = 0;
 
 
 
7614	wake_up(&resync_wait);
7615	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7616	md_wakeup_thread(mddev->thread);
7617	return;
7618
7619 interrupted:
7620	/*
7621	 * got a signal, exit.
7622	 */
7623	printk(KERN_INFO
7624	       "md: md_do_sync() got signal ... exiting\n");
7625	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7626	goto out;
7627
7628}
7629EXPORT_SYMBOL_GPL(md_do_sync);
7630
7631static int remove_and_add_spares(struct mddev *mddev)
 
7632{
7633	struct md_rdev *rdev;
7634	int spares = 0;
7635	int removed = 0;
 
7636
7637	mddev->curr_resync_completed = 0;
 
 
7638
7639	rdev_for_each(rdev, mddev)
7640		if (rdev->raid_disk >= 0 &&
 
7641		    !test_bit(Blocked, &rdev->flags) &&
7642		    (test_bit(Faulty, &rdev->flags) ||
7643		     ! test_bit(In_sync, &rdev->flags)) &&
7644		    atomic_read(&rdev->nr_pending)==0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7645			if (mddev->pers->hot_remove_disk(
7646				    mddev, rdev) == 0) {
7647				sysfs_unlink_rdev(mddev, rdev);
 
7648				rdev->raid_disk = -1;
7649				removed++;
7650			}
7651		}
7652	if (removed)
7653		sysfs_notify(&mddev->kobj, NULL,
7654			     "degraded");
 
 
 
7655
 
 
7656
7657	rdev_for_each(rdev, mddev) {
 
 
 
 
7658		if (rdev->raid_disk >= 0 &&
7659		    !test_bit(In_sync, &rdev->flags) &&
 
7660		    !test_bit(Faulty, &rdev->flags))
7661			spares++;
7662		if (rdev->raid_disk < 0
7663		    && !test_bit(Faulty, &rdev->flags)) {
 
 
 
 
 
 
 
 
7664			rdev->recovery_offset = 0;
7665			if (mddev->pers->
7666			    hot_add_disk(mddev, rdev) == 0) {
7667				if (sysfs_link_rdev(mddev, rdev))
7668					/* failure here is OK */;
 
7669				spares++;
7670				md_new_event(mddev);
7671				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7672			}
7673		}
7674	}
 
7675	if (removed)
7676		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7677	return spares;
7678}
7679
7680static void reap_sync_thread(struct mddev *mddev)
7681{
7682	struct md_rdev *rdev;
7683
7684	/* resync has finished, collect result */
7685	md_unregister_thread(&mddev->sync_thread);
7686	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7687	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7688		/* success...*/
7689		/* activate any spares */
7690		if (mddev->pers->spare_active(mddev)) {
7691			sysfs_notify(&mddev->kobj, NULL,
7692				     "degraded");
7693			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7694		}
7695	}
7696	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7697	    mddev->pers->finish_reshape)
7698		mddev->pers->finish_reshape(mddev);
7699
7700	/* If array is no-longer degraded, then any saved_raid_disk
7701	 * information must be scrapped.  Also if any device is now
7702	 * In_sync we must scrape the saved_raid_disk for that device
7703	 * do the superblock for an incrementally recovered device
7704	 * written out.
7705	 */
7706	rdev_for_each(rdev, mddev)
7707		if (!mddev->degraded ||
7708		    test_bit(In_sync, &rdev->flags))
7709			rdev->saved_raid_disk = -1;
7710
7711	md_update_sb(mddev, 1);
7712	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7713	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7714	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7715	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7716	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7717	/* flag recovery needed just to double check */
7718	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7719	sysfs_notify_dirent_safe(mddev->sysfs_action);
7720	md_new_event(mddev);
7721	if (mddev->event_work.func)
7722		queue_work(md_misc_wq, &mddev->event_work);
7723}
7724
7725/*
7726 * This routine is regularly called by all per-raid-array threads to
7727 * deal with generic issues like resync and super-block update.
7728 * Raid personalities that don't have a thread (linear/raid0) do not
7729 * need this as they never do any recovery or update the superblock.
7730 *
7731 * It does not do any resync itself, but rather "forks" off other threads
7732 * to do that as needed.
7733 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7734 * "->recovery" and create a thread at ->sync_thread.
7735 * When the thread finishes it sets MD_RECOVERY_DONE
7736 * and wakeups up this thread which will reap the thread and finish up.
7737 * This thread also removes any faulty devices (with nr_pending == 0).
7738 *
7739 * The overall approach is:
7740 *  1/ if the superblock needs updating, update it.
7741 *  2/ If a recovery thread is running, don't do anything else.
7742 *  3/ If recovery has finished, clean up, possibly marking spares active.
7743 *  4/ If there are any faulty devices, remove them.
7744 *  5/ If array is degraded, try to add spares devices
7745 *  6/ If array has spares or is not in-sync, start a resync thread.
7746 */
7747void md_check_recovery(struct mddev *mddev)
7748{
 
 
 
 
 
 
 
 
 
 
 
 
7749	if (mddev->suspended)
7750		return;
7751
7752	if (mddev->bitmap)
7753		bitmap_daemon_work(mddev);
7754
7755	if (signal_pending(current)) {
7756		if (mddev->pers->sync_request && !mddev->external) {
7757			printk(KERN_INFO "md: %s in immediate safe mode\n",
7758			       mdname(mddev));
7759			mddev->safemode = 2;
7760		}
7761		flush_signals(current);
7762	}
7763
7764	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
 
7765		return;
7766	if ( ! (
7767		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7768		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7769		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7770		(mddev->external == 0 && mddev->safemode == 1) ||
7771		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7772		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7773		))
7774		return;
7775
7776	if (mddev_trylock(mddev)) {
7777		int spares = 0;
 
 
 
 
7778
7779		if (mddev->ro) {
7780			/* Only thing we do on a ro array is remove
7781			 * failed devices.
 
 
 
 
 
 
 
 
 
 
 
 
 
7782			 */
7783			struct md_rdev *rdev;
7784			rdev_for_each(rdev, mddev)
7785				if (rdev->raid_disk >= 0 &&
7786				    !test_bit(Blocked, &rdev->flags) &&
7787				    test_bit(Faulty, &rdev->flags) &&
7788				    atomic_read(&rdev->nr_pending)==0) {
7789					if (mddev->pers->hot_remove_disk(
7790						    mddev, rdev) == 0) {
7791						sysfs_unlink_rdev(mddev, rdev);
7792						rdev->raid_disk = -1;
7793					}
7794				}
7795			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 
7796			goto unlock;
7797		}
7798
7799		if (!mddev->external) {
7800			int did_change = 0;
7801			spin_lock_irq(&mddev->write_lock);
7802			if (mddev->safemode &&
7803			    !atomic_read(&mddev->writes_pending) &&
7804			    !mddev->in_sync &&
7805			    mddev->recovery_cp == MaxSector) {
7806				mddev->in_sync = 1;
7807				did_change = 1;
7808				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7809			}
7810			if (mddev->safemode == 1)
7811				mddev->safemode = 0;
7812			spin_unlock_irq(&mddev->write_lock);
7813			if (did_change)
7814				sysfs_notify_dirent_safe(mddev->sysfs_state);
7815		}
7816
7817		if (mddev->flags)
7818			md_update_sb(mddev, 0);
7819
7820		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7821		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7822			/* resync/recovery still happening */
7823			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7824			goto unlock;
7825		}
7826		if (mddev->sync_thread) {
7827			reap_sync_thread(mddev);
 
7828			goto unlock;
7829		}
7830		/* Set RUNNING before clearing NEEDED to avoid
7831		 * any transients in the value of "sync_action".
7832		 */
 
 
7833		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
 
7834		/* Clear some bits that don't mean anything, but
7835		 * might be left set
7836		 */
7837		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7838		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7839
7840		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7841		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7842			goto unlock;
7843		/* no recovery is running.
7844		 * remove any failed drives, then
7845		 * add spares if possible.
7846		 * Spare are also removed and re-added, to allow
7847		 * the personality to fail the re-add.
7848		 */
7849
7850		if (mddev->reshape_position != MaxSector) {
7851			if (mddev->pers->check_reshape == NULL ||
7852			    mddev->pers->check_reshape(mddev) != 0)
7853				/* Cannot proceed */
7854				goto unlock;
7855			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7856			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7857		} else if ((spares = remove_and_add_spares(mddev))) {
7858			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7859			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7860			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7861			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7862		} else if (mddev->recovery_cp < MaxSector) {
7863			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7864			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7865		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7866			/* nothing to be done ... */
7867			goto unlock;
7868
7869		if (mddev->pers->sync_request) {
7870			if (spares) {
7871				/* We are adding a device or devices to an array
7872				 * which has the bitmap stored on all devices.
7873				 * So make sure all bitmap pages get written
7874				 */
7875				bitmap_write_all(mddev->bitmap);
7876			}
7877			mddev->sync_thread = md_register_thread(md_do_sync,
7878								mddev,
7879								"resync");
7880			if (!mddev->sync_thread) {
7881				printk(KERN_ERR "%s: could not start resync"
7882					" thread...\n", 
7883					mdname(mddev));
7884				/* leave the spares where they are, it shouldn't hurt */
7885				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7886				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7887				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7888				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7889				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7890			} else
7891				md_wakeup_thread(mddev->sync_thread);
7892			sysfs_notify_dirent_safe(mddev->sysfs_action);
7893			md_new_event(mddev);
7894		}
7895	unlock:
7896		if (!mddev->sync_thread) {
7897			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
 
7898			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7899					       &mddev->recovery))
7900				if (mddev->sysfs_action)
7901					sysfs_notify_dirent_safe(mddev->sysfs_action);
7902		}
 
 
7903		mddev_unlock(mddev);
7904	}
7905}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7906
7907void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7908{
7909	sysfs_notify_dirent_safe(rdev->sysfs_state);
7910	wait_event_timeout(rdev->blocked_wait,
7911			   !test_bit(Blocked, &rdev->flags) &&
7912			   !test_bit(BlockedBadBlocks, &rdev->flags),
7913			   msecs_to_jiffies(5000));
7914	rdev_dec_pending(rdev, mddev);
7915}
7916EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7917
7918void md_finish_reshape(struct mddev *mddev)
7919{
7920	/* called be personality module when reshape completes. */
7921	struct md_rdev *rdev;
7922
7923	rdev_for_each(rdev, mddev) {
7924		if (rdev->data_offset > rdev->new_data_offset)
7925			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7926		else
7927			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7928		rdev->data_offset = rdev->new_data_offset;
7929	}
7930}
7931EXPORT_SYMBOL(md_finish_reshape);
7932
7933/* Bad block management.
7934 * We can record which blocks on each device are 'bad' and so just
7935 * fail those blocks, or that stripe, rather than the whole device.
7936 * Entries in the bad-block table are 64bits wide.  This comprises:
7937 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7938 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7939 *  A 'shift' can be set so that larger blocks are tracked and
7940 *  consequently larger devices can be covered.
7941 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7942 *
7943 * Locking of the bad-block table uses a seqlock so md_is_badblock
7944 * might need to retry if it is very unlucky.
7945 * We will sometimes want to check for bad blocks in a bi_end_io function,
7946 * so we use the write_seqlock_irq variant.
7947 *
7948 * When looking for a bad block we specify a range and want to
7949 * know if any block in the range is bad.  So we binary-search
7950 * to the last range that starts at-or-before the given endpoint,
7951 * (or "before the sector after the target range")
7952 * then see if it ends after the given start.
7953 * We return
7954 *  0 if there are no known bad blocks in the range
7955 *  1 if there are known bad block which are all acknowledged
7956 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7957 * plus the start/length of the first bad section we overlap.
7958 */
7959int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7960		   sector_t *first_bad, int *bad_sectors)
7961{
7962	int hi;
7963	int lo = 0;
7964	u64 *p = bb->page;
7965	int rv = 0;
7966	sector_t target = s + sectors;
7967	unsigned seq;
7968
7969	if (bb->shift > 0) {
7970		/* round the start down, and the end up */
7971		s >>= bb->shift;
7972		target += (1<<bb->shift) - 1;
7973		target >>= bb->shift;
7974		sectors = target - s;
7975	}
7976	/* 'target' is now the first block after the bad range */
7977
7978retry:
7979	seq = read_seqbegin(&bb->lock);
7980
7981	hi = bb->count;
7982
7983	/* Binary search between lo and hi for 'target'
7984	 * i.e. for the last range that starts before 'target'
7985	 */
7986	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7987	 * are known not to be the last range before target.
7988	 * VARIANT: hi-lo is the number of possible
7989	 * ranges, and decreases until it reaches 1
7990	 */
7991	while (hi - lo > 1) {
7992		int mid = (lo + hi) / 2;
7993		sector_t a = BB_OFFSET(p[mid]);
7994		if (a < target)
7995			/* This could still be the one, earlier ranges
7996			 * could not. */
7997			lo = mid;
7998		else
7999			/* This and later ranges are definitely out. */
8000			hi = mid;
8001	}
8002	/* 'lo' might be the last that started before target, but 'hi' isn't */
8003	if (hi > lo) {
8004		/* need to check all range that end after 's' to see if
8005		 * any are unacknowledged.
8006		 */
8007		while (lo >= 0 &&
8008		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8009			if (BB_OFFSET(p[lo]) < target) {
8010				/* starts before the end, and finishes after
8011				 * the start, so they must overlap
8012				 */
8013				if (rv != -1 && BB_ACK(p[lo]))
8014					rv = 1;
8015				else
8016					rv = -1;
8017				*first_bad = BB_OFFSET(p[lo]);
8018				*bad_sectors = BB_LEN(p[lo]);
8019			}
8020			lo--;
8021		}
8022	}
8023
8024	if (read_seqretry(&bb->lock, seq))
8025		goto retry;
8026
8027	return rv;
8028}
8029EXPORT_SYMBOL_GPL(md_is_badblock);
8030
8031/*
8032 * Add a range of bad blocks to the table.
8033 * This might extend the table, or might contract it
8034 * if two adjacent ranges can be merged.
8035 * We binary-search to find the 'insertion' point, then
8036 * decide how best to handle it.
8037 */
8038static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8039			    int acknowledged)
8040{
8041	u64 *p;
8042	int lo, hi;
8043	int rv = 1;
8044
8045	if (bb->shift < 0)
8046		/* badblocks are disabled */
8047		return 0;
8048
8049	if (bb->shift) {
8050		/* round the start down, and the end up */
8051		sector_t next = s + sectors;
8052		s >>= bb->shift;
8053		next += (1<<bb->shift) - 1;
8054		next >>= bb->shift;
8055		sectors = next - s;
8056	}
8057
8058	write_seqlock_irq(&bb->lock);
8059
8060	p = bb->page;
8061	lo = 0;
8062	hi = bb->count;
8063	/* Find the last range that starts at-or-before 's' */
8064	while (hi - lo > 1) {
8065		int mid = (lo + hi) / 2;
8066		sector_t a = BB_OFFSET(p[mid]);
8067		if (a <= s)
8068			lo = mid;
8069		else
8070			hi = mid;
8071	}
8072	if (hi > lo && BB_OFFSET(p[lo]) > s)
8073		hi = lo;
8074
8075	if (hi > lo) {
8076		/* we found a range that might merge with the start
8077		 * of our new range
8078		 */
8079		sector_t a = BB_OFFSET(p[lo]);
8080		sector_t e = a + BB_LEN(p[lo]);
8081		int ack = BB_ACK(p[lo]);
8082		if (e >= s) {
8083			/* Yes, we can merge with a previous range */
8084			if (s == a && s + sectors >= e)
8085				/* new range covers old */
8086				ack = acknowledged;
8087			else
8088				ack = ack && acknowledged;
8089
8090			if (e < s + sectors)
8091				e = s + sectors;
8092			if (e - a <= BB_MAX_LEN) {
8093				p[lo] = BB_MAKE(a, e-a, ack);
8094				s = e;
8095			} else {
8096				/* does not all fit in one range,
8097				 * make p[lo] maximal
8098				 */
8099				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8100					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8101				s = a + BB_MAX_LEN;
8102			}
8103			sectors = e - s;
8104		}
8105	}
8106	if (sectors && hi < bb->count) {
8107		/* 'hi' points to the first range that starts after 's'.
8108		 * Maybe we can merge with the start of that range */
8109		sector_t a = BB_OFFSET(p[hi]);
8110		sector_t e = a + BB_LEN(p[hi]);
8111		int ack = BB_ACK(p[hi]);
8112		if (a <= s + sectors) {
8113			/* merging is possible */
8114			if (e <= s + sectors) {
8115				/* full overlap */
8116				e = s + sectors;
8117				ack = acknowledged;
8118			} else
8119				ack = ack && acknowledged;
8120
8121			a = s;
8122			if (e - a <= BB_MAX_LEN) {
8123				p[hi] = BB_MAKE(a, e-a, ack);
8124				s = e;
8125			} else {
8126				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8127				s = a + BB_MAX_LEN;
8128			}
8129			sectors = e - s;
8130			lo = hi;
8131			hi++;
8132		}
8133	}
8134	if (sectors == 0 && hi < bb->count) {
8135		/* we might be able to combine lo and hi */
8136		/* Note: 's' is at the end of 'lo' */
8137		sector_t a = BB_OFFSET(p[hi]);
8138		int lolen = BB_LEN(p[lo]);
8139		int hilen = BB_LEN(p[hi]);
8140		int newlen = lolen + hilen - (s - a);
8141		if (s >= a && newlen < BB_MAX_LEN) {
8142			/* yes, we can combine them */
8143			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8144			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8145			memmove(p + hi, p + hi + 1,
8146				(bb->count - hi - 1) * 8);
8147			bb->count--;
8148		}
8149	}
8150	while (sectors) {
8151		/* didn't merge (it all).
8152		 * Need to add a range just before 'hi' */
8153		if (bb->count >= MD_MAX_BADBLOCKS) {
8154			/* No room for more */
8155			rv = 0;
8156			break;
8157		} else {
8158			int this_sectors = sectors;
8159			memmove(p + hi + 1, p + hi,
8160				(bb->count - hi) * 8);
8161			bb->count++;
8162
8163			if (this_sectors > BB_MAX_LEN)
8164				this_sectors = BB_MAX_LEN;
8165			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8166			sectors -= this_sectors;
8167			s += this_sectors;
8168		}
8169	}
8170
8171	bb->changed = 1;
8172	if (!acknowledged)
8173		bb->unacked_exist = 1;
8174	write_sequnlock_irq(&bb->lock);
8175
8176	return rv;
8177}
8178
 
8179int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8180		       int is_new)
8181{
 
8182	int rv;
8183	if (is_new)
8184		s += rdev->new_data_offset;
8185	else
8186		s += rdev->data_offset;
8187	rv = md_set_badblocks(&rdev->badblocks,
8188			      s, sectors, 0);
8189	if (rv) {
8190		/* Make sure they get written out promptly */
 
 
8191		sysfs_notify_dirent_safe(rdev->sysfs_state);
8192		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
 
8193		md_wakeup_thread(rdev->mddev->thread);
8194	}
8195	return rv;
 
8196}
8197EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8198
8199/*
8200 * Remove a range of bad blocks from the table.
8201 * This may involve extending the table if we spilt a region,
8202 * but it must not fail.  So if the table becomes full, we just
8203 * drop the remove request.
8204 */
8205static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8206{
8207	u64 *p;
8208	int lo, hi;
8209	sector_t target = s + sectors;
8210	int rv = 0;
8211
8212	if (bb->shift > 0) {
8213		/* When clearing we round the start up and the end down.
8214		 * This should not matter as the shift should align with
8215		 * the block size and no rounding should ever be needed.
8216		 * However it is better the think a block is bad when it
8217		 * isn't than to think a block is not bad when it is.
8218		 */
8219		s += (1<<bb->shift) - 1;
8220		s >>= bb->shift;
8221		target >>= bb->shift;
8222		sectors = target - s;
8223	}
8224
8225	write_seqlock_irq(&bb->lock);
8226
8227	p = bb->page;
8228	lo = 0;
8229	hi = bb->count;
8230	/* Find the last range that starts before 'target' */
8231	while (hi - lo > 1) {
8232		int mid = (lo + hi) / 2;
8233		sector_t a = BB_OFFSET(p[mid]);
8234		if (a < target)
8235			lo = mid;
8236		else
8237			hi = mid;
8238	}
8239	if (hi > lo) {
8240		/* p[lo] is the last range that could overlap the
8241		 * current range.  Earlier ranges could also overlap,
8242		 * but only this one can overlap the end of the range.
8243		 */
8244		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8245			/* Partial overlap, leave the tail of this range */
8246			int ack = BB_ACK(p[lo]);
8247			sector_t a = BB_OFFSET(p[lo]);
8248			sector_t end = a + BB_LEN(p[lo]);
8249
8250			if (a < s) {
8251				/* we need to split this range */
8252				if (bb->count >= MD_MAX_BADBLOCKS) {
8253					rv = 0;
8254					goto out;
8255				}
8256				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8257				bb->count++;
8258				p[lo] = BB_MAKE(a, s-a, ack);
8259				lo++;
8260			}
8261			p[lo] = BB_MAKE(target, end - target, ack);
8262			/* there is no longer an overlap */
8263			hi = lo;
8264			lo--;
8265		}
8266		while (lo >= 0 &&
8267		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8268			/* This range does overlap */
8269			if (BB_OFFSET(p[lo]) < s) {
8270				/* Keep the early parts of this range. */
8271				int ack = BB_ACK(p[lo]);
8272				sector_t start = BB_OFFSET(p[lo]);
8273				p[lo] = BB_MAKE(start, s - start, ack);
8274				/* now low doesn't overlap, so.. */
8275				break;
8276			}
8277			lo--;
8278		}
8279		/* 'lo' is strictly before, 'hi' is strictly after,
8280		 * anything between needs to be discarded
8281		 */
8282		if (hi - lo > 1) {
8283			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8284			bb->count -= (hi - lo - 1);
8285		}
8286	}
8287
8288	bb->changed = 1;
8289out:
8290	write_sequnlock_irq(&bb->lock);
8291	return rv;
8292}
8293
8294int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8295			 int is_new)
8296{
 
8297	if (is_new)
8298		s += rdev->new_data_offset;
8299	else
8300		s += rdev->data_offset;
8301	return md_clear_badblocks(&rdev->badblocks,
8302				  s, sectors);
 
 
8303}
8304EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8305
8306/*
8307 * Acknowledge all bad blocks in a list.
8308 * This only succeeds if ->changed is clear.  It is used by
8309 * in-kernel metadata updates
8310 */
8311void md_ack_all_badblocks(struct badblocks *bb)
8312{
8313	if (bb->page == NULL || bb->changed)
8314		/* no point even trying */
8315		return;
8316	write_seqlock_irq(&bb->lock);
8317
8318	if (bb->changed == 0 && bb->unacked_exist) {
8319		u64 *p = bb->page;
8320		int i;
8321		for (i = 0; i < bb->count ; i++) {
8322			if (!BB_ACK(p[i])) {
8323				sector_t start = BB_OFFSET(p[i]);
8324				int len = BB_LEN(p[i]);
8325				p[i] = BB_MAKE(start, len, 1);
8326			}
8327		}
8328		bb->unacked_exist = 0;
8329	}
8330	write_sequnlock_irq(&bb->lock);
8331}
8332EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8333
8334/* sysfs access to bad-blocks list.
8335 * We present two files.
8336 * 'bad-blocks' lists sector numbers and lengths of ranges that
8337 *    are recorded as bad.  The list is truncated to fit within
8338 *    the one-page limit of sysfs.
8339 *    Writing "sector length" to this file adds an acknowledged
8340 *    bad block list.
8341 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8342 *    been acknowledged.  Writing to this file adds bad blocks
8343 *    without acknowledging them.  This is largely for testing.
8344 */
8345
8346static ssize_t
8347badblocks_show(struct badblocks *bb, char *page, int unack)
8348{
8349	size_t len;
8350	int i;
8351	u64 *p = bb->page;
8352	unsigned seq;
8353
8354	if (bb->shift < 0)
8355		return 0;
8356
8357retry:
8358	seq = read_seqbegin(&bb->lock);
8359
8360	len = 0;
8361	i = 0;
8362
8363	while (len < PAGE_SIZE && i < bb->count) {
8364		sector_t s = BB_OFFSET(p[i]);
8365		unsigned int length = BB_LEN(p[i]);
8366		int ack = BB_ACK(p[i]);
8367		i++;
8368
8369		if (unack && ack)
8370			continue;
8371
8372		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8373				(unsigned long long)s << bb->shift,
8374				length << bb->shift);
8375	}
8376	if (unack && len == 0)
8377		bb->unacked_exist = 0;
8378
8379	if (read_seqretry(&bb->lock, seq))
8380		goto retry;
8381
8382	return len;
8383}
8384
8385#define DO_DEBUG 1
8386
8387static ssize_t
8388badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8389{
8390	unsigned long long sector;
8391	int length;
8392	char newline;
8393#ifdef DO_DEBUG
8394	/* Allow clearing via sysfs *only* for testing/debugging.
8395	 * Normally only a successful write may clear a badblock
8396	 */
8397	int clear = 0;
8398	if (page[0] == '-') {
8399		clear = 1;
8400		page++;
8401	}
8402#endif /* DO_DEBUG */
8403
8404	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8405	case 3:
8406		if (newline != '\n')
8407			return -EINVAL;
8408	case 2:
8409		if (length <= 0)
8410			return -EINVAL;
8411		break;
8412	default:
8413		return -EINVAL;
8414	}
8415
8416#ifdef DO_DEBUG
8417	if (clear) {
8418		md_clear_badblocks(bb, sector, length);
8419		return len;
8420	}
8421#endif /* DO_DEBUG */
8422	if (md_set_badblocks(bb, sector, length, !unack))
8423		return len;
8424	else
8425		return -ENOSPC;
8426}
8427
8428static int md_notify_reboot(struct notifier_block *this,
8429			    unsigned long code, void *x)
8430{
8431	struct list_head *tmp;
8432	struct mddev *mddev;
8433	int need_delay = 0;
8434
8435	for_each_mddev(mddev, tmp) {
 
 
 
 
8436		if (mddev_trylock(mddev)) {
8437			if (mddev->pers)
8438				__md_stop_writes(mddev);
8439			mddev->safemode = 2;
 
8440			mddev_unlock(mddev);
8441		}
8442		need_delay = 1;
 
 
8443	}
 
 
8444	/*
8445	 * certain more exotic SCSI devices are known to be
8446	 * volatile wrt too early system reboots. While the
8447	 * right place to handle this issue is the given
8448	 * driver, we do want to have a safe RAID driver ...
8449	 */
8450	if (need_delay)
8451		mdelay(1000*1);
8452
8453	return NOTIFY_DONE;
8454}
8455
8456static struct notifier_block md_notifier = {
8457	.notifier_call	= md_notify_reboot,
8458	.next		= NULL,
8459	.priority	= INT_MAX, /* before any real devices */
8460};
8461
8462static void md_geninit(void)
8463{
8464	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8465
8466	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8467}
8468
8469static int __init md_init(void)
8470{
8471	int ret = -ENOMEM;
8472
8473	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8474	if (!md_wq)
8475		goto err_wq;
8476
8477	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8478	if (!md_misc_wq)
8479		goto err_misc_wq;
8480
8481	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
 
 
 
 
 
8482		goto err_md;
8483
8484	if ((ret = register_blkdev(0, "mdp")) < 0)
 
8485		goto err_mdp;
8486	mdp_major = ret;
8487
8488	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8489			    md_probe, NULL, NULL);
8490	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8491			    md_probe, NULL, NULL);
8492
8493	register_reboot_notifier(&md_notifier);
8494	raid_table_header = register_sysctl_table(raid_root_table);
8495
8496	md_geninit();
8497	return 0;
8498
8499err_mdp:
8500	unregister_blkdev(MD_MAJOR, "md");
8501err_md:
 
 
8502	destroy_workqueue(md_misc_wq);
8503err_misc_wq:
8504	destroy_workqueue(md_wq);
8505err_wq:
8506	return ret;
8507}
8508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8509#ifndef MODULE
8510
8511/*
8512 * Searches all registered partitions for autorun RAID arrays
8513 * at boot time.
8514 */
8515
 
8516static LIST_HEAD(all_detected_devices);
8517struct detected_devices_node {
8518	struct list_head list;
8519	dev_t dev;
8520};
8521
8522void md_autodetect_dev(dev_t dev)
8523{
8524	struct detected_devices_node *node_detected_dev;
8525
8526	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8527	if (node_detected_dev) {
8528		node_detected_dev->dev = dev;
 
8529		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8530	} else {
8531		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8532			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8533	}
8534}
8535
8536
8537static void autostart_arrays(int part)
8538{
8539	struct md_rdev *rdev;
8540	struct detected_devices_node *node_detected_dev;
8541	dev_t dev;
8542	int i_scanned, i_passed;
8543
8544	i_scanned = 0;
8545	i_passed = 0;
8546
8547	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8548
 
8549	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8550		i_scanned++;
8551		node_detected_dev = list_entry(all_detected_devices.next,
8552					struct detected_devices_node, list);
8553		list_del(&node_detected_dev->list);
8554		dev = node_detected_dev->dev;
8555		kfree(node_detected_dev);
 
8556		rdev = md_import_device(dev,0, 90);
 
8557		if (IS_ERR(rdev))
8558			continue;
8559
8560		if (test_bit(Faulty, &rdev->flags)) {
8561			MD_BUG();
8562			continue;
8563		}
8564		set_bit(AutoDetected, &rdev->flags);
8565		list_add(&rdev->same_set, &pending_raid_disks);
8566		i_passed++;
8567	}
 
8568
8569	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8570						i_scanned, i_passed);
8571
8572	autorun_devices(part);
8573}
8574
8575#endif /* !MODULE */
8576
8577static __exit void md_exit(void)
8578{
8579	struct mddev *mddev;
8580	struct list_head *tmp;
8581
8582	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8583	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8584
8585	unregister_blkdev(MD_MAJOR,"md");
8586	unregister_blkdev(mdp_major, "mdp");
8587	unregister_reboot_notifier(&md_notifier);
8588	unregister_sysctl_table(raid_table_header);
 
 
 
 
 
 
 
 
 
 
 
8589	remove_proc_entry("mdstat", NULL);
8590	for_each_mddev(mddev, tmp) {
 
 
 
 
 
8591		export_array(mddev);
 
8592		mddev->hold_active = 0;
 
 
 
 
 
 
 
8593	}
 
 
 
8594	destroy_workqueue(md_misc_wq);
8595	destroy_workqueue(md_wq);
8596}
8597
8598subsys_initcall(md_init);
8599module_exit(md_exit)
8600
8601static int get_ro(char *buffer, struct kernel_param *kp)
8602{
8603	return sprintf(buffer, "%d", start_readonly);
8604}
8605static int set_ro(const char *val, struct kernel_param *kp)
8606{
8607	char *e;
8608	int num = simple_strtoul(val, &e, 10);
8609	if (*val && (*e == '\0' || *e == '\n')) {
8610		start_readonly = num;
8611		return 0;
8612	}
8613	return -EINVAL;
8614}
8615
8616module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8617module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8618
8619module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
 
8620
8621EXPORT_SYMBOL(register_md_personality);
8622EXPORT_SYMBOL(unregister_md_personality);
8623EXPORT_SYMBOL(md_error);
8624EXPORT_SYMBOL(md_done_sync);
8625EXPORT_SYMBOL(md_write_start);
8626EXPORT_SYMBOL(md_write_end);
8627EXPORT_SYMBOL(md_register_thread);
8628EXPORT_SYMBOL(md_unregister_thread);
8629EXPORT_SYMBOL(md_wakeup_thread);
8630EXPORT_SYMBOL(md_check_recovery);
8631MODULE_LICENSE("GPL");
8632MODULE_DESCRIPTION("MD RAID framework");
8633MODULE_ALIAS("md");
8634MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);