Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * guest access functions
   4 *
   5 * Copyright IBM Corp. 2014
   6 *
   7 */
   8
   9#include <linux/vmalloc.h>
  10#include <linux/mm_types.h>
  11#include <linux/err.h>
  12#include <linux/pgtable.h>
  13#include <linux/bitfield.h>
  14
  15#include <asm/gmap.h>
  16#include "kvm-s390.h"
  17#include "gaccess.h"
  18#include <asm/switch_to.h>
  19
  20union asce {
  21	unsigned long val;
  22	struct {
  23		unsigned long origin : 52; /* Region- or Segment-Table Origin */
  24		unsigned long	 : 2;
  25		unsigned long g  : 1; /* Subspace Group Control */
  26		unsigned long p  : 1; /* Private Space Control */
  27		unsigned long s  : 1; /* Storage-Alteration-Event Control */
  28		unsigned long x  : 1; /* Space-Switch-Event Control */
  29		unsigned long r  : 1; /* Real-Space Control */
  30		unsigned long	 : 1;
  31		unsigned long dt : 2; /* Designation-Type Control */
  32		unsigned long tl : 2; /* Region- or Segment-Table Length */
  33	};
  34};
  35
  36enum {
  37	ASCE_TYPE_SEGMENT = 0,
  38	ASCE_TYPE_REGION3 = 1,
  39	ASCE_TYPE_REGION2 = 2,
  40	ASCE_TYPE_REGION1 = 3
  41};
  42
  43union region1_table_entry {
  44	unsigned long val;
  45	struct {
  46		unsigned long rto: 52;/* Region-Table Origin */
  47		unsigned long	 : 2;
  48		unsigned long p  : 1; /* DAT-Protection Bit */
  49		unsigned long	 : 1;
  50		unsigned long tf : 2; /* Region-Second-Table Offset */
  51		unsigned long i  : 1; /* Region-Invalid Bit */
  52		unsigned long	 : 1;
  53		unsigned long tt : 2; /* Table-Type Bits */
  54		unsigned long tl : 2; /* Region-Second-Table Length */
  55	};
  56};
  57
  58union region2_table_entry {
  59	unsigned long val;
  60	struct {
  61		unsigned long rto: 52;/* Region-Table Origin */
  62		unsigned long	 : 2;
  63		unsigned long p  : 1; /* DAT-Protection Bit */
  64		unsigned long	 : 1;
  65		unsigned long tf : 2; /* Region-Third-Table Offset */
  66		unsigned long i  : 1; /* Region-Invalid Bit */
  67		unsigned long	 : 1;
  68		unsigned long tt : 2; /* Table-Type Bits */
  69		unsigned long tl : 2; /* Region-Third-Table Length */
  70	};
  71};
  72
  73struct region3_table_entry_fc0 {
  74	unsigned long sto: 52;/* Segment-Table Origin */
  75	unsigned long	 : 1;
  76	unsigned long fc : 1; /* Format-Control */
  77	unsigned long p  : 1; /* DAT-Protection Bit */
  78	unsigned long	 : 1;
  79	unsigned long tf : 2; /* Segment-Table Offset */
  80	unsigned long i  : 1; /* Region-Invalid Bit */
  81	unsigned long cr : 1; /* Common-Region Bit */
  82	unsigned long tt : 2; /* Table-Type Bits */
  83	unsigned long tl : 2; /* Segment-Table Length */
  84};
  85
  86struct region3_table_entry_fc1 {
  87	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
  88	unsigned long	 : 14;
  89	unsigned long av : 1; /* ACCF-Validity Control */
  90	unsigned long acc: 4; /* Access-Control Bits */
  91	unsigned long f  : 1; /* Fetch-Protection Bit */
  92	unsigned long fc : 1; /* Format-Control */
  93	unsigned long p  : 1; /* DAT-Protection Bit */
  94	unsigned long iep: 1; /* Instruction-Execution-Protection */
  95	unsigned long	 : 2;
  96	unsigned long i  : 1; /* Region-Invalid Bit */
  97	unsigned long cr : 1; /* Common-Region Bit */
  98	unsigned long tt : 2; /* Table-Type Bits */
  99	unsigned long	 : 2;
 100};
 101
 102union region3_table_entry {
 103	unsigned long val;
 104	struct region3_table_entry_fc0 fc0;
 105	struct region3_table_entry_fc1 fc1;
 106	struct {
 107		unsigned long	 : 53;
 108		unsigned long fc : 1; /* Format-Control */
 109		unsigned long	 : 4;
 110		unsigned long i  : 1; /* Region-Invalid Bit */
 111		unsigned long cr : 1; /* Common-Region Bit */
 112		unsigned long tt : 2; /* Table-Type Bits */
 113		unsigned long	 : 2;
 114	};
 115};
 116
 117struct segment_entry_fc0 {
 118	unsigned long pto: 53;/* Page-Table Origin */
 119	unsigned long fc : 1; /* Format-Control */
 120	unsigned long p  : 1; /* DAT-Protection Bit */
 121	unsigned long	 : 3;
 122	unsigned long i  : 1; /* Segment-Invalid Bit */
 123	unsigned long cs : 1; /* Common-Segment Bit */
 124	unsigned long tt : 2; /* Table-Type Bits */
 125	unsigned long	 : 2;
 126};
 127
 128struct segment_entry_fc1 {
 129	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 130	unsigned long	 : 3;
 131	unsigned long av : 1; /* ACCF-Validity Control */
 132	unsigned long acc: 4; /* Access-Control Bits */
 133	unsigned long f  : 1; /* Fetch-Protection Bit */
 134	unsigned long fc : 1; /* Format-Control */
 135	unsigned long p  : 1; /* DAT-Protection Bit */
 136	unsigned long iep: 1; /* Instruction-Execution-Protection */
 137	unsigned long	 : 2;
 138	unsigned long i  : 1; /* Segment-Invalid Bit */
 139	unsigned long cs : 1; /* Common-Segment Bit */
 140	unsigned long tt : 2; /* Table-Type Bits */
 141	unsigned long	 : 2;
 142};
 143
 144union segment_table_entry {
 145	unsigned long val;
 146	struct segment_entry_fc0 fc0;
 147	struct segment_entry_fc1 fc1;
 148	struct {
 149		unsigned long	 : 53;
 150		unsigned long fc : 1; /* Format-Control */
 151		unsigned long	 : 4;
 152		unsigned long i  : 1; /* Segment-Invalid Bit */
 153		unsigned long cs : 1; /* Common-Segment Bit */
 154		unsigned long tt : 2; /* Table-Type Bits */
 155		unsigned long	 : 2;
 156	};
 157};
 158
 159enum {
 160	TABLE_TYPE_SEGMENT = 0,
 161	TABLE_TYPE_REGION3 = 1,
 162	TABLE_TYPE_REGION2 = 2,
 163	TABLE_TYPE_REGION1 = 3
 164};
 165
 166union page_table_entry {
 167	unsigned long val;
 168	struct {
 169		unsigned long pfra : 52; /* Page-Frame Real Address */
 170		unsigned long z  : 1; /* Zero Bit */
 171		unsigned long i  : 1; /* Page-Invalid Bit */
 172		unsigned long p  : 1; /* DAT-Protection Bit */
 173		unsigned long iep: 1; /* Instruction-Execution-Protection */
 174		unsigned long	 : 8;
 175	};
 176};
 177
 178/*
 179 * vaddress union in order to easily decode a virtual address into its
 180 * region first index, region second index etc. parts.
 181 */
 182union vaddress {
 183	unsigned long addr;
 184	struct {
 185		unsigned long rfx : 11;
 186		unsigned long rsx : 11;
 187		unsigned long rtx : 11;
 188		unsigned long sx  : 11;
 189		unsigned long px  : 8;
 190		unsigned long bx  : 12;
 191	};
 192	struct {
 193		unsigned long rfx01 : 2;
 194		unsigned long	    : 9;
 195		unsigned long rsx01 : 2;
 196		unsigned long	    : 9;
 197		unsigned long rtx01 : 2;
 198		unsigned long	    : 9;
 199		unsigned long sx01  : 2;
 200		unsigned long	    : 29;
 201	};
 202};
 203
 204/*
 205 * raddress union which will contain the result (real or absolute address)
 206 * after a page table walk. The rfaa, sfaa and pfra members are used to
 207 * simply assign them the value of a region, segment or page table entry.
 208 */
 209union raddress {
 210	unsigned long addr;
 211	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
 212	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 213	unsigned long pfra : 52; /* Page-Frame Real Address */
 214};
 215
 216union alet {
 217	u32 val;
 218	struct {
 219		u32 reserved : 7;
 220		u32 p        : 1;
 221		u32 alesn    : 8;
 222		u32 alen     : 16;
 223	};
 224};
 225
 226union ald {
 227	u32 val;
 228	struct {
 229		u32     : 1;
 230		u32 alo : 24;
 231		u32 all : 7;
 232	};
 233};
 234
 235struct ale {
 236	unsigned long i      : 1; /* ALEN-Invalid Bit */
 237	unsigned long        : 5;
 238	unsigned long fo     : 1; /* Fetch-Only Bit */
 239	unsigned long p      : 1; /* Private Bit */
 240	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
 241	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
 242	unsigned long        : 32;
 243	unsigned long        : 1;
 244	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
 245	unsigned long        : 6;
 246	unsigned long astesn : 32; /* ASTE Sequence Number */
 247};
 248
 249struct aste {
 250	unsigned long i      : 1; /* ASX-Invalid Bit */
 251	unsigned long ato    : 29; /* Authority-Table Origin */
 252	unsigned long        : 1;
 253	unsigned long b      : 1; /* Base-Space Bit */
 254	unsigned long ax     : 16; /* Authorization Index */
 255	unsigned long atl    : 12; /* Authority-Table Length */
 256	unsigned long        : 2;
 257	unsigned long ca     : 1; /* Controlled-ASN Bit */
 258	unsigned long ra     : 1; /* Reusable-ASN Bit */
 259	unsigned long asce   : 64; /* Address-Space-Control Element */
 260	unsigned long ald    : 32;
 261	unsigned long astesn : 32;
 262	/* .. more fields there */
 263};
 264
 265int ipte_lock_held(struct kvm *kvm)
 266{
 267	if (sclp.has_siif) {
 268		int rc;
 269
 270		read_lock(&kvm->arch.sca_lock);
 271		rc = kvm_s390_get_ipte_control(kvm)->kh != 0;
 272		read_unlock(&kvm->arch.sca_lock);
 273		return rc;
 274	}
 275	return kvm->arch.ipte_lock_count != 0;
 276}
 277
 278static void ipte_lock_simple(struct kvm *kvm)
 279{
 280	union ipte_control old, new, *ic;
 281
 282	mutex_lock(&kvm->arch.ipte_mutex);
 283	kvm->arch.ipte_lock_count++;
 284	if (kvm->arch.ipte_lock_count > 1)
 285		goto out;
 286retry:
 287	read_lock(&kvm->arch.sca_lock);
 288	ic = kvm_s390_get_ipte_control(kvm);
 289	do {
 290		old = READ_ONCE(*ic);
 291		if (old.k) {
 292			read_unlock(&kvm->arch.sca_lock);
 293			cond_resched();
 294			goto retry;
 295		}
 296		new = old;
 297		new.k = 1;
 298	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 299	read_unlock(&kvm->arch.sca_lock);
 300out:
 301	mutex_unlock(&kvm->arch.ipte_mutex);
 302}
 303
 304static void ipte_unlock_simple(struct kvm *kvm)
 305{
 306	union ipte_control old, new, *ic;
 307
 308	mutex_lock(&kvm->arch.ipte_mutex);
 309	kvm->arch.ipte_lock_count--;
 310	if (kvm->arch.ipte_lock_count)
 311		goto out;
 312	read_lock(&kvm->arch.sca_lock);
 313	ic = kvm_s390_get_ipte_control(kvm);
 314	do {
 315		old = READ_ONCE(*ic);
 316		new = old;
 317		new.k = 0;
 318	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 319	read_unlock(&kvm->arch.sca_lock);
 320	wake_up(&kvm->arch.ipte_wq);
 321out:
 322	mutex_unlock(&kvm->arch.ipte_mutex);
 323}
 324
 325static void ipte_lock_siif(struct kvm *kvm)
 326{
 327	union ipte_control old, new, *ic;
 328
 329retry:
 330	read_lock(&kvm->arch.sca_lock);
 331	ic = kvm_s390_get_ipte_control(kvm);
 332	do {
 333		old = READ_ONCE(*ic);
 334		if (old.kg) {
 335			read_unlock(&kvm->arch.sca_lock);
 336			cond_resched();
 337			goto retry;
 338		}
 339		new = old;
 340		new.k = 1;
 341		new.kh++;
 342	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 343	read_unlock(&kvm->arch.sca_lock);
 344}
 345
 346static void ipte_unlock_siif(struct kvm *kvm)
 347{
 348	union ipte_control old, new, *ic;
 349
 350	read_lock(&kvm->arch.sca_lock);
 351	ic = kvm_s390_get_ipte_control(kvm);
 352	do {
 353		old = READ_ONCE(*ic);
 354		new = old;
 355		new.kh--;
 356		if (!new.kh)
 357			new.k = 0;
 358	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 359	read_unlock(&kvm->arch.sca_lock);
 360	if (!new.kh)
 361		wake_up(&kvm->arch.ipte_wq);
 362}
 363
 364void ipte_lock(struct kvm *kvm)
 365{
 366	if (sclp.has_siif)
 367		ipte_lock_siif(kvm);
 368	else
 369		ipte_lock_simple(kvm);
 370}
 371
 372void ipte_unlock(struct kvm *kvm)
 373{
 374	if (sclp.has_siif)
 375		ipte_unlock_siif(kvm);
 376	else
 377		ipte_unlock_simple(kvm);
 378}
 379
 380static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
 381			  enum gacc_mode mode)
 382{
 383	union alet alet;
 384	struct ale ale;
 385	struct aste aste;
 386	unsigned long ald_addr, authority_table_addr;
 387	union ald ald;
 388	int eax, rc;
 389	u8 authority_table;
 390
 391	if (ar >= NUM_ACRS)
 392		return -EINVAL;
 393
 394	save_access_regs(vcpu->run->s.regs.acrs);
 395	alet.val = vcpu->run->s.regs.acrs[ar];
 396
 397	if (ar == 0 || alet.val == 0) {
 398		asce->val = vcpu->arch.sie_block->gcr[1];
 399		return 0;
 400	} else if (alet.val == 1) {
 401		asce->val = vcpu->arch.sie_block->gcr[7];
 402		return 0;
 403	}
 404
 405	if (alet.reserved)
 406		return PGM_ALET_SPECIFICATION;
 407
 408	if (alet.p)
 409		ald_addr = vcpu->arch.sie_block->gcr[5];
 410	else
 411		ald_addr = vcpu->arch.sie_block->gcr[2];
 412	ald_addr &= 0x7fffffc0;
 413
 414	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
 415	if (rc)
 416		return rc;
 417
 418	if (alet.alen / 8 > ald.all)
 419		return PGM_ALEN_TRANSLATION;
 420
 421	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
 422		return PGM_ADDRESSING;
 423
 424	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
 425			     sizeof(struct ale));
 426	if (rc)
 427		return rc;
 428
 429	if (ale.i == 1)
 430		return PGM_ALEN_TRANSLATION;
 431	if (ale.alesn != alet.alesn)
 432		return PGM_ALE_SEQUENCE;
 433
 434	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
 435	if (rc)
 436		return rc;
 437
 438	if (aste.i)
 439		return PGM_ASTE_VALIDITY;
 440	if (aste.astesn != ale.astesn)
 441		return PGM_ASTE_SEQUENCE;
 442
 443	if (ale.p == 1) {
 444		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
 445		if (ale.aleax != eax) {
 446			if (eax / 16 > aste.atl)
 447				return PGM_EXTENDED_AUTHORITY;
 448
 449			authority_table_addr = aste.ato * 4 + eax / 4;
 450
 451			rc = read_guest_real(vcpu, authority_table_addr,
 452					     &authority_table,
 453					     sizeof(u8));
 454			if (rc)
 455				return rc;
 456
 457			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
 458				return PGM_EXTENDED_AUTHORITY;
 459		}
 460	}
 461
 462	if (ale.fo == 1 && mode == GACC_STORE)
 463		return PGM_PROTECTION;
 464
 465	asce->val = aste.asce;
 466	return 0;
 467}
 468
 469struct trans_exc_code_bits {
 470	unsigned long addr : 52; /* Translation-exception Address */
 471	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
 472	unsigned long	   : 2;
 473	unsigned long b56  : 1;
 474	unsigned long	   : 3;
 475	unsigned long b60  : 1;
 476	unsigned long b61  : 1;
 477	unsigned long as   : 2;  /* ASCE Identifier */
 478};
 479
 480enum {
 481	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
 482	FSI_STORE   = 1, /* Exception was due to store operation */
 483	FSI_FETCH   = 2  /* Exception was due to fetch operation */
 484};
 485
 486enum prot_type {
 487	PROT_TYPE_LA   = 0,
 488	PROT_TYPE_KEYC = 1,
 489	PROT_TYPE_ALC  = 2,
 490	PROT_TYPE_DAT  = 3,
 491	PROT_TYPE_IEP  = 4,
 492	/* Dummy value for passing an initialized value when code != PGM_PROTECTION */
 493	PROT_NONE,
 494};
 495
 496static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
 497			    enum gacc_mode mode, enum prot_type prot, bool terminate)
 498{
 499	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
 500	struct trans_exc_code_bits *tec;
 501
 502	memset(pgm, 0, sizeof(*pgm));
 503	pgm->code = code;
 504	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
 505
 506	switch (code) {
 507	case PGM_PROTECTION:
 508		switch (prot) {
 509		case PROT_NONE:
 510			/* We should never get here, acts like termination */
 511			WARN_ON_ONCE(1);
 512			break;
 513		case PROT_TYPE_IEP:
 514			tec->b61 = 1;
 515			fallthrough;
 516		case PROT_TYPE_LA:
 517			tec->b56 = 1;
 518			break;
 519		case PROT_TYPE_KEYC:
 520			tec->b60 = 1;
 521			break;
 522		case PROT_TYPE_ALC:
 523			tec->b60 = 1;
 524			fallthrough;
 525		case PROT_TYPE_DAT:
 526			tec->b61 = 1;
 527			break;
 528		}
 529		if (terminate) {
 530			tec->b56 = 0;
 531			tec->b60 = 0;
 532			tec->b61 = 0;
 533		}
 534		fallthrough;
 535	case PGM_ASCE_TYPE:
 536	case PGM_PAGE_TRANSLATION:
 537	case PGM_REGION_FIRST_TRANS:
 538	case PGM_REGION_SECOND_TRANS:
 539	case PGM_REGION_THIRD_TRANS:
 540	case PGM_SEGMENT_TRANSLATION:
 541		/*
 542		 * op_access_id only applies to MOVE_PAGE -> set bit 61
 543		 * exc_access_id has to be set to 0 for some instructions. Both
 544		 * cases have to be handled by the caller.
 545		 */
 546		tec->addr = gva >> PAGE_SHIFT;
 547		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
 548		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
 549		fallthrough;
 550	case PGM_ALEN_TRANSLATION:
 551	case PGM_ALE_SEQUENCE:
 552	case PGM_ASTE_VALIDITY:
 553	case PGM_ASTE_SEQUENCE:
 554	case PGM_EXTENDED_AUTHORITY:
 555		/*
 556		 * We can always store exc_access_id, as it is
 557		 * undefined for non-ar cases. It is undefined for
 558		 * most DAT protection exceptions.
 559		 */
 560		pgm->exc_access_id = ar;
 561		break;
 562	}
 563	return code;
 564}
 565
 566static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
 567		     enum gacc_mode mode, enum prot_type prot)
 568{
 569	return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
 570}
 571
 572static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
 573			 unsigned long ga, u8 ar, enum gacc_mode mode)
 574{
 575	int rc;
 576	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
 577
 578	if (!psw.dat) {
 579		asce->val = 0;
 580		asce->r = 1;
 581		return 0;
 582	}
 583
 584	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
 585		psw.as = PSW_BITS_AS_PRIMARY;
 586
 587	switch (psw.as) {
 588	case PSW_BITS_AS_PRIMARY:
 589		asce->val = vcpu->arch.sie_block->gcr[1];
 590		return 0;
 591	case PSW_BITS_AS_SECONDARY:
 592		asce->val = vcpu->arch.sie_block->gcr[7];
 593		return 0;
 594	case PSW_BITS_AS_HOME:
 595		asce->val = vcpu->arch.sie_block->gcr[13];
 596		return 0;
 597	case PSW_BITS_AS_ACCREG:
 598		rc = ar_translation(vcpu, asce, ar, mode);
 599		if (rc > 0)
 600			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
 601		return rc;
 602	}
 603	return 0;
 604}
 605
 606static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
 607{
 608	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
 609}
 610
 611/**
 612 * guest_translate - translate a guest virtual into a guest absolute address
 613 * @vcpu: virtual cpu
 614 * @gva: guest virtual address
 615 * @gpa: points to where guest physical (absolute) address should be stored
 616 * @asce: effective asce
 617 * @mode: indicates the access mode to be used
 618 * @prot: returns the type for protection exceptions
 619 *
 620 * Translate a guest virtual address into a guest absolute address by means
 621 * of dynamic address translation as specified by the architecture.
 622 * If the resulting absolute address is not available in the configuration
 623 * an addressing exception is indicated and @gpa will not be changed.
 624 *
 625 * Returns: - zero on success; @gpa contains the resulting absolute address
 626 *	    - a negative value if guest access failed due to e.g. broken
 627 *	      guest mapping
 628 *	    - a positve value if an access exception happened. In this case
 629 *	      the returned value is the program interruption code as defined
 630 *	      by the architecture
 631 */
 632static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
 633				     unsigned long *gpa, const union asce asce,
 634				     enum gacc_mode mode, enum prot_type *prot)
 635{
 636	union vaddress vaddr = {.addr = gva};
 637	union raddress raddr = {.addr = gva};
 638	union page_table_entry pte;
 639	int dat_protection = 0;
 640	int iep_protection = 0;
 641	union ctlreg0 ctlreg0;
 642	unsigned long ptr;
 643	int edat1, edat2, iep;
 644
 645	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
 646	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
 647	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
 648	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
 649	if (asce.r)
 650		goto real_address;
 651	ptr = asce.origin * PAGE_SIZE;
 652	switch (asce.dt) {
 653	case ASCE_TYPE_REGION1:
 654		if (vaddr.rfx01 > asce.tl)
 655			return PGM_REGION_FIRST_TRANS;
 656		ptr += vaddr.rfx * 8;
 657		break;
 658	case ASCE_TYPE_REGION2:
 659		if (vaddr.rfx)
 660			return PGM_ASCE_TYPE;
 661		if (vaddr.rsx01 > asce.tl)
 662			return PGM_REGION_SECOND_TRANS;
 663		ptr += vaddr.rsx * 8;
 664		break;
 665	case ASCE_TYPE_REGION3:
 666		if (vaddr.rfx || vaddr.rsx)
 667			return PGM_ASCE_TYPE;
 668		if (vaddr.rtx01 > asce.tl)
 669			return PGM_REGION_THIRD_TRANS;
 670		ptr += vaddr.rtx * 8;
 671		break;
 672	case ASCE_TYPE_SEGMENT:
 673		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
 674			return PGM_ASCE_TYPE;
 675		if (vaddr.sx01 > asce.tl)
 676			return PGM_SEGMENT_TRANSLATION;
 677		ptr += vaddr.sx * 8;
 678		break;
 679	}
 680	switch (asce.dt) {
 681	case ASCE_TYPE_REGION1:	{
 682		union region1_table_entry rfte;
 683
 684		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 685			return PGM_ADDRESSING;
 686		if (deref_table(vcpu->kvm, ptr, &rfte.val))
 687			return -EFAULT;
 688		if (rfte.i)
 689			return PGM_REGION_FIRST_TRANS;
 690		if (rfte.tt != TABLE_TYPE_REGION1)
 691			return PGM_TRANSLATION_SPEC;
 692		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
 693			return PGM_REGION_SECOND_TRANS;
 694		if (edat1)
 695			dat_protection |= rfte.p;
 696		ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
 697	}
 698		fallthrough;
 699	case ASCE_TYPE_REGION2: {
 700		union region2_table_entry rste;
 701
 702		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 703			return PGM_ADDRESSING;
 704		if (deref_table(vcpu->kvm, ptr, &rste.val))
 705			return -EFAULT;
 706		if (rste.i)
 707			return PGM_REGION_SECOND_TRANS;
 708		if (rste.tt != TABLE_TYPE_REGION2)
 709			return PGM_TRANSLATION_SPEC;
 710		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
 711			return PGM_REGION_THIRD_TRANS;
 712		if (edat1)
 713			dat_protection |= rste.p;
 714		ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
 715	}
 716		fallthrough;
 717	case ASCE_TYPE_REGION3: {
 718		union region3_table_entry rtte;
 719
 720		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 721			return PGM_ADDRESSING;
 722		if (deref_table(vcpu->kvm, ptr, &rtte.val))
 723			return -EFAULT;
 724		if (rtte.i)
 725			return PGM_REGION_THIRD_TRANS;
 726		if (rtte.tt != TABLE_TYPE_REGION3)
 727			return PGM_TRANSLATION_SPEC;
 728		if (rtte.cr && asce.p && edat2)
 729			return PGM_TRANSLATION_SPEC;
 730		if (rtte.fc && edat2) {
 731			dat_protection |= rtte.fc1.p;
 732			iep_protection = rtte.fc1.iep;
 733			raddr.rfaa = rtte.fc1.rfaa;
 734			goto absolute_address;
 735		}
 736		if (vaddr.sx01 < rtte.fc0.tf)
 737			return PGM_SEGMENT_TRANSLATION;
 738		if (vaddr.sx01 > rtte.fc0.tl)
 739			return PGM_SEGMENT_TRANSLATION;
 740		if (edat1)
 741			dat_protection |= rtte.fc0.p;
 742		ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
 743	}
 744		fallthrough;
 745	case ASCE_TYPE_SEGMENT: {
 746		union segment_table_entry ste;
 747
 748		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 749			return PGM_ADDRESSING;
 750		if (deref_table(vcpu->kvm, ptr, &ste.val))
 751			return -EFAULT;
 752		if (ste.i)
 753			return PGM_SEGMENT_TRANSLATION;
 754		if (ste.tt != TABLE_TYPE_SEGMENT)
 755			return PGM_TRANSLATION_SPEC;
 756		if (ste.cs && asce.p)
 757			return PGM_TRANSLATION_SPEC;
 758		if (ste.fc && edat1) {
 759			dat_protection |= ste.fc1.p;
 760			iep_protection = ste.fc1.iep;
 761			raddr.sfaa = ste.fc1.sfaa;
 762			goto absolute_address;
 763		}
 764		dat_protection |= ste.fc0.p;
 765		ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
 766	}
 767	}
 768	if (kvm_is_error_gpa(vcpu->kvm, ptr))
 769		return PGM_ADDRESSING;
 770	if (deref_table(vcpu->kvm, ptr, &pte.val))
 771		return -EFAULT;
 772	if (pte.i)
 773		return PGM_PAGE_TRANSLATION;
 774	if (pte.z)
 775		return PGM_TRANSLATION_SPEC;
 776	dat_protection |= pte.p;
 777	iep_protection = pte.iep;
 778	raddr.pfra = pte.pfra;
 779real_address:
 780	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
 781absolute_address:
 782	if (mode == GACC_STORE && dat_protection) {
 783		*prot = PROT_TYPE_DAT;
 784		return PGM_PROTECTION;
 785	}
 786	if (mode == GACC_IFETCH && iep_protection && iep) {
 787		*prot = PROT_TYPE_IEP;
 788		return PGM_PROTECTION;
 789	}
 790	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
 791		return PGM_ADDRESSING;
 792	*gpa = raddr.addr;
 793	return 0;
 794}
 795
 796static inline int is_low_address(unsigned long ga)
 797{
 798	/* Check for address ranges 0..511 and 4096..4607 */
 799	return (ga & ~0x11fful) == 0;
 800}
 801
 802static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
 803					  const union asce asce)
 804{
 805	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
 806	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 807
 808	if (!ctlreg0.lap)
 809		return 0;
 810	if (psw_bits(*psw).dat && asce.p)
 811		return 0;
 812	return 1;
 813}
 814
 815static int vm_check_access_key(struct kvm *kvm, u8 access_key,
 816			       enum gacc_mode mode, gpa_t gpa)
 817{
 818	u8 storage_key, access_control;
 819	bool fetch_protected;
 820	unsigned long hva;
 821	int r;
 822
 823	if (access_key == 0)
 824		return 0;
 825
 826	hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
 827	if (kvm_is_error_hva(hva))
 828		return PGM_ADDRESSING;
 829
 830	mmap_read_lock(current->mm);
 831	r = get_guest_storage_key(current->mm, hva, &storage_key);
 832	mmap_read_unlock(current->mm);
 833	if (r)
 834		return r;
 835	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
 836	if (access_control == access_key)
 837		return 0;
 838	fetch_protected = storage_key & _PAGE_FP_BIT;
 839	if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
 840		return 0;
 841	return PGM_PROTECTION;
 842}
 843
 844static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
 845					   union asce asce)
 846{
 847	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 848	unsigned long override;
 849
 850	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
 851		/* check if fetch protection override enabled */
 852		override = vcpu->arch.sie_block->gcr[0];
 853		override &= CR0_FETCH_PROTECTION_OVERRIDE;
 854		/* not applicable if subject to DAT && private space */
 855		override = override && !(psw_bits(*psw).dat && asce.p);
 856		return override;
 857	}
 858	return false;
 859}
 860
 861static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
 862{
 863	return ga < 2048 && ga + len <= 2048;
 864}
 865
 866static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
 867{
 868	/* check if storage protection override enabled */
 869	return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
 870}
 871
 872static bool storage_prot_override_applies(u8 access_control)
 873{
 874	/* matches special storage protection override key (9) -> allow */
 875	return access_control == PAGE_SPO_ACC;
 876}
 877
 878static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
 879				 enum gacc_mode mode, union asce asce, gpa_t gpa,
 880				 unsigned long ga, unsigned int len)
 881{
 882	u8 storage_key, access_control;
 883	unsigned long hva;
 884	int r;
 885
 886	/* access key 0 matches any storage key -> allow */
 887	if (access_key == 0)
 888		return 0;
 889	/*
 890	 * caller needs to ensure that gfn is accessible, so we can
 891	 * assume that this cannot fail
 892	 */
 893	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
 894	mmap_read_lock(current->mm);
 895	r = get_guest_storage_key(current->mm, hva, &storage_key);
 896	mmap_read_unlock(current->mm);
 897	if (r)
 898		return r;
 899	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
 900	/* access key matches storage key -> allow */
 901	if (access_control == access_key)
 902		return 0;
 903	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
 904		/* it is a fetch and fetch protection is off -> allow */
 905		if (!(storage_key & _PAGE_FP_BIT))
 906			return 0;
 907		if (fetch_prot_override_applicable(vcpu, mode, asce) &&
 908		    fetch_prot_override_applies(ga, len))
 909			return 0;
 910	}
 911	if (storage_prot_override_applicable(vcpu) &&
 912	    storage_prot_override_applies(access_control))
 913		return 0;
 914	return PGM_PROTECTION;
 915}
 916
 917/**
 918 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments
 919 * covering a logical range
 920 * @vcpu: virtual cpu
 921 * @ga: guest address, start of range
 922 * @ar: access register
 923 * @gpas: output argument, may be NULL
 924 * @len: length of range in bytes
 925 * @asce: address-space-control element to use for translation
 926 * @mode: access mode
 927 * @access_key: access key to mach the range's storage keys against
 928 *
 929 * Translate a logical range to a series of guest absolute addresses,
 930 * such that the concatenation of page fragments starting at each gpa make up
 931 * the whole range.
 932 * The translation is performed as if done by the cpu for the given @asce, @ar,
 933 * @mode and state of the @vcpu.
 934 * If the translation causes an exception, its program interruption code is
 935 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
 936 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
 937 * a correct exception into the guest.
 938 * The resulting gpas are stored into @gpas, unless it is NULL.
 939 *
 940 * Note: All fragments except the first one start at the beginning of a page.
 941 *	 When deriving the boundaries of a fragment from a gpa, all but the last
 942 *	 fragment end at the end of the page.
 943 *
 944 * Return:
 945 * * 0		- success
 946 * * <0		- translation could not be performed, for example if  guest
 947 *		  memory could not be accessed
 948 * * >0		- an access exception occurred. In this case the returned value
 949 *		  is the program interruption code and the contents of pgm may
 950 *		  be used to inject an exception into the guest.
 951 */
 952static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
 953			       unsigned long *gpas, unsigned long len,
 954			       const union asce asce, enum gacc_mode mode,
 955			       u8 access_key)
 956{
 957	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 958	unsigned int offset = offset_in_page(ga);
 959	unsigned int fragment_len;
 960	int lap_enabled, rc = 0;
 961	enum prot_type prot;
 962	unsigned long gpa;
 963
 964	lap_enabled = low_address_protection_enabled(vcpu, asce);
 965	while (min(PAGE_SIZE - offset, len) > 0) {
 966		fragment_len = min(PAGE_SIZE - offset, len);
 967		ga = kvm_s390_logical_to_effective(vcpu, ga);
 968		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
 969			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
 970					 PROT_TYPE_LA);
 971		if (psw_bits(*psw).dat) {
 972			rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
 973			if (rc < 0)
 974				return rc;
 975		} else {
 976			gpa = kvm_s390_real_to_abs(vcpu, ga);
 977			if (kvm_is_error_gpa(vcpu->kvm, gpa)) {
 978				rc = PGM_ADDRESSING;
 979				prot = PROT_NONE;
 980			}
 981		}
 982		if (rc)
 983			return trans_exc(vcpu, rc, ga, ar, mode, prot);
 984		rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
 985					   fragment_len);
 986		if (rc)
 987			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
 988		if (gpas)
 989			*gpas++ = gpa;
 990		offset = 0;
 991		ga += fragment_len;
 992		len -= fragment_len;
 993	}
 994	return 0;
 995}
 996
 997static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
 998			     void *data, unsigned int len)
 999{
1000	const unsigned int offset = offset_in_page(gpa);
1001	const gfn_t gfn = gpa_to_gfn(gpa);
1002	int rc;
1003
1004	if (mode == GACC_STORE)
1005		rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
1006	else
1007		rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
1008	return rc;
1009}
1010
1011static int
1012access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
1013			   void *data, unsigned int len, u8 access_key)
1014{
1015	struct kvm_memory_slot *slot;
1016	bool writable;
1017	gfn_t gfn;
1018	hva_t hva;
1019	int rc;
1020
1021	gfn = gpa >> PAGE_SHIFT;
1022	slot = gfn_to_memslot(kvm, gfn);
1023	hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1024
1025	if (kvm_is_error_hva(hva))
1026		return PGM_ADDRESSING;
1027	/*
1028	 * Check if it's a ro memslot, even tho that can't occur (they're unsupported).
1029	 * Don't try to actually handle that case.
1030	 */
1031	if (!writable && mode == GACC_STORE)
1032		return -EOPNOTSUPP;
1033	hva += offset_in_page(gpa);
1034	if (mode == GACC_STORE)
1035		rc = copy_to_user_key((void __user *)hva, data, len, access_key);
1036	else
1037		rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
1038	if (rc)
1039		return PGM_PROTECTION;
1040	if (mode == GACC_STORE)
1041		mark_page_dirty_in_slot(kvm, slot, gfn);
1042	return 0;
1043}
1044
1045int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
1046			      unsigned long len, enum gacc_mode mode, u8 access_key)
1047{
1048	int offset = offset_in_page(gpa);
1049	int fragment_len;
1050	int rc;
1051
1052	while (min(PAGE_SIZE - offset, len) > 0) {
1053		fragment_len = min(PAGE_SIZE - offset, len);
1054		rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
1055		if (rc)
1056			return rc;
1057		offset = 0;
1058		len -= fragment_len;
1059		data += fragment_len;
1060		gpa += fragment_len;
1061	}
1062	return 0;
1063}
1064
1065int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
1066			  void *data, unsigned long len, enum gacc_mode mode,
1067			  u8 access_key)
1068{
1069	psw_t *psw = &vcpu->arch.sie_block->gpsw;
1070	unsigned long nr_pages, idx;
1071	unsigned long gpa_array[2];
1072	unsigned int fragment_len;
1073	unsigned long *gpas;
1074	enum prot_type prot;
1075	int need_ipte_lock;
1076	union asce asce;
1077	bool try_storage_prot_override;
1078	bool try_fetch_prot_override;
1079	int rc;
1080
1081	if (!len)
1082		return 0;
1083	ga = kvm_s390_logical_to_effective(vcpu, ga);
1084	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
1085	if (rc)
1086		return rc;
1087	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
1088	gpas = gpa_array;
1089	if (nr_pages > ARRAY_SIZE(gpa_array))
1090		gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
1091	if (!gpas)
1092		return -ENOMEM;
1093	try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
1094	try_storage_prot_override = storage_prot_override_applicable(vcpu);
1095	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
1096	if (need_ipte_lock)
1097		ipte_lock(vcpu->kvm);
1098	/*
1099	 * Since we do the access further down ultimately via a move instruction
1100	 * that does key checking and returns an error in case of a protection
1101	 * violation, we don't need to do the check during address translation.
1102	 * Skip it by passing access key 0, which matches any storage key,
1103	 * obviating the need for any further checks. As a result the check is
1104	 * handled entirely in hardware on access, we only need to take care to
1105	 * forego key protection checking if fetch protection override applies or
1106	 * retry with the special key 9 in case of storage protection override.
1107	 */
1108	rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
1109	if (rc)
1110		goto out_unlock;
1111	for (idx = 0; idx < nr_pages; idx++) {
1112		fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
1113		if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
1114			rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
1115					       data, fragment_len);
1116		} else {
1117			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1118							data, fragment_len, access_key);
1119		}
1120		if (rc == PGM_PROTECTION && try_storage_prot_override)
1121			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1122							data, fragment_len, PAGE_SPO_ACC);
1123		if (rc)
1124			break;
1125		len -= fragment_len;
1126		data += fragment_len;
1127		ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
1128	}
1129	if (rc > 0) {
1130		bool terminate = (mode == GACC_STORE) && (idx > 0);
1131
1132		if (rc == PGM_PROTECTION)
1133			prot = PROT_TYPE_KEYC;
1134		else
1135			prot = PROT_NONE;
1136		rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
1137	}
1138out_unlock:
1139	if (need_ipte_lock)
1140		ipte_unlock(vcpu->kvm);
1141	if (nr_pages > ARRAY_SIZE(gpa_array))
1142		vfree(gpas);
1143	return rc;
1144}
1145
1146int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
1147		      void *data, unsigned long len, enum gacc_mode mode)
1148{
1149	unsigned int fragment_len;
1150	unsigned long gpa;
1151	int rc = 0;
1152
1153	while (len && !rc) {
1154		gpa = kvm_s390_real_to_abs(vcpu, gra);
1155		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
1156		rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
1157		len -= fragment_len;
1158		gra += fragment_len;
1159		data += fragment_len;
1160	}
1161	return rc;
1162}
1163
1164/**
1165 * guest_translate_address_with_key - translate guest logical into guest absolute address
1166 * @vcpu: virtual cpu
1167 * @gva: Guest virtual address
1168 * @ar: Access register
1169 * @gpa: Guest physical address
1170 * @mode: Translation access mode
1171 * @access_key: access key to mach the storage key with
1172 *
1173 * Parameter semantics are the same as the ones from guest_translate.
1174 * The memory contents at the guest address are not changed.
1175 *
1176 * Note: The IPTE lock is not taken during this function, so the caller
1177 * has to take care of this.
1178 */
1179int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1180				     unsigned long *gpa, enum gacc_mode mode,
1181				     u8 access_key)
1182{
1183	union asce asce;
1184	int rc;
1185
1186	gva = kvm_s390_logical_to_effective(vcpu, gva);
1187	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1188	if (rc)
1189		return rc;
1190	return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
1191				   access_key);
1192}
1193
1194/**
1195 * check_gva_range - test a range of guest virtual addresses for accessibility
1196 * @vcpu: virtual cpu
1197 * @gva: Guest virtual address
1198 * @ar: Access register
1199 * @length: Length of test range
1200 * @mode: Translation access mode
1201 * @access_key: access key to mach the storage keys with
1202 */
1203int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1204		    unsigned long length, enum gacc_mode mode, u8 access_key)
1205{
1206	union asce asce;
1207	int rc = 0;
1208
1209	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1210	if (rc)
1211		return rc;
1212	ipte_lock(vcpu->kvm);
1213	rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
1214				 access_key);
1215	ipte_unlock(vcpu->kvm);
1216
1217	return rc;
1218}
1219
1220/**
1221 * check_gpa_range - test a range of guest physical addresses for accessibility
1222 * @kvm: virtual machine instance
1223 * @gpa: guest physical address
1224 * @length: length of test range
1225 * @mode: access mode to test, relevant for storage keys
1226 * @access_key: access key to mach the storage keys with
1227 */
1228int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
1229		    enum gacc_mode mode, u8 access_key)
1230{
1231	unsigned int fragment_len;
1232	int rc = 0;
1233
1234	while (length && !rc) {
1235		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
1236		rc = vm_check_access_key(kvm, access_key, mode, gpa);
1237		length -= fragment_len;
1238		gpa += fragment_len;
1239	}
1240	return rc;
1241}
1242
1243/**
1244 * kvm_s390_check_low_addr_prot_real - check for low-address protection
1245 * @vcpu: virtual cpu
1246 * @gra: Guest real address
1247 *
1248 * Checks whether an address is subject to low-address protection and set
1249 * up vcpu->arch.pgm accordingly if necessary.
1250 *
1251 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
1252 */
1253int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
1254{
1255	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
1256
1257	if (!ctlreg0.lap || !is_low_address(gra))
1258		return 0;
1259	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
1260}
1261
1262/**
1263 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
1264 * @sg: pointer to the shadow guest address space structure
1265 * @saddr: faulting address in the shadow gmap
1266 * @pgt: pointer to the beginning of the page table for the given address if
1267 *	 successful (return value 0), or to the first invalid DAT entry in
1268 *	 case of exceptions (return value > 0)
1269 * @dat_protection: referenced memory is write protected
1270 * @fake: pgt references contiguous guest memory block, not a pgtable
1271 */
1272static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
1273				  unsigned long *pgt, int *dat_protection,
1274				  int *fake)
1275{
1276	struct gmap *parent;
1277	union asce asce;
1278	union vaddress vaddr;
1279	unsigned long ptr;
1280	int rc;
1281
1282	*fake = 0;
1283	*dat_protection = 0;
1284	parent = sg->parent;
1285	vaddr.addr = saddr;
1286	asce.val = sg->orig_asce;
1287	ptr = asce.origin * PAGE_SIZE;
1288	if (asce.r) {
1289		*fake = 1;
1290		ptr = 0;
1291		asce.dt = ASCE_TYPE_REGION1;
1292	}
1293	switch (asce.dt) {
1294	case ASCE_TYPE_REGION1:
1295		if (vaddr.rfx01 > asce.tl && !*fake)
1296			return PGM_REGION_FIRST_TRANS;
1297		break;
1298	case ASCE_TYPE_REGION2:
1299		if (vaddr.rfx)
1300			return PGM_ASCE_TYPE;
1301		if (vaddr.rsx01 > asce.tl)
1302			return PGM_REGION_SECOND_TRANS;
1303		break;
1304	case ASCE_TYPE_REGION3:
1305		if (vaddr.rfx || vaddr.rsx)
1306			return PGM_ASCE_TYPE;
1307		if (vaddr.rtx01 > asce.tl)
1308			return PGM_REGION_THIRD_TRANS;
1309		break;
1310	case ASCE_TYPE_SEGMENT:
1311		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1312			return PGM_ASCE_TYPE;
1313		if (vaddr.sx01 > asce.tl)
1314			return PGM_SEGMENT_TRANSLATION;
1315		break;
1316	}
1317
1318	switch (asce.dt) {
1319	case ASCE_TYPE_REGION1: {
1320		union region1_table_entry rfte;
1321
1322		if (*fake) {
1323			ptr += vaddr.rfx * _REGION1_SIZE;
1324			rfte.val = ptr;
1325			goto shadow_r2t;
1326		}
1327		*pgt = ptr + vaddr.rfx * 8;
1328		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1329		if (rc)
1330			return rc;
1331		if (rfte.i)
1332			return PGM_REGION_FIRST_TRANS;
1333		if (rfte.tt != TABLE_TYPE_REGION1)
1334			return PGM_TRANSLATION_SPEC;
1335		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1336			return PGM_REGION_SECOND_TRANS;
1337		if (sg->edat_level >= 1)
1338			*dat_protection |= rfte.p;
1339		ptr = rfte.rto * PAGE_SIZE;
1340shadow_r2t:
1341		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1342		if (rc)
1343			return rc;
1344	}
1345		fallthrough;
1346	case ASCE_TYPE_REGION2: {
1347		union region2_table_entry rste;
1348
1349		if (*fake) {
1350			ptr += vaddr.rsx * _REGION2_SIZE;
1351			rste.val = ptr;
1352			goto shadow_r3t;
1353		}
1354		*pgt = ptr + vaddr.rsx * 8;
1355		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1356		if (rc)
1357			return rc;
1358		if (rste.i)
1359			return PGM_REGION_SECOND_TRANS;
1360		if (rste.tt != TABLE_TYPE_REGION2)
1361			return PGM_TRANSLATION_SPEC;
1362		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1363			return PGM_REGION_THIRD_TRANS;
1364		if (sg->edat_level >= 1)
1365			*dat_protection |= rste.p;
1366		ptr = rste.rto * PAGE_SIZE;
1367shadow_r3t:
1368		rste.p |= *dat_protection;
1369		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1370		if (rc)
1371			return rc;
1372	}
1373		fallthrough;
1374	case ASCE_TYPE_REGION3: {
1375		union region3_table_entry rtte;
1376
1377		if (*fake) {
1378			ptr += vaddr.rtx * _REGION3_SIZE;
1379			rtte.val = ptr;
1380			goto shadow_sgt;
1381		}
1382		*pgt = ptr + vaddr.rtx * 8;
1383		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1384		if (rc)
1385			return rc;
1386		if (rtte.i)
1387			return PGM_REGION_THIRD_TRANS;
1388		if (rtte.tt != TABLE_TYPE_REGION3)
1389			return PGM_TRANSLATION_SPEC;
1390		if (rtte.cr && asce.p && sg->edat_level >= 2)
1391			return PGM_TRANSLATION_SPEC;
1392		if (rtte.fc && sg->edat_level >= 2) {
1393			*dat_protection |= rtte.fc0.p;
1394			*fake = 1;
1395			ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1396			rtte.val = ptr;
1397			goto shadow_sgt;
1398		}
1399		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1400			return PGM_SEGMENT_TRANSLATION;
1401		if (sg->edat_level >= 1)
1402			*dat_protection |= rtte.fc0.p;
1403		ptr = rtte.fc0.sto * PAGE_SIZE;
1404shadow_sgt:
1405		rtte.fc0.p |= *dat_protection;
1406		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1407		if (rc)
1408			return rc;
1409	}
1410		fallthrough;
1411	case ASCE_TYPE_SEGMENT: {
1412		union segment_table_entry ste;
1413
1414		if (*fake) {
1415			ptr += vaddr.sx * _SEGMENT_SIZE;
1416			ste.val = ptr;
1417			goto shadow_pgt;
1418		}
1419		*pgt = ptr + vaddr.sx * 8;
1420		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1421		if (rc)
1422			return rc;
1423		if (ste.i)
1424			return PGM_SEGMENT_TRANSLATION;
1425		if (ste.tt != TABLE_TYPE_SEGMENT)
1426			return PGM_TRANSLATION_SPEC;
1427		if (ste.cs && asce.p)
1428			return PGM_TRANSLATION_SPEC;
1429		*dat_protection |= ste.fc0.p;
1430		if (ste.fc && sg->edat_level >= 1) {
1431			*fake = 1;
1432			ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1433			ste.val = ptr;
1434			goto shadow_pgt;
1435		}
1436		ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1437shadow_pgt:
1438		ste.fc0.p |= *dat_protection;
1439		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1440		if (rc)
1441			return rc;
1442	}
1443	}
1444	/* Return the parent address of the page table */
1445	*pgt = ptr;
1446	return 0;
1447}
1448
1449/**
1450 * kvm_s390_shadow_fault - handle fault on a shadow page table
1451 * @vcpu: virtual cpu
1452 * @sg: pointer to the shadow guest address space structure
1453 * @saddr: faulting address in the shadow gmap
1454 * @datptr: will contain the address of the faulting DAT table entry, or of
1455 *	    the valid leaf, plus some flags
1456 *
1457 * Returns: - 0 if the shadow fault was successfully resolved
1458 *	    - > 0 (pgm exception code) on exceptions while faulting
1459 *	    - -EAGAIN if the caller can retry immediately
1460 *	    - -EFAULT when accessing invalid guest addresses
1461 *	    - -ENOMEM if out of memory
1462 */
1463int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1464			  unsigned long saddr, unsigned long *datptr)
1465{
1466	union vaddress vaddr;
1467	union page_table_entry pte;
1468	unsigned long pgt = 0;
1469	int dat_protection, fake;
1470	int rc;
1471
1472	mmap_read_lock(sg->mm);
1473	/*
1474	 * We don't want any guest-2 tables to change - so the parent
1475	 * tables/pointers we read stay valid - unshadowing is however
1476	 * always possible - only guest_table_lock protects us.
1477	 */
1478	ipte_lock(vcpu->kvm);
1479
1480	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1481	if (rc)
1482		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1483					    &fake);
1484
1485	vaddr.addr = saddr;
1486	if (fake) {
1487		pte.val = pgt + vaddr.px * PAGE_SIZE;
1488		goto shadow_page;
1489	}
1490
1491	switch (rc) {
1492	case PGM_SEGMENT_TRANSLATION:
1493	case PGM_REGION_THIRD_TRANS:
1494	case PGM_REGION_SECOND_TRANS:
1495	case PGM_REGION_FIRST_TRANS:
1496		pgt |= PEI_NOT_PTE;
1497		break;
1498	case 0:
1499		pgt += vaddr.px * 8;
1500		rc = gmap_read_table(sg->parent, pgt, &pte.val);
1501	}
1502	if (datptr)
1503		*datptr = pgt | dat_protection * PEI_DAT_PROT;
1504	if (!rc && pte.i)
1505		rc = PGM_PAGE_TRANSLATION;
1506	if (!rc && pte.z)
1507		rc = PGM_TRANSLATION_SPEC;
1508shadow_page:
1509	pte.p |= dat_protection;
1510	if (!rc)
1511		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1512	ipte_unlock(vcpu->kvm);
1513	mmap_read_unlock(sg->mm);
1514	return rc;
1515}