Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 
 
 
 
 
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35#include <linux/kfence.h>
 36#include <linux/pkeys.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/interrupt.h>
 40#include <asm/page.h>
 
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 
 
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <asm/kup.h>
 46#include <asm/inst.h>
 47
 48
 49/*
 50 * do_page_fault error handling helpers
 51 */
 52
 53static int
 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 55{
 56	/*
 57	 * If we are in kernel mode, bail out with a SEGV, this will
 58	 * be caught by the assembly which will restore the non-volatile
 59	 * registers before calling bad_page_fault()
 60	 */
 61	if (!user_mode(regs))
 62		return SIGSEGV;
 63
 64	_exception(SIGSEGV, regs, si_code, address);
 65
 66	return 0;
 67}
 68
 69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 70{
 71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 72}
 73
 74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 
 75{
 76	struct mm_struct *mm = current->mm;
 77
 78	/*
 79	 * Something tried to access memory that isn't in our memory map..
 80	 * Fix it, but check if it's kernel or user first..
 81	 */
 82	mmap_read_unlock(mm);
 83
 84	return __bad_area_nosemaphore(regs, address, si_code);
 85}
 
 
 
 
 
 86
 87static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 88{
 89	return __bad_area(regs, address, SEGV_MAPERR);
 90}
 91
 92static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 93				    struct vm_area_struct *vma)
 94{
 95	struct mm_struct *mm = current->mm;
 96	int pkey;
 97
 98	/*
 99	 * We don't try to fetch the pkey from page table because reading
100	 * page table without locking doesn't guarantee stable pte value.
101	 * Hence the pkey value that we return to userspace can be different
102	 * from the pkey that actually caused access error.
103	 *
104	 * It does *not* guarantee that the VMA we find here
105	 * was the one that we faulted on.
106	 *
107	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
108	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
109	 * 3. T1   : faults...
110	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
111	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
112	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
113	 *	     faulted on a pte with its pkey=4.
114	 */
115	pkey = vma_pkey(vma);
116
117	mmap_read_unlock(mm);
118
119	/*
120	 * If we are in kernel mode, bail out with a SEGV, this will
121	 * be caught by the assembly which will restore the non-volatile
122	 * registers before calling bad_page_fault()
123	 */
124	if (!user_mode(regs))
125		return SIGSEGV;
126
127	_exception_pkey(regs, address, pkey);
128
129	return 0;
130}
131
132static noinline int bad_access(struct pt_regs *regs, unsigned long address)
133{
134	return __bad_area(regs, address, SEGV_ACCERR);
135}
136
137static int do_sigbus(struct pt_regs *regs, unsigned long address,
138		     vm_fault_t fault)
139{
140	if (!user_mode(regs))
141		return SIGBUS;
142
143	current->thread.trap_nr = BUS_ADRERR;
144#ifdef CONFIG_MEMORY_FAILURE
145	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
146		unsigned int lsb = 0; /* shutup gcc */
147
148		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
149			current->comm, current->pid, address);
150
151		if (fault & VM_FAULT_HWPOISON_LARGE)
152			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
153		if (fault & VM_FAULT_HWPOISON)
154			lsb = PAGE_SHIFT;
155
156		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
157		return 0;
158	}
159
160#endif
161	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
162	return 0;
163}
164
165static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
166				vm_fault_t fault)
 
 
 
167{
168	/*
169	 * Kernel page fault interrupted by SIGKILL. We have no reason to
170	 * continue processing.
171	 */
172	if (fatal_signal_pending(current) && !user_mode(regs))
173		return SIGKILL;
174
175	/* Out of memory */
176	if (fault & VM_FAULT_OOM) {
177		/*
178		 * We ran out of memory, or some other thing happened to us that
179		 * made us unable to handle the page fault gracefully.
180		 */
181		if (!user_mode(regs))
182			return SIGSEGV;
183		pagefault_out_of_memory();
184	} else {
185		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
186			     VM_FAULT_HWPOISON_LARGE))
187			return do_sigbus(regs, addr, fault);
188		else if (fault & VM_FAULT_SIGSEGV)
189			return bad_area_nosemaphore(regs, addr);
190		else
191			BUG();
 
 
 
 
 
 
 
 
 
192	}
193	return 0;
194}
 
 
 
195
196/* Is this a bad kernel fault ? */
197static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
198			     unsigned long address, bool is_write)
199{
200	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
201
202	if (is_exec) {
203		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
204				    address >= TASK_SIZE ? "exec-protected" : "user",
205				    address,
206				    from_kuid(&init_user_ns, current_uid()));
207
208		// Kernel exec fault is always bad
209		return true;
210	}
211
212	// Kernel fault on kernel address is bad
213	if (address >= TASK_SIZE)
214		return true;
215
216	// Read/write fault blocked by KUAP is bad, it can never succeed.
217	if (bad_kuap_fault(regs, address, is_write)) {
218		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
219				    is_write ? "write" : "read", address,
220				    from_kuid(&init_user_ns, current_uid()));
221
222		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
223		if (!search_exception_tables(regs->nip))
224			return true;
225
226		// Read/write fault in a valid region (the exception table search passed
227		// above), but blocked by KUAP is bad, it can never succeed.
228		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
229	}
230
231	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
232	return false;
233}
234
235static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
236			      struct vm_area_struct *vma)
237{
238	/*
239	 * Make sure to check the VMA so that we do not perform
240	 * faults just to hit a pkey fault as soon as we fill in a
241	 * page. Only called for current mm, hence foreign == 0
242	 */
243	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
244		return true;
245
246	return false;
 
247}
248
249static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
250{
251	/*
252	 * Allow execution from readable areas if the MMU does not
253	 * provide separate controls over reading and executing.
254	 *
255	 * Note: That code used to not be enabled for 4xx/BookE.
256	 * It is now as I/D cache coherency for these is done at
257	 * set_pte_at() time and I see no reason why the test
258	 * below wouldn't be valid on those processors. This -may-
259	 * break programs compiled with a really old ABI though.
260	 */
261	if (is_exec) {
262		return !(vma->vm_flags & VM_EXEC) &&
263			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
264			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
265	}
266
267	if (is_write) {
268		if (unlikely(!(vma->vm_flags & VM_WRITE)))
269			return true;
270		return false;
271	}
272
273	/*
274	 * Check for a read fault.  This could be caused by a read on an
275	 * inaccessible page (i.e. PROT_NONE), or a Radix MMU execute-only page.
276	 */
277	if (unlikely(!(vma->vm_flags & VM_READ)))
278		return true;
279	/*
280	 * We should ideally do the vma pkey access check here. But in the
281	 * fault path, handle_mm_fault() also does the same check. To avoid
282	 * these multiple checks, we skip it here and handle access error due
283	 * to pkeys later.
284	 */
285	return false;
286}
287
288#ifdef CONFIG_PPC_SMLPAR
289static inline void cmo_account_page_fault(void)
290{
291	if (firmware_has_feature(FW_FEATURE_CMO)) {
292		u32 page_ins;
293
294		preempt_disable();
295		page_ins = be32_to_cpu(get_lppaca()->page_ins);
296		page_ins += 1 << PAGE_FACTOR;
297		get_lppaca()->page_ins = cpu_to_be32(page_ins);
298		preempt_enable();
299	}
 
300}
301#else
302static inline void cmo_account_page_fault(void) { }
303#endif /* CONFIG_PPC_SMLPAR */
304
305static void sanity_check_fault(bool is_write, bool is_user,
306			       unsigned long error_code, unsigned long address)
307{
308	/*
309	 * Userspace trying to access kernel address, we get PROTFAULT for that.
 
310	 */
311	if (is_user && address >= TASK_SIZE) {
312		if ((long)address == -1)
313			return;
314
315		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
316				   current->comm, current->pid, address,
317				   from_kuid(&init_user_ns, current_uid()));
318		return;
 
 
 
 
319	}
320
321	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
322		return;
323
324	/*
325	 * For hash translation mode, we should never get a
326	 * PROTFAULT. Any update to pte to reduce access will result in us
327	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
328	 * fault instead of DSISR_PROTFAULT.
329	 *
330	 * A pte update to relax the access will not result in a hash page table
331	 * entry invalidate and hence can result in DSISR_PROTFAULT.
332	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
333	 * the special !is_write in the below conditional.
334	 *
335	 * For platforms that doesn't supports coherent icache and do support
336	 * per page noexec bit, we do setup things such that we do the
337	 * sync between D/I cache via fault. But that is handled via low level
338	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
339	 * here in such case.
340	 *
341	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
342	 * check should handle those and hence we should fall to the bad_area
343	 * handling correctly.
344	 *
345	 * For embedded with per page exec support that doesn't support coherent
346	 * icache we do get PROTFAULT and we handle that D/I cache sync in
347	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
348	 * is conditional for server MMU.
349	 *
350	 * For radix, we can get prot fault for autonuma case, because radix
351	 * page table will have them marked noaccess for user.
352	 */
353	if (radix_enabled() || is_write)
354		return;
355
356	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
357}
358
359/*
360 * Define the correct "is_write" bit in error_code based
361 * on the processor family
362 */
363#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
364#define page_fault_is_write(__err)	((__err) & ESR_DST)
365#else
366#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
367#endif
368
369#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
370#define page_fault_is_bad(__err)	(0)
371#elif defined(CONFIG_PPC_8xx)
372#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
373#elif defined(CONFIG_PPC64)
374static int page_fault_is_bad(unsigned long err)
375{
376	unsigned long flag = DSISR_BAD_FAULT_64S;
377
378	/*
379	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
380	 * If byte 0, bit 3 of pi-attribute-specifier-type in
381	 * ibm,pi-features property is defined, ignore the DSI error
382	 * which is caused by the paste instruction on the
383	 * suspended NX window.
384	 */
385	if (mmu_has_feature(MMU_FTR_NX_DSI))
386		flag &= ~DSISR_BAD_COPYPASTE;
387
388	return err & flag;
 
 
389}
390#else
391#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
392#endif
393
394/*
395 * For 600- and 800-family processors, the error_code parameter is DSISR
396 * for a data fault, SRR1 for an instruction fault.
397 * For 400-family processors the error_code parameter is ESR for a data fault,
398 * 0 for an instruction fault.
399 * For 64-bit processors, the error_code parameter is DSISR for a data access
400 * fault, SRR1 & 0x08000000 for an instruction access fault.
 
 
401 *
402 * The return value is 0 if the fault was handled, or the signal
403 * number if this is a kernel fault that can't be handled here.
404 */
405static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
406			   unsigned long error_code)
407{
408	struct vm_area_struct * vma;
409	struct mm_struct *mm = current->mm;
410	unsigned int flags = FAULT_FLAG_DEFAULT;
411	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
412	int is_user = user_mode(regs);
413	int is_write = page_fault_is_write(error_code);
414	vm_fault_t fault, major = 0;
415	bool kprobe_fault = kprobe_page_fault(regs, 11);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416
417	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
418		return 0;
419
420	if (unlikely(page_fault_is_bad(error_code))) {
421		if (is_user) {
422			_exception(SIGBUS, regs, BUS_OBJERR, address);
423			return 0;
424		}
425		return SIGBUS;
 
 
 
 
426	}
 
427
428	/* Additional sanity check(s) */
429	sanity_check_fault(is_write, is_user, error_code, address);
430
431	/*
432	 * The kernel should never take an execute fault nor should it
433	 * take a page fault to a kernel address or a page fault to a user
434	 * address outside of dedicated places
435	 */
436	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
437		if (kfence_handle_page_fault(address, is_write, regs))
438			return 0;
439
 
 
440		return SIGSEGV;
441	}
442
443	/*
444	 * If we're in an interrupt, have no user context or are running
445	 * in a region with pagefaults disabled then we must not take the fault
446	 */
447	if (unlikely(faulthandler_disabled() || !mm)) {
448		if (is_user)
449			printk_ratelimited(KERN_ERR "Page fault in user mode"
450					   " with faulthandler_disabled()=%d"
451					   " mm=%p\n",
452					   faulthandler_disabled(), mm);
453		return bad_area_nosemaphore(regs, address);
454	}
 
455
456	interrupt_cond_local_irq_enable(regs);
 
 
457
458	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
 
 
 
 
 
 
 
 
 
459
460	/*
461	 * We want to do this outside mmap_lock, because reading code around nip
462	 * can result in fault, which will cause a deadlock when called with
463	 * mmap_lock held
464	 */
465	if (is_user)
466		flags |= FAULT_FLAG_USER;
467	if (is_write)
468		flags |= FAULT_FLAG_WRITE;
469	if (is_exec)
470		flags |= FAULT_FLAG_INSTRUCTION;
471
472	/* When running in the kernel we expect faults to occur only to
473	 * addresses in user space.  All other faults represent errors in the
474	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
475	 * erroneous fault occurring in a code path which already holds mmap_lock
476	 * we will deadlock attempting to validate the fault against the
477	 * address space.  Luckily the kernel only validly references user
478	 * space from well defined areas of code, which are listed in the
479	 * exceptions table.
480	 *
481	 * As the vast majority of faults will be valid we will only perform
482	 * the source reference check when there is a possibility of a deadlock.
483	 * Attempt to lock the address space, if we cannot we then validate the
484	 * source.  If this is invalid we can skip the address space check,
485	 * thus avoiding the deadlock.
486	 */
487	if (unlikely(!mmap_read_trylock(mm))) {
488		if (!is_user && !search_exception_tables(regs->nip))
489			return bad_area_nosemaphore(regs, address);
490
491retry:
492		mmap_read_lock(mm);
493	} else {
494		/*
495		 * The above down_read_trylock() might have succeeded in
496		 * which case we'll have missed the might_sleep() from
497		 * down_read():
498		 */
499		might_sleep();
500	}
501
502	vma = find_vma(mm, address);
503	if (unlikely(!vma))
504		return bad_area(regs, address);
505
506	if (unlikely(vma->vm_start > address)) {
507		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
508			return bad_area(regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
510		if (unlikely(expand_stack(vma, address)))
511			return bad_area(regs, address);
512	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513
514	if (unlikely(access_pkey_error(is_write, is_exec,
515				       (error_code & DSISR_KEYFAULT), vma)))
516		return bad_access_pkey(regs, address, vma);
 
 
 
 
 
 
 
 
 
 
517
518	if (unlikely(access_error(is_write, is_exec, vma)))
519		return bad_access(regs, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520
521	/*
522	 * If for any reason at all we couldn't handle the fault,
523	 * make sure we exit gracefully rather than endlessly redo
524	 * the fault.
525	 */
526	fault = handle_mm_fault(vma, address, flags, regs);
527
528	major |= fault & VM_FAULT_MAJOR;
529
530	if (fault_signal_pending(fault, regs))
531		return user_mode(regs) ? 0 : SIGBUS;
532
533	/* The fault is fully completed (including releasing mmap lock) */
534	if (fault & VM_FAULT_COMPLETED)
535		goto out;
536
537	/*
538	 * Handle the retry right now, the mmap_lock has been released in that
539	 * case.
540	 */
541	if (unlikely(fault & VM_FAULT_RETRY)) {
542		flags |= FAULT_FLAG_TRIED;
543		goto retry;
544	}
545
546	mmap_read_unlock(current->mm);
547
548	if (unlikely(fault & VM_FAULT_ERROR))
549		return mm_fault_error(regs, address, fault);
550
551out:
552	/*
553	 * Major/minor page fault accounting.
554	 */
555	if (major)
556		cmo_account_page_fault();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
 
558	return 0;
559}
560NOKPROBE_SYMBOL(___do_page_fault);
561
562static __always_inline void __do_page_fault(struct pt_regs *regs)
563{
564	long err;
565
566	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
567	if (unlikely(err))
568		bad_page_fault(regs, err);
569}
 
 
570
571DEFINE_INTERRUPT_HANDLER(do_page_fault)
572{
573	__do_page_fault(regs);
574}
 
 
575
576#ifdef CONFIG_PPC_BOOK3S_64
577/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
578void hash__do_page_fault(struct pt_regs *regs)
579{
580	__do_page_fault(regs);
581}
582NOKPROBE_SYMBOL(hash__do_page_fault);
583#endif
584
585/*
586 * bad_page_fault is called when we have a bad access from the kernel.
587 * It is called from the DSI and ISI handlers in head.S and from some
588 * of the procedures in traps.c.
589 */
590static void __bad_page_fault(struct pt_regs *regs, int sig)
591{
592	int is_write = page_fault_is_write(regs->dsisr);
593	const char *msg;
594
595	/* kernel has accessed a bad area */
 
 
 
 
596
597	if (regs->dar < PAGE_SIZE)
598		msg = "Kernel NULL pointer dereference";
599	else
600		msg = "Unable to handle kernel data access";
601
602	switch (TRAP(regs)) {
603	case INTERRUPT_DATA_STORAGE:
604	case INTERRUPT_H_DATA_STORAGE:
605		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
606			 is_write ? "write" : "read", regs->dar);
607		break;
608	case INTERRUPT_DATA_SEGMENT:
609		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
610		break;
611	case INTERRUPT_INST_STORAGE:
612	case INTERRUPT_INST_SEGMENT:
613		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
614			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
615		break;
616	case INTERRUPT_ALIGNMENT:
617		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
618			 regs->dar);
619		break;
620	default:
621		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
622			 regs->dar);
623		break;
624	}
625	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
626		regs->nip);
627
628	if (task_stack_end_corrupted(current))
 
629		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
630
631	die("Kernel access of bad area", regs, sig);
632}
633
634void bad_page_fault(struct pt_regs *regs, int sig)
635{
636	const struct exception_table_entry *entry;
637
638	/* Are we prepared to handle this fault?  */
639	entry = search_exception_tables(instruction_pointer(regs));
640	if (entry)
641		instruction_pointer_set(regs, extable_fixup(entry));
642	else
643		__bad_page_fault(regs, sig);
644}
645
646#ifdef CONFIG_PPC_BOOK3S_64
647DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
648{
649	bad_page_fault(regs, SIGSEGV);
650}
651
652/*
653 * In radix, segment interrupts indicate the EA is not addressable by the
654 * page table geometry, so they are always sent here.
655 *
656 * In hash, this is called if do_slb_fault returns error. Typically it is
657 * because the EA was outside the region allowed by software.
658 */
659DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
660{
661	int err = regs->result;
662
663	if (err == -EFAULT) {
664		if (user_mode(regs))
665			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
666		else
667			bad_page_fault(regs, SIGSEGV);
668	} else if (err == -EINVAL) {
669		unrecoverable_exception(regs);
670	} else {
671		BUG();
672	}
673}
674#endif
v3.5.6
 
  1/*
  2 *  PowerPC version
  3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4 *
  5 *  Derived from "arch/i386/mm/fault.c"
  6 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7 *
  8 *  Modified by Cort Dougan and Paul Mackerras.
  9 *
 10 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 11 *
 12 *  This program is free software; you can redistribute it and/or
 13 *  modify it under the terms of the GNU General Public License
 14 *  as published by the Free Software Foundation; either version
 15 *  2 of the License, or (at your option) any later version.
 16 */
 17
 18#include <linux/signal.h>
 19#include <linux/sched.h>
 
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/string.h>
 23#include <linux/types.h>
 
 24#include <linux/ptrace.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/highmem.h>
 29#include <linux/module.h>
 30#include <linux/kprobes.h>
 31#include <linux/kdebug.h>
 32#include <linux/perf_event.h>
 33#include <linux/magic.h>
 34#include <linux/ratelimit.h>
 
 
 
 
 
 35
 36#include <asm/firmware.h>
 
 37#include <asm/page.h>
 38#include <asm/pgtable.h>
 39#include <asm/mmu.h>
 40#include <asm/mmu_context.h>
 41#include <asm/uaccess.h>
 42#include <asm/tlbflush.h>
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <mm/mmu_decl.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46
 47#include "icswx.h"
 
 
 
 48
 49#ifdef CONFIG_KPROBES
 50static inline int notify_page_fault(struct pt_regs *regs)
 51{
 52	int ret = 0;
 
 
 
 
 
 
 53
 54	/* kprobe_running() needs smp_processor_id() */
 55	if (!user_mode(regs)) {
 56		preempt_disable();
 57		if (kprobe_running() && kprobe_fault_handler(regs, 11))
 58			ret = 1;
 59		preempt_enable();
 60	}
 61
 62	return ret;
 
 
 63}
 64#else
 65static inline int notify_page_fault(struct pt_regs *regs)
 
 66{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67	return 0;
 68}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69#endif
 
 
 
 70
 71/*
 72 * Check whether the instruction at regs->nip is a store using
 73 * an update addressing form which will update r1.
 74 */
 75static int store_updates_sp(struct pt_regs *regs)
 76{
 77	unsigned int inst;
 
 
 
 
 
 78
 79	if (get_user(inst, (unsigned int __user *)regs->nip))
 80		return 0;
 81	/* check for 1 in the rA field */
 82	if (((inst >> 16) & 0x1f) != 1)
 83		return 0;
 84	/* check major opcode */
 85	switch (inst >> 26) {
 86	case 37:	/* stwu */
 87	case 39:	/* stbu */
 88	case 45:	/* sthu */
 89	case 53:	/* stfsu */
 90	case 55:	/* stfdu */
 91		return 1;
 92	case 62:	/* std or stdu */
 93		return (inst & 3) == 1;
 94	case 31:
 95		/* check minor opcode */
 96		switch ((inst >> 1) & 0x3ff) {
 97		case 181:	/* stdux */
 98		case 183:	/* stwux */
 99		case 247:	/* stbux */
100		case 439:	/* sthux */
101		case 695:	/* stfsux */
102		case 759:	/* stfdux */
103			return 1;
104		}
105	}
106	return 0;
107}
108/*
109 * do_page_fault error handling helpers
110 */
111
112#define MM_FAULT_RETURN		0
113#define MM_FAULT_CONTINUE	-1
114#define MM_FAULT_ERR(sig)	(sig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
116static int out_of_memory(struct pt_regs *regs)
 
117{
118	/*
119	 * We ran out of memory, or some other thing happened to us that made
120	 * us unable to handle the page fault gracefully.
 
121	 */
122	up_read(&current->mm->mmap_sem);
123	if (!user_mode(regs))
124		return MM_FAULT_ERR(SIGKILL);
125	pagefault_out_of_memory();
126	return MM_FAULT_RETURN;
127}
128
129static int do_sigbus(struct pt_regs *regs, unsigned long address)
130{
131	siginfo_t info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
133	up_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
135	if (user_mode(regs)) {
136		info.si_signo = SIGBUS;
137		info.si_errno = 0;
138		info.si_code = BUS_ADRERR;
139		info.si_addr = (void __user *)address;
140		force_sig_info(SIGBUS, &info, current);
141		return MM_FAULT_RETURN;
 
 
 
 
142	}
143	return MM_FAULT_ERR(SIGBUS);
144}
 
 
 
145
146static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
 
147{
148	/*
149	 * Pagefault was interrupted by SIGKILL. We have no reason to
150	 * continue the pagefault.
151	 */
152	if (fatal_signal_pending(current)) {
153		/*
154		 * If we have retry set, the mmap semaphore will have
155		 * alrady been released in __lock_page_or_retry(). Else
156		 * we release it now.
157		 */
158		if (!(fault & VM_FAULT_RETRY))
159			up_read(&current->mm->mmap_sem);
160		/* Coming from kernel, we need to deal with uaccess fixups */
161		if (user_mode(regs))
162			return MM_FAULT_RETURN;
163		return MM_FAULT_ERR(SIGKILL);
164	}
165
166	/* No fault: be happy */
167	if (!(fault & VM_FAULT_ERROR))
168		return MM_FAULT_CONTINUE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
170	/* Out of memory */
171	if (fault & VM_FAULT_OOM)
172		return out_of_memory(regs);
 
 
 
 
 
173
174	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
175	 * we support the feature in HW
 
 
 
 
176	 */
177	if (fault & VM_FAULT_SIGBUS)
178		return do_sigbus(regs, addr);
179
180	/* We don't understand the fault code, this is fatal */
181	BUG();
182	return MM_FAULT_CONTINUE;
183}
 
 
 
184
185/*
186 * For 600- and 800-family processors, the error_code parameter is DSISR
187 * for a data fault, SRR1 for an instruction fault. For 400-family processors
188 * the error_code parameter is ESR for a data fault, 0 for an instruction
189 * fault.
190 * For 64-bit processors, the error_code parameter is
191 *  - DSISR for a non-SLB data access fault,
192 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
193 *  - 0 any SLB fault.
194 *
195 * The return value is 0 if the fault was handled, or the signal
196 * number if this is a kernel fault that can't be handled here.
197 */
198int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
199			    unsigned long error_code)
200{
201	struct vm_area_struct * vma;
202	struct mm_struct *mm = current->mm;
203	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204	int code = SEGV_MAPERR;
205	int is_write = 0;
206	int trap = TRAP(regs);
207 	int is_exec = trap == 0x400;
208	int fault;
209
210#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
211	/*
212	 * Fortunately the bit assignments in SRR1 for an instruction
213	 * fault and DSISR for a data fault are mostly the same for the
214	 * bits we are interested in.  But there are some bits which
215	 * indicate errors in DSISR but can validly be set in SRR1.
216	 */
217	if (trap == 0x400)
218		error_code &= 0x48200000;
219	else
220		is_write = error_code & DSISR_ISSTORE;
221#else
222	is_write = error_code & ESR_DST;
223#endif /* CONFIG_4xx || CONFIG_BOOKE */
224
225	if (is_write)
226		flags |= FAULT_FLAG_WRITE;
227
228#ifdef CONFIG_PPC_ICSWX
229	/*
230	 * we need to do this early because this "data storage
231	 * interrupt" does not update the DAR/DEAR so we don't want to
232	 * look at it
233	 */
234	if (error_code & ICSWX_DSI_UCT) {
235		int rc = acop_handle_fault(regs, address, error_code);
236		if (rc)
237			return rc;
238	}
239#endif /* CONFIG_PPC_ICSWX */
240
241	if (notify_page_fault(regs))
242		return 0;
243
244	if (unlikely(debugger_fault_handler(regs)))
245		return 0;
 
 
 
 
 
 
246
247	/* On a kernel SLB miss we can only check for a valid exception entry */
248	if (!user_mode(regs) && (address >= TASK_SIZE))
249		return SIGSEGV;
 
250
251#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252			     defined(CONFIG_PPC_BOOK3S_64))
253  	if (error_code & DSISR_DABRMATCH) {
254		/* DABR match */
255		do_dabr(regs, address, error_code);
256		return 0;
 
 
 
 
 
257	}
258#endif
259
260	/* We restore the interrupt state now */
261	if (!arch_irq_disabled_regs(regs))
262		local_irq_enable();
263
264	if (in_atomic() || mm == NULL) {
265		if (!user_mode(regs))
266			return SIGSEGV;
267		/* in_atomic() in user mode is really bad,
268		   as is current->mm == NULL. */
269		printk(KERN_EMERG "Page fault in user mode with "
270		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
271		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
272		       regs->nip, regs->msr);
273		die("Weird page fault", regs, SIGSEGV);
274	}
275
276	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
 
 
 
 
 
 
 
 
 
277
278	/* When running in the kernel we expect faults to occur only to
279	 * addresses in user space.  All other faults represent errors in the
280	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
281	 * erroneous fault occurring in a code path which already holds mmap_sem
282	 * we will deadlock attempting to validate the fault against the
283	 * address space.  Luckily the kernel only validly references user
284	 * space from well defined areas of code, which are listed in the
285	 * exceptions table.
286	 *
287	 * As the vast majority of faults will be valid we will only perform
288	 * the source reference check when there is a possibility of a deadlock.
289	 * Attempt to lock the address space, if we cannot we then validate the
290	 * source.  If this is invalid we can skip the address space check,
291	 * thus avoiding the deadlock.
292	 */
293	if (!down_read_trylock(&mm->mmap_sem)) {
294		if (!user_mode(regs) && !search_exception_tables(regs->nip))
295			goto bad_area_nosemaphore;
296
297retry:
298		down_read(&mm->mmap_sem);
299	} else {
300		/*
301		 * The above down_read_trylock() might have succeeded in
302		 * which case we'll have missed the might_sleep() from
303		 * down_read():
304		 */
305		might_sleep();
306	}
307
308	vma = find_vma(mm, address);
309	if (!vma)
310		goto bad_area;
311	if (vma->vm_start <= address)
312		goto good_area;
313	if (!(vma->vm_flags & VM_GROWSDOWN))
314		goto bad_area;
315
316	/*
317	 * N.B. The POWER/Open ABI allows programs to access up to
318	 * 288 bytes below the stack pointer.
319	 * The kernel signal delivery code writes up to about 1.5kB
320	 * below the stack pointer (r1) before decrementing it.
321	 * The exec code can write slightly over 640kB to the stack
322	 * before setting the user r1.  Thus we allow the stack to
323	 * expand to 1MB without further checks.
324	 */
325	if (address + 0x100000 < vma->vm_end) {
326		/* get user regs even if this fault is in kernel mode */
327		struct pt_regs *uregs = current->thread.regs;
328		if (uregs == NULL)
329			goto bad_area;
330
331		/*
332		 * A user-mode access to an address a long way below
333		 * the stack pointer is only valid if the instruction
334		 * is one which would update the stack pointer to the
335		 * address accessed if the instruction completed,
336		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
337		 * (or the byte, halfword, float or double forms).
338		 *
339		 * If we don't check this then any write to the area
340		 * between the last mapped region and the stack will
341		 * expand the stack rather than segfaulting.
342		 */
343		if (address + 2048 < uregs->gpr[1]
344		    && (!user_mode(regs) || !store_updates_sp(regs)))
345			goto bad_area;
346	}
347	if (expand_stack(vma, address))
348		goto bad_area;
349
350good_area:
351	code = SEGV_ACCERR;
352#if defined(CONFIG_6xx)
353	if (error_code & 0x95700000)
354		/* an error such as lwarx to I/O controller space,
355		   address matching DABR, eciwx, etc. */
356		goto bad_area;
357#endif /* CONFIG_6xx */
358#if defined(CONFIG_8xx)
359	/* 8xx sometimes need to load a invalid/non-present TLBs.
360	 * These must be invalidated separately as linux mm don't.
361	 */
362	if (error_code & 0x40000000) /* no translation? */
363		_tlbil_va(address, 0, 0, 0);
364
365        /* The MPC8xx seems to always set 0x80000000, which is
366         * "undefined".  Of those that can be set, this is the only
367         * one which seems bad.
368         */
369	if (error_code & 0x10000000)
370                /* Guarded storage error. */
371		goto bad_area;
372#endif /* CONFIG_8xx */
373
374	if (is_exec) {
375#ifdef CONFIG_PPC_STD_MMU
376		/* Protection fault on exec go straight to failure on
377		 * Hash based MMUs as they either don't support per-page
378		 * execute permission, or if they do, it's handled already
379		 * at the hash level. This test would probably have to
380		 * be removed if we change the way this works to make hash
381		 * processors use the same I/D cache coherency mechanism
382		 * as embedded.
383		 */
384		if (error_code & DSISR_PROTFAULT)
385			goto bad_area;
386#endif /* CONFIG_PPC_STD_MMU */
387
388		/*
389		 * Allow execution from readable areas if the MMU does not
390		 * provide separate controls over reading and executing.
391		 *
392		 * Note: That code used to not be enabled for 4xx/BookE.
393		 * It is now as I/D cache coherency for these is done at
394		 * set_pte_at() time and I see no reason why the test
395		 * below wouldn't be valid on those processors. This -may-
396		 * break programs compiled with a really old ABI though.
397		 */
398		if (!(vma->vm_flags & VM_EXEC) &&
399		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
400		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
401			goto bad_area;
402	/* a write */
403	} else if (is_write) {
404		if (!(vma->vm_flags & VM_WRITE))
405			goto bad_area;
406	/* a read */
407	} else {
408		/* protection fault */
409		if (error_code & 0x08000000)
410			goto bad_area;
411		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
412			goto bad_area;
413	}
414
415	/*
416	 * If for any reason at all we couldn't handle the fault,
417	 * make sure we exit gracefully rather than endlessly redo
418	 * the fault.
419	 */
420	fault = handle_mm_fault(mm, vma, address, flags);
421	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
422		int rc = mm_fault_error(regs, address, fault);
423		if (rc >= MM_FAULT_RETURN)
424			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
425	}
426
 
 
 
 
 
 
427	/*
428	 * Major/minor page fault accounting is only done on the
429	 * initial attempt. If we go through a retry, it is extremely
430	 * likely that the page will be found in page cache at that point.
431	 */
432	if (flags & FAULT_FLAG_ALLOW_RETRY) {
433		if (fault & VM_FAULT_MAJOR) {
434			current->maj_flt++;
435			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
436				      regs, address);
437#ifdef CONFIG_PPC_SMLPAR
438			if (firmware_has_feature(FW_FEATURE_CMO)) {
439				preempt_disable();
440				get_lppaca()->page_ins += (1 << PAGE_FACTOR);
441				preempt_enable();
442			}
443#endif /* CONFIG_PPC_SMLPAR */
444		} else {
445			current->min_flt++;
446			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
447				      regs, address);
448		}
449		if (fault & VM_FAULT_RETRY) {
450			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
451			 * of starvation. */
452			flags &= ~FAULT_FLAG_ALLOW_RETRY;
453			goto retry;
454		}
455	}
456
457	up_read(&mm->mmap_sem);
458	return 0;
 
 
459
460bad_area:
461	up_read(&mm->mmap_sem);
 
462
463bad_area_nosemaphore:
464	/* User mode accesses cause a SIGSEGV */
465	if (user_mode(regs)) {
466		_exception(SIGSEGV, regs, code, address);
467		return 0;
468	}
469
470	if (is_exec && (error_code & DSISR_PROTFAULT))
471		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
472				   " page (%lx) - exploit attempt? (uid: %d)\n",
473				   address, current_uid());
474
475	return SIGSEGV;
476
 
 
 
 
 
477}
 
 
478
479/*
480 * bad_page_fault is called when we have a bad access from the kernel.
481 * It is called from the DSI and ISI handlers in head.S and from some
482 * of the procedures in traps.c.
483 */
484void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
485{
486	const struct exception_table_entry *entry;
487	unsigned long *stackend;
488
489	/* Are we prepared to handle this fault?  */
490	if ((entry = search_exception_tables(regs->nip)) != NULL) {
491		regs->nip = entry->fixup;
492		return;
493	}
494
495	/* kernel has accessed a bad area */
 
 
 
496
497	switch (regs->trap) {
498	case 0x300:
499	case 0x380:
500		printk(KERN_ALERT "Unable to handle kernel paging request for "
501			"data at address 0x%08lx\n", regs->dar);
502		break;
503	case 0x400:
504	case 0x480:
505		printk(KERN_ALERT "Unable to handle kernel paging request for "
506			"instruction fetch\n");
 
 
 
 
 
 
 
507		break;
508	default:
509		printk(KERN_ALERT "Unable to handle kernel paging request for "
510			"unknown fault\n");
511		break;
512	}
513	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
514		regs->nip);
515
516	stackend = end_of_stack(current);
517	if (current != &init_task && *stackend != STACK_END_MAGIC)
518		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
519
520	die("Kernel access of bad area", regs, sig);
521}