Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3** Tablewalk MMU emulator
  4**
  5** by Toshiyasu Morita
  6**
  7** Started 1/16/98 @ 2:22 am
  8*/
  9
 10#include <linux/init.h>
 11#include <linux/mman.h>
 12#include <linux/mm.h>
 13#include <linux/kernel.h>
 14#include <linux/ptrace.h>
 15#include <linux/delay.h>
 16#include <linux/memblock.h>
 17#include <linux/bitops.h>
 18#include <linux/module.h>
 19#include <linux/sched/mm.h>
 20
 21#include <asm/setup.h>
 22#include <asm/traps.h>
 23#include <linux/uaccess.h>
 24#include <asm/page.h>
 
 25#include <asm/sun3mmu.h>
 
 26#include <asm/oplib.h>
 27#include <asm/mmu_context.h>
 28#include <asm/dvma.h>
 29
 30
 31#undef DEBUG_MMU_EMU
 32#define DEBUG_PROM_MAPS
 33
 34/*
 35** Defines
 36*/
 37
 38#define CONTEXTS_NUM		8
 39#define SEGMAPS_PER_CONTEXT_NUM 2048
 40#define PAGES_PER_SEGMENT	16
 41#define PMEGS_NUM		256
 42#define PMEG_MASK		0xFF
 43
 44/*
 45** Globals
 46*/
 47
 48unsigned long m68k_vmalloc_end;
 49EXPORT_SYMBOL(m68k_vmalloc_end);
 50
 51unsigned long pmeg_vaddr[PMEGS_NUM];
 52unsigned char pmeg_alloc[PMEGS_NUM];
 53unsigned char pmeg_ctx[PMEGS_NUM];
 54
 55/* pointers to the mm structs for each task in each
 56   context. 0xffffffff is a marker for kernel context */
 57static struct mm_struct *ctx_alloc[CONTEXTS_NUM] = {
 58    [0] = (struct mm_struct *)0xffffffff
 59};
 60
 61/* has this context been mmdrop'd? */
 62static unsigned char ctx_avail = CONTEXTS_NUM-1;
 63
 64/* array of pages to be marked off for the rom when we do mem_init later */
 65/* 256 pages lets the rom take up to 2mb of physical ram..  I really
 66   hope it never wants mote than that. */
 67unsigned long rom_pages[256];
 68
 69/* Print a PTE value in symbolic form. For debugging. */
 70void print_pte (pte_t pte)
 71{
 72#if 0
 73	/* Verbose version. */
 74	unsigned long val = pte_val (pte);
 75	pr_cont(" pte=%lx [addr=%lx",
 76		val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT);
 77	if (val & SUN3_PAGE_VALID)	pr_cont(" valid");
 78	if (val & SUN3_PAGE_WRITEABLE)	pr_cont(" write");
 79	if (val & SUN3_PAGE_SYSTEM)	pr_cont(" sys");
 80	if (val & SUN3_PAGE_NOCACHE)	pr_cont(" nocache");
 81	if (val & SUN3_PAGE_ACCESSED)	pr_cont(" accessed");
 82	if (val & SUN3_PAGE_MODIFIED)	pr_cont(" modified");
 83	switch (val & SUN3_PAGE_TYPE_MASK) {
 84		case SUN3_PAGE_TYPE_MEMORY: pr_cont(" memory"); break;
 85		case SUN3_PAGE_TYPE_IO:     pr_cont(" io");     break;
 86		case SUN3_PAGE_TYPE_VME16:  pr_cont(" vme16");  break;
 87		case SUN3_PAGE_TYPE_VME32:  pr_cont(" vme32");  break;
 88	}
 89	pr_cont("]\n");
 90#else
 91	/* Terse version. More likely to fit on a line. */
 92	unsigned long val = pte_val (pte);
 93	char flags[7], *type;
 94
 95	flags[0] = (val & SUN3_PAGE_VALID)     ? 'v' : '-';
 96	flags[1] = (val & SUN3_PAGE_WRITEABLE) ? 'w' : '-';
 97	flags[2] = (val & SUN3_PAGE_SYSTEM)    ? 's' : '-';
 98	flags[3] = (val & SUN3_PAGE_NOCACHE)   ? 'x' : '-';
 99	flags[4] = (val & SUN3_PAGE_ACCESSED)  ? 'a' : '-';
100	flags[5] = (val & SUN3_PAGE_MODIFIED)  ? 'm' : '-';
101	flags[6] = '\0';
102
103	switch (val & SUN3_PAGE_TYPE_MASK) {
104		case SUN3_PAGE_TYPE_MEMORY: type = "memory"; break;
105		case SUN3_PAGE_TYPE_IO:     type = "io"    ; break;
106		case SUN3_PAGE_TYPE_VME16:  type = "vme16" ; break;
107		case SUN3_PAGE_TYPE_VME32:  type = "vme32" ; break;
108		default: type = "unknown?"; break;
109	}
110
111	pr_cont(" pte=%08lx [%07lx %s %s]\n",
112		val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT, flags, type);
113#endif
114}
115
116/* Print the PTE value for a given virtual address. For debugging. */
117void print_pte_vaddr (unsigned long vaddr)
118{
119	pr_cont(" vaddr=%lx [%02lx]", vaddr, sun3_get_segmap (vaddr));
120	print_pte (__pte (sun3_get_pte (vaddr)));
121}
122
123/*
124 * Initialise the MMU emulator.
125 */
126void __init mmu_emu_init(unsigned long bootmem_end)
127{
128	unsigned long seg, num;
129	int i,j;
130
131	memset(rom_pages, 0, sizeof(rom_pages));
132	memset(pmeg_vaddr, 0, sizeof(pmeg_vaddr));
133	memset(pmeg_alloc, 0, sizeof(pmeg_alloc));
134	memset(pmeg_ctx, 0, sizeof(pmeg_ctx));
135
136	/* pmeg align the end of bootmem, adding another pmeg,
137	 * later bootmem allocations will likely need it */
138	bootmem_end = (bootmem_end + (2 * SUN3_PMEG_SIZE)) & ~SUN3_PMEG_MASK;
139
140	/* mark all of the pmegs used thus far as reserved */
141	for (i=0; i < __pa(bootmem_end) / SUN3_PMEG_SIZE ; ++i)
142		pmeg_alloc[i] = 2;
143
144
145	/* I'm thinking that most of the top pmeg's are going to be
146	   used for something, and we probably shouldn't risk it */
147	for(num = 0xf0; num <= 0xff; num++)
148		pmeg_alloc[num] = 2;
149
150	/* liberate all existing mappings in the rest of kernel space */
151	for(seg = bootmem_end; seg < 0x0f800000; seg += SUN3_PMEG_SIZE) {
152		i = sun3_get_segmap(seg);
153
154		if(!pmeg_alloc[i]) {
155#ifdef DEBUG_MMU_EMU
156			pr_info("freed:");
157			print_pte_vaddr (seg);
158#endif
159			sun3_put_segmap(seg, SUN3_INVALID_PMEG);
160		}
161	}
162
163	j = 0;
164	for (num=0, seg=0x0F800000; seg<0x10000000; seg+=16*PAGE_SIZE) {
165		if (sun3_get_segmap (seg) != SUN3_INVALID_PMEG) {
166#ifdef DEBUG_PROM_MAPS
167			for(i = 0; i < 16; i++) {
168				pr_info("mapped:");
169				print_pte_vaddr (seg + (i*PAGE_SIZE));
170				break;
171			}
172#endif
173			// the lowest mapping here is the end of our
174			// vmalloc region
175			if (!m68k_vmalloc_end)
176				m68k_vmalloc_end = seg;
177
178			// mark the segmap alloc'd, and reserve any
179			// of the first 0xbff pages the hardware is
180			// already using...  does any sun3 support > 24mb?
181			pmeg_alloc[sun3_get_segmap(seg)] = 2;
182		}
183	}
184
185	dvma_init();
186
187
188	/* blank everything below the kernel, and we've got the base
189	   mapping to start all the contexts off with... */
190	for(seg = 0; seg < PAGE_OFFSET; seg += SUN3_PMEG_SIZE)
191		sun3_put_segmap(seg, SUN3_INVALID_PMEG);
192
193	set_fc(3);
194	for(seg = 0; seg < 0x10000000; seg += SUN3_PMEG_SIZE) {
195		i = sun3_get_segmap(seg);
196		for(j = 1; j < CONTEXTS_NUM; j++)
197			(*(romvec->pv_setctxt))(j, (void *)seg, i);
198	}
199	set_fc(USER_DATA);
 
200}
201
202/* erase the mappings for a dead context.  Uses the pg_dir for hints
203   as the pmeg tables proved somewhat unreliable, and unmapping all of
204   TASK_SIZE was much slower and no more stable. */
205/* todo: find a better way to keep track of the pmegs used by a
206   context for when they're cleared */
207void clear_context(unsigned long context)
208{
209     unsigned char oldctx;
210     unsigned long i;
211
212     if(context) {
213	     if(!ctx_alloc[context])
214		     panic("%s: context not allocated\n", __func__);
215
216	     ctx_alloc[context]->context = SUN3_INVALID_CONTEXT;
217	     ctx_alloc[context] = (struct mm_struct *)0;
218	     ctx_avail++;
219     }
220
221     oldctx = sun3_get_context();
222
223     sun3_put_context(context);
224
225     for(i = 0; i < SUN3_INVALID_PMEG; i++) {
226	     if((pmeg_ctx[i] == context) && (pmeg_alloc[i] == 1)) {
227		     sun3_put_segmap(pmeg_vaddr[i], SUN3_INVALID_PMEG);
228		     pmeg_ctx[i] = 0;
229		     pmeg_alloc[i] = 0;
230		     pmeg_vaddr[i] = 0;
231	     }
232     }
233
234     sun3_put_context(oldctx);
235}
236
237/* gets an empty context.  if full, kills the next context listed to
238   die first */
239/* This context invalidation scheme is, well, totally arbitrary, I'm
240   sure it could be much more intelligent...  but it gets the job done
241   for now without much overhead in making it's decision. */
242/* todo: come up with optimized scheme for flushing contexts */
243unsigned long get_free_context(struct mm_struct *mm)
244{
245	unsigned long new = 1;
246	static unsigned char next_to_die = 1;
247
248	if(!ctx_avail) {
249		/* kill someone to get our context */
250		new = next_to_die;
251		clear_context(new);
252		next_to_die = (next_to_die + 1) & 0x7;
253		if(!next_to_die)
254			next_to_die++;
255	} else {
256		while(new < CONTEXTS_NUM) {
257			if(ctx_alloc[new])
258				new++;
259			else
260				break;
261		}
262		// check to make sure one was really free...
263		if(new == CONTEXTS_NUM)
264			panic("%s: failed to find free context", __func__);
265	}
266
267	ctx_alloc[new] = mm;
268	ctx_avail--;
269
270	return new;
271}
272
273/*
274 * Dynamically select a `spare' PMEG and use it to map virtual `vaddr' in
275 * `context'. Maintain internal PMEG management structures. This doesn't
276 * actually map the physical address, but does clear the old mappings.
277 */
278//todo: better allocation scheme? but is extra complexity worthwhile?
279//todo: only clear old entries if necessary? how to tell?
280
281inline void mmu_emu_map_pmeg (int context, int vaddr)
282{
283	static unsigned char curr_pmeg = 128;
284	int i;
285
286	/* Round address to PMEG boundary. */
287	vaddr &= ~SUN3_PMEG_MASK;
288
289	/* Find a spare one. */
290	while (pmeg_alloc[curr_pmeg] == 2)
291		++curr_pmeg;
292
293
294#ifdef DEBUG_MMU_EMU
295	pr_info("mmu_emu_map_pmeg: pmeg %x to context %d vaddr %x\n",
296		curr_pmeg, context, vaddr);
297#endif
298
299	/* Invalidate old mapping for the pmeg, if any */
300	if (pmeg_alloc[curr_pmeg] == 1) {
301		sun3_put_context(pmeg_ctx[curr_pmeg]);
302		sun3_put_segmap (pmeg_vaddr[curr_pmeg], SUN3_INVALID_PMEG);
303		sun3_put_context(context);
304	}
305
306	/* Update PMEG management structures. */
307	// don't take pmeg's away from the kernel...
308	if(vaddr >= PAGE_OFFSET) {
309		/* map kernel pmegs into all contexts */
310		unsigned char i;
311
312		for(i = 0; i < CONTEXTS_NUM; i++) {
313			sun3_put_context(i);
314			sun3_put_segmap (vaddr, curr_pmeg);
315		}
316		sun3_put_context(context);
317		pmeg_alloc[curr_pmeg] = 2;
318		pmeg_ctx[curr_pmeg] = 0;
319
320	}
321	else {
322		pmeg_alloc[curr_pmeg] = 1;
323		pmeg_ctx[curr_pmeg] = context;
324		sun3_put_segmap (vaddr, curr_pmeg);
325
326	}
327	pmeg_vaddr[curr_pmeg] = vaddr;
328
329	/* Set hardware mapping and clear the old PTE entries. */
330	for (i=0; i<SUN3_PMEG_SIZE; i+=SUN3_PTE_SIZE)
331		sun3_put_pte (vaddr + i, SUN3_PAGE_SYSTEM);
332
333	/* Consider a different one next time. */
334	++curr_pmeg;
335}
336
337/*
338 * Handle a pagefault at virtual address `vaddr'; check if there should be a
339 * page there (specifically, whether the software pagetables indicate that
340 * there is). This is necessary due to the limited size of the second-level
341 * Sun3 hardware pagetables (256 groups of 16 pages). If there should be a
342 * mapping present, we select a `spare' PMEG and use it to create a mapping.
343 * `read_flag' is nonzero for a read fault; zero for a write. Returns nonzero
344 * if we successfully handled the fault.
345 */
346//todo: should we bump minor pagefault counter? if so, here or in caller?
347//todo: possibly inline this into bus_error030 in <asm/buserror.h> ?
348
349// kernel_fault is set when a kernel page couldn't be demand mapped,
350// and forces another try using the kernel page table.  basically a
351// hack so that vmalloc would work correctly.
352
353int mmu_emu_handle_fault (unsigned long vaddr, int read_flag, int kernel_fault)
354{
355	unsigned long segment, offset;
356	unsigned char context;
357	pte_t *pte;
358	pgd_t * crp;
359
360	if(current->mm == NULL) {
361		crp = swapper_pg_dir;
362		context = 0;
363	} else {
364		context = current->mm->context;
365		if(kernel_fault)
366			crp = swapper_pg_dir;
367		else
368			crp = current->mm->pgd;
369	}
370
371#ifdef DEBUG_MMU_EMU
372	pr_info("%s: vaddr=%lx type=%s crp=%p\n", __func__, vaddr,
373		read_flag ? "read" : "write", crp);
374#endif
375
376	segment = (vaddr >> SUN3_PMEG_SIZE_BITS) & 0x7FF;
377	offset  = (vaddr >> SUN3_PTE_SIZE_BITS) & 0xF;
378
379#ifdef DEBUG_MMU_EMU
380	pr_info("%s: segment=%lx offset=%lx\n", __func__, segment, offset);
381#endif
382
383	pte = (pte_t *) pgd_val (*(crp + segment));
384
385//todo: next line should check for valid pmd properly.
386	if (!pte) {
387//                pr_info("mmu_emu_handle_fault: invalid pmd\n");
388                return 0;
389        }
390
391	pte = (pte_t *) __va ((unsigned long)(pte + offset));
392
393	/* Make sure this is a valid page */
394	if (!(pte_val (*pte) & SUN3_PAGE_VALID))
395		return 0;
396
397	/* Make sure there's a pmeg allocated for the page */
398	if (sun3_get_segmap (vaddr&~SUN3_PMEG_MASK) == SUN3_INVALID_PMEG)
399		mmu_emu_map_pmeg (context, vaddr);
400
401	/* Write the pte value to hardware MMU */
402	sun3_put_pte (vaddr&PAGE_MASK, pte_val (*pte));
403
404	/* Update software copy of the pte value */
405// I'm not sure this is necessary. If this is required, we ought to simply
406// copy this out when we reuse the PMEG or at some other convenient time.
407// Doing it here is fairly meaningless, anyway, as we only know about the
408// first access to a given page. --m
409	if (!read_flag) {
410		if (pte_val (*pte) & SUN3_PAGE_WRITEABLE)
411			pte_val (*pte) |= (SUN3_PAGE_ACCESSED
412					   | SUN3_PAGE_MODIFIED);
413		else
414			return 0;	/* Write-protect error. */
415	} else
416		pte_val (*pte) |= SUN3_PAGE_ACCESSED;
417
418#ifdef DEBUG_MMU_EMU
419	pr_info("seg:%ld crp:%p ->", get_fs().seg, crp);
420	print_pte_vaddr (vaddr);
421	pr_cont("\n");
422#endif
423
424	return 1;
425}
v3.5.6
 
  1/*
  2** Tablewalk MMU emulator
  3**
  4** by Toshiyasu Morita
  5**
  6** Started 1/16/98 @ 2:22 am
  7*/
  8
 
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 11#include <linux/kernel.h>
 12#include <linux/ptrace.h>
 13#include <linux/delay.h>
 14#include <linux/bootmem.h>
 15#include <linux/bitops.h>
 16#include <linux/module.h>
 
 17
 18#include <asm/setup.h>
 19#include <asm/traps.h>
 20#include <asm/uaccess.h>
 21#include <asm/page.h>
 22#include <asm/pgtable.h>
 23#include <asm/sun3mmu.h>
 24#include <asm/segment.h>
 25#include <asm/oplib.h>
 26#include <asm/mmu_context.h>
 27#include <asm/dvma.h>
 28
 29
 30#undef DEBUG_MMU_EMU
 31#define DEBUG_PROM_MAPS
 32
 33/*
 34** Defines
 35*/
 36
 37#define CONTEXTS_NUM		8
 38#define SEGMAPS_PER_CONTEXT_NUM 2048
 39#define PAGES_PER_SEGMENT	16
 40#define PMEGS_NUM		256
 41#define PMEG_MASK		0xFF
 42
 43/*
 44** Globals
 45*/
 46
 47unsigned long m68k_vmalloc_end;
 48EXPORT_SYMBOL(m68k_vmalloc_end);
 49
 50unsigned long pmeg_vaddr[PMEGS_NUM];
 51unsigned char pmeg_alloc[PMEGS_NUM];
 52unsigned char pmeg_ctx[PMEGS_NUM];
 53
 54/* pointers to the mm structs for each task in each
 55   context. 0xffffffff is a marker for kernel context */
 56static struct mm_struct *ctx_alloc[CONTEXTS_NUM] = {
 57    [0] = (struct mm_struct *)0xffffffff
 58};
 59
 60/* has this context been mmdrop'd? */
 61static unsigned char ctx_avail = CONTEXTS_NUM-1;
 62
 63/* array of pages to be marked off for the rom when we do mem_init later */
 64/* 256 pages lets the rom take up to 2mb of physical ram..  I really
 65   hope it never wants mote than that. */
 66unsigned long rom_pages[256];
 67
 68/* Print a PTE value in symbolic form. For debugging. */
 69void print_pte (pte_t pte)
 70{
 71#if 0
 72	/* Verbose version. */
 73	unsigned long val = pte_val (pte);
 74	printk (" pte=%lx [addr=%lx",
 75		val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT);
 76	if (val & SUN3_PAGE_VALID)	printk (" valid");
 77	if (val & SUN3_PAGE_WRITEABLE)	printk (" write");
 78	if (val & SUN3_PAGE_SYSTEM)	printk (" sys");
 79	if (val & SUN3_PAGE_NOCACHE)	printk (" nocache");
 80	if (val & SUN3_PAGE_ACCESSED)	printk (" accessed");
 81	if (val & SUN3_PAGE_MODIFIED)	printk (" modified");
 82	switch (val & SUN3_PAGE_TYPE_MASK) {
 83		case SUN3_PAGE_TYPE_MEMORY: printk (" memory"); break;
 84		case SUN3_PAGE_TYPE_IO:     printk (" io");     break;
 85		case SUN3_PAGE_TYPE_VME16:  printk (" vme16");  break;
 86		case SUN3_PAGE_TYPE_VME32:  printk (" vme32");  break;
 87	}
 88	printk ("]\n");
 89#else
 90	/* Terse version. More likely to fit on a line. */
 91	unsigned long val = pte_val (pte);
 92	char flags[7], *type;
 93
 94	flags[0] = (val & SUN3_PAGE_VALID)     ? 'v' : '-';
 95	flags[1] = (val & SUN3_PAGE_WRITEABLE) ? 'w' : '-';
 96	flags[2] = (val & SUN3_PAGE_SYSTEM)    ? 's' : '-';
 97	flags[3] = (val & SUN3_PAGE_NOCACHE)   ? 'x' : '-';
 98	flags[4] = (val & SUN3_PAGE_ACCESSED)  ? 'a' : '-';
 99	flags[5] = (val & SUN3_PAGE_MODIFIED)  ? 'm' : '-';
100	flags[6] = '\0';
101
102	switch (val & SUN3_PAGE_TYPE_MASK) {
103		case SUN3_PAGE_TYPE_MEMORY: type = "memory"; break;
104		case SUN3_PAGE_TYPE_IO:     type = "io"    ; break;
105		case SUN3_PAGE_TYPE_VME16:  type = "vme16" ; break;
106		case SUN3_PAGE_TYPE_VME32:  type = "vme32" ; break;
107		default: type = "unknown?"; break;
108	}
109
110	printk (" pte=%08lx [%07lx %s %s]\n",
111		val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT, flags, type);
112#endif
113}
114
115/* Print the PTE value for a given virtual address. For debugging. */
116void print_pte_vaddr (unsigned long vaddr)
117{
118	printk (" vaddr=%lx [%02lx]", vaddr, sun3_get_segmap (vaddr));
119	print_pte (__pte (sun3_get_pte (vaddr)));
120}
121
122/*
123 * Initialise the MMU emulator.
124 */
125void mmu_emu_init(unsigned long bootmem_end)
126{
127	unsigned long seg, num;
128	int i,j;
129
130	memset(rom_pages, 0, sizeof(rom_pages));
131	memset(pmeg_vaddr, 0, sizeof(pmeg_vaddr));
132	memset(pmeg_alloc, 0, sizeof(pmeg_alloc));
133	memset(pmeg_ctx, 0, sizeof(pmeg_ctx));
134
135	/* pmeg align the end of bootmem, adding another pmeg,
136	 * later bootmem allocations will likely need it */
137	bootmem_end = (bootmem_end + (2 * SUN3_PMEG_SIZE)) & ~SUN3_PMEG_MASK;
138
139	/* mark all of the pmegs used thus far as reserved */
140	for (i=0; i < __pa(bootmem_end) / SUN3_PMEG_SIZE ; ++i)
141		pmeg_alloc[i] = 2;
142
143
144	/* I'm thinking that most of the top pmeg's are going to be
145	   used for something, and we probably shouldn't risk it */
146	for(num = 0xf0; num <= 0xff; num++)
147		pmeg_alloc[num] = 2;
148
149	/* liberate all existing mappings in the rest of kernel space */
150	for(seg = bootmem_end; seg < 0x0f800000; seg += SUN3_PMEG_SIZE) {
151		i = sun3_get_segmap(seg);
152
153		if(!pmeg_alloc[i]) {
154#ifdef DEBUG_MMU_EMU
155			printk("freed: ");
156			print_pte_vaddr (seg);
157#endif
158			sun3_put_segmap(seg, SUN3_INVALID_PMEG);
159		}
160	}
161
162	j = 0;
163	for (num=0, seg=0x0F800000; seg<0x10000000; seg+=16*PAGE_SIZE) {
164		if (sun3_get_segmap (seg) != SUN3_INVALID_PMEG) {
165#ifdef DEBUG_PROM_MAPS
166			for(i = 0; i < 16; i++) {
167				printk ("mapped:");
168				print_pte_vaddr (seg + (i*PAGE_SIZE));
169				break;
170			}
171#endif
172			// the lowest mapping here is the end of our
173			// vmalloc region
174			if (!m68k_vmalloc_end)
175				m68k_vmalloc_end = seg;
176
177			// mark the segmap alloc'd, and reserve any
178			// of the first 0xbff pages the hardware is
179			// already using...  does any sun3 support > 24mb?
180			pmeg_alloc[sun3_get_segmap(seg)] = 2;
181		}
182	}
183
184	dvma_init();
185
186
187	/* blank everything below the kernel, and we've got the base
188	   mapping to start all the contexts off with... */
189	for(seg = 0; seg < PAGE_OFFSET; seg += SUN3_PMEG_SIZE)
190		sun3_put_segmap(seg, SUN3_INVALID_PMEG);
191
192	set_fs(MAKE_MM_SEG(3));
193	for(seg = 0; seg < 0x10000000; seg += SUN3_PMEG_SIZE) {
194		i = sun3_get_segmap(seg);
195		for(j = 1; j < CONTEXTS_NUM; j++)
196			(*(romvec->pv_setctxt))(j, (void *)seg, i);
197	}
198	set_fs(KERNEL_DS);
199
200}
201
202/* erase the mappings for a dead context.  Uses the pg_dir for hints
203   as the pmeg tables proved somewhat unreliable, and unmapping all of
204   TASK_SIZE was much slower and no more stable. */
205/* todo: find a better way to keep track of the pmegs used by a
206   context for when they're cleared */
207void clear_context(unsigned long context)
208{
209     unsigned char oldctx;
210     unsigned long i;
211
212     if(context) {
213	     if(!ctx_alloc[context])
214		     panic("clear_context: context not allocated\n");
215
216	     ctx_alloc[context]->context = SUN3_INVALID_CONTEXT;
217	     ctx_alloc[context] = (struct mm_struct *)0;
218	     ctx_avail++;
219     }
220
221     oldctx = sun3_get_context();
222
223     sun3_put_context(context);
224
225     for(i = 0; i < SUN3_INVALID_PMEG; i++) {
226	     if((pmeg_ctx[i] == context) && (pmeg_alloc[i] == 1)) {
227		     sun3_put_segmap(pmeg_vaddr[i], SUN3_INVALID_PMEG);
228		     pmeg_ctx[i] = 0;
229		     pmeg_alloc[i] = 0;
230		     pmeg_vaddr[i] = 0;
231	     }
232     }
233
234     sun3_put_context(oldctx);
235}
236
237/* gets an empty context.  if full, kills the next context listed to
238   die first */
239/* This context invalidation scheme is, well, totally arbitrary, I'm
240   sure it could be much more intelligent...  but it gets the job done
241   for now without much overhead in making it's decision. */
242/* todo: come up with optimized scheme for flushing contexts */
243unsigned long get_free_context(struct mm_struct *mm)
244{
245	unsigned long new = 1;
246	static unsigned char next_to_die = 1;
247
248	if(!ctx_avail) {
249		/* kill someone to get our context */
250		new = next_to_die;
251		clear_context(new);
252		next_to_die = (next_to_die + 1) & 0x7;
253		if(!next_to_die)
254			next_to_die++;
255	} else {
256		while(new < CONTEXTS_NUM) {
257			if(ctx_alloc[new])
258				new++;
259			else
260				break;
261		}
262		// check to make sure one was really free...
263		if(new == CONTEXTS_NUM)
264			panic("get_free_context: failed to find free context");
265	}
266
267	ctx_alloc[new] = mm;
268	ctx_avail--;
269
270	return new;
271}
272
273/*
274 * Dynamically select a `spare' PMEG and use it to map virtual `vaddr' in
275 * `context'. Maintain internal PMEG management structures. This doesn't
276 * actually map the physical address, but does clear the old mappings.
277 */
278//todo: better allocation scheme? but is extra complexity worthwhile?
279//todo: only clear old entries if necessary? how to tell?
280
281inline void mmu_emu_map_pmeg (int context, int vaddr)
282{
283	static unsigned char curr_pmeg = 128;
284	int i;
285
286	/* Round address to PMEG boundary. */
287	vaddr &= ~SUN3_PMEG_MASK;
288
289	/* Find a spare one. */
290	while (pmeg_alloc[curr_pmeg] == 2)
291		++curr_pmeg;
292
293
294#ifdef DEBUG_MMU_EMU
295printk("mmu_emu_map_pmeg: pmeg %x to context %d vaddr %x\n",
296       curr_pmeg, context, vaddr);
297#endif
298
299	/* Invalidate old mapping for the pmeg, if any */
300	if (pmeg_alloc[curr_pmeg] == 1) {
301		sun3_put_context(pmeg_ctx[curr_pmeg]);
302		sun3_put_segmap (pmeg_vaddr[curr_pmeg], SUN3_INVALID_PMEG);
303		sun3_put_context(context);
304	}
305
306	/* Update PMEG management structures. */
307	// don't take pmeg's away from the kernel...
308	if(vaddr >= PAGE_OFFSET) {
309		/* map kernel pmegs into all contexts */
310		unsigned char i;
311
312		for(i = 0; i < CONTEXTS_NUM; i++) {
313			sun3_put_context(i);
314			sun3_put_segmap (vaddr, curr_pmeg);
315		}
316		sun3_put_context(context);
317		pmeg_alloc[curr_pmeg] = 2;
318		pmeg_ctx[curr_pmeg] = 0;
319
320	}
321	else {
322		pmeg_alloc[curr_pmeg] = 1;
323		pmeg_ctx[curr_pmeg] = context;
324		sun3_put_segmap (vaddr, curr_pmeg);
325
326	}
327	pmeg_vaddr[curr_pmeg] = vaddr;
328
329	/* Set hardware mapping and clear the old PTE entries. */
330	for (i=0; i<SUN3_PMEG_SIZE; i+=SUN3_PTE_SIZE)
331		sun3_put_pte (vaddr + i, SUN3_PAGE_SYSTEM);
332
333	/* Consider a different one next time. */
334	++curr_pmeg;
335}
336
337/*
338 * Handle a pagefault at virtual address `vaddr'; check if there should be a
339 * page there (specifically, whether the software pagetables indicate that
340 * there is). This is necessary due to the limited size of the second-level
341 * Sun3 hardware pagetables (256 groups of 16 pages). If there should be a
342 * mapping present, we select a `spare' PMEG and use it to create a mapping.
343 * `read_flag' is nonzero for a read fault; zero for a write. Returns nonzero
344 * if we successfully handled the fault.
345 */
346//todo: should we bump minor pagefault counter? if so, here or in caller?
347//todo: possibly inline this into bus_error030 in <asm/buserror.h> ?
348
349// kernel_fault is set when a kernel page couldn't be demand mapped,
350// and forces another try using the kernel page table.  basically a
351// hack so that vmalloc would work correctly.
352
353int mmu_emu_handle_fault (unsigned long vaddr, int read_flag, int kernel_fault)
354{
355	unsigned long segment, offset;
356	unsigned char context;
357	pte_t *pte;
358	pgd_t * crp;
359
360	if(current->mm == NULL) {
361		crp = swapper_pg_dir;
362		context = 0;
363	} else {
364		context = current->mm->context;
365		if(kernel_fault)
366			crp = swapper_pg_dir;
367		else
368			crp = current->mm->pgd;
369	}
370
371#ifdef DEBUG_MMU_EMU
372	printk ("mmu_emu_handle_fault: vaddr=%lx type=%s crp=%p\n",
373		vaddr, read_flag ? "read" : "write", crp);
374#endif
375
376	segment = (vaddr >> SUN3_PMEG_SIZE_BITS) & 0x7FF;
377	offset  = (vaddr >> SUN3_PTE_SIZE_BITS) & 0xF;
378
379#ifdef DEBUG_MMU_EMU
380	printk ("mmu_emu_handle_fault: segment=%lx offset=%lx\n", segment, offset);
381#endif
382
383	pte = (pte_t *) pgd_val (*(crp + segment));
384
385//todo: next line should check for valid pmd properly.
386	if (!pte) {
387//                printk ("mmu_emu_handle_fault: invalid pmd\n");
388                return 0;
389        }
390
391	pte = (pte_t *) __va ((unsigned long)(pte + offset));
392
393	/* Make sure this is a valid page */
394	if (!(pte_val (*pte) & SUN3_PAGE_VALID))
395		return 0;
396
397	/* Make sure there's a pmeg allocated for the page */
398	if (sun3_get_segmap (vaddr&~SUN3_PMEG_MASK) == SUN3_INVALID_PMEG)
399		mmu_emu_map_pmeg (context, vaddr);
400
401	/* Write the pte value to hardware MMU */
402	sun3_put_pte (vaddr&PAGE_MASK, pte_val (*pte));
403
404	/* Update software copy of the pte value */
405// I'm not sure this is necessary. If this is required, we ought to simply
406// copy this out when we reuse the PMEG or at some other convenient time.
407// Doing it here is fairly meaningless, anyway, as we only know about the
408// first access to a given page. --m
409	if (!read_flag) {
410		if (pte_val (*pte) & SUN3_PAGE_WRITEABLE)
411			pte_val (*pte) |= (SUN3_PAGE_ACCESSED
412					   | SUN3_PAGE_MODIFIED);
413		else
414			return 0;	/* Write-protect error. */
415	} else
416		pte_val (*pte) |= SUN3_PAGE_ACCESSED;
417
418#ifdef DEBUG_MMU_EMU
419	printk ("seg:%d crp:%p ->", get_fs().seg, crp);
420	print_pte_vaddr (vaddr);
421	printk ("\n");
422#endif
423
424	return 1;
425}