Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/ioremap.c
  4 *
  5 * Re-map IO memory to kernel address space so that we can access it.
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 *
  9 * Hacked for ARM by Phil Blundell <philb@gnu.org>
 10 * Hacked to allow all architectures to build, and various cleanups
 11 * by Russell King
 12 *
 13 * This allows a driver to remap an arbitrary region of bus memory into
 14 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 15 * so on with such remapped areas.
 16 *
 17 * Because the ARM only has a 32-bit address space we can't address the
 18 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 19 * allows us to circumvent this restriction by splitting PCI space into
 20 * two 2GB chunks and mapping only one at a time into processor memory.
 21 * We use MMU protection domains to trap any attempt to access the bank
 22 * that is not currently mapped.  (This isn't fully implemented yet.)
 23 */
 24#include <linux/module.h>
 25#include <linux/errno.h>
 26#include <linux/mm.h>
 27#include <linux/vmalloc.h>
 28#include <linux/io.h>
 29#include <linux/sizes.h>
 30#include <linux/memblock.h>
 31
 32#include <asm/cp15.h>
 33#include <asm/cputype.h>
 34#include <asm/cacheflush.h>
 35#include <asm/early_ioremap.h>
 36#include <asm/mmu_context.h>
 37#include <asm/pgalloc.h>
 38#include <asm/tlbflush.h>
 39#include <asm/set_memory.h>
 40#include <asm/system_info.h>
 41
 42#include <asm/mach/map.h>
 43#include <asm/mach/pci.h>
 44#include "mm.h"
 45
 46
 47LIST_HEAD(static_vmlist);
 48
 49static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
 50			size_t size, unsigned int mtype)
 51{
 52	struct static_vm *svm;
 53	struct vm_struct *vm;
 54
 55	list_for_each_entry(svm, &static_vmlist, list) {
 56		vm = &svm->vm;
 57		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
 58			continue;
 59		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
 60			continue;
 61
 62		if (vm->phys_addr > paddr ||
 63			paddr + size - 1 > vm->phys_addr + vm->size - 1)
 64			continue;
 65
 66		return svm;
 67	}
 68
 69	return NULL;
 70}
 71
 72struct static_vm *find_static_vm_vaddr(void *vaddr)
 73{
 74	struct static_vm *svm;
 75	struct vm_struct *vm;
 76
 77	list_for_each_entry(svm, &static_vmlist, list) {
 78		vm = &svm->vm;
 79
 80		/* static_vmlist is ascending order */
 81		if (vm->addr > vaddr)
 82			break;
 83
 84		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
 85			return svm;
 86	}
 87
 88	return NULL;
 89}
 90
 91void __init add_static_vm_early(struct static_vm *svm)
 92{
 93	struct static_vm *curr_svm;
 94	struct vm_struct *vm;
 95	void *vaddr;
 96
 97	vm = &svm->vm;
 98	vm_area_add_early(vm);
 99	vaddr = vm->addr;
100
101	list_for_each_entry(curr_svm, &static_vmlist, list) {
102		vm = &curr_svm->vm;
103
104		if (vm->addr > vaddr)
105			break;
106	}
107	list_add_tail(&svm->list, &curr_svm->list);
108}
109
110int ioremap_page(unsigned long virt, unsigned long phys,
111		 const struct mem_type *mtype)
112{
113	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
114				  __pgprot(mtype->prot_pte));
115}
116EXPORT_SYMBOL(ioremap_page);
117
118void __check_vmalloc_seq(struct mm_struct *mm)
119{
120	int seq;
121
122	do {
123		seq = atomic_read(&init_mm.context.vmalloc_seq);
124		memcpy(pgd_offset(mm, VMALLOC_START),
125		       pgd_offset_k(VMALLOC_START),
126		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
127					pgd_index(VMALLOC_START)));
128		/*
129		 * Use a store-release so that other CPUs that observe the
130		 * counter's new value are guaranteed to see the results of the
131		 * memcpy as well.
132		 */
133		atomic_set_release(&mm->context.vmalloc_seq, seq);
134	} while (seq != atomic_read(&init_mm.context.vmalloc_seq));
135}
136
137#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
138/*
139 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
140 * the other CPUs will not see this change until their next context switch.
141 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
142 * which requires the new ioremap'd region to be referenced, the CPU will
143 * reference the _old_ region.
144 *
145 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
146 * mask the size back to 1MB aligned or we will overflow in the loop below.
147 */
148static void unmap_area_sections(unsigned long virt, unsigned long size)
149{
150	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
151	pmd_t *pmdp = pmd_off_k(addr);
152
 
 
 
 
 
 
153	do {
154		pmd_t pmd = *pmdp;
155
156		if (!pmd_none(pmd)) {
157			/*
158			 * Clear the PMD from the page table, and
159			 * increment the vmalloc sequence so others
160			 * notice this change.
161			 *
162			 * Note: this is still racy on SMP machines.
163			 */
164			pmd_clear(pmdp);
165			atomic_inc_return_release(&init_mm.context.vmalloc_seq);
166
167			/*
168			 * Free the page table, if there was one.
169			 */
170			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
171				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
172		}
173
174		addr += PMD_SIZE;
175		pmdp += 2;
176	} while (addr < end);
177
178	/*
179	 * Ensure that the active_mm is up to date - we want to
180	 * catch any use-after-iounmap cases.
181	 */
182	check_vmalloc_seq(current->active_mm);
 
183
184	flush_tlb_kernel_range(virt, end);
185}
186
187static int
188remap_area_sections(unsigned long virt, unsigned long pfn,
189		    size_t size, const struct mem_type *type)
190{
191	unsigned long addr = virt, end = virt + size;
192	pmd_t *pmd = pmd_off_k(addr);
 
 
193
194	/*
195	 * Remove and free any PTE-based mapping, and
196	 * sync the current kernel mapping.
197	 */
198	unmap_area_sections(virt, size);
199
 
 
 
200	do {
201		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
202		pfn += SZ_1M >> PAGE_SHIFT;
203		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
204		pfn += SZ_1M >> PAGE_SHIFT;
205		flush_pmd_entry(pmd);
206
207		addr += PMD_SIZE;
208		pmd += 2;
209	} while (addr < end);
210
211	return 0;
212}
213
214static int
215remap_area_supersections(unsigned long virt, unsigned long pfn,
216			 size_t size, const struct mem_type *type)
217{
218	unsigned long addr = virt, end = virt + size;
219	pmd_t *pmd = pmd_off_k(addr);
 
 
220
221	/*
222	 * Remove and free any PTE-based mapping, and
223	 * sync the current kernel mapping.
224	 */
225	unmap_area_sections(virt, size);
 
 
 
 
226	do {
227		unsigned long super_pmd_val, i;
228
229		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
230				PMD_SECT_SUPER;
231		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
232
233		for (i = 0; i < 8; i++) {
234			pmd[0] = __pmd(super_pmd_val);
235			pmd[1] = __pmd(super_pmd_val);
236			flush_pmd_entry(pmd);
237
238			addr += PMD_SIZE;
239			pmd += 2;
240		}
241
242		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
243	} while (addr < end);
244
245	return 0;
246}
247#endif
248
249static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
250	unsigned long offset, size_t size, unsigned int mtype, void *caller)
251{
252	const struct mem_type *type;
253	int err;
254	unsigned long addr;
255	struct vm_struct *area;
256	phys_addr_t paddr = __pfn_to_phys(pfn);
257
258#ifndef CONFIG_ARM_LPAE
259	/*
260	 * High mappings must be supersection aligned
261	 */
262	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
263		return NULL;
264#endif
265
266	type = get_mem_type(mtype);
267	if (!type)
268		return NULL;
269
270	/*
271	 * Page align the mapping size, taking account of any offset.
272	 */
273	size = PAGE_ALIGN(offset + size);
274
275	/*
276	 * Try to reuse one of the static mapping whenever possible.
277	 */
278	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
279		struct static_vm *svm;
280
281		svm = find_static_vm_paddr(paddr, size, mtype);
282		if (svm) {
283			addr = (unsigned long)svm->vm.addr;
284			addr += paddr - svm->vm.phys_addr;
285			return (void __iomem *) (offset + addr);
286		}
 
 
 
 
 
 
 
287	}
 
288
289	/*
290	 * Don't allow RAM to be mapped with mismatched attributes - this
291	 * causes problems with ARMv6+
292	 */
293	if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
294		    mtype != MT_MEMORY_RW))
295		return NULL;
296
297	area = get_vm_area_caller(size, VM_IOREMAP, caller);
298 	if (!area)
299 		return NULL;
300 	addr = (unsigned long)area->addr;
301	area->phys_addr = paddr;
302
303#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
304	if (DOMAIN_IO == 0 &&
305	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
306	       cpu_is_xsc3()) && pfn >= 0x100000 &&
307	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
308		area->flags |= VM_ARM_SECTION_MAPPING;
309		err = remap_area_supersections(addr, pfn, size, type);
310	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
311		area->flags |= VM_ARM_SECTION_MAPPING;
312		err = remap_area_sections(addr, pfn, size, type);
313	} else
314#endif
315		err = ioremap_page_range(addr, addr + size, paddr,
316					 __pgprot(type->prot_pte));
317
318	if (err) {
319 		vunmap((void *)addr);
320 		return NULL;
321 	}
322
323	flush_cache_vmap(addr, addr + size);
324	return (void __iomem *) (offset + addr);
325}
326
327void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
328	unsigned int mtype, void *caller)
329{
330	phys_addr_t last_addr;
331 	unsigned long offset = phys_addr & ~PAGE_MASK;
332 	unsigned long pfn = __phys_to_pfn(phys_addr);
333
334 	/*
335 	 * Don't allow wraparound or zero size
336	 */
337	last_addr = phys_addr + size - 1;
338	if (!size || last_addr < phys_addr)
339		return NULL;
340
341	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
342			caller);
343}
344
345/*
346 * Remap an arbitrary physical address space into the kernel virtual
347 * address space. Needed when the kernel wants to access high addresses
348 * directly.
349 *
350 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
351 * have to convert them into an offset in a page-aligned mapping, but the
352 * caller shouldn't need to know that small detail.
353 */
354void __iomem *
355__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
356		  unsigned int mtype)
357{
358	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
359					__builtin_return_address(0));
360}
361EXPORT_SYMBOL(__arm_ioremap_pfn);
362
363void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
364				      unsigned int, void *) =
365	__arm_ioremap_caller;
366
367void __iomem *ioremap(resource_size_t res_cookie, size_t size)
368{
369	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
370				   __builtin_return_address(0));
371}
372EXPORT_SYMBOL(ioremap);
373
374void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
375{
376	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
377				   __builtin_return_address(0));
378}
379EXPORT_SYMBOL(ioremap_cache);
380
381void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
382{
383	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
384				   __builtin_return_address(0));
385}
386EXPORT_SYMBOL(ioremap_wc);
387
388/*
389 * Remap an arbitrary physical address space into the kernel virtual
390 * address space as memory. Needed when the kernel wants to execute
391 * code in external memory. This is needed for reprogramming source
392 * clocks that would affect normal memory for example. Please see
393 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
394 */
395void __iomem *
396__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
397{
398	unsigned int mtype;
399
400	if (cached)
401		mtype = MT_MEMORY_RWX;
402	else
403		mtype = MT_MEMORY_RWX_NONCACHED;
404
405	return __arm_ioremap_caller(phys_addr, size, mtype,
406			__builtin_return_address(0));
407}
408
409void __arm_iomem_set_ro(void __iomem *ptr, size_t size)
410{
411	set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE);
412}
413
414void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
415{
416	return (__force void *)arch_ioremap_caller(phys_addr, size,
417						   MT_MEMORY_RW,
418						   __builtin_return_address(0));
419}
420
421void iounmap(volatile void __iomem *io_addr)
422{
423	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
424	struct static_vm *svm;
425
426	/* If this is a static mapping, we must leave it alone */
427	svm = find_static_vm_vaddr(addr);
428	if (svm)
429		return;
430
 
 
 
 
 
 
 
 
 
 
 
 
431#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
432	{
433		struct vm_struct *vm;
434
435		vm = find_vm_area(addr);
436
437		/*
438		 * If this is a section based mapping we need to handle it
439		 * specially as the VM subsystem does not know how to handle
440		 * such a beast.
441		 */
442		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
 
443			unmap_area_sections((unsigned long)vm->addr, vm->size);
444	}
 
445#endif
 
 
446
447	vunmap(addr);
448}
449EXPORT_SYMBOL(iounmap);
450
451#if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
452static int pci_ioremap_mem_type = MT_DEVICE;
453
454void pci_ioremap_set_mem_type(int mem_type)
455{
456	pci_ioremap_mem_type = mem_type;
457}
458
459int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
460{
461	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
462
463	if (!(res->flags & IORESOURCE_IO))
464		return -EINVAL;
465
466	if (res->end > IO_SPACE_LIMIT)
467		return -EINVAL;
468
469	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
470				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
471}
472EXPORT_SYMBOL(pci_remap_iospace);
473
474void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
475{
476	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
477				   __builtin_return_address(0));
478}
479EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
480#endif
481
482/*
483 * Must be called after early_fixmap_init
484 */
485void __init early_ioremap_init(void)
486{
487	early_ioremap_setup();
488}
489
490bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
491				 unsigned long flags)
492{
493	unsigned long pfn = PHYS_PFN(offset);
494
495	return memblock_is_map_memory(pfn);
496}
v3.5.6
 
  1/*
  2 *  linux/arch/arm/mm/ioremap.c
  3 *
  4 * Re-map IO memory to kernel address space so that we can access it.
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 *
  8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
  9 * Hacked to allow all architectures to build, and various cleanups
 10 * by Russell King
 11 *
 12 * This allows a driver to remap an arbitrary region of bus memory into
 13 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 14 * so on with such remapped areas.
 15 *
 16 * Because the ARM only has a 32-bit address space we can't address the
 17 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 18 * allows us to circumvent this restriction by splitting PCI space into
 19 * two 2GB chunks and mapping only one at a time into processor memory.
 20 * We use MMU protection domains to trap any attempt to access the bank
 21 * that is not currently mapped.  (This isn't fully implemented yet.)
 22 */
 23#include <linux/module.h>
 24#include <linux/errno.h>
 25#include <linux/mm.h>
 26#include <linux/vmalloc.h>
 27#include <linux/io.h>
 
 
 28
 29#include <asm/cp15.h>
 30#include <asm/cputype.h>
 31#include <asm/cacheflush.h>
 
 32#include <asm/mmu_context.h>
 33#include <asm/pgalloc.h>
 34#include <asm/tlbflush.h>
 35#include <asm/sizes.h>
 36#include <asm/system_info.h>
 37
 38#include <asm/mach/map.h>
 
 39#include "mm.h"
 40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41int ioremap_page(unsigned long virt, unsigned long phys,
 42		 const struct mem_type *mtype)
 43{
 44	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
 45				  __pgprot(mtype->prot_pte));
 46}
 47EXPORT_SYMBOL(ioremap_page);
 48
 49void __check_kvm_seq(struct mm_struct *mm)
 50{
 51	unsigned int seq;
 52
 53	do {
 54		seq = init_mm.context.kvm_seq;
 55		memcpy(pgd_offset(mm, VMALLOC_START),
 56		       pgd_offset_k(VMALLOC_START),
 57		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
 58					pgd_index(VMALLOC_START)));
 59		mm->context.kvm_seq = seq;
 60	} while (seq != init_mm.context.kvm_seq);
 
 
 
 
 
 61}
 62
 63#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
 64/*
 65 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
 66 * the other CPUs will not see this change until their next context switch.
 67 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
 68 * which requires the new ioremap'd region to be referenced, the CPU will
 69 * reference the _old_ region.
 70 *
 71 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
 72 * mask the size back to 1MB aligned or we will overflow in the loop below.
 73 */
 74static void unmap_area_sections(unsigned long virt, unsigned long size)
 75{
 76	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
 77	pgd_t *pgd;
 78	pud_t *pud;
 79	pmd_t *pmdp;
 80
 81	flush_cache_vunmap(addr, end);
 82	pgd = pgd_offset_k(addr);
 83	pud = pud_offset(pgd, addr);
 84	pmdp = pmd_offset(pud, addr);
 85	do {
 86		pmd_t pmd = *pmdp;
 87
 88		if (!pmd_none(pmd)) {
 89			/*
 90			 * Clear the PMD from the page table, and
 91			 * increment the kvm sequence so others
 92			 * notice this change.
 93			 *
 94			 * Note: this is still racy on SMP machines.
 95			 */
 96			pmd_clear(pmdp);
 97			init_mm.context.kvm_seq++;
 98
 99			/*
100			 * Free the page table, if there was one.
101			 */
102			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
103				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
104		}
105
106		addr += PMD_SIZE;
107		pmdp += 2;
108	} while (addr < end);
109
110	/*
111	 * Ensure that the active_mm is up to date - we want to
112	 * catch any use-after-iounmap cases.
113	 */
114	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
115		__check_kvm_seq(current->active_mm);
116
117	flush_tlb_kernel_range(virt, end);
118}
119
120static int
121remap_area_sections(unsigned long virt, unsigned long pfn,
122		    size_t size, const struct mem_type *type)
123{
124	unsigned long addr = virt, end = virt + size;
125	pgd_t *pgd;
126	pud_t *pud;
127	pmd_t *pmd;
128
129	/*
130	 * Remove and free any PTE-based mapping, and
131	 * sync the current kernel mapping.
132	 */
133	unmap_area_sections(virt, size);
134
135	pgd = pgd_offset_k(addr);
136	pud = pud_offset(pgd, addr);
137	pmd = pmd_offset(pud, addr);
138	do {
139		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
140		pfn += SZ_1M >> PAGE_SHIFT;
141		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
142		pfn += SZ_1M >> PAGE_SHIFT;
143		flush_pmd_entry(pmd);
144
145		addr += PMD_SIZE;
146		pmd += 2;
147	} while (addr < end);
148
149	return 0;
150}
151
152static int
153remap_area_supersections(unsigned long virt, unsigned long pfn,
154			 size_t size, const struct mem_type *type)
155{
156	unsigned long addr = virt, end = virt + size;
157	pgd_t *pgd;
158	pud_t *pud;
159	pmd_t *pmd;
160
161	/*
162	 * Remove and free any PTE-based mapping, and
163	 * sync the current kernel mapping.
164	 */
165	unmap_area_sections(virt, size);
166
167	pgd = pgd_offset_k(virt);
168	pud = pud_offset(pgd, addr);
169	pmd = pmd_offset(pud, addr);
170	do {
171		unsigned long super_pmd_val, i;
172
173		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
174				PMD_SECT_SUPER;
175		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
176
177		for (i = 0; i < 8; i++) {
178			pmd[0] = __pmd(super_pmd_val);
179			pmd[1] = __pmd(super_pmd_val);
180			flush_pmd_entry(pmd);
181
182			addr += PMD_SIZE;
183			pmd += 2;
184		}
185
186		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
187	} while (addr < end);
188
189	return 0;
190}
191#endif
192
193void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
194	unsigned long offset, size_t size, unsigned int mtype, void *caller)
195{
196	const struct mem_type *type;
197	int err;
198	unsigned long addr;
199 	struct vm_struct * area;
 
200
201#ifndef CONFIG_ARM_LPAE
202	/*
203	 * High mappings must be supersection aligned
204	 */
205	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
206		return NULL;
207#endif
208
209	type = get_mem_type(mtype);
210	if (!type)
211		return NULL;
212
213	/*
214	 * Page align the mapping size, taking account of any offset.
215	 */
216	size = PAGE_ALIGN(offset + size);
217
218	/*
219	 * Try to reuse one of the static mapping whenever possible.
220	 */
221	read_lock(&vmlist_lock);
222	for (area = vmlist; area; area = area->next) {
223		if (!size || (sizeof(phys_addr_t) == 4 && pfn >= 0x100000))
224			break;
225		if (!(area->flags & VM_ARM_STATIC_MAPPING))
226			continue;
227		if ((area->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
228			continue;
229		if (__phys_to_pfn(area->phys_addr) > pfn ||
230		    __pfn_to_phys(pfn) + size-1 > area->phys_addr + area->size-1)
231			continue;
232		/* we can drop the lock here as we know *area is static */
233		read_unlock(&vmlist_lock);
234		addr = (unsigned long)area->addr;
235		addr += __pfn_to_phys(pfn) - area->phys_addr;
236		return (void __iomem *) (offset + addr);
237	}
238	read_unlock(&vmlist_lock);
239
240	/*
241	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
 
242	 */
243	if (WARN_ON(pfn_valid(pfn)))
 
244		return NULL;
245
246	area = get_vm_area_caller(size, VM_IOREMAP, caller);
247 	if (!area)
248 		return NULL;
249 	addr = (unsigned long)area->addr;
 
250
251#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
252	if (DOMAIN_IO == 0 &&
253	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
254	       cpu_is_xsc3()) && pfn >= 0x100000 &&
255	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
256		area->flags |= VM_ARM_SECTION_MAPPING;
257		err = remap_area_supersections(addr, pfn, size, type);
258	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
259		area->flags |= VM_ARM_SECTION_MAPPING;
260		err = remap_area_sections(addr, pfn, size, type);
261	} else
262#endif
263		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
264					 __pgprot(type->prot_pte));
265
266	if (err) {
267 		vunmap((void *)addr);
268 		return NULL;
269 	}
270
271	flush_cache_vmap(addr, addr + size);
272	return (void __iomem *) (offset + addr);
273}
274
275void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
276	unsigned int mtype, void *caller)
277{
278	unsigned long last_addr;
279 	unsigned long offset = phys_addr & ~PAGE_MASK;
280 	unsigned long pfn = __phys_to_pfn(phys_addr);
281
282 	/*
283 	 * Don't allow wraparound or zero size
284	 */
285	last_addr = phys_addr + size - 1;
286	if (!size || last_addr < phys_addr)
287		return NULL;
288
289	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
290			caller);
291}
292
293/*
294 * Remap an arbitrary physical address space into the kernel virtual
295 * address space. Needed when the kernel wants to access high addresses
296 * directly.
297 *
298 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
299 * have to convert them into an offset in a page-aligned mapping, but the
300 * caller shouldn't need to know that small detail.
301 */
302void __iomem *
303__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
304		  unsigned int mtype)
305{
306	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
307			__builtin_return_address(0));
308}
309EXPORT_SYMBOL(__arm_ioremap_pfn);
310
311void __iomem * (*arch_ioremap_caller)(unsigned long, size_t,
312				      unsigned int, void *) =
313	__arm_ioremap_caller;
314
315void __iomem *
316__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
317{
318	return arch_ioremap_caller(phys_addr, size, mtype,
319		__builtin_return_address(0));
320}
321EXPORT_SYMBOL(__arm_ioremap);
322
323/*
324 * Remap an arbitrary physical address space into the kernel virtual
325 * address space as memory. Needed when the kernel wants to execute
326 * code in external memory. This is needed for reprogramming source
327 * clocks that would affect normal memory for example. Please see
328 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
329 */
330void __iomem *
331__arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
332{
333	unsigned int mtype;
334
335	if (cached)
336		mtype = MT_MEMORY;
337	else
338		mtype = MT_MEMORY_NONCACHED;
339
340	return __arm_ioremap_caller(phys_addr, size, mtype,
341			__builtin_return_address(0));
342}
343
344void __iounmap(volatile void __iomem *io_addr)
 
 
 
 
 
 
 
 
 
 
 
 
345{
346	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
347	struct vm_struct *vm;
 
 
 
 
 
348
349	read_lock(&vmlist_lock);
350	for (vm = vmlist; vm; vm = vm->next) {
351		if (vm->addr > addr)
352			break;
353		if (!(vm->flags & VM_IOREMAP))
354			continue;
355		/* If this is a static mapping we must leave it alone */
356		if ((vm->flags & VM_ARM_STATIC_MAPPING) &&
357		    (vm->addr <= addr) && (vm->addr + vm->size > addr)) {
358			read_unlock(&vmlist_lock);
359			return;
360		}
361#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
 
 
 
 
 
362		/*
363		 * If this is a section based mapping we need to handle it
364		 * specially as the VM subsystem does not know how to handle
365		 * such a beast.
366		 */
367		if ((vm->addr == addr) &&
368		    (vm->flags & VM_ARM_SECTION_MAPPING)) {
369			unmap_area_sections((unsigned long)vm->addr, vm->size);
370			break;
371		}
372#endif
373	}
374	read_unlock(&vmlist_lock);
375
376	vunmap(addr);
377}
 
 
 
 
 
 
 
 
 
378
379void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
380
381void __arm_iounmap(volatile void __iomem *io_addr)
382{
383	arch_iounmap(io_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384}
385EXPORT_SYMBOL(__arm_iounmap);