Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2016 Thomas Gleixner.
  4 * Copyright (C) 2016-2017 Christoph Hellwig.
  5 */
  6#include <linux/interrupt.h>
  7#include <linux/kernel.h>
  8#include <linux/slab.h>
  9#include <linux/cpu.h>
 10#include <linux/sort.h>
 11
 12static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
 13				unsigned int cpus_per_vec)
 14{
 15	const struct cpumask *siblmsk;
 16	int cpu, sibl;
 17
 18	for ( ; cpus_per_vec > 0; ) {
 19		cpu = cpumask_first(nmsk);
 20
 21		/* Should not happen, but I'm too lazy to think about it */
 22		if (cpu >= nr_cpu_ids)
 23			return;
 24
 25		cpumask_clear_cpu(cpu, nmsk);
 26		cpumask_set_cpu(cpu, irqmsk);
 27		cpus_per_vec--;
 28
 29		/* If the cpu has siblings, use them first */
 30		siblmsk = topology_sibling_cpumask(cpu);
 31		for (sibl = -1; cpus_per_vec > 0; ) {
 32			sibl = cpumask_next(sibl, siblmsk);
 33			if (sibl >= nr_cpu_ids)
 34				break;
 35			if (!cpumask_test_and_clear_cpu(sibl, nmsk))
 36				continue;
 37			cpumask_set_cpu(sibl, irqmsk);
 38			cpus_per_vec--;
 39		}
 40	}
 41}
 42
 43static cpumask_var_t *alloc_node_to_cpumask(void)
 44{
 45	cpumask_var_t *masks;
 46	int node;
 47
 48	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
 49	if (!masks)
 50		return NULL;
 51
 52	for (node = 0; node < nr_node_ids; node++) {
 53		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
 54			goto out_unwind;
 55	}
 56
 57	return masks;
 58
 59out_unwind:
 60	while (--node >= 0)
 61		free_cpumask_var(masks[node]);
 62	kfree(masks);
 63	return NULL;
 64}
 65
 66static void free_node_to_cpumask(cpumask_var_t *masks)
 67{
 68	int node;
 69
 70	for (node = 0; node < nr_node_ids; node++)
 71		free_cpumask_var(masks[node]);
 72	kfree(masks);
 73}
 74
 75static void build_node_to_cpumask(cpumask_var_t *masks)
 76{
 77	int cpu;
 78
 79	for_each_possible_cpu(cpu)
 80		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
 81}
 82
 83static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
 84				const struct cpumask *mask, nodemask_t *nodemsk)
 85{
 86	int n, nodes = 0;
 87
 88	/* Calculate the number of nodes in the supplied affinity mask */
 89	for_each_node(n) {
 90		if (cpumask_intersects(mask, node_to_cpumask[n])) {
 91			node_set(n, *nodemsk);
 92			nodes++;
 93		}
 94	}
 95	return nodes;
 96}
 97
 98struct node_vectors {
 99	unsigned id;
100
101	union {
102		unsigned nvectors;
103		unsigned ncpus;
104	};
105};
106
107static int ncpus_cmp_func(const void *l, const void *r)
108{
109	const struct node_vectors *ln = l;
110	const struct node_vectors *rn = r;
111
112	return ln->ncpus - rn->ncpus;
113}
114
115/*
116 * Allocate vector number for each node, so that for each node:
117 *
118 * 1) the allocated number is >= 1
119 *
120 * 2) the allocated numbver is <= active CPU number of this node
121 *
122 * The actual allocated total vectors may be less than @numvecs when
123 * active total CPU number is less than @numvecs.
124 *
125 * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
126 * for each node.
127 */
128static void alloc_nodes_vectors(unsigned int numvecs,
129				cpumask_var_t *node_to_cpumask,
130				const struct cpumask *cpu_mask,
131				const nodemask_t nodemsk,
132				struct cpumask *nmsk,
133				struct node_vectors *node_vectors)
134{
135	unsigned n, remaining_ncpus = 0;
136
137	for (n = 0; n < nr_node_ids; n++) {
138		node_vectors[n].id = n;
139		node_vectors[n].ncpus = UINT_MAX;
140	}
141
142	for_each_node_mask(n, nodemsk) {
143		unsigned ncpus;
144
145		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
146		ncpus = cpumask_weight(nmsk);
147
148		if (!ncpus)
149			continue;
150		remaining_ncpus += ncpus;
151		node_vectors[n].ncpus = ncpus;
152	}
153
154	numvecs = min_t(unsigned, remaining_ncpus, numvecs);
155
156	sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
157	     ncpus_cmp_func, NULL);
158
159	/*
160	 * Allocate vectors for each node according to the ratio of this
161	 * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
162	 * bigger than number of active numa nodes. Always start the
163	 * allocation from the node with minimized nr_cpus.
164	 *
165	 * This way guarantees that each active node gets allocated at
166	 * least one vector, and the theory is simple: over-allocation
167	 * is only done when this node is assigned by one vector, so
168	 * other nodes will be allocated >= 1 vector, since 'numvecs' is
169	 * bigger than number of numa nodes.
170	 *
171	 * One perfect invariant is that number of allocated vectors for
172	 * each node is <= CPU count of this node:
173	 *
174	 * 1) suppose there are two nodes: A and B
175	 * 	ncpu(X) is CPU count of node X
176	 * 	vecs(X) is the vector count allocated to node X via this
177	 * 	algorithm
178	 *
179	 * 	ncpu(A) <= ncpu(B)
180	 * 	ncpu(A) + ncpu(B) = N
181	 * 	vecs(A) + vecs(B) = V
182	 *
183	 * 	vecs(A) = max(1, round_down(V * ncpu(A) / N))
184	 * 	vecs(B) = V - vecs(A)
185	 *
186	 * 	both N and V are integer, and 2 <= V <= N, suppose
187	 * 	V = N - delta, and 0 <= delta <= N - 2
188	 *
189	 * 2) obviously vecs(A) <= ncpu(A) because:
190	 *
191	 * 	if vecs(A) is 1, then vecs(A) <= ncpu(A) given
192	 * 	ncpu(A) >= 1
193	 *
194	 * 	otherwise,
195	 * 		vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
196	 *
197	 * 3) prove how vecs(B) <= ncpu(B):
198	 *
199	 * 	if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
200	 * 	over-allocated, so vecs(B) <= ncpu(B),
201	 *
202	 * 	otherwise:
203	 *
204	 * 	vecs(A) =
205	 * 		round_down(V * ncpu(A) / N) =
206	 * 		round_down((N - delta) * ncpu(A) / N) =
207	 * 		round_down((N * ncpu(A) - delta * ncpu(A)) / N)	 >=
208	 * 		round_down((N * ncpu(A) - delta * N) / N)	 =
209	 * 		cpu(A) - delta
210	 *
211	 * 	then:
212	 *
213	 * 	vecs(A) - V >= ncpu(A) - delta - V
214	 * 	=>
215	 * 	V - vecs(A) <= V + delta - ncpu(A)
216	 * 	=>
217	 * 	vecs(B) <= N - ncpu(A)
218	 * 	=>
219	 * 	vecs(B) <= cpu(B)
220	 *
221	 * For nodes >= 3, it can be thought as one node and another big
222	 * node given that is exactly what this algorithm is implemented,
223	 * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
224	 * finally for each node X: vecs(X) <= ncpu(X).
225	 *
226	 */
227	for (n = 0; n < nr_node_ids; n++) {
228		unsigned nvectors, ncpus;
229
230		if (node_vectors[n].ncpus == UINT_MAX)
231			continue;
232
233		WARN_ON_ONCE(numvecs == 0);
234
235		ncpus = node_vectors[n].ncpus;
236		nvectors = max_t(unsigned, 1,
237				 numvecs * ncpus / remaining_ncpus);
238		WARN_ON_ONCE(nvectors > ncpus);
239
240		node_vectors[n].nvectors = nvectors;
241
242		remaining_ncpus -= ncpus;
243		numvecs -= nvectors;
244	}
245}
246
247static int __irq_build_affinity_masks(unsigned int startvec,
248				      unsigned int numvecs,
249				      unsigned int firstvec,
250				      cpumask_var_t *node_to_cpumask,
251				      const struct cpumask *cpu_mask,
252				      struct cpumask *nmsk,
253				      struct irq_affinity_desc *masks)
254{
255	unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
256	unsigned int last_affv = firstvec + numvecs;
257	unsigned int curvec = startvec;
258	nodemask_t nodemsk = NODE_MASK_NONE;
259	struct node_vectors *node_vectors;
260
261	if (cpumask_empty(cpu_mask))
262		return 0;
263
264	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
265
266	/*
267	 * If the number of nodes in the mask is greater than or equal the
268	 * number of vectors we just spread the vectors across the nodes.
269	 */
270	if (numvecs <= nodes) {
271		for_each_node_mask(n, nodemsk) {
272			/* Ensure that only CPUs which are in both masks are set */
273			cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
274			cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk);
275			if (++curvec == last_affv)
276				curvec = firstvec;
277		}
278		return numvecs;
279	}
280
281	node_vectors = kcalloc(nr_node_ids,
282			       sizeof(struct node_vectors),
283			       GFP_KERNEL);
284	if (!node_vectors)
285		return -ENOMEM;
286
287	/* allocate vector number for each node */
288	alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
289			    nodemsk, nmsk, node_vectors);
290
291	for (i = 0; i < nr_node_ids; i++) {
292		unsigned int ncpus, v;
293		struct node_vectors *nv = &node_vectors[i];
294
295		if (nv->nvectors == UINT_MAX)
296			continue;
297
298		/* Get the cpus on this node which are in the mask */
299		cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
300		ncpus = cpumask_weight(nmsk);
301		if (!ncpus)
302			continue;
303
304		WARN_ON_ONCE(nv->nvectors > ncpus);
305
306		/* Account for rounding errors */
307		extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
308
309		/* Spread allocated vectors on CPUs of the current node */
310		for (v = 0; v < nv->nvectors; v++, curvec++) {
311			cpus_per_vec = ncpus / nv->nvectors;
312
313			/* Account for extra vectors to compensate rounding errors */
314			if (extra_vecs) {
315				cpus_per_vec++;
316				--extra_vecs;
317			}
318
319			/*
320			 * wrapping has to be considered given 'startvec'
321			 * may start anywhere
322			 */
323			if (curvec >= last_affv)
324				curvec = firstvec;
325			irq_spread_init_one(&masks[curvec].mask, nmsk,
326						cpus_per_vec);
327		}
328		done += nv->nvectors;
329	}
330	kfree(node_vectors);
331	return done;
332}
333
334/*
335 * build affinity in two stages:
336 *	1) spread present CPU on these vectors
337 *	2) spread other possible CPUs on these vectors
338 */
339static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
340				    unsigned int firstvec,
341				    struct irq_affinity_desc *masks)
342{
343	unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
344	cpumask_var_t *node_to_cpumask;
345	cpumask_var_t nmsk, npresmsk;
346	int ret = -ENOMEM;
347
348	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
349		return ret;
350
351	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
352		goto fail_nmsk;
353
354	node_to_cpumask = alloc_node_to_cpumask();
355	if (!node_to_cpumask)
356		goto fail_npresmsk;
357
358	/* Stabilize the cpumasks */
359	cpus_read_lock();
360	build_node_to_cpumask(node_to_cpumask);
361
362	/* Spread on present CPUs starting from affd->pre_vectors */
363	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
364					 node_to_cpumask, cpu_present_mask,
365					 nmsk, masks);
366	if (ret < 0)
367		goto fail_build_affinity;
368	nr_present = ret;
369
370	/*
371	 * Spread on non present CPUs starting from the next vector to be
372	 * handled. If the spreading of present CPUs already exhausted the
373	 * vector space, assign the non present CPUs to the already spread
374	 * out vectors.
375	 */
376	if (nr_present >= numvecs)
377		curvec = firstvec;
378	else
379		curvec = firstvec + nr_present;
380	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
381	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
382					 node_to_cpumask, npresmsk, nmsk,
383					 masks);
384	if (ret >= 0)
385		nr_others = ret;
386
387 fail_build_affinity:
388	cpus_read_unlock();
389
390	if (ret >= 0)
391		WARN_ON(nr_present + nr_others < numvecs);
392
393	free_node_to_cpumask(node_to_cpumask);
394
395 fail_npresmsk:
396	free_cpumask_var(npresmsk);
397
398 fail_nmsk:
399	free_cpumask_var(nmsk);
400	return ret < 0 ? ret : 0;
401}
402
403static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
404{
405	affd->nr_sets = 1;
406	affd->set_size[0] = affvecs;
407}
408
409/**
410 * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
411 * @nvecs:	The total number of vectors
412 * @affd:	Description of the affinity requirements
413 *
414 * Returns the irq_affinity_desc pointer or NULL if allocation failed.
415 */
416struct irq_affinity_desc *
417irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
418{
419	unsigned int affvecs, curvec, usedvecs, i;
420	struct irq_affinity_desc *masks = NULL;
421
422	/*
423	 * Determine the number of vectors which need interrupt affinities
424	 * assigned. If the pre/post request exhausts the available vectors
425	 * then nothing to do here except for invoking the calc_sets()
426	 * callback so the device driver can adjust to the situation.
427	 */
428	if (nvecs > affd->pre_vectors + affd->post_vectors)
429		affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
430	else
431		affvecs = 0;
432
433	/*
434	 * Simple invocations do not provide a calc_sets() callback. Install
435	 * the generic one.
436	 */
437	if (!affd->calc_sets)
438		affd->calc_sets = default_calc_sets;
439
440	/* Recalculate the sets */
441	affd->calc_sets(affd, affvecs);
442
443	if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
444		return NULL;
445
446	/* Nothing to assign? */
447	if (!affvecs)
448		return NULL;
449
450	masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
451	if (!masks)
452		return NULL;
453
454	/* Fill out vectors at the beginning that don't need affinity */
455	for (curvec = 0; curvec < affd->pre_vectors; curvec++)
456		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
457
458	/*
459	 * Spread on present CPUs starting from affd->pre_vectors. If we
460	 * have multiple sets, build each sets affinity mask separately.
461	 */
462	for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
463		unsigned int this_vecs = affd->set_size[i];
464		int ret;
465
466		ret = irq_build_affinity_masks(curvec, this_vecs,
467					       curvec, masks);
468		if (ret) {
469			kfree(masks);
470			return NULL;
471		}
472		curvec += this_vecs;
473		usedvecs += this_vecs;
474	}
475
476	/* Fill out vectors at the end that don't need affinity */
477	if (usedvecs >= affvecs)
478		curvec = affd->pre_vectors + affvecs;
479	else
480		curvec = affd->pre_vectors + usedvecs;
481	for (; curvec < nvecs; curvec++)
482		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
483
484	/* Mark the managed interrupts */
485	for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
486		masks[i].is_managed = 1;
487
488	return masks;
489}
490
491/**
492 * irq_calc_affinity_vectors - Calculate the optimal number of vectors
493 * @minvec:	The minimum number of vectors available
494 * @maxvec:	The maximum number of vectors available
495 * @affd:	Description of the affinity requirements
496 */
497unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
498				       const struct irq_affinity *affd)
499{
500	unsigned int resv = affd->pre_vectors + affd->post_vectors;
501	unsigned int set_vecs;
502
503	if (resv > minvec)
504		return 0;
505
506	if (affd->calc_sets) {
507		set_vecs = maxvec - resv;
508	} else {
509		cpus_read_lock();
510		set_vecs = cpumask_weight(cpu_possible_mask);
511		cpus_read_unlock();
512	}
513
514	return resv + min(set_vecs, maxvec - resv);
515}