Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else,
  23 * with no callbacks.  Callbacks are evil.
 
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/string.h>
  29#include <linux/bitops.h>
  30#include <linux/slab.h>
 
  31#include <linux/kmod.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/errno.h>
  35#include <linux/usb.h>
  36#include <linux/usb/hcd.h>
  37#include <linux/mutex.h>
  38#include <linux/workqueue.h>
  39#include <linux/debugfs.h>
  40#include <linux/usb/of.h>
  41
  42#include <asm/io.h>
  43#include <linux/scatterlist.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46
  47#include "hub.h"
 
  48
  49const char *usbcore_name = "usbcore";
  50
  51static bool nousb;	/* Disable USB when built into kernel image */
  52
  53module_param(nousb, bool, 0444);
  54
  55/*
  56 * for external read access to <nousb>
  57 */
  58int usb_disabled(void)
  59{
  60	return nousb;
  61}
  62EXPORT_SYMBOL_GPL(usb_disabled);
  63
  64#ifdef	CONFIG_PM
  65/* Default delay value, in seconds */
  66static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  67module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  68MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  69
  70#else
  71#define usb_autosuspend_delay		0
  72#endif
  73
  74static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  75		struct usb_endpoint_descriptor **bulk_in,
  76		struct usb_endpoint_descriptor **bulk_out,
  77		struct usb_endpoint_descriptor **int_in,
  78		struct usb_endpoint_descriptor **int_out)
  79{
  80	switch (usb_endpoint_type(epd)) {
  81	case USB_ENDPOINT_XFER_BULK:
  82		if (usb_endpoint_dir_in(epd)) {
  83			if (bulk_in && !*bulk_in) {
  84				*bulk_in = epd;
  85				break;
  86			}
  87		} else {
  88			if (bulk_out && !*bulk_out) {
  89				*bulk_out = epd;
  90				break;
  91			}
  92		}
  93
  94		return false;
  95	case USB_ENDPOINT_XFER_INT:
  96		if (usb_endpoint_dir_in(epd)) {
  97			if (int_in && !*int_in) {
  98				*int_in = epd;
  99				break;
 100			}
 101		} else {
 102			if (int_out && !*int_out) {
 103				*int_out = epd;
 104				break;
 105			}
 106		}
 107
 108		return false;
 109	default:
 110		return false;
 111	}
 112
 113	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 114			(!int_in || *int_in) && (!int_out || *int_out);
 115}
 116
 117/**
 118 * usb_find_common_endpoints() -- look up common endpoint descriptors
 119 * @alt:	alternate setting to search
 120 * @bulk_in:	pointer to descriptor pointer, or NULL
 121 * @bulk_out:	pointer to descriptor pointer, or NULL
 122 * @int_in:	pointer to descriptor pointer, or NULL
 123 * @int_out:	pointer to descriptor pointer, or NULL
 124 *
 125 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 126 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 127 * provided pointers (unless they are NULL).
 128 *
 129 * If a requested endpoint is not found, the corresponding pointer is set to
 130 * NULL.
 131 *
 132 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 133 */
 134int usb_find_common_endpoints(struct usb_host_interface *alt,
 135		struct usb_endpoint_descriptor **bulk_in,
 136		struct usb_endpoint_descriptor **bulk_out,
 137		struct usb_endpoint_descriptor **int_in,
 138		struct usb_endpoint_descriptor **int_out)
 139{
 140	struct usb_endpoint_descriptor *epd;
 141	int i;
 142
 143	if (bulk_in)
 144		*bulk_in = NULL;
 145	if (bulk_out)
 146		*bulk_out = NULL;
 147	if (int_in)
 148		*int_in = NULL;
 149	if (int_out)
 150		*int_out = NULL;
 151
 152	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 153		epd = &alt->endpoint[i].desc;
 154
 155		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 156			return 0;
 157	}
 158
 159	return -ENXIO;
 160}
 161EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 162
 163/**
 164 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 165 * @alt:	alternate setting to search
 166 * @bulk_in:	pointer to descriptor pointer, or NULL
 167 * @bulk_out:	pointer to descriptor pointer, or NULL
 168 * @int_in:	pointer to descriptor pointer, or NULL
 169 * @int_out:	pointer to descriptor pointer, or NULL
 170 *
 171 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 172 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 173 * provided pointers (unless they are NULL).
 174 *
 175 * If a requested endpoint is not found, the corresponding pointer is set to
 176 * NULL.
 177 *
 178 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 179 */
 180int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 181		struct usb_endpoint_descriptor **bulk_in,
 182		struct usb_endpoint_descriptor **bulk_out,
 183		struct usb_endpoint_descriptor **int_in,
 184		struct usb_endpoint_descriptor **int_out)
 185{
 186	struct usb_endpoint_descriptor *epd;
 187	int i;
 188
 189	if (bulk_in)
 190		*bulk_in = NULL;
 191	if (bulk_out)
 192		*bulk_out = NULL;
 193	if (int_in)
 194		*int_in = NULL;
 195	if (int_out)
 196		*int_out = NULL;
 197
 198	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 199		epd = &alt->endpoint[i].desc;
 200
 201		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 202			return 0;
 203	}
 204
 205	return -ENXIO;
 206}
 207EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 208
 209/**
 210 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 211 * for the given interface.
 212 * @config: the configuration to search (not necessarily the current config).
 213 * @iface_num: interface number to search in
 214 * @alt_num: alternate interface setting number to search for.
 215 *
 216 * Search the configuration's interface cache for the given alt setting.
 217 *
 218 * Return: The alternate setting, if found. %NULL otherwise.
 219 */
 220struct usb_host_interface *usb_find_alt_setting(
 221		struct usb_host_config *config,
 222		unsigned int iface_num,
 223		unsigned int alt_num)
 224{
 225	struct usb_interface_cache *intf_cache = NULL;
 226	int i;
 227
 228	if (!config)
 229		return NULL;
 230	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 231		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 232				== iface_num) {
 233			intf_cache = config->intf_cache[i];
 234			break;
 235		}
 236	}
 237	if (!intf_cache)
 238		return NULL;
 239	for (i = 0; i < intf_cache->num_altsetting; i++)
 240		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 241			return &intf_cache->altsetting[i];
 242
 243	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 244			"config %u\n", alt_num, iface_num,
 245			config->desc.bConfigurationValue);
 246	return NULL;
 247}
 248EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 249
 250/**
 251 * usb_ifnum_to_if - get the interface object with a given interface number
 252 * @dev: the device whose current configuration is considered
 253 * @ifnum: the desired interface
 254 *
 255 * This walks the device descriptor for the currently active configuration
 256 * to find the interface object with the particular interface number.
 257 *
 258 * Note that configuration descriptors are not required to assign interface
 259 * numbers sequentially, so that it would be incorrect to assume that
 260 * the first interface in that descriptor corresponds to interface zero.
 261 * This routine helps device drivers avoid such mistakes.
 262 * However, you should make sure that you do the right thing with any
 263 * alternate settings available for this interfaces.
 264 *
 265 * Don't call this function unless you are bound to one of the interfaces
 266 * on this device or you have locked the device!
 267 *
 268 * Return: A pointer to the interface that has @ifnum as interface number,
 269 * if found. %NULL otherwise.
 270 */
 271struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 272				      unsigned ifnum)
 273{
 274	struct usb_host_config *config = dev->actconfig;
 275	int i;
 276
 277	if (!config)
 278		return NULL;
 279	for (i = 0; i < config->desc.bNumInterfaces; i++)
 280		if (config->interface[i]->altsetting[0]
 281				.desc.bInterfaceNumber == ifnum)
 282			return config->interface[i];
 283
 284	return NULL;
 285}
 286EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 287
 288/**
 289 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 290 * @intf: the interface containing the altsetting in question
 291 * @altnum: the desired alternate setting number
 292 *
 293 * This searches the altsetting array of the specified interface for
 294 * an entry with the correct bAlternateSetting value.
 295 *
 296 * Note that altsettings need not be stored sequentially by number, so
 297 * it would be incorrect to assume that the first altsetting entry in
 298 * the array corresponds to altsetting zero.  This routine helps device
 299 * drivers avoid such mistakes.
 300 *
 301 * Don't call this function unless you are bound to the intf interface
 302 * or you have locked the device!
 303 *
 304 * Return: A pointer to the entry of the altsetting array of @intf that
 305 * has @altnum as the alternate setting number. %NULL if not found.
 306 */
 307struct usb_host_interface *usb_altnum_to_altsetting(
 308					const struct usb_interface *intf,
 309					unsigned int altnum)
 310{
 311	int i;
 312
 313	for (i = 0; i < intf->num_altsetting; i++) {
 314		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 315			return &intf->altsetting[i];
 316	}
 317	return NULL;
 318}
 319EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 320
 321struct find_interface_arg {
 322	int minor;
 323	struct device_driver *drv;
 324};
 325
 326static int __find_interface(struct device *dev, const void *data)
 327{
 328	const struct find_interface_arg *arg = data;
 329	struct usb_interface *intf;
 330
 331	if (!is_usb_interface(dev))
 332		return 0;
 333
 334	if (dev->driver != arg->drv)
 335		return 0;
 336	intf = to_usb_interface(dev);
 337	return intf->minor == arg->minor;
 338}
 339
 340/**
 341 * usb_find_interface - find usb_interface pointer for driver and device
 342 * @drv: the driver whose current configuration is considered
 343 * @minor: the minor number of the desired device
 344 *
 345 * This walks the bus device list and returns a pointer to the interface
 346 * with the matching minor and driver.  Note, this only works for devices
 347 * that share the USB major number.
 348 *
 349 * Return: A pointer to the interface with the matching major and @minor.
 350 */
 351struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 352{
 353	struct find_interface_arg argb;
 354	struct device *dev;
 355
 356	argb.minor = minor;
 357	argb.drv = &drv->drvwrap.driver;
 358
 359	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 360
 361	/* Drop reference count from bus_find_device */
 362	put_device(dev);
 363
 364	return dev ? to_usb_interface(dev) : NULL;
 365}
 366EXPORT_SYMBOL_GPL(usb_find_interface);
 367
 368struct each_dev_arg {
 369	void *data;
 370	int (*fn)(struct usb_device *, void *);
 371};
 372
 373static int __each_dev(struct device *dev, void *data)
 374{
 375	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 376
 377	/* There are struct usb_interface on the same bus, filter them out */
 378	if (!is_usb_device(dev))
 379		return 0;
 380
 381	return arg->fn(to_usb_device(dev), arg->data);
 382}
 383
 384/**
 385 * usb_for_each_dev - iterate over all USB devices in the system
 386 * @data: data pointer that will be handed to the callback function
 387 * @fn: callback function to be called for each USB device
 388 *
 389 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 390 * returns anything other than 0, we break the iteration prematurely and return
 391 * that value.
 392 */
 393int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 394{
 395	struct each_dev_arg arg = {data, fn};
 396
 397	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 398}
 399EXPORT_SYMBOL_GPL(usb_for_each_dev);
 400
 401/**
 402 * usb_release_dev - free a usb device structure when all users of it are finished.
 403 * @dev: device that's been disconnected
 404 *
 405 * Will be called only by the device core when all users of this usb device are
 406 * done.
 407 */
 408static void usb_release_dev(struct device *dev)
 409{
 410	struct usb_device *udev;
 411	struct usb_hcd *hcd;
 412
 413	udev = to_usb_device(dev);
 414	hcd = bus_to_hcd(udev->bus);
 415
 416	usb_destroy_configuration(udev);
 417	usb_release_bos_descriptor(udev);
 418	of_node_put(dev->of_node);
 419	usb_put_hcd(hcd);
 420	kfree(udev->product);
 421	kfree(udev->manufacturer);
 422	kfree(udev->serial);
 423	kfree(udev);
 424}
 425
 426static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 427{
 428	struct usb_device *usb_dev;
 429
 430	usb_dev = to_usb_device(dev);
 431
 432	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 433		return -ENOMEM;
 434
 435	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 436		return -ENOMEM;
 437
 438	return 0;
 439}
 440
 441#ifdef	CONFIG_PM
 442
 443/* USB device Power-Management thunks.
 444 * There's no need to distinguish here between quiescing a USB device
 445 * and powering it down; the generic_suspend() routine takes care of
 446 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 447 * USB interfaces there's no difference at all.
 448 */
 449
 450static int usb_dev_prepare(struct device *dev)
 451{
 452	return 0;		/* Implement eventually? */
 453}
 454
 455static void usb_dev_complete(struct device *dev)
 456{
 457	/* Currently used only for rebinding interfaces */
 458	usb_resume_complete(dev);
 459}
 460
 461static int usb_dev_suspend(struct device *dev)
 462{
 463	return usb_suspend(dev, PMSG_SUSPEND);
 464}
 465
 466static int usb_dev_resume(struct device *dev)
 467{
 468	return usb_resume(dev, PMSG_RESUME);
 469}
 470
 471static int usb_dev_freeze(struct device *dev)
 472{
 473	return usb_suspend(dev, PMSG_FREEZE);
 474}
 475
 476static int usb_dev_thaw(struct device *dev)
 477{
 478	return usb_resume(dev, PMSG_THAW);
 479}
 480
 481static int usb_dev_poweroff(struct device *dev)
 482{
 483	return usb_suspend(dev, PMSG_HIBERNATE);
 484}
 485
 486static int usb_dev_restore(struct device *dev)
 487{
 488	return usb_resume(dev, PMSG_RESTORE);
 489}
 490
 491static const struct dev_pm_ops usb_device_pm_ops = {
 492	.prepare =	usb_dev_prepare,
 493	.complete =	usb_dev_complete,
 494	.suspend =	usb_dev_suspend,
 495	.resume =	usb_dev_resume,
 496	.freeze =	usb_dev_freeze,
 497	.thaw =		usb_dev_thaw,
 498	.poweroff =	usb_dev_poweroff,
 499	.restore =	usb_dev_restore,
 
 500	.runtime_suspend =	usb_runtime_suspend,
 501	.runtime_resume =	usb_runtime_resume,
 502	.runtime_idle =		usb_runtime_idle,
 
 503};
 504
 505#endif	/* CONFIG_PM */
 506
 507
 508static char *usb_devnode(struct device *dev,
 509			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 510{
 511	struct usb_device *usb_dev;
 512
 513	usb_dev = to_usb_device(dev);
 514	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 515			 usb_dev->bus->busnum, usb_dev->devnum);
 516}
 517
 518struct device_type usb_device_type = {
 519	.name =		"usb_device",
 520	.release =	usb_release_dev,
 521	.uevent =	usb_dev_uevent,
 522	.devnode = 	usb_devnode,
 523#ifdef CONFIG_PM
 524	.pm =		&usb_device_pm_ops,
 525#endif
 526};
 527
 528
 529/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 530static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 531{
 532	struct usb_hcd *hcd = bus_to_hcd(bus);
 533	return hcd->wireless;
 534}
 535
 536static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 537{
 538	struct usb_hub *hub;
 539
 540	if (!dev->parent)
 541		return true; /* Root hub always ok [and always wired] */
 542
 543	switch (hcd->dev_policy) {
 544	case USB_DEVICE_AUTHORIZE_NONE:
 545	default:
 546		return false;
 547
 548	case USB_DEVICE_AUTHORIZE_ALL:
 549		return true;
 550
 551	case USB_DEVICE_AUTHORIZE_INTERNAL:
 552		hub = usb_hub_to_struct_hub(dev->parent);
 553		return hub->ports[dev->portnum - 1]->connect_type ==
 554				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 555	}
 556}
 557
 558/**
 559 * usb_alloc_dev - usb device constructor (usbcore-internal)
 560 * @parent: hub to which device is connected; null to allocate a root hub
 561 * @bus: bus used to access the device
 562 * @port1: one-based index of port; ignored for root hubs
 563 *
 564 * Context: task context, might sleep.
 565 *
 566 * Only hub drivers (including virtual root hub drivers for host
 567 * controllers) should ever call this.
 568 *
 569 * This call may not be used in a non-sleeping context.
 570 *
 571 * Return: On success, a pointer to the allocated usb device. %NULL on
 572 * failure.
 573 */
 574struct usb_device *usb_alloc_dev(struct usb_device *parent,
 575				 struct usb_bus *bus, unsigned port1)
 576{
 577	struct usb_device *dev;
 578	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 579	unsigned root_hub = 0;
 580	unsigned raw_port = port1;
 581
 582	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 583	if (!dev)
 584		return NULL;
 585
 586	if (!usb_get_hcd(usb_hcd)) {
 587		kfree(dev);
 588		return NULL;
 589	}
 590	/* Root hubs aren't true devices, so don't allocate HCD resources */
 591	if (usb_hcd->driver->alloc_dev && parent &&
 592		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 593		usb_put_hcd(bus_to_hcd(bus));
 594		kfree(dev);
 595		return NULL;
 596	}
 597
 598	device_initialize(&dev->dev);
 599	dev->dev.bus = &usb_bus_type;
 600	dev->dev.type = &usb_device_type;
 601	dev->dev.groups = usb_device_groups;
 602	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 
 603	dev->state = USB_STATE_ATTACHED;
 604	dev->lpm_disable_count = 1;
 605	atomic_set(&dev->urbnum, 0);
 606
 607	INIT_LIST_HEAD(&dev->ep0.urb_list);
 608	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 609	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 610	/* ep0 maxpacket comes later, from device descriptor */
 611	usb_enable_endpoint(dev, &dev->ep0, false);
 612	dev->can_submit = 1;
 613
 614	/* Save readable and stable topology id, distinguishing devices
 615	 * by location for diagnostics, tools, driver model, etc.  The
 616	 * string is a path along hub ports, from the root.  Each device's
 617	 * dev->devpath will be stable until USB is re-cabled, and hubs
 618	 * are often labeled with these port numbers.  The name isn't
 619	 * as stable:  bus->busnum changes easily from modprobe order,
 620	 * cardbus or pci hotplugging, and so on.
 621	 */
 622	if (unlikely(!parent)) {
 623		dev->devpath[0] = '0';
 624		dev->route = 0;
 625
 626		dev->dev.parent = bus->controller;
 627		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 628		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 629		root_hub = 1;
 630	} else {
 631		/* match any labeling on the hubs; it's one-based */
 632		if (parent->devpath[0] == '0') {
 633			snprintf(dev->devpath, sizeof dev->devpath,
 634				"%d", port1);
 635			/* Root ports are not counted in route string */
 636			dev->route = 0;
 637		} else {
 638			snprintf(dev->devpath, sizeof dev->devpath,
 639				"%s.%d", parent->devpath, port1);
 640			/* Route string assumes hubs have less than 16 ports */
 641			if (port1 < 15)
 642				dev->route = parent->route +
 643					(port1 << ((parent->level - 1)*4));
 644			else
 645				dev->route = parent->route +
 646					(15 << ((parent->level - 1)*4));
 647		}
 648
 649		dev->dev.parent = &parent->dev;
 650		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 651
 652		if (!parent->parent) {
 653			/* device under root hub's port */
 654			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 655				port1);
 656		}
 657		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 658
 659		/* hub driver sets up TT records */
 660	}
 661
 662	dev->portnum = port1;
 663	dev->bus = bus;
 664	dev->parent = parent;
 665	INIT_LIST_HEAD(&dev->filelist);
 666
 667#ifdef	CONFIG_PM
 668	pm_runtime_set_autosuspend_delay(&dev->dev,
 669			usb_autosuspend_delay * 1000);
 670	dev->connect_time = jiffies;
 671	dev->active_duration = -jiffies;
 672#endif
 673
 674	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 675	if (!root_hub)
 
 676		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 677
 678	return dev;
 679}
 680EXPORT_SYMBOL_GPL(usb_alloc_dev);
 681
 682/**
 683 * usb_get_dev - increments the reference count of the usb device structure
 684 * @dev: the device being referenced
 685 *
 686 * Each live reference to a device should be refcounted.
 687 *
 688 * Drivers for USB interfaces should normally record such references in
 689 * their probe() methods, when they bind to an interface, and release
 690 * them by calling usb_put_dev(), in their disconnect() methods.
 691 * However, if a driver does not access the usb_device structure after
 692 * its disconnect() method returns then refcounting is not necessary,
 693 * because the USB core guarantees that a usb_device will not be
 694 * deallocated until after all of its interface drivers have been unbound.
 695 *
 696 * Return: A pointer to the device with the incremented reference counter.
 697 */
 698struct usb_device *usb_get_dev(struct usb_device *dev)
 699{
 700	if (dev)
 701		get_device(&dev->dev);
 702	return dev;
 703}
 704EXPORT_SYMBOL_GPL(usb_get_dev);
 705
 706/**
 707 * usb_put_dev - release a use of the usb device structure
 708 * @dev: device that's been disconnected
 709 *
 710 * Must be called when a user of a device is finished with it.  When the last
 711 * user of the device calls this function, the memory of the device is freed.
 712 */
 713void usb_put_dev(struct usb_device *dev)
 714{
 715	if (dev)
 716		put_device(&dev->dev);
 717}
 718EXPORT_SYMBOL_GPL(usb_put_dev);
 719
 720/**
 721 * usb_get_intf - increments the reference count of the usb interface structure
 722 * @intf: the interface being referenced
 723 *
 724 * Each live reference to a interface must be refcounted.
 725 *
 726 * Drivers for USB interfaces should normally record such references in
 727 * their probe() methods, when they bind to an interface, and release
 728 * them by calling usb_put_intf(), in their disconnect() methods.
 729 * However, if a driver does not access the usb_interface structure after
 730 * its disconnect() method returns then refcounting is not necessary,
 731 * because the USB core guarantees that a usb_interface will not be
 732 * deallocated until after its driver has been unbound.
 733 *
 734 * Return: A pointer to the interface with the incremented reference counter.
 735 */
 736struct usb_interface *usb_get_intf(struct usb_interface *intf)
 737{
 738	if (intf)
 739		get_device(&intf->dev);
 740	return intf;
 741}
 742EXPORT_SYMBOL_GPL(usb_get_intf);
 743
 744/**
 745 * usb_put_intf - release a use of the usb interface structure
 746 * @intf: interface that's been decremented
 747 *
 748 * Must be called when a user of an interface is finished with it.  When the
 749 * last user of the interface calls this function, the memory of the interface
 750 * is freed.
 751 */
 752void usb_put_intf(struct usb_interface *intf)
 753{
 754	if (intf)
 755		put_device(&intf->dev);
 756}
 757EXPORT_SYMBOL_GPL(usb_put_intf);
 758
 759/**
 760 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
 761 * @intf: the usb interface
 762 *
 763 * While a USB device cannot perform DMA operations by itself, many USB
 764 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
 765 * for the given USB interface, if any. The returned device structure must be
 766 * released with put_device().
 767 *
 768 * See also usb_get_dma_device().
 769 *
 770 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
 771 *          exists.
 772 */
 773struct device *usb_intf_get_dma_device(struct usb_interface *intf)
 774{
 775	struct usb_device *udev = interface_to_usbdev(intf);
 776	struct device *dmadev;
 777
 778	if (!udev->bus)
 779		return NULL;
 780
 781	dmadev = get_device(udev->bus->sysdev);
 782	if (!dmadev || !dmadev->dma_mask) {
 783		put_device(dmadev);
 784		return NULL;
 785	}
 786
 787	return dmadev;
 788}
 789EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
 790
 791/*			USB device locking
 792 *
 793 * USB devices and interfaces are locked using the semaphore in their
 794 * embedded struct device.  The hub driver guarantees that whenever a
 795 * device is connected or disconnected, drivers are called with the
 796 * USB device locked as well as their particular interface.
 797 *
 798 * Complications arise when several devices are to be locked at the same
 799 * time.  Only hub-aware drivers that are part of usbcore ever have to
 800 * do this; nobody else needs to worry about it.  The rule for locking
 801 * is simple:
 802 *
 803 *	When locking both a device and its parent, always lock the
 804 *	parent first.
 805 */
 806
 807/**
 808 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 809 * @udev: device that's being locked
 810 * @iface: interface bound to the driver making the request (optional)
 811 *
 812 * Attempts to acquire the device lock, but fails if the device is
 813 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 814 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 815 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 816 * disconnect; in some drivers (such as usb-storage) the disconnect()
 817 * or suspend() method will block waiting for a device reset to complete.
 818 *
 819 * Return: A negative error code for failure, otherwise 0.
 820 */
 821int usb_lock_device_for_reset(struct usb_device *udev,
 822			      const struct usb_interface *iface)
 823{
 824	unsigned long jiffies_expire = jiffies + HZ;
 825
 826	if (udev->state == USB_STATE_NOTATTACHED)
 827		return -ENODEV;
 828	if (udev->state == USB_STATE_SUSPENDED)
 829		return -EHOSTUNREACH;
 830	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 831			iface->condition == USB_INTERFACE_UNBOUND))
 832		return -EINTR;
 833
 834	while (!usb_trylock_device(udev)) {
 835
 836		/* If we can't acquire the lock after waiting one second,
 837		 * we're probably deadlocked */
 838		if (time_after(jiffies, jiffies_expire))
 839			return -EBUSY;
 840
 841		msleep(15);
 842		if (udev->state == USB_STATE_NOTATTACHED)
 843			return -ENODEV;
 844		if (udev->state == USB_STATE_SUSPENDED)
 845			return -EHOSTUNREACH;
 846		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 847				iface->condition == USB_INTERFACE_UNBOUND))
 848			return -EINTR;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 853
 854/**
 855 * usb_get_current_frame_number - return current bus frame number
 856 * @dev: the device whose bus is being queried
 857 *
 858 * Return: The current frame number for the USB host controller used
 859 * with the given USB device. This can be used when scheduling
 860 * isochronous requests.
 861 *
 862 * Note: Different kinds of host controller have different "scheduling
 863 * horizons". While one type might support scheduling only 32 frames
 864 * into the future, others could support scheduling up to 1024 frames
 865 * into the future.
 866 *
 867 */
 868int usb_get_current_frame_number(struct usb_device *dev)
 869{
 870	return usb_hcd_get_frame_number(dev);
 871}
 872EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 873
 874/*-------------------------------------------------------------------*/
 875/*
 876 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 877 * extra field of the interface and endpoint descriptor structs.
 878 */
 879
 880int __usb_get_extra_descriptor(char *buffer, unsigned size,
 881			       unsigned char type, void **ptr, size_t minsize)
 882{
 883	struct usb_descriptor_header *header;
 884
 885	while (size >= sizeof(struct usb_descriptor_header)) {
 886		header = (struct usb_descriptor_header *)buffer;
 887
 888		if (header->bLength < 2 || header->bLength > size) {
 889			printk(KERN_ERR
 890				"%s: bogus descriptor, type %d length %d\n",
 891				usbcore_name,
 892				header->bDescriptorType,
 893				header->bLength);
 894			return -1;
 895		}
 896
 897		if (header->bDescriptorType == type && header->bLength >= minsize) {
 898			*ptr = header;
 899			return 0;
 900		}
 901
 902		buffer += header->bLength;
 903		size -= header->bLength;
 904	}
 905	return -1;
 906}
 907EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 908
 909/**
 910 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 911 * @dev: device the buffer will be used with
 912 * @size: requested buffer size
 913 * @mem_flags: affect whether allocation may block
 914 * @dma: used to return DMA address of buffer
 915 *
 916 * Return: Either null (indicating no buffer could be allocated), or the
 917 * cpu-space pointer to a buffer that may be used to perform DMA to the
 918 * specified device.  Such cpu-space buffers are returned along with the DMA
 919 * address (through the pointer provided).
 920 *
 921 * Note:
 922 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 923 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 924 * hardware during URB completion/resubmit.  The implementation varies between
 925 * platforms, depending on details of how DMA will work to this device.
 926 * Using these buffers also eliminates cacheline sharing problems on
 927 * architectures where CPU caches are not DMA-coherent.  On systems without
 928 * bus-snooping caches, these buffers are uncached.
 929 *
 930 * When the buffer is no longer used, free it with usb_free_coherent().
 931 */
 932void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 933			 dma_addr_t *dma)
 934{
 935	if (!dev || !dev->bus)
 936		return NULL;
 937	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 938}
 939EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 940
 941/**
 942 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 943 * @dev: device the buffer was used with
 944 * @size: requested buffer size
 945 * @addr: CPU address of buffer
 946 * @dma: DMA address of buffer
 947 *
 948 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 949 * been allocated using usb_alloc_coherent(), and the parameters must match
 950 * those provided in that allocation request.
 951 */
 952void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 953		       dma_addr_t dma)
 954{
 955	if (!dev || !dev->bus)
 956		return;
 957	if (!addr)
 958		return;
 959	hcd_buffer_free(dev->bus, size, addr, dma);
 960}
 961EXPORT_SYMBOL_GPL(usb_free_coherent);
 962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963/*
 964 * Notifications of device and interface registration
 965 */
 966static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 967		void *data)
 968{
 969	struct device *dev = data;
 970
 971	switch (action) {
 972	case BUS_NOTIFY_ADD_DEVICE:
 973		if (dev->type == &usb_device_type)
 974			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 975		else if (dev->type == &usb_if_device_type)
 976			usb_create_sysfs_intf_files(to_usb_interface(dev));
 977		break;
 978
 979	case BUS_NOTIFY_DEL_DEVICE:
 980		if (dev->type == &usb_device_type)
 981			usb_remove_sysfs_dev_files(to_usb_device(dev));
 982		else if (dev->type == &usb_if_device_type)
 983			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 984		break;
 985	}
 986	return 0;
 987}
 988
 989static struct notifier_block usb_bus_nb = {
 990	.notifier_call = usb_bus_notify,
 991};
 992
 993static void usb_debugfs_init(void)
 
 
 
 
 
 994{
 995	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
 996			    &usbfs_devices_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 997}
 998
 999static void usb_debugfs_cleanup(void)
1000{
1001	debugfs_remove(debugfs_lookup("devices", usb_debug_root));
 
1002}
1003
1004/*
1005 * Init
1006 */
1007static int __init usb_init(void)
1008{
1009	int retval;
1010	if (usb_disabled()) {
1011		pr_info("%s: USB support disabled\n", usbcore_name);
1012		return 0;
1013	}
1014	usb_init_pool_max();
1015
1016	usb_debugfs_init();
 
 
1017
1018	usb_acpi_register();
1019	retval = bus_register(&usb_bus_type);
1020	if (retval)
1021		goto bus_register_failed;
1022	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1023	if (retval)
1024		goto bus_notifier_failed;
1025	retval = usb_major_init();
1026	if (retval)
1027		goto major_init_failed;
1028	retval = usb_register(&usbfs_driver);
1029	if (retval)
1030		goto driver_register_failed;
1031	retval = usb_devio_init();
1032	if (retval)
1033		goto usb_devio_init_failed;
1034	retval = usb_hub_init();
1035	if (retval)
1036		goto hub_init_failed;
1037	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1038	if (!retval)
1039		goto out;
1040
1041	usb_hub_cleanup();
1042hub_init_failed:
1043	usb_devio_cleanup();
1044usb_devio_init_failed:
1045	usb_deregister(&usbfs_driver);
1046driver_register_failed:
1047	usb_major_cleanup();
1048major_init_failed:
1049	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1050bus_notifier_failed:
1051	bus_unregister(&usb_bus_type);
1052bus_register_failed:
1053	usb_acpi_unregister();
1054	usb_debugfs_cleanup();
1055out:
1056	return retval;
1057}
1058
1059/*
1060 * Cleanup
1061 */
1062static void __exit usb_exit(void)
1063{
1064	/* This will matter if shutdown/reboot does exitcalls. */
1065	if (usb_disabled())
1066		return;
1067
1068	usb_release_quirk_list();
1069	usb_deregister_device_driver(&usb_generic_driver);
1070	usb_major_cleanup();
1071	usb_deregister(&usbfs_driver);
1072	usb_devio_cleanup();
1073	usb_hub_cleanup();
1074	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1075	bus_unregister(&usb_bus_type);
1076	usb_acpi_unregister();
1077	usb_debugfs_cleanup();
1078	idr_destroy(&usb_bus_idr);
1079}
1080
1081subsys_initcall(usb_init);
1082module_exit(usb_exit);
1083MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * drivers/usb/core/usb.c
   3 *
   4 * (C) Copyright Linus Torvalds 1999
   5 * (C) Copyright Johannes Erdfelt 1999-2001
   6 * (C) Copyright Andreas Gal 1999
   7 * (C) Copyright Gregory P. Smith 1999
   8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
   9 * (C) Copyright Randy Dunlap 2000
  10 * (C) Copyright David Brownell 2000-2004
  11 * (C) Copyright Yggdrasil Computing, Inc. 2000
  12 *     (usb_device_id matching changes by Adam J. Richter)
  13 * (C) Copyright Greg Kroah-Hartman 2002-2003
  14 *
 
 
  15 * NOTE! This is not actually a driver at all, rather this is
  16 * just a collection of helper routines that implement the
  17 * generic USB things that the real drivers can use..
  18 *
  19 * Think of this as a "USB library" rather than anything else.
  20 * It should be considered a slave, with no callbacks. Callbacks
  21 * are evil.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/string.h>
  27#include <linux/bitops.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>  /* for in_interrupt() */
  30#include <linux/kmod.h>
  31#include <linux/init.h>
  32#include <linux/spinlock.h>
  33#include <linux/errno.h>
  34#include <linux/usb.h>
  35#include <linux/usb/hcd.h>
  36#include <linux/mutex.h>
  37#include <linux/workqueue.h>
  38#include <linux/debugfs.h>
 
  39
  40#include <asm/io.h>
  41#include <linux/scatterlist.h>
  42#include <linux/mm.h>
  43#include <linux/dma-mapping.h>
  44
  45#include "usb.h"
  46
  47
  48const char *usbcore_name = "usbcore";
  49
  50static bool nousb;	/* Disable USB when built into kernel image */
  51
  52#ifdef	CONFIG_PM_RUNTIME
  53static int usb_autosuspend_delay = 2;		/* Default delay value,
  54						 * in seconds */
 
 
 
 
 
 
 
 
 
 
 
  55module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  56MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  57
  58#else
  59#define usb_autosuspend_delay		0
  60#endif
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63/**
  64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
  65 * for the given interface.
  66 * @config: the configuration to search (not necessarily the current config).
  67 * @iface_num: interface number to search in
  68 * @alt_num: alternate interface setting number to search for.
  69 *
  70 * Search the configuration's interface cache for the given alt setting.
  71 *
  72 * Return: The alternate setting, if found. %NULL otherwise.
  73 */
  74struct usb_host_interface *usb_find_alt_setting(
  75		struct usb_host_config *config,
  76		unsigned int iface_num,
  77		unsigned int alt_num)
  78{
  79	struct usb_interface_cache *intf_cache = NULL;
  80	int i;
  81
 
 
  82	for (i = 0; i < config->desc.bNumInterfaces; i++) {
  83		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
  84				== iface_num) {
  85			intf_cache = config->intf_cache[i];
  86			break;
  87		}
  88	}
  89	if (!intf_cache)
  90		return NULL;
  91	for (i = 0; i < intf_cache->num_altsetting; i++)
  92		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
  93			return &intf_cache->altsetting[i];
  94
  95	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
  96			"config %u\n", alt_num, iface_num,
  97			config->desc.bConfigurationValue);
  98	return NULL;
  99}
 100EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 101
 102/**
 103 * usb_ifnum_to_if - get the interface object with a given interface number
 104 * @dev: the device whose current configuration is considered
 105 * @ifnum: the desired interface
 106 *
 107 * This walks the device descriptor for the currently active configuration
 108 * to find the interface object with the particular interface number.
 109 *
 110 * Note that configuration descriptors are not required to assign interface
 111 * numbers sequentially, so that it would be incorrect to assume that
 112 * the first interface in that descriptor corresponds to interface zero.
 113 * This routine helps device drivers avoid such mistakes.
 114 * However, you should make sure that you do the right thing with any
 115 * alternate settings available for this interfaces.
 116 *
 117 * Don't call this function unless you are bound to one of the interfaces
 118 * on this device or you have locked the device!
 119 *
 120 * Return: A pointer to the interface that has @ifnum as interface number,
 121 * if found. %NULL otherwise.
 122 */
 123struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 124				      unsigned ifnum)
 125{
 126	struct usb_host_config *config = dev->actconfig;
 127	int i;
 128
 129	if (!config)
 130		return NULL;
 131	for (i = 0; i < config->desc.bNumInterfaces; i++)
 132		if (config->interface[i]->altsetting[0]
 133				.desc.bInterfaceNumber == ifnum)
 134			return config->interface[i];
 135
 136	return NULL;
 137}
 138EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 139
 140/**
 141 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 142 * @intf: the interface containing the altsetting in question
 143 * @altnum: the desired alternate setting number
 144 *
 145 * This searches the altsetting array of the specified interface for
 146 * an entry with the correct bAlternateSetting value.
 147 *
 148 * Note that altsettings need not be stored sequentially by number, so
 149 * it would be incorrect to assume that the first altsetting entry in
 150 * the array corresponds to altsetting zero.  This routine helps device
 151 * drivers avoid such mistakes.
 152 *
 153 * Don't call this function unless you are bound to the intf interface
 154 * or you have locked the device!
 155 *
 156 * Return: A pointer to the entry of the altsetting array of @intf that
 157 * has @altnum as the alternate setting number. %NULL if not found.
 158 */
 159struct usb_host_interface *usb_altnum_to_altsetting(
 160					const struct usb_interface *intf,
 161					unsigned int altnum)
 162{
 163	int i;
 164
 165	for (i = 0; i < intf->num_altsetting; i++) {
 166		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 167			return &intf->altsetting[i];
 168	}
 169	return NULL;
 170}
 171EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 172
 173struct find_interface_arg {
 174	int minor;
 175	struct device_driver *drv;
 176};
 177
 178static int __find_interface(struct device *dev, void *data)
 179{
 180	struct find_interface_arg *arg = data;
 181	struct usb_interface *intf;
 182
 183	if (!is_usb_interface(dev))
 184		return 0;
 185
 186	if (dev->driver != arg->drv)
 187		return 0;
 188	intf = to_usb_interface(dev);
 189	return intf->minor == arg->minor;
 190}
 191
 192/**
 193 * usb_find_interface - find usb_interface pointer for driver and device
 194 * @drv: the driver whose current configuration is considered
 195 * @minor: the minor number of the desired device
 196 *
 197 * This walks the bus device list and returns a pointer to the interface
 198 * with the matching minor and driver.  Note, this only works for devices
 199 * that share the USB major number.
 200 *
 201 * Return: A pointer to the interface with the matching major and @minor.
 202 */
 203struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 204{
 205	struct find_interface_arg argb;
 206	struct device *dev;
 207
 208	argb.minor = minor;
 209	argb.drv = &drv->drvwrap.driver;
 210
 211	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 212
 213	/* Drop reference count from bus_find_device */
 214	put_device(dev);
 215
 216	return dev ? to_usb_interface(dev) : NULL;
 217}
 218EXPORT_SYMBOL_GPL(usb_find_interface);
 219
 220struct each_dev_arg {
 221	void *data;
 222	int (*fn)(struct usb_device *, void *);
 223};
 224
 225static int __each_dev(struct device *dev, void *data)
 226{
 227	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 228
 229	/* There are struct usb_interface on the same bus, filter them out */
 230	if (!is_usb_device(dev))
 231		return 0;
 232
 233	return arg->fn(container_of(dev, struct usb_device, dev), arg->data);
 234}
 235
 236/**
 237 * usb_for_each_dev - iterate over all USB devices in the system
 238 * @data: data pointer that will be handed to the callback function
 239 * @fn: callback function to be called for each USB device
 240 *
 241 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 242 * returns anything other than 0, we break the iteration prematurely and return
 243 * that value.
 244 */
 245int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 246{
 247	struct each_dev_arg arg = {data, fn};
 248
 249	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 250}
 251EXPORT_SYMBOL_GPL(usb_for_each_dev);
 252
 253/**
 254 * usb_release_dev - free a usb device structure when all users of it are finished.
 255 * @dev: device that's been disconnected
 256 *
 257 * Will be called only by the device core when all users of this usb device are
 258 * done.
 259 */
 260static void usb_release_dev(struct device *dev)
 261{
 262	struct usb_device *udev;
 263	struct usb_hcd *hcd;
 264
 265	udev = to_usb_device(dev);
 266	hcd = bus_to_hcd(udev->bus);
 267
 268	usb_destroy_configuration(udev);
 269	usb_release_bos_descriptor(udev);
 
 270	usb_put_hcd(hcd);
 271	kfree(udev->product);
 272	kfree(udev->manufacturer);
 273	kfree(udev->serial);
 274	kfree(udev);
 275}
 276
 277static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 278{
 279	struct usb_device *usb_dev;
 280
 281	usb_dev = to_usb_device(dev);
 282
 283	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 284		return -ENOMEM;
 285
 286	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 287		return -ENOMEM;
 288
 289	return 0;
 290}
 291
 292#ifdef	CONFIG_PM
 293
 294/* USB device Power-Management thunks.
 295 * There's no need to distinguish here between quiescing a USB device
 296 * and powering it down; the generic_suspend() routine takes care of
 297 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 298 * USB interfaces there's no difference at all.
 299 */
 300
 301static int usb_dev_prepare(struct device *dev)
 302{
 303	return 0;		/* Implement eventually? */
 304}
 305
 306static void usb_dev_complete(struct device *dev)
 307{
 308	/* Currently used only for rebinding interfaces */
 309	usb_resume_complete(dev);
 310}
 311
 312static int usb_dev_suspend(struct device *dev)
 313{
 314	return usb_suspend(dev, PMSG_SUSPEND);
 315}
 316
 317static int usb_dev_resume(struct device *dev)
 318{
 319	return usb_resume(dev, PMSG_RESUME);
 320}
 321
 322static int usb_dev_freeze(struct device *dev)
 323{
 324	return usb_suspend(dev, PMSG_FREEZE);
 325}
 326
 327static int usb_dev_thaw(struct device *dev)
 328{
 329	return usb_resume(dev, PMSG_THAW);
 330}
 331
 332static int usb_dev_poweroff(struct device *dev)
 333{
 334	return usb_suspend(dev, PMSG_HIBERNATE);
 335}
 336
 337static int usb_dev_restore(struct device *dev)
 338{
 339	return usb_resume(dev, PMSG_RESTORE);
 340}
 341
 342static const struct dev_pm_ops usb_device_pm_ops = {
 343	.prepare =	usb_dev_prepare,
 344	.complete =	usb_dev_complete,
 345	.suspend =	usb_dev_suspend,
 346	.resume =	usb_dev_resume,
 347	.freeze =	usb_dev_freeze,
 348	.thaw =		usb_dev_thaw,
 349	.poweroff =	usb_dev_poweroff,
 350	.restore =	usb_dev_restore,
 351#ifdef CONFIG_PM_RUNTIME
 352	.runtime_suspend =	usb_runtime_suspend,
 353	.runtime_resume =	usb_runtime_resume,
 354	.runtime_idle =		usb_runtime_idle,
 355#endif
 356};
 357
 358#endif	/* CONFIG_PM */
 359
 360
 361static char *usb_devnode(struct device *dev,
 362			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 363{
 364	struct usb_device *usb_dev;
 365
 366	usb_dev = to_usb_device(dev);
 367	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 368			 usb_dev->bus->busnum, usb_dev->devnum);
 369}
 370
 371struct device_type usb_device_type = {
 372	.name =		"usb_device",
 373	.release =	usb_release_dev,
 374	.uevent =	usb_dev_uevent,
 375	.devnode = 	usb_devnode,
 376#ifdef CONFIG_PM
 377	.pm =		&usb_device_pm_ops,
 378#endif
 379};
 380
 381
 382/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 383static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 384{
 385	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
 386	return hcd->wireless;
 387}
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390/**
 391 * usb_alloc_dev - usb device constructor (usbcore-internal)
 392 * @parent: hub to which device is connected; null to allocate a root hub
 393 * @bus: bus used to access the device
 394 * @port1: one-based index of port; ignored for root hubs
 395 * Context: !in_interrupt()
 
 396 *
 397 * Only hub drivers (including virtual root hub drivers for host
 398 * controllers) should ever call this.
 399 *
 400 * This call may not be used in a non-sleeping context.
 401 *
 402 * Return: On success, a pointer to the allocated usb device. %NULL on
 403 * failure.
 404 */
 405struct usb_device *usb_alloc_dev(struct usb_device *parent,
 406				 struct usb_bus *bus, unsigned port1)
 407{
 408	struct usb_device *dev;
 409	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 410	unsigned root_hub = 0;
 
 411
 412	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 413	if (!dev)
 414		return NULL;
 415
 416	if (!usb_get_hcd(usb_hcd)) {
 417		kfree(dev);
 418		return NULL;
 419	}
 420	/* Root hubs aren't true devices, so don't allocate HCD resources */
 421	if (usb_hcd->driver->alloc_dev && parent &&
 422		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 423		usb_put_hcd(bus_to_hcd(bus));
 424		kfree(dev);
 425		return NULL;
 426	}
 427
 428	device_initialize(&dev->dev);
 429	dev->dev.bus = &usb_bus_type;
 430	dev->dev.type = &usb_device_type;
 431	dev->dev.groups = usb_device_groups;
 432	dev->dev.dma_mask = bus->controller->dma_mask;
 433	set_dev_node(&dev->dev, dev_to_node(bus->controller));
 434	dev->state = USB_STATE_ATTACHED;
 435	dev->lpm_disable_count = 1;
 436	atomic_set(&dev->urbnum, 0);
 437
 438	INIT_LIST_HEAD(&dev->ep0.urb_list);
 439	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 440	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 441	/* ep0 maxpacket comes later, from device descriptor */
 442	usb_enable_endpoint(dev, &dev->ep0, false);
 443	dev->can_submit = 1;
 444
 445	/* Save readable and stable topology id, distinguishing devices
 446	 * by location for diagnostics, tools, driver model, etc.  The
 447	 * string is a path along hub ports, from the root.  Each device's
 448	 * dev->devpath will be stable until USB is re-cabled, and hubs
 449	 * are often labeled with these port numbers.  The name isn't
 450	 * as stable:  bus->busnum changes easily from modprobe order,
 451	 * cardbus or pci hotplugging, and so on.
 452	 */
 453	if (unlikely(!parent)) {
 454		dev->devpath[0] = '0';
 455		dev->route = 0;
 456
 457		dev->dev.parent = bus->controller;
 
 458		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 459		root_hub = 1;
 460	} else {
 461		/* match any labeling on the hubs; it's one-based */
 462		if (parent->devpath[0] == '0') {
 463			snprintf(dev->devpath, sizeof dev->devpath,
 464				"%d", port1);
 465			/* Root ports are not counted in route string */
 466			dev->route = 0;
 467		} else {
 468			snprintf(dev->devpath, sizeof dev->devpath,
 469				"%s.%d", parent->devpath, port1);
 470			/* Route string assumes hubs have less than 16 ports */
 471			if (port1 < 15)
 472				dev->route = parent->route +
 473					(port1 << ((parent->level - 1)*4));
 474			else
 475				dev->route = parent->route +
 476					(15 << ((parent->level - 1)*4));
 477		}
 478
 479		dev->dev.parent = &parent->dev;
 480		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 481
 
 
 
 
 
 
 
 482		/* hub driver sets up TT records */
 483	}
 484
 485	dev->portnum = port1;
 486	dev->bus = bus;
 487	dev->parent = parent;
 488	INIT_LIST_HEAD(&dev->filelist);
 489
 490#ifdef	CONFIG_PM
 491	pm_runtime_set_autosuspend_delay(&dev->dev,
 492			usb_autosuspend_delay * 1000);
 493	dev->connect_time = jiffies;
 494	dev->active_duration = -jiffies;
 495#endif
 496	if (root_hub)	/* Root hub always ok [and always wired] */
 497		dev->authorized = 1;
 498	else {
 499		dev->authorized = usb_hcd->authorized_default;
 500		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 501	}
 502	return dev;
 503}
 
 504
 505/**
 506 * usb_get_dev - increments the reference count of the usb device structure
 507 * @dev: the device being referenced
 508 *
 509 * Each live reference to a device should be refcounted.
 510 *
 511 * Drivers for USB interfaces should normally record such references in
 512 * their probe() methods, when they bind to an interface, and release
 513 * them by calling usb_put_dev(), in their disconnect() methods.
 
 
 
 
 514 *
 515 * Return: A pointer to the device with the incremented reference counter.
 516 */
 517struct usb_device *usb_get_dev(struct usb_device *dev)
 518{
 519	if (dev)
 520		get_device(&dev->dev);
 521	return dev;
 522}
 523EXPORT_SYMBOL_GPL(usb_get_dev);
 524
 525/**
 526 * usb_put_dev - release a use of the usb device structure
 527 * @dev: device that's been disconnected
 528 *
 529 * Must be called when a user of a device is finished with it.  When the last
 530 * user of the device calls this function, the memory of the device is freed.
 531 */
 532void usb_put_dev(struct usb_device *dev)
 533{
 534	if (dev)
 535		put_device(&dev->dev);
 536}
 537EXPORT_SYMBOL_GPL(usb_put_dev);
 538
 539/**
 540 * usb_get_intf - increments the reference count of the usb interface structure
 541 * @intf: the interface being referenced
 542 *
 543 * Each live reference to a interface must be refcounted.
 544 *
 545 * Drivers for USB interfaces should normally record such references in
 546 * their probe() methods, when they bind to an interface, and release
 547 * them by calling usb_put_intf(), in their disconnect() methods.
 
 
 
 
 548 *
 549 * Return: A pointer to the interface with the incremented reference counter.
 550 */
 551struct usb_interface *usb_get_intf(struct usb_interface *intf)
 552{
 553	if (intf)
 554		get_device(&intf->dev);
 555	return intf;
 556}
 557EXPORT_SYMBOL_GPL(usb_get_intf);
 558
 559/**
 560 * usb_put_intf - release a use of the usb interface structure
 561 * @intf: interface that's been decremented
 562 *
 563 * Must be called when a user of an interface is finished with it.  When the
 564 * last user of the interface calls this function, the memory of the interface
 565 * is freed.
 566 */
 567void usb_put_intf(struct usb_interface *intf)
 568{
 569	if (intf)
 570		put_device(&intf->dev);
 571}
 572EXPORT_SYMBOL_GPL(usb_put_intf);
 573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574/*			USB device locking
 575 *
 576 * USB devices and interfaces are locked using the semaphore in their
 577 * embedded struct device.  The hub driver guarantees that whenever a
 578 * device is connected or disconnected, drivers are called with the
 579 * USB device locked as well as their particular interface.
 580 *
 581 * Complications arise when several devices are to be locked at the same
 582 * time.  Only hub-aware drivers that are part of usbcore ever have to
 583 * do this; nobody else needs to worry about it.  The rule for locking
 584 * is simple:
 585 *
 586 *	When locking both a device and its parent, always lock the
 587 *	the parent first.
 588 */
 589
 590/**
 591 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 592 * @udev: device that's being locked
 593 * @iface: interface bound to the driver making the request (optional)
 594 *
 595 * Attempts to acquire the device lock, but fails if the device is
 596 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 597 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 598 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 599 * disconnect; in some drivers (such as usb-storage) the disconnect()
 600 * or suspend() method will block waiting for a device reset to complete.
 601 *
 602 * Return: A negative error code for failure, otherwise 0.
 603 */
 604int usb_lock_device_for_reset(struct usb_device *udev,
 605			      const struct usb_interface *iface)
 606{
 607	unsigned long jiffies_expire = jiffies + HZ;
 608
 609	if (udev->state == USB_STATE_NOTATTACHED)
 610		return -ENODEV;
 611	if (udev->state == USB_STATE_SUSPENDED)
 612		return -EHOSTUNREACH;
 613	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 614			iface->condition == USB_INTERFACE_UNBOUND))
 615		return -EINTR;
 616
 617	while (!usb_trylock_device(udev)) {
 618
 619		/* If we can't acquire the lock after waiting one second,
 620		 * we're probably deadlocked */
 621		if (time_after(jiffies, jiffies_expire))
 622			return -EBUSY;
 623
 624		msleep(15);
 625		if (udev->state == USB_STATE_NOTATTACHED)
 626			return -ENODEV;
 627		if (udev->state == USB_STATE_SUSPENDED)
 628			return -EHOSTUNREACH;
 629		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 630				iface->condition == USB_INTERFACE_UNBOUND))
 631			return -EINTR;
 632	}
 633	return 0;
 634}
 635EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 636
 637/**
 638 * usb_get_current_frame_number - return current bus frame number
 639 * @dev: the device whose bus is being queried
 640 *
 641 * Return: The current frame number for the USB host controller used
 642 * with the given USB device. This can be used when scheduling
 643 * isochronous requests.
 644 *
 645 * Note: Different kinds of host controller have different "scheduling
 646 * horizons". While one type might support scheduling only 32 frames
 647 * into the future, others could support scheduling up to 1024 frames
 648 * into the future.
 649 *
 650 */
 651int usb_get_current_frame_number(struct usb_device *dev)
 652{
 653	return usb_hcd_get_frame_number(dev);
 654}
 655EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 656
 657/*-------------------------------------------------------------------*/
 658/*
 659 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 660 * extra field of the interface and endpoint descriptor structs.
 661 */
 662
 663int __usb_get_extra_descriptor(char *buffer, unsigned size,
 664			       unsigned char type, void **ptr)
 665{
 666	struct usb_descriptor_header *header;
 667
 668	while (size >= sizeof(struct usb_descriptor_header)) {
 669		header = (struct usb_descriptor_header *)buffer;
 670
 671		if (header->bLength < 2) {
 672			printk(KERN_ERR
 673				"%s: bogus descriptor, type %d length %d\n",
 674				usbcore_name,
 675				header->bDescriptorType,
 676				header->bLength);
 677			return -1;
 678		}
 679
 680		if (header->bDescriptorType == type) {
 681			*ptr = header;
 682			return 0;
 683		}
 684
 685		buffer += header->bLength;
 686		size -= header->bLength;
 687	}
 688	return -1;
 689}
 690EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 691
 692/**
 693 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 694 * @dev: device the buffer will be used with
 695 * @size: requested buffer size
 696 * @mem_flags: affect whether allocation may block
 697 * @dma: used to return DMA address of buffer
 698 *
 699 * Return: Either null (indicating no buffer could be allocated), or the
 700 * cpu-space pointer to a buffer that may be used to perform DMA to the
 701 * specified device.  Such cpu-space buffers are returned along with the DMA
 702 * address (through the pointer provided).
 703 *
 704 * Note:
 705 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 706 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 707 * hardware during URB completion/resubmit.  The implementation varies between
 708 * platforms, depending on details of how DMA will work to this device.
 709 * Using these buffers also eliminates cacheline sharing problems on
 710 * architectures where CPU caches are not DMA-coherent.  On systems without
 711 * bus-snooping caches, these buffers are uncached.
 712 *
 713 * When the buffer is no longer used, free it with usb_free_coherent().
 714 */
 715void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 716			 dma_addr_t *dma)
 717{
 718	if (!dev || !dev->bus)
 719		return NULL;
 720	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 721}
 722EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 723
 724/**
 725 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 726 * @dev: device the buffer was used with
 727 * @size: requested buffer size
 728 * @addr: CPU address of buffer
 729 * @dma: DMA address of buffer
 730 *
 731 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 732 * been allocated using usb_alloc_coherent(), and the parameters must match
 733 * those provided in that allocation request.
 734 */
 735void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 736		       dma_addr_t dma)
 737{
 738	if (!dev || !dev->bus)
 739		return;
 740	if (!addr)
 741		return;
 742	hcd_buffer_free(dev->bus, size, addr, dma);
 743}
 744EXPORT_SYMBOL_GPL(usb_free_coherent);
 745
 746/**
 747 * usb_buffer_map - create DMA mapping(s) for an urb
 748 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 749 *
 750 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
 751 * succeeds. If the device is connected to this system through a non-DMA
 752 * controller, this operation always succeeds.
 753 *
 754 * This call would normally be used for an urb which is reused, perhaps
 755 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 756 * calls to synchronize memory and dma state.
 757 *
 758 * Reverse the effect of this call with usb_buffer_unmap().
 759 *
 760 * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
 761 *
 762 */
 763#if 0
 764struct urb *usb_buffer_map(struct urb *urb)
 765{
 766	struct usb_bus		*bus;
 767	struct device		*controller;
 768
 769	if (!urb
 770			|| !urb->dev
 771			|| !(bus = urb->dev->bus)
 772			|| !(controller = bus->controller))
 773		return NULL;
 774
 775	if (controller->dma_mask) {
 776		urb->transfer_dma = dma_map_single(controller,
 777			urb->transfer_buffer, urb->transfer_buffer_length,
 778			usb_pipein(urb->pipe)
 779				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 780	/* FIXME generic api broken like pci, can't report errors */
 781	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
 782	} else
 783		urb->transfer_dma = ~0;
 784	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 785	return urb;
 786}
 787EXPORT_SYMBOL_GPL(usb_buffer_map);
 788#endif  /*  0  */
 789
 790/* XXX DISABLED, no users currently.  If you wish to re-enable this
 791 * XXX please determine whether the sync is to transfer ownership of
 792 * XXX the buffer from device to cpu or vice verse, and thusly use the
 793 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 794 */
 795#if 0
 796
 797/**
 798 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 799 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 800 */
 801void usb_buffer_dmasync(struct urb *urb)
 802{
 803	struct usb_bus		*bus;
 804	struct device		*controller;
 805
 806	if (!urb
 807			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 808			|| !urb->dev
 809			|| !(bus = urb->dev->bus)
 810			|| !(controller = bus->controller))
 811		return;
 812
 813	if (controller->dma_mask) {
 814		dma_sync_single_for_cpu(controller,
 815			urb->transfer_dma, urb->transfer_buffer_length,
 816			usb_pipein(urb->pipe)
 817				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 818		if (usb_pipecontrol(urb->pipe))
 819			dma_sync_single_for_cpu(controller,
 820					urb->setup_dma,
 821					sizeof(struct usb_ctrlrequest),
 822					DMA_TO_DEVICE);
 823	}
 824}
 825EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
 826#endif
 827
 828/**
 829 * usb_buffer_unmap - free DMA mapping(s) for an urb
 830 * @urb: urb whose transfer_buffer will be unmapped
 831 *
 832 * Reverses the effect of usb_buffer_map().
 833 */
 834#if 0
 835void usb_buffer_unmap(struct urb *urb)
 836{
 837	struct usb_bus		*bus;
 838	struct device		*controller;
 839
 840	if (!urb
 841			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 842			|| !urb->dev
 843			|| !(bus = urb->dev->bus)
 844			|| !(controller = bus->controller))
 845		return;
 846
 847	if (controller->dma_mask) {
 848		dma_unmap_single(controller,
 849			urb->transfer_dma, urb->transfer_buffer_length,
 850			usb_pipein(urb->pipe)
 851				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 852	}
 853	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
 854}
 855EXPORT_SYMBOL_GPL(usb_buffer_unmap);
 856#endif  /*  0  */
 857
 858#if 0
 859/**
 860 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 861 * @dev: device to which the scatterlist will be mapped
 862 * @is_in: mapping transfer direction
 863 * @sg: the scatterlist to map
 864 * @nents: the number of entries in the scatterlist
 865 *
 866 * Return: Either < 0 (indicating no buffers could be mapped), or the
 867 * number of DMA mapping array entries in the scatterlist.
 868 *
 869 * Note:
 870 * The caller is responsible for placing the resulting DMA addresses from
 871 * the scatterlist into URB transfer buffer pointers, and for setting the
 872 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 873 *
 874 * Top I/O rates come from queuing URBs, instead of waiting for each one
 875 * to complete before starting the next I/O.   This is particularly easy
 876 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 877 * mapping entry returned, stopping on the first error or when all succeed.
 878 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 879 *
 880 * This call would normally be used when translating scatterlist requests,
 881 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 882 * may be able to coalesce mappings for improved I/O efficiency.
 883 *
 884 * Reverse the effect of this call with usb_buffer_unmap_sg().
 885 */
 886int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
 887		      struct scatterlist *sg, int nents)
 888{
 889	struct usb_bus		*bus;
 890	struct device		*controller;
 891
 892	if (!dev
 893			|| !(bus = dev->bus)
 894			|| !(controller = bus->controller)
 895			|| !controller->dma_mask)
 896		return -EINVAL;
 897
 898	/* FIXME generic api broken like pci, can't report errors */
 899	return dma_map_sg(controller, sg, nents,
 900			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
 901}
 902EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
 903#endif
 904
 905/* XXX DISABLED, no users currently.  If you wish to re-enable this
 906 * XXX please determine whether the sync is to transfer ownership of
 907 * XXX the buffer from device to cpu or vice verse, and thusly use the
 908 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 909 */
 910#if 0
 911
 912/**
 913 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 914 * @dev: device to which the scatterlist will be mapped
 915 * @is_in: mapping transfer direction
 916 * @sg: the scatterlist to synchronize
 917 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 918 *
 919 * Use this when you are re-using a scatterlist's data buffers for
 920 * another USB request.
 921 */
 922void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
 923			   struct scatterlist *sg, int n_hw_ents)
 924{
 925	struct usb_bus		*bus;
 926	struct device		*controller;
 927
 928	if (!dev
 929			|| !(bus = dev->bus)
 930			|| !(controller = bus->controller)
 931			|| !controller->dma_mask)
 932		return;
 933
 934	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
 935			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 936}
 937EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
 938#endif
 939
 940#if 0
 941/**
 942 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 943 * @dev: device to which the scatterlist will be mapped
 944 * @is_in: mapping transfer direction
 945 * @sg: the scatterlist to unmap
 946 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 947 *
 948 * Reverses the effect of usb_buffer_map_sg().
 949 */
 950void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
 951			 struct scatterlist *sg, int n_hw_ents)
 952{
 953	struct usb_bus		*bus;
 954	struct device		*controller;
 955
 956	if (!dev
 957			|| !(bus = dev->bus)
 958			|| !(controller = bus->controller)
 959			|| !controller->dma_mask)
 960		return;
 961
 962	dma_unmap_sg(controller, sg, n_hw_ents,
 963			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 964}
 965EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
 966#endif
 967
 968/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
 969#ifdef MODULE
 970module_param(nousb, bool, 0444);
 971#else
 972core_param(nousb, nousb, bool, 0444);
 973#endif
 974
 975/*
 976 * for external read access to <nousb>
 977 */
 978int usb_disabled(void)
 979{
 980	return nousb;
 981}
 982EXPORT_SYMBOL_GPL(usb_disabled);
 983
 984/*
 985 * Notifications of device and interface registration
 986 */
 987static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 988		void *data)
 989{
 990	struct device *dev = data;
 991
 992	switch (action) {
 993	case BUS_NOTIFY_ADD_DEVICE:
 994		if (dev->type == &usb_device_type)
 995			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 996		else if (dev->type == &usb_if_device_type)
 997			usb_create_sysfs_intf_files(to_usb_interface(dev));
 998		break;
 999
1000	case BUS_NOTIFY_DEL_DEVICE:
1001		if (dev->type == &usb_device_type)
1002			usb_remove_sysfs_dev_files(to_usb_device(dev));
1003		else if (dev->type == &usb_if_device_type)
1004			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1005		break;
1006	}
1007	return 0;
1008}
1009
1010static struct notifier_block usb_bus_nb = {
1011	.notifier_call = usb_bus_notify,
1012};
1013
1014struct dentry *usb_debug_root;
1015EXPORT_SYMBOL_GPL(usb_debug_root);
1016
1017static struct dentry *usb_debug_devices;
1018
1019static int usb_debugfs_init(void)
1020{
1021	usb_debug_root = debugfs_create_dir("usb", NULL);
1022	if (!usb_debug_root)
1023		return -ENOENT;
1024
1025	usb_debug_devices = debugfs_create_file("devices", 0444,
1026						usb_debug_root, NULL,
1027						&usbfs_devices_fops);
1028	if (!usb_debug_devices) {
1029		debugfs_remove(usb_debug_root);
1030		usb_debug_root = NULL;
1031		return -ENOENT;
1032	}
1033
1034	return 0;
1035}
1036
1037static void usb_debugfs_cleanup(void)
1038{
1039	debugfs_remove(usb_debug_devices);
1040	debugfs_remove(usb_debug_root);
1041}
1042
1043/*
1044 * Init
1045 */
1046static int __init usb_init(void)
1047{
1048	int retval;
1049	if (nousb) {
1050		pr_info("%s: USB support disabled\n", usbcore_name);
1051		return 0;
1052	}
 
1053
1054	retval = usb_debugfs_init();
1055	if (retval)
1056		goto out;
1057
1058	usb_acpi_register();
1059	retval = bus_register(&usb_bus_type);
1060	if (retval)
1061		goto bus_register_failed;
1062	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1063	if (retval)
1064		goto bus_notifier_failed;
1065	retval = usb_major_init();
1066	if (retval)
1067		goto major_init_failed;
1068	retval = usb_register(&usbfs_driver);
1069	if (retval)
1070		goto driver_register_failed;
1071	retval = usb_devio_init();
1072	if (retval)
1073		goto usb_devio_init_failed;
1074	retval = usb_hub_init();
1075	if (retval)
1076		goto hub_init_failed;
1077	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1078	if (!retval)
1079		goto out;
1080
1081	usb_hub_cleanup();
1082hub_init_failed:
1083	usb_devio_cleanup();
1084usb_devio_init_failed:
1085	usb_deregister(&usbfs_driver);
1086driver_register_failed:
1087	usb_major_cleanup();
1088major_init_failed:
1089	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1090bus_notifier_failed:
1091	bus_unregister(&usb_bus_type);
1092bus_register_failed:
1093	usb_acpi_unregister();
1094	usb_debugfs_cleanup();
1095out:
1096	return retval;
1097}
1098
1099/*
1100 * Cleanup
1101 */
1102static void __exit usb_exit(void)
1103{
1104	/* This will matter if shutdown/reboot does exitcalls. */
1105	if (nousb)
1106		return;
1107
 
1108	usb_deregister_device_driver(&usb_generic_driver);
1109	usb_major_cleanup();
1110	usb_deregister(&usbfs_driver);
1111	usb_devio_cleanup();
1112	usb_hub_cleanup();
1113	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1114	bus_unregister(&usb_bus_type);
1115	usb_acpi_unregister();
1116	usb_debugfs_cleanup();
 
1117}
1118
1119subsys_initcall(usb_init);
1120module_exit(usb_exit);
1121MODULE_LICENSE("GPL");