Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Freescale FlexTimer Module (FTM) PWM Driver
  4 *
  5 *  Copyright 2012-2013 Freescale Semiconductor, Inc.
 
 
 
 
 
  6 */
  7
  8#include <linux/clk.h>
  9#include <linux/err.h>
 10#include <linux/io.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/mutex.h>
 14#include <linux/of_address.h>
 15#include <linux/of_device.h>
 16#include <linux/platform_device.h>
 17#include <linux/pm.h>
 18#include <linux/pwm.h>
 19#include <linux/regmap.h>
 20#include <linux/slab.h>
 21#include <linux/fsl/ftm.h>
 22
 23#define FTM_SC_CLK(c)	(((c) + 1) << FTM_SC_CLK_MASK_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25enum fsl_pwm_clk {
 26	FSL_PWM_CLK_SYS,
 27	FSL_PWM_CLK_FIX,
 28	FSL_PWM_CLK_EXT,
 29	FSL_PWM_CLK_CNTEN,
 30	FSL_PWM_CLK_MAX
 31};
 32
 33struct fsl_ftm_soc {
 34	bool has_enable_bits;
 35};
 36
 37struct fsl_pwm_periodcfg {
 38	enum fsl_pwm_clk clk_select;
 39	unsigned int clk_ps;
 40	unsigned int mod_period;
 41};
 42
 43struct fsl_pwm_chip {
 44	struct pwm_chip chip;
 
 45	struct mutex lock;
 46	struct regmap *regmap;
 47
 48	/* This value is valid iff a pwm is running */
 49	struct fsl_pwm_periodcfg period;
 
 50
 51	struct clk *ipg_clk;
 52	struct clk *clk[FSL_PWM_CLK_MAX];
 
 53
 54	const struct fsl_ftm_soc *soc;
 55};
 56
 57static inline struct fsl_pwm_chip *to_fsl_chip(struct pwm_chip *chip)
 58{
 59	return container_of(chip, struct fsl_pwm_chip, chip);
 60}
 61
 62static void ftm_clear_write_protection(struct fsl_pwm_chip *fpc)
 63{
 64	u32 val;
 65
 66	regmap_read(fpc->regmap, FTM_FMS, &val);
 67	if (val & FTM_FMS_WPEN)
 68		regmap_set_bits(fpc->regmap, FTM_MODE, FTM_MODE_WPDIS);
 69}
 70
 71static void ftm_set_write_protection(struct fsl_pwm_chip *fpc)
 72{
 73	regmap_set_bits(fpc->regmap, FTM_FMS, FTM_FMS_WPEN);
 74}
 75
 76static bool fsl_pwm_periodcfg_are_equal(const struct fsl_pwm_periodcfg *a,
 77					const struct fsl_pwm_periodcfg *b)
 78{
 79	if (a->clk_select != b->clk_select)
 80		return false;
 81	if (a->clk_ps != b->clk_ps)
 82		return false;
 83	if (a->mod_period != b->mod_period)
 84		return false;
 85	return true;
 86}
 87
 88static int fsl_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
 89{
 90	int ret;
 91	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
 92
 93	ret = clk_prepare_enable(fpc->ipg_clk);
 94	if (!ret && fpc->soc->has_enable_bits) {
 95		mutex_lock(&fpc->lock);
 96		regmap_set_bits(fpc->regmap, FTM_SC, BIT(pwm->hwpwm + 16));
 97		mutex_unlock(&fpc->lock);
 98	}
 99
100	return ret;
101}
102
103static void fsl_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
104{
105	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
106
107	if (fpc->soc->has_enable_bits) {
108		mutex_lock(&fpc->lock);
109		regmap_clear_bits(fpc->regmap, FTM_SC, BIT(pwm->hwpwm + 16));
110		mutex_unlock(&fpc->lock);
111	}
112
113	clk_disable_unprepare(fpc->ipg_clk);
114}
115
116static unsigned int fsl_pwm_ticks_to_ns(struct fsl_pwm_chip *fpc,
117					  unsigned int ticks)
118{
119	unsigned long rate;
120	unsigned long long exval;
121
122	rate = clk_get_rate(fpc->clk[fpc->period.clk_select]);
123	exval = ticks;
124	exval *= 1000000000UL;
125	do_div(exval, rate >> fpc->period.clk_ps);
126	return exval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
128
129static bool fsl_pwm_calculate_period_clk(struct fsl_pwm_chip *fpc,
130					 unsigned int period_ns,
131					 enum fsl_pwm_clk index,
132					 struct fsl_pwm_periodcfg *periodcfg
133					 )
134{
135	unsigned long long c;
136	unsigned int ps;
137
138	c = clk_get_rate(fpc->clk[index]);
139	c = c * period_ns;
140	do_div(c, 1000000000UL);
141
142	if (c == 0)
143		return false;
 
 
 
 
144
145	for (ps = 0; ps < 8 ; ++ps, c >>= 1) {
146		if (c <= 0x10000) {
147			periodcfg->clk_select = index;
148			periodcfg->clk_ps = ps;
149			periodcfg->mod_period = c - 1;
150			return true;
151		}
 
 
 
 
 
 
 
 
152	}
153	return false;
 
154}
155
156static bool fsl_pwm_calculate_period(struct fsl_pwm_chip *fpc,
157				     unsigned int period_ns,
158				     struct fsl_pwm_periodcfg *periodcfg)
159{
160	enum fsl_pwm_clk m0, m1;
161	unsigned long fix_rate, ext_rate;
162	bool ret;
163
164	ret = fsl_pwm_calculate_period_clk(fpc, period_ns, FSL_PWM_CLK_SYS,
165					   periodcfg);
166	if (ret)
167		return true;
 
 
168
169	fix_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_FIX]);
170	ext_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_EXT]);
171
172	if (fix_rate > ext_rate) {
173		m0 = FSL_PWM_CLK_FIX;
174		m1 = FSL_PWM_CLK_EXT;
175	} else {
176		m0 = FSL_PWM_CLK_EXT;
177		m1 = FSL_PWM_CLK_FIX;
178	}
179
180	ret = fsl_pwm_calculate_period_clk(fpc, period_ns, m0, periodcfg);
181	if (ret)
182		return true;
 
 
183
184	return fsl_pwm_calculate_period_clk(fpc, period_ns, m1, periodcfg);
 
 
185}
186
187static unsigned int fsl_pwm_calculate_duty(struct fsl_pwm_chip *fpc,
188					   unsigned int duty_ns)
 
189{
190	unsigned long long duty;
191
192	unsigned int period = fpc->period.mod_period + 1;
193	unsigned int period_ns = fsl_pwm_ticks_to_ns(fpc, period);
194
195	duty = (unsigned long long)duty_ns * period;
 
196	do_div(duty, period_ns);
197
198	return (unsigned int)duty;
199}
200
201static bool fsl_pwm_is_any_pwm_enabled(struct fsl_pwm_chip *fpc,
202				       struct pwm_device *pwm)
203{
204	u32 val;
 
205
206	regmap_read(fpc->regmap, FTM_OUTMASK, &val);
207	if (~val & 0xFF)
208		return true;
209	else
210		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211}
212
213static bool fsl_pwm_is_other_pwm_enabled(struct fsl_pwm_chip *fpc,
214					 struct pwm_device *pwm)
 
215{
 
216	u32 val;
217
218	regmap_read(fpc->regmap, FTM_OUTMASK, &val);
219	if (~(val | BIT(pwm->hwpwm)) & 0xFF)
220		return true;
 
221	else
222		return false;
223}
224
225static int fsl_pwm_apply_config(struct fsl_pwm_chip *fpc,
226				struct pwm_device *pwm,
227				const struct pwm_state *newstate)
228{
229	unsigned int duty;
230	u32 reg_polarity;
231
232	struct fsl_pwm_periodcfg periodcfg;
233	bool do_write_period = false;
234
235	if (!fsl_pwm_calculate_period(fpc, newstate->period, &periodcfg)) {
236		dev_err(fpc->chip.dev, "failed to calculate new period\n");
237		return -EINVAL;
238	}
239
240	if (!fsl_pwm_is_any_pwm_enabled(fpc, pwm))
241		do_write_period = true;
242	/*
243	 * The Freescale FTM controller supports only a single period for
244	 * all PWM channels, therefore verify if the newly computed period
245	 * is different than the current period being used. In such case
246	 * we allow to change the period only if no other pwm is running.
247	 */
248	else if (!fsl_pwm_periodcfg_are_equal(&fpc->period, &periodcfg)) {
249		if (fsl_pwm_is_other_pwm_enabled(fpc, pwm)) {
250			dev_err(fpc->chip.dev,
251				"Cannot change period for PWM %u, disable other PWMs first\n",
252				pwm->hwpwm);
253			return -EBUSY;
254		}
255		if (fpc->period.clk_select != periodcfg.clk_select) {
256			int ret;
257			enum fsl_pwm_clk oldclk = fpc->period.clk_select;
258			enum fsl_pwm_clk newclk = periodcfg.clk_select;
259
260			ret = clk_prepare_enable(fpc->clk[newclk]);
261			if (ret)
262				return ret;
263			clk_disable_unprepare(fpc->clk[oldclk]);
264		}
265		do_write_period = true;
266	}
267
268	ftm_clear_write_protection(fpc);
 
 
 
 
269
270	if (do_write_period) {
271		regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_CLK_MASK,
272				   FTM_SC_CLK(periodcfg.clk_select));
273		regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_PS_MASK,
274				   periodcfg.clk_ps);
275		regmap_write(fpc->regmap, FTM_MOD, periodcfg.mod_period);
276
277		fpc->period = periodcfg;
 
 
 
278	}
279
280	duty = fsl_pwm_calculate_duty(fpc, newstate->duty_cycle);
281
282	regmap_write(fpc->regmap, FTM_CSC(pwm->hwpwm),
283		     FTM_CSC_MSB | FTM_CSC_ELSB);
284	regmap_write(fpc->regmap, FTM_CV(pwm->hwpwm), duty);
285
286	reg_polarity = 0;
287	if (newstate->polarity == PWM_POLARITY_INVERSED)
288		reg_polarity = BIT(pwm->hwpwm);
 
 
289
290	regmap_update_bits(fpc->regmap, FTM_POL, BIT(pwm->hwpwm), reg_polarity);
 
 
 
291
292	ftm_set_write_protection(fpc);
 
293
294	return 0;
295}
296
297static int fsl_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
298			 const struct pwm_state *newstate)
299{
300	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
301	struct pwm_state *oldstate = &pwm->state;
302	int ret = 0;
303
304	/*
305	 * oldstate to newstate : action
306	 *
307	 * disabled to disabled : ignore
308	 * enabled to disabled : disable
309	 * enabled to enabled : update settings
310	 * disabled to enabled : update settings + enable
311	 */
 
 
312
313	mutex_lock(&fpc->lock);
 
 
314
315	if (!newstate->enabled) {
316		if (oldstate->enabled) {
317			regmap_set_bits(fpc->regmap, FTM_OUTMASK,
318					BIT(pwm->hwpwm));
319			clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]);
320			clk_disable_unprepare(fpc->clk[fpc->period.clk_select]);
321		}
322
323		goto end_mutex;
324	}
 
325
326	ret = fsl_pwm_apply_config(fpc, pwm, newstate);
327	if (ret)
328		goto end_mutex;
 
329
330	/* check if need to enable */
331	if (!oldstate->enabled) {
332		ret = clk_prepare_enable(fpc->clk[fpc->period.clk_select]);
333		if (ret)
334			goto end_mutex;
335
336		ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]);
337		if (ret) {
338			clk_disable_unprepare(fpc->clk[fpc->period.clk_select]);
339			goto end_mutex;
340		}
341
342		regmap_clear_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm));
343	}
 
 
 
 
344
345end_mutex:
346	mutex_unlock(&fpc->lock);
347	return ret;
348}
349
350static const struct pwm_ops fsl_pwm_ops = {
351	.request = fsl_pwm_request,
352	.free = fsl_pwm_free,
353	.apply = fsl_pwm_apply,
 
 
 
354	.owner = THIS_MODULE,
355};
356
357static int fsl_pwm_init(struct fsl_pwm_chip *fpc)
358{
359	int ret;
360
361	ret = clk_prepare_enable(fpc->ipg_clk);
362	if (ret)
363		return ret;
364
365	regmap_write(fpc->regmap, FTM_CNTIN, 0x00);
366	regmap_write(fpc->regmap, FTM_OUTINIT, 0x00);
367	regmap_write(fpc->regmap, FTM_OUTMASK, 0xFF);
368
369	clk_disable_unprepare(fpc->ipg_clk);
370
371	return 0;
372}
373
374static bool fsl_pwm_volatile_reg(struct device *dev, unsigned int reg)
375{
376	switch (reg) {
377	case FTM_FMS:
378	case FTM_MODE:
379	case FTM_CNT:
380		return true;
381	}
382	return false;
383}
384
385static const struct regmap_config fsl_pwm_regmap_config = {
386	.reg_bits = 32,
387	.reg_stride = 4,
388	.val_bits = 32,
389
390	.max_register = FTM_PWMLOAD,
391	.volatile_reg = fsl_pwm_volatile_reg,
392	.cache_type = REGCACHE_FLAT,
393};
394
395static int fsl_pwm_probe(struct platform_device *pdev)
396{
397	struct fsl_pwm_chip *fpc;
398	void __iomem *base;
399	int ret;
400
401	fpc = devm_kzalloc(&pdev->dev, sizeof(*fpc), GFP_KERNEL);
402	if (!fpc)
403		return -ENOMEM;
404
405	mutex_init(&fpc->lock);
406
407	fpc->soc = of_device_get_match_data(&pdev->dev);
408	fpc->chip.dev = &pdev->dev;
409
410	base = devm_platform_ioremap_resource(pdev, 0);
411	if (IS_ERR(base))
412		return PTR_ERR(base);
413
414	fpc->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "ftm_sys", base,
415						&fsl_pwm_regmap_config);
416	if (IS_ERR(fpc->regmap)) {
417		dev_err(&pdev->dev, "regmap init failed\n");
418		return PTR_ERR(fpc->regmap);
419	}
420
421	fpc->clk[FSL_PWM_CLK_SYS] = devm_clk_get(&pdev->dev, "ftm_sys");
422	if (IS_ERR(fpc->clk[FSL_PWM_CLK_SYS])) {
423		dev_err(&pdev->dev, "failed to get \"ftm_sys\" clock\n");
424		return PTR_ERR(fpc->clk[FSL_PWM_CLK_SYS]);
425	}
426
427	fpc->clk[FSL_PWM_CLK_FIX] = devm_clk_get(fpc->chip.dev, "ftm_fix");
428	if (IS_ERR(fpc->clk[FSL_PWM_CLK_FIX]))
429		return PTR_ERR(fpc->clk[FSL_PWM_CLK_FIX]);
430
431	fpc->clk[FSL_PWM_CLK_EXT] = devm_clk_get(fpc->chip.dev, "ftm_ext");
432	if (IS_ERR(fpc->clk[FSL_PWM_CLK_EXT]))
433		return PTR_ERR(fpc->clk[FSL_PWM_CLK_EXT]);
434
435	fpc->clk[FSL_PWM_CLK_CNTEN] =
436				devm_clk_get(fpc->chip.dev, "ftm_cnt_clk_en");
437	if (IS_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]))
438		return PTR_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]);
439
440	/*
441	 * ipg_clk is the interface clock for the IP. If not provided, use the
442	 * ftm_sys clock as the default.
443	 */
444	fpc->ipg_clk = devm_clk_get(&pdev->dev, "ipg");
445	if (IS_ERR(fpc->ipg_clk))
446		fpc->ipg_clk = fpc->clk[FSL_PWM_CLK_SYS];
447
448
449	fpc->chip.ops = &fsl_pwm_ops;
 
 
 
450	fpc->chip.npwm = 8;
451
452	ret = devm_pwmchip_add(&pdev->dev, &fpc->chip);
453	if (ret < 0) {
454		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
455		return ret;
456	}
457
458	platform_set_drvdata(pdev, fpc);
459
460	return fsl_pwm_init(fpc);
461}
462
463#ifdef CONFIG_PM_SLEEP
464static int fsl_pwm_suspend(struct device *dev)
465{
466	struct fsl_pwm_chip *fpc = dev_get_drvdata(dev);
467	int i;
468
469	regcache_cache_only(fpc->regmap, true);
470	regcache_mark_dirty(fpc->regmap);
471
472	for (i = 0; i < fpc->chip.npwm; i++) {
473		struct pwm_device *pwm = &fpc->chip.pwms[i];
474
475		if (!test_bit(PWMF_REQUESTED, &pwm->flags))
476			continue;
477
478		clk_disable_unprepare(fpc->ipg_clk);
479
480		if (!pwm_is_enabled(pwm))
481			continue;
482
483		clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]);
484		clk_disable_unprepare(fpc->clk[fpc->period.clk_select]);
485	}
486
487	return 0;
488}
489
490static int fsl_pwm_resume(struct device *dev)
491{
492	struct fsl_pwm_chip *fpc = dev_get_drvdata(dev);
493	int i;
494
495	for (i = 0; i < fpc->chip.npwm; i++) {
496		struct pwm_device *pwm = &fpc->chip.pwms[i];
497
498		if (!test_bit(PWMF_REQUESTED, &pwm->flags))
499			continue;
500
501		clk_prepare_enable(fpc->ipg_clk);
502
503		if (!pwm_is_enabled(pwm))
504			continue;
505
506		clk_prepare_enable(fpc->clk[fpc->period.clk_select]);
507		clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]);
508	}
509
510	/* restore all registers from cache */
511	regcache_cache_only(fpc->regmap, false);
512	regcache_sync(fpc->regmap);
513
514	return 0;
515}
516#endif
517
518static const struct dev_pm_ops fsl_pwm_pm_ops = {
519	SET_SYSTEM_SLEEP_PM_OPS(fsl_pwm_suspend, fsl_pwm_resume)
520};
521
522static const struct fsl_ftm_soc vf610_ftm_pwm = {
523	.has_enable_bits = false,
524};
525
526static const struct fsl_ftm_soc imx8qm_ftm_pwm = {
527	.has_enable_bits = true,
528};
529
530static const struct of_device_id fsl_pwm_dt_ids[] = {
531	{ .compatible = "fsl,vf610-ftm-pwm", .data = &vf610_ftm_pwm },
532	{ .compatible = "fsl,imx8qm-ftm-pwm", .data = &imx8qm_ftm_pwm },
533	{ /* sentinel */ }
534};
535MODULE_DEVICE_TABLE(of, fsl_pwm_dt_ids);
536
537static struct platform_driver fsl_pwm_driver = {
538	.driver = {
539		.name = "fsl-ftm-pwm",
540		.of_match_table = fsl_pwm_dt_ids,
541		.pm = &fsl_pwm_pm_ops,
542	},
543	.probe = fsl_pwm_probe,
 
544};
545module_platform_driver(fsl_pwm_driver);
546
547MODULE_DESCRIPTION("Freescale FlexTimer Module PWM Driver");
548MODULE_AUTHOR("Xiubo Li <Li.Xiubo@freescale.com>");
549MODULE_ALIAS("platform:fsl-ftm-pwm");
550MODULE_LICENSE("GPL");
v3.15
 
  1/*
  2 *  Freescale FlexTimer Module (FTM) PWM Driver
  3 *
  4 *  Copyright 2012-2013 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License, or
  9 * (at your option) any later version.
 10 */
 11
 12#include <linux/clk.h>
 13#include <linux/err.h>
 14#include <linux/io.h>
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/mutex.h>
 18#include <linux/of_address.h>
 
 19#include <linux/platform_device.h>
 
 20#include <linux/pwm.h>
 
 21#include <linux/slab.h>
 
 22
 23#define FTM_SC		0x00
 24#define FTM_SC_CLK_MASK	0x3
 25#define FTM_SC_CLK_SHIFT	3
 26#define FTM_SC_CLK(c)	(((c) + 1) << FTM_SC_CLK_SHIFT)
 27#define FTM_SC_PS_MASK	0x7
 28#define FTM_SC_PS_SHIFT	0
 29
 30#define FTM_CNT		0x04
 31#define FTM_MOD		0x08
 32
 33#define FTM_CSC_BASE	0x0C
 34#define FTM_CSC_MSB	BIT(5)
 35#define FTM_CSC_MSA	BIT(4)
 36#define FTM_CSC_ELSB	BIT(3)
 37#define FTM_CSC_ELSA	BIT(2)
 38#define FTM_CSC(_channel)	(FTM_CSC_BASE + ((_channel) * 8))
 39
 40#define FTM_CV_BASE	0x10
 41#define FTM_CV(_channel)	(FTM_CV_BASE + ((_channel) * 8))
 42
 43#define FTM_CNTIN	0x4C
 44#define FTM_STATUS	0x50
 45
 46#define FTM_MODE	0x54
 47#define FTM_MODE_FTMEN	BIT(0)
 48#define FTM_MODE_INIT	BIT(2)
 49#define FTM_MODE_PWMSYNC	BIT(3)
 50
 51#define FTM_SYNC	0x58
 52#define FTM_OUTINIT	0x5C
 53#define FTM_OUTMASK	0x60
 54#define FTM_COMBINE	0x64
 55#define FTM_DEADTIME	0x68
 56#define FTM_EXTTRIG	0x6C
 57#define FTM_POL		0x70
 58#define FTM_FMS		0x74
 59#define FTM_FILTER	0x78
 60#define FTM_FLTCTRL	0x7C
 61#define FTM_QDCTRL	0x80
 62#define FTM_CONF	0x84
 63#define FTM_FLTPOL	0x88
 64#define FTM_SYNCONF	0x8C
 65#define FTM_INVCTRL	0x90
 66#define FTM_SWOCTRL	0x94
 67#define FTM_PWMLOAD	0x98
 68
 69enum fsl_pwm_clk {
 70	FSL_PWM_CLK_SYS,
 71	FSL_PWM_CLK_FIX,
 72	FSL_PWM_CLK_EXT,
 73	FSL_PWM_CLK_CNTEN,
 74	FSL_PWM_CLK_MAX
 75};
 76
 
 
 
 
 
 
 
 
 
 
 77struct fsl_pwm_chip {
 78	struct pwm_chip chip;
 79
 80	struct mutex lock;
 
 81
 82	unsigned int use_count;
 83	unsigned int cnt_select;
 84	unsigned int clk_ps;
 85
 86	void __iomem *base;
 87
 88	int period_ns;
 89
 90	struct clk *clk[FSL_PWM_CLK_MAX];
 91};
 92
 93static inline struct fsl_pwm_chip *to_fsl_chip(struct pwm_chip *chip)
 94{
 95	return container_of(chip, struct fsl_pwm_chip, chip);
 96}
 97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98static int fsl_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
 99{
 
100	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
101
102	return clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]);
 
 
 
 
 
 
 
103}
104
105static void fsl_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
106{
107	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
108
109	clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]);
 
 
 
 
 
 
110}
111
112static int fsl_pwm_calculate_default_ps(struct fsl_pwm_chip *fpc,
113					enum fsl_pwm_clk index)
114{
115	unsigned long sys_rate, cnt_rate;
116	unsigned long long ratio;
117
118	sys_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_SYS]);
119	if (!sys_rate)
120		return -EINVAL;
121
122	cnt_rate = clk_get_rate(fpc->clk[fpc->cnt_select]);
123	if (!cnt_rate)
124		return -EINVAL;
125
126	switch (index) {
127	case FSL_PWM_CLK_SYS:
128		fpc->clk_ps = 1;
129		break;
130	case FSL_PWM_CLK_FIX:
131		ratio = 2 * cnt_rate - 1;
132		do_div(ratio, sys_rate);
133		fpc->clk_ps = ratio;
134		break;
135	case FSL_PWM_CLK_EXT:
136		ratio = 4 * cnt_rate - 1;
137		do_div(ratio, sys_rate);
138		fpc->clk_ps = ratio;
139		break;
140	default:
141		return -EINVAL;
142	}
143
144	return 0;
145}
146
147static unsigned long fsl_pwm_calculate_cycles(struct fsl_pwm_chip *fpc,
148					      unsigned long period_ns)
 
 
 
149{
150	unsigned long long c, c0;
 
151
152	c = clk_get_rate(fpc->clk[fpc->cnt_select]);
153	c = c * period_ns;
154	do_div(c, 1000000000UL);
155
156	do {
157		c0 = c;
158		do_div(c0, (1 << fpc->clk_ps));
159		if (c0 <= 0xFFFF)
160			return (unsigned long)c0;
161	} while (++fpc->clk_ps < 8);
162
163	return 0;
164}
165
166static unsigned long fsl_pwm_calculate_period_cycles(struct fsl_pwm_chip *fpc,
167						     unsigned long period_ns,
168						     enum fsl_pwm_clk index)
169{
170	int ret;
171
172	ret = fsl_pwm_calculate_default_ps(fpc, index);
173	if (ret) {
174		dev_err(fpc->chip.dev,
175			"failed to calculate default prescaler: %d\n",
176			ret);
177		return 0;
178	}
179
180	return fsl_pwm_calculate_cycles(fpc, period_ns);
181}
182
183static unsigned long fsl_pwm_calculate_period(struct fsl_pwm_chip *fpc,
184					      unsigned long period_ns)
 
185{
186	enum fsl_pwm_clk m0, m1;
187	unsigned long fix_rate, ext_rate, cycles;
 
188
189	cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns,
190			FSL_PWM_CLK_SYS);
191	if (cycles) {
192		fpc->cnt_select = FSL_PWM_CLK_SYS;
193		return cycles;
194	}
195
196	fix_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_FIX]);
197	ext_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_EXT]);
198
199	if (fix_rate > ext_rate) {
200		m0 = FSL_PWM_CLK_FIX;
201		m1 = FSL_PWM_CLK_EXT;
202	} else {
203		m0 = FSL_PWM_CLK_EXT;
204		m1 = FSL_PWM_CLK_FIX;
205	}
206
207	cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns, m0);
208	if (cycles) {
209		fpc->cnt_select = m0;
210		return cycles;
211	}
212
213	fpc->cnt_select = m1;
214
215	return fsl_pwm_calculate_period_cycles(fpc, period_ns, m1);
216}
217
218static unsigned long fsl_pwm_calculate_duty(struct fsl_pwm_chip *fpc,
219					    unsigned long period_ns,
220					    unsigned long duty_ns)
221{
222	unsigned long long val, duty;
 
 
 
223
224	val = readl(fpc->base + FTM_MOD);
225	duty = duty_ns * (val + 1);
226	do_div(duty, period_ns);
227
228	return (unsigned long)duty;
229}
230
231static int fsl_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
232			  int duty_ns, int period_ns)
233{
234	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
235	u32 val, period, duty;
236
237	mutex_lock(&fpc->lock);
238
239	/*
240	 * The Freescale FTM controller supports only a single period for
241	 * all PWM channels, therefore incompatible changes need to be
242	 * refused.
243	 */
244	if (fpc->period_ns && fpc->period_ns != period_ns) {
245		dev_err(fpc->chip.dev,
246			"conflicting period requested for PWM %u\n",
247			pwm->hwpwm);
248		mutex_unlock(&fpc->lock);
249		return -EBUSY;
250	}
251
252	if (!fpc->period_ns && duty_ns) {
253		period = fsl_pwm_calculate_period(fpc, period_ns);
254		if (!period) {
255			dev_err(fpc->chip.dev, "failed to calculate period\n");
256			mutex_unlock(&fpc->lock);
257			return -EINVAL;
258		}
259
260		val = readl(fpc->base + FTM_SC);
261		val &= ~(FTM_SC_PS_MASK << FTM_SC_PS_SHIFT);
262		val |= fpc->clk_ps;
263		writel(val, fpc->base + FTM_SC);
264		writel(period - 1, fpc->base + FTM_MOD);
265
266		fpc->period_ns = period_ns;
267	}
268
269	mutex_unlock(&fpc->lock);
270
271	duty = fsl_pwm_calculate_duty(fpc, period_ns, duty_ns);
272
273	writel(FTM_CSC_MSB | FTM_CSC_ELSB, fpc->base + FTM_CSC(pwm->hwpwm));
274	writel(duty, fpc->base + FTM_CV(pwm->hwpwm));
275
276	return 0;
277}
278
279static int fsl_pwm_set_polarity(struct pwm_chip *chip,
280				struct pwm_device *pwm,
281				enum pwm_polarity polarity)
282{
283	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
284	u32 val;
285
286	val = readl(fpc->base + FTM_POL);
287
288	if (polarity == PWM_POLARITY_INVERSED)
289		val |= BIT(pwm->hwpwm);
290	else
291		val &= ~BIT(pwm->hwpwm);
 
292
293	writel(val, fpc->base + FTM_POL);
 
 
 
 
 
294
295	return 0;
296}
297
298static int fsl_counter_clock_enable(struct fsl_pwm_chip *fpc)
299{
300	u32 val;
301	int ret;
302
303	if (fpc->use_count != 0)
304		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
306	/* select counter clock source */
307	val = readl(fpc->base + FTM_SC);
308	val &= ~(FTM_SC_CLK_MASK << FTM_SC_CLK_SHIFT);
309	val |= FTM_SC_CLK(fpc->cnt_select);
310	writel(val, fpc->base + FTM_SC);
311
312	ret = clk_prepare_enable(fpc->clk[fpc->cnt_select]);
313	if (ret)
314		return ret;
 
 
 
315
316	ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]);
317	if (ret) {
318		clk_disable_unprepare(fpc->clk[fpc->cnt_select]);
319		return ret;
320	}
321
322	fpc->use_count++;
323
324	return 0;
325}
 
326
327static int fsl_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
328{
329	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
330	u32 val;
331	int ret;
332
333	mutex_lock(&fpc->lock);
334	val = readl(fpc->base + FTM_OUTMASK);
335	val &= ~BIT(pwm->hwpwm);
336	writel(val, fpc->base + FTM_OUTMASK);
337
338	ret = fsl_counter_clock_enable(fpc);
339	mutex_unlock(&fpc->lock);
340
341	return ret;
342}
343
344static void fsl_counter_clock_disable(struct fsl_pwm_chip *fpc)
 
345{
346	u32 val;
 
 
347
348	/*
349	 * already disabled, do nothing
 
 
 
 
 
350	 */
351	if (fpc->use_count == 0)
352		return;
353
354	/* there are still users, so can't disable yet */
355	if (--fpc->use_count > 0)
356		return;
357
358	/* no users left, disable PWM counter clock */
359	val = readl(fpc->base + FTM_SC);
360	val &= ~(FTM_SC_CLK_MASK << FTM_SC_CLK_SHIFT);
361	writel(val, fpc->base + FTM_SC);
 
 
 
362
363	clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]);
364	clk_disable_unprepare(fpc->clk[fpc->cnt_select]);
365}
366
367static void fsl_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
368{
369	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
370	u32 val;
371
372	mutex_lock(&fpc->lock);
373	val = readl(fpc->base + FTM_OUTMASK);
374	val |= BIT(pwm->hwpwm);
375	writel(val, fpc->base + FTM_OUTMASK);
 
 
 
 
 
 
 
376
377	fsl_counter_clock_disable(fpc);
378
379	val = readl(fpc->base + FTM_OUTMASK);
380
381	if ((val & 0xFF) == 0xFF)
382		fpc->period_ns = 0;
383
 
384	mutex_unlock(&fpc->lock);
 
385}
386
387static const struct pwm_ops fsl_pwm_ops = {
388	.request = fsl_pwm_request,
389	.free = fsl_pwm_free,
390	.config = fsl_pwm_config,
391	.set_polarity = fsl_pwm_set_polarity,
392	.enable = fsl_pwm_enable,
393	.disable = fsl_pwm_disable,
394	.owner = THIS_MODULE,
395};
396
397static int fsl_pwm_init(struct fsl_pwm_chip *fpc)
398{
399	int ret;
400
401	ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]);
402	if (ret)
403		return ret;
404
405	writel(0x00, fpc->base + FTM_CNTIN);
406	writel(0x00, fpc->base + FTM_OUTINIT);
407	writel(0xFF, fpc->base + FTM_OUTMASK);
408
409	clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]);
410
411	return 0;
412}
413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414static int fsl_pwm_probe(struct platform_device *pdev)
415{
416	struct fsl_pwm_chip *fpc;
417	struct resource *res;
418	int ret;
419
420	fpc = devm_kzalloc(&pdev->dev, sizeof(*fpc), GFP_KERNEL);
421	if (!fpc)
422		return -ENOMEM;
423
424	mutex_init(&fpc->lock);
425
 
426	fpc->chip.dev = &pdev->dev;
427
428	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
429	fpc->base = devm_ioremap_resource(&pdev->dev, res);
430	if (IS_ERR(fpc->base))
431		return PTR_ERR(fpc->base);
 
 
 
 
 
 
432
433	fpc->clk[FSL_PWM_CLK_SYS] = devm_clk_get(&pdev->dev, "ftm_sys");
434	if (IS_ERR(fpc->clk[FSL_PWM_CLK_SYS])) {
435		dev_err(&pdev->dev, "failed to get \"ftm_sys\" clock\n");
436		return PTR_ERR(fpc->clk[FSL_PWM_CLK_SYS]);
437	}
438
439	fpc->clk[FSL_PWM_CLK_FIX] = devm_clk_get(fpc->chip.dev, "ftm_fix");
440	if (IS_ERR(fpc->clk[FSL_PWM_CLK_FIX]))
441		return PTR_ERR(fpc->clk[FSL_PWM_CLK_FIX]);
442
443	fpc->clk[FSL_PWM_CLK_EXT] = devm_clk_get(fpc->chip.dev, "ftm_ext");
444	if (IS_ERR(fpc->clk[FSL_PWM_CLK_EXT]))
445		return PTR_ERR(fpc->clk[FSL_PWM_CLK_EXT]);
446
447	fpc->clk[FSL_PWM_CLK_CNTEN] =
448				devm_clk_get(fpc->chip.dev, "ftm_cnt_clk_en");
449	if (IS_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]))
450		return PTR_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]);
451
 
 
 
 
 
 
 
 
 
452	fpc->chip.ops = &fsl_pwm_ops;
453	fpc->chip.of_xlate = of_pwm_xlate_with_flags;
454	fpc->chip.of_pwm_n_cells = 3;
455	fpc->chip.base = -1;
456	fpc->chip.npwm = 8;
457
458	ret = pwmchip_add(&fpc->chip);
459	if (ret < 0) {
460		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
461		return ret;
462	}
463
464	platform_set_drvdata(pdev, fpc);
465
466	return fsl_pwm_init(fpc);
467}
468
469static int fsl_pwm_remove(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470{
471	struct fsl_pwm_chip *fpc = platform_get_drvdata(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
472
473	return pwmchip_remove(&fpc->chip);
 
 
 
 
 
 
 
 
474}
 
 
 
 
 
 
 
 
 
 
 
 
 
475
476static const struct of_device_id fsl_pwm_dt_ids[] = {
477	{ .compatible = "fsl,vf610-ftm-pwm", },
 
478	{ /* sentinel */ }
479};
480MODULE_DEVICE_TABLE(of, fsl_pwm_dt_ids);
481
482static struct platform_driver fsl_pwm_driver = {
483	.driver = {
484		.name = "fsl-ftm-pwm",
485		.of_match_table = fsl_pwm_dt_ids,
 
486	},
487	.probe = fsl_pwm_probe,
488	.remove = fsl_pwm_remove,
489};
490module_platform_driver(fsl_pwm_driver);
491
492MODULE_DESCRIPTION("Freescale FlexTimer Module PWM Driver");
493MODULE_AUTHOR("Xiubo Li <Li.Xiubo@freescale.com>");
494MODULE_ALIAS("platform:fsl-ftm-pwm");
495MODULE_LICENSE("GPL");