Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#include "vf.h"
5
6static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
7static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
8 u16 *duplex);
9static s32 e1000_init_hw_vf(struct e1000_hw *hw);
10static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
11
12static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
13 u32, u32, u32);
14static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
15static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
16static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
17static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
18
19/**
20 * e1000_init_mac_params_vf - Inits MAC params
21 * @hw: pointer to the HW structure
22 **/
23static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
24{
25 struct e1000_mac_info *mac = &hw->mac;
26
27 /* VF's have no MTA Registers - PF feature only */
28 mac->mta_reg_count = 128;
29 /* VF's have no access to RAR entries */
30 mac->rar_entry_count = 1;
31
32 /* Function pointers */
33 /* reset */
34 mac->ops.reset_hw = e1000_reset_hw_vf;
35 /* hw initialization */
36 mac->ops.init_hw = e1000_init_hw_vf;
37 /* check for link */
38 mac->ops.check_for_link = e1000_check_for_link_vf;
39 /* link info */
40 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
41 /* multicast address update */
42 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
43 /* set mac address */
44 mac->ops.rar_set = e1000_rar_set_vf;
45 /* read mac address */
46 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
47 /* set mac filter */
48 mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
49 /* set vlan filter table array */
50 mac->ops.set_vfta = e1000_set_vfta_vf;
51
52 return E1000_SUCCESS;
53}
54
55/**
56 * e1000_init_function_pointers_vf - Inits function pointers
57 * @hw: pointer to the HW structure
58 **/
59void e1000_init_function_pointers_vf(struct e1000_hw *hw)
60{
61 hw->mac.ops.init_params = e1000_init_mac_params_vf;
62 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
63}
64
65/**
66 * e1000_get_link_up_info_vf - Gets link info.
67 * @hw: pointer to the HW structure
68 * @speed: pointer to 16 bit value to store link speed.
69 * @duplex: pointer to 16 bit value to store duplex.
70 *
71 * Since we cannot read the PHY and get accurate link info, we must rely upon
72 * the status register's data which is often stale and inaccurate.
73 **/
74static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
75 u16 *duplex)
76{
77 s32 status;
78
79 status = er32(STATUS);
80 if (status & E1000_STATUS_SPEED_1000)
81 *speed = SPEED_1000;
82 else if (status & E1000_STATUS_SPEED_100)
83 *speed = SPEED_100;
84 else
85 *speed = SPEED_10;
86
87 if (status & E1000_STATUS_FD)
88 *duplex = FULL_DUPLEX;
89 else
90 *duplex = HALF_DUPLEX;
91
92 return E1000_SUCCESS;
93}
94
95/**
96 * e1000_reset_hw_vf - Resets the HW
97 * @hw: pointer to the HW structure
98 *
99 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
100 * This is all the reset we can perform on a VF.
101 **/
102static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
103{
104 struct e1000_mbx_info *mbx = &hw->mbx;
105 u32 timeout = E1000_VF_INIT_TIMEOUT;
106 u32 ret_val = -E1000_ERR_MAC_INIT;
107 u32 msgbuf[3];
108 u8 *addr = (u8 *)(&msgbuf[1]);
109 u32 ctrl;
110
111 /* assert VF queue/interrupt reset */
112 ctrl = er32(CTRL);
113 ew32(CTRL, ctrl | E1000_CTRL_RST);
114
115 /* we cannot initialize while the RSTI / RSTD bits are asserted */
116 while (!mbx->ops.check_for_rst(hw) && timeout) {
117 timeout--;
118 udelay(5);
119 }
120
121 if (timeout) {
122 /* mailbox timeout can now become active */
123 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
124
125 /* notify PF of VF reset completion */
126 msgbuf[0] = E1000_VF_RESET;
127 mbx->ops.write_posted(hw, msgbuf, 1);
128
129 mdelay(10);
130
131 /* set our "perm_addr" based on info provided by PF */
132 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
133 if (!ret_val) {
134 if (msgbuf[0] == (E1000_VF_RESET |
135 E1000_VT_MSGTYPE_ACK))
136 memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
137 else
138 ret_val = -E1000_ERR_MAC_INIT;
139 }
140 }
141
142 return ret_val;
143}
144
145/**
146 * e1000_init_hw_vf - Inits the HW
147 * @hw: pointer to the HW structure
148 *
149 * Not much to do here except clear the PF Reset indication if there is one.
150 **/
151static s32 e1000_init_hw_vf(struct e1000_hw *hw)
152{
153 /* attempt to set and restore our mac address */
154 e1000_rar_set_vf(hw, hw->mac.addr, 0);
155
156 return E1000_SUCCESS;
157}
158
159/**
160 * e1000_hash_mc_addr_vf - Generate a multicast hash value
161 * @hw: pointer to the HW structure
162 * @mc_addr: pointer to a multicast address
163 *
164 * Generates a multicast address hash value which is used to determine
165 * the multicast filter table array address and new table value. See
166 * e1000_mta_set_generic()
167 **/
168static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
169{
170 u32 hash_value, hash_mask;
171 u8 bit_shift = 0;
172
173 /* Register count multiplied by bits per register */
174 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
175
176 /* The bit_shift is the number of left-shifts
177 * where 0xFF would still fall within the hash mask.
178 */
179 while (hash_mask >> bit_shift != 0xFF)
180 bit_shift++;
181
182 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
183 (((u16)mc_addr[5]) << bit_shift)));
184
185 return hash_value;
186}
187
188/**
189 * e1000_update_mc_addr_list_vf - Update Multicast addresses
190 * @hw: pointer to the HW structure
191 * @mc_addr_list: array of multicast addresses to program
192 * @mc_addr_count: number of multicast addresses to program
193 * @rar_used_count: the first RAR register free to program
194 * @rar_count: total number of supported Receive Address Registers
195 *
196 * Updates the Receive Address Registers and Multicast Table Array.
197 * The caller must have a packed mc_addr_list of multicast addresses.
198 * The parameter rar_count will usually be hw->mac.rar_entry_count
199 * unless there are workarounds that change this.
200 **/
201static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
202 u8 *mc_addr_list, u32 mc_addr_count,
203 u32 rar_used_count, u32 rar_count)
204{
205 struct e1000_mbx_info *mbx = &hw->mbx;
206 u32 msgbuf[E1000_VFMAILBOX_SIZE];
207 u16 *hash_list = (u16 *)&msgbuf[1];
208 u32 hash_value;
209 u32 cnt, i;
210 s32 ret_val;
211
212 /* Each entry in the list uses 1 16 bit word. We have 30
213 * 16 bit words available in our HW msg buffer (minus 1 for the
214 * msg type). That's 30 hash values if we pack 'em right. If
215 * there are more than 30 MC addresses to add then punt the
216 * extras for now and then add code to handle more than 30 later.
217 * It would be unusual for a server to request that many multi-cast
218 * addresses except for in large enterprise network environments.
219 */
220
221 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
222 msgbuf[0] = E1000_VF_SET_MULTICAST;
223 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
224
225 for (i = 0; i < cnt; i++) {
226 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
227 hash_list[i] = hash_value & 0x0FFFF;
228 mc_addr_list += ETH_ALEN;
229 }
230
231 ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
232 if (!ret_val)
233 mbx->ops.read_posted(hw, msgbuf, 1);
234}
235
236/**
237 * e1000_set_vfta_vf - Set/Unset vlan filter table address
238 * @hw: pointer to the HW structure
239 * @vid: determines the vfta register and bit to set/unset
240 * @set: if true then set bit, else clear bit
241 **/
242static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
243{
244 struct e1000_mbx_info *mbx = &hw->mbx;
245 u32 msgbuf[2];
246 s32 err;
247
248 msgbuf[0] = E1000_VF_SET_VLAN;
249 msgbuf[1] = vid;
250 /* Setting the 8 bit field MSG INFO to true indicates "add" */
251 if (set)
252 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
253
254 mbx->ops.write_posted(hw, msgbuf, 2);
255
256 err = mbx->ops.read_posted(hw, msgbuf, 2);
257
258 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
259
260 /* if nacked the vlan was rejected */
261 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
262 err = -E1000_ERR_MAC_INIT;
263
264 return err;
265}
266
267/**
268 * e1000_rlpml_set_vf - Set the maximum receive packet length
269 * @hw: pointer to the HW structure
270 * @max_size: value to assign to max frame size
271 **/
272void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
273{
274 struct e1000_mbx_info *mbx = &hw->mbx;
275 u32 msgbuf[2];
276 s32 ret_val;
277
278 msgbuf[0] = E1000_VF_SET_LPE;
279 msgbuf[1] = max_size;
280
281 ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
282 if (!ret_val)
283 mbx->ops.read_posted(hw, msgbuf, 1);
284}
285
286/**
287 * e1000_rar_set_vf - set device MAC address
288 * @hw: pointer to the HW structure
289 * @addr: pointer to the receive address
290 * @index: receive address array register
291 **/
292static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
293{
294 struct e1000_mbx_info *mbx = &hw->mbx;
295 u32 msgbuf[3];
296 u8 *msg_addr = (u8 *)(&msgbuf[1]);
297 s32 ret_val;
298
299 memset(msgbuf, 0, 12);
300 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
301 memcpy(msg_addr, addr, ETH_ALEN);
302 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
303
304 if (!ret_val)
305 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
306
307 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
308
309 /* if nacked the address was rejected, use "perm_addr" */
310 if (!ret_val &&
311 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
312 e1000_read_mac_addr_vf(hw);
313}
314
315/**
316 * e1000_read_mac_addr_vf - Read device MAC address
317 * @hw: pointer to the HW structure
318 **/
319static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
320{
321 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
322
323 return E1000_SUCCESS;
324}
325
326/**
327 * e1000_set_uc_addr_vf - Set or clear unicast filters
328 * @hw: pointer to the HW structure
329 * @sub_cmd: add or clear filters
330 * @addr: pointer to the filter MAC address
331 **/
332static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
333{
334 struct e1000_mbx_info *mbx = &hw->mbx;
335 u32 msgbuf[3], msgbuf_chk;
336 u8 *msg_addr = (u8 *)(&msgbuf[1]);
337 s32 ret_val;
338
339 memset(msgbuf, 0, sizeof(msgbuf));
340 msgbuf[0] |= sub_cmd;
341 msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
342 msgbuf_chk = msgbuf[0];
343
344 if (addr)
345 memcpy(msg_addr, addr, ETH_ALEN);
346
347 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
348
349 if (!ret_val)
350 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
351
352 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
353
354 if (!ret_val) {
355 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
356
357 if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
358 return -ENOSPC;
359 }
360
361 return ret_val;
362}
363
364/**
365 * e1000_check_for_link_vf - Check for link for a virtual interface
366 * @hw: pointer to the HW structure
367 *
368 * Checks to see if the underlying PF is still talking to the VF and
369 * if it is then it reports the link state to the hardware, otherwise
370 * it reports link down and returns an error.
371 **/
372static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
373{
374 struct e1000_mbx_info *mbx = &hw->mbx;
375 struct e1000_mac_info *mac = &hw->mac;
376 s32 ret_val = E1000_SUCCESS;
377 u32 in_msg = 0;
378
379 /* We only want to run this if there has been a rst asserted.
380 * in this case that could mean a link change, device reset,
381 * or a virtual function reset
382 */
383
384 /* If we were hit with a reset or timeout drop the link */
385 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
386 mac->get_link_status = true;
387
388 if (!mac->get_link_status)
389 goto out;
390
391 /* if link status is down no point in checking to see if PF is up */
392 if (!(er32(STATUS) & E1000_STATUS_LU))
393 goto out;
394
395 /* if the read failed it could just be a mailbox collision, best wait
396 * until we are called again and don't report an error
397 */
398 if (mbx->ops.read(hw, &in_msg, 1))
399 goto out;
400
401 /* if incoming message isn't clear to send we are waiting on response */
402 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
403 /* msg is not CTS and is NACK we must have lost CTS status */
404 if (in_msg & E1000_VT_MSGTYPE_NACK)
405 ret_val = -E1000_ERR_MAC_INIT;
406 goto out;
407 }
408
409 /* the PF is talking, if we timed out in the past we reinit */
410 if (!mbx->timeout) {
411 ret_val = -E1000_ERR_MAC_INIT;
412 goto out;
413 }
414
415 /* if we passed all the tests above then the link is up and we no
416 * longer need to check for link
417 */
418 mac->get_link_status = false;
419
420out:
421 return ret_val;
422}
423
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29#include "vf.h"
30
31static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
32static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
33 u16 *duplex);
34static s32 e1000_init_hw_vf(struct e1000_hw *hw);
35static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
36
37static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
38 u32, u32, u32);
39static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
40static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
41static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
42
43/**
44 * e1000_init_mac_params_vf - Inits MAC params
45 * @hw: pointer to the HW structure
46 **/
47static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
48{
49 struct e1000_mac_info *mac = &hw->mac;
50
51 /* VF's have no MTA Registers - PF feature only */
52 mac->mta_reg_count = 128;
53 /* VF's have no access to RAR entries */
54 mac->rar_entry_count = 1;
55
56 /* Function pointers */
57 /* reset */
58 mac->ops.reset_hw = e1000_reset_hw_vf;
59 /* hw initialization */
60 mac->ops.init_hw = e1000_init_hw_vf;
61 /* check for link */
62 mac->ops.check_for_link = e1000_check_for_link_vf;
63 /* link info */
64 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
65 /* multicast address update */
66 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
67 /* set mac address */
68 mac->ops.rar_set = e1000_rar_set_vf;
69 /* read mac address */
70 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
71 /* set vlan filter table array */
72 mac->ops.set_vfta = e1000_set_vfta_vf;
73
74 return E1000_SUCCESS;
75}
76
77/**
78 * e1000_init_function_pointers_vf - Inits function pointers
79 * @hw: pointer to the HW structure
80 **/
81void e1000_init_function_pointers_vf(struct e1000_hw *hw)
82{
83 hw->mac.ops.init_params = e1000_init_mac_params_vf;
84 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
85}
86
87/**
88 * e1000_get_link_up_info_vf - Gets link info.
89 * @hw: pointer to the HW structure
90 * @speed: pointer to 16 bit value to store link speed.
91 * @duplex: pointer to 16 bit value to store duplex.
92 *
93 * Since we cannot read the PHY and get accurate link info, we must rely upon
94 * the status register's data which is often stale and inaccurate.
95 **/
96static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
97 u16 *duplex)
98{
99 s32 status;
100
101 status = er32(STATUS);
102 if (status & E1000_STATUS_SPEED_1000)
103 *speed = SPEED_1000;
104 else if (status & E1000_STATUS_SPEED_100)
105 *speed = SPEED_100;
106 else
107 *speed = SPEED_10;
108
109 if (status & E1000_STATUS_FD)
110 *duplex = FULL_DUPLEX;
111 else
112 *duplex = HALF_DUPLEX;
113
114 return E1000_SUCCESS;
115}
116
117/**
118 * e1000_reset_hw_vf - Resets the HW
119 * @hw: pointer to the HW structure
120 *
121 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
122 * This is all the reset we can perform on a VF.
123 **/
124static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
125{
126 struct e1000_mbx_info *mbx = &hw->mbx;
127 u32 timeout = E1000_VF_INIT_TIMEOUT;
128 u32 ret_val = -E1000_ERR_MAC_INIT;
129 u32 msgbuf[3];
130 u8 *addr = (u8 *)(&msgbuf[1]);
131 u32 ctrl;
132
133 /* assert vf queue/interrupt reset */
134 ctrl = er32(CTRL);
135 ew32(CTRL, ctrl | E1000_CTRL_RST);
136
137 /* we cannot initialize while the RSTI / RSTD bits are asserted */
138 while (!mbx->ops.check_for_rst(hw) && timeout) {
139 timeout--;
140 udelay(5);
141 }
142
143 if (timeout) {
144 /* mailbox timeout can now become active */
145 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
146
147 /* notify pf of vf reset completion */
148 msgbuf[0] = E1000_VF_RESET;
149 mbx->ops.write_posted(hw, msgbuf, 1);
150
151 msleep(10);
152
153 /* set our "perm_addr" based on info provided by PF */
154 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
155 if (!ret_val) {
156 if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK))
157 memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
158 else
159 ret_val = -E1000_ERR_MAC_INIT;
160 }
161 }
162
163 return ret_val;
164}
165
166/**
167 * e1000_init_hw_vf - Inits the HW
168 * @hw: pointer to the HW structure
169 *
170 * Not much to do here except clear the PF Reset indication if there is one.
171 **/
172static s32 e1000_init_hw_vf(struct e1000_hw *hw)
173{
174 /* attempt to set and restore our mac address */
175 e1000_rar_set_vf(hw, hw->mac.addr, 0);
176
177 return E1000_SUCCESS;
178}
179
180/**
181 * e1000_hash_mc_addr_vf - Generate a multicast hash value
182 * @hw: pointer to the HW structure
183 * @mc_addr: pointer to a multicast address
184 *
185 * Generates a multicast address hash value which is used to determine
186 * the multicast filter table array address and new table value. See
187 * e1000_mta_set_generic()
188 **/
189static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
190{
191 u32 hash_value, hash_mask;
192 u8 bit_shift = 0;
193
194 /* Register count multiplied by bits per register */
195 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
196
197 /*
198 * The bit_shift is the number of left-shifts
199 * where 0xFF would still fall within the hash mask.
200 */
201 while (hash_mask >> bit_shift != 0xFF)
202 bit_shift++;
203
204 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
205 (((u16) mc_addr[5]) << bit_shift)));
206
207 return hash_value;
208}
209
210/**
211 * e1000_update_mc_addr_list_vf - Update Multicast addresses
212 * @hw: pointer to the HW structure
213 * @mc_addr_list: array of multicast addresses to program
214 * @mc_addr_count: number of multicast addresses to program
215 * @rar_used_count: the first RAR register free to program
216 * @rar_count: total number of supported Receive Address Registers
217 *
218 * Updates the Receive Address Registers and Multicast Table Array.
219 * The caller must have a packed mc_addr_list of multicast addresses.
220 * The parameter rar_count will usually be hw->mac.rar_entry_count
221 * unless there are workarounds that change this.
222 **/
223static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
224 u8 *mc_addr_list, u32 mc_addr_count,
225 u32 rar_used_count, u32 rar_count)
226{
227 struct e1000_mbx_info *mbx = &hw->mbx;
228 u32 msgbuf[E1000_VFMAILBOX_SIZE];
229 u16 *hash_list = (u16 *)&msgbuf[1];
230 u32 hash_value;
231 u32 cnt, i;
232
233 /* Each entry in the list uses 1 16 bit word. We have 30
234 * 16 bit words available in our HW msg buffer (minus 1 for the
235 * msg type). That's 30 hash values if we pack 'em right. If
236 * there are more than 30 MC addresses to add then punt the
237 * extras for now and then add code to handle more than 30 later.
238 * It would be unusual for a server to request that many multi-cast
239 * addresses except for in large enterprise network environments.
240 */
241
242 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
243 msgbuf[0] = E1000_VF_SET_MULTICAST;
244 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
245
246 for (i = 0; i < cnt; i++) {
247 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
248 hash_list[i] = hash_value & 0x0FFFF;
249 mc_addr_list += ETH_ALEN;
250 }
251
252 mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
253}
254
255/**
256 * e1000_set_vfta_vf - Set/Unset vlan filter table address
257 * @hw: pointer to the HW structure
258 * @vid: determines the vfta register and bit to set/unset
259 * @set: if true then set bit, else clear bit
260 **/
261static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
262{
263 struct e1000_mbx_info *mbx = &hw->mbx;
264 u32 msgbuf[2];
265 s32 err;
266
267 msgbuf[0] = E1000_VF_SET_VLAN;
268 msgbuf[1] = vid;
269 /* Setting the 8 bit field MSG INFO to true indicates "add" */
270 if (set)
271 msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT;
272
273 mbx->ops.write_posted(hw, msgbuf, 2);
274
275 err = mbx->ops.read_posted(hw, msgbuf, 2);
276
277 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
278
279 /* if nacked the vlan was rejected */
280 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
281 err = -E1000_ERR_MAC_INIT;
282
283 return err;
284}
285
286/**
287 * e1000_rlpml_set_vf - Set the maximum receive packet length
288 * @hw: pointer to the HW structure
289 * @max_size: value to assign to max frame size
290 **/
291void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
292{
293 struct e1000_mbx_info *mbx = &hw->mbx;
294 u32 msgbuf[2];
295
296 msgbuf[0] = E1000_VF_SET_LPE;
297 msgbuf[1] = max_size;
298
299 mbx->ops.write_posted(hw, msgbuf, 2);
300}
301
302/**
303 * e1000_rar_set_vf - set device MAC address
304 * @hw: pointer to the HW structure
305 * @addr: pointer to the receive address
306 * @index: receive address array register
307 **/
308static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
309{
310 struct e1000_mbx_info *mbx = &hw->mbx;
311 u32 msgbuf[3];
312 u8 *msg_addr = (u8 *)(&msgbuf[1]);
313 s32 ret_val;
314
315 memset(msgbuf, 0, 12);
316 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
317 memcpy(msg_addr, addr, ETH_ALEN);
318 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
319
320 if (!ret_val)
321 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
322
323 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
324
325 /* if nacked the address was rejected, use "perm_addr" */
326 if (!ret_val &&
327 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
328 e1000_read_mac_addr_vf(hw);
329}
330
331/**
332 * e1000_read_mac_addr_vf - Read device MAC address
333 * @hw: pointer to the HW structure
334 **/
335static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
336{
337 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
338
339 return E1000_SUCCESS;
340}
341
342/**
343 * e1000_check_for_link_vf - Check for link for a virtual interface
344 * @hw: pointer to the HW structure
345 *
346 * Checks to see if the underlying PF is still talking to the VF and
347 * if it is then it reports the link state to the hardware, otherwise
348 * it reports link down and returns an error.
349 **/
350static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
351{
352 struct e1000_mbx_info *mbx = &hw->mbx;
353 struct e1000_mac_info *mac = &hw->mac;
354 s32 ret_val = E1000_SUCCESS;
355 u32 in_msg = 0;
356
357 /*
358 * We only want to run this if there has been a rst asserted.
359 * in this case that could mean a link change, device reset,
360 * or a virtual function reset
361 */
362
363 /* If we were hit with a reset or timeout drop the link */
364 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
365 mac->get_link_status = true;
366
367 if (!mac->get_link_status)
368 goto out;
369
370 /* if link status is down no point in checking to see if pf is up */
371 if (!(er32(STATUS) & E1000_STATUS_LU))
372 goto out;
373
374 /* if the read failed it could just be a mailbox collision, best wait
375 * until we are called again and don't report an error */
376 if (mbx->ops.read(hw, &in_msg, 1))
377 goto out;
378
379 /* if incoming message isn't clear to send we are waiting on response */
380 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
381 /* message is not CTS and is NACK we must have lost CTS status */
382 if (in_msg & E1000_VT_MSGTYPE_NACK)
383 ret_val = -E1000_ERR_MAC_INIT;
384 goto out;
385 }
386
387 /* the pf is talking, if we timed out in the past we reinit */
388 if (!mbx->timeout) {
389 ret_val = -E1000_ERR_MAC_INIT;
390 goto out;
391 }
392
393 /* if we passed all the tests above then the link is up and we no
394 * longer need to check for link */
395 mac->get_link_status = false;
396
397out:
398 return ret_val;
399}
400