Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
   4 *
   5 * Copyright (c) 2016 BayLibre, SAS.
   6 * Author: Kevin Hilman <khilman@baylibre.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/iopoll.h>
  14#include <linux/of_device.h>
  15#include <linux/platform_device.h>
  16#include <linux/ioport.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/mmc/host.h>
  19#include <linux/mmc/mmc.h>
  20#include <linux/mmc/sdio.h>
  21#include <linux/mmc/slot-gpio.h>
  22#include <linux/io.h>
  23#include <linux/clk.h>
  24#include <linux/clk-provider.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/reset.h>
  27#include <linux/interrupt.h>
  28#include <linux/bitfield.h>
  29#include <linux/pinctrl/consumer.h>
  30
  31#define DRIVER_NAME "meson-gx-mmc"
  32
  33#define SD_EMMC_CLOCK 0x0
  34#define   CLK_DIV_MASK GENMASK(5, 0)
  35#define   CLK_SRC_MASK GENMASK(7, 6)
  36#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
  37#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
  38#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
  39#define   CLK_PHASE_0 0
  40#define   CLK_PHASE_180 2
  41#define   CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
  42#define   CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
  43#define   CLK_V2_ALWAYS_ON BIT(24)
  44#define   CLK_V2_IRQ_SDIO_SLEEP BIT(25)
  45
  46#define   CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
  47#define   CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
  48#define   CLK_V3_ALWAYS_ON BIT(28)
  49#define   CLK_V3_IRQ_SDIO_SLEEP BIT(29)
  50
  51#define   CLK_TX_DELAY_MASK(h)		(h->data->tx_delay_mask)
  52#define   CLK_RX_DELAY_MASK(h)		(h->data->rx_delay_mask)
  53#define   CLK_ALWAYS_ON(h)		(h->data->always_on)
  54#define   CLK_IRQ_SDIO_SLEEP(h)		(h->data->irq_sdio_sleep)
  55
  56#define SD_EMMC_DELAY 0x4
  57#define SD_EMMC_ADJUST 0x8
  58#define   ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
  59#define   ADJUST_DS_EN BIT(15)
  60#define   ADJUST_ADJ_EN BIT(13)
  61
  62#define SD_EMMC_DELAY1 0x4
  63#define SD_EMMC_DELAY2 0x8
  64#define SD_EMMC_V3_ADJUST 0xc
  65
  66#define SD_EMMC_CALOUT 0x10
  67#define SD_EMMC_START 0x40
  68#define   START_DESC_INIT BIT(0)
  69#define   START_DESC_BUSY BIT(1)
  70#define   START_DESC_ADDR_MASK GENMASK(31, 2)
  71
  72#define SD_EMMC_CFG 0x44
  73#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
  74#define   CFG_BUS_WIDTH_1 0x0
  75#define   CFG_BUS_WIDTH_4 0x1
  76#define   CFG_BUS_WIDTH_8 0x2
  77#define   CFG_DDR BIT(2)
  78#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
  79#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
  80#define   CFG_RC_CC_MASK GENMASK(15, 12)
  81#define   CFG_STOP_CLOCK BIT(22)
  82#define   CFG_CLK_ALWAYS_ON BIT(18)
  83#define   CFG_CHK_DS BIT(20)
  84#define   CFG_AUTO_CLK BIT(23)
  85#define   CFG_ERR_ABORT BIT(27)
  86
  87#define SD_EMMC_STATUS 0x48
  88#define   STATUS_BUSY BIT(31)
  89#define   STATUS_DESC_BUSY BIT(30)
  90#define   STATUS_DATI GENMASK(23, 16)
  91
  92#define SD_EMMC_IRQ_EN 0x4c
  93#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
  94#define   IRQ_TXD_ERR BIT(8)
  95#define   IRQ_DESC_ERR BIT(9)
  96#define   IRQ_RESP_ERR BIT(10)
  97#define   IRQ_CRC_ERR \
  98	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
  99#define   IRQ_RESP_TIMEOUT BIT(11)
 100#define   IRQ_DESC_TIMEOUT BIT(12)
 101#define   IRQ_TIMEOUTS \
 102	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
 103#define   IRQ_END_OF_CHAIN BIT(13)
 104#define   IRQ_RESP_STATUS BIT(14)
 105#define   IRQ_SDIO BIT(15)
 106#define   IRQ_EN_MASK \
 107	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN)
 108
 109#define SD_EMMC_CMD_CFG 0x50
 110#define SD_EMMC_CMD_ARG 0x54
 111#define SD_EMMC_CMD_DAT 0x58
 112#define SD_EMMC_CMD_RSP 0x5c
 113#define SD_EMMC_CMD_RSP1 0x60
 114#define SD_EMMC_CMD_RSP2 0x64
 115#define SD_EMMC_CMD_RSP3 0x68
 116
 117#define SD_EMMC_RXD 0x94
 118#define SD_EMMC_TXD 0x94
 119#define SD_EMMC_LAST_REG SD_EMMC_TXD
 120
 121#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
 122#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
 123
 124#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
 125#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
 126#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
 127#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
 128#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
 129#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
 130
 131#define SD_EMMC_PRE_REQ_DONE BIT(0)
 132#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
 133
 134#define MUX_CLK_NUM_PARENTS 2
 135
 136struct meson_mmc_data {
 137	unsigned int tx_delay_mask;
 138	unsigned int rx_delay_mask;
 139	unsigned int always_on;
 140	unsigned int adjust;
 141	unsigned int irq_sdio_sleep;
 142};
 143
 144struct sd_emmc_desc {
 145	u32 cmd_cfg;
 146	u32 cmd_arg;
 147	u32 cmd_data;
 148	u32 cmd_resp;
 149};
 150
 151struct meson_host {
 152	struct	device		*dev;
 153	struct	meson_mmc_data *data;
 154	struct	mmc_host	*mmc;
 155	struct	mmc_command	*cmd;
 156
 157	void __iomem *regs;
 158	struct clk *core_clk;
 159	struct clk *mux_clk;
 160	struct clk *mmc_clk;
 161	unsigned long req_rate;
 162	bool ddr;
 163
 164	bool dram_access_quirk;
 165
 166	struct pinctrl *pinctrl;
 167	struct pinctrl_state *pins_clk_gate;
 168
 169	unsigned int bounce_buf_size;
 170	void *bounce_buf;
 171	void __iomem *bounce_iomem_buf;
 172	dma_addr_t bounce_dma_addr;
 173	struct sd_emmc_desc *descs;
 174	dma_addr_t descs_dma_addr;
 175
 176	int irq;
 177
 178	bool vqmmc_enabled;
 179	bool needs_pre_post_req;
 180
 181	spinlock_t lock;
 182};
 183
 184#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
 185#define CMD_CFG_BLOCK_MODE BIT(9)
 186#define CMD_CFG_R1B BIT(10)
 187#define CMD_CFG_END_OF_CHAIN BIT(11)
 188#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
 189#define CMD_CFG_NO_RESP BIT(16)
 190#define CMD_CFG_NO_CMD BIT(17)
 191#define CMD_CFG_DATA_IO BIT(18)
 192#define CMD_CFG_DATA_WR BIT(19)
 193#define CMD_CFG_RESP_NOCRC BIT(20)
 194#define CMD_CFG_RESP_128 BIT(21)
 195#define CMD_CFG_RESP_NUM BIT(22)
 196#define CMD_CFG_DATA_NUM BIT(23)
 197#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
 198#define CMD_CFG_ERROR BIT(30)
 199#define CMD_CFG_OWNER BIT(31)
 200
 201#define CMD_DATA_MASK GENMASK(31, 2)
 202#define CMD_DATA_BIG_ENDIAN BIT(1)
 203#define CMD_DATA_SRAM BIT(0)
 204#define CMD_RESP_MASK GENMASK(31, 1)
 205#define CMD_RESP_SRAM BIT(0)
 206
 207static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
 208{
 209	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
 210
 211	if (!timeout)
 212		return SD_EMMC_CMD_TIMEOUT_DATA;
 213
 214	timeout = roundup_pow_of_two(timeout);
 215
 216	return min(timeout, 32768U); /* max. 2^15 ms */
 217}
 218
 219static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
 220{
 221	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
 222		return cmd->mrq->cmd;
 223	else if (mmc_op_multi(cmd->opcode) &&
 224		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
 225		return cmd->mrq->stop;
 226	else
 227		return NULL;
 228}
 229
 230static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
 231					struct mmc_request *mrq)
 232{
 233	struct meson_host *host = mmc_priv(mmc);
 234	struct mmc_data *data = mrq->data;
 235	struct scatterlist *sg;
 236	int i;
 237
 238	/*
 239	 * When Controller DMA cannot directly access DDR memory, disable
 240	 * support for Chain Mode to directly use the internal SRAM using
 241	 * the bounce buffer mode.
 242	 */
 243	if (host->dram_access_quirk)
 244		return;
 245
 246	/* SD_IO_RW_EXTENDED (CMD53) can also use block mode under the hood */
 247	if (data->blocks > 1 || mrq->cmd->opcode == SD_IO_RW_EXTENDED) {
 248		/*
 249		 * In block mode DMA descriptor format, "length" field indicates
 250		 * number of blocks and there is no way to pass DMA size that
 251		 * is not multiple of SDIO block size, making it impossible to
 252		 * tie more than one memory buffer with single SDIO block.
 253		 * Block mode sg buffer size should be aligned with SDIO block
 254		 * size, otherwise chain mode could not be used.
 255		 */
 256		for_each_sg(data->sg, sg, data->sg_len, i) {
 257			if (sg->length % data->blksz) {
 258				dev_warn_once(mmc_dev(mmc),
 259					      "unaligned sg len %u blksize %u, disabling descriptor DMA for transfer\n",
 260					      sg->length, data->blksz);
 261				return;
 262			}
 263		}
 264	}
 265
 266	for_each_sg(data->sg, sg, data->sg_len, i) {
 267		/* check for 8 byte alignment */
 268		if (sg->offset % 8) {
 269			dev_warn_once(mmc_dev(mmc),
 270				      "unaligned sg offset %u, disabling descriptor DMA for transfer\n",
 271				      sg->offset);
 272			return;
 273		}
 274	}
 275
 276	data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
 277}
 278
 279static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
 280{
 281	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
 282}
 283
 284static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
 285{
 286	return data && data->flags & MMC_DATA_READ &&
 287	       !meson_mmc_desc_chain_mode(data);
 288}
 289
 290static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
 291{
 292	struct mmc_data *data = mrq->data;
 293
 294	if (!data)
 295		return;
 296
 297	meson_mmc_get_transfer_mode(mmc, mrq);
 298	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
 299
 300	if (!meson_mmc_desc_chain_mode(data))
 301		return;
 302
 303	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
 304                                   mmc_get_dma_dir(data));
 305	if (!data->sg_count)
 306		dev_err(mmc_dev(mmc), "dma_map_sg failed");
 307}
 308
 309static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
 310			       int err)
 311{
 312	struct mmc_data *data = mrq->data;
 313
 314	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
 315		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
 316			     mmc_get_dma_dir(data));
 317}
 318
 319/*
 320 * Gating the clock on this controller is tricky.  It seems the mmc clock
 321 * is also used by the controller.  It may crash during some operation if the
 322 * clock is stopped.  The safest thing to do, whenever possible, is to keep
 323 * clock running at stop it at the pad using the pinmux.
 324 */
 325static void meson_mmc_clk_gate(struct meson_host *host)
 326{
 327	u32 cfg;
 328
 329	if (host->pins_clk_gate) {
 330		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
 331	} else {
 332		/*
 333		 * If the pinmux is not provided - default to the classic and
 334		 * unsafe method
 335		 */
 336		cfg = readl(host->regs + SD_EMMC_CFG);
 337		cfg |= CFG_STOP_CLOCK;
 338		writel(cfg, host->regs + SD_EMMC_CFG);
 339	}
 340}
 341
 342static void meson_mmc_clk_ungate(struct meson_host *host)
 343{
 344	u32 cfg;
 345
 346	if (host->pins_clk_gate)
 347		pinctrl_select_default_state(host->dev);
 348
 349	/* Make sure the clock is not stopped in the controller */
 350	cfg = readl(host->regs + SD_EMMC_CFG);
 351	cfg &= ~CFG_STOP_CLOCK;
 352	writel(cfg, host->regs + SD_EMMC_CFG);
 353}
 354
 355static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
 356			     bool ddr)
 357{
 358	struct mmc_host *mmc = host->mmc;
 359	int ret;
 360	u32 cfg;
 361
 362	/* Same request - bail-out */
 363	if (host->ddr == ddr && host->req_rate == rate)
 364		return 0;
 365
 366	/* stop clock */
 367	meson_mmc_clk_gate(host);
 368	host->req_rate = 0;
 369	mmc->actual_clock = 0;
 370
 371	/* return with clock being stopped */
 372	if (!rate)
 373		return 0;
 374
 375	/* Stop the clock during rate change to avoid glitches */
 376	cfg = readl(host->regs + SD_EMMC_CFG);
 377	cfg |= CFG_STOP_CLOCK;
 378	writel(cfg, host->regs + SD_EMMC_CFG);
 379
 380	if (ddr) {
 381		/* DDR modes require higher module clock */
 382		rate <<= 1;
 383		cfg |= CFG_DDR;
 384	} else {
 385		cfg &= ~CFG_DDR;
 386	}
 387	writel(cfg, host->regs + SD_EMMC_CFG);
 388	host->ddr = ddr;
 389
 390	ret = clk_set_rate(host->mmc_clk, rate);
 391	if (ret) {
 392		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
 393			rate, ret);
 394		return ret;
 395	}
 396
 397	host->req_rate = rate;
 398	mmc->actual_clock = clk_get_rate(host->mmc_clk);
 399
 400	/* We should report the real output frequency of the controller */
 401	if (ddr) {
 402		host->req_rate >>= 1;
 403		mmc->actual_clock >>= 1;
 404	}
 405
 406	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
 407	if (rate != mmc->actual_clock)
 408		dev_dbg(host->dev, "requested rate was %lu\n", rate);
 409
 410	/* (re)start clock */
 411	meson_mmc_clk_ungate(host);
 412
 413	return 0;
 414}
 415
 416/*
 417 * The SD/eMMC IP block has an internal mux and divider used for
 418 * generating the MMC clock.  Use the clock framework to create and
 419 * manage these clocks.
 420 */
 421static int meson_mmc_clk_init(struct meson_host *host)
 422{
 423	struct clk_init_data init;
 424	struct clk_mux *mux;
 425	struct clk_divider *div;
 426	char clk_name[32];
 427	int i, ret = 0;
 428	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
 429	const char *clk_parent[1];
 430	u32 clk_reg;
 431
 432	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
 433	clk_reg = CLK_ALWAYS_ON(host);
 434	clk_reg |= CLK_DIV_MASK;
 435	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
 436	clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
 437	clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
 438	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 439		clk_reg |= CLK_IRQ_SDIO_SLEEP(host);
 440	writel(clk_reg, host->regs + SD_EMMC_CLOCK);
 441
 442	/* get the mux parents */
 443	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
 444		struct clk *clk;
 445		char name[16];
 446
 447		snprintf(name, sizeof(name), "clkin%d", i);
 448		clk = devm_clk_get(host->dev, name);
 449		if (IS_ERR(clk))
 450			return dev_err_probe(host->dev, PTR_ERR(clk),
 451					     "Missing clock %s\n", name);
 452
 453		mux_parent_names[i] = __clk_get_name(clk);
 454	}
 455
 456	/* create the mux */
 457	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
 458	if (!mux)
 459		return -ENOMEM;
 460
 461	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
 462	init.name = clk_name;
 463	init.ops = &clk_mux_ops;
 464	init.flags = 0;
 465	init.parent_names = mux_parent_names;
 466	init.num_parents = MUX_CLK_NUM_PARENTS;
 467
 468	mux->reg = host->regs + SD_EMMC_CLOCK;
 469	mux->shift = __ffs(CLK_SRC_MASK);
 470	mux->mask = CLK_SRC_MASK >> mux->shift;
 471	mux->hw.init = &init;
 472
 473	host->mux_clk = devm_clk_register(host->dev, &mux->hw);
 474	if (WARN_ON(IS_ERR(host->mux_clk)))
 475		return PTR_ERR(host->mux_clk);
 476
 477	/* create the divider */
 478	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
 479	if (!div)
 480		return -ENOMEM;
 481
 482	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
 483	init.name = clk_name;
 484	init.ops = &clk_divider_ops;
 485	init.flags = CLK_SET_RATE_PARENT;
 486	clk_parent[0] = __clk_get_name(host->mux_clk);
 487	init.parent_names = clk_parent;
 488	init.num_parents = 1;
 489
 490	div->reg = host->regs + SD_EMMC_CLOCK;
 491	div->shift = __ffs(CLK_DIV_MASK);
 492	div->width = __builtin_popcountl(CLK_DIV_MASK);
 493	div->hw.init = &init;
 494	div->flags = CLK_DIVIDER_ONE_BASED;
 495
 496	host->mmc_clk = devm_clk_register(host->dev, &div->hw);
 497	if (WARN_ON(IS_ERR(host->mmc_clk)))
 498		return PTR_ERR(host->mmc_clk);
 499
 500	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
 501	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
 502	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
 503	if (ret)
 504		return ret;
 505
 506	return clk_prepare_enable(host->mmc_clk);
 507}
 508
 509static void meson_mmc_disable_resampling(struct meson_host *host)
 510{
 511	unsigned int val = readl(host->regs + host->data->adjust);
 512
 513	val &= ~ADJUST_ADJ_EN;
 514	writel(val, host->regs + host->data->adjust);
 515}
 516
 517static void meson_mmc_reset_resampling(struct meson_host *host)
 518{
 519	unsigned int val;
 520
 521	meson_mmc_disable_resampling(host);
 522
 523	val = readl(host->regs + host->data->adjust);
 524	val &= ~ADJUST_ADJ_DELAY_MASK;
 525	writel(val, host->regs + host->data->adjust);
 526}
 527
 528static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
 529{
 530	struct meson_host *host = mmc_priv(mmc);
 531	unsigned int val, dly, max_dly, i;
 532	int ret;
 533
 534	/* Resampling is done using the source clock */
 535	max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
 536			       clk_get_rate(host->mmc_clk));
 537
 538	val = readl(host->regs + host->data->adjust);
 539	val |= ADJUST_ADJ_EN;
 540	writel(val, host->regs + host->data->adjust);
 541
 542	if (mmc_doing_retune(mmc))
 543		dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
 544	else
 545		dly = 0;
 546
 547	for (i = 0; i < max_dly; i++) {
 548		val &= ~ADJUST_ADJ_DELAY_MASK;
 549		val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
 550		writel(val, host->regs + host->data->adjust);
 551
 552		ret = mmc_send_tuning(mmc, opcode, NULL);
 553		if (!ret) {
 554			dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
 555				(dly + i) % max_dly);
 556			return 0;
 557		}
 558	}
 559
 560	meson_mmc_reset_resampling(host);
 561	return -EIO;
 562}
 563
 564static int meson_mmc_prepare_ios_clock(struct meson_host *host,
 565				       struct mmc_ios *ios)
 566{
 567	bool ddr;
 568
 569	switch (ios->timing) {
 570	case MMC_TIMING_MMC_DDR52:
 571	case MMC_TIMING_UHS_DDR50:
 572		ddr = true;
 573		break;
 574
 575	default:
 576		ddr = false;
 577		break;
 578	}
 579
 580	return meson_mmc_clk_set(host, ios->clock, ddr);
 581}
 582
 583static void meson_mmc_check_resampling(struct meson_host *host,
 584				       struct mmc_ios *ios)
 585{
 586	switch (ios->timing) {
 587	case MMC_TIMING_LEGACY:
 588	case MMC_TIMING_MMC_HS:
 589	case MMC_TIMING_SD_HS:
 590	case MMC_TIMING_MMC_DDR52:
 591		meson_mmc_disable_resampling(host);
 592		break;
 593	}
 594}
 595
 596static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
 597{
 598	struct meson_host *host = mmc_priv(mmc);
 599	u32 bus_width, val;
 600	int err;
 601
 602	/*
 603	 * GPIO regulator, only controls switching between 1v8 and
 604	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
 605	 */
 606	switch (ios->power_mode) {
 607	case MMC_POWER_OFF:
 608		if (!IS_ERR(mmc->supply.vmmc))
 609			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 610
 611		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
 612			regulator_disable(mmc->supply.vqmmc);
 613			host->vqmmc_enabled = false;
 614		}
 615
 616		break;
 617
 618	case MMC_POWER_UP:
 619		if (!IS_ERR(mmc->supply.vmmc))
 620			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
 621
 622		break;
 623
 624	case MMC_POWER_ON:
 625		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
 626			int ret = regulator_enable(mmc->supply.vqmmc);
 627
 628			if (ret < 0)
 629				dev_err(host->dev,
 630					"failed to enable vqmmc regulator\n");
 631			else
 632				host->vqmmc_enabled = true;
 633		}
 634
 635		break;
 636	}
 637
 638	/* Bus width */
 639	switch (ios->bus_width) {
 640	case MMC_BUS_WIDTH_1:
 641		bus_width = CFG_BUS_WIDTH_1;
 642		break;
 643	case MMC_BUS_WIDTH_4:
 644		bus_width = CFG_BUS_WIDTH_4;
 645		break;
 646	case MMC_BUS_WIDTH_8:
 647		bus_width = CFG_BUS_WIDTH_8;
 648		break;
 649	default:
 650		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
 651			ios->bus_width);
 652		bus_width = CFG_BUS_WIDTH_4;
 653	}
 654
 655	val = readl(host->regs + SD_EMMC_CFG);
 656	val &= ~CFG_BUS_WIDTH_MASK;
 657	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
 658	writel(val, host->regs + SD_EMMC_CFG);
 659
 660	meson_mmc_check_resampling(host, ios);
 661	err = meson_mmc_prepare_ios_clock(host, ios);
 662	if (err)
 663		dev_err(host->dev, "Failed to set clock: %d\n,", err);
 664
 665	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
 666}
 667
 668static void meson_mmc_request_done(struct mmc_host *mmc,
 669				   struct mmc_request *mrq)
 670{
 671	struct meson_host *host = mmc_priv(mmc);
 672
 673	host->cmd = NULL;
 674	if (host->needs_pre_post_req)
 675		meson_mmc_post_req(mmc, mrq, 0);
 676	mmc_request_done(host->mmc, mrq);
 677}
 678
 679static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
 680{
 681	struct meson_host *host = mmc_priv(mmc);
 682	u32 cfg, blksz_old;
 683
 684	cfg = readl(host->regs + SD_EMMC_CFG);
 685	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
 686
 687	if (!is_power_of_2(blksz))
 688		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
 689
 690	blksz = ilog2(blksz);
 691
 692	/* check if block-size matches, if not update */
 693	if (blksz == blksz_old)
 694		return;
 695
 696	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
 697		blksz_old, blksz);
 698
 699	cfg &= ~CFG_BLK_LEN_MASK;
 700	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
 701	writel(cfg, host->regs + SD_EMMC_CFG);
 702}
 703
 704static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
 705{
 706	if (cmd->flags & MMC_RSP_PRESENT) {
 707		if (cmd->flags & MMC_RSP_136)
 708			*cmd_cfg |= CMD_CFG_RESP_128;
 709		*cmd_cfg |= CMD_CFG_RESP_NUM;
 710
 711		if (!(cmd->flags & MMC_RSP_CRC))
 712			*cmd_cfg |= CMD_CFG_RESP_NOCRC;
 713
 714		if (cmd->flags & MMC_RSP_BUSY)
 715			*cmd_cfg |= CMD_CFG_R1B;
 716	} else {
 717		*cmd_cfg |= CMD_CFG_NO_RESP;
 718	}
 719}
 720
 721static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
 722{
 723	struct meson_host *host = mmc_priv(mmc);
 724	struct sd_emmc_desc *desc = host->descs;
 725	struct mmc_data *data = host->cmd->data;
 726	struct scatterlist *sg;
 727	u32 start;
 728	int i;
 729
 730	if (data->flags & MMC_DATA_WRITE)
 731		cmd_cfg |= CMD_CFG_DATA_WR;
 732
 733	if (data->blocks > 1) {
 734		cmd_cfg |= CMD_CFG_BLOCK_MODE;
 735		meson_mmc_set_blksz(mmc, data->blksz);
 736	}
 737
 738	for_each_sg(data->sg, sg, data->sg_count, i) {
 739		unsigned int len = sg_dma_len(sg);
 740
 741		if (data->blocks > 1)
 742			len /= data->blksz;
 743
 744		desc[i].cmd_cfg = cmd_cfg;
 745		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
 746		if (i > 0)
 747			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
 748		desc[i].cmd_arg = host->cmd->arg;
 749		desc[i].cmd_resp = 0;
 750		desc[i].cmd_data = sg_dma_address(sg);
 751	}
 752	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
 753
 754	dma_wmb(); /* ensure descriptor is written before kicked */
 755	start = host->descs_dma_addr | START_DESC_BUSY;
 756	writel(start, host->regs + SD_EMMC_START);
 757}
 758
 759/* local sg copy for dram_access_quirk */
 760static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data,
 761				  size_t buflen, bool to_buffer)
 762{
 763	unsigned int sg_flags = SG_MITER_ATOMIC;
 764	struct scatterlist *sgl = data->sg;
 765	unsigned int nents = data->sg_len;
 766	struct sg_mapping_iter miter;
 767	unsigned int offset = 0;
 768
 769	if (to_buffer)
 770		sg_flags |= SG_MITER_FROM_SG;
 771	else
 772		sg_flags |= SG_MITER_TO_SG;
 773
 774	sg_miter_start(&miter, sgl, nents, sg_flags);
 775
 776	while ((offset < buflen) && sg_miter_next(&miter)) {
 777		unsigned int buf_offset = 0;
 778		unsigned int len, left;
 779		u32 *buf = miter.addr;
 780
 781		len = min(miter.length, buflen - offset);
 782		left = len;
 783
 784		if (to_buffer) {
 785			do {
 786				writel(*buf++, host->bounce_iomem_buf + offset + buf_offset);
 787
 788				buf_offset += 4;
 789				left -= 4;
 790			} while (left);
 791		} else {
 792			do {
 793				*buf++ = readl(host->bounce_iomem_buf + offset + buf_offset);
 794
 795				buf_offset += 4;
 796				left -= 4;
 797			} while (left);
 798		}
 799
 800		offset += len;
 801	}
 802
 803	sg_miter_stop(&miter);
 804}
 805
 806static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
 807{
 808	struct meson_host *host = mmc_priv(mmc);
 809	struct mmc_data *data = cmd->data;
 810	u32 cmd_cfg = 0, cmd_data = 0;
 811	unsigned int xfer_bytes = 0;
 812
 813	/* Setup descriptors */
 814	dma_rmb();
 815
 816	host->cmd = cmd;
 817
 818	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
 819	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
 820	cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
 821
 822	meson_mmc_set_response_bits(cmd, &cmd_cfg);
 823
 824	/* data? */
 825	if (data) {
 826		data->bytes_xfered = 0;
 827		cmd_cfg |= CMD_CFG_DATA_IO;
 828		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
 829				      ilog2(meson_mmc_get_timeout_msecs(data)));
 830
 831		if (meson_mmc_desc_chain_mode(data)) {
 832			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
 833			return;
 834		}
 835
 836		if (data->blocks > 1) {
 837			cmd_cfg |= CMD_CFG_BLOCK_MODE;
 838			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
 839					      data->blocks);
 840			meson_mmc_set_blksz(mmc, data->blksz);
 841		} else {
 842			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
 843		}
 844
 845		xfer_bytes = data->blksz * data->blocks;
 846		if (data->flags & MMC_DATA_WRITE) {
 847			cmd_cfg |= CMD_CFG_DATA_WR;
 848			WARN_ON(xfer_bytes > host->bounce_buf_size);
 849			if (host->dram_access_quirk)
 850				meson_mmc_copy_buffer(host, data, xfer_bytes, true);
 851			else
 852				sg_copy_to_buffer(data->sg, data->sg_len,
 853						  host->bounce_buf, xfer_bytes);
 854			dma_wmb();
 855		}
 856
 857		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
 858	} else {
 859		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
 860				      ilog2(SD_EMMC_CMD_TIMEOUT));
 861	}
 862
 863	/* Last descriptor */
 864	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
 865	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
 866	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
 867	writel(0, host->regs + SD_EMMC_CMD_RSP);
 868	wmb(); /* ensure descriptor is written before kicked */
 869	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
 870}
 871
 872static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data)
 873{
 874	struct scatterlist *sg;
 875	int i;
 876
 877	/* Reject request if any element offset or size is not 32bit aligned */
 878	for_each_sg(data->sg, sg, data->sg_len, i) {
 879		if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
 880		    !IS_ALIGNED(sg->length, sizeof(u32))) {
 881			dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n",
 882				data->sg->offset, data->sg->length);
 883			return -EINVAL;
 884		}
 885	}
 886
 887	return 0;
 888}
 889
 890static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
 891{
 892	struct meson_host *host = mmc_priv(mmc);
 893	host->needs_pre_post_req = mrq->data &&
 894			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
 895
 896	/*
 897	 * The memory at the end of the controller used as bounce buffer for
 898	 * the dram_access_quirk only accepts 32bit read/write access,
 899	 * check the aligment and length of the data before starting the request.
 900	 */
 901	if (host->dram_access_quirk && mrq->data) {
 902		mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data);
 903		if (mrq->cmd->error) {
 904			mmc_request_done(mmc, mrq);
 905			return;
 906		}
 907	}
 908
 909	if (host->needs_pre_post_req) {
 910		meson_mmc_get_transfer_mode(mmc, mrq);
 911		if (!meson_mmc_desc_chain_mode(mrq->data))
 912			host->needs_pre_post_req = false;
 913	}
 914
 915	if (host->needs_pre_post_req)
 916		meson_mmc_pre_req(mmc, mrq);
 917
 918	/* Stop execution */
 919	writel(0, host->regs + SD_EMMC_START);
 920
 921	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
 922}
 923
 924static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
 925{
 926	struct meson_host *host = mmc_priv(mmc);
 927
 928	if (cmd->flags & MMC_RSP_136) {
 929		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
 930		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
 931		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
 932		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
 933	} else if (cmd->flags & MMC_RSP_PRESENT) {
 934		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
 935	}
 936}
 937
 938static void __meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
 939{
 940	struct meson_host *host = mmc_priv(mmc);
 941	u32 reg_irqen = IRQ_EN_MASK;
 942
 943	if (enable)
 944		reg_irqen |= IRQ_SDIO;
 945	writel(reg_irqen, host->regs + SD_EMMC_IRQ_EN);
 946}
 947
 948static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
 949{
 950	struct meson_host *host = dev_id;
 951	struct mmc_command *cmd;
 952	u32 status, raw_status, irq_mask = IRQ_EN_MASK;
 953	irqreturn_t ret = IRQ_NONE;
 954
 955	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 956		irq_mask |= IRQ_SDIO;
 957	raw_status = readl(host->regs + SD_EMMC_STATUS);
 958	status = raw_status & irq_mask;
 959
 960	if (!status) {
 961		dev_dbg(host->dev,
 962			"Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
 963			 irq_mask, raw_status);
 964		return IRQ_NONE;
 965	}
 966
 967	if (WARN_ON(!host))
 968		return IRQ_NONE;
 969
 970	/* ack all raised interrupts */
 971	writel(status, host->regs + SD_EMMC_STATUS);
 972
 973	cmd = host->cmd;
 974
 975	if (status & IRQ_SDIO) {
 976		spin_lock(&host->lock);
 977		__meson_mmc_enable_sdio_irq(host->mmc, 0);
 978		sdio_signal_irq(host->mmc);
 979		spin_unlock(&host->lock);
 980		status &= ~IRQ_SDIO;
 981		if (!status)
 982			return IRQ_HANDLED;
 983	}
 984
 985	if (WARN_ON(!cmd))
 986		return IRQ_NONE;
 987
 988	cmd->error = 0;
 989	if (status & IRQ_CRC_ERR) {
 990		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
 991		cmd->error = -EILSEQ;
 992		ret = IRQ_WAKE_THREAD;
 993		goto out;
 994	}
 995
 996	if (status & IRQ_TIMEOUTS) {
 997		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
 998		cmd->error = -ETIMEDOUT;
 999		ret = IRQ_WAKE_THREAD;
1000		goto out;
1001	}
1002
1003	meson_mmc_read_resp(host->mmc, cmd);
1004
1005	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
1006		struct mmc_data *data = cmd->data;
1007
1008		if (data && !cmd->error)
1009			data->bytes_xfered = data->blksz * data->blocks;
1010		if (meson_mmc_bounce_buf_read(data) ||
1011		    meson_mmc_get_next_command(cmd))
1012			ret = IRQ_WAKE_THREAD;
1013		else
1014			ret = IRQ_HANDLED;
1015	}
1016
1017out:
1018	if (cmd->error) {
1019		/* Stop desc in case of errors */
1020		u32 start = readl(host->regs + SD_EMMC_START);
1021
1022		start &= ~START_DESC_BUSY;
1023		writel(start, host->regs + SD_EMMC_START);
1024	}
1025
1026	if (ret == IRQ_HANDLED)
1027		meson_mmc_request_done(host->mmc, cmd->mrq);
1028
1029	return ret;
1030}
1031
1032static int meson_mmc_wait_desc_stop(struct meson_host *host)
1033{
1034	u32 status;
1035
1036	/*
1037	 * It may sometimes take a while for it to actually halt. Here, we
1038	 * are giving it 5ms to comply
1039	 *
1040	 * If we don't confirm the descriptor is stopped, it might raise new
1041	 * IRQs after we have called mmc_request_done() which is bad.
1042	 */
1043
1044	return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
1045				  !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
1046				  100, 5000);
1047}
1048
1049static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
1050{
1051	struct meson_host *host = dev_id;
1052	struct mmc_command *next_cmd, *cmd = host->cmd;
1053	struct mmc_data *data;
1054	unsigned int xfer_bytes;
1055
1056	if (WARN_ON(!cmd))
1057		return IRQ_NONE;
1058
1059	if (cmd->error) {
1060		meson_mmc_wait_desc_stop(host);
1061		meson_mmc_request_done(host->mmc, cmd->mrq);
1062
1063		return IRQ_HANDLED;
1064	}
1065
1066	data = cmd->data;
1067	if (meson_mmc_bounce_buf_read(data)) {
1068		xfer_bytes = data->blksz * data->blocks;
1069		WARN_ON(xfer_bytes > host->bounce_buf_size);
1070		if (host->dram_access_quirk)
1071			meson_mmc_copy_buffer(host, data, xfer_bytes, false);
1072		else
1073			sg_copy_from_buffer(data->sg, data->sg_len,
1074					    host->bounce_buf, xfer_bytes);
1075	}
1076
1077	next_cmd = meson_mmc_get_next_command(cmd);
1078	if (next_cmd)
1079		meson_mmc_start_cmd(host->mmc, next_cmd);
1080	else
1081		meson_mmc_request_done(host->mmc, cmd->mrq);
1082
1083	return IRQ_HANDLED;
1084}
1085
1086/*
1087 * NOTE: we only need this until the GPIO/pinctrl driver can handle
1088 * interrupts.  For now, the MMC core will use this for polling.
1089 */
1090static int meson_mmc_get_cd(struct mmc_host *mmc)
1091{
1092	int status = mmc_gpio_get_cd(mmc);
1093
1094	if (status == -ENOSYS)
1095		return 1; /* assume present */
1096
1097	return status;
1098}
1099
1100static void meson_mmc_cfg_init(struct meson_host *host)
1101{
1102	u32 cfg = 0;
1103
1104	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
1105			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
1106	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
1107	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1108
1109	/* abort chain on R/W errors */
1110	cfg |= CFG_ERR_ABORT;
1111
1112	writel(cfg, host->regs + SD_EMMC_CFG);
1113}
1114
1115static int meson_mmc_card_busy(struct mmc_host *mmc)
1116{
1117	struct meson_host *host = mmc_priv(mmc);
1118	u32 regval;
1119
1120	regval = readl(host->regs + SD_EMMC_STATUS);
1121
1122	/* We are only interrested in lines 0 to 3, so mask the other ones */
1123	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1124}
1125
1126static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1127{
1128	int ret;
1129
1130	/* vqmmc regulator is available */
1131	if (!IS_ERR(mmc->supply.vqmmc)) {
1132		/*
1133		 * The usual amlogic setup uses a GPIO to switch from one
1134		 * regulator to the other. While the voltage ramp up is
1135		 * pretty fast, care must be taken when switching from 3.3v
1136		 * to 1.8v. Please make sure the regulator framework is aware
1137		 * of your own regulator constraints
1138		 */
1139		ret = mmc_regulator_set_vqmmc(mmc, ios);
1140		return ret < 0 ? ret : 0;
1141	}
1142
1143	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1144	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1145		return 0;
1146
1147	return -EINVAL;
1148}
1149
1150static void meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1151{
1152	struct meson_host *host = mmc_priv(mmc);
1153	unsigned long flags;
1154
1155	spin_lock_irqsave(&host->lock, flags);
1156	__meson_mmc_enable_sdio_irq(mmc, enable);
1157	spin_unlock_irqrestore(&host->lock, flags);
1158}
1159
1160static void meson_mmc_ack_sdio_irq(struct mmc_host *mmc)
1161{
1162	meson_mmc_enable_sdio_irq(mmc, 1);
1163}
1164
1165static const struct mmc_host_ops meson_mmc_ops = {
1166	.request	= meson_mmc_request,
1167	.set_ios	= meson_mmc_set_ios,
1168	.get_cd         = meson_mmc_get_cd,
1169	.pre_req	= meson_mmc_pre_req,
1170	.post_req	= meson_mmc_post_req,
1171	.execute_tuning = meson_mmc_resampling_tuning,
1172	.card_busy	= meson_mmc_card_busy,
1173	.start_signal_voltage_switch = meson_mmc_voltage_switch,
1174	.enable_sdio_irq = meson_mmc_enable_sdio_irq,
1175	.ack_sdio_irq	= meson_mmc_ack_sdio_irq,
1176};
1177
1178static int meson_mmc_probe(struct platform_device *pdev)
1179{
1180	struct resource *res;
1181	struct meson_host *host;
1182	struct mmc_host *mmc;
1183	int ret;
1184
1185	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1186	if (!mmc)
1187		return -ENOMEM;
1188	host = mmc_priv(mmc);
1189	host->mmc = mmc;
1190	host->dev = &pdev->dev;
1191	dev_set_drvdata(&pdev->dev, host);
1192
1193	/* The G12A SDIO Controller needs an SRAM bounce buffer */
1194	host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1195					"amlogic,dram-access-quirk");
1196
1197	/* Get regulators and the supported OCR mask */
1198	host->vqmmc_enabled = false;
1199	ret = mmc_regulator_get_supply(mmc);
1200	if (ret)
1201		goto free_host;
1202
1203	ret = mmc_of_parse(mmc);
1204	if (ret) {
1205		if (ret != -EPROBE_DEFER)
1206			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1207		goto free_host;
1208	}
1209
1210	mmc->caps |= MMC_CAP_CMD23;
1211
1212	if (mmc->caps & MMC_CAP_SDIO_IRQ)
1213		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
1214
1215	host->data = (struct meson_mmc_data *)
1216		of_device_get_match_data(&pdev->dev);
1217	if (!host->data) {
1218		ret = -EINVAL;
1219		goto free_host;
1220	}
1221
1222	ret = device_reset_optional(&pdev->dev);
1223	if (ret) {
1224		dev_err_probe(&pdev->dev, ret, "device reset failed\n");
1225		goto free_host;
1226	}
1227
1228	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1229	host->regs = devm_ioremap_resource(&pdev->dev, res);
1230	if (IS_ERR(host->regs)) {
1231		ret = PTR_ERR(host->regs);
1232		goto free_host;
1233	}
1234
1235	host->irq = platform_get_irq(pdev, 0);
1236	if (host->irq <= 0) {
1237		ret = -EINVAL;
1238		goto free_host;
1239	}
1240
1241	host->pinctrl = devm_pinctrl_get(&pdev->dev);
1242	if (IS_ERR(host->pinctrl)) {
1243		ret = PTR_ERR(host->pinctrl);
1244		goto free_host;
1245	}
1246
1247	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1248						   "clk-gate");
1249	if (IS_ERR(host->pins_clk_gate)) {
1250		dev_warn(&pdev->dev,
1251			 "can't get clk-gate pinctrl, using clk_stop bit\n");
1252		host->pins_clk_gate = NULL;
1253	}
1254
1255	host->core_clk = devm_clk_get(&pdev->dev, "core");
1256	if (IS_ERR(host->core_clk)) {
1257		ret = PTR_ERR(host->core_clk);
1258		goto free_host;
1259	}
1260
1261	ret = clk_prepare_enable(host->core_clk);
1262	if (ret)
1263		goto free_host;
1264
1265	ret = meson_mmc_clk_init(host);
1266	if (ret)
1267		goto err_core_clk;
1268
1269	/* set config to sane default */
1270	meson_mmc_cfg_init(host);
1271
1272	/* Stop execution */
1273	writel(0, host->regs + SD_EMMC_START);
1274
1275	/* clear, ack and enable interrupts */
1276	writel(0, host->regs + SD_EMMC_IRQ_EN);
1277	writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
1278	writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
1279
1280	ret = request_threaded_irq(host->irq, meson_mmc_irq,
1281				   meson_mmc_irq_thread, IRQF_ONESHOT,
1282				   dev_name(&pdev->dev), host);
1283	if (ret)
1284		goto err_init_clk;
1285
1286	spin_lock_init(&host->lock);
1287
1288	if (host->dram_access_quirk) {
1289		/* Limit segments to 1 due to low available sram memory */
1290		mmc->max_segs = 1;
1291		/* Limit to the available sram memory */
1292		mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1293				     mmc->max_blk_size;
1294	} else {
1295		mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1296		mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1297				sizeof(struct sd_emmc_desc);
1298	}
1299	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1300	mmc->max_seg_size = mmc->max_req_size;
1301
1302	/*
1303	 * At the moment, we don't know how to reliably enable HS400.
1304	 * From the different datasheets, it is not even clear if this mode
1305	 * is officially supported by any of the SoCs
1306	 */
1307	mmc->caps2 &= ~MMC_CAP2_HS400;
1308
1309	if (host->dram_access_quirk) {
1310		/*
1311		 * The MMC Controller embeds 1,5KiB of internal SRAM
1312		 * that can be used to be used as bounce buffer.
1313		 * In the case of the G12A SDIO controller, use these
1314		 * instead of the DDR memory
1315		 */
1316		host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1317		host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1318		host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1319	} else {
1320		/* data bounce buffer */
1321		host->bounce_buf_size = mmc->max_req_size;
1322		host->bounce_buf =
1323			dmam_alloc_coherent(host->dev, host->bounce_buf_size,
1324					    &host->bounce_dma_addr, GFP_KERNEL);
1325		if (host->bounce_buf == NULL) {
1326			dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1327			ret = -ENOMEM;
1328			goto err_free_irq;
1329		}
1330	}
1331
1332	host->descs = dmam_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1333					  &host->descs_dma_addr, GFP_KERNEL);
1334	if (!host->descs) {
1335		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1336		ret = -ENOMEM;
1337		goto err_free_irq;
1338	}
1339
1340	mmc->ops = &meson_mmc_ops;
1341	ret = mmc_add_host(mmc);
1342	if (ret)
1343		goto err_free_irq;
1344
1345	return 0;
1346
1347err_free_irq:
1348	free_irq(host->irq, host);
1349err_init_clk:
1350	clk_disable_unprepare(host->mmc_clk);
1351err_core_clk:
1352	clk_disable_unprepare(host->core_clk);
1353free_host:
1354	mmc_free_host(mmc);
1355	return ret;
1356}
1357
1358static int meson_mmc_remove(struct platform_device *pdev)
1359{
1360	struct meson_host *host = dev_get_drvdata(&pdev->dev);
1361
1362	mmc_remove_host(host->mmc);
1363
1364	/* disable interrupts */
1365	writel(0, host->regs + SD_EMMC_IRQ_EN);
1366	free_irq(host->irq, host);
1367
1368	clk_disable_unprepare(host->mmc_clk);
1369	clk_disable_unprepare(host->core_clk);
1370
1371	mmc_free_host(host->mmc);
1372	return 0;
1373}
1374
1375static const struct meson_mmc_data meson_gx_data = {
1376	.tx_delay_mask	= CLK_V2_TX_DELAY_MASK,
1377	.rx_delay_mask	= CLK_V2_RX_DELAY_MASK,
1378	.always_on	= CLK_V2_ALWAYS_ON,
1379	.adjust		= SD_EMMC_ADJUST,
1380	.irq_sdio_sleep	= CLK_V2_IRQ_SDIO_SLEEP,
1381};
1382
1383static const struct meson_mmc_data meson_axg_data = {
1384	.tx_delay_mask	= CLK_V3_TX_DELAY_MASK,
1385	.rx_delay_mask	= CLK_V3_RX_DELAY_MASK,
1386	.always_on	= CLK_V3_ALWAYS_ON,
1387	.adjust		= SD_EMMC_V3_ADJUST,
1388	.irq_sdio_sleep	= CLK_V3_IRQ_SDIO_SLEEP,
1389};
1390
1391static const struct of_device_id meson_mmc_of_match[] = {
1392	{ .compatible = "amlogic,meson-gx-mmc",		.data = &meson_gx_data },
1393	{ .compatible = "amlogic,meson-gxbb-mmc", 	.data = &meson_gx_data },
1394	{ .compatible = "amlogic,meson-gxl-mmc",	.data = &meson_gx_data },
1395	{ .compatible = "amlogic,meson-gxm-mmc",	.data = &meson_gx_data },
1396	{ .compatible = "amlogic,meson-axg-mmc",	.data = &meson_axg_data },
1397	{}
1398};
1399MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1400
1401static struct platform_driver meson_mmc_driver = {
1402	.probe		= meson_mmc_probe,
1403	.remove		= meson_mmc_remove,
1404	.driver		= {
1405		.name = DRIVER_NAME,
1406		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1407		.of_match_table = meson_mmc_of_match,
1408	},
1409};
1410
1411module_platform_driver(meson_mmc_driver);
1412
1413MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1414MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1415MODULE_LICENSE("GPL v2");