Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Nuvoton NPCM7xx I2C Controller driver
   4 *
   5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
   6 */
   7#include <linux/bitfield.h>
   8#include <linux/clk.h>
   9#include <linux/debugfs.h>
  10#include <linux/errno.h>
  11#include <linux/i2c.h>
  12#include <linux/interrupt.h>
  13#include <linux/iopoll.h>
  14#include <linux/irq.h>
  15#include <linux/jiffies.h>
  16#include <linux/kernel.h>
  17#include <linux/mfd/syscon.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/regmap.h>
  23
  24enum i2c_mode {
  25	I2C_MASTER,
  26	I2C_SLAVE,
  27};
  28
  29/*
  30 * External I2C Interface driver xfer indication values, which indicate status
  31 * of the bus.
  32 */
  33enum i2c_state_ind {
  34	I2C_NO_STATUS_IND = 0,
  35	I2C_SLAVE_RCV_IND,
  36	I2C_SLAVE_XMIT_IND,
  37	I2C_SLAVE_XMIT_MISSING_DATA_IND,
  38	I2C_SLAVE_RESTART_IND,
  39	I2C_SLAVE_DONE_IND,
  40	I2C_MASTER_DONE_IND,
  41	I2C_NACK_IND,
  42	I2C_BUS_ERR_IND,
  43	I2C_WAKE_UP_IND,
  44	I2C_BLOCK_BYTES_ERR_IND,
  45	I2C_SLAVE_RCV_MISSING_DATA_IND,
  46};
  47
  48/*
  49 * Operation type values (used to define the operation currently running)
  50 * module is interrupt driven, on each interrupt the current operation is
  51 * checked to see if the module is currently reading or writing.
  52 */
  53enum i2c_oper {
  54	I2C_NO_OPER = 0,
  55	I2C_WRITE_OPER,
  56	I2C_READ_OPER,
  57};
  58
  59/* I2C Bank (module had 2 banks of registers) */
  60enum i2c_bank {
  61	I2C_BANK_0 = 0,
  62	I2C_BANK_1,
  63};
  64
  65/* Internal I2C states values (for the I2C module state machine). */
  66enum i2c_state {
  67	I2C_DISABLE = 0,
  68	I2C_IDLE,
  69	I2C_MASTER_START,
  70	I2C_SLAVE_MATCH,
  71	I2C_OPER_STARTED,
  72	I2C_STOP_PENDING,
  73};
  74
  75#if IS_ENABLED(CONFIG_I2C_SLAVE)
  76/* Module supports setting multiple own slave addresses */
  77enum i2c_addr {
  78	I2C_SLAVE_ADDR1 = 0,
  79	I2C_SLAVE_ADDR2,
  80	I2C_SLAVE_ADDR3,
  81	I2C_SLAVE_ADDR4,
  82	I2C_SLAVE_ADDR5,
  83	I2C_SLAVE_ADDR6,
  84	I2C_SLAVE_ADDR7,
  85	I2C_SLAVE_ADDR8,
  86	I2C_SLAVE_ADDR9,
  87	I2C_SLAVE_ADDR10,
  88	I2C_GC_ADDR,
  89	I2C_ARP_ADDR,
  90};
  91#endif
  92
  93/* init register and default value required to enable module */
  94#define NPCM_I2CSEGCTL			0xE4
  95
  96/* Common regs */
  97#define NPCM_I2CSDA			0x00
  98#define NPCM_I2CST			0x02
  99#define NPCM_I2CCST			0x04
 100#define NPCM_I2CCTL1			0x06
 101#define NPCM_I2CADDR1			0x08
 102#define NPCM_I2CCTL2			0x0A
 103#define NPCM_I2CADDR2			0x0C
 104#define NPCM_I2CCTL3			0x0E
 105#define NPCM_I2CCST2			0x18
 106#define NPCM_I2CCST3			0x19
 107#define I2C_VER				0x1F
 108
 109/* BANK 0 regs */
 110#define NPCM_I2CADDR3			0x10
 111#define NPCM_I2CADDR7			0x11
 112#define NPCM_I2CADDR4			0x12
 113#define NPCM_I2CADDR8			0x13
 114#define NPCM_I2CADDR5			0x14
 115#define NPCM_I2CADDR9			0x15
 116#define NPCM_I2CADDR6			0x16
 117#define NPCM_I2CADDR10			0x17
 118#define NPCM_I2CCTL4			0x1A
 119#define NPCM_I2CCTL5			0x1B
 120#define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
 121#define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
 122#define NPCM_I2CSCLHT			0x1E /* SCL High Time */
 123
 124/* BANK 1 regs */
 125#define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
 126#define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
 127#define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
 128#define NPCM_I2CPEC			0x16 /* PEC Data */
 129#define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
 130#define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
 131#define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
 132
 133#if IS_ENABLED(CONFIG_I2C_SLAVE)
 134/*
 135 * npcm_i2caddr array:
 136 * The module supports having multiple own slave addresses.
 137 * Since the addr regs are sprinkled all over the address space,
 138 * use this array to get the address or each register.
 139 */
 140#define I2C_NUM_OWN_ADDR 2
 141#define I2C_NUM_OWN_ADDR_SUPPORTED 2
 142
 143static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
 144	NPCM_I2CADDR1, NPCM_I2CADDR2,
 145};
 146#endif
 147
 148/* NPCM_I2CST reg fields */
 149#define NPCM_I2CST_XMIT			BIT(0)	/* Transmit mode */
 150#define NPCM_I2CST_MASTER		BIT(1)	/* Master mode */
 151#define NPCM_I2CST_NMATCH		BIT(2)	/* New match */
 152#define NPCM_I2CST_STASTR		BIT(3)	/* Stall after start */
 153#define NPCM_I2CST_NEGACK		BIT(4)	/* Negative ACK */
 154#define NPCM_I2CST_BER			BIT(5)	/* Bus error */
 155#define NPCM_I2CST_SDAST		BIT(6)	/* SDA status */
 156#define NPCM_I2CST_SLVSTP		BIT(7)	/* Slave stop */
 157
 158/* NPCM_I2CCST reg fields */
 159#define NPCM_I2CCST_BUSY		BIT(0)	/* Busy */
 160#define NPCM_I2CCST_BB			BIT(1)	/* Bus busy */
 161#define NPCM_I2CCST_MATCH		BIT(2)	/* Address match */
 162#define NPCM_I2CCST_GCMATCH		BIT(3)	/* Global call match */
 163#define NPCM_I2CCST_TSDA		BIT(4)	/* Test SDA line */
 164#define NPCM_I2CCST_TGSCL		BIT(5)	/* Toggle SCL line */
 165#define NPCM_I2CCST_MATCHAF		BIT(6)	/* Match address field */
 166#define NPCM_I2CCST_ARPMATCH		BIT(7)	/* ARP address match */
 167
 168/* NPCM_I2CCTL1 reg fields */
 169#define NPCM_I2CCTL1_START		BIT(0)	/* Generate start condition */
 170#define NPCM_I2CCTL1_STOP		BIT(1)	/* Generate stop condition */
 171#define NPCM_I2CCTL1_INTEN		BIT(2)	/* Interrupt enable */
 172#define NPCM_I2CCTL1_EOBINTE		BIT(3)
 173#define NPCM_I2CCTL1_ACK		BIT(4)
 174#define NPCM_I2CCTL1_GCMEN		BIT(5)	/* Global call match enable */
 175#define NPCM_I2CCTL1_NMINTE		BIT(6)	/* New match interrupt enable */
 176#define NPCM_I2CCTL1_STASTRE		BIT(7)	/* Stall after start enable */
 177
 178/* RW1S fields (inside a RW reg): */
 179#define NPCM_I2CCTL1_RWS   \
 180	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
 181
 182/* npcm_i2caddr reg fields */
 183#define NPCM_I2CADDR_A			GENMASK(6, 0)	/* Address */
 184#define NPCM_I2CADDR_SAEN		BIT(7)		/* Slave address enable */
 185
 186/* NPCM_I2CCTL2 reg fields */
 187#define I2CCTL2_ENABLE			BIT(0)		/* Module enable */
 188#define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)	/* Bits 0:6 of frequency divisor */
 189
 190/* NPCM_I2CCTL3 reg fields */
 191#define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)	/* Bits 7:8 of frequency divisor */
 192#define I2CCTL3_ARPMEN			BIT(2)	/* ARP match enable */
 193#define I2CCTL3_IDL_START		BIT(3)
 194#define I2CCTL3_400K_MODE		BIT(4)
 195#define I2CCTL3_BNK_SEL			BIT(5)
 196#define I2CCTL3_SDA_LVL			BIT(6)
 197#define I2CCTL3_SCL_LVL			BIT(7)
 198
 199/* NPCM_I2CCST2 reg fields */
 200#define NPCM_I2CCST2_MATCHA1F		BIT(0)
 201#define NPCM_I2CCST2_MATCHA2F		BIT(1)
 202#define NPCM_I2CCST2_MATCHA3F		BIT(2)
 203#define NPCM_I2CCST2_MATCHA4F		BIT(3)
 204#define NPCM_I2CCST2_MATCHA5F		BIT(4)
 205#define NPCM_I2CCST2_MATCHA6F		BIT(5)
 206#define NPCM_I2CCST2_MATCHA7F		BIT(5)
 207#define NPCM_I2CCST2_INTSTS		BIT(7)
 208
 209/* NPCM_I2CCST3 reg fields */
 210#define NPCM_I2CCST3_MATCHA8F		BIT(0)
 211#define NPCM_I2CCST3_MATCHA9F		BIT(1)
 212#define NPCM_I2CCST3_MATCHA10F		BIT(2)
 213#define NPCM_I2CCST3_EO_BUSY		BIT(7)
 214
 215/* NPCM_I2CCTL4 reg fields */
 216#define I2CCTL4_HLDT			GENMASK(5, 0)
 217#define I2CCTL4_LVL_WE			BIT(7)
 218
 219/* NPCM_I2CCTL5 reg fields */
 220#define I2CCTL5_DBNCT			GENMASK(3, 0)
 221
 222/* NPCM_I2CFIF_CTS reg fields */
 223#define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
 224#define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
 225#define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
 226#define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
 227
 228/* NPCM_I2CTXF_CTL reg field */
 229#define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
 230
 231/* NPCM_I2CT_OUT reg fields */
 232#define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
 233#define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
 234#define NPCM_I2CT_OUT_T_OUTST		BIT(7)
 235
 236/* NPCM_I2CTXF_STS reg fields */
 237#define NPCM_I2CTXF_STS_TX_THST		BIT(6)
 238
 239/* NPCM_I2CRXF_STS reg fields */
 240#define NPCM_I2CRXF_STS_RX_THST		BIT(6)
 241
 242/* NPCM_I2CFIF_CTL reg fields */
 243#define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
 244
 245/* NPCM_I2CRXF_CTL reg fields */
 246#define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
 247
 248#define MAX_I2C_HW_FIFO_SIZE		32
 249
 250/* I2C_VER reg fields */
 251#define I2C_VER_VERSION			GENMASK(6, 0)
 252#define I2C_VER_FIFO_EN			BIT(7)
 253
 254/* stall/stuck timeout in us */
 255#define DEFAULT_STALL_COUNT		25
 256
 257/* SCLFRQ field position */
 258#define SCLFRQ_0_TO_6			GENMASK(6, 0)
 259#define SCLFRQ_7_TO_8			GENMASK(8, 7)
 260
 261/* supported clk settings. values in Hz. */
 262#define I2C_FREQ_MIN_HZ			10000
 263#define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
 264
 265struct npcm_i2c_data {
 266	u8 fifo_size;
 267	u32 segctl_init_val;
 268	u8 txf_sts_tx_bytes;
 269	u8 rxf_sts_rx_bytes;
 270	u8 rxf_ctl_last_pec;
 271};
 272
 273static const struct npcm_i2c_data npxm7xx_i2c_data = {
 274	.fifo_size = 16,
 275	.segctl_init_val = 0x0333F000,
 276	.txf_sts_tx_bytes = GENMASK(4, 0),
 277	.rxf_sts_rx_bytes = GENMASK(4, 0),
 278	.rxf_ctl_last_pec = BIT(5),
 279};
 280
 281static const struct npcm_i2c_data npxm8xx_i2c_data = {
 282	.fifo_size = 32,
 283	.segctl_init_val = 0x9333F000,
 284	.txf_sts_tx_bytes = GENMASK(5, 0),
 285	.rxf_sts_rx_bytes = GENMASK(5, 0),
 286	.rxf_ctl_last_pec = BIT(7),
 287};
 288
 289/* Status of one I2C module */
 290struct npcm_i2c {
 291	struct i2c_adapter adap;
 292	struct device *dev;
 293	unsigned char __iomem *reg;
 294	const struct npcm_i2c_data *data;
 295	spinlock_t lock;   /* IRQ synchronization */
 296	struct completion cmd_complete;
 297	int cmd_err;
 298	struct i2c_msg *msgs;
 299	int msgs_num;
 300	int num;
 301	u32 apb_clk;
 302	struct i2c_bus_recovery_info rinfo;
 303	enum i2c_state state;
 304	enum i2c_oper operation;
 305	enum i2c_mode master_or_slave;
 306	enum i2c_state_ind stop_ind;
 307	u8 dest_addr;
 308	u8 *rd_buf;
 309	u16 rd_size;
 310	u16 rd_ind;
 311	u8 *wr_buf;
 312	u16 wr_size;
 313	u16 wr_ind;
 314	bool fifo_use;
 315	u16 PEC_mask; /* PEC bit mask per slave address */
 316	bool PEC_use;
 317	bool read_block_use;
 318	unsigned long int_time_stamp;
 319	unsigned long bus_freq; /* in Hz */
 320#if IS_ENABLED(CONFIG_I2C_SLAVE)
 321	u8 own_slave_addr;
 322	struct i2c_client *slave;
 323	int slv_rd_size;
 324	int slv_rd_ind;
 325	int slv_wr_size;
 326	int slv_wr_ind;
 327	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
 328	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
 329#endif
 330	struct dentry *debugfs; /* debugfs device directory */
 331	u64 ber_cnt;
 332	u64 rec_succ_cnt;
 333	u64 rec_fail_cnt;
 334	u64 nack_cnt;
 335	u64 timeout_cnt;
 336	u64 tx_complete_cnt;
 337};
 338
 339static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
 340					enum i2c_bank bank)
 341{
 342	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
 343
 344	if (bank == I2C_BANK_0)
 345		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
 346	else
 347		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
 348	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
 349}
 350
 351static void npcm_i2c_init_params(struct npcm_i2c *bus)
 352{
 353	bus->stop_ind = I2C_NO_STATUS_IND;
 354	bus->rd_size = 0;
 355	bus->wr_size = 0;
 356	bus->rd_ind = 0;
 357	bus->wr_ind = 0;
 358	bus->read_block_use = false;
 359	bus->int_time_stamp = 0;
 360	bus->PEC_use = false;
 361	bus->PEC_mask = 0;
 362#if IS_ENABLED(CONFIG_I2C_SLAVE)
 363	if (bus->slave)
 364		bus->master_or_slave = I2C_SLAVE;
 365#endif
 366}
 367
 368static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
 369{
 370	iowrite8(data, bus->reg + NPCM_I2CSDA);
 371}
 372
 373static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
 374{
 375	return ioread8(bus->reg + NPCM_I2CSDA);
 376}
 377
 378static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
 379{
 380	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
 381
 382	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
 383}
 384
 385static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
 386{
 387	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
 388
 389	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
 390}
 391
 392static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
 393{
 394	if (bus->operation == I2C_READ_OPER)
 395		return bus->rd_ind;
 396	if (bus->operation == I2C_WRITE_OPER)
 397		return bus->wr_ind;
 398	return 0;
 399}
 400
 401/* quick protocol (just address) */
 402static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
 403{
 404	return bus->wr_size == 0 && bus->rd_size == 0;
 405}
 406
 407static void npcm_i2c_disable(struct npcm_i2c *bus)
 408{
 409	u8 i2cctl2;
 410
 411#if IS_ENABLED(CONFIG_I2C_SLAVE)
 412	int i;
 413
 414	/* Slave addresses removal */
 415	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
 416		iowrite8(0, bus->reg + npcm_i2caddr[i]);
 417
 418#endif
 419	/* Disable module */
 420	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
 421	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
 422	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
 423
 424	bus->state = I2C_DISABLE;
 425}
 426
 427static void npcm_i2c_enable(struct npcm_i2c *bus)
 428{
 429	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
 430
 431	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
 432	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
 433	bus->state = I2C_IDLE;
 434}
 435
 436/* enable\disable end of busy (EOB) interrupts */
 437static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
 438{
 439	u8 val;
 440
 441	/* Clear EO_BUSY pending bit: */
 442	val = ioread8(bus->reg + NPCM_I2CCST3);
 443	val = val | NPCM_I2CCST3_EO_BUSY;
 444	iowrite8(val, bus->reg + NPCM_I2CCST3);
 445
 446	val = ioread8(bus->reg + NPCM_I2CCTL1);
 447	val &= ~NPCM_I2CCTL1_RWS;
 448	if (enable)
 449		val |= NPCM_I2CCTL1_EOBINTE;
 450	else
 451		val &= ~NPCM_I2CCTL1_EOBINTE;
 452	iowrite8(val, bus->reg + NPCM_I2CCTL1);
 453}
 454
 455static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
 456{
 457	u8 tx_fifo_sts;
 458
 459	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
 460	/* check if TX FIFO is not empty */
 461	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
 462		return false;
 463
 464	/* check if TX FIFO status bit is set: */
 465	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
 466}
 467
 468static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
 469{
 470	u8 rx_fifo_sts;
 471
 472	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
 473	/* check if RX FIFO is not empty: */
 474	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
 475		return false;
 476
 477	/* check if rx fifo full status is set: */
 478	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
 479}
 480
 481static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
 482{
 483	u8 val;
 484
 485	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
 486	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
 487	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
 488}
 489
 490static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
 491{
 492	u8 val;
 493
 494	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
 495	val = val | NPCM_I2CTXF_STS_TX_THST;
 496	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
 497}
 498
 499static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
 500{
 501	u8 val;
 502
 503	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
 504	val = val | NPCM_I2CRXF_STS_RX_THST;
 505	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
 506}
 507
 508static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
 509{
 510	u8 val;
 511
 512	val = ioread8(bus->reg + NPCM_I2CCTL1);
 513	val &= ~NPCM_I2CCTL1_RWS;
 514	if (enable)
 515		val |= NPCM_I2CCTL1_INTEN;
 516	else
 517		val &= ~NPCM_I2CCTL1_INTEN;
 518	iowrite8(val, bus->reg + NPCM_I2CCTL1);
 519}
 520
 521static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
 522{
 523	u8 val;
 524
 525	val = ioread8(bus->reg + NPCM_I2CCTL1);
 526	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
 527	val |= NPCM_I2CCTL1_START;
 528	iowrite8(val, bus->reg + NPCM_I2CCTL1);
 529}
 530
 531static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
 532{
 533	u8 val;
 534
 535	/*
 536	 * override HW issue: I2C may fail to supply stop condition in Master
 537	 * Write operation.
 538	 * Need to delay at least 5 us from the last int, before issueing a stop
 539	 */
 540	udelay(10); /* function called from interrupt, can't sleep */
 541	val = ioread8(bus->reg + NPCM_I2CCTL1);
 542	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
 543	val |= NPCM_I2CCTL1_STOP;
 544	iowrite8(val, bus->reg + NPCM_I2CCTL1);
 545
 546	if (!bus->fifo_use)
 547		return;
 548
 549	npcm_i2c_select_bank(bus, I2C_BANK_1);
 550
 551	if (bus->operation == I2C_READ_OPER)
 552		npcm_i2c_clear_rx_fifo(bus);
 553	else
 554		npcm_i2c_clear_tx_fifo(bus);
 555	npcm_i2c_clear_fifo_int(bus);
 556	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
 557}
 558
 559static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
 560{
 561	u8 val;
 562
 563	val = ioread8(bus->reg + NPCM_I2CCTL1);
 564	val &= ~NPCM_I2CCTL1_RWS;
 565	if (stall)
 566		val |= NPCM_I2CCTL1_STASTRE;
 567	else
 568		val &= ~NPCM_I2CCTL1_STASTRE;
 569	iowrite8(val, bus->reg + NPCM_I2CCTL1);
 570}
 571
 572static inline void npcm_i2c_nack(struct npcm_i2c *bus)
 573{
 574	u8 val;
 575
 576	val = ioread8(bus->reg + NPCM_I2CCTL1);
 577	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
 578	val |= NPCM_I2CCTL1_ACK;
 579	iowrite8(val, bus->reg + NPCM_I2CCTL1);
 580}
 581
 582static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
 583{
 584	u8 val;
 585
 586	/* Clear NEGACK, STASTR and BER bits */
 587	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
 588	iowrite8(val, bus->reg + NPCM_I2CST);
 589}
 590
 591#if IS_ENABLED(CONFIG_I2C_SLAVE)
 592static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
 593{
 594	u8 i2cctl1;
 595
 596	/* enable interrupt on slave match: */
 597	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
 598	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
 599	if (enable)
 600		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
 601	else
 602		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
 603	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
 604}
 605
 606static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
 607				 u8 addr, bool enable)
 608{
 609	u8 i2cctl1;
 610	u8 i2cctl3;
 611	u8 sa_reg;
 612
 613	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
 614	if (addr_type == I2C_GC_ADDR) {
 615		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
 616		if (enable)
 617			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
 618		else
 619			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
 620		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
 621		return 0;
 622	} else if (addr_type == I2C_ARP_ADDR) {
 623		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
 624		if (enable)
 625			i2cctl3 |= I2CCTL3_ARPMEN;
 626		else
 627			i2cctl3 &= ~I2CCTL3_ARPMEN;
 628		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
 629		return 0;
 630	}
 631	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
 632		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
 633
 634	if (addr_type >= I2C_ARP_ADDR)
 635		return -EFAULT;
 636
 637	/* Set and enable the address */
 638	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
 639	npcm_i2c_slave_int_enable(bus, enable);
 640
 641	return 0;
 642}
 643#endif
 644
 645static void npcm_i2c_reset(struct npcm_i2c *bus)
 646{
 647	/*
 648	 * Save I2CCTL1 relevant bits. It is being cleared when the module
 649	 *  is disabled.
 650	 */
 651	u8 i2cctl1;
 652#if IS_ENABLED(CONFIG_I2C_SLAVE)
 653	u8 addr;
 654#endif
 655
 656	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
 657
 658	npcm_i2c_disable(bus);
 659	npcm_i2c_enable(bus);
 660
 661	/* Restore NPCM_I2CCTL1 Status */
 662	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
 663	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
 664
 665	/* Clear BB (BUS BUSY) bit */
 666	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
 667	iowrite8(0xFF, bus->reg + NPCM_I2CST);
 668
 669	/* Clear and disable EOB */
 670	npcm_i2c_eob_int(bus, false);
 671
 672	/* Clear all fifo bits: */
 673	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
 674
 675#if IS_ENABLED(CONFIG_I2C_SLAVE)
 676	if (bus->slave) {
 677		addr = bus->slave->addr;
 678		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
 679	}
 680#endif
 681
 682	/* Clear status bits for spurious interrupts */
 683	npcm_i2c_clear_master_status(bus);
 684
 685	bus->state = I2C_IDLE;
 686}
 687
 688static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
 689{
 690	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
 691}
 692
 693static void npcm_i2c_callback(struct npcm_i2c *bus,
 694			      enum i2c_state_ind op_status, u16 info)
 695{
 696	struct i2c_msg *msgs;
 697	int msgs_num;
 698
 699	msgs = bus->msgs;
 700	msgs_num = bus->msgs_num;
 701	/*
 702	 * check that transaction was not timed-out, and msgs still
 703	 * holds a valid value.
 704	 */
 705	if (!msgs)
 706		return;
 707
 708	if (completion_done(&bus->cmd_complete))
 709		return;
 710
 711	switch (op_status) {
 712	case I2C_MASTER_DONE_IND:
 713		bus->cmd_err = bus->msgs_num;
 714		if (bus->tx_complete_cnt < ULLONG_MAX)
 715			bus->tx_complete_cnt++;
 716		fallthrough;
 717	case I2C_BLOCK_BYTES_ERR_IND:
 718		/* Master tx finished and all transmit bytes were sent */
 719		if (bus->msgs) {
 720			if (msgs[0].flags & I2C_M_RD)
 721				msgs[0].len = info;
 722			else if (msgs_num == 2 &&
 723				 msgs[1].flags & I2C_M_RD)
 724				msgs[1].len = info;
 725		}
 726		if (completion_done(&bus->cmd_complete) == false)
 727			complete(&bus->cmd_complete);
 728	break;
 729
 730	case I2C_NACK_IND:
 731		/* MASTER transmit got a NACK before tx all bytes */
 732		bus->cmd_err = -ENXIO;
 733		if (bus->master_or_slave == I2C_MASTER)
 734			complete(&bus->cmd_complete);
 735
 736		break;
 737	case I2C_BUS_ERR_IND:
 738		/* Bus error */
 739		bus->cmd_err = -EAGAIN;
 740		if (bus->master_or_slave == I2C_MASTER)
 741			complete(&bus->cmd_complete);
 742
 743		break;
 744	case I2C_WAKE_UP_IND:
 745		/* I2C wake up */
 746		break;
 747	default:
 748		break;
 749	}
 750
 751	bus->operation = I2C_NO_OPER;
 752#if IS_ENABLED(CONFIG_I2C_SLAVE)
 753	if (bus->slave)
 754		bus->master_or_slave = I2C_SLAVE;
 755#endif
 756}
 757
 758static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
 759{
 760	if (bus->operation == I2C_WRITE_OPER)
 761		return (bus->data->txf_sts_tx_bytes &
 762			ioread8(bus->reg + NPCM_I2CTXF_STS));
 763	if (bus->operation == I2C_READ_OPER)
 764		return (bus->data->rxf_sts_rx_bytes &
 765			ioread8(bus->reg + NPCM_I2CRXF_STS));
 766	return 0;
 767}
 768
 769static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
 770{
 771	u8 size_free_fifo;
 772
 773	/*
 774	 * Fill the FIFO, while the FIFO is not full and there are more bytes
 775	 * to write
 776	 */
 777	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
 778	while (max_bytes-- && size_free_fifo) {
 779		if (bus->wr_ind < bus->wr_size)
 780			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
 781		else
 782			npcm_i2c_wr_byte(bus, 0xFF);
 783		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
 784	}
 785}
 786
 787/*
 788 * npcm_i2c_set_fifo:
 789 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
 790 * configured. same for nwrite
 791 */
 792static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
 793{
 794	u8 rxf_ctl = 0;
 795
 796	if (!bus->fifo_use)
 797		return;
 798	npcm_i2c_select_bank(bus, I2C_BANK_1);
 799	npcm_i2c_clear_tx_fifo(bus);
 800	npcm_i2c_clear_rx_fifo(bus);
 801
 802	/* configure RX FIFO */
 803	if (nread > 0) {
 804		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
 805
 806		/* set LAST bit. if LAST is set next FIFO packet is nacked */
 807		if (nread <= bus->data->fifo_size)
 808			rxf_ctl |= bus->data->rxf_ctl_last_pec;
 809
 810		/*
 811		 * if we are about to read the first byte in blk rd mode,
 812		 * don't NACK it. If slave returns zero size HW can't NACK
 813		 * it immediately, it will read extra byte and then NACK.
 814		 */
 815		if (bus->rd_ind == 0 && bus->read_block_use) {
 816			/* set fifo to read one byte, no last: */
 817			rxf_ctl = 1;
 818		}
 819
 820		/* set fifo size: */
 821		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
 822	}
 823
 824	/* configure TX FIFO */
 825	if (nwrite > 0) {
 826		if (nwrite > bus->data->fifo_size)
 827			/* data to send is more then FIFO size. */
 828			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
 829		else
 830			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
 831
 832		npcm_i2c_clear_tx_fifo(bus);
 833	}
 834}
 835
 836static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
 837{
 838	u8 data;
 839
 840	while (bytes_in_fifo--) {
 841		data = npcm_i2c_rd_byte(bus);
 842		if (bus->rd_ind < bus->rd_size)
 843			bus->rd_buf[bus->rd_ind++] = data;
 844	}
 845}
 846
 847static void npcm_i2c_master_abort(struct npcm_i2c *bus)
 848{
 849	/* Only current master is allowed to issue a stop condition */
 850	if (!npcm_i2c_is_master(bus))
 851		return;
 852
 853	npcm_i2c_eob_int(bus, true);
 854	npcm_i2c_master_stop(bus);
 855	npcm_i2c_clear_master_status(bus);
 856}
 857
 858#if IS_ENABLED(CONFIG_I2C_SLAVE)
 859static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
 860{
 861	u8 slave_add;
 862
 863	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
 864		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
 865
 866	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
 867
 868	return slave_add;
 869}
 870
 871static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
 872{
 873	int i;
 874
 875	/* Set the enable bit */
 876	slave_add |= 0x80;
 877
 878	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
 879		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
 880			iowrite8(0, bus->reg + npcm_i2caddr[i]);
 881	}
 882
 883	return 0;
 884}
 885
 886static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
 887{
 888	/*
 889	 * Fill the FIFO, while the FIFO is not full and there are more bytes
 890	 * to write
 891	 */
 892	npcm_i2c_clear_fifo_int(bus);
 893	npcm_i2c_clear_tx_fifo(bus);
 894	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
 895	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
 896		if (bus->slv_wr_size <= 0)
 897			break;
 898		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
 899		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
 900		bus->slv_wr_ind++;
 901		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
 902		bus->slv_wr_size--;
 903	}
 904}
 905
 906static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
 907{
 908	u8 data;
 909
 910	if (!bus->slave)
 911		return;
 912
 913	while (bytes_in_fifo--) {
 914		data = npcm_i2c_rd_byte(bus);
 915
 916		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
 917		bus->slv_rd_buf[bus->slv_rd_ind] = data;
 918		bus->slv_rd_ind++;
 919
 920		/* 1st byte is length in block protocol: */
 921		if (bus->slv_rd_ind == 1 && bus->read_block_use)
 922			bus->slv_rd_size = data + bus->PEC_use + 1;
 923	}
 924}
 925
 926static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
 927{
 928	int i;
 929	u8 value;
 930	int ind;
 931	int ret = bus->slv_wr_ind;
 932
 933	/* fill a cyclic buffer */
 934	for (i = 0; i < bus->data->fifo_size; i++) {
 935		if (bus->slv_wr_size >= bus->data->fifo_size)
 936			break;
 937		if (bus->state == I2C_SLAVE_MATCH) {
 938			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
 939			bus->state = I2C_OPER_STARTED;
 940		} else {
 941			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
 942		}
 943		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
 944		bus->slv_wr_buf[ind] = value;
 945		bus->slv_wr_size++;
 946	}
 947	return bus->data->fifo_size - ret;
 948}
 949
 950static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
 951{
 952	int i;
 953
 954	for (i = 0; i < bus->slv_rd_ind; i++)
 955		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
 956				&bus->slv_rd_buf[i]);
 957	/*
 958	 * once we send bytes up, need to reset the counter of the wr buf
 959	 * got data from master (new offset in device), ignore wr fifo:
 960	 */
 961	if (bus->slv_rd_ind) {
 962		bus->slv_wr_size = 0;
 963		bus->slv_wr_ind = 0;
 964	}
 965
 966	bus->slv_rd_ind = 0;
 967	bus->slv_rd_size = bus->adap.quirks->max_read_len;
 968
 969	npcm_i2c_clear_fifo_int(bus);
 970	npcm_i2c_clear_rx_fifo(bus);
 971}
 972
 973static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
 974				   u8 *read_data)
 975{
 976	bus->state = I2C_OPER_STARTED;
 977	bus->operation = I2C_READ_OPER;
 978	bus->slv_rd_size = nread;
 979	bus->slv_rd_ind = 0;
 980
 981	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
 982	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
 983	npcm_i2c_clear_tx_fifo(bus);
 984	npcm_i2c_clear_rx_fifo(bus);
 985}
 986
 987static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
 988				u8 *write_data)
 989{
 990	if (nwrite == 0)
 991		return;
 992
 993	bus->operation = I2C_WRITE_OPER;
 994
 995	/* get the next buffer */
 996	npcm_i2c_slave_get_wr_buf(bus);
 997	npcm_i2c_write_fifo_slave(bus, nwrite);
 998}
 999
1000/*
1001 * npcm_i2c_slave_wr_buf_sync:
1002 * currently slave IF only supports single byte operations.
1003 * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1004 * at a time, pack them in buffer, and then transmit them all together
1005 * to the FIFO and onward to the bus.
1006 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1007 * sending a NACK wherever the backend requests for it is not supported.
1008 * the next two functions allow reading to local buffer before writing it all
1009 * to the HW FIFO.
1010 */
1011static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1012{
1013	int left_in_fifo;
1014
1015	left_in_fifo = bus->data->txf_sts_tx_bytes &
1016			ioread8(bus->reg + NPCM_I2CTXF_STS);
1017
1018	/* fifo already full: */
1019	if (left_in_fifo >= bus->data->fifo_size ||
1020	    bus->slv_wr_size >= bus->data->fifo_size)
1021		return;
1022
1023	/* update the wr fifo index back to the untransmitted bytes: */
1024	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1025	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1026
1027	if (bus->slv_wr_ind < 0)
1028		bus->slv_wr_ind += bus->data->fifo_size;
1029}
1030
1031static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1032{
1033	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1034		/*
1035		 * Slave got an address match with direction bit 1 so it should
1036		 * transmit data. Write till the master will NACK
1037		 */
1038		bus->operation = I2C_WRITE_OPER;
1039		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1040				    bus->slv_wr_buf);
1041	} else {
1042		/*
1043		 * Slave got an address match with direction bit 0 so it should
1044		 * receive data.
1045		 * this module does not support saying no to bytes.
1046		 * it will always ACK.
1047		 */
1048		bus->operation = I2C_READ_OPER;
1049		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1050		bus->stop_ind = I2C_SLAVE_RCV_IND;
1051		npcm_i2c_slave_send_rd_buf(bus);
1052		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1053				       bus->slv_rd_buf);
1054	}
1055}
1056
1057static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1058{
1059	u8 val;
1060	irqreturn_t ret = IRQ_NONE;
1061	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1062
1063	/* Slave: A NACK has occurred */
1064	if (NPCM_I2CST_NEGACK & i2cst) {
1065		bus->stop_ind = I2C_NACK_IND;
1066		npcm_i2c_slave_wr_buf_sync(bus);
1067		if (bus->fifo_use)
1068			/* clear the FIFO */
1069			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1070				 bus->reg + NPCM_I2CFIF_CTS);
1071
1072		/* In slave write, NACK is OK, otherwise it is a problem */
1073		bus->stop_ind = I2C_NO_STATUS_IND;
1074		bus->operation = I2C_NO_OPER;
1075		bus->own_slave_addr = 0xFF;
1076
1077		/*
1078		 * Slave has to wait for STOP to decide this is the end
1079		 * of the transaction. tx is not yet considered as done
1080		 */
1081		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1082
1083		ret = IRQ_HANDLED;
1084	}
1085
1086	/* Slave mode: a Bus Error (BER) has been identified */
1087	if (NPCM_I2CST_BER & i2cst) {
1088		/*
1089		 * Check whether bus arbitration or Start or Stop during data
1090		 * xfer bus arbitration problem should not result in recovery
1091		 */
1092		bus->stop_ind = I2C_BUS_ERR_IND;
1093
1094		/* wait for bus busy before clear fifo */
1095		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1096
1097		bus->state = I2C_IDLE;
1098
1099		/*
1100		 * in BER case we might get 2 interrupts: one for slave one for
1101		 * master ( for a channel which is master\slave switching)
1102		 */
1103		if (completion_done(&bus->cmd_complete) == false) {
1104			bus->cmd_err = -EIO;
1105			complete(&bus->cmd_complete);
1106		}
1107		bus->own_slave_addr = 0xFF;
1108		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1109		ret = IRQ_HANDLED;
1110	}
1111
1112	/* A Slave Stop Condition has been identified */
1113	if (NPCM_I2CST_SLVSTP & i2cst) {
1114		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1115
1116		bus->stop_ind = I2C_SLAVE_DONE_IND;
1117
1118		if (bus->operation == I2C_READ_OPER)
1119			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1120
1121		/* if the buffer is empty nothing will be sent */
1122		npcm_i2c_slave_send_rd_buf(bus);
1123
1124		/* Slave done transmitting or receiving */
1125		bus->stop_ind = I2C_NO_STATUS_IND;
1126
1127		/*
1128		 * Note, just because we got here, it doesn't mean we through
1129		 * away the wr buffer.
1130		 * we keep it until the next received offset.
1131		 */
1132		bus->operation = I2C_NO_OPER;
1133		bus->own_slave_addr = 0xFF;
1134		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1135		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1136		if (bus->fifo_use) {
1137			npcm_i2c_clear_fifo_int(bus);
1138			npcm_i2c_clear_rx_fifo(bus);
1139			npcm_i2c_clear_tx_fifo(bus);
1140
1141			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1142				 bus->reg + NPCM_I2CFIF_CTS);
1143		}
1144		bus->state = I2C_IDLE;
1145		ret = IRQ_HANDLED;
1146	}
1147
1148	/* restart condition occurred and Rx-FIFO was not empty */
1149	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1150				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1151		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1152		bus->master_or_slave = I2C_SLAVE;
1153		if (bus->operation == I2C_READ_OPER)
1154			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1155		bus->operation = I2C_WRITE_OPER;
1156		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1157		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1158		      NPCM_I2CFIF_CTS_RXF_TXE;
1159		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1160		npcm_i2c_slave_rd_wr(bus);
1161		ret = IRQ_HANDLED;
1162	}
1163
1164	/* A Slave Address Match has been identified */
1165	if (NPCM_I2CST_NMATCH & i2cst) {
1166		u8 info = 0;
1167
1168		/* Address match automatically implies slave mode */
1169		bus->master_or_slave = I2C_SLAVE;
1170		npcm_i2c_clear_fifo_int(bus);
1171		npcm_i2c_clear_rx_fifo(bus);
1172		npcm_i2c_clear_tx_fifo(bus);
1173		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1174		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1175		if (NPCM_I2CST_XMIT & i2cst) {
1176			bus->operation = I2C_WRITE_OPER;
1177		} else {
1178			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1179					&info);
1180			bus->operation = I2C_READ_OPER;
1181		}
1182		if (bus->own_slave_addr == 0xFF) {
1183			/* Check which type of address match */
1184			val = ioread8(bus->reg + NPCM_I2CCST);
1185			if (NPCM_I2CCST_MATCH & val) {
1186				u16 addr;
1187				enum i2c_addr eaddr;
1188				u8 i2ccst2;
1189				u8 i2ccst3;
1190
1191				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1192				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1193
1194				/*
1195				 * the i2c module can response to 10 own SA.
1196				 * check which one was addressed by the master.
1197				 * respond to the first one.
1198				 */
1199				addr = ((i2ccst3 & 0x07) << 7) |
1200					(i2ccst2 & 0x7F);
1201				info = ffs(addr);
1202				eaddr = (enum i2c_addr)info;
1203				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1204				addr &= 0x7F;
1205				bus->own_slave_addr = addr;
1206				if (bus->PEC_mask & BIT(info))
1207					bus->PEC_use = true;
1208				else
1209					bus->PEC_use = false;
1210			} else {
1211				if (NPCM_I2CCST_GCMATCH & val)
1212					bus->own_slave_addr = 0;
1213				if (NPCM_I2CCST_ARPMATCH & val)
1214					bus->own_slave_addr = 0x61;
1215			}
1216		} else {
1217			/*
1218			 *  Slave match can happen in two options:
1219			 *  1. Start, SA, read (slave read without further ado)
1220			 *  2. Start, SA, read, data, restart, SA, read,  ...
1221			 *     (slave read in fragmented mode)
1222			 *  3. Start, SA, write, data, restart, SA, read, ..
1223			 *     (regular write-read mode)
1224			 */
1225			if ((bus->state == I2C_OPER_STARTED &&
1226			     bus->operation == I2C_READ_OPER &&
1227			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1228			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1229				/* slave tx after slave rx w/o STOP */
1230				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1231			}
1232		}
1233
1234		if (NPCM_I2CST_XMIT & i2cst)
1235			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1236		else
1237			bus->stop_ind = I2C_SLAVE_RCV_IND;
1238		bus->state = I2C_SLAVE_MATCH;
1239		npcm_i2c_slave_rd_wr(bus);
1240		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1241		ret = IRQ_HANDLED;
1242	}
1243
1244	/* Slave SDA status is set - tx or rx */
1245	if ((NPCM_I2CST_SDAST & i2cst) ||
1246	    (bus->fifo_use &&
1247	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1248		npcm_i2c_slave_rd_wr(bus);
1249		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1250		ret = IRQ_HANDLED;
1251	} /* SDAST */
1252
1253	/*
1254	 * If irq is not one of the above, make sure EOB is disabled and all
1255	 * status bits are cleared.
1256	 */
1257	if (ret == IRQ_NONE) {
1258		npcm_i2c_eob_int(bus, false);
1259		npcm_i2c_clear_master_status(bus);
1260	}
1261
1262	return IRQ_HANDLED;
1263}
1264
1265static int npcm_i2c_reg_slave(struct i2c_client *client)
1266{
1267	unsigned long lock_flags;
1268	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1269
1270	bus->slave = client;
1271
1272	if (!bus->slave)
1273		return -EINVAL;
1274
1275	if (client->flags & I2C_CLIENT_TEN)
1276		return -EAFNOSUPPORT;
1277
1278	spin_lock_irqsave(&bus->lock, lock_flags);
1279
1280	npcm_i2c_init_params(bus);
1281	bus->slv_rd_size = 0;
1282	bus->slv_wr_size = 0;
1283	bus->slv_rd_ind = 0;
1284	bus->slv_wr_ind = 0;
1285	if (client->flags & I2C_CLIENT_PEC)
1286		bus->PEC_use = true;
1287
1288	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1289		 client->addr, bus->PEC_use);
1290
1291	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1292	npcm_i2c_clear_fifo_int(bus);
1293	npcm_i2c_clear_rx_fifo(bus);
1294	npcm_i2c_clear_tx_fifo(bus);
1295	npcm_i2c_slave_int_enable(bus, true);
1296
1297	spin_unlock_irqrestore(&bus->lock, lock_flags);
1298	return 0;
1299}
1300
1301static int npcm_i2c_unreg_slave(struct i2c_client *client)
1302{
1303	struct npcm_i2c *bus = client->adapter->algo_data;
1304	unsigned long lock_flags;
1305
1306	spin_lock_irqsave(&bus->lock, lock_flags);
1307	if (!bus->slave) {
1308		spin_unlock_irqrestore(&bus->lock, lock_flags);
1309		return -EINVAL;
1310	}
1311	npcm_i2c_slave_int_enable(bus, false);
1312	npcm_i2c_remove_slave_addr(bus, client->addr);
1313	bus->slave = NULL;
1314	spin_unlock_irqrestore(&bus->lock, lock_flags);
1315	return 0;
1316}
1317#endif /* CONFIG_I2C_SLAVE */
1318
1319static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1320{
1321	int rcount;
1322	int fifo_bytes;
1323	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1324
1325	fifo_bytes = npcm_i2c_fifo_usage(bus);
1326	rcount = bus->rd_size - bus->rd_ind;
1327
1328	/*
1329	 * In order not to change the RX_TRH during transaction (we found that
1330	 * this might be problematic if it takes too much time to read the FIFO)
1331	 * we read the data in the following way. If the number of bytes to
1332	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1333	 * and in the next int we read rest of the data.
1334	 */
1335	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1336		fifo_bytes = rcount - bus->data->fifo_size;
1337
1338	if (rcount <= fifo_bytes) {
1339		/* last bytes are about to be read - end of tx */
1340		bus->state = I2C_STOP_PENDING;
1341		bus->stop_ind = ind;
1342		npcm_i2c_eob_int(bus, true);
1343		/* Stop should be set before reading last byte. */
1344		npcm_i2c_master_stop(bus);
1345		npcm_i2c_read_fifo(bus, fifo_bytes);
1346	} else {
1347		npcm_i2c_read_fifo(bus, fifo_bytes);
1348		rcount = bus->rd_size - bus->rd_ind;
1349		npcm_i2c_set_fifo(bus, rcount, -1);
1350	}
1351}
1352
1353static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1354{
1355	u16 wcount;
1356
1357	if (bus->fifo_use)
1358		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1359
1360	/* Master write operation - last byte handling */
1361	if (bus->wr_ind == bus->wr_size) {
1362		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1363			/*
1364			 * No more bytes to send (to add to the FIFO),
1365			 * however the FIFO is not empty yet. It is
1366			 * still in the middle of tx. Currently there's nothing
1367			 * to do except for waiting to the end of the tx
1368			 * We will get an int when the FIFO will get empty.
1369			 */
1370			return;
1371
1372		if (bus->rd_size == 0) {
1373			/* all bytes have been written, in wr only operation */
1374			npcm_i2c_eob_int(bus, true);
1375			bus->state = I2C_STOP_PENDING;
1376			bus->stop_ind = I2C_MASTER_DONE_IND;
1377			npcm_i2c_master_stop(bus);
1378			/* Clear SDA Status bit (by writing dummy byte) */
1379			npcm_i2c_wr_byte(bus, 0xFF);
1380
1381		} else {
1382			/* last write-byte written on previous int - restart */
1383			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1384			/* Generate repeated start upon next write to SDA */
1385			npcm_i2c_master_start(bus);
1386
1387			/*
1388			 * Receiving one byte only - stall after successful
1389			 * completion of send address byte. If we NACK here, and
1390			 * slave doesn't ACK the address, we might
1391			 * unintentionally NACK the next multi-byte read.
1392			 */
1393			if (bus->rd_size == 1)
1394				npcm_i2c_stall_after_start(bus, true);
1395
1396			/* Next int will occur on read */
1397			bus->operation = I2C_READ_OPER;
1398			/* send the slave address in read direction */
1399			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1400		}
1401	} else {
1402		/* write next byte not last byte and not slave address */
1403		if (!bus->fifo_use || bus->wr_size == 1) {
1404			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1405		} else {
1406			wcount = bus->wr_size - bus->wr_ind;
1407			npcm_i2c_set_fifo(bus, -1, wcount);
1408			if (wcount)
1409				npcm_i2c_write_to_fifo_master(bus, wcount);
1410		}
1411	}
1412}
1413
1414static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1415{
1416	u16 block_extra_bytes_size;
1417	u8 data;
1418
1419	/* added bytes to the packet: */
1420	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1421
1422	/*
1423	 * Perform master read, distinguishing between last byte and the rest of
1424	 * the bytes. The last byte should be read when the clock is stopped
1425	 */
1426	if (bus->rd_ind == 0) { /* first byte handling: */
1427		if (bus->read_block_use) {
1428			/* first byte in block protocol is the size: */
1429			data = npcm_i2c_rd_byte(bus);
1430			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1431			bus->rd_size = data + block_extra_bytes_size;
1432			bus->rd_buf[bus->rd_ind++] = data;
1433
1434			/* clear RX FIFO interrupt status: */
1435			if (bus->fifo_use) {
1436				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1437				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1438				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1439			}
1440
1441			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1442			npcm_i2c_stall_after_start(bus, false);
1443		} else {
1444			npcm_i2c_clear_tx_fifo(bus);
1445			npcm_i2c_master_fifo_read(bus);
1446		}
1447	} else {
1448		if (bus->rd_size == block_extra_bytes_size &&
1449		    bus->read_block_use) {
1450			bus->state = I2C_STOP_PENDING;
1451			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1452			bus->cmd_err = -EIO;
1453			npcm_i2c_eob_int(bus, true);
1454			npcm_i2c_master_stop(bus);
1455			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1456		} else {
1457			npcm_i2c_master_fifo_read(bus);
1458		}
1459	}
1460}
1461
1462static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1463{
1464	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1465	npcm_i2c_nack(bus);
1466	bus->stop_ind = I2C_BUS_ERR_IND;
1467	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1468}
1469
1470/* A NACK has occurred */
1471static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1472{
1473	u8 val;
1474
1475	if (bus->nack_cnt < ULLONG_MAX)
1476		bus->nack_cnt++;
1477
1478	if (bus->fifo_use) {
1479		/*
1480		 * if there are still untransmitted bytes in TX FIFO
1481		 * reduce them from wr_ind
1482		 */
1483		if (bus->operation == I2C_WRITE_OPER)
1484			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1485
1486		/* clear the FIFO */
1487		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1488	}
1489
1490	/* In master write operation, got unexpected NACK */
1491	bus->stop_ind = I2C_NACK_IND;
1492	/* Only current master is allowed to issue Stop Condition */
1493	if (npcm_i2c_is_master(bus)) {
1494		/* stopping in the middle */
1495		npcm_i2c_eob_int(bus, false);
1496		npcm_i2c_master_stop(bus);
1497
1498		/* Clear SDA Status bit (by reading dummy byte) */
1499		npcm_i2c_rd_byte(bus);
1500
1501		/*
1502		 * The bus is released from stall only after the SW clears
1503		 * NEGACK bit. Then a Stop condition is sent.
1504		 */
1505		npcm_i2c_clear_master_status(bus);
1506		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1507					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1508		/* Verify no status bits are still set after bus is released */
1509		npcm_i2c_clear_master_status(bus);
1510	}
1511	bus->state = I2C_IDLE;
1512
1513	/*
1514	 * In Master mode, NACK should be cleared only after STOP.
1515	 * In such case, the bus is released from stall only after the
1516	 * software clears NACK bit. Then a Stop condition is sent.
1517	 */
1518	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1519}
1520
1521	/* Master mode: a Bus Error has been identified */
1522static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1523{
1524	if (bus->ber_cnt < ULLONG_MAX)
1525		bus->ber_cnt++;
1526	bus->stop_ind = I2C_BUS_ERR_IND;
1527	if (npcm_i2c_is_master(bus)) {
1528		npcm_i2c_master_abort(bus);
1529	} else {
1530		npcm_i2c_clear_master_status(bus);
1531
1532		/* Clear BB (BUS BUSY) bit */
1533		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1534
1535		bus->cmd_err = -EAGAIN;
1536		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1537	}
1538	bus->state = I2C_IDLE;
1539}
1540
1541	/* EOB: a master End Of Busy (meaning STOP completed) */
1542static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1543{
1544	npcm_i2c_eob_int(bus, false);
1545	bus->state = I2C_IDLE;
1546	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1547}
1548
1549/* Address sent and requested stall occurred (Master mode) */
1550static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1551{
1552	if (npcm_i2c_is_quick(bus)) {
1553		bus->state = I2C_STOP_PENDING;
1554		bus->stop_ind = I2C_MASTER_DONE_IND;
1555		npcm_i2c_eob_int(bus, true);
1556		npcm_i2c_master_stop(bus);
1557	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1558		/*
1559		 * Receiving one byte only - set NACK after ensuring
1560		 * slave ACKed the address byte.
1561		 */
1562		npcm_i2c_nack(bus);
1563	}
1564
1565	/* Reset stall-after-address-byte */
1566	npcm_i2c_stall_after_start(bus, false);
1567
1568	/* Clear stall only after setting STOP */
1569	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1570}
1571
1572/* SDA status is set - TX or RX, master */
1573static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1574{
1575	u8 fif_cts;
1576
1577	if (!npcm_i2c_is_master(bus))
1578		return;
1579
1580	if (bus->state == I2C_IDLE) {
1581		bus->stop_ind = I2C_WAKE_UP_IND;
1582
1583		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1584			/*
1585			 * Need to stall after successful
1586			 * completion of sending address byte
1587			 */
1588			npcm_i2c_stall_after_start(bus, true);
1589		else
1590			npcm_i2c_stall_after_start(bus, false);
1591
1592		/*
1593		 * Receiving one byte only - stall after successful completion
1594		 * of sending address byte If we NACK here, and slave doesn't
1595		 * ACK the address, we might unintentionally NACK the next
1596		 * multi-byte read
1597		 */
1598		if (bus->wr_size == 0 && bus->rd_size == 1)
1599			npcm_i2c_stall_after_start(bus, true);
1600
1601		/* Initiate I2C master tx */
1602
1603		/* select bank 1 for FIFO regs */
1604		npcm_i2c_select_bank(bus, I2C_BANK_1);
1605
1606		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1607		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1608
1609		/* clear FIFO and relevant status bits. */
1610		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1611		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1612
1613		/* re-enable */
1614		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1615		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1616
1617		/*
1618		 * Configure the FIFO threshold:
1619		 * according to the needed # of bytes to read.
1620		 * Note: due to HW limitation can't config the rx fifo before it
1621		 * got and ACK on the restart. LAST bit will not be reset unless
1622		 * RX completed. It will stay set on the next tx.
1623		 */
1624		if (bus->wr_size)
1625			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1626		else
1627			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1628
1629		bus->state = I2C_OPER_STARTED;
1630
1631		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1632			npcm_i2c_wr_byte(bus, bus->dest_addr);
1633		else
1634			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1635	/* SDA interrupt, after start\restart */
1636	} else {
1637		if (NPCM_I2CST_XMIT & i2cst) {
1638			bus->operation = I2C_WRITE_OPER;
1639			npcm_i2c_irq_master_handler_write(bus);
1640		} else {
1641			bus->operation = I2C_READ_OPER;
1642			npcm_i2c_irq_master_handler_read(bus);
1643		}
1644	}
1645}
1646
1647static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1648{
1649	u8 i2cst;
1650	int ret = -EIO;
1651
1652	i2cst = ioread8(bus->reg + NPCM_I2CST);
1653
1654	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1655		npcm_i2c_irq_handle_nmatch(bus);
1656		return 0;
1657	}
1658	/* A NACK has occurred */
1659	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1660		npcm_i2c_irq_handle_nack(bus);
1661		return 0;
1662	}
1663
1664	/* Master mode: a Bus Error has been identified */
1665	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1666		npcm_i2c_irq_handle_ber(bus);
1667		return 0;
1668	}
1669
1670	/* EOB: a master End Of Busy (meaning STOP completed) */
1671	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1672		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1673	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1674		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1675		npcm_i2c_irq_handle_eob(bus);
1676		return 0;
1677	}
1678
1679	/* Address sent and requested stall occurred (Master mode) */
1680	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1681		npcm_i2c_irq_handle_stall_after_start(bus);
1682		ret = 0;
1683	}
1684
1685	/* SDA status is set - TX or RX, master */
1686	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1687	    (bus->fifo_use &&
1688	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1689		npcm_i2c_irq_handle_sda(bus, i2cst);
1690		ret = 0;
1691	}
1692
1693	return ret;
1694}
1695
1696/* recovery using TGCLK functionality of the module */
1697static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1698{
1699	u8               val;
1700	u8               fif_cts;
1701	bool             done = false;
1702	int              status = -ENOTRECOVERABLE;
1703	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1704	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1705	int              iter = 27;
1706
1707	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1708		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1709			bus->num, bus->dest_addr);
1710		npcm_i2c_reset(bus);
1711		return 0;
1712	}
1713
1714	npcm_i2c_int_enable(bus, false);
1715	npcm_i2c_disable(bus);
1716	npcm_i2c_enable(bus);
1717	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1718	npcm_i2c_clear_tx_fifo(bus);
1719	npcm_i2c_clear_rx_fifo(bus);
1720	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1721	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1722	npcm_i2c_stall_after_start(bus, false);
1723
1724	/* select bank 1 for FIFO regs */
1725	npcm_i2c_select_bank(bus, I2C_BANK_1);
1726
1727	/* clear FIFO and relevant status bits. */
1728	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1729	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1730	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1731	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1732	npcm_i2c_set_fifo(bus, -1, 0);
1733
1734	/* Repeat the following sequence until SDA is released */
1735	do {
1736		/* Issue a single SCL toggle */
1737		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1738		usleep_range(20, 30);
1739		/* If SDA line is inactive (high), stop */
1740		if (npcm_i2c_get_SDA(_adap)) {
1741			done = true;
1742			status = 0;
1743		}
1744	} while (!done && iter--);
1745
1746	/* If SDA line is released: send start-addr-stop, to re-sync. */
1747	if (npcm_i2c_get_SDA(_adap)) {
1748		/* Send an address byte in write direction: */
1749		npcm_i2c_wr_byte(bus, bus->dest_addr);
1750		npcm_i2c_master_start(bus);
1751		/* Wait until START condition is sent */
1752		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1753					    20, 200);
1754		/* If START condition was sent */
1755		if (npcm_i2c_is_master(bus) > 0) {
1756			usleep_range(20, 30);
1757			npcm_i2c_master_stop(bus);
1758			usleep_range(200, 500);
1759		}
1760	}
1761	npcm_i2c_reset(bus);
1762	npcm_i2c_int_enable(bus, true);
1763
1764	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1765		status = 0;
1766	else
1767		status = -ENOTRECOVERABLE;
1768	if (status) {
1769		if (bus->rec_fail_cnt < ULLONG_MAX)
1770			bus->rec_fail_cnt++;
1771	} else {
1772		if (bus->rec_succ_cnt < ULLONG_MAX)
1773			bus->rec_succ_cnt++;
1774	}
1775	return status;
1776}
1777
1778/* recovery using bit banging functionality of the module */
1779static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1780{
1781	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1782	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1783
1784	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1785
1786	/*
1787	 * npcm i2c HW allows direct reading of SCL and SDA.
1788	 * However, it does not support setting SCL and SDA directly.
1789	 * The recovery function can toggle SCL when SDA is low (but not set)
1790	 * Getter functions used internally, and can be used externally.
1791	 */
1792	rinfo->get_scl = npcm_i2c_get_SCL;
1793	rinfo->get_sda = npcm_i2c_get_SDA;
1794	_adap->bus_recovery_info = rinfo;
1795}
1796
1797/* SCLFRQ min/max field values */
1798#define SCLFRQ_MIN  10
1799#define SCLFRQ_MAX  511
1800#define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1801
1802/*
1803 * npcm_i2c_init_clk: init HW timing parameters.
1804 * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1805 * and bus frequency.
1806 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1807 * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1808 * by the HW designer, given core clock range (equations in comments below).
1809 *
1810 */
1811static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1812{
1813	u32  k1 = 0;
1814	u32  k2 = 0;
1815	u8   dbnct = 0;
1816	u32  sclfrq = 0;
1817	u8   hldt = 7;
1818	u8   fast_mode = 0;
1819	u32  src_clk_khz;
1820	u32  bus_freq_khz;
1821
1822	src_clk_khz = bus->apb_clk / 1000;
1823	bus_freq_khz = bus_freq_hz / 1000;
1824	bus->bus_freq = bus_freq_hz;
1825
1826	/* 100KHz and below: */
1827	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1828		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1829
1830		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1831			return -EDOM;
1832
1833		if (src_clk_khz >= 40000)
1834			hldt = 17;
1835		else if (src_clk_khz >= 12500)
1836			hldt = 15;
1837		else
1838			hldt = 7;
1839	}
1840
1841	/* 400KHz: */
1842	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1843		sclfrq = 0;
1844		fast_mode = I2CCTL3_400K_MODE;
1845
1846		if (src_clk_khz < 7500)
1847			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1848			return -EDOM;
1849
1850		else if (src_clk_khz >= 50000) {
1851			k1 = 80;
1852			k2 = 48;
1853			hldt = 12;
1854			dbnct = 7;
1855		}
1856
1857		/* Master or Slave with frequency > 25MHz */
1858		else if (src_clk_khz > 25000) {
1859			hldt = clk_coef(src_clk_khz, 300) + 7;
1860			k1 = clk_coef(src_clk_khz, 1600);
1861			k2 = clk_coef(src_clk_khz, 900);
1862		}
1863	}
1864
1865	/* 1MHz: */
1866	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1867		sclfrq = 0;
1868		fast_mode = I2CCTL3_400K_MODE;
1869
1870		/* 1MHZ cannot be supported for core clock < 24 MHz */
1871		if (src_clk_khz < 24000)
1872			return -EDOM;
1873
1874		k1 = clk_coef(src_clk_khz, 620);
1875		k2 = clk_coef(src_clk_khz, 380);
1876
1877		/* Core clk > 40 MHz */
1878		if (src_clk_khz > 40000) {
1879			/*
1880			 * Set HLDT:
1881			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1882			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1883			 */
1884			hldt = clk_coef(src_clk_khz, 120) + 7;
1885		} else {
1886			hldt = 7;
1887			dbnct = 2;
1888		}
1889	}
1890
1891	/* Frequency larger than 1 MHz is not supported */
1892	else
1893		return -EINVAL;
1894
1895	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1896		k1 = round_up(k1, 2);
1897		k2 = round_up(k2 + 1, 2);
1898		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1899		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1900			return -EDOM;
1901	}
1902
1903	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1904	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1905		 bus->reg + NPCM_I2CCTL2);
1906
1907	/* bits [8:7] are in I2CCTL3 reg */
1908	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1909		 bus->reg + NPCM_I2CCTL3);
1910
1911	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1912	npcm_i2c_select_bank(bus, I2C_BANK_0);
1913
1914	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1915		/*
1916		 * Set SCL Low/High Time:
1917		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1918		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1919		 */
1920		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1921		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1922
1923		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1924	}
1925
1926	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1927
1928	/* Return to Bank 1, and stay there by default: */
1929	npcm_i2c_select_bank(bus, I2C_BANK_1);
1930
1931	return 0;
1932}
1933
1934static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1935				u32 bus_freq_hz)
1936{
1937	u8 val;
1938	int ret;
1939
1940	/* Check whether module already enabled or frequency is out of bounds */
1941	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1942	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1943		return -EINVAL;
1944
1945	npcm_i2c_int_enable(bus, false);
1946	npcm_i2c_disable(bus);
1947
1948	/* Configure FIFO mode : */
1949	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1950		bus->fifo_use = true;
1951		npcm_i2c_select_bank(bus, I2C_BANK_0);
1952		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1953		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1954		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1955		npcm_i2c_select_bank(bus, I2C_BANK_1);
1956	} else {
1957		bus->fifo_use = false;
1958	}
1959
1960	/* Configure I2C module clock frequency */
1961	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1962	if (ret) {
1963		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1964		return ret;
1965	}
1966
1967	/* Enable module (before configuring CTL1) */
1968	npcm_i2c_enable(bus);
1969	bus->state = I2C_IDLE;
1970	val = ioread8(bus->reg + NPCM_I2CCTL1);
1971	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1972	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1973
1974	npcm_i2c_reset(bus);
1975
1976	/* Check HW is OK: SDA and SCL should be high at this point. */
1977	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1978		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1979		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1980			npcm_i2c_get_SCL(&bus->adap));
1981		return -ENXIO;
1982	}
1983
1984	npcm_i2c_int_enable(bus, true);
1985	return 0;
1986}
1987
1988static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1989{
1990	u32 clk_freq_hz;
1991	int ret;
1992
1993	/* Initialize the internal data structures */
1994	bus->state = I2C_DISABLE;
1995	bus->master_or_slave = I2C_SLAVE;
1996	bus->int_time_stamp = 0;
1997#if IS_ENABLED(CONFIG_I2C_SLAVE)
1998	bus->slave = NULL;
1999#endif
2000
2001	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2002				       &clk_freq_hz);
2003	if (ret) {
2004		dev_info(&pdev->dev, "Could not read clock-frequency property");
2005		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2006	}
2007
2008	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2009	if (ret) {
2010		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2011		return ret;
2012	}
2013
2014	return 0;
2015}
2016
2017static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2018{
2019	struct npcm_i2c *bus = dev_id;
2020
2021	if (npcm_i2c_is_master(bus))
2022		bus->master_or_slave = I2C_MASTER;
2023
2024	if (bus->master_or_slave == I2C_MASTER) {
2025		bus->int_time_stamp = jiffies;
2026		if (!npcm_i2c_int_master_handler(bus))
2027			return IRQ_HANDLED;
2028	}
2029#if IS_ENABLED(CONFIG_I2C_SLAVE)
2030	if (bus->slave) {
2031		bus->master_or_slave = I2C_SLAVE;
2032		if (npcm_i2c_int_slave_handler(bus))
2033			return IRQ_HANDLED;
2034	}
2035#endif
2036	/* Clear status bits for spurious interrupts */
2037	npcm_i2c_clear_master_status(bus);
2038
2039	return IRQ_HANDLED;
2040}
2041
2042static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2043				       u8 slave_addr, u16 nwrite, u16 nread,
2044				       u8 *write_data, u8 *read_data,
2045				       bool use_PEC, bool use_read_block)
2046{
2047	if (bus->state != I2C_IDLE) {
2048		bus->cmd_err = -EBUSY;
2049		return false;
2050	}
2051	bus->dest_addr = slave_addr << 1;
2052	bus->wr_buf = write_data;
2053	bus->wr_size = nwrite;
2054	bus->wr_ind = 0;
2055	bus->rd_buf = read_data;
2056	bus->rd_size = nread;
2057	bus->rd_ind = 0;
2058	bus->PEC_use = 0;
2059
2060	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2061	if (nread)
2062		bus->PEC_use = use_PEC;
2063
2064	bus->read_block_use = use_read_block;
2065	if (nread && !nwrite)
2066		bus->operation = I2C_READ_OPER;
2067	else
2068		bus->operation = I2C_WRITE_OPER;
2069	if (bus->fifo_use) {
2070		u8 i2cfif_cts;
2071
2072		npcm_i2c_select_bank(bus, I2C_BANK_1);
2073		/* clear FIFO and relevant status bits. */
2074		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2075		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2076		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2077		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2078	}
2079
2080	bus->state = I2C_IDLE;
2081	npcm_i2c_stall_after_start(bus, true);
2082	npcm_i2c_master_start(bus);
2083	return true;
2084}
2085
2086static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2087				int num)
2088{
2089	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2090	struct i2c_msg *msg0, *msg1;
2091	unsigned long time_left, flags;
2092	u16 nwrite, nread;
2093	u8 *write_data, *read_data;
2094	u8 slave_addr;
2095	unsigned long timeout;
2096	bool read_block = false;
2097	bool read_PEC = false;
2098	u8 bus_busy;
2099	unsigned long timeout_usec;
2100
2101	if (bus->state == I2C_DISABLE) {
2102		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2103		return -EINVAL;
2104	}
2105
2106	msg0 = &msgs[0];
2107	slave_addr = msg0->addr;
2108	if (msg0->flags & I2C_M_RD) { /* read */
2109		nwrite = 0;
2110		write_data = NULL;
2111		read_data = msg0->buf;
2112		if (msg0->flags & I2C_M_RECV_LEN) {
2113			nread = 1;
2114			read_block = true;
2115			if (msg0->flags & I2C_CLIENT_PEC)
2116				read_PEC = true;
2117		} else {
2118			nread = msg0->len;
2119		}
2120	} else { /* write */
2121		nwrite = msg0->len;
2122		write_data = msg0->buf;
2123		nread = 0;
2124		read_data = NULL;
2125		if (num == 2) {
2126			msg1 = &msgs[1];
2127			read_data = msg1->buf;
2128			if (msg1->flags & I2C_M_RECV_LEN) {
2129				nread = 1;
2130				read_block = true;
2131				if (msg1->flags & I2C_CLIENT_PEC)
2132					read_PEC = true;
2133			} else {
2134				nread = msg1->len;
2135				read_block = false;
2136			}
2137		}
2138	}
2139
2140	/*
2141	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2142	 * 2: double the timeout for clock stretching case
2143	 * 9: bits per transaction (including the ack/nack)
2144	 */
2145	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2146	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2147	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2148		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2149		return -EINVAL;
2150	}
2151
2152	time_left = jiffies + timeout + 1;
2153	do {
2154		/*
2155		 * we must clear slave address immediately when the bus is not
2156		 * busy, so we spinlock it, but we don't keep the lock for the
2157		 * entire while since it is too long.
2158		 */
2159		spin_lock_irqsave(&bus->lock, flags);
2160		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2161#if IS_ENABLED(CONFIG_I2C_SLAVE)
2162		if (!bus_busy && bus->slave)
2163			iowrite8((bus->slave->addr & 0x7F),
2164				 bus->reg + NPCM_I2CADDR1);
2165#endif
2166		spin_unlock_irqrestore(&bus->lock, flags);
2167
2168	} while (time_is_after_jiffies(time_left) && bus_busy);
2169
2170	if (bus_busy) {
2171		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2172		npcm_i2c_reset(bus);
2173		i2c_recover_bus(adap);
2174		return -EAGAIN;
2175	}
2176
2177	npcm_i2c_init_params(bus);
2178	bus->dest_addr = slave_addr;
2179	bus->msgs = msgs;
2180	bus->msgs_num = num;
2181	bus->cmd_err = 0;
2182	bus->read_block_use = read_block;
2183
2184	reinit_completion(&bus->cmd_complete);
2185
2186	npcm_i2c_int_enable(bus, true);
2187
2188	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2189				       write_data, read_data, read_PEC,
2190				       read_block)) {
2191		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2192							timeout);
2193
2194		if (time_left == 0) {
2195			if (bus->timeout_cnt < ULLONG_MAX)
2196				bus->timeout_cnt++;
2197			if (bus->master_or_slave == I2C_MASTER) {
2198				i2c_recover_bus(adap);
2199				bus->cmd_err = -EIO;
2200				bus->state = I2C_IDLE;
2201			}
2202		}
2203	}
2204
2205	/* if there was BER, check if need to recover the bus: */
2206	if (bus->cmd_err == -EAGAIN)
2207		bus->cmd_err = i2c_recover_bus(adap);
2208
2209	/*
2210	 * After any type of error, check if LAST bit is still set,
2211	 * due to a HW issue.
2212	 * It cannot be cleared without resetting the module.
2213	 */
2214	else if (bus->cmd_err &&
2215		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2216		npcm_i2c_reset(bus);
2217
2218	/* After any xfer, successful or not, stall and EOB must be disabled */
2219	npcm_i2c_stall_after_start(bus, false);
2220	npcm_i2c_eob_int(bus, false);
2221
2222#if IS_ENABLED(CONFIG_I2C_SLAVE)
2223	/* reenable slave if it was enabled */
2224	if (bus->slave)
2225		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2226			 bus->reg + NPCM_I2CADDR1);
2227#else
2228	npcm_i2c_int_enable(bus, false);
2229#endif
2230	return bus->cmd_err;
2231}
2232
2233static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2234{
2235	return I2C_FUNC_I2C |
2236	       I2C_FUNC_SMBUS_EMUL |
2237	       I2C_FUNC_SMBUS_BLOCK_DATA |
2238	       I2C_FUNC_SMBUS_PEC |
2239	       I2C_FUNC_SLAVE;
2240}
2241
2242static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2243	.max_read_len = 32768,
2244	.max_write_len = 32768,
2245	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2246};
2247
2248static const struct i2c_algorithm npcm_i2c_algo = {
2249	.master_xfer = npcm_i2c_master_xfer,
2250	.functionality = npcm_i2c_functionality,
2251#if IS_ENABLED(CONFIG_I2C_SLAVE)
2252	.reg_slave	= npcm_i2c_reg_slave,
2253	.unreg_slave	= npcm_i2c_unreg_slave,
2254#endif
2255};
2256
2257/* i2c debugfs directory: used to keep health monitor of i2c devices */
2258static struct dentry *npcm_i2c_debugfs_dir;
2259
2260static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2261				  struct npcm_i2c *bus)
2262{
2263	struct dentry *d;
2264
2265	if (!npcm_i2c_debugfs_dir)
2266		return;
2267	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2268	if (IS_ERR_OR_NULL(d))
2269		return;
2270	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2271	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2272	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2273	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2274	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2275	debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2276
2277	bus->debugfs = d;
2278}
2279
2280static int npcm_i2c_probe_bus(struct platform_device *pdev)
2281{
2282	struct device_node *np = pdev->dev.of_node;
2283	static struct regmap *gcr_regmap;
2284	struct device *dev = &pdev->dev;
2285	struct i2c_adapter *adap;
2286	struct npcm_i2c *bus;
2287	struct clk *i2c_clk;
2288	int irq;
2289	int ret;
2290
2291	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2292	if (!bus)
2293		return -ENOMEM;
2294
2295	bus->dev = &pdev->dev;
2296
2297	bus->data = of_device_get_match_data(dev);
2298	if (!bus->data) {
2299		dev_err(dev, "OF data missing\n");
2300		return -EINVAL;
2301	}
2302
2303	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2304	/* core clk must be acquired to calculate module timing settings */
2305	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2306	if (IS_ERR(i2c_clk))
2307		return PTR_ERR(i2c_clk);
2308	bus->apb_clk = clk_get_rate(i2c_clk);
2309
2310	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2311	if (IS_ERR(gcr_regmap))
2312		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2313
2314	if (IS_ERR(gcr_regmap))
2315		return PTR_ERR(gcr_regmap);
2316	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2317
2318	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2319	if (IS_ERR(bus->reg))
2320		return PTR_ERR(bus->reg);
2321
2322	spin_lock_init(&bus->lock);
2323	init_completion(&bus->cmd_complete);
2324
2325	adap = &bus->adap;
2326	adap->owner = THIS_MODULE;
2327	adap->retries = 3;
2328	adap->timeout = msecs_to_jiffies(35);
2329	adap->algo = &npcm_i2c_algo;
2330	adap->quirks = &npcm_i2c_quirks;
2331	adap->algo_data = bus;
2332	adap->dev.parent = &pdev->dev;
2333	adap->dev.of_node = pdev->dev.of_node;
2334	adap->nr = pdev->id;
2335
2336	irq = platform_get_irq(pdev, 0);
2337	if (irq < 0)
2338		return irq;
2339
2340	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2341			       dev_name(bus->dev), bus);
2342	if (ret)
2343		return ret;
2344
2345	ret = __npcm_i2c_init(bus, pdev);
2346	if (ret)
2347		return ret;
2348
2349	npcm_i2c_recovery_init(adap);
2350
2351	i2c_set_adapdata(adap, bus);
2352
2353	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2354		 bus->num);
2355	ret = i2c_add_numbered_adapter(&bus->adap);
2356	if (ret)
2357		return ret;
2358
2359	platform_set_drvdata(pdev, bus);
2360	npcm_i2c_init_debugfs(pdev, bus);
2361	return 0;
2362}
2363
2364static int npcm_i2c_remove_bus(struct platform_device *pdev)
2365{
2366	unsigned long lock_flags;
2367	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2368
2369	debugfs_remove_recursive(bus->debugfs);
2370	spin_lock_irqsave(&bus->lock, lock_flags);
2371	npcm_i2c_disable(bus);
2372	spin_unlock_irqrestore(&bus->lock, lock_flags);
2373	i2c_del_adapter(&bus->adap);
2374	return 0;
2375}
2376
2377static const struct of_device_id npcm_i2c_bus_of_table[] = {
2378	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2379	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2380	{}
2381};
2382MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2383
2384static struct platform_driver npcm_i2c_bus_driver = {
2385	.probe = npcm_i2c_probe_bus,
2386	.remove = npcm_i2c_remove_bus,
2387	.driver = {
2388		.name = "nuvoton-i2c",
2389		.of_match_table = npcm_i2c_bus_of_table,
2390	}
2391};
2392
2393static int __init npcm_i2c_init(void)
2394{
2395	int ret;
2396
2397	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2398
2399	ret = platform_driver_register(&npcm_i2c_bus_driver);
2400	if (ret) {
2401		debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2402		return ret;
2403	}
2404
2405	return 0;
2406}
2407module_init(npcm_i2c_init);
2408
2409static void __exit npcm_i2c_exit(void)
2410{
2411	platform_driver_unregister(&npcm_i2c_bus_driver);
2412	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2413}
2414module_exit(npcm_i2c_exit);
2415
2416MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2417MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2418MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2419MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2420MODULE_LICENSE("GPL v2");