Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
  4 *
  5 *  Copyright (C) 2011 Weinmann Medical GmbH
  6 *  Author: Nikolaus Voss <n.voss@weinmann.de>
  7 *
  8 *  Evolved from original work by:
  9 *  Copyright (C) 2004 Rick Bronson
 10 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
 11 *
 12 *  Borrowed heavily from original work by:
 13 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
 14 */
 15
 16#include <linux/clk.h>
 17#include <linux/completion.h>
 18#include <linux/dma-mapping.h>
 19#include <linux/dmaengine.h>
 20#include <linux/err.h>
 21#include <linux/gpio/consumer.h>
 22#include <linux/i2c.h>
 23#include <linux/interrupt.h>
 24#include <linux/io.h>
 25#include <linux/of.h>
 26#include <linux/of_device.h>
 27#include <linux/pinctrl/consumer.h>
 28#include <linux/platform_device.h>
 29#include <linux/pm_runtime.h>
 30
 31#include "i2c-at91.h"
 32
 33void at91_init_twi_bus_master(struct at91_twi_dev *dev)
 34{
 35	struct at91_twi_pdata *pdata = dev->pdata;
 36	u32 filtr = 0;
 37
 38	/* FIFO should be enabled immediately after the software reset */
 39	if (dev->fifo_size)
 40		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
 41	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
 42	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
 43	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
 44
 45	/* enable digital filter */
 46	if (pdata->has_dig_filtr && dev->enable_dig_filt)
 47		filtr |= AT91_TWI_FILTR_FILT;
 48
 49	/* enable advanced digital filter */
 50	if (pdata->has_adv_dig_filtr && dev->enable_dig_filt)
 51		filtr |= AT91_TWI_FILTR_FILT |
 52			 (AT91_TWI_FILTR_THRES(dev->filter_width) &
 53			 AT91_TWI_FILTR_THRES_MASK);
 54
 55	/* enable analog filter */
 56	if (pdata->has_ana_filtr && dev->enable_ana_filt)
 57		filtr |= AT91_TWI_FILTR_PADFEN;
 58
 59	if (filtr)
 60		at91_twi_write(dev, AT91_TWI_FILTR, filtr);
 61}
 62
 63/*
 64 * Calculate symmetric clock as stated in datasheet:
 65 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
 66 */
 67static void at91_calc_twi_clock(struct at91_twi_dev *dev)
 68{
 69	int ckdiv, cdiv, div, hold = 0, filter_width = 0;
 70	struct at91_twi_pdata *pdata = dev->pdata;
 71	int offset = pdata->clk_offset;
 72	int max_ckdiv = pdata->clk_max_div;
 73	struct i2c_timings timings, *t = &timings;
 74
 75	i2c_parse_fw_timings(dev->dev, t, true);
 76
 77	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
 78				       2 * t->bus_freq_hz) - offset);
 79	ckdiv = fls(div >> 8);
 80	cdiv = div >> ckdiv;
 81
 82	if (ckdiv > max_ckdiv) {
 83		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
 84			 ckdiv, max_ckdiv);
 85		ckdiv = max_ckdiv;
 86		cdiv = 255;
 87	}
 88
 89	if (pdata->has_hold_field) {
 90		/*
 91		 * hold time = HOLD + 3 x T_peripheral_clock
 92		 * Use clk rate in kHz to prevent overflows when computing
 93		 * hold.
 94		 */
 95		hold = DIV_ROUND_UP(t->sda_hold_ns
 96				    * (clk_get_rate(dev->clk) / 1000), 1000000);
 97		hold -= 3;
 98		if (hold < 0)
 99			hold = 0;
100		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
101			dev_warn(dev->dev,
102				 "HOLD field set to its maximum value (%d instead of %d)\n",
103				 AT91_TWI_CWGR_HOLD_MAX, hold);
104			hold = AT91_TWI_CWGR_HOLD_MAX;
105		}
106	}
107
108	if (pdata->has_adv_dig_filtr) {
109		/*
110		 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX
111		 * peripheral clocks
112		 */
113		filter_width = DIV_ROUND_UP(t->digital_filter_width_ns
114				* (clk_get_rate(dev->clk) / 1000), 1000000);
115		if (filter_width > AT91_TWI_FILTR_THRES_MAX) {
116			dev_warn(dev->dev,
117				"Filter threshold set to its maximum value (%d instead of %d)\n",
118				AT91_TWI_FILTR_THRES_MAX, filter_width);
119			filter_width = AT91_TWI_FILTR_THRES_MAX;
120		}
121	}
122
123	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
124			    | AT91_TWI_CWGR_HOLD(hold);
125
126	dev->filter_width = filter_width;
127
128	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
129		cdiv, ckdiv, hold, t->sda_hold_ns, filter_width,
130		t->digital_filter_width_ns);
131}
132
133static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
134{
135	struct at91_twi_dma *dma = &dev->dma;
136
137	at91_twi_irq_save(dev);
138
139	if (dma->xfer_in_progress) {
140		if (dma->direction == DMA_FROM_DEVICE)
141			dmaengine_terminate_sync(dma->chan_rx);
142		else
143			dmaengine_terminate_sync(dma->chan_tx);
144		dma->xfer_in_progress = false;
145	}
146	if (dma->buf_mapped) {
147		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
148				 dev->buf_len, dma->direction);
149		dma->buf_mapped = false;
150	}
151
152	at91_twi_irq_restore(dev);
153}
154
155static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
156{
157	if (!dev->buf_len)
158		return;
159
160	/* 8bit write works with and without FIFO */
161	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
162
163	/* send stop when last byte has been written */
164	if (--dev->buf_len == 0) {
165		if (!dev->use_alt_cmd)
166			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
167		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
168	}
169
170	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
171
172	++dev->buf;
173}
174
175static void at91_twi_write_data_dma_callback(void *data)
176{
177	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
178
179	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
180			 dev->buf_len, DMA_TO_DEVICE);
181
182	/*
183	 * When this callback is called, THR/TX FIFO is likely not to be empty
184	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
185	 * Status Register to be sure that the STOP bit has been sent and the
186	 * transfer is completed. The NACK interrupt has already been enabled,
187	 * we just have to enable TXCOMP one.
188	 */
189	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
190	if (!dev->use_alt_cmd)
191		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
192}
193
194static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
195{
196	dma_addr_t dma_addr;
197	struct dma_async_tx_descriptor *txdesc;
198	struct at91_twi_dma *dma = &dev->dma;
199	struct dma_chan *chan_tx = dma->chan_tx;
200	unsigned int sg_len = 1;
201
202	if (!dev->buf_len)
203		return;
204
205	dma->direction = DMA_TO_DEVICE;
206
207	at91_twi_irq_save(dev);
208	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
209				  DMA_TO_DEVICE);
210	if (dma_mapping_error(dev->dev, dma_addr)) {
211		dev_err(dev->dev, "dma map failed\n");
212		return;
213	}
214	dma->buf_mapped = true;
215	at91_twi_irq_restore(dev);
216
217	if (dev->fifo_size) {
218		size_t part1_len, part2_len;
219		struct scatterlist *sg;
220		unsigned fifo_mr;
221
222		sg_len = 0;
223
224		part1_len = dev->buf_len & ~0x3;
225		if (part1_len) {
226			sg = &dma->sg[sg_len++];
227			sg_dma_len(sg) = part1_len;
228			sg_dma_address(sg) = dma_addr;
229		}
230
231		part2_len = dev->buf_len & 0x3;
232		if (part2_len) {
233			sg = &dma->sg[sg_len++];
234			sg_dma_len(sg) = part2_len;
235			sg_dma_address(sg) = dma_addr + part1_len;
236		}
237
238		/*
239		 * DMA controller is triggered when at least 4 data can be
240		 * written into the TX FIFO
241		 */
242		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
243		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
244		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
245		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
246	} else {
247		sg_dma_len(&dma->sg[0]) = dev->buf_len;
248		sg_dma_address(&dma->sg[0]) = dma_addr;
249	}
250
251	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
252					 DMA_MEM_TO_DEV,
253					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
254	if (!txdesc) {
255		dev_err(dev->dev, "dma prep slave sg failed\n");
256		goto error;
257	}
258
259	txdesc->callback = at91_twi_write_data_dma_callback;
260	txdesc->callback_param = dev;
261
262	dma->xfer_in_progress = true;
263	dmaengine_submit(txdesc);
264	dma_async_issue_pending(chan_tx);
265
266	return;
267
268error:
269	at91_twi_dma_cleanup(dev);
270}
271
272static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
273{
274	/*
275	 * If we are in this case, it means there is garbage data in RHR, so
276	 * delete them.
277	 */
278	if (!dev->buf_len) {
279		at91_twi_read(dev, AT91_TWI_RHR);
280		return;
281	}
282
283	/* 8bit read works with and without FIFO */
284	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
285	--dev->buf_len;
286
287	/* return if aborting, we only needed to read RHR to clear RXRDY*/
288	if (dev->recv_len_abort)
289		return;
290
291	/* handle I2C_SMBUS_BLOCK_DATA */
292	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
293		/* ensure length byte is a valid value */
294		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
295			dev->msg->flags &= ~I2C_M_RECV_LEN;
296			dev->buf_len += *dev->buf;
297			dev->msg->len = dev->buf_len + 1;
298			dev_dbg(dev->dev, "received block length %zu\n",
299					 dev->buf_len);
300		} else {
301			/* abort and send the stop by reading one more byte */
302			dev->recv_len_abort = true;
303			dev->buf_len = 1;
304		}
305	}
306
307	/* send stop if second but last byte has been read */
308	if (!dev->use_alt_cmd && dev->buf_len == 1)
309		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
310
311	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
312
313	++dev->buf;
314}
315
316static void at91_twi_read_data_dma_callback(void *data)
317{
318	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
319	unsigned ier = AT91_TWI_TXCOMP;
320
321	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
322			 dev->buf_len, DMA_FROM_DEVICE);
323
324	if (!dev->use_alt_cmd) {
325		/* The last two bytes have to be read without using dma */
326		dev->buf += dev->buf_len - 2;
327		dev->buf_len = 2;
328		ier |= AT91_TWI_RXRDY;
329	}
330	at91_twi_write(dev, AT91_TWI_IER, ier);
331}
332
333static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
334{
335	dma_addr_t dma_addr;
336	struct dma_async_tx_descriptor *rxdesc;
337	struct at91_twi_dma *dma = &dev->dma;
338	struct dma_chan *chan_rx = dma->chan_rx;
339	size_t buf_len;
340
341	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
342	dma->direction = DMA_FROM_DEVICE;
343
344	/* Keep in mind that we won't use dma to read the last two bytes */
345	at91_twi_irq_save(dev);
346	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
347	if (dma_mapping_error(dev->dev, dma_addr)) {
348		dev_err(dev->dev, "dma map failed\n");
349		return;
350	}
351	dma->buf_mapped = true;
352	at91_twi_irq_restore(dev);
353
354	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
355		unsigned fifo_mr;
356
357		/*
358		 * DMA controller is triggered when at least 4 data can be
359		 * read from the RX FIFO
360		 */
361		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
362		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
363		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
364		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
365	}
366
367	sg_dma_len(&dma->sg[0]) = buf_len;
368	sg_dma_address(&dma->sg[0]) = dma_addr;
369
370	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
371					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
372	if (!rxdesc) {
373		dev_err(dev->dev, "dma prep slave sg failed\n");
374		goto error;
375	}
376
377	rxdesc->callback = at91_twi_read_data_dma_callback;
378	rxdesc->callback_param = dev;
379
380	dma->xfer_in_progress = true;
381	dmaengine_submit(rxdesc);
382	dma_async_issue_pending(dma->chan_rx);
383
384	return;
385
386error:
387	at91_twi_dma_cleanup(dev);
388}
389
390static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
391{
392	struct at91_twi_dev *dev = dev_id;
393	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
394	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
395
396	if (!irqstatus)
397		return IRQ_NONE;
398	/*
399	 * In reception, the behavior of the twi device (before sama5d2) is
400	 * weird. There is some magic about RXRDY flag! When a data has been
401	 * almost received, the reception of a new one is anticipated if there
402	 * is no stop command to send. That is the reason why ask for sending
403	 * the stop command not on the last data but on the second last one.
404	 *
405	 * Unfortunately, we could still have the RXRDY flag set even if the
406	 * transfer is done and we have read the last data. It might happen
407	 * when the i2c slave device sends too quickly data after receiving the
408	 * ack from the master. The data has been almost received before having
409	 * the order to send stop. In this case, sending the stop command could
410	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
411	 * the RXRDY interrupt first in order to not keep garbage data in the
412	 * Receive Holding Register for the next transfer.
413	 */
414	if (irqstatus & AT91_TWI_RXRDY) {
415		/*
416		 * Read all available bytes at once by polling RXRDY usable w/
417		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
418		 * avoid polling RXRDY.
419		 */
420		do {
421			at91_twi_read_next_byte(dev);
422		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
423	}
424
425	/*
426	 * When a NACK condition is detected, the I2C controller sets the NACK,
427	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
428	 *
429	 * 1 - Handling NACK errors with CPU write transfer.
430	 *
431	 * In such case, we should not write the next byte into the Transmit
432	 * Holding Register (THR) otherwise the I2C controller would start a new
433	 * transfer and the I2C slave is likely to reply by another NACK.
434	 *
435	 * 2 - Handling NACK errors with DMA write transfer.
436	 *
437	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
438	 * the DMA controller to write the next data into the THR. Then the
439	 * result depends on the hardware version of the I2C controller.
440	 *
441	 * 2a - Without support of the Alternative Command mode.
442	 *
443	 * This is the worst case: the DMA controller is triggered to write the
444	 * next data into the THR, hence starting a new transfer: the I2C slave
445	 * is likely to reply by another NACK.
446	 * Concurrently, this interrupt handler is likely to be called to manage
447	 * the first NACK before the I2C controller detects the second NACK and
448	 * sets once again the NACK bit into the SR.
449	 * When handling the first NACK, this interrupt handler disables the I2C
450	 * controller interruptions, especially the NACK interrupt.
451	 * Hence, the NACK bit is pending into the SR. This is why we should
452	 * read the SR to clear all pending interrupts at the beginning of
453	 * at91_do_twi_transfer() before actually starting a new transfer.
454	 *
455	 * 2b - With support of the Alternative Command mode.
456	 *
457	 * When a NACK condition is detected, the I2C controller also locks the
458	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
459	 * is triggered by the TXRDY bit to write the next data into the THR,
460	 * this data actually won't go on the I2C bus hence a second NACK is not
461	 * generated.
462	 */
463	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
464		at91_disable_twi_interrupts(dev);
465		complete(&dev->cmd_complete);
466	} else if (irqstatus & AT91_TWI_TXRDY) {
467		at91_twi_write_next_byte(dev);
468	}
469
470	/* catch error flags */
471	dev->transfer_status |= status;
472
473	return IRQ_HANDLED;
474}
475
476static int at91_do_twi_transfer(struct at91_twi_dev *dev)
477{
478	int ret;
479	unsigned long time_left;
480	bool has_unre_flag = dev->pdata->has_unre_flag;
481	bool has_alt_cmd = dev->pdata->has_alt_cmd;
482
483	/*
484	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
485	 * read flag but shows the state of the transmission at the time the
486	 * Status Register is read. According to the programmer datasheet,
487	 * TXCOMP is set when both holding register and internal shifter are
488	 * empty and STOP condition has been sent.
489	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
490	 * detect transmission failure.
491	 * Indeed let's take the case of an i2c write command using DMA.
492	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
493	 * TXCOMP bits are set together into the Status Register.
494	 * LOCK is a clear on write bit, which is set to prevent the DMA
495	 * controller from sending new data on the i2c bus after a NACK
496	 * condition has happened. Once locked, this i2c peripheral stops
497	 * triggering the DMA controller for new data but it is more than
498	 * likely that a new DMA transaction is already in progress, writing
499	 * into the Transmit Holding Register. Since the peripheral is locked,
500	 * these new data won't be sent to the i2c bus but they will remain
501	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
502	 * Then when the interrupt handler is called, the Status Register is
503	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
504	 * manage the error properly, without waiting for timeout.
505	 * This case can be reproduced easyly when writing into an at24 eeprom.
506	 *
507	 * Besides, the TXCOMP bit is already set before the i2c transaction
508	 * has been started. For read transactions, this bit is cleared when
509	 * writing the START bit into the Control Register. So the
510	 * corresponding interrupt can safely be enabled just after.
511	 * However for write transactions managed by the CPU, we first write
512	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
513	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
514	 * the interrupt handler would be called immediately and the i2c command
515	 * would be reported as completed.
516	 * Also when a write transaction is managed by the DMA controller,
517	 * enabling the TXCOMP interrupt in this function may lead to a race
518	 * condition since we don't know whether the TXCOMP interrupt is enabled
519	 * before or after the DMA has started to write into THR. So the TXCOMP
520	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
521	 * Immediately after in that DMA callback, if the alternative command
522	 * mode is not used, we still need to send the STOP condition manually
523	 * writing the corresponding bit into the Control Register.
524	 */
525
526	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
527		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
528
529	reinit_completion(&dev->cmd_complete);
530	dev->transfer_status = 0;
531
532	/* Clear pending interrupts, such as NACK. */
533	at91_twi_read(dev, AT91_TWI_SR);
534
535	if (dev->fifo_size) {
536		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
537
538		/* Reset FIFO mode register */
539		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
540			     AT91_TWI_FMR_RXRDYM_MASK);
541		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
542		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
543		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
544
545		/* Flush FIFOs */
546		at91_twi_write(dev, AT91_TWI_CR,
547			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
548	}
549
550	if (!dev->buf_len) {
551		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
552		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
553	} else if (dev->msg->flags & I2C_M_RD) {
554		unsigned start_flags = AT91_TWI_START;
555
556		/* if only one byte is to be read, immediately stop transfer */
557		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
558		    !(dev->msg->flags & I2C_M_RECV_LEN))
559			start_flags |= AT91_TWI_STOP;
560		at91_twi_write(dev, AT91_TWI_CR, start_flags);
561		/*
562		 * When using dma without alternative command mode, the last
563		 * byte has to be read manually in order to not send the stop
564		 * command too late and then to receive extra data.
565		 * In practice, there are some issues if you use the dma to
566		 * read n-1 bytes because of latency.
567		 * Reading n-2 bytes with dma and the two last ones manually
568		 * seems to be the best solution.
569		 */
570		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
571			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
572			at91_twi_read_data_dma(dev);
573		} else {
574			at91_twi_write(dev, AT91_TWI_IER,
575				       AT91_TWI_TXCOMP |
576				       AT91_TWI_NACK |
577				       AT91_TWI_RXRDY);
578		}
579	} else {
580		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
581			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
582			at91_twi_write_data_dma(dev);
583		} else {
584			at91_twi_write_next_byte(dev);
585			at91_twi_write(dev, AT91_TWI_IER,
586				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
587				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
588		}
589	}
590
591	time_left = wait_for_completion_timeout(&dev->cmd_complete,
592					      dev->adapter.timeout);
593	if (time_left == 0) {
594		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
595		dev_err(dev->dev, "controller timed out\n");
596		at91_init_twi_bus(dev);
597		ret = -ETIMEDOUT;
598		goto error;
599	}
600	if (dev->transfer_status & AT91_TWI_NACK) {
601		dev_dbg(dev->dev, "received nack\n");
602		ret = -EREMOTEIO;
603		goto error;
604	}
605	if (dev->transfer_status & AT91_TWI_OVRE) {
606		dev_err(dev->dev, "overrun while reading\n");
607		ret = -EIO;
608		goto error;
609	}
610	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
611		dev_err(dev->dev, "underrun while writing\n");
612		ret = -EIO;
613		goto error;
614	}
615	if ((has_alt_cmd || dev->fifo_size) &&
616	    (dev->transfer_status & AT91_TWI_LOCK)) {
617		dev_err(dev->dev, "tx locked\n");
618		ret = -EIO;
619		goto error;
620	}
621	if (dev->recv_len_abort) {
622		dev_err(dev->dev, "invalid smbus block length recvd\n");
623		ret = -EPROTO;
624		goto error;
625	}
626
627	dev_dbg(dev->dev, "transfer complete\n");
628
629	return 0;
630
631error:
632	/* first stop DMA transfer if still in progress */
633	at91_twi_dma_cleanup(dev);
634	/* then flush THR/FIFO and unlock TX if locked */
635	if ((has_alt_cmd || dev->fifo_size) &&
636	    (dev->transfer_status & AT91_TWI_LOCK)) {
637		dev_dbg(dev->dev, "unlock tx\n");
638		at91_twi_write(dev, AT91_TWI_CR,
639			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
640	}
641
642	/*
643	 * some faulty I2C slave devices might hold SDA down;
644	 * we can send a bus clear command, hoping that the pins will be
645	 * released
646	 */
647	i2c_recover_bus(&dev->adapter);
648
649	return ret;
650}
651
652static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
653{
654	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
655	int ret;
656	unsigned int_addr_flag = 0;
657	struct i2c_msg *m_start = msg;
658	bool is_read;
659	u8 *dma_buf = NULL;
660
661	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
662
663	ret = pm_runtime_get_sync(dev->dev);
664	if (ret < 0)
665		goto out;
666
667	if (num == 2) {
668		int internal_address = 0;
669		int i;
670
671		/* 1st msg is put into the internal address, start with 2nd */
672		m_start = &msg[1];
673		for (i = 0; i < msg->len; ++i) {
674			const unsigned addr = msg->buf[msg->len - 1 - i];
675
676			internal_address |= addr << (8 * i);
677			int_addr_flag += AT91_TWI_IADRSZ_1;
678		}
679		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
680	}
681
682	dev->use_alt_cmd = false;
683	is_read = (m_start->flags & I2C_M_RD);
684	if (dev->pdata->has_alt_cmd) {
685		if (m_start->len > 0 &&
686		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
687			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
688			at91_twi_write(dev, AT91_TWI_ACR,
689				       AT91_TWI_ACR_DATAL(m_start->len) |
690				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
691			dev->use_alt_cmd = true;
692		} else {
693			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
694		}
695	}
696
697	at91_twi_write(dev, AT91_TWI_MMR,
698		       (m_start->addr << 16) |
699		       int_addr_flag |
700		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
701
702	dev->buf_len = m_start->len;
703	dev->buf = m_start->buf;
704	dev->msg = m_start;
705	dev->recv_len_abort = false;
706
707	if (dev->use_dma) {
708		dma_buf = i2c_get_dma_safe_msg_buf(m_start, 1);
709		if (!dma_buf) {
710			ret = -ENOMEM;
711			goto out;
712		}
713		dev->buf = dma_buf;
714	}
715
716	ret = at91_do_twi_transfer(dev);
717	i2c_put_dma_safe_msg_buf(dma_buf, m_start, !ret);
718
719	ret = (ret < 0) ? ret : num;
720out:
721	pm_runtime_mark_last_busy(dev->dev);
722	pm_runtime_put_autosuspend(dev->dev);
723
724	return ret;
725}
726
727/*
728 * The hardware can handle at most two messages concatenated by a
729 * repeated start via it's internal address feature.
730 */
731static const struct i2c_adapter_quirks at91_twi_quirks = {
732	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
733	.max_comb_1st_msg_len = 3,
734};
735
736static u32 at91_twi_func(struct i2c_adapter *adapter)
737{
738	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
739		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
740}
741
742static const struct i2c_algorithm at91_twi_algorithm = {
743	.master_xfer	= at91_twi_xfer,
744	.functionality	= at91_twi_func,
745};
746
747static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
748{
749	int ret = 0;
750	struct dma_slave_config slave_config;
751	struct at91_twi_dma *dma = &dev->dma;
752	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
753
754	/*
755	 * The actual width of the access will be chosen in
756	 * dmaengine_prep_slave_sg():
757	 * for each buffer in the scatter-gather list, if its size is aligned
758	 * to addr_width then addr_width accesses will be performed to transfer
759	 * the buffer. On the other hand, if the buffer size is not aligned to
760	 * addr_width then the buffer is transferred using single byte accesses.
761	 * Please refer to the Atmel eXtended DMA controller driver.
762	 * When FIFOs are used, the TXRDYM threshold can always be set to
763	 * trigger the XDMAC when at least 4 data can be written into the TX
764	 * FIFO, even if single byte accesses are performed.
765	 * However the RXRDYM threshold must be set to fit the access width,
766	 * deduced from buffer length, so the XDMAC is triggered properly to
767	 * read data from the RX FIFO.
768	 */
769	if (dev->fifo_size)
770		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
771
772	memset(&slave_config, 0, sizeof(slave_config));
773	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
774	slave_config.src_addr_width = addr_width;
775	slave_config.src_maxburst = 1;
776	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
777	slave_config.dst_addr_width = addr_width;
778	slave_config.dst_maxburst = 1;
779	slave_config.device_fc = false;
780
781	dma->chan_tx = dma_request_chan(dev->dev, "tx");
782	if (IS_ERR(dma->chan_tx)) {
783		ret = PTR_ERR(dma->chan_tx);
784		dma->chan_tx = NULL;
785		goto error;
786	}
787
788	dma->chan_rx = dma_request_chan(dev->dev, "rx");
789	if (IS_ERR(dma->chan_rx)) {
790		ret = PTR_ERR(dma->chan_rx);
791		dma->chan_rx = NULL;
792		goto error;
793	}
794
795	slave_config.direction = DMA_MEM_TO_DEV;
796	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
797		dev_err(dev->dev, "failed to configure tx channel\n");
798		ret = -EINVAL;
799		goto error;
800	}
801
802	slave_config.direction = DMA_DEV_TO_MEM;
803	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
804		dev_err(dev->dev, "failed to configure rx channel\n");
805		ret = -EINVAL;
806		goto error;
807	}
808
809	sg_init_table(dma->sg, 2);
810	dma->buf_mapped = false;
811	dma->xfer_in_progress = false;
812	dev->use_dma = true;
813
814	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
815		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
816
817	return ret;
818
819error:
820	if (ret != -EPROBE_DEFER)
821		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
822	if (dma->chan_rx)
823		dma_release_channel(dma->chan_rx);
824	if (dma->chan_tx)
825		dma_release_channel(dma->chan_tx);
826	return ret;
827}
828
829static int at91_init_twi_recovery_gpio(struct platform_device *pdev,
830				       struct at91_twi_dev *dev)
831{
832	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
833
834	rinfo->pinctrl = devm_pinctrl_get(&pdev->dev);
835	if (!rinfo->pinctrl || IS_ERR(rinfo->pinctrl)) {
836		dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n");
837		return PTR_ERR(rinfo->pinctrl);
838	}
839	dev->adapter.bus_recovery_info = rinfo;
840
841	return 0;
842}
843
844static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap)
845{
846	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
847
848	dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
849	if (!(dev->transfer_status & AT91_TWI_SDA)) {
850		dev_dbg(dev->dev, "SDA is down; sending bus clear command\n");
851		if (dev->use_alt_cmd) {
852			unsigned int acr;
853
854			acr = at91_twi_read(dev, AT91_TWI_ACR);
855			acr &= ~AT91_TWI_ACR_DATAL_MASK;
856			at91_twi_write(dev, AT91_TWI_ACR, acr);
857		}
858		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR);
859	}
860
861	return 0;
862}
863
864static int at91_init_twi_recovery_info(struct platform_device *pdev,
865				       struct at91_twi_dev *dev)
866{
867	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
868	bool has_clear_cmd = dev->pdata->has_clear_cmd;
869
870	if (!has_clear_cmd)
871		return at91_init_twi_recovery_gpio(pdev, dev);
872
873	rinfo->recover_bus = at91_twi_recover_bus_cmd;
874	dev->adapter.bus_recovery_info = rinfo;
875
876	return 0;
877}
878
879int at91_twi_probe_master(struct platform_device *pdev,
880			  u32 phy_addr, struct at91_twi_dev *dev)
881{
882	int rc;
883
884	init_completion(&dev->cmd_complete);
885
886	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
887			      dev_name(dev->dev), dev);
888	if (rc) {
889		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
890		return rc;
891	}
892
893	if (dev->dev->of_node) {
894		rc = at91_twi_configure_dma(dev, phy_addr);
895		if (rc == -EPROBE_DEFER)
896			return rc;
897	}
898
899	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
900				  &dev->fifo_size)) {
901		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
902	}
903
904	dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node,
905						     "i2c-digital-filter");
906
907	dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node,
908						     "i2c-analog-filter");
909	at91_calc_twi_clock(dev);
910
911	rc = at91_init_twi_recovery_info(pdev, dev);
912	if (rc == -EPROBE_DEFER)
913		return rc;
914
915	dev->adapter.algo = &at91_twi_algorithm;
916	dev->adapter.quirks = &at91_twi_quirks;
917
918	return 0;
919}