Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43
  44#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  45#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  46#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  47
  48#define DESCRIPTOR_OUTPUT_MORE		0
  49#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  50#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  51#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  52#define DESCRIPTOR_STATUS		(1 << 11)
  53#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  54#define DESCRIPTOR_PING			(1 << 7)
  55#define DESCRIPTOR_YY			(1 << 6)
  56#define DESCRIPTOR_NO_IRQ		(0 << 4)
  57#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  58#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  59#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  60#define DESCRIPTOR_WAIT			(3 << 0)
  61
  62#define DESCRIPTOR_CMD			(0xf << 12)
  63
  64struct descriptor {
  65	__le16 req_count;
  66	__le16 control;
  67	__le32 data_address;
  68	__le32 branch_address;
  69	__le16 res_count;
  70	__le16 transfer_status;
  71} __attribute__((aligned(16)));
  72
  73#define CONTROL_SET(regs)	(regs)
  74#define CONTROL_CLEAR(regs)	((regs) + 4)
  75#define COMMAND_PTR(regs)	((regs) + 12)
  76#define CONTEXT_MATCH(regs)	((regs) + 16)
  77
  78#define AR_BUFFER_SIZE	(32*1024)
  79#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  80/* we need at least two pages for proper list management */
  81#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  82
  83#define MAX_ASYNC_PAYLOAD	4096
  84#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  85#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  86
  87struct ar_context {
  88	struct fw_ohci *ohci;
  89	struct page *pages[AR_BUFFERS];
  90	void *buffer;
  91	struct descriptor *descriptors;
  92	dma_addr_t descriptors_bus;
  93	void *pointer;
  94	unsigned int last_buffer_index;
  95	u32 regs;
  96	struct tasklet_struct tasklet;
  97};
  98
  99struct context;
 100
 101typedef int (*descriptor_callback_t)(struct context *ctx,
 102				     struct descriptor *d,
 103				     struct descriptor *last);
 104
 105/*
 106 * A buffer that contains a block of DMA-able coherent memory used for
 107 * storing a portion of a DMA descriptor program.
 108 */
 109struct descriptor_buffer {
 110	struct list_head list;
 111	dma_addr_t buffer_bus;
 112	size_t buffer_size;
 113	size_t used;
 114	struct descriptor buffer[];
 115};
 116
 117struct context {
 118	struct fw_ohci *ohci;
 119	u32 regs;
 120	int total_allocation;
 121	u32 current_bus;
 122	bool running;
 123	bool flushing;
 124
 125	/*
 126	 * List of page-sized buffers for storing DMA descriptors.
 127	 * Head of list contains buffers in use and tail of list contains
 128	 * free buffers.
 129	 */
 130	struct list_head buffer_list;
 131
 132	/*
 133	 * Pointer to a buffer inside buffer_list that contains the tail
 134	 * end of the current DMA program.
 135	 */
 136	struct descriptor_buffer *buffer_tail;
 137
 138	/*
 139	 * The descriptor containing the branch address of the first
 140	 * descriptor that has not yet been filled by the device.
 141	 */
 142	struct descriptor *last;
 143
 144	/*
 145	 * The last descriptor block in the DMA program. It contains the branch
 146	 * address that must be updated upon appending a new descriptor.
 147	 */
 148	struct descriptor *prev;
 149	int prev_z;
 150
 151	descriptor_callback_t callback;
 152
 153	struct tasklet_struct tasklet;
 154};
 155
 156#define IT_HEADER_SY(v)          ((v) <<  0)
 157#define IT_HEADER_TCODE(v)       ((v) <<  4)
 158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 159#define IT_HEADER_TAG(v)         ((v) << 14)
 160#define IT_HEADER_SPEED(v)       ((v) << 16)
 161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 162
 163struct iso_context {
 164	struct fw_iso_context base;
 165	struct context context;
 166	void *header;
 167	size_t header_length;
 168	unsigned long flushing_completions;
 169	u32 mc_buffer_bus;
 170	u16 mc_completed;
 171	u16 last_timestamp;
 172	u8 sync;
 173	u8 tags;
 174};
 175
 176#define CONFIG_ROM_SIZE 1024
 177
 178struct fw_ohci {
 179	struct fw_card card;
 180
 181	__iomem char *registers;
 182	int node_id;
 183	int generation;
 184	int request_generation;	/* for timestamping incoming requests */
 185	unsigned quirks;
 186	unsigned int pri_req_max;
 187	u32 bus_time;
 188	bool bus_time_running;
 189	bool is_root;
 190	bool csr_state_setclear_abdicate;
 191	int n_ir;
 192	int n_it;
 193	/*
 194	 * Spinlock for accessing fw_ohci data.  Never call out of
 195	 * this driver with this lock held.
 196	 */
 197	spinlock_t lock;
 198
 199	struct mutex phy_reg_mutex;
 200
 201	void *misc_buffer;
 202	dma_addr_t misc_buffer_bus;
 203
 204	struct ar_context ar_request_ctx;
 205	struct ar_context ar_response_ctx;
 206	struct context at_request_ctx;
 207	struct context at_response_ctx;
 208
 209	u32 it_context_support;
 210	u32 it_context_mask;     /* unoccupied IT contexts */
 211	struct iso_context *it_context_list;
 212	u64 ir_context_channels; /* unoccupied channels */
 213	u32 ir_context_support;
 214	u32 ir_context_mask;     /* unoccupied IR contexts */
 215	struct iso_context *ir_context_list;
 216	u64 mc_channels; /* channels in use by the multichannel IR context */
 217	bool mc_allocated;
 218
 219	__be32    *config_rom;
 220	dma_addr_t config_rom_bus;
 221	__be32    *next_config_rom;
 222	dma_addr_t next_config_rom_bus;
 223	__be32     next_header;
 224
 225	__le32    *self_id;
 226	dma_addr_t self_id_bus;
 227	struct work_struct bus_reset_work;
 228
 229	u32 self_id_buffer[512];
 230};
 231
 232static struct workqueue_struct *selfid_workqueue;
 233
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236	return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 240#define IR_CONTEXT_BUFFER_FILL		0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 245
 246#define CONTEXT_RUN	0x8000
 247#define CONTEXT_WAKE	0x1000
 248#define CONTEXT_DEAD	0x0800
 249#define CONTEXT_ACTIVE	0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 254
 255#define OHCI1394_REGISTER_SIZE		0x800
 256#define OHCI1394_PCI_HCI_Control	0x40
 257#define SELF_ID_BUF_SIZE		0x800
 258#define OHCI_TCODE_PHY_PACKET		0x0e
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 283static const struct {
 284	unsigned short vendor, device, revision, flags;
 285} ohci_quirks[] = {
 286	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 287		QUIRK_CYCLE_TIMER},
 288
 289	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 290		QUIRK_BE_HEADERS},
 291
 292	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 293		QUIRK_NO_MSI},
 294
 295	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 296		QUIRK_RESET_PACKET},
 297
 298	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 299		QUIRK_NO_MSI},
 300
 301	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 302		QUIRK_CYCLE_TIMER},
 303
 304	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 305		QUIRK_NO_MSI},
 306
 307	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 308		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 309
 310	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 311		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 312
 313	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 314		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 315
 316	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 317		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 318
 319	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 320		QUIRK_RESET_PACKET},
 321
 322	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 323		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 324
 325	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 326		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 327
 328	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 329		QUIRK_NO_MSI},
 330
 331	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 333};
 334
 335/* This overrides anything that was found in ohci_quirks[]. */
 336static int param_quirks;
 337module_param_named(quirks, param_quirks, int, 0644);
 338MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 339	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 340	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 341	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 342	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 343	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 344	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 345	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 346	")");
 347
 348#define OHCI_PARAM_DEBUG_AT_AR		1
 349#define OHCI_PARAM_DEBUG_SELFIDS	2
 350#define OHCI_PARAM_DEBUG_IRQS		4
 351#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 352
 353static int param_debug;
 354module_param_named(debug, param_debug, int, 0644);
 355MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 356	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 357	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 358	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 359	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 360	", or a combination, or all = -1)");
 361
 362static bool param_remote_dma;
 363module_param_named(remote_dma, param_remote_dma, bool, 0444);
 364MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 365
 366static void log_irqs(struct fw_ohci *ohci, u32 evt)
 367{
 368	if (likely(!(param_debug &
 369			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 370		return;
 371
 372	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 373	    !(evt & OHCI1394_busReset))
 374		return;
 375
 376	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 377	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 378	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 379	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 380	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 381	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 382	    evt & OHCI1394_isochRx		? " IR"			: "",
 383	    evt & OHCI1394_isochTx		? " IT"			: "",
 384	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 385	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 386	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 387	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 388	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 389	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 390	    evt & OHCI1394_busReset		? " busReset"		: "",
 391	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 392		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 393		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 394		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 395		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 396		    OHCI1394_cycleInconsistent |
 397		    OHCI1394_regAccessFail | OHCI1394_busReset)
 398						? " ?"			: "");
 399}
 400
 401static const char *speed[] = {
 402	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 403};
 404static const char *power[] = {
 405	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 406	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 407};
 408static const char port[] = { '.', '-', 'p', 'c', };
 409
 410static char _p(u32 *s, int shift)
 411{
 412	return port[*s >> shift & 3];
 413}
 414
 415static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 416{
 417	u32 *s;
 418
 419	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 420		return;
 421
 422	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 423		    self_id_count, generation, ohci->node_id);
 424
 425	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 426		if ((*s & 1 << 23) == 0)
 427			ohci_notice(ohci,
 428			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 429			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 430			    speed[*s >> 14 & 3], *s >> 16 & 63,
 431			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 432			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 433		else
 434			ohci_notice(ohci,
 435			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 436			    *s, *s >> 24 & 63,
 437			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 438			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 439}
 440
 441static const char *evts[] = {
 442	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 443	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 444	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 445	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 446	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 447	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 448	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 449	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 450	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 451	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 452	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 453	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 454	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 455	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 456	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 457	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 458	[0x20] = "pending/cancelled",
 459};
 460static const char *tcodes[] = {
 461	[0x0] = "QW req",		[0x1] = "BW req",
 462	[0x2] = "W resp",		[0x3] = "-reserved-",
 463	[0x4] = "QR req",		[0x5] = "BR req",
 464	[0x6] = "QR resp",		[0x7] = "BR resp",
 465	[0x8] = "cycle start",		[0x9] = "Lk req",
 466	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 467	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 468	[0xe] = "link internal",	[0xf] = "-reserved-",
 469};
 470
 471static void log_ar_at_event(struct fw_ohci *ohci,
 472			    char dir, int speed, u32 *header, int evt)
 473{
 474	int tcode = header[0] >> 4 & 0xf;
 475	char specific[12];
 476
 477	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 478		return;
 479
 480	if (unlikely(evt >= ARRAY_SIZE(evts)))
 481			evt = 0x1f;
 482
 483	if (evt == OHCI1394_evt_bus_reset) {
 484		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 485			    dir, (header[2] >> 16) & 0xff);
 486		return;
 487	}
 488
 489	switch (tcode) {
 490	case 0x0: case 0x6: case 0x8:
 491		snprintf(specific, sizeof(specific), " = %08x",
 492			 be32_to_cpu((__force __be32)header[3]));
 493		break;
 494	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 495		snprintf(specific, sizeof(specific), " %x,%x",
 496			 header[3] >> 16, header[3] & 0xffff);
 497		break;
 498	default:
 499		specific[0] = '\0';
 500	}
 501
 502	switch (tcode) {
 503	case 0xa:
 504		ohci_notice(ohci, "A%c %s, %s\n",
 505			    dir, evts[evt], tcodes[tcode]);
 506		break;
 507	case 0xe:
 508		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 509			    dir, evts[evt], header[1], header[2]);
 510		break;
 511	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 512		ohci_notice(ohci,
 513			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 514			    dir, speed, header[0] >> 10 & 0x3f,
 515			    header[1] >> 16, header[0] >> 16, evts[evt],
 516			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 517		break;
 518	default:
 519		ohci_notice(ohci,
 520			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 521			    dir, speed, header[0] >> 10 & 0x3f,
 522			    header[1] >> 16, header[0] >> 16, evts[evt],
 523			    tcodes[tcode], specific);
 524	}
 525}
 526
 527static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 528{
 529	writel(data, ohci->registers + offset);
 530}
 531
 532static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 533{
 534	return readl(ohci->registers + offset);
 535}
 536
 537static inline void flush_writes(const struct fw_ohci *ohci)
 538{
 539	/* Do a dummy read to flush writes. */
 540	reg_read(ohci, OHCI1394_Version);
 541}
 542
 543/*
 544 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 547 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 548 */
 549static int read_phy_reg(struct fw_ohci *ohci, int addr)
 550{
 551	u32 val;
 552	int i;
 553
 554	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 555	for (i = 0; i < 3 + 100; i++) {
 556		val = reg_read(ohci, OHCI1394_PhyControl);
 557		if (!~val)
 558			return -ENODEV; /* Card was ejected. */
 559
 560		if (val & OHCI1394_PhyControl_ReadDone)
 561			return OHCI1394_PhyControl_ReadData(val);
 562
 563		/*
 564		 * Try a few times without waiting.  Sleeping is necessary
 565		 * only when the link/PHY interface is busy.
 566		 */
 567		if (i >= 3)
 568			msleep(1);
 569	}
 570	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 571	dump_stack();
 572
 573	return -EBUSY;
 574}
 575
 576static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 577{
 578	int i;
 579
 580	reg_write(ohci, OHCI1394_PhyControl,
 581		  OHCI1394_PhyControl_Write(addr, val));
 582	for (i = 0; i < 3 + 100; i++) {
 583		val = reg_read(ohci, OHCI1394_PhyControl);
 584		if (!~val)
 585			return -ENODEV; /* Card was ejected. */
 586
 587		if (!(val & OHCI1394_PhyControl_WritePending))
 588			return 0;
 589
 590		if (i >= 3)
 591			msleep(1);
 592	}
 593	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 594	dump_stack();
 595
 596	return -EBUSY;
 597}
 598
 599static int update_phy_reg(struct fw_ohci *ohci, int addr,
 600			  int clear_bits, int set_bits)
 601{
 602	int ret = read_phy_reg(ohci, addr);
 603	if (ret < 0)
 604		return ret;
 605
 606	/*
 607	 * The interrupt status bits are cleared by writing a one bit.
 608	 * Avoid clearing them unless explicitly requested in set_bits.
 609	 */
 610	if (addr == 5)
 611		clear_bits |= PHY_INT_STATUS_BITS;
 612
 613	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 614}
 615
 616static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 617{
 618	int ret;
 619
 620	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 621	if (ret < 0)
 622		return ret;
 623
 624	return read_phy_reg(ohci, addr);
 625}
 626
 627static int ohci_read_phy_reg(struct fw_card *card, int addr)
 628{
 629	struct fw_ohci *ohci = fw_ohci(card);
 630	int ret;
 631
 632	mutex_lock(&ohci->phy_reg_mutex);
 633	ret = read_phy_reg(ohci, addr);
 634	mutex_unlock(&ohci->phy_reg_mutex);
 635
 636	return ret;
 637}
 638
 639static int ohci_update_phy_reg(struct fw_card *card, int addr,
 640			       int clear_bits, int set_bits)
 641{
 642	struct fw_ohci *ohci = fw_ohci(card);
 643	int ret;
 644
 645	mutex_lock(&ohci->phy_reg_mutex);
 646	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 647	mutex_unlock(&ohci->phy_reg_mutex);
 648
 649	return ret;
 650}
 651
 652static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 653{
 654	return page_private(ctx->pages[i]);
 655}
 656
 657static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 658{
 659	struct descriptor *d;
 660
 661	d = &ctx->descriptors[index];
 662	d->branch_address  &= cpu_to_le32(~0xf);
 663	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 664	d->transfer_status =  0;
 665
 666	wmb(); /* finish init of new descriptors before branch_address update */
 667	d = &ctx->descriptors[ctx->last_buffer_index];
 668	d->branch_address  |= cpu_to_le32(1);
 669
 670	ctx->last_buffer_index = index;
 671
 672	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 673}
 674
 675static void ar_context_release(struct ar_context *ctx)
 676{
 677	struct device *dev = ctx->ohci->card.device;
 678	unsigned int i;
 679
 680	vunmap(ctx->buffer);
 
 681
 682	for (i = 0; i < AR_BUFFERS; i++) {
 683		if (ctx->pages[i])
 684			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 685				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 686	}
 
 
 687}
 688
 689static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 690{
 691	struct fw_ohci *ohci = ctx->ohci;
 692
 693	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 694		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 695		flush_writes(ohci);
 696
 697		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 698	}
 699	/* FIXME: restart? */
 700}
 701
 702static inline unsigned int ar_next_buffer_index(unsigned int index)
 703{
 704	return (index + 1) % AR_BUFFERS;
 705}
 706
 
 
 
 
 
 707static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 708{
 709	return ar_next_buffer_index(ctx->last_buffer_index);
 710}
 711
 712/*
 713 * We search for the buffer that contains the last AR packet DMA data written
 714 * by the controller.
 715 */
 716static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 717						 unsigned int *buffer_offset)
 718{
 719	unsigned int i, next_i, last = ctx->last_buffer_index;
 720	__le16 res_count, next_res_count;
 721
 722	i = ar_first_buffer_index(ctx);
 723	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 724
 725	/* A buffer that is not yet completely filled must be the last one. */
 726	while (i != last && res_count == 0) {
 727
 728		/* Peek at the next descriptor. */
 729		next_i = ar_next_buffer_index(i);
 730		rmb(); /* read descriptors in order */
 731		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 732		/*
 733		 * If the next descriptor is still empty, we must stop at this
 734		 * descriptor.
 735		 */
 736		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 737			/*
 738			 * The exception is when the DMA data for one packet is
 739			 * split over three buffers; in this case, the middle
 740			 * buffer's descriptor might be never updated by the
 741			 * controller and look still empty, and we have to peek
 742			 * at the third one.
 743			 */
 744			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 745				next_i = ar_next_buffer_index(next_i);
 746				rmb();
 747				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 748				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 749					goto next_buffer_is_active;
 750			}
 751
 752			break;
 753		}
 754
 755next_buffer_is_active:
 756		i = next_i;
 757		res_count = next_res_count;
 758	}
 759
 760	rmb(); /* read res_count before the DMA data */
 761
 762	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 763	if (*buffer_offset > PAGE_SIZE) {
 764		*buffer_offset = 0;
 765		ar_context_abort(ctx, "corrupted descriptor");
 766	}
 767
 768	return i;
 769}
 770
 771static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 772				    unsigned int end_buffer_index,
 773				    unsigned int end_buffer_offset)
 774{
 775	unsigned int i;
 776
 777	i = ar_first_buffer_index(ctx);
 778	while (i != end_buffer_index) {
 779		dma_sync_single_for_cpu(ctx->ohci->card.device,
 780					ar_buffer_bus(ctx, i),
 781					PAGE_SIZE, DMA_FROM_DEVICE);
 782		i = ar_next_buffer_index(i);
 783	}
 784	if (end_buffer_offset > 0)
 785		dma_sync_single_for_cpu(ctx->ohci->card.device,
 786					ar_buffer_bus(ctx, i),
 787					end_buffer_offset, DMA_FROM_DEVICE);
 788}
 789
 790#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 791#define cond_le32_to_cpu(v) \
 792	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 793#else
 794#define cond_le32_to_cpu(v) le32_to_cpu(v)
 795#endif
 796
 797static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 798{
 799	struct fw_ohci *ohci = ctx->ohci;
 800	struct fw_packet p;
 801	u32 status, length, tcode;
 802	int evt;
 803
 804	p.header[0] = cond_le32_to_cpu(buffer[0]);
 805	p.header[1] = cond_le32_to_cpu(buffer[1]);
 806	p.header[2] = cond_le32_to_cpu(buffer[2]);
 807
 808	tcode = (p.header[0] >> 4) & 0x0f;
 809	switch (tcode) {
 810	case TCODE_WRITE_QUADLET_REQUEST:
 811	case TCODE_READ_QUADLET_RESPONSE:
 812		p.header[3] = (__force __u32) buffer[3];
 813		p.header_length = 16;
 814		p.payload_length = 0;
 815		break;
 816
 817	case TCODE_READ_BLOCK_REQUEST :
 818		p.header[3] = cond_le32_to_cpu(buffer[3]);
 819		p.header_length = 16;
 820		p.payload_length = 0;
 821		break;
 822
 823	case TCODE_WRITE_BLOCK_REQUEST:
 824	case TCODE_READ_BLOCK_RESPONSE:
 825	case TCODE_LOCK_REQUEST:
 826	case TCODE_LOCK_RESPONSE:
 827		p.header[3] = cond_le32_to_cpu(buffer[3]);
 828		p.header_length = 16;
 829		p.payload_length = p.header[3] >> 16;
 830		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 831			ar_context_abort(ctx, "invalid packet length");
 832			return NULL;
 833		}
 834		break;
 835
 836	case TCODE_WRITE_RESPONSE:
 837	case TCODE_READ_QUADLET_REQUEST:
 838	case OHCI_TCODE_PHY_PACKET:
 839		p.header_length = 12;
 840		p.payload_length = 0;
 841		break;
 842
 843	default:
 844		ar_context_abort(ctx, "invalid tcode");
 845		return NULL;
 846	}
 847
 848	p.payload = (void *) buffer + p.header_length;
 849
 850	/* FIXME: What to do about evt_* errors? */
 851	length = (p.header_length + p.payload_length + 3) / 4;
 852	status = cond_le32_to_cpu(buffer[length]);
 853	evt    = (status >> 16) & 0x1f;
 854
 855	p.ack        = evt - 16;
 856	p.speed      = (status >> 21) & 0x7;
 857	p.timestamp  = status & 0xffff;
 858	p.generation = ohci->request_generation;
 859
 860	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 861
 862	/*
 863	 * Several controllers, notably from NEC and VIA, forget to
 864	 * write ack_complete status at PHY packet reception.
 865	 */
 866	if (evt == OHCI1394_evt_no_status &&
 867	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 868		p.ack = ACK_COMPLETE;
 869
 870	/*
 871	 * The OHCI bus reset handler synthesizes a PHY packet with
 872	 * the new generation number when a bus reset happens (see
 873	 * section 8.4.2.3).  This helps us determine when a request
 874	 * was received and make sure we send the response in the same
 875	 * generation.  We only need this for requests; for responses
 876	 * we use the unique tlabel for finding the matching
 877	 * request.
 878	 *
 879	 * Alas some chips sometimes emit bus reset packets with a
 880	 * wrong generation.  We set the correct generation for these
 881	 * at a slightly incorrect time (in bus_reset_work).
 882	 */
 883	if (evt == OHCI1394_evt_bus_reset) {
 884		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 885			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 886	} else if (ctx == &ohci->ar_request_ctx) {
 887		fw_core_handle_request(&ohci->card, &p);
 888	} else {
 889		fw_core_handle_response(&ohci->card, &p);
 890	}
 891
 892	return buffer + length + 1;
 893}
 894
 895static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 896{
 897	void *next;
 898
 899	while (p < end) {
 900		next = handle_ar_packet(ctx, p);
 901		if (!next)
 902			return p;
 903		p = next;
 904	}
 905
 906	return p;
 907}
 908
 909static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 910{
 911	unsigned int i;
 912
 913	i = ar_first_buffer_index(ctx);
 914	while (i != end_buffer) {
 915		dma_sync_single_for_device(ctx->ohci->card.device,
 916					   ar_buffer_bus(ctx, i),
 917					   PAGE_SIZE, DMA_FROM_DEVICE);
 918		ar_context_link_page(ctx, i);
 919		i = ar_next_buffer_index(i);
 920	}
 921}
 922
 923static void ar_context_tasklet(unsigned long data)
 924{
 925	struct ar_context *ctx = (struct ar_context *)data;
 926	unsigned int end_buffer_index, end_buffer_offset;
 927	void *p, *end;
 928
 929	p = ctx->pointer;
 930	if (!p)
 931		return;
 932
 933	end_buffer_index = ar_search_last_active_buffer(ctx,
 934							&end_buffer_offset);
 935	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 936	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 937
 938	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 939		/*
 940		 * The filled part of the overall buffer wraps around; handle
 941		 * all packets up to the buffer end here.  If the last packet
 942		 * wraps around, its tail will be visible after the buffer end
 943		 * because the buffer start pages are mapped there again.
 944		 */
 945		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 946		p = handle_ar_packets(ctx, p, buffer_end);
 947		if (p < buffer_end)
 948			goto error;
 949		/* adjust p to point back into the actual buffer */
 950		p -= AR_BUFFERS * PAGE_SIZE;
 951	}
 952
 953	p = handle_ar_packets(ctx, p, end);
 954	if (p != end) {
 955		if (p > end)
 956			ar_context_abort(ctx, "inconsistent descriptor");
 957		goto error;
 958	}
 959
 960	ctx->pointer = p;
 961	ar_recycle_buffers(ctx, end_buffer_index);
 962
 963	return;
 964
 965error:
 966	ctx->pointer = NULL;
 967}
 968
 969static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 970			   unsigned int descriptors_offset, u32 regs)
 971{
 972	struct device *dev = ohci->card.device;
 973	unsigned int i;
 974	dma_addr_t dma_addr;
 975	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 976	struct descriptor *d;
 977
 978	ctx->regs        = regs;
 979	ctx->ohci        = ohci;
 980	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 981
 982	for (i = 0; i < AR_BUFFERS; i++) {
 983		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
 984						DMA_FROM_DEVICE, GFP_KERNEL);
 985		if (!ctx->pages[i])
 986			goto out_of_memory;
 
 
 
 
 
 
 
 987		set_page_private(ctx->pages[i], dma_addr);
 988		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
 989					   DMA_FROM_DEVICE);
 990	}
 991
 992	for (i = 0; i < AR_BUFFERS; i++)
 993		pages[i]              = ctx->pages[i];
 994	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
 995		pages[AR_BUFFERS + i] = ctx->pages[i];
 996	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
 
 997	if (!ctx->buffer)
 998		goto out_of_memory;
 999
1000	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1001	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1002
1003	for (i = 0; i < AR_BUFFERS; i++) {
1004		d = &ctx->descriptors[i];
1005		d->req_count      = cpu_to_le16(PAGE_SIZE);
1006		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1007						DESCRIPTOR_STATUS |
1008						DESCRIPTOR_BRANCH_ALWAYS);
1009		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1010		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1011			ar_next_buffer_index(i) * sizeof(struct descriptor));
1012	}
1013
1014	return 0;
1015
1016out_of_memory:
1017	ar_context_release(ctx);
1018
1019	return -ENOMEM;
1020}
1021
1022static void ar_context_run(struct ar_context *ctx)
1023{
1024	unsigned int i;
1025
1026	for (i = 0; i < AR_BUFFERS; i++)
1027		ar_context_link_page(ctx, i);
1028
1029	ctx->pointer = ctx->buffer;
1030
1031	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1032	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1033}
1034
1035static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1036{
1037	__le16 branch;
1038
1039	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1040
1041	/* figure out which descriptor the branch address goes in */
1042	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1043		return d;
1044	else
1045		return d + z - 1;
1046}
1047
1048static void context_tasklet(unsigned long data)
1049{
1050	struct context *ctx = (struct context *) data;
1051	struct descriptor *d, *last;
1052	u32 address;
1053	int z;
1054	struct descriptor_buffer *desc;
1055
1056	desc = list_entry(ctx->buffer_list.next,
1057			struct descriptor_buffer, list);
1058	last = ctx->last;
1059	while (last->branch_address != 0) {
1060		struct descriptor_buffer *old_desc = desc;
1061		address = le32_to_cpu(last->branch_address);
1062		z = address & 0xf;
1063		address &= ~0xf;
1064		ctx->current_bus = address;
1065
1066		/* If the branch address points to a buffer outside of the
1067		 * current buffer, advance to the next buffer. */
1068		if (address < desc->buffer_bus ||
1069				address >= desc->buffer_bus + desc->used)
1070			desc = list_entry(desc->list.next,
1071					struct descriptor_buffer, list);
1072		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1073		last = find_branch_descriptor(d, z);
1074
1075		if (!ctx->callback(ctx, d, last))
1076			break;
1077
1078		if (old_desc != desc) {
1079			/* If we've advanced to the next buffer, move the
1080			 * previous buffer to the free list. */
1081			unsigned long flags;
1082			old_desc->used = 0;
1083			spin_lock_irqsave(&ctx->ohci->lock, flags);
1084			list_move_tail(&old_desc->list, &ctx->buffer_list);
1085			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1086		}
1087		ctx->last = last;
1088	}
1089}
1090
1091/*
1092 * Allocate a new buffer and add it to the list of free buffers for this
1093 * context.  Must be called with ohci->lock held.
1094 */
1095static int context_add_buffer(struct context *ctx)
1096{
1097	struct descriptor_buffer *desc;
1098	dma_addr_t bus_addr;
1099	int offset;
1100
1101	/*
1102	 * 16MB of descriptors should be far more than enough for any DMA
1103	 * program.  This will catch run-away userspace or DoS attacks.
1104	 */
1105	if (ctx->total_allocation >= 16*1024*1024)
1106		return -ENOMEM;
1107
1108	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1109			&bus_addr, GFP_ATOMIC);
1110	if (!desc)
1111		return -ENOMEM;
1112
1113	offset = (void *)&desc->buffer - (void *)desc;
1114	/*
1115	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1116	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1117	 * an IOMMU is in use and the oversized read crosses a page boundary.
1118	 * Work around this by always leaving at least 0x10 bytes of padding.
1119	 */
1120	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1121	desc->buffer_bus = bus_addr + offset;
1122	desc->used = 0;
1123
1124	list_add_tail(&desc->list, &ctx->buffer_list);
1125	ctx->total_allocation += PAGE_SIZE;
1126
1127	return 0;
1128}
1129
1130static int context_init(struct context *ctx, struct fw_ohci *ohci,
1131			u32 regs, descriptor_callback_t callback)
1132{
1133	ctx->ohci = ohci;
1134	ctx->regs = regs;
1135	ctx->total_allocation = 0;
1136
1137	INIT_LIST_HEAD(&ctx->buffer_list);
1138	if (context_add_buffer(ctx) < 0)
1139		return -ENOMEM;
1140
1141	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1142			struct descriptor_buffer, list);
1143
1144	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1145	ctx->callback = callback;
1146
1147	/*
1148	 * We put a dummy descriptor in the buffer that has a NULL
1149	 * branch address and looks like it's been sent.  That way we
1150	 * have a descriptor to append DMA programs to.
1151	 */
1152	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1153	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1154	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1155	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1156	ctx->last = ctx->buffer_tail->buffer;
1157	ctx->prev = ctx->buffer_tail->buffer;
1158	ctx->prev_z = 1;
1159
1160	return 0;
1161}
1162
1163static void context_release(struct context *ctx)
1164{
1165	struct fw_card *card = &ctx->ohci->card;
1166	struct descriptor_buffer *desc, *tmp;
1167
1168	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169		dma_free_coherent(card->device, PAGE_SIZE, desc,
1170			desc->buffer_bus -
1171			((void *)&desc->buffer - (void *)desc));
1172}
1173
1174/* Must be called with ohci->lock held */
1175static struct descriptor *context_get_descriptors(struct context *ctx,
1176						  int z, dma_addr_t *d_bus)
1177{
1178	struct descriptor *d = NULL;
1179	struct descriptor_buffer *desc = ctx->buffer_tail;
1180
1181	if (z * sizeof(*d) > desc->buffer_size)
1182		return NULL;
1183
1184	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185		/* No room for the descriptor in this buffer, so advance to the
1186		 * next one. */
1187
1188		if (desc->list.next == &ctx->buffer_list) {
1189			/* If there is no free buffer next in the list,
1190			 * allocate one. */
1191			if (context_add_buffer(ctx) < 0)
1192				return NULL;
1193		}
1194		desc = list_entry(desc->list.next,
1195				struct descriptor_buffer, list);
1196		ctx->buffer_tail = desc;
1197	}
1198
1199	d = desc->buffer + desc->used / sizeof(*d);
1200	memset(d, 0, z * sizeof(*d));
1201	*d_bus = desc->buffer_bus + desc->used;
1202
1203	return d;
1204}
1205
1206static void context_run(struct context *ctx, u32 extra)
1207{
1208	struct fw_ohci *ohci = ctx->ohci;
1209
1210	reg_write(ohci, COMMAND_PTR(ctx->regs),
1211		  le32_to_cpu(ctx->last->branch_address));
1212	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214	ctx->running = true;
1215	flush_writes(ohci);
1216}
1217
1218static void context_append(struct context *ctx,
1219			   struct descriptor *d, int z, int extra)
1220{
1221	dma_addr_t d_bus;
1222	struct descriptor_buffer *desc = ctx->buffer_tail;
1223	struct descriptor *d_branch;
1224
1225	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1226
1227	desc->used += (z + extra) * sizeof(*d);
1228
1229	wmb(); /* finish init of new descriptors before branch_address update */
1230
1231	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1232	d_branch->branch_address = cpu_to_le32(d_bus | z);
1233
1234	/*
1235	 * VT6306 incorrectly checks only the single descriptor at the
1236	 * CommandPtr when the wake bit is written, so if it's a
1237	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1238	 * the branch address in the first descriptor.
1239	 *
1240	 * Not doing this for transmit contexts since not sure how it interacts
1241	 * with skip addresses.
1242	 */
1243	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1244	    d_branch != ctx->prev &&
1245	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1246	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1247		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1248	}
1249
1250	ctx->prev = d;
1251	ctx->prev_z = z;
1252}
1253
1254static void context_stop(struct context *ctx)
1255{
1256	struct fw_ohci *ohci = ctx->ohci;
1257	u32 reg;
1258	int i;
1259
1260	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1261	ctx->running = false;
1262
1263	for (i = 0; i < 1000; i++) {
1264		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1265		if ((reg & CONTEXT_ACTIVE) == 0)
1266			return;
1267
1268		if (i)
1269			udelay(10);
1270	}
1271	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1272}
1273
1274struct driver_data {
1275	u8 inline_data[8];
1276	struct fw_packet *packet;
1277};
1278
1279/*
1280 * This function apppends a packet to the DMA queue for transmission.
1281 * Must always be called with the ochi->lock held to ensure proper
1282 * generation handling and locking around packet queue manipulation.
1283 */
1284static int at_context_queue_packet(struct context *ctx,
1285				   struct fw_packet *packet)
1286{
1287	struct fw_ohci *ohci = ctx->ohci;
1288	dma_addr_t d_bus, payload_bus;
1289	struct driver_data *driver_data;
1290	struct descriptor *d, *last;
1291	__le32 *header;
1292	int z, tcode;
1293
1294	d = context_get_descriptors(ctx, 4, &d_bus);
1295	if (d == NULL) {
1296		packet->ack = RCODE_SEND_ERROR;
1297		return -1;
1298	}
1299
1300	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1301	d[0].res_count = cpu_to_le16(packet->timestamp);
1302
1303	/*
1304	 * The DMA format for asynchronous link packets is different
1305	 * from the IEEE1394 layout, so shift the fields around
1306	 * accordingly.
1307	 */
1308
1309	tcode = (packet->header[0] >> 4) & 0x0f;
1310	header = (__le32 *) &d[1];
1311	switch (tcode) {
1312	case TCODE_WRITE_QUADLET_REQUEST:
1313	case TCODE_WRITE_BLOCK_REQUEST:
1314	case TCODE_WRITE_RESPONSE:
1315	case TCODE_READ_QUADLET_REQUEST:
1316	case TCODE_READ_BLOCK_REQUEST:
1317	case TCODE_READ_QUADLET_RESPONSE:
1318	case TCODE_READ_BLOCK_RESPONSE:
1319	case TCODE_LOCK_REQUEST:
1320	case TCODE_LOCK_RESPONSE:
1321		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1322					(packet->speed << 16));
1323		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1324					(packet->header[0] & 0xffff0000));
1325		header[2] = cpu_to_le32(packet->header[2]);
1326
1327		if (TCODE_IS_BLOCK_PACKET(tcode))
1328			header[3] = cpu_to_le32(packet->header[3]);
1329		else
1330			header[3] = (__force __le32) packet->header[3];
1331
1332		d[0].req_count = cpu_to_le16(packet->header_length);
1333		break;
1334
1335	case TCODE_LINK_INTERNAL:
1336		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1337					(packet->speed << 16));
1338		header[1] = cpu_to_le32(packet->header[1]);
1339		header[2] = cpu_to_le32(packet->header[2]);
1340		d[0].req_count = cpu_to_le16(12);
1341
1342		if (is_ping_packet(&packet->header[1]))
1343			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1344		break;
1345
1346	case TCODE_STREAM_DATA:
1347		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1348					(packet->speed << 16));
1349		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1350		d[0].req_count = cpu_to_le16(8);
1351		break;
1352
1353	default:
1354		/* BUG(); */
1355		packet->ack = RCODE_SEND_ERROR;
1356		return -1;
1357	}
1358
1359	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1360	driver_data = (struct driver_data *) &d[3];
1361	driver_data->packet = packet;
1362	packet->driver_data = driver_data;
1363
1364	if (packet->payload_length > 0) {
1365		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1366			payload_bus = dma_map_single(ohci->card.device,
1367						     packet->payload,
1368						     packet->payload_length,
1369						     DMA_TO_DEVICE);
1370			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1371				packet->ack = RCODE_SEND_ERROR;
1372				return -1;
1373			}
1374			packet->payload_bus	= payload_bus;
1375			packet->payload_mapped	= true;
1376		} else {
1377			memcpy(driver_data->inline_data, packet->payload,
1378			       packet->payload_length);
1379			payload_bus = d_bus + 3 * sizeof(*d);
1380		}
1381
1382		d[2].req_count    = cpu_to_le16(packet->payload_length);
1383		d[2].data_address = cpu_to_le32(payload_bus);
1384		last = &d[2];
1385		z = 3;
1386	} else {
1387		last = &d[0];
1388		z = 2;
1389	}
1390
1391	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1392				     DESCRIPTOR_IRQ_ALWAYS |
1393				     DESCRIPTOR_BRANCH_ALWAYS);
1394
1395	/* FIXME: Document how the locking works. */
1396	if (ohci->generation != packet->generation) {
1397		if (packet->payload_mapped)
1398			dma_unmap_single(ohci->card.device, payload_bus,
1399					 packet->payload_length, DMA_TO_DEVICE);
1400		packet->ack = RCODE_GENERATION;
1401		return -1;
1402	}
1403
1404	context_append(ctx, d, z, 4 - z);
1405
1406	if (ctx->running)
1407		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1408	else
1409		context_run(ctx, 0);
1410
1411	return 0;
1412}
1413
1414static void at_context_flush(struct context *ctx)
1415{
1416	tasklet_disable(&ctx->tasklet);
1417
1418	ctx->flushing = true;
1419	context_tasklet((unsigned long)ctx);
1420	ctx->flushing = false;
1421
1422	tasklet_enable(&ctx->tasklet);
1423}
1424
1425static int handle_at_packet(struct context *context,
1426			    struct descriptor *d,
1427			    struct descriptor *last)
1428{
1429	struct driver_data *driver_data;
1430	struct fw_packet *packet;
1431	struct fw_ohci *ohci = context->ohci;
1432	int evt;
1433
1434	if (last->transfer_status == 0 && !context->flushing)
1435		/* This descriptor isn't done yet, stop iteration. */
1436		return 0;
1437
1438	driver_data = (struct driver_data *) &d[3];
1439	packet = driver_data->packet;
1440	if (packet == NULL)
1441		/* This packet was cancelled, just continue. */
1442		return 1;
1443
1444	if (packet->payload_mapped)
1445		dma_unmap_single(ohci->card.device, packet->payload_bus,
1446				 packet->payload_length, DMA_TO_DEVICE);
1447
1448	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1449	packet->timestamp = le16_to_cpu(last->res_count);
1450
1451	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1452
1453	switch (evt) {
1454	case OHCI1394_evt_timeout:
1455		/* Async response transmit timed out. */
1456		packet->ack = RCODE_CANCELLED;
1457		break;
1458
1459	case OHCI1394_evt_flushed:
1460		/*
1461		 * The packet was flushed should give same error as
1462		 * when we try to use a stale generation count.
1463		 */
1464		packet->ack = RCODE_GENERATION;
1465		break;
1466
1467	case OHCI1394_evt_missing_ack:
1468		if (context->flushing)
1469			packet->ack = RCODE_GENERATION;
1470		else {
1471			/*
1472			 * Using a valid (current) generation count, but the
1473			 * node is not on the bus or not sending acks.
1474			 */
1475			packet->ack = RCODE_NO_ACK;
1476		}
1477		break;
1478
1479	case ACK_COMPLETE + 0x10:
1480	case ACK_PENDING + 0x10:
1481	case ACK_BUSY_X + 0x10:
1482	case ACK_BUSY_A + 0x10:
1483	case ACK_BUSY_B + 0x10:
1484	case ACK_DATA_ERROR + 0x10:
1485	case ACK_TYPE_ERROR + 0x10:
1486		packet->ack = evt - 0x10;
1487		break;
1488
1489	case OHCI1394_evt_no_status:
1490		if (context->flushing) {
1491			packet->ack = RCODE_GENERATION;
1492			break;
1493		}
1494		fallthrough;
1495
1496	default:
1497		packet->ack = RCODE_SEND_ERROR;
1498		break;
1499	}
1500
1501	packet->callback(packet, &ohci->card, packet->ack);
1502
1503	return 1;
1504}
1505
1506#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1507#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1508#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1509#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1510#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1511
1512static void handle_local_rom(struct fw_ohci *ohci,
1513			     struct fw_packet *packet, u32 csr)
1514{
1515	struct fw_packet response;
1516	int tcode, length, i;
1517
1518	tcode = HEADER_GET_TCODE(packet->header[0]);
1519	if (TCODE_IS_BLOCK_PACKET(tcode))
1520		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1521	else
1522		length = 4;
1523
1524	i = csr - CSR_CONFIG_ROM;
1525	if (i + length > CONFIG_ROM_SIZE) {
1526		fw_fill_response(&response, packet->header,
1527				 RCODE_ADDRESS_ERROR, NULL, 0);
1528	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1529		fw_fill_response(&response, packet->header,
1530				 RCODE_TYPE_ERROR, NULL, 0);
1531	} else {
1532		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1533				 (void *) ohci->config_rom + i, length);
1534	}
1535
1536	fw_core_handle_response(&ohci->card, &response);
1537}
1538
1539static void handle_local_lock(struct fw_ohci *ohci,
1540			      struct fw_packet *packet, u32 csr)
1541{
1542	struct fw_packet response;
1543	int tcode, length, ext_tcode, sel, try;
1544	__be32 *payload, lock_old;
1545	u32 lock_arg, lock_data;
1546
1547	tcode = HEADER_GET_TCODE(packet->header[0]);
1548	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1549	payload = packet->payload;
1550	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1551
1552	if (tcode == TCODE_LOCK_REQUEST &&
1553	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1554		lock_arg = be32_to_cpu(payload[0]);
1555		lock_data = be32_to_cpu(payload[1]);
1556	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1557		lock_arg = 0;
1558		lock_data = 0;
1559	} else {
1560		fw_fill_response(&response, packet->header,
1561				 RCODE_TYPE_ERROR, NULL, 0);
1562		goto out;
1563	}
1564
1565	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1566	reg_write(ohci, OHCI1394_CSRData, lock_data);
1567	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1568	reg_write(ohci, OHCI1394_CSRControl, sel);
1569
1570	for (try = 0; try < 20; try++)
1571		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1572			lock_old = cpu_to_be32(reg_read(ohci,
1573							OHCI1394_CSRData));
1574			fw_fill_response(&response, packet->header,
1575					 RCODE_COMPLETE,
1576					 &lock_old, sizeof(lock_old));
1577			goto out;
1578		}
1579
1580	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1581	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1582
1583 out:
1584	fw_core_handle_response(&ohci->card, &response);
1585}
1586
1587static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1588{
1589	u64 offset, csr;
1590
1591	if (ctx == &ctx->ohci->at_request_ctx) {
1592		packet->ack = ACK_PENDING;
1593		packet->callback(packet, &ctx->ohci->card, packet->ack);
1594	}
1595
1596	offset =
1597		((unsigned long long)
1598		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1599		packet->header[2];
1600	csr = offset - CSR_REGISTER_BASE;
1601
1602	/* Handle config rom reads. */
1603	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1604		handle_local_rom(ctx->ohci, packet, csr);
1605	else switch (csr) {
1606	case CSR_BUS_MANAGER_ID:
1607	case CSR_BANDWIDTH_AVAILABLE:
1608	case CSR_CHANNELS_AVAILABLE_HI:
1609	case CSR_CHANNELS_AVAILABLE_LO:
1610		handle_local_lock(ctx->ohci, packet, csr);
1611		break;
1612	default:
1613		if (ctx == &ctx->ohci->at_request_ctx)
1614			fw_core_handle_request(&ctx->ohci->card, packet);
1615		else
1616			fw_core_handle_response(&ctx->ohci->card, packet);
1617		break;
1618	}
1619
1620	if (ctx == &ctx->ohci->at_response_ctx) {
1621		packet->ack = ACK_COMPLETE;
1622		packet->callback(packet, &ctx->ohci->card, packet->ack);
1623	}
1624}
1625
1626static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1627{
1628	unsigned long flags;
1629	int ret;
1630
1631	spin_lock_irqsave(&ctx->ohci->lock, flags);
1632
1633	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1634	    ctx->ohci->generation == packet->generation) {
1635		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1636		handle_local_request(ctx, packet);
1637		return;
1638	}
1639
1640	ret = at_context_queue_packet(ctx, packet);
1641	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1642
1643	if (ret < 0)
1644		packet->callback(packet, &ctx->ohci->card, packet->ack);
1645
1646}
1647
1648static void detect_dead_context(struct fw_ohci *ohci,
1649				const char *name, unsigned int regs)
1650{
1651	u32 ctl;
1652
1653	ctl = reg_read(ohci, CONTROL_SET(regs));
1654	if (ctl & CONTEXT_DEAD)
1655		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1656			name, evts[ctl & 0x1f]);
1657}
1658
1659static void handle_dead_contexts(struct fw_ohci *ohci)
1660{
1661	unsigned int i;
1662	char name[8];
1663
1664	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1665	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1666	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1667	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1668	for (i = 0; i < 32; ++i) {
1669		if (!(ohci->it_context_support & (1 << i)))
1670			continue;
1671		sprintf(name, "IT%u", i);
1672		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1673	}
1674	for (i = 0; i < 32; ++i) {
1675		if (!(ohci->ir_context_support & (1 << i)))
1676			continue;
1677		sprintf(name, "IR%u", i);
1678		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1679	}
1680	/* TODO: maybe try to flush and restart the dead contexts */
1681}
1682
1683static u32 cycle_timer_ticks(u32 cycle_timer)
1684{
1685	u32 ticks;
1686
1687	ticks = cycle_timer & 0xfff;
1688	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1689	ticks += (3072 * 8000) * (cycle_timer >> 25);
1690
1691	return ticks;
1692}
1693
1694/*
1695 * Some controllers exhibit one or more of the following bugs when updating the
1696 * iso cycle timer register:
1697 *  - When the lowest six bits are wrapping around to zero, a read that happens
1698 *    at the same time will return garbage in the lowest ten bits.
1699 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1700 *    not incremented for about 60 ns.
1701 *  - Occasionally, the entire register reads zero.
1702 *
1703 * To catch these, we read the register three times and ensure that the
1704 * difference between each two consecutive reads is approximately the same, i.e.
1705 * less than twice the other.  Furthermore, any negative difference indicates an
1706 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1707 * execute, so we have enough precision to compute the ratio of the differences.)
1708 */
1709static u32 get_cycle_time(struct fw_ohci *ohci)
1710{
1711	u32 c0, c1, c2;
1712	u32 t0, t1, t2;
1713	s32 diff01, diff12;
1714	int i;
1715
1716	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1717
1718	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1719		i = 0;
1720		c1 = c2;
1721		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1722		do {
1723			c0 = c1;
1724			c1 = c2;
1725			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1726			t0 = cycle_timer_ticks(c0);
1727			t1 = cycle_timer_ticks(c1);
1728			t2 = cycle_timer_ticks(c2);
1729			diff01 = t1 - t0;
1730			diff12 = t2 - t1;
1731		} while ((diff01 <= 0 || diff12 <= 0 ||
1732			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1733			 && i++ < 20);
1734	}
1735
1736	return c2;
1737}
1738
1739/*
1740 * This function has to be called at least every 64 seconds.  The bus_time
1741 * field stores not only the upper 25 bits of the BUS_TIME register but also
1742 * the most significant bit of the cycle timer in bit 6 so that we can detect
1743 * changes in this bit.
1744 */
1745static u32 update_bus_time(struct fw_ohci *ohci)
1746{
1747	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1748
1749	if (unlikely(!ohci->bus_time_running)) {
1750		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1751		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1752		                 (cycle_time_seconds & 0x40);
1753		ohci->bus_time_running = true;
1754	}
1755
1756	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1757		ohci->bus_time += 0x40;
1758
1759	return ohci->bus_time | cycle_time_seconds;
1760}
1761
1762static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1763{
1764	int reg;
1765
1766	mutex_lock(&ohci->phy_reg_mutex);
1767	reg = write_phy_reg(ohci, 7, port_index);
1768	if (reg >= 0)
1769		reg = read_phy_reg(ohci, 8);
1770	mutex_unlock(&ohci->phy_reg_mutex);
1771	if (reg < 0)
1772		return reg;
1773
1774	switch (reg & 0x0f) {
1775	case 0x06:
1776		return 2;	/* is child node (connected to parent node) */
1777	case 0x0e:
1778		return 3;	/* is parent node (connected to child node) */
1779	}
1780	return 1;		/* not connected */
1781}
1782
1783static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1784	int self_id_count)
1785{
1786	int i;
1787	u32 entry;
1788
1789	for (i = 0; i < self_id_count; i++) {
1790		entry = ohci->self_id_buffer[i];
1791		if ((self_id & 0xff000000) == (entry & 0xff000000))
1792			return -1;
1793		if ((self_id & 0xff000000) < (entry & 0xff000000))
1794			return i;
1795	}
1796	return i;
1797}
1798
1799static int initiated_reset(struct fw_ohci *ohci)
1800{
1801	int reg;
1802	int ret = 0;
1803
1804	mutex_lock(&ohci->phy_reg_mutex);
1805	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1806	if (reg >= 0) {
1807		reg = read_phy_reg(ohci, 8);
1808		reg |= 0x40;
1809		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1810		if (reg >= 0) {
1811			reg = read_phy_reg(ohci, 12); /* read register 12 */
1812			if (reg >= 0) {
1813				if ((reg & 0x08) == 0x08) {
1814					/* bit 3 indicates "initiated reset" */
1815					ret = 0x2;
1816				}
1817			}
1818		}
1819	}
1820	mutex_unlock(&ohci->phy_reg_mutex);
1821	return ret;
1822}
1823
1824/*
1825 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1826 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1827 * Construct the selfID from phy register contents.
1828 */
1829static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1830{
1831	int reg, i, pos, status;
1832	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1833	u32 self_id = 0x8040c800;
1834
1835	reg = reg_read(ohci, OHCI1394_NodeID);
1836	if (!(reg & OHCI1394_NodeID_idValid)) {
1837		ohci_notice(ohci,
1838			    "node ID not valid, new bus reset in progress\n");
1839		return -EBUSY;
1840	}
1841	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1842
1843	reg = ohci_read_phy_reg(&ohci->card, 4);
1844	if (reg < 0)
1845		return reg;
1846	self_id |= ((reg & 0x07) << 8); /* power class */
1847
1848	reg = ohci_read_phy_reg(&ohci->card, 1);
1849	if (reg < 0)
1850		return reg;
1851	self_id |= ((reg & 0x3f) << 16); /* gap count */
1852
1853	for (i = 0; i < 3; i++) {
1854		status = get_status_for_port(ohci, i);
1855		if (status < 0)
1856			return status;
1857		self_id |= ((status & 0x3) << (6 - (i * 2)));
1858	}
1859
1860	self_id |= initiated_reset(ohci);
1861
1862	pos = get_self_id_pos(ohci, self_id, self_id_count);
1863	if (pos >= 0) {
1864		memmove(&(ohci->self_id_buffer[pos+1]),
1865			&(ohci->self_id_buffer[pos]),
1866			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1867		ohci->self_id_buffer[pos] = self_id;
1868		self_id_count++;
1869	}
1870	return self_id_count;
1871}
1872
1873static void bus_reset_work(struct work_struct *work)
1874{
1875	struct fw_ohci *ohci =
1876		container_of(work, struct fw_ohci, bus_reset_work);
1877	int self_id_count, generation, new_generation, i, j;
1878	u32 reg;
1879	void *free_rom = NULL;
1880	dma_addr_t free_rom_bus = 0;
1881	bool is_new_root;
1882
1883	reg = reg_read(ohci, OHCI1394_NodeID);
1884	if (!(reg & OHCI1394_NodeID_idValid)) {
1885		ohci_notice(ohci,
1886			    "node ID not valid, new bus reset in progress\n");
1887		return;
1888	}
1889	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1890		ohci_notice(ohci, "malconfigured bus\n");
1891		return;
1892	}
1893	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1894			       OHCI1394_NodeID_nodeNumber);
1895
1896	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1897	if (!(ohci->is_root && is_new_root))
1898		reg_write(ohci, OHCI1394_LinkControlSet,
1899			  OHCI1394_LinkControl_cycleMaster);
1900	ohci->is_root = is_new_root;
1901
1902	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1903	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1904		ohci_notice(ohci, "self ID receive error\n");
1905		return;
1906	}
1907	/*
1908	 * The count in the SelfIDCount register is the number of
1909	 * bytes in the self ID receive buffer.  Since we also receive
1910	 * the inverted quadlets and a header quadlet, we shift one
1911	 * bit extra to get the actual number of self IDs.
1912	 */
1913	self_id_count = (reg >> 3) & 0xff;
1914
1915	if (self_id_count > 252) {
1916		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1917		return;
1918	}
1919
1920	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1921	rmb();
1922
1923	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1924		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1925		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1926
1927		if (id != ~id2) {
1928			/*
1929			 * If the invalid data looks like a cycle start packet,
1930			 * it's likely to be the result of the cycle master
1931			 * having a wrong gap count.  In this case, the self IDs
1932			 * so far are valid and should be processed so that the
1933			 * bus manager can then correct the gap count.
1934			 */
1935			if (id == 0xffff008f) {
1936				ohci_notice(ohci, "ignoring spurious self IDs\n");
1937				self_id_count = j;
1938				break;
1939			}
1940
1941			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1942				    j, self_id_count, id, id2);
1943			return;
1944		}
1945		ohci->self_id_buffer[j] = id;
1946	}
1947
1948	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1949		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1950		if (self_id_count < 0) {
1951			ohci_notice(ohci,
1952				    "could not construct local self ID\n");
1953			return;
1954		}
1955	}
1956
1957	if (self_id_count == 0) {
1958		ohci_notice(ohci, "no self IDs\n");
1959		return;
1960	}
1961	rmb();
1962
1963	/*
1964	 * Check the consistency of the self IDs we just read.  The
1965	 * problem we face is that a new bus reset can start while we
1966	 * read out the self IDs from the DMA buffer. If this happens,
1967	 * the DMA buffer will be overwritten with new self IDs and we
1968	 * will read out inconsistent data.  The OHCI specification
1969	 * (section 11.2) recommends a technique similar to
1970	 * linux/seqlock.h, where we remember the generation of the
1971	 * self IDs in the buffer before reading them out and compare
1972	 * it to the current generation after reading them out.  If
1973	 * the two generations match we know we have a consistent set
1974	 * of self IDs.
1975	 */
1976
1977	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1978	if (new_generation != generation) {
1979		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1980		return;
1981	}
1982
1983	/* FIXME: Document how the locking works. */
1984	spin_lock_irq(&ohci->lock);
1985
1986	ohci->generation = -1; /* prevent AT packet queueing */
1987	context_stop(&ohci->at_request_ctx);
1988	context_stop(&ohci->at_response_ctx);
1989
1990	spin_unlock_irq(&ohci->lock);
1991
1992	/*
1993	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1994	 * packets in the AT queues and software needs to drain them.
1995	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1996	 */
1997	at_context_flush(&ohci->at_request_ctx);
1998	at_context_flush(&ohci->at_response_ctx);
1999
2000	spin_lock_irq(&ohci->lock);
2001
2002	ohci->generation = generation;
2003	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2004
2005	if (ohci->quirks & QUIRK_RESET_PACKET)
2006		ohci->request_generation = generation;
2007
2008	/*
2009	 * This next bit is unrelated to the AT context stuff but we
2010	 * have to do it under the spinlock also.  If a new config rom
2011	 * was set up before this reset, the old one is now no longer
2012	 * in use and we can free it. Update the config rom pointers
2013	 * to point to the current config rom and clear the
2014	 * next_config_rom pointer so a new update can take place.
2015	 */
2016
2017	if (ohci->next_config_rom != NULL) {
2018		if (ohci->next_config_rom != ohci->config_rom) {
2019			free_rom      = ohci->config_rom;
2020			free_rom_bus  = ohci->config_rom_bus;
2021		}
2022		ohci->config_rom      = ohci->next_config_rom;
2023		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2024		ohci->next_config_rom = NULL;
2025
2026		/*
2027		 * Restore config_rom image and manually update
2028		 * config_rom registers.  Writing the header quadlet
2029		 * will indicate that the config rom is ready, so we
2030		 * do that last.
2031		 */
2032		reg_write(ohci, OHCI1394_BusOptions,
2033			  be32_to_cpu(ohci->config_rom[2]));
2034		ohci->config_rom[0] = ohci->next_header;
2035		reg_write(ohci, OHCI1394_ConfigROMhdr,
2036			  be32_to_cpu(ohci->next_header));
2037	}
2038
2039	if (param_remote_dma) {
2040		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2041		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2042	}
2043
2044	spin_unlock_irq(&ohci->lock);
2045
2046	if (free_rom)
2047		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2048				  free_rom, free_rom_bus);
2049
2050	log_selfids(ohci, generation, self_id_count);
2051
2052	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2053				 self_id_count, ohci->self_id_buffer,
2054				 ohci->csr_state_setclear_abdicate);
2055	ohci->csr_state_setclear_abdicate = false;
2056}
2057
2058static irqreturn_t irq_handler(int irq, void *data)
2059{
2060	struct fw_ohci *ohci = data;
2061	u32 event, iso_event;
2062	int i;
2063
2064	event = reg_read(ohci, OHCI1394_IntEventClear);
2065
2066	if (!event || !~event)
2067		return IRQ_NONE;
2068
2069	/*
2070	 * busReset and postedWriteErr must not be cleared yet
2071	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2072	 */
2073	reg_write(ohci, OHCI1394_IntEventClear,
2074		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2075	log_irqs(ohci, event);
2076
2077	if (event & OHCI1394_selfIDComplete)
2078		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2079
2080	if (event & OHCI1394_RQPkt)
2081		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2082
2083	if (event & OHCI1394_RSPkt)
2084		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2085
2086	if (event & OHCI1394_reqTxComplete)
2087		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2088
2089	if (event & OHCI1394_respTxComplete)
2090		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2091
2092	if (event & OHCI1394_isochRx) {
2093		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2094		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2095
2096		while (iso_event) {
2097			i = ffs(iso_event) - 1;
2098			tasklet_schedule(
2099				&ohci->ir_context_list[i].context.tasklet);
2100			iso_event &= ~(1 << i);
2101		}
2102	}
2103
2104	if (event & OHCI1394_isochTx) {
2105		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2106		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2107
2108		while (iso_event) {
2109			i = ffs(iso_event) - 1;
2110			tasklet_schedule(
2111				&ohci->it_context_list[i].context.tasklet);
2112			iso_event &= ~(1 << i);
2113		}
2114	}
2115
2116	if (unlikely(event & OHCI1394_regAccessFail))
2117		ohci_err(ohci, "register access failure\n");
2118
2119	if (unlikely(event & OHCI1394_postedWriteErr)) {
2120		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2121		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2122		reg_write(ohci, OHCI1394_IntEventClear,
2123			  OHCI1394_postedWriteErr);
2124		if (printk_ratelimit())
2125			ohci_err(ohci, "PCI posted write error\n");
2126	}
2127
2128	if (unlikely(event & OHCI1394_cycleTooLong)) {
2129		if (printk_ratelimit())
2130			ohci_notice(ohci, "isochronous cycle too long\n");
2131		reg_write(ohci, OHCI1394_LinkControlSet,
2132			  OHCI1394_LinkControl_cycleMaster);
2133	}
2134
2135	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2136		/*
2137		 * We need to clear this event bit in order to make
2138		 * cycleMatch isochronous I/O work.  In theory we should
2139		 * stop active cycleMatch iso contexts now and restart
2140		 * them at least two cycles later.  (FIXME?)
2141		 */
2142		if (printk_ratelimit())
2143			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2144	}
2145
2146	if (unlikely(event & OHCI1394_unrecoverableError))
2147		handle_dead_contexts(ohci);
2148
2149	if (event & OHCI1394_cycle64Seconds) {
2150		spin_lock(&ohci->lock);
2151		update_bus_time(ohci);
2152		spin_unlock(&ohci->lock);
2153	} else
2154		flush_writes(ohci);
2155
2156	return IRQ_HANDLED;
2157}
2158
2159static int software_reset(struct fw_ohci *ohci)
2160{
2161	u32 val;
2162	int i;
2163
2164	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2165	for (i = 0; i < 500; i++) {
2166		val = reg_read(ohci, OHCI1394_HCControlSet);
2167		if (!~val)
2168			return -ENODEV; /* Card was ejected. */
2169
2170		if (!(val & OHCI1394_HCControl_softReset))
2171			return 0;
2172
2173		msleep(1);
2174	}
2175
2176	return -EBUSY;
2177}
2178
2179static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2180{
2181	size_t size = length * 4;
2182
2183	memcpy(dest, src, size);
2184	if (size < CONFIG_ROM_SIZE)
2185		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2186}
2187
2188static int configure_1394a_enhancements(struct fw_ohci *ohci)
2189{
2190	bool enable_1394a;
2191	int ret, clear, set, offset;
2192
2193	/* Check if the driver should configure link and PHY. */
2194	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2195	      OHCI1394_HCControl_programPhyEnable))
2196		return 0;
2197
2198	/* Paranoia: check whether the PHY supports 1394a, too. */
2199	enable_1394a = false;
2200	ret = read_phy_reg(ohci, 2);
2201	if (ret < 0)
2202		return ret;
2203	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2204		ret = read_paged_phy_reg(ohci, 1, 8);
2205		if (ret < 0)
2206			return ret;
2207		if (ret >= 1)
2208			enable_1394a = true;
2209	}
2210
2211	if (ohci->quirks & QUIRK_NO_1394A)
2212		enable_1394a = false;
2213
2214	/* Configure PHY and link consistently. */
2215	if (enable_1394a) {
2216		clear = 0;
2217		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2218	} else {
2219		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2220		set = 0;
2221	}
2222	ret = update_phy_reg(ohci, 5, clear, set);
2223	if (ret < 0)
2224		return ret;
2225
2226	if (enable_1394a)
2227		offset = OHCI1394_HCControlSet;
2228	else
2229		offset = OHCI1394_HCControlClear;
2230	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2231
2232	/* Clean up: configuration has been taken care of. */
2233	reg_write(ohci, OHCI1394_HCControlClear,
2234		  OHCI1394_HCControl_programPhyEnable);
2235
2236	return 0;
2237}
2238
2239static int probe_tsb41ba3d(struct fw_ohci *ohci)
2240{
2241	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2242	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2243	int reg, i;
2244
2245	reg = read_phy_reg(ohci, 2);
2246	if (reg < 0)
2247		return reg;
2248	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2249		return 0;
2250
2251	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2252		reg = read_paged_phy_reg(ohci, 1, i + 10);
2253		if (reg < 0)
2254			return reg;
2255		if (reg != id[i])
2256			return 0;
2257	}
2258	return 1;
2259}
2260
2261static int ohci_enable(struct fw_card *card,
2262		       const __be32 *config_rom, size_t length)
2263{
2264	struct fw_ohci *ohci = fw_ohci(card);
2265	u32 lps, version, irqs;
2266	int i, ret;
2267
2268	ret = software_reset(ohci);
2269	if (ret < 0) {
2270		ohci_err(ohci, "failed to reset ohci card\n");
2271		return ret;
2272	}
2273
2274	/*
2275	 * Now enable LPS, which we need in order to start accessing
2276	 * most of the registers.  In fact, on some cards (ALI M5251),
2277	 * accessing registers in the SClk domain without LPS enabled
2278	 * will lock up the machine.  Wait 50msec to make sure we have
2279	 * full link enabled.  However, with some cards (well, at least
2280	 * a JMicron PCIe card), we have to try again sometimes.
2281	 *
2282	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2283	 * cannot actually use the phy at that time.  These need tens of
2284	 * millisecods pause between LPS write and first phy access too.
2285	 */
2286
2287	reg_write(ohci, OHCI1394_HCControlSet,
2288		  OHCI1394_HCControl_LPS |
2289		  OHCI1394_HCControl_postedWriteEnable);
2290	flush_writes(ohci);
2291
2292	for (lps = 0, i = 0; !lps && i < 3; i++) {
2293		msleep(50);
2294		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2295		      OHCI1394_HCControl_LPS;
2296	}
2297
2298	if (!lps) {
2299		ohci_err(ohci, "failed to set Link Power Status\n");
2300		return -EIO;
2301	}
2302
2303	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2304		ret = probe_tsb41ba3d(ohci);
2305		if (ret < 0)
2306			return ret;
2307		if (ret)
2308			ohci_notice(ohci, "local TSB41BA3D phy\n");
2309		else
2310			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2311	}
2312
2313	reg_write(ohci, OHCI1394_HCControlClear,
2314		  OHCI1394_HCControl_noByteSwapData);
2315
2316	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2317	reg_write(ohci, OHCI1394_LinkControlSet,
2318		  OHCI1394_LinkControl_cycleTimerEnable |
2319		  OHCI1394_LinkControl_cycleMaster);
2320
2321	reg_write(ohci, OHCI1394_ATRetries,
2322		  OHCI1394_MAX_AT_REQ_RETRIES |
2323		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2324		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2325		  (200 << 16));
2326
2327	ohci->bus_time_running = false;
2328
2329	for (i = 0; i < 32; i++)
2330		if (ohci->ir_context_support & (1 << i))
2331			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2332				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2333
2334	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2335	if (version >= OHCI_VERSION_1_1) {
2336		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2337			  0xfffffffe);
2338		card->broadcast_channel_auto_allocated = true;
2339	}
2340
2341	/* Get implemented bits of the priority arbitration request counter. */
2342	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2343	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2344	reg_write(ohci, OHCI1394_FairnessControl, 0);
2345	card->priority_budget_implemented = ohci->pri_req_max != 0;
2346
2347	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2348	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2349	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2350
2351	ret = configure_1394a_enhancements(ohci);
2352	if (ret < 0)
2353		return ret;
2354
2355	/* Activate link_on bit and contender bit in our self ID packets.*/
2356	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2357	if (ret < 0)
2358		return ret;
2359
2360	/*
2361	 * When the link is not yet enabled, the atomic config rom
2362	 * update mechanism described below in ohci_set_config_rom()
2363	 * is not active.  We have to update ConfigRomHeader and
2364	 * BusOptions manually, and the write to ConfigROMmap takes
2365	 * effect immediately.  We tie this to the enabling of the
2366	 * link, so we have a valid config rom before enabling - the
2367	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2368	 * values before enabling.
2369	 *
2370	 * However, when the ConfigROMmap is written, some controllers
2371	 * always read back quadlets 0 and 2 from the config rom to
2372	 * the ConfigRomHeader and BusOptions registers on bus reset.
2373	 * They shouldn't do that in this initial case where the link
2374	 * isn't enabled.  This means we have to use the same
2375	 * workaround here, setting the bus header to 0 and then write
2376	 * the right values in the bus reset tasklet.
2377	 */
2378
2379	if (config_rom) {
2380		ohci->next_config_rom =
2381			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2382					   &ohci->next_config_rom_bus,
2383					   GFP_KERNEL);
2384		if (ohci->next_config_rom == NULL)
2385			return -ENOMEM;
2386
2387		copy_config_rom(ohci->next_config_rom, config_rom, length);
2388	} else {
2389		/*
2390		 * In the suspend case, config_rom is NULL, which
2391		 * means that we just reuse the old config rom.
2392		 */
2393		ohci->next_config_rom = ohci->config_rom;
2394		ohci->next_config_rom_bus = ohci->config_rom_bus;
2395	}
2396
2397	ohci->next_header = ohci->next_config_rom[0];
2398	ohci->next_config_rom[0] = 0;
2399	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2400	reg_write(ohci, OHCI1394_BusOptions,
2401		  be32_to_cpu(ohci->next_config_rom[2]));
2402	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2403
2404	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2405
2406	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2407		OHCI1394_RQPkt | OHCI1394_RSPkt |
2408		OHCI1394_isochTx | OHCI1394_isochRx |
2409		OHCI1394_postedWriteErr |
2410		OHCI1394_selfIDComplete |
2411		OHCI1394_regAccessFail |
2412		OHCI1394_cycleInconsistent |
2413		OHCI1394_unrecoverableError |
2414		OHCI1394_cycleTooLong |
2415		OHCI1394_masterIntEnable;
2416	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2417		irqs |= OHCI1394_busReset;
2418	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2419
2420	reg_write(ohci, OHCI1394_HCControlSet,
2421		  OHCI1394_HCControl_linkEnable |
2422		  OHCI1394_HCControl_BIBimageValid);
2423
2424	reg_write(ohci, OHCI1394_LinkControlSet,
2425		  OHCI1394_LinkControl_rcvSelfID |
2426		  OHCI1394_LinkControl_rcvPhyPkt);
2427
2428	ar_context_run(&ohci->ar_request_ctx);
2429	ar_context_run(&ohci->ar_response_ctx);
2430
2431	flush_writes(ohci);
2432
2433	/* We are ready to go, reset bus to finish initialization. */
2434	fw_schedule_bus_reset(&ohci->card, false, true);
2435
2436	return 0;
2437}
2438
2439static int ohci_set_config_rom(struct fw_card *card,
2440			       const __be32 *config_rom, size_t length)
2441{
2442	struct fw_ohci *ohci;
2443	__be32 *next_config_rom;
2444	dma_addr_t next_config_rom_bus;
2445
2446	ohci = fw_ohci(card);
2447
2448	/*
2449	 * When the OHCI controller is enabled, the config rom update
2450	 * mechanism is a bit tricky, but easy enough to use.  See
2451	 * section 5.5.6 in the OHCI specification.
2452	 *
2453	 * The OHCI controller caches the new config rom address in a
2454	 * shadow register (ConfigROMmapNext) and needs a bus reset
2455	 * for the changes to take place.  When the bus reset is
2456	 * detected, the controller loads the new values for the
2457	 * ConfigRomHeader and BusOptions registers from the specified
2458	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2459	 * shadow register. All automatically and atomically.
2460	 *
2461	 * Now, there's a twist to this story.  The automatic load of
2462	 * ConfigRomHeader and BusOptions doesn't honor the
2463	 * noByteSwapData bit, so with a be32 config rom, the
2464	 * controller will load be32 values in to these registers
2465	 * during the atomic update, even on litte endian
2466	 * architectures.  The workaround we use is to put a 0 in the
2467	 * header quadlet; 0 is endian agnostic and means that the
2468	 * config rom isn't ready yet.  In the bus reset tasklet we
2469	 * then set up the real values for the two registers.
2470	 *
2471	 * We use ohci->lock to avoid racing with the code that sets
2472	 * ohci->next_config_rom to NULL (see bus_reset_work).
2473	 */
2474
2475	next_config_rom =
2476		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2477				   &next_config_rom_bus, GFP_KERNEL);
2478	if (next_config_rom == NULL)
2479		return -ENOMEM;
2480
2481	spin_lock_irq(&ohci->lock);
2482
2483	/*
2484	 * If there is not an already pending config_rom update,
2485	 * push our new allocation into the ohci->next_config_rom
2486	 * and then mark the local variable as null so that we
2487	 * won't deallocate the new buffer.
2488	 *
2489	 * OTOH, if there is a pending config_rom update, just
2490	 * use that buffer with the new config_rom data, and
2491	 * let this routine free the unused DMA allocation.
2492	 */
2493
2494	if (ohci->next_config_rom == NULL) {
2495		ohci->next_config_rom = next_config_rom;
2496		ohci->next_config_rom_bus = next_config_rom_bus;
2497		next_config_rom = NULL;
2498	}
2499
2500	copy_config_rom(ohci->next_config_rom, config_rom, length);
2501
2502	ohci->next_header = config_rom[0];
2503	ohci->next_config_rom[0] = 0;
2504
2505	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2506
2507	spin_unlock_irq(&ohci->lock);
2508
2509	/* If we didn't use the DMA allocation, delete it. */
2510	if (next_config_rom != NULL)
2511		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2512				  next_config_rom, next_config_rom_bus);
2513
2514	/*
2515	 * Now initiate a bus reset to have the changes take
2516	 * effect. We clean up the old config rom memory and DMA
2517	 * mappings in the bus reset tasklet, since the OHCI
2518	 * controller could need to access it before the bus reset
2519	 * takes effect.
2520	 */
2521
2522	fw_schedule_bus_reset(&ohci->card, true, true);
2523
2524	return 0;
2525}
2526
2527static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2528{
2529	struct fw_ohci *ohci = fw_ohci(card);
2530
2531	at_context_transmit(&ohci->at_request_ctx, packet);
2532}
2533
2534static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2535{
2536	struct fw_ohci *ohci = fw_ohci(card);
2537
2538	at_context_transmit(&ohci->at_response_ctx, packet);
2539}
2540
2541static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2542{
2543	struct fw_ohci *ohci = fw_ohci(card);
2544	struct context *ctx = &ohci->at_request_ctx;
2545	struct driver_data *driver_data = packet->driver_data;
2546	int ret = -ENOENT;
2547
2548	tasklet_disable_in_atomic(&ctx->tasklet);
2549
2550	if (packet->ack != 0)
2551		goto out;
2552
2553	if (packet->payload_mapped)
2554		dma_unmap_single(ohci->card.device, packet->payload_bus,
2555				 packet->payload_length, DMA_TO_DEVICE);
2556
2557	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2558	driver_data->packet = NULL;
2559	packet->ack = RCODE_CANCELLED;
2560	packet->callback(packet, &ohci->card, packet->ack);
2561	ret = 0;
2562 out:
2563	tasklet_enable(&ctx->tasklet);
2564
2565	return ret;
2566}
2567
2568static int ohci_enable_phys_dma(struct fw_card *card,
2569				int node_id, int generation)
2570{
2571	struct fw_ohci *ohci = fw_ohci(card);
2572	unsigned long flags;
2573	int n, ret = 0;
2574
2575	if (param_remote_dma)
2576		return 0;
2577
2578	/*
2579	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2580	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2581	 */
2582
2583	spin_lock_irqsave(&ohci->lock, flags);
2584
2585	if (ohci->generation != generation) {
2586		ret = -ESTALE;
2587		goto out;
2588	}
2589
2590	/*
2591	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2592	 * enabled for _all_ nodes on remote buses.
2593	 */
2594
2595	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2596	if (n < 32)
2597		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2598	else
2599		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2600
2601	flush_writes(ohci);
2602 out:
2603	spin_unlock_irqrestore(&ohci->lock, flags);
2604
2605	return ret;
2606}
2607
2608static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2609{
2610	struct fw_ohci *ohci = fw_ohci(card);
2611	unsigned long flags;
2612	u32 value;
2613
2614	switch (csr_offset) {
2615	case CSR_STATE_CLEAR:
2616	case CSR_STATE_SET:
2617		if (ohci->is_root &&
2618		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2619		     OHCI1394_LinkControl_cycleMaster))
2620			value = CSR_STATE_BIT_CMSTR;
2621		else
2622			value = 0;
2623		if (ohci->csr_state_setclear_abdicate)
2624			value |= CSR_STATE_BIT_ABDICATE;
2625
2626		return value;
2627
2628	case CSR_NODE_IDS:
2629		return reg_read(ohci, OHCI1394_NodeID) << 16;
2630
2631	case CSR_CYCLE_TIME:
2632		return get_cycle_time(ohci);
2633
2634	case CSR_BUS_TIME:
2635		/*
2636		 * We might be called just after the cycle timer has wrapped
2637		 * around but just before the cycle64Seconds handler, so we
2638		 * better check here, too, if the bus time needs to be updated.
2639		 */
2640		spin_lock_irqsave(&ohci->lock, flags);
2641		value = update_bus_time(ohci);
2642		spin_unlock_irqrestore(&ohci->lock, flags);
2643		return value;
2644
2645	case CSR_BUSY_TIMEOUT:
2646		value = reg_read(ohci, OHCI1394_ATRetries);
2647		return (value >> 4) & 0x0ffff00f;
2648
2649	case CSR_PRIORITY_BUDGET:
2650		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2651			(ohci->pri_req_max << 8);
2652
2653	default:
2654		WARN_ON(1);
2655		return 0;
2656	}
2657}
2658
2659static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2660{
2661	struct fw_ohci *ohci = fw_ohci(card);
2662	unsigned long flags;
2663
2664	switch (csr_offset) {
2665	case CSR_STATE_CLEAR:
2666		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2667			reg_write(ohci, OHCI1394_LinkControlClear,
2668				  OHCI1394_LinkControl_cycleMaster);
2669			flush_writes(ohci);
2670		}
2671		if (value & CSR_STATE_BIT_ABDICATE)
2672			ohci->csr_state_setclear_abdicate = false;
2673		break;
2674
2675	case CSR_STATE_SET:
2676		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2677			reg_write(ohci, OHCI1394_LinkControlSet,
2678				  OHCI1394_LinkControl_cycleMaster);
2679			flush_writes(ohci);
2680		}
2681		if (value & CSR_STATE_BIT_ABDICATE)
2682			ohci->csr_state_setclear_abdicate = true;
2683		break;
2684
2685	case CSR_NODE_IDS:
2686		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2687		flush_writes(ohci);
2688		break;
2689
2690	case CSR_CYCLE_TIME:
2691		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2692		reg_write(ohci, OHCI1394_IntEventSet,
2693			  OHCI1394_cycleInconsistent);
2694		flush_writes(ohci);
2695		break;
2696
2697	case CSR_BUS_TIME:
2698		spin_lock_irqsave(&ohci->lock, flags);
2699		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2700		                 (value & ~0x7f);
2701		spin_unlock_irqrestore(&ohci->lock, flags);
2702		break;
2703
2704	case CSR_BUSY_TIMEOUT:
2705		value = (value & 0xf) | ((value & 0xf) << 4) |
2706			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2707		reg_write(ohci, OHCI1394_ATRetries, value);
2708		flush_writes(ohci);
2709		break;
2710
2711	case CSR_PRIORITY_BUDGET:
2712		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2713		flush_writes(ohci);
2714		break;
2715
2716	default:
2717		WARN_ON(1);
2718		break;
2719	}
2720}
2721
2722static void flush_iso_completions(struct iso_context *ctx)
2723{
2724	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2725			      ctx->header_length, ctx->header,
2726			      ctx->base.callback_data);
2727	ctx->header_length = 0;
2728}
2729
2730static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2731{
2732	u32 *ctx_hdr;
2733
2734	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2735		if (ctx->base.drop_overflow_headers)
2736			return;
2737		flush_iso_completions(ctx);
2738	}
2739
2740	ctx_hdr = ctx->header + ctx->header_length;
2741	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2742
2743	/*
2744	 * The two iso header quadlets are byteswapped to little
2745	 * endian by the controller, but we want to present them
2746	 * as big endian for consistency with the bus endianness.
2747	 */
2748	if (ctx->base.header_size > 0)
2749		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2750	if (ctx->base.header_size > 4)
2751		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2752	if (ctx->base.header_size > 8)
2753		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2754	ctx->header_length += ctx->base.header_size;
2755}
2756
2757static int handle_ir_packet_per_buffer(struct context *context,
2758				       struct descriptor *d,
2759				       struct descriptor *last)
2760{
2761	struct iso_context *ctx =
2762		container_of(context, struct iso_context, context);
2763	struct descriptor *pd;
2764	u32 buffer_dma;
2765
2766	for (pd = d; pd <= last; pd++)
2767		if (pd->transfer_status)
2768			break;
2769	if (pd > last)
2770		/* Descriptor(s) not done yet, stop iteration */
2771		return 0;
2772
2773	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2774		d++;
2775		buffer_dma = le32_to_cpu(d->data_address);
2776		dma_sync_single_range_for_cpu(context->ohci->card.device,
2777					      buffer_dma & PAGE_MASK,
2778					      buffer_dma & ~PAGE_MASK,
2779					      le16_to_cpu(d->req_count),
2780					      DMA_FROM_DEVICE);
2781	}
2782
2783	copy_iso_headers(ctx, (u32 *) (last + 1));
2784
2785	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2786		flush_iso_completions(ctx);
2787
2788	return 1;
2789}
2790
2791/* d == last because each descriptor block is only a single descriptor. */
2792static int handle_ir_buffer_fill(struct context *context,
2793				 struct descriptor *d,
2794				 struct descriptor *last)
2795{
2796	struct iso_context *ctx =
2797		container_of(context, struct iso_context, context);
2798	unsigned int req_count, res_count, completed;
2799	u32 buffer_dma;
2800
2801	req_count = le16_to_cpu(last->req_count);
2802	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2803	completed = req_count - res_count;
2804	buffer_dma = le32_to_cpu(last->data_address);
2805
2806	if (completed > 0) {
2807		ctx->mc_buffer_bus = buffer_dma;
2808		ctx->mc_completed = completed;
2809	}
2810
2811	if (res_count != 0)
2812		/* Descriptor(s) not done yet, stop iteration */
2813		return 0;
2814
2815	dma_sync_single_range_for_cpu(context->ohci->card.device,
2816				      buffer_dma & PAGE_MASK,
2817				      buffer_dma & ~PAGE_MASK,
2818				      completed, DMA_FROM_DEVICE);
2819
2820	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2821		ctx->base.callback.mc(&ctx->base,
2822				      buffer_dma + completed,
2823				      ctx->base.callback_data);
2824		ctx->mc_completed = 0;
2825	}
2826
2827	return 1;
2828}
2829
2830static void flush_ir_buffer_fill(struct iso_context *ctx)
2831{
2832	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2833				      ctx->mc_buffer_bus & PAGE_MASK,
2834				      ctx->mc_buffer_bus & ~PAGE_MASK,
2835				      ctx->mc_completed, DMA_FROM_DEVICE);
2836
2837	ctx->base.callback.mc(&ctx->base,
2838			      ctx->mc_buffer_bus + ctx->mc_completed,
2839			      ctx->base.callback_data);
2840	ctx->mc_completed = 0;
2841}
2842
2843static inline void sync_it_packet_for_cpu(struct context *context,
2844					  struct descriptor *pd)
2845{
2846	__le16 control;
2847	u32 buffer_dma;
2848
2849	/* only packets beginning with OUTPUT_MORE* have data buffers */
2850	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2851		return;
2852
2853	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2854	pd += 2;
2855
2856	/*
2857	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2858	 * data buffer is in the context program's coherent page and must not
2859	 * be synced.
2860	 */
2861	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2862	    (context->current_bus          & PAGE_MASK)) {
2863		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2864			return;
2865		pd++;
2866	}
2867
2868	do {
2869		buffer_dma = le32_to_cpu(pd->data_address);
2870		dma_sync_single_range_for_cpu(context->ohci->card.device,
2871					      buffer_dma & PAGE_MASK,
2872					      buffer_dma & ~PAGE_MASK,
2873					      le16_to_cpu(pd->req_count),
2874					      DMA_TO_DEVICE);
2875		control = pd->control;
2876		pd++;
2877	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2878}
2879
2880static int handle_it_packet(struct context *context,
2881			    struct descriptor *d,
2882			    struct descriptor *last)
2883{
2884	struct iso_context *ctx =
2885		container_of(context, struct iso_context, context);
2886	struct descriptor *pd;
2887	__be32 *ctx_hdr;
2888
2889	for (pd = d; pd <= last; pd++)
2890		if (pd->transfer_status)
2891			break;
2892	if (pd > last)
2893		/* Descriptor(s) not done yet, stop iteration */
2894		return 0;
2895
2896	sync_it_packet_for_cpu(context, d);
2897
2898	if (ctx->header_length + 4 > PAGE_SIZE) {
2899		if (ctx->base.drop_overflow_headers)
2900			return 1;
2901		flush_iso_completions(ctx);
2902	}
2903
2904	ctx_hdr = ctx->header + ctx->header_length;
2905	ctx->last_timestamp = le16_to_cpu(last->res_count);
2906	/* Present this value as big-endian to match the receive code */
2907	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2908			       le16_to_cpu(pd->res_count));
2909	ctx->header_length += 4;
2910
2911	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2912		flush_iso_completions(ctx);
2913
2914	return 1;
2915}
2916
2917static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2918{
2919	u32 hi = channels >> 32, lo = channels;
2920
2921	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2922	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2923	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2924	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
 
2925	ohci->mc_channels = channels;
2926}
2927
2928static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2929				int type, int channel, size_t header_size)
2930{
2931	struct fw_ohci *ohci = fw_ohci(card);
2932	struct iso_context *ctx;
2933	descriptor_callback_t callback;
2934	u64 *channels;
2935	u32 *mask, regs;
2936	int index, ret = -EBUSY;
2937
2938	spin_lock_irq(&ohci->lock);
2939
2940	switch (type) {
2941	case FW_ISO_CONTEXT_TRANSMIT:
2942		mask     = &ohci->it_context_mask;
2943		callback = handle_it_packet;
2944		index    = ffs(*mask) - 1;
2945		if (index >= 0) {
2946			*mask &= ~(1 << index);
2947			regs = OHCI1394_IsoXmitContextBase(index);
2948			ctx  = &ohci->it_context_list[index];
2949		}
2950		break;
2951
2952	case FW_ISO_CONTEXT_RECEIVE:
2953		channels = &ohci->ir_context_channels;
2954		mask     = &ohci->ir_context_mask;
2955		callback = handle_ir_packet_per_buffer;
2956		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2957		if (index >= 0) {
2958			*channels &= ~(1ULL << channel);
2959			*mask     &= ~(1 << index);
2960			regs = OHCI1394_IsoRcvContextBase(index);
2961			ctx  = &ohci->ir_context_list[index];
2962		}
2963		break;
2964
2965	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2966		mask     = &ohci->ir_context_mask;
2967		callback = handle_ir_buffer_fill;
2968		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2969		if (index >= 0) {
2970			ohci->mc_allocated = true;
2971			*mask &= ~(1 << index);
2972			regs = OHCI1394_IsoRcvContextBase(index);
2973			ctx  = &ohci->ir_context_list[index];
2974		}
2975		break;
2976
2977	default:
2978		index = -1;
2979		ret = -ENOSYS;
2980	}
2981
2982	spin_unlock_irq(&ohci->lock);
2983
2984	if (index < 0)
2985		return ERR_PTR(ret);
2986
2987	memset(ctx, 0, sizeof(*ctx));
2988	ctx->header_length = 0;
2989	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2990	if (ctx->header == NULL) {
2991		ret = -ENOMEM;
2992		goto out;
2993	}
2994	ret = context_init(&ctx->context, ohci, regs, callback);
2995	if (ret < 0)
2996		goto out_with_header;
2997
2998	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2999		set_multichannel_mask(ohci, 0);
3000		ctx->mc_completed = 0;
3001	}
3002
3003	return &ctx->base;
3004
3005 out_with_header:
3006	free_page((unsigned long)ctx->header);
3007 out:
3008	spin_lock_irq(&ohci->lock);
3009
3010	switch (type) {
3011	case FW_ISO_CONTEXT_RECEIVE:
3012		*channels |= 1ULL << channel;
3013		break;
3014
3015	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3016		ohci->mc_allocated = false;
3017		break;
3018	}
3019	*mask |= 1 << index;
3020
3021	spin_unlock_irq(&ohci->lock);
3022
3023	return ERR_PTR(ret);
3024}
3025
3026static int ohci_start_iso(struct fw_iso_context *base,
3027			  s32 cycle, u32 sync, u32 tags)
3028{
3029	struct iso_context *ctx = container_of(base, struct iso_context, base);
3030	struct fw_ohci *ohci = ctx->context.ohci;
3031	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3032	int index;
3033
3034	/* the controller cannot start without any queued packets */
3035	if (ctx->context.last->branch_address == 0)
3036		return -ENODATA;
3037
3038	switch (ctx->base.type) {
3039	case FW_ISO_CONTEXT_TRANSMIT:
3040		index = ctx - ohci->it_context_list;
3041		match = 0;
3042		if (cycle >= 0)
3043			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3044				(cycle & 0x7fff) << 16;
3045
3046		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3047		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3048		context_run(&ctx->context, match);
3049		break;
3050
3051	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3052		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3053		fallthrough;
3054	case FW_ISO_CONTEXT_RECEIVE:
3055		index = ctx - ohci->ir_context_list;
3056		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3057		if (cycle >= 0) {
3058			match |= (cycle & 0x07fff) << 12;
3059			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3060		}
3061
3062		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3063		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3064		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3065		context_run(&ctx->context, control);
3066
3067		ctx->sync = sync;
3068		ctx->tags = tags;
3069
3070		break;
3071	}
3072
3073	return 0;
3074}
3075
3076static int ohci_stop_iso(struct fw_iso_context *base)
3077{
3078	struct fw_ohci *ohci = fw_ohci(base->card);
3079	struct iso_context *ctx = container_of(base, struct iso_context, base);
3080	int index;
3081
3082	switch (ctx->base.type) {
3083	case FW_ISO_CONTEXT_TRANSMIT:
3084		index = ctx - ohci->it_context_list;
3085		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3086		break;
3087
3088	case FW_ISO_CONTEXT_RECEIVE:
3089	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3090		index = ctx - ohci->ir_context_list;
3091		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3092		break;
3093	}
3094	flush_writes(ohci);
3095	context_stop(&ctx->context);
3096	tasklet_kill(&ctx->context.tasklet);
3097
3098	return 0;
3099}
3100
3101static void ohci_free_iso_context(struct fw_iso_context *base)
3102{
3103	struct fw_ohci *ohci = fw_ohci(base->card);
3104	struct iso_context *ctx = container_of(base, struct iso_context, base);
3105	unsigned long flags;
3106	int index;
3107
3108	ohci_stop_iso(base);
3109	context_release(&ctx->context);
3110	free_page((unsigned long)ctx->header);
3111
3112	spin_lock_irqsave(&ohci->lock, flags);
3113
3114	switch (base->type) {
3115	case FW_ISO_CONTEXT_TRANSMIT:
3116		index = ctx - ohci->it_context_list;
3117		ohci->it_context_mask |= 1 << index;
3118		break;
3119
3120	case FW_ISO_CONTEXT_RECEIVE:
3121		index = ctx - ohci->ir_context_list;
3122		ohci->ir_context_mask |= 1 << index;
3123		ohci->ir_context_channels |= 1ULL << base->channel;
3124		break;
3125
3126	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3127		index = ctx - ohci->ir_context_list;
3128		ohci->ir_context_mask |= 1 << index;
3129		ohci->ir_context_channels |= ohci->mc_channels;
3130		ohci->mc_channels = 0;
3131		ohci->mc_allocated = false;
3132		break;
3133	}
3134
3135	spin_unlock_irqrestore(&ohci->lock, flags);
3136}
3137
3138static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3139{
3140	struct fw_ohci *ohci = fw_ohci(base->card);
3141	unsigned long flags;
3142	int ret;
3143
3144	switch (base->type) {
3145	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3146
3147		spin_lock_irqsave(&ohci->lock, flags);
3148
3149		/* Don't allow multichannel to grab other contexts' channels. */
3150		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3151			*channels = ohci->ir_context_channels;
3152			ret = -EBUSY;
3153		} else {
3154			set_multichannel_mask(ohci, *channels);
3155			ret = 0;
3156		}
3157
3158		spin_unlock_irqrestore(&ohci->lock, flags);
3159
3160		break;
3161	default:
3162		ret = -EINVAL;
3163	}
3164
3165	return ret;
3166}
3167
3168#ifdef CONFIG_PM
3169static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3170{
3171	int i;
3172	struct iso_context *ctx;
3173
3174	for (i = 0 ; i < ohci->n_ir ; i++) {
3175		ctx = &ohci->ir_context_list[i];
3176		if (ctx->context.running)
3177			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3178	}
3179
3180	for (i = 0 ; i < ohci->n_it ; i++) {
3181		ctx = &ohci->it_context_list[i];
3182		if (ctx->context.running)
3183			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3184	}
3185}
3186#endif
3187
3188static int queue_iso_transmit(struct iso_context *ctx,
3189			      struct fw_iso_packet *packet,
3190			      struct fw_iso_buffer *buffer,
3191			      unsigned long payload)
3192{
3193	struct descriptor *d, *last, *pd;
3194	struct fw_iso_packet *p;
3195	__le32 *header;
3196	dma_addr_t d_bus, page_bus;
3197	u32 z, header_z, payload_z, irq;
3198	u32 payload_index, payload_end_index, next_page_index;
3199	int page, end_page, i, length, offset;
3200
3201	p = packet;
3202	payload_index = payload;
3203
3204	if (p->skip)
3205		z = 1;
3206	else
3207		z = 2;
3208	if (p->header_length > 0)
3209		z++;
3210
3211	/* Determine the first page the payload isn't contained in. */
3212	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3213	if (p->payload_length > 0)
3214		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3215	else
3216		payload_z = 0;
3217
3218	z += payload_z;
3219
3220	/* Get header size in number of descriptors. */
3221	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3222
3223	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3224	if (d == NULL)
3225		return -ENOMEM;
3226
3227	if (!p->skip) {
3228		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3229		d[0].req_count = cpu_to_le16(8);
3230		/*
3231		 * Link the skip address to this descriptor itself.  This causes
3232		 * a context to skip a cycle whenever lost cycles or FIFO
3233		 * overruns occur, without dropping the data.  The application
3234		 * should then decide whether this is an error condition or not.
3235		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3236		 */
3237		d[0].branch_address = cpu_to_le32(d_bus | z);
3238
3239		header = (__le32 *) &d[1];
3240		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3241					IT_HEADER_TAG(p->tag) |
3242					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3243					IT_HEADER_CHANNEL(ctx->base.channel) |
3244					IT_HEADER_SPEED(ctx->base.speed));
3245		header[1] =
3246			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3247							  p->payload_length));
3248	}
3249
3250	if (p->header_length > 0) {
3251		d[2].req_count    = cpu_to_le16(p->header_length);
3252		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3253		memcpy(&d[z], p->header, p->header_length);
3254	}
3255
3256	pd = d + z - payload_z;
3257	payload_end_index = payload_index + p->payload_length;
3258	for (i = 0; i < payload_z; i++) {
3259		page               = payload_index >> PAGE_SHIFT;
3260		offset             = payload_index & ~PAGE_MASK;
3261		next_page_index    = (page + 1) << PAGE_SHIFT;
3262		length             =
3263			min(next_page_index, payload_end_index) - payload_index;
3264		pd[i].req_count    = cpu_to_le16(length);
3265
3266		page_bus = page_private(buffer->pages[page]);
3267		pd[i].data_address = cpu_to_le32(page_bus + offset);
3268
3269		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3270						 page_bus, offset, length,
3271						 DMA_TO_DEVICE);
3272
3273		payload_index += length;
3274	}
3275
3276	if (p->interrupt)
3277		irq = DESCRIPTOR_IRQ_ALWAYS;
3278	else
3279		irq = DESCRIPTOR_NO_IRQ;
3280
3281	last = z == 2 ? d : d + z - 1;
3282	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3283				     DESCRIPTOR_STATUS |
3284				     DESCRIPTOR_BRANCH_ALWAYS |
3285				     irq);
3286
3287	context_append(&ctx->context, d, z, header_z);
3288
3289	return 0;
3290}
3291
3292static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3293				       struct fw_iso_packet *packet,
3294				       struct fw_iso_buffer *buffer,
3295				       unsigned long payload)
3296{
3297	struct device *device = ctx->context.ohci->card.device;
3298	struct descriptor *d, *pd;
3299	dma_addr_t d_bus, page_bus;
3300	u32 z, header_z, rest;
3301	int i, j, length;
3302	int page, offset, packet_count, header_size, payload_per_buffer;
3303
3304	/*
3305	 * The OHCI controller puts the isochronous header and trailer in the
3306	 * buffer, so we need at least 8 bytes.
3307	 */
3308	packet_count = packet->header_length / ctx->base.header_size;
3309	header_size  = max(ctx->base.header_size, (size_t)8);
3310
3311	/* Get header size in number of descriptors. */
3312	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3313	page     = payload >> PAGE_SHIFT;
3314	offset   = payload & ~PAGE_MASK;
3315	payload_per_buffer = packet->payload_length / packet_count;
3316
3317	for (i = 0; i < packet_count; i++) {
3318		/* d points to the header descriptor */
3319		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3320		d = context_get_descriptors(&ctx->context,
3321				z + header_z, &d_bus);
3322		if (d == NULL)
3323			return -ENOMEM;
3324
3325		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3326					      DESCRIPTOR_INPUT_MORE);
3327		if (packet->skip && i == 0)
3328			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3329		d->req_count    = cpu_to_le16(header_size);
3330		d->res_count    = d->req_count;
3331		d->transfer_status = 0;
3332		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3333
3334		rest = payload_per_buffer;
3335		pd = d;
3336		for (j = 1; j < z; j++) {
3337			pd++;
3338			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3339						  DESCRIPTOR_INPUT_MORE);
3340
3341			if (offset + rest < PAGE_SIZE)
3342				length = rest;
3343			else
3344				length = PAGE_SIZE - offset;
3345			pd->req_count = cpu_to_le16(length);
3346			pd->res_count = pd->req_count;
3347			pd->transfer_status = 0;
3348
3349			page_bus = page_private(buffer->pages[page]);
3350			pd->data_address = cpu_to_le32(page_bus + offset);
3351
3352			dma_sync_single_range_for_device(device, page_bus,
3353							 offset, length,
3354							 DMA_FROM_DEVICE);
3355
3356			offset = (offset + length) & ~PAGE_MASK;
3357			rest -= length;
3358			if (offset == 0)
3359				page++;
3360		}
3361		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3362					  DESCRIPTOR_INPUT_LAST |
3363					  DESCRIPTOR_BRANCH_ALWAYS);
3364		if (packet->interrupt && i == packet_count - 1)
3365			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3366
3367		context_append(&ctx->context, d, z, header_z);
3368	}
3369
3370	return 0;
3371}
3372
3373static int queue_iso_buffer_fill(struct iso_context *ctx,
3374				 struct fw_iso_packet *packet,
3375				 struct fw_iso_buffer *buffer,
3376				 unsigned long payload)
3377{
3378	struct descriptor *d;
3379	dma_addr_t d_bus, page_bus;
3380	int page, offset, rest, z, i, length;
3381
3382	page   = payload >> PAGE_SHIFT;
3383	offset = payload & ~PAGE_MASK;
3384	rest   = packet->payload_length;
3385
3386	/* We need one descriptor for each page in the buffer. */
3387	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3388
3389	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3390		return -EFAULT;
3391
3392	for (i = 0; i < z; i++) {
3393		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3394		if (d == NULL)
3395			return -ENOMEM;
3396
3397		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3398					 DESCRIPTOR_BRANCH_ALWAYS);
3399		if (packet->skip && i == 0)
3400			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3401		if (packet->interrupt && i == z - 1)
3402			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3403
3404		if (offset + rest < PAGE_SIZE)
3405			length = rest;
3406		else
3407			length = PAGE_SIZE - offset;
3408		d->req_count = cpu_to_le16(length);
3409		d->res_count = d->req_count;
3410		d->transfer_status = 0;
3411
3412		page_bus = page_private(buffer->pages[page]);
3413		d->data_address = cpu_to_le32(page_bus + offset);
3414
3415		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3416						 page_bus, offset, length,
3417						 DMA_FROM_DEVICE);
3418
3419		rest -= length;
3420		offset = 0;
3421		page++;
3422
3423		context_append(&ctx->context, d, 1, 0);
3424	}
3425
3426	return 0;
3427}
3428
3429static int ohci_queue_iso(struct fw_iso_context *base,
3430			  struct fw_iso_packet *packet,
3431			  struct fw_iso_buffer *buffer,
3432			  unsigned long payload)
3433{
3434	struct iso_context *ctx = container_of(base, struct iso_context, base);
3435	unsigned long flags;
3436	int ret = -ENOSYS;
3437
3438	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3439	switch (base->type) {
3440	case FW_ISO_CONTEXT_TRANSMIT:
3441		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3442		break;
3443	case FW_ISO_CONTEXT_RECEIVE:
3444		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3445		break;
3446	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3447		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3448		break;
3449	}
3450	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3451
3452	return ret;
3453}
3454
3455static void ohci_flush_queue_iso(struct fw_iso_context *base)
3456{
3457	struct context *ctx =
3458			&container_of(base, struct iso_context, base)->context;
3459
3460	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3461}
3462
3463static int ohci_flush_iso_completions(struct fw_iso_context *base)
3464{
3465	struct iso_context *ctx = container_of(base, struct iso_context, base);
3466	int ret = 0;
3467
3468	tasklet_disable_in_atomic(&ctx->context.tasklet);
3469
3470	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3471		context_tasklet((unsigned long)&ctx->context);
3472
3473		switch (base->type) {
3474		case FW_ISO_CONTEXT_TRANSMIT:
3475		case FW_ISO_CONTEXT_RECEIVE:
3476			if (ctx->header_length != 0)
3477				flush_iso_completions(ctx);
3478			break;
3479		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3480			if (ctx->mc_completed != 0)
3481				flush_ir_buffer_fill(ctx);
3482			break;
3483		default:
3484			ret = -ENOSYS;
3485		}
3486
3487		clear_bit_unlock(0, &ctx->flushing_completions);
3488		smp_mb__after_atomic();
3489	}
3490
3491	tasklet_enable(&ctx->context.tasklet);
3492
3493	return ret;
3494}
3495
3496static const struct fw_card_driver ohci_driver = {
3497	.enable			= ohci_enable,
3498	.read_phy_reg		= ohci_read_phy_reg,
3499	.update_phy_reg		= ohci_update_phy_reg,
3500	.set_config_rom		= ohci_set_config_rom,
3501	.send_request		= ohci_send_request,
3502	.send_response		= ohci_send_response,
3503	.cancel_packet		= ohci_cancel_packet,
3504	.enable_phys_dma	= ohci_enable_phys_dma,
3505	.read_csr		= ohci_read_csr,
3506	.write_csr		= ohci_write_csr,
3507
3508	.allocate_iso_context	= ohci_allocate_iso_context,
3509	.free_iso_context	= ohci_free_iso_context,
3510	.set_iso_channels	= ohci_set_iso_channels,
3511	.queue_iso		= ohci_queue_iso,
3512	.flush_queue_iso	= ohci_flush_queue_iso,
3513	.flush_iso_completions	= ohci_flush_iso_completions,
3514	.start_iso		= ohci_start_iso,
3515	.stop_iso		= ohci_stop_iso,
3516};
3517
3518#ifdef CONFIG_PPC_PMAC
3519static void pmac_ohci_on(struct pci_dev *dev)
3520{
3521	if (machine_is(powermac)) {
3522		struct device_node *ofn = pci_device_to_OF_node(dev);
3523
3524		if (ofn) {
3525			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3526			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3527		}
3528	}
3529}
3530
3531static void pmac_ohci_off(struct pci_dev *dev)
3532{
3533	if (machine_is(powermac)) {
3534		struct device_node *ofn = pci_device_to_OF_node(dev);
3535
3536		if (ofn) {
3537			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3538			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3539		}
3540	}
3541}
3542#else
3543static inline void pmac_ohci_on(struct pci_dev *dev) {}
3544static inline void pmac_ohci_off(struct pci_dev *dev) {}
3545#endif /* CONFIG_PPC_PMAC */
3546
3547static int pci_probe(struct pci_dev *dev,
3548			       const struct pci_device_id *ent)
3549{
3550	struct fw_ohci *ohci;
3551	u32 bus_options, max_receive, link_speed, version;
3552	u64 guid;
3553	int i, err;
3554	size_t size;
3555
3556	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3557		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3558		return -ENOSYS;
3559	}
3560
3561	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3562	if (ohci == NULL) {
3563		err = -ENOMEM;
3564		goto fail;
3565	}
3566
3567	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3568
3569	pmac_ohci_on(dev);
3570
3571	err = pci_enable_device(dev);
3572	if (err) {
3573		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3574		goto fail_free;
3575	}
3576
3577	pci_set_master(dev);
3578	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3579	pci_set_drvdata(dev, ohci);
3580
3581	spin_lock_init(&ohci->lock);
3582	mutex_init(&ohci->phy_reg_mutex);
3583
3584	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3585
3586	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3587	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3588		ohci_err(ohci, "invalid MMIO resource\n");
3589		err = -ENXIO;
3590		goto fail_disable;
3591	}
3592
3593	err = pci_request_region(dev, 0, ohci_driver_name);
3594	if (err) {
3595		ohci_err(ohci, "MMIO resource unavailable\n");
3596		goto fail_disable;
3597	}
3598
3599	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3600	if (ohci->registers == NULL) {
3601		ohci_err(ohci, "failed to remap registers\n");
3602		err = -ENXIO;
3603		goto fail_iomem;
3604	}
3605
3606	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3607		if ((ohci_quirks[i].vendor == dev->vendor) &&
3608		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3609		     ohci_quirks[i].device == dev->device) &&
3610		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3611		     ohci_quirks[i].revision >= dev->revision)) {
3612			ohci->quirks = ohci_quirks[i].flags;
3613			break;
3614		}
3615	if (param_quirks)
3616		ohci->quirks = param_quirks;
3617
3618	/*
3619	 * Because dma_alloc_coherent() allocates at least one page,
3620	 * we save space by using a common buffer for the AR request/
3621	 * response descriptors and the self IDs buffer.
3622	 */
3623	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3624	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3625	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3626					       PAGE_SIZE,
3627					       &ohci->misc_buffer_bus,
3628					       GFP_KERNEL);
3629	if (!ohci->misc_buffer) {
3630		err = -ENOMEM;
3631		goto fail_iounmap;
3632	}
3633
3634	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3635			      OHCI1394_AsReqRcvContextControlSet);
3636	if (err < 0)
3637		goto fail_misc_buf;
3638
3639	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3640			      OHCI1394_AsRspRcvContextControlSet);
3641	if (err < 0)
3642		goto fail_arreq_ctx;
3643
3644	err = context_init(&ohci->at_request_ctx, ohci,
3645			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3646	if (err < 0)
3647		goto fail_arrsp_ctx;
3648
3649	err = context_init(&ohci->at_response_ctx, ohci,
3650			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3651	if (err < 0)
3652		goto fail_atreq_ctx;
3653
3654	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3655	ohci->ir_context_channels = ~0ULL;
3656	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3657	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3658	ohci->ir_context_mask = ohci->ir_context_support;
3659	ohci->n_ir = hweight32(ohci->ir_context_mask);
3660	size = sizeof(struct iso_context) * ohci->n_ir;
3661	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3662
3663	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3664	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3665	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3666	if (!ohci->it_context_support) {
3667		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3668		ohci->it_context_support = 0xf;
3669	}
3670	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3671	ohci->it_context_mask = ohci->it_context_support;
3672	ohci->n_it = hweight32(ohci->it_context_mask);
3673	size = sizeof(struct iso_context) * ohci->n_it;
3674	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3675
3676	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3677		err = -ENOMEM;
3678		goto fail_contexts;
3679	}
3680
3681	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3682	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3683
3684	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3685	max_receive = (bus_options >> 12) & 0xf;
3686	link_speed = bus_options & 0x7;
3687	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3688		reg_read(ohci, OHCI1394_GUIDLo);
3689
3690	if (!(ohci->quirks & QUIRK_NO_MSI))
3691		pci_enable_msi(dev);
3692	if (request_irq(dev->irq, irq_handler,
3693			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3694			ohci_driver_name, ohci)) {
3695		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3696		err = -EIO;
3697		goto fail_msi;
3698	}
3699
3700	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3701	if (err)
3702		goto fail_irq;
3703
3704	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3705	ohci_notice(ohci,
3706		    "added OHCI v%x.%x device as card %d, "
3707		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3708		    version >> 16, version & 0xff, ohci->card.index,
3709		    ohci->n_ir, ohci->n_it, ohci->quirks,
3710		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3711			", physUB" : "");
3712
3713	return 0;
3714
3715 fail_irq:
3716	free_irq(dev->irq, ohci);
3717 fail_msi:
3718	pci_disable_msi(dev);
3719 fail_contexts:
3720	kfree(ohci->ir_context_list);
3721	kfree(ohci->it_context_list);
3722	context_release(&ohci->at_response_ctx);
3723 fail_atreq_ctx:
3724	context_release(&ohci->at_request_ctx);
3725 fail_arrsp_ctx:
3726	ar_context_release(&ohci->ar_response_ctx);
3727 fail_arreq_ctx:
3728	ar_context_release(&ohci->ar_request_ctx);
3729 fail_misc_buf:
3730	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3731			  ohci->misc_buffer, ohci->misc_buffer_bus);
3732 fail_iounmap:
3733	pci_iounmap(dev, ohci->registers);
3734 fail_iomem:
3735	pci_release_region(dev, 0);
3736 fail_disable:
3737	pci_disable_device(dev);
3738 fail_free:
3739	kfree(ohci);
3740	pmac_ohci_off(dev);
3741 fail:
3742	return err;
3743}
3744
3745static void pci_remove(struct pci_dev *dev)
3746{
3747	struct fw_ohci *ohci = pci_get_drvdata(dev);
3748
3749	/*
3750	 * If the removal is happening from the suspend state, LPS won't be
3751	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3752	 */
3753	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3754		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3755		flush_writes(ohci);
3756	}
3757	cancel_work_sync(&ohci->bus_reset_work);
3758	fw_core_remove_card(&ohci->card);
3759
3760	/*
3761	 * FIXME: Fail all pending packets here, now that the upper
3762	 * layers can't queue any more.
3763	 */
3764
3765	software_reset(ohci);
3766	free_irq(dev->irq, ohci);
3767
3768	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3769		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3770				  ohci->next_config_rom, ohci->next_config_rom_bus);
3771	if (ohci->config_rom)
3772		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3773				  ohci->config_rom, ohci->config_rom_bus);
3774	ar_context_release(&ohci->ar_request_ctx);
3775	ar_context_release(&ohci->ar_response_ctx);
3776	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3777			  ohci->misc_buffer, ohci->misc_buffer_bus);
3778	context_release(&ohci->at_request_ctx);
3779	context_release(&ohci->at_response_ctx);
3780	kfree(ohci->it_context_list);
3781	kfree(ohci->ir_context_list);
3782	pci_disable_msi(dev);
3783	pci_iounmap(dev, ohci->registers);
3784	pci_release_region(dev, 0);
3785	pci_disable_device(dev);
3786	kfree(ohci);
3787	pmac_ohci_off(dev);
3788
3789	dev_notice(&dev->dev, "removed fw-ohci device\n");
3790}
3791
3792#ifdef CONFIG_PM
3793static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3794{
3795	struct fw_ohci *ohci = pci_get_drvdata(dev);
3796	int err;
3797
3798	software_reset(ohci);
3799	err = pci_save_state(dev);
3800	if (err) {
3801		ohci_err(ohci, "pci_save_state failed\n");
3802		return err;
3803	}
3804	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3805	if (err)
3806		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3807	pmac_ohci_off(dev);
3808
3809	return 0;
3810}
3811
3812static int pci_resume(struct pci_dev *dev)
3813{
3814	struct fw_ohci *ohci = pci_get_drvdata(dev);
3815	int err;
3816
3817	pmac_ohci_on(dev);
3818	pci_set_power_state(dev, PCI_D0);
3819	pci_restore_state(dev);
3820	err = pci_enable_device(dev);
3821	if (err) {
3822		ohci_err(ohci, "pci_enable_device failed\n");
3823		return err;
3824	}
3825
3826	/* Some systems don't setup GUID register on resume from ram  */
3827	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3828					!reg_read(ohci, OHCI1394_GUIDHi)) {
3829		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3830		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3831	}
3832
3833	err = ohci_enable(&ohci->card, NULL, 0);
3834	if (err)
3835		return err;
3836
3837	ohci_resume_iso_dma(ohci);
3838
3839	return 0;
3840}
3841#endif
3842
3843static const struct pci_device_id pci_table[] = {
3844	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3845	{ }
3846};
3847
3848MODULE_DEVICE_TABLE(pci, pci_table);
3849
3850static struct pci_driver fw_ohci_pci_driver = {
3851	.name		= ohci_driver_name,
3852	.id_table	= pci_table,
3853	.probe		= pci_probe,
3854	.remove		= pci_remove,
3855#ifdef CONFIG_PM
3856	.resume		= pci_resume,
3857	.suspend	= pci_suspend,
3858#endif
3859};
3860
3861static int __init fw_ohci_init(void)
3862{
3863	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3864	if (!selfid_workqueue)
3865		return -ENOMEM;
3866
3867	return pci_register_driver(&fw_ohci_pci_driver);
3868}
3869
3870static void __exit fw_ohci_cleanup(void)
3871{
3872	pci_unregister_driver(&fw_ohci_pci_driver);
3873	destroy_workqueue(selfid_workqueue);
3874}
3875
3876module_init(fw_ohci_init);
3877module_exit(fw_ohci_cleanup);
3878
3879MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3880MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3881MODULE_LICENSE("GPL");
3882
3883/* Provide a module alias so root-on-sbp2 initrds don't break. */
3884MODULE_ALIAS("ohci1394");
v3.15
 
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE		0
  62#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  63#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  64#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  65#define DESCRIPTOR_STATUS		(1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  67#define DESCRIPTOR_PING			(1 << 7)
  68#define DESCRIPTOR_YY			(1 << 6)
  69#define DESCRIPTOR_NO_IRQ		(0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  73#define DESCRIPTOR_WAIT			(3 << 0)
  74
  75#define DESCRIPTOR_CMD			(0xf << 12)
  76
  77struct descriptor {
  78	__le16 req_count;
  79	__le16 control;
  80	__le32 data_address;
  81	__le32 branch_address;
  82	__le16 res_count;
  83	__le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)	(regs)
  87#define CONTROL_CLEAR(regs)	((regs) + 4)
  88#define COMMAND_PTR(regs)	((regs) + 12)
  89#define CONTEXT_MATCH(regs)	((regs) + 16)
  90
  91#define AR_BUFFER_SIZE	(32*1024)
  92#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD	4096
  97#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101	struct fw_ohci *ohci;
 102	struct page *pages[AR_BUFFERS];
 103	void *buffer;
 104	struct descriptor *descriptors;
 105	dma_addr_t descriptors_bus;
 106	void *pointer;
 107	unsigned int last_buffer_index;
 108	u32 regs;
 109	struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115				     struct descriptor *d,
 116				     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123	struct list_head list;
 124	dma_addr_t buffer_bus;
 125	size_t buffer_size;
 126	size_t used;
 127	struct descriptor buffer[0];
 128};
 129
 130struct context {
 131	struct fw_ohci *ohci;
 132	u32 regs;
 133	int total_allocation;
 134	u32 current_bus;
 135	bool running;
 136	bool flushing;
 137
 138	/*
 139	 * List of page-sized buffers for storing DMA descriptors.
 140	 * Head of list contains buffers in use and tail of list contains
 141	 * free buffers.
 142	 */
 143	struct list_head buffer_list;
 144
 145	/*
 146	 * Pointer to a buffer inside buffer_list that contains the tail
 147	 * end of the current DMA program.
 148	 */
 149	struct descriptor_buffer *buffer_tail;
 150
 151	/*
 152	 * The descriptor containing the branch address of the first
 153	 * descriptor that has not yet been filled by the device.
 154	 */
 155	struct descriptor *last;
 156
 157	/*
 158	 * The last descriptor block in the DMA program. It contains the branch
 159	 * address that must be updated upon appending a new descriptor.
 160	 */
 161	struct descriptor *prev;
 162	int prev_z;
 163
 164	descriptor_callback_t callback;
 165
 166	struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177	struct fw_iso_context base;
 178	struct context context;
 179	void *header;
 180	size_t header_length;
 181	unsigned long flushing_completions;
 182	u32 mc_buffer_bus;
 183	u16 mc_completed;
 184	u16 last_timestamp;
 185	u8 sync;
 186	u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192	struct fw_card card;
 193
 194	__iomem char *registers;
 195	int node_id;
 196	int generation;
 197	int request_generation;	/* for timestamping incoming requests */
 198	unsigned quirks;
 199	unsigned int pri_req_max;
 200	u32 bus_time;
 201	bool bus_time_running;
 202	bool is_root;
 203	bool csr_state_setclear_abdicate;
 204	int n_ir;
 205	int n_it;
 206	/*
 207	 * Spinlock for accessing fw_ohci data.  Never call out of
 208	 * this driver with this lock held.
 209	 */
 210	spinlock_t lock;
 211
 212	struct mutex phy_reg_mutex;
 213
 214	void *misc_buffer;
 215	dma_addr_t misc_buffer_bus;
 216
 217	struct ar_context ar_request_ctx;
 218	struct ar_context ar_response_ctx;
 219	struct context at_request_ctx;
 220	struct context at_response_ctx;
 221
 222	u32 it_context_support;
 223	u32 it_context_mask;     /* unoccupied IT contexts */
 224	struct iso_context *it_context_list;
 225	u64 ir_context_channels; /* unoccupied channels */
 226	u32 ir_context_support;
 227	u32 ir_context_mask;     /* unoccupied IR contexts */
 228	struct iso_context *ir_context_list;
 229	u64 mc_channels; /* channels in use by the multichannel IR context */
 230	bool mc_allocated;
 231
 232	__be32    *config_rom;
 233	dma_addr_t config_rom_bus;
 234	__be32    *next_config_rom;
 235	dma_addr_t next_config_rom_bus;
 236	__be32     next_header;
 237
 238	__le32    *self_id;
 239	dma_addr_t self_id_bus;
 240	struct work_struct bus_reset_work;
 241
 242	u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249	return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 253#define IR_CONTEXT_BUFFER_FILL		0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 258
 259#define CONTEXT_RUN	0x8000
 260#define CONTEXT_WAKE	0x1000
 261#define CONTEXT_DEAD	0x0800
 262#define CONTEXT_ACTIVE	0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 267
 268#define OHCI1394_REGISTER_SIZE		0x800
 269#define OHCI1394_PCI_HCI_Control	0x40
 270#define SELF_ID_BUF_SIZE		0x800
 271#define OHCI_TCODE_PHY_PACKET		0x0e
 272#define OHCI_VERSION_1_1		0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 284#define PCI_REV_ID_VIA_VT6306		0x46
 
 285
 286#define QUIRK_CYCLE_TIMER		0x1
 287#define QUIRK_RESET_PACKET		0x2
 288#define QUIRK_BE_HEADERS		0x4
 289#define QUIRK_NO_1394A			0x8
 290#define QUIRK_NO_MSI			0x10
 291#define QUIRK_TI_SLLZ059		0x20
 292#define QUIRK_IR_WAKE			0x40
 293
 294/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 295static const struct {
 296	unsigned short vendor, device, revision, flags;
 297} ohci_quirks[] = {
 298	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 299		QUIRK_CYCLE_TIMER},
 300
 301	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 302		QUIRK_BE_HEADERS},
 303
 304	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 305		QUIRK_NO_MSI},
 306
 307	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 308		QUIRK_RESET_PACKET},
 309
 310	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 311		QUIRK_NO_MSI},
 312
 313	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 314		QUIRK_CYCLE_TIMER},
 315
 316	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 317		QUIRK_NO_MSI},
 318
 319	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 320		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 321
 322	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 323		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 324
 325	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 326		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 327
 328	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 329		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 330
 331	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_RESET_PACKET},
 333
 334	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 335		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 336
 
 
 
 
 
 
 337	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 338		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 339};
 340
 341/* This overrides anything that was found in ohci_quirks[]. */
 342static int param_quirks;
 343module_param_named(quirks, param_quirks, int, 0644);
 344MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 345	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 346	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 347	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 348	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 349	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 350	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 351	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 352	")");
 353
 354#define OHCI_PARAM_DEBUG_AT_AR		1
 355#define OHCI_PARAM_DEBUG_SELFIDS	2
 356#define OHCI_PARAM_DEBUG_IRQS		4
 357#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 358
 359static int param_debug;
 360module_param_named(debug, param_debug, int, 0644);
 361MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 362	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 363	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 364	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 365	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 366	", or a combination, or all = -1)");
 367
 368static bool param_remote_dma;
 369module_param_named(remote_dma, param_remote_dma, bool, 0444);
 370MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 371
 372static void log_irqs(struct fw_ohci *ohci, u32 evt)
 373{
 374	if (likely(!(param_debug &
 375			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 376		return;
 377
 378	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 379	    !(evt & OHCI1394_busReset))
 380		return;
 381
 382	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 383	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 384	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 385	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 386	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 387	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 388	    evt & OHCI1394_isochRx		? " IR"			: "",
 389	    evt & OHCI1394_isochTx		? " IT"			: "",
 390	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 391	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 392	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 393	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 394	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 395	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 396	    evt & OHCI1394_busReset		? " busReset"		: "",
 397	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 398		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 399		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 400		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 401		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 402		    OHCI1394_cycleInconsistent |
 403		    OHCI1394_regAccessFail | OHCI1394_busReset)
 404						? " ?"			: "");
 405}
 406
 407static const char *speed[] = {
 408	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 409};
 410static const char *power[] = {
 411	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 412	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 413};
 414static const char port[] = { '.', '-', 'p', 'c', };
 415
 416static char _p(u32 *s, int shift)
 417{
 418	return port[*s >> shift & 3];
 419}
 420
 421static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 422{
 423	u32 *s;
 424
 425	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 426		return;
 427
 428	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 429		    self_id_count, generation, ohci->node_id);
 430
 431	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 432		if ((*s & 1 << 23) == 0)
 433			ohci_notice(ohci,
 434			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 435			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 436			    speed[*s >> 14 & 3], *s >> 16 & 63,
 437			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 438			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 439		else
 440			ohci_notice(ohci,
 441			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 442			    *s, *s >> 24 & 63,
 443			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 444			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 445}
 446
 447static const char *evts[] = {
 448	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 449	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 450	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 451	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 452	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 453	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 454	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 455	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 456	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 457	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 458	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 459	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 460	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 461	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 462	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 463	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 464	[0x20] = "pending/cancelled",
 465};
 466static const char *tcodes[] = {
 467	[0x0] = "QW req",		[0x1] = "BW req",
 468	[0x2] = "W resp",		[0x3] = "-reserved-",
 469	[0x4] = "QR req",		[0x5] = "BR req",
 470	[0x6] = "QR resp",		[0x7] = "BR resp",
 471	[0x8] = "cycle start",		[0x9] = "Lk req",
 472	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 473	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 474	[0xe] = "link internal",	[0xf] = "-reserved-",
 475};
 476
 477static void log_ar_at_event(struct fw_ohci *ohci,
 478			    char dir, int speed, u32 *header, int evt)
 479{
 480	int tcode = header[0] >> 4 & 0xf;
 481	char specific[12];
 482
 483	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 484		return;
 485
 486	if (unlikely(evt >= ARRAY_SIZE(evts)))
 487			evt = 0x1f;
 488
 489	if (evt == OHCI1394_evt_bus_reset) {
 490		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 491			    dir, (header[2] >> 16) & 0xff);
 492		return;
 493	}
 494
 495	switch (tcode) {
 496	case 0x0: case 0x6: case 0x8:
 497		snprintf(specific, sizeof(specific), " = %08x",
 498			 be32_to_cpu((__force __be32)header[3]));
 499		break;
 500	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 501		snprintf(specific, sizeof(specific), " %x,%x",
 502			 header[3] >> 16, header[3] & 0xffff);
 503		break;
 504	default:
 505		specific[0] = '\0';
 506	}
 507
 508	switch (tcode) {
 509	case 0xa:
 510		ohci_notice(ohci, "A%c %s, %s\n",
 511			    dir, evts[evt], tcodes[tcode]);
 512		break;
 513	case 0xe:
 514		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 515			    dir, evts[evt], header[1], header[2]);
 516		break;
 517	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 518		ohci_notice(ohci,
 519			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 520			    dir, speed, header[0] >> 10 & 0x3f,
 521			    header[1] >> 16, header[0] >> 16, evts[evt],
 522			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 523		break;
 524	default:
 525		ohci_notice(ohci,
 526			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 527			    dir, speed, header[0] >> 10 & 0x3f,
 528			    header[1] >> 16, header[0] >> 16, evts[evt],
 529			    tcodes[tcode], specific);
 530	}
 531}
 532
 533static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 534{
 535	writel(data, ohci->registers + offset);
 536}
 537
 538static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 539{
 540	return readl(ohci->registers + offset);
 541}
 542
 543static inline void flush_writes(const struct fw_ohci *ohci)
 544{
 545	/* Do a dummy read to flush writes. */
 546	reg_read(ohci, OHCI1394_Version);
 547}
 548
 549/*
 550 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 551 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 552 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 553 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 554 */
 555static int read_phy_reg(struct fw_ohci *ohci, int addr)
 556{
 557	u32 val;
 558	int i;
 559
 560	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 561	for (i = 0; i < 3 + 100; i++) {
 562		val = reg_read(ohci, OHCI1394_PhyControl);
 563		if (!~val)
 564			return -ENODEV; /* Card was ejected. */
 565
 566		if (val & OHCI1394_PhyControl_ReadDone)
 567			return OHCI1394_PhyControl_ReadData(val);
 568
 569		/*
 570		 * Try a few times without waiting.  Sleeping is necessary
 571		 * only when the link/PHY interface is busy.
 572		 */
 573		if (i >= 3)
 574			msleep(1);
 575	}
 576	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 577	dump_stack();
 578
 579	return -EBUSY;
 580}
 581
 582static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 583{
 584	int i;
 585
 586	reg_write(ohci, OHCI1394_PhyControl,
 587		  OHCI1394_PhyControl_Write(addr, val));
 588	for (i = 0; i < 3 + 100; i++) {
 589		val = reg_read(ohci, OHCI1394_PhyControl);
 590		if (!~val)
 591			return -ENODEV; /* Card was ejected. */
 592
 593		if (!(val & OHCI1394_PhyControl_WritePending))
 594			return 0;
 595
 596		if (i >= 3)
 597			msleep(1);
 598	}
 599	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 600	dump_stack();
 601
 602	return -EBUSY;
 603}
 604
 605static int update_phy_reg(struct fw_ohci *ohci, int addr,
 606			  int clear_bits, int set_bits)
 607{
 608	int ret = read_phy_reg(ohci, addr);
 609	if (ret < 0)
 610		return ret;
 611
 612	/*
 613	 * The interrupt status bits are cleared by writing a one bit.
 614	 * Avoid clearing them unless explicitly requested in set_bits.
 615	 */
 616	if (addr == 5)
 617		clear_bits |= PHY_INT_STATUS_BITS;
 618
 619	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 620}
 621
 622static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 623{
 624	int ret;
 625
 626	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 627	if (ret < 0)
 628		return ret;
 629
 630	return read_phy_reg(ohci, addr);
 631}
 632
 633static int ohci_read_phy_reg(struct fw_card *card, int addr)
 634{
 635	struct fw_ohci *ohci = fw_ohci(card);
 636	int ret;
 637
 638	mutex_lock(&ohci->phy_reg_mutex);
 639	ret = read_phy_reg(ohci, addr);
 640	mutex_unlock(&ohci->phy_reg_mutex);
 641
 642	return ret;
 643}
 644
 645static int ohci_update_phy_reg(struct fw_card *card, int addr,
 646			       int clear_bits, int set_bits)
 647{
 648	struct fw_ohci *ohci = fw_ohci(card);
 649	int ret;
 650
 651	mutex_lock(&ohci->phy_reg_mutex);
 652	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 653	mutex_unlock(&ohci->phy_reg_mutex);
 654
 655	return ret;
 656}
 657
 658static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 659{
 660	return page_private(ctx->pages[i]);
 661}
 662
 663static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 664{
 665	struct descriptor *d;
 666
 667	d = &ctx->descriptors[index];
 668	d->branch_address  &= cpu_to_le32(~0xf);
 669	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 670	d->transfer_status =  0;
 671
 672	wmb(); /* finish init of new descriptors before branch_address update */
 673	d = &ctx->descriptors[ctx->last_buffer_index];
 674	d->branch_address  |= cpu_to_le32(1);
 675
 676	ctx->last_buffer_index = index;
 677
 678	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 679}
 680
 681static void ar_context_release(struct ar_context *ctx)
 682{
 
 683	unsigned int i;
 684
 685	if (ctx->buffer)
 686		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 687
 688	for (i = 0; i < AR_BUFFERS; i++)
 689		if (ctx->pages[i]) {
 690			dma_unmap_page(ctx->ohci->card.device,
 691				       ar_buffer_bus(ctx, i),
 692				       PAGE_SIZE, DMA_FROM_DEVICE);
 693			__free_page(ctx->pages[i]);
 694		}
 695}
 696
 697static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 698{
 699	struct fw_ohci *ohci = ctx->ohci;
 700
 701	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 702		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 703		flush_writes(ohci);
 704
 705		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 706	}
 707	/* FIXME: restart? */
 708}
 709
 710static inline unsigned int ar_next_buffer_index(unsigned int index)
 711{
 712	return (index + 1) % AR_BUFFERS;
 713}
 714
 715static inline unsigned int ar_prev_buffer_index(unsigned int index)
 716{
 717	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 718}
 719
 720static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 721{
 722	return ar_next_buffer_index(ctx->last_buffer_index);
 723}
 724
 725/*
 726 * We search for the buffer that contains the last AR packet DMA data written
 727 * by the controller.
 728 */
 729static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 730						 unsigned int *buffer_offset)
 731{
 732	unsigned int i, next_i, last = ctx->last_buffer_index;
 733	__le16 res_count, next_res_count;
 734
 735	i = ar_first_buffer_index(ctx);
 736	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 737
 738	/* A buffer that is not yet completely filled must be the last one. */
 739	while (i != last && res_count == 0) {
 740
 741		/* Peek at the next descriptor. */
 742		next_i = ar_next_buffer_index(i);
 743		rmb(); /* read descriptors in order */
 744		next_res_count = ACCESS_ONCE(
 745				ctx->descriptors[next_i].res_count);
 746		/*
 747		 * If the next descriptor is still empty, we must stop at this
 748		 * descriptor.
 749		 */
 750		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 751			/*
 752			 * The exception is when the DMA data for one packet is
 753			 * split over three buffers; in this case, the middle
 754			 * buffer's descriptor might be never updated by the
 755			 * controller and look still empty, and we have to peek
 756			 * at the third one.
 757			 */
 758			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 759				next_i = ar_next_buffer_index(next_i);
 760				rmb();
 761				next_res_count = ACCESS_ONCE(
 762					ctx->descriptors[next_i].res_count);
 763				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 764					goto next_buffer_is_active;
 765			}
 766
 767			break;
 768		}
 769
 770next_buffer_is_active:
 771		i = next_i;
 772		res_count = next_res_count;
 773	}
 774
 775	rmb(); /* read res_count before the DMA data */
 776
 777	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 778	if (*buffer_offset > PAGE_SIZE) {
 779		*buffer_offset = 0;
 780		ar_context_abort(ctx, "corrupted descriptor");
 781	}
 782
 783	return i;
 784}
 785
 786static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 787				    unsigned int end_buffer_index,
 788				    unsigned int end_buffer_offset)
 789{
 790	unsigned int i;
 791
 792	i = ar_first_buffer_index(ctx);
 793	while (i != end_buffer_index) {
 794		dma_sync_single_for_cpu(ctx->ohci->card.device,
 795					ar_buffer_bus(ctx, i),
 796					PAGE_SIZE, DMA_FROM_DEVICE);
 797		i = ar_next_buffer_index(i);
 798	}
 799	if (end_buffer_offset > 0)
 800		dma_sync_single_for_cpu(ctx->ohci->card.device,
 801					ar_buffer_bus(ctx, i),
 802					end_buffer_offset, DMA_FROM_DEVICE);
 803}
 804
 805#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 806#define cond_le32_to_cpu(v) \
 807	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 808#else
 809#define cond_le32_to_cpu(v) le32_to_cpu(v)
 810#endif
 811
 812static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 813{
 814	struct fw_ohci *ohci = ctx->ohci;
 815	struct fw_packet p;
 816	u32 status, length, tcode;
 817	int evt;
 818
 819	p.header[0] = cond_le32_to_cpu(buffer[0]);
 820	p.header[1] = cond_le32_to_cpu(buffer[1]);
 821	p.header[2] = cond_le32_to_cpu(buffer[2]);
 822
 823	tcode = (p.header[0] >> 4) & 0x0f;
 824	switch (tcode) {
 825	case TCODE_WRITE_QUADLET_REQUEST:
 826	case TCODE_READ_QUADLET_RESPONSE:
 827		p.header[3] = (__force __u32) buffer[3];
 828		p.header_length = 16;
 829		p.payload_length = 0;
 830		break;
 831
 832	case TCODE_READ_BLOCK_REQUEST :
 833		p.header[3] = cond_le32_to_cpu(buffer[3]);
 834		p.header_length = 16;
 835		p.payload_length = 0;
 836		break;
 837
 838	case TCODE_WRITE_BLOCK_REQUEST:
 839	case TCODE_READ_BLOCK_RESPONSE:
 840	case TCODE_LOCK_REQUEST:
 841	case TCODE_LOCK_RESPONSE:
 842		p.header[3] = cond_le32_to_cpu(buffer[3]);
 843		p.header_length = 16;
 844		p.payload_length = p.header[3] >> 16;
 845		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 846			ar_context_abort(ctx, "invalid packet length");
 847			return NULL;
 848		}
 849		break;
 850
 851	case TCODE_WRITE_RESPONSE:
 852	case TCODE_READ_QUADLET_REQUEST:
 853	case OHCI_TCODE_PHY_PACKET:
 854		p.header_length = 12;
 855		p.payload_length = 0;
 856		break;
 857
 858	default:
 859		ar_context_abort(ctx, "invalid tcode");
 860		return NULL;
 861	}
 862
 863	p.payload = (void *) buffer + p.header_length;
 864
 865	/* FIXME: What to do about evt_* errors? */
 866	length = (p.header_length + p.payload_length + 3) / 4;
 867	status = cond_le32_to_cpu(buffer[length]);
 868	evt    = (status >> 16) & 0x1f;
 869
 870	p.ack        = evt - 16;
 871	p.speed      = (status >> 21) & 0x7;
 872	p.timestamp  = status & 0xffff;
 873	p.generation = ohci->request_generation;
 874
 875	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 876
 877	/*
 878	 * Several controllers, notably from NEC and VIA, forget to
 879	 * write ack_complete status at PHY packet reception.
 880	 */
 881	if (evt == OHCI1394_evt_no_status &&
 882	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 883		p.ack = ACK_COMPLETE;
 884
 885	/*
 886	 * The OHCI bus reset handler synthesizes a PHY packet with
 887	 * the new generation number when a bus reset happens (see
 888	 * section 8.4.2.3).  This helps us determine when a request
 889	 * was received and make sure we send the response in the same
 890	 * generation.  We only need this for requests; for responses
 891	 * we use the unique tlabel for finding the matching
 892	 * request.
 893	 *
 894	 * Alas some chips sometimes emit bus reset packets with a
 895	 * wrong generation.  We set the correct generation for these
 896	 * at a slightly incorrect time (in bus_reset_work).
 897	 */
 898	if (evt == OHCI1394_evt_bus_reset) {
 899		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 900			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 901	} else if (ctx == &ohci->ar_request_ctx) {
 902		fw_core_handle_request(&ohci->card, &p);
 903	} else {
 904		fw_core_handle_response(&ohci->card, &p);
 905	}
 906
 907	return buffer + length + 1;
 908}
 909
 910static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 911{
 912	void *next;
 913
 914	while (p < end) {
 915		next = handle_ar_packet(ctx, p);
 916		if (!next)
 917			return p;
 918		p = next;
 919	}
 920
 921	return p;
 922}
 923
 924static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 925{
 926	unsigned int i;
 927
 928	i = ar_first_buffer_index(ctx);
 929	while (i != end_buffer) {
 930		dma_sync_single_for_device(ctx->ohci->card.device,
 931					   ar_buffer_bus(ctx, i),
 932					   PAGE_SIZE, DMA_FROM_DEVICE);
 933		ar_context_link_page(ctx, i);
 934		i = ar_next_buffer_index(i);
 935	}
 936}
 937
 938static void ar_context_tasklet(unsigned long data)
 939{
 940	struct ar_context *ctx = (struct ar_context *)data;
 941	unsigned int end_buffer_index, end_buffer_offset;
 942	void *p, *end;
 943
 944	p = ctx->pointer;
 945	if (!p)
 946		return;
 947
 948	end_buffer_index = ar_search_last_active_buffer(ctx,
 949							&end_buffer_offset);
 950	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 951	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 952
 953	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 954		/*
 955		 * The filled part of the overall buffer wraps around; handle
 956		 * all packets up to the buffer end here.  If the last packet
 957		 * wraps around, its tail will be visible after the buffer end
 958		 * because the buffer start pages are mapped there again.
 959		 */
 960		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 961		p = handle_ar_packets(ctx, p, buffer_end);
 962		if (p < buffer_end)
 963			goto error;
 964		/* adjust p to point back into the actual buffer */
 965		p -= AR_BUFFERS * PAGE_SIZE;
 966	}
 967
 968	p = handle_ar_packets(ctx, p, end);
 969	if (p != end) {
 970		if (p > end)
 971			ar_context_abort(ctx, "inconsistent descriptor");
 972		goto error;
 973	}
 974
 975	ctx->pointer = p;
 976	ar_recycle_buffers(ctx, end_buffer_index);
 977
 978	return;
 979
 980error:
 981	ctx->pointer = NULL;
 982}
 983
 984static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 985			   unsigned int descriptors_offset, u32 regs)
 986{
 
 987	unsigned int i;
 988	dma_addr_t dma_addr;
 989	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 990	struct descriptor *d;
 991
 992	ctx->regs        = regs;
 993	ctx->ohci        = ohci;
 994	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 995
 996	for (i = 0; i < AR_BUFFERS; i++) {
 997		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 
 998		if (!ctx->pages[i])
 999			goto out_of_memory;
1000		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1001					0, PAGE_SIZE, DMA_FROM_DEVICE);
1002		if (dma_mapping_error(ohci->card.device, dma_addr)) {
1003			__free_page(ctx->pages[i]);
1004			ctx->pages[i] = NULL;
1005			goto out_of_memory;
1006		}
1007		set_page_private(ctx->pages[i], dma_addr);
 
 
1008	}
1009
1010	for (i = 0; i < AR_BUFFERS; i++)
1011		pages[i]              = ctx->pages[i];
1012	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1013		pages[AR_BUFFERS + i] = ctx->pages[i];
1014	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1015				 -1, PAGE_KERNEL);
1016	if (!ctx->buffer)
1017		goto out_of_memory;
1018
1019	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1020	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1021
1022	for (i = 0; i < AR_BUFFERS; i++) {
1023		d = &ctx->descriptors[i];
1024		d->req_count      = cpu_to_le16(PAGE_SIZE);
1025		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1026						DESCRIPTOR_STATUS |
1027						DESCRIPTOR_BRANCH_ALWAYS);
1028		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1029		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1030			ar_next_buffer_index(i) * sizeof(struct descriptor));
1031	}
1032
1033	return 0;
1034
1035out_of_memory:
1036	ar_context_release(ctx);
1037
1038	return -ENOMEM;
1039}
1040
1041static void ar_context_run(struct ar_context *ctx)
1042{
1043	unsigned int i;
1044
1045	for (i = 0; i < AR_BUFFERS; i++)
1046		ar_context_link_page(ctx, i);
1047
1048	ctx->pointer = ctx->buffer;
1049
1050	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1051	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1052}
1053
1054static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1055{
1056	__le16 branch;
1057
1058	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1059
1060	/* figure out which descriptor the branch address goes in */
1061	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1062		return d;
1063	else
1064		return d + z - 1;
1065}
1066
1067static void context_tasklet(unsigned long data)
1068{
1069	struct context *ctx = (struct context *) data;
1070	struct descriptor *d, *last;
1071	u32 address;
1072	int z;
1073	struct descriptor_buffer *desc;
1074
1075	desc = list_entry(ctx->buffer_list.next,
1076			struct descriptor_buffer, list);
1077	last = ctx->last;
1078	while (last->branch_address != 0) {
1079		struct descriptor_buffer *old_desc = desc;
1080		address = le32_to_cpu(last->branch_address);
1081		z = address & 0xf;
1082		address &= ~0xf;
1083		ctx->current_bus = address;
1084
1085		/* If the branch address points to a buffer outside of the
1086		 * current buffer, advance to the next buffer. */
1087		if (address < desc->buffer_bus ||
1088				address >= desc->buffer_bus + desc->used)
1089			desc = list_entry(desc->list.next,
1090					struct descriptor_buffer, list);
1091		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1092		last = find_branch_descriptor(d, z);
1093
1094		if (!ctx->callback(ctx, d, last))
1095			break;
1096
1097		if (old_desc != desc) {
1098			/* If we've advanced to the next buffer, move the
1099			 * previous buffer to the free list. */
1100			unsigned long flags;
1101			old_desc->used = 0;
1102			spin_lock_irqsave(&ctx->ohci->lock, flags);
1103			list_move_tail(&old_desc->list, &ctx->buffer_list);
1104			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1105		}
1106		ctx->last = last;
1107	}
1108}
1109
1110/*
1111 * Allocate a new buffer and add it to the list of free buffers for this
1112 * context.  Must be called with ohci->lock held.
1113 */
1114static int context_add_buffer(struct context *ctx)
1115{
1116	struct descriptor_buffer *desc;
1117	dma_addr_t uninitialized_var(bus_addr);
1118	int offset;
1119
1120	/*
1121	 * 16MB of descriptors should be far more than enough for any DMA
1122	 * program.  This will catch run-away userspace or DoS attacks.
1123	 */
1124	if (ctx->total_allocation >= 16*1024*1024)
1125		return -ENOMEM;
1126
1127	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1128			&bus_addr, GFP_ATOMIC);
1129	if (!desc)
1130		return -ENOMEM;
1131
1132	offset = (void *)&desc->buffer - (void *)desc;
1133	desc->buffer_size = PAGE_SIZE - offset;
 
 
 
 
 
 
1134	desc->buffer_bus = bus_addr + offset;
1135	desc->used = 0;
1136
1137	list_add_tail(&desc->list, &ctx->buffer_list);
1138	ctx->total_allocation += PAGE_SIZE;
1139
1140	return 0;
1141}
1142
1143static int context_init(struct context *ctx, struct fw_ohci *ohci,
1144			u32 regs, descriptor_callback_t callback)
1145{
1146	ctx->ohci = ohci;
1147	ctx->regs = regs;
1148	ctx->total_allocation = 0;
1149
1150	INIT_LIST_HEAD(&ctx->buffer_list);
1151	if (context_add_buffer(ctx) < 0)
1152		return -ENOMEM;
1153
1154	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1155			struct descriptor_buffer, list);
1156
1157	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1158	ctx->callback = callback;
1159
1160	/*
1161	 * We put a dummy descriptor in the buffer that has a NULL
1162	 * branch address and looks like it's been sent.  That way we
1163	 * have a descriptor to append DMA programs to.
1164	 */
1165	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1166	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1167	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1168	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1169	ctx->last = ctx->buffer_tail->buffer;
1170	ctx->prev = ctx->buffer_tail->buffer;
1171	ctx->prev_z = 1;
1172
1173	return 0;
1174}
1175
1176static void context_release(struct context *ctx)
1177{
1178	struct fw_card *card = &ctx->ohci->card;
1179	struct descriptor_buffer *desc, *tmp;
1180
1181	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1182		dma_free_coherent(card->device, PAGE_SIZE, desc,
1183			desc->buffer_bus -
1184			((void *)&desc->buffer - (void *)desc));
1185}
1186
1187/* Must be called with ohci->lock held */
1188static struct descriptor *context_get_descriptors(struct context *ctx,
1189						  int z, dma_addr_t *d_bus)
1190{
1191	struct descriptor *d = NULL;
1192	struct descriptor_buffer *desc = ctx->buffer_tail;
1193
1194	if (z * sizeof(*d) > desc->buffer_size)
1195		return NULL;
1196
1197	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1198		/* No room for the descriptor in this buffer, so advance to the
1199		 * next one. */
1200
1201		if (desc->list.next == &ctx->buffer_list) {
1202			/* If there is no free buffer next in the list,
1203			 * allocate one. */
1204			if (context_add_buffer(ctx) < 0)
1205				return NULL;
1206		}
1207		desc = list_entry(desc->list.next,
1208				struct descriptor_buffer, list);
1209		ctx->buffer_tail = desc;
1210	}
1211
1212	d = desc->buffer + desc->used / sizeof(*d);
1213	memset(d, 0, z * sizeof(*d));
1214	*d_bus = desc->buffer_bus + desc->used;
1215
1216	return d;
1217}
1218
1219static void context_run(struct context *ctx, u32 extra)
1220{
1221	struct fw_ohci *ohci = ctx->ohci;
1222
1223	reg_write(ohci, COMMAND_PTR(ctx->regs),
1224		  le32_to_cpu(ctx->last->branch_address));
1225	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1226	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1227	ctx->running = true;
1228	flush_writes(ohci);
1229}
1230
1231static void context_append(struct context *ctx,
1232			   struct descriptor *d, int z, int extra)
1233{
1234	dma_addr_t d_bus;
1235	struct descriptor_buffer *desc = ctx->buffer_tail;
1236	struct descriptor *d_branch;
1237
1238	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1239
1240	desc->used += (z + extra) * sizeof(*d);
1241
1242	wmb(); /* finish init of new descriptors before branch_address update */
1243
1244	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1245	d_branch->branch_address = cpu_to_le32(d_bus | z);
1246
1247	/*
1248	 * VT6306 incorrectly checks only the single descriptor at the
1249	 * CommandPtr when the wake bit is written, so if it's a
1250	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1251	 * the branch address in the first descriptor.
1252	 *
1253	 * Not doing this for transmit contexts since not sure how it interacts
1254	 * with skip addresses.
1255	 */
1256	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1257	    d_branch != ctx->prev &&
1258	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1259	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1260		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1261	}
1262
1263	ctx->prev = d;
1264	ctx->prev_z = z;
1265}
1266
1267static void context_stop(struct context *ctx)
1268{
1269	struct fw_ohci *ohci = ctx->ohci;
1270	u32 reg;
1271	int i;
1272
1273	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1274	ctx->running = false;
1275
1276	for (i = 0; i < 1000; i++) {
1277		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1278		if ((reg & CONTEXT_ACTIVE) == 0)
1279			return;
1280
1281		if (i)
1282			udelay(10);
1283	}
1284	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1285}
1286
1287struct driver_data {
1288	u8 inline_data[8];
1289	struct fw_packet *packet;
1290};
1291
1292/*
1293 * This function apppends a packet to the DMA queue for transmission.
1294 * Must always be called with the ochi->lock held to ensure proper
1295 * generation handling and locking around packet queue manipulation.
1296 */
1297static int at_context_queue_packet(struct context *ctx,
1298				   struct fw_packet *packet)
1299{
1300	struct fw_ohci *ohci = ctx->ohci;
1301	dma_addr_t d_bus, uninitialized_var(payload_bus);
1302	struct driver_data *driver_data;
1303	struct descriptor *d, *last;
1304	__le32 *header;
1305	int z, tcode;
1306
1307	d = context_get_descriptors(ctx, 4, &d_bus);
1308	if (d == NULL) {
1309		packet->ack = RCODE_SEND_ERROR;
1310		return -1;
1311	}
1312
1313	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1314	d[0].res_count = cpu_to_le16(packet->timestamp);
1315
1316	/*
1317	 * The DMA format for asynchronous link packets is different
1318	 * from the IEEE1394 layout, so shift the fields around
1319	 * accordingly.
1320	 */
1321
1322	tcode = (packet->header[0] >> 4) & 0x0f;
1323	header = (__le32 *) &d[1];
1324	switch (tcode) {
1325	case TCODE_WRITE_QUADLET_REQUEST:
1326	case TCODE_WRITE_BLOCK_REQUEST:
1327	case TCODE_WRITE_RESPONSE:
1328	case TCODE_READ_QUADLET_REQUEST:
1329	case TCODE_READ_BLOCK_REQUEST:
1330	case TCODE_READ_QUADLET_RESPONSE:
1331	case TCODE_READ_BLOCK_RESPONSE:
1332	case TCODE_LOCK_REQUEST:
1333	case TCODE_LOCK_RESPONSE:
1334		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1335					(packet->speed << 16));
1336		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1337					(packet->header[0] & 0xffff0000));
1338		header[2] = cpu_to_le32(packet->header[2]);
1339
1340		if (TCODE_IS_BLOCK_PACKET(tcode))
1341			header[3] = cpu_to_le32(packet->header[3]);
1342		else
1343			header[3] = (__force __le32) packet->header[3];
1344
1345		d[0].req_count = cpu_to_le16(packet->header_length);
1346		break;
1347
1348	case TCODE_LINK_INTERNAL:
1349		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1350					(packet->speed << 16));
1351		header[1] = cpu_to_le32(packet->header[1]);
1352		header[2] = cpu_to_le32(packet->header[2]);
1353		d[0].req_count = cpu_to_le16(12);
1354
1355		if (is_ping_packet(&packet->header[1]))
1356			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1357		break;
1358
1359	case TCODE_STREAM_DATA:
1360		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1361					(packet->speed << 16));
1362		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1363		d[0].req_count = cpu_to_le16(8);
1364		break;
1365
1366	default:
1367		/* BUG(); */
1368		packet->ack = RCODE_SEND_ERROR;
1369		return -1;
1370	}
1371
1372	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1373	driver_data = (struct driver_data *) &d[3];
1374	driver_data->packet = packet;
1375	packet->driver_data = driver_data;
1376
1377	if (packet->payload_length > 0) {
1378		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1379			payload_bus = dma_map_single(ohci->card.device,
1380						     packet->payload,
1381						     packet->payload_length,
1382						     DMA_TO_DEVICE);
1383			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1384				packet->ack = RCODE_SEND_ERROR;
1385				return -1;
1386			}
1387			packet->payload_bus	= payload_bus;
1388			packet->payload_mapped	= true;
1389		} else {
1390			memcpy(driver_data->inline_data, packet->payload,
1391			       packet->payload_length);
1392			payload_bus = d_bus + 3 * sizeof(*d);
1393		}
1394
1395		d[2].req_count    = cpu_to_le16(packet->payload_length);
1396		d[2].data_address = cpu_to_le32(payload_bus);
1397		last = &d[2];
1398		z = 3;
1399	} else {
1400		last = &d[0];
1401		z = 2;
1402	}
1403
1404	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1405				     DESCRIPTOR_IRQ_ALWAYS |
1406				     DESCRIPTOR_BRANCH_ALWAYS);
1407
1408	/* FIXME: Document how the locking works. */
1409	if (ohci->generation != packet->generation) {
1410		if (packet->payload_mapped)
1411			dma_unmap_single(ohci->card.device, payload_bus,
1412					 packet->payload_length, DMA_TO_DEVICE);
1413		packet->ack = RCODE_GENERATION;
1414		return -1;
1415	}
1416
1417	context_append(ctx, d, z, 4 - z);
1418
1419	if (ctx->running)
1420		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1421	else
1422		context_run(ctx, 0);
1423
1424	return 0;
1425}
1426
1427static void at_context_flush(struct context *ctx)
1428{
1429	tasklet_disable(&ctx->tasklet);
1430
1431	ctx->flushing = true;
1432	context_tasklet((unsigned long)ctx);
1433	ctx->flushing = false;
1434
1435	tasklet_enable(&ctx->tasklet);
1436}
1437
1438static int handle_at_packet(struct context *context,
1439			    struct descriptor *d,
1440			    struct descriptor *last)
1441{
1442	struct driver_data *driver_data;
1443	struct fw_packet *packet;
1444	struct fw_ohci *ohci = context->ohci;
1445	int evt;
1446
1447	if (last->transfer_status == 0 && !context->flushing)
1448		/* This descriptor isn't done yet, stop iteration. */
1449		return 0;
1450
1451	driver_data = (struct driver_data *) &d[3];
1452	packet = driver_data->packet;
1453	if (packet == NULL)
1454		/* This packet was cancelled, just continue. */
1455		return 1;
1456
1457	if (packet->payload_mapped)
1458		dma_unmap_single(ohci->card.device, packet->payload_bus,
1459				 packet->payload_length, DMA_TO_DEVICE);
1460
1461	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1462	packet->timestamp = le16_to_cpu(last->res_count);
1463
1464	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1465
1466	switch (evt) {
1467	case OHCI1394_evt_timeout:
1468		/* Async response transmit timed out. */
1469		packet->ack = RCODE_CANCELLED;
1470		break;
1471
1472	case OHCI1394_evt_flushed:
1473		/*
1474		 * The packet was flushed should give same error as
1475		 * when we try to use a stale generation count.
1476		 */
1477		packet->ack = RCODE_GENERATION;
1478		break;
1479
1480	case OHCI1394_evt_missing_ack:
1481		if (context->flushing)
1482			packet->ack = RCODE_GENERATION;
1483		else {
1484			/*
1485			 * Using a valid (current) generation count, but the
1486			 * node is not on the bus or not sending acks.
1487			 */
1488			packet->ack = RCODE_NO_ACK;
1489		}
1490		break;
1491
1492	case ACK_COMPLETE + 0x10:
1493	case ACK_PENDING + 0x10:
1494	case ACK_BUSY_X + 0x10:
1495	case ACK_BUSY_A + 0x10:
1496	case ACK_BUSY_B + 0x10:
1497	case ACK_DATA_ERROR + 0x10:
1498	case ACK_TYPE_ERROR + 0x10:
1499		packet->ack = evt - 0x10;
1500		break;
1501
1502	case OHCI1394_evt_no_status:
1503		if (context->flushing) {
1504			packet->ack = RCODE_GENERATION;
1505			break;
1506		}
1507		/* fall through */
1508
1509	default:
1510		packet->ack = RCODE_SEND_ERROR;
1511		break;
1512	}
1513
1514	packet->callback(packet, &ohci->card, packet->ack);
1515
1516	return 1;
1517}
1518
1519#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1520#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1521#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1522#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1523#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1524
1525static void handle_local_rom(struct fw_ohci *ohci,
1526			     struct fw_packet *packet, u32 csr)
1527{
1528	struct fw_packet response;
1529	int tcode, length, i;
1530
1531	tcode = HEADER_GET_TCODE(packet->header[0]);
1532	if (TCODE_IS_BLOCK_PACKET(tcode))
1533		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1534	else
1535		length = 4;
1536
1537	i = csr - CSR_CONFIG_ROM;
1538	if (i + length > CONFIG_ROM_SIZE) {
1539		fw_fill_response(&response, packet->header,
1540				 RCODE_ADDRESS_ERROR, NULL, 0);
1541	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1542		fw_fill_response(&response, packet->header,
1543				 RCODE_TYPE_ERROR, NULL, 0);
1544	} else {
1545		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1546				 (void *) ohci->config_rom + i, length);
1547	}
1548
1549	fw_core_handle_response(&ohci->card, &response);
1550}
1551
1552static void handle_local_lock(struct fw_ohci *ohci,
1553			      struct fw_packet *packet, u32 csr)
1554{
1555	struct fw_packet response;
1556	int tcode, length, ext_tcode, sel, try;
1557	__be32 *payload, lock_old;
1558	u32 lock_arg, lock_data;
1559
1560	tcode = HEADER_GET_TCODE(packet->header[0]);
1561	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1562	payload = packet->payload;
1563	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1564
1565	if (tcode == TCODE_LOCK_REQUEST &&
1566	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1567		lock_arg = be32_to_cpu(payload[0]);
1568		lock_data = be32_to_cpu(payload[1]);
1569	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1570		lock_arg = 0;
1571		lock_data = 0;
1572	} else {
1573		fw_fill_response(&response, packet->header,
1574				 RCODE_TYPE_ERROR, NULL, 0);
1575		goto out;
1576	}
1577
1578	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1579	reg_write(ohci, OHCI1394_CSRData, lock_data);
1580	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1581	reg_write(ohci, OHCI1394_CSRControl, sel);
1582
1583	for (try = 0; try < 20; try++)
1584		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1585			lock_old = cpu_to_be32(reg_read(ohci,
1586							OHCI1394_CSRData));
1587			fw_fill_response(&response, packet->header,
1588					 RCODE_COMPLETE,
1589					 &lock_old, sizeof(lock_old));
1590			goto out;
1591		}
1592
1593	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1594	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1595
1596 out:
1597	fw_core_handle_response(&ohci->card, &response);
1598}
1599
1600static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1601{
1602	u64 offset, csr;
1603
1604	if (ctx == &ctx->ohci->at_request_ctx) {
1605		packet->ack = ACK_PENDING;
1606		packet->callback(packet, &ctx->ohci->card, packet->ack);
1607	}
1608
1609	offset =
1610		((unsigned long long)
1611		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1612		packet->header[2];
1613	csr = offset - CSR_REGISTER_BASE;
1614
1615	/* Handle config rom reads. */
1616	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1617		handle_local_rom(ctx->ohci, packet, csr);
1618	else switch (csr) {
1619	case CSR_BUS_MANAGER_ID:
1620	case CSR_BANDWIDTH_AVAILABLE:
1621	case CSR_CHANNELS_AVAILABLE_HI:
1622	case CSR_CHANNELS_AVAILABLE_LO:
1623		handle_local_lock(ctx->ohci, packet, csr);
1624		break;
1625	default:
1626		if (ctx == &ctx->ohci->at_request_ctx)
1627			fw_core_handle_request(&ctx->ohci->card, packet);
1628		else
1629			fw_core_handle_response(&ctx->ohci->card, packet);
1630		break;
1631	}
1632
1633	if (ctx == &ctx->ohci->at_response_ctx) {
1634		packet->ack = ACK_COMPLETE;
1635		packet->callback(packet, &ctx->ohci->card, packet->ack);
1636	}
1637}
1638
1639static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1640{
1641	unsigned long flags;
1642	int ret;
1643
1644	spin_lock_irqsave(&ctx->ohci->lock, flags);
1645
1646	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1647	    ctx->ohci->generation == packet->generation) {
1648		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1649		handle_local_request(ctx, packet);
1650		return;
1651	}
1652
1653	ret = at_context_queue_packet(ctx, packet);
1654	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1655
1656	if (ret < 0)
1657		packet->callback(packet, &ctx->ohci->card, packet->ack);
1658
1659}
1660
1661static void detect_dead_context(struct fw_ohci *ohci,
1662				const char *name, unsigned int regs)
1663{
1664	u32 ctl;
1665
1666	ctl = reg_read(ohci, CONTROL_SET(regs));
1667	if (ctl & CONTEXT_DEAD)
1668		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1669			name, evts[ctl & 0x1f]);
1670}
1671
1672static void handle_dead_contexts(struct fw_ohci *ohci)
1673{
1674	unsigned int i;
1675	char name[8];
1676
1677	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1678	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1679	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1680	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1681	for (i = 0; i < 32; ++i) {
1682		if (!(ohci->it_context_support & (1 << i)))
1683			continue;
1684		sprintf(name, "IT%u", i);
1685		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1686	}
1687	for (i = 0; i < 32; ++i) {
1688		if (!(ohci->ir_context_support & (1 << i)))
1689			continue;
1690		sprintf(name, "IR%u", i);
1691		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1692	}
1693	/* TODO: maybe try to flush and restart the dead contexts */
1694}
1695
1696static u32 cycle_timer_ticks(u32 cycle_timer)
1697{
1698	u32 ticks;
1699
1700	ticks = cycle_timer & 0xfff;
1701	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1702	ticks += (3072 * 8000) * (cycle_timer >> 25);
1703
1704	return ticks;
1705}
1706
1707/*
1708 * Some controllers exhibit one or more of the following bugs when updating the
1709 * iso cycle timer register:
1710 *  - When the lowest six bits are wrapping around to zero, a read that happens
1711 *    at the same time will return garbage in the lowest ten bits.
1712 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1713 *    not incremented for about 60 ns.
1714 *  - Occasionally, the entire register reads zero.
1715 *
1716 * To catch these, we read the register three times and ensure that the
1717 * difference between each two consecutive reads is approximately the same, i.e.
1718 * less than twice the other.  Furthermore, any negative difference indicates an
1719 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1720 * execute, so we have enough precision to compute the ratio of the differences.)
1721 */
1722static u32 get_cycle_time(struct fw_ohci *ohci)
1723{
1724	u32 c0, c1, c2;
1725	u32 t0, t1, t2;
1726	s32 diff01, diff12;
1727	int i;
1728
1729	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730
1731	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1732		i = 0;
1733		c1 = c2;
1734		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1735		do {
1736			c0 = c1;
1737			c1 = c2;
1738			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1739			t0 = cycle_timer_ticks(c0);
1740			t1 = cycle_timer_ticks(c1);
1741			t2 = cycle_timer_ticks(c2);
1742			diff01 = t1 - t0;
1743			diff12 = t2 - t1;
1744		} while ((diff01 <= 0 || diff12 <= 0 ||
1745			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1746			 && i++ < 20);
1747	}
1748
1749	return c2;
1750}
1751
1752/*
1753 * This function has to be called at least every 64 seconds.  The bus_time
1754 * field stores not only the upper 25 bits of the BUS_TIME register but also
1755 * the most significant bit of the cycle timer in bit 6 so that we can detect
1756 * changes in this bit.
1757 */
1758static u32 update_bus_time(struct fw_ohci *ohci)
1759{
1760	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1761
1762	if (unlikely(!ohci->bus_time_running)) {
1763		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1764		ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1765		                 (cycle_time_seconds & 0x40);
1766		ohci->bus_time_running = true;
1767	}
1768
1769	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1770		ohci->bus_time += 0x40;
1771
1772	return ohci->bus_time | cycle_time_seconds;
1773}
1774
1775static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1776{
1777	int reg;
1778
1779	mutex_lock(&ohci->phy_reg_mutex);
1780	reg = write_phy_reg(ohci, 7, port_index);
1781	if (reg >= 0)
1782		reg = read_phy_reg(ohci, 8);
1783	mutex_unlock(&ohci->phy_reg_mutex);
1784	if (reg < 0)
1785		return reg;
1786
1787	switch (reg & 0x0f) {
1788	case 0x06:
1789		return 2;	/* is child node (connected to parent node) */
1790	case 0x0e:
1791		return 3;	/* is parent node (connected to child node) */
1792	}
1793	return 1;		/* not connected */
1794}
1795
1796static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1797	int self_id_count)
1798{
1799	int i;
1800	u32 entry;
1801
1802	for (i = 0; i < self_id_count; i++) {
1803		entry = ohci->self_id_buffer[i];
1804		if ((self_id & 0xff000000) == (entry & 0xff000000))
1805			return -1;
1806		if ((self_id & 0xff000000) < (entry & 0xff000000))
1807			return i;
1808	}
1809	return i;
1810}
1811
1812static int initiated_reset(struct fw_ohci *ohci)
1813{
1814	int reg;
1815	int ret = 0;
1816
1817	mutex_lock(&ohci->phy_reg_mutex);
1818	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1819	if (reg >= 0) {
1820		reg = read_phy_reg(ohci, 8);
1821		reg |= 0x40;
1822		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1823		if (reg >= 0) {
1824			reg = read_phy_reg(ohci, 12); /* read register 12 */
1825			if (reg >= 0) {
1826				if ((reg & 0x08) == 0x08) {
1827					/* bit 3 indicates "initiated reset" */
1828					ret = 0x2;
1829				}
1830			}
1831		}
1832	}
1833	mutex_unlock(&ohci->phy_reg_mutex);
1834	return ret;
1835}
1836
1837/*
1838 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1839 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1840 * Construct the selfID from phy register contents.
1841 */
1842static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1843{
1844	int reg, i, pos, status;
1845	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1846	u32 self_id = 0x8040c800;
1847
1848	reg = reg_read(ohci, OHCI1394_NodeID);
1849	if (!(reg & OHCI1394_NodeID_idValid)) {
1850		ohci_notice(ohci,
1851			    "node ID not valid, new bus reset in progress\n");
1852		return -EBUSY;
1853	}
1854	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1855
1856	reg = ohci_read_phy_reg(&ohci->card, 4);
1857	if (reg < 0)
1858		return reg;
1859	self_id |= ((reg & 0x07) << 8); /* power class */
1860
1861	reg = ohci_read_phy_reg(&ohci->card, 1);
1862	if (reg < 0)
1863		return reg;
1864	self_id |= ((reg & 0x3f) << 16); /* gap count */
1865
1866	for (i = 0; i < 3; i++) {
1867		status = get_status_for_port(ohci, i);
1868		if (status < 0)
1869			return status;
1870		self_id |= ((status & 0x3) << (6 - (i * 2)));
1871	}
1872
1873	self_id |= initiated_reset(ohci);
1874
1875	pos = get_self_id_pos(ohci, self_id, self_id_count);
1876	if (pos >= 0) {
1877		memmove(&(ohci->self_id_buffer[pos+1]),
1878			&(ohci->self_id_buffer[pos]),
1879			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1880		ohci->self_id_buffer[pos] = self_id;
1881		self_id_count++;
1882	}
1883	return self_id_count;
1884}
1885
1886static void bus_reset_work(struct work_struct *work)
1887{
1888	struct fw_ohci *ohci =
1889		container_of(work, struct fw_ohci, bus_reset_work);
1890	int self_id_count, generation, new_generation, i, j;
1891	u32 reg;
1892	void *free_rom = NULL;
1893	dma_addr_t free_rom_bus = 0;
1894	bool is_new_root;
1895
1896	reg = reg_read(ohci, OHCI1394_NodeID);
1897	if (!(reg & OHCI1394_NodeID_idValid)) {
1898		ohci_notice(ohci,
1899			    "node ID not valid, new bus reset in progress\n");
1900		return;
1901	}
1902	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1903		ohci_notice(ohci, "malconfigured bus\n");
1904		return;
1905	}
1906	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1907			       OHCI1394_NodeID_nodeNumber);
1908
1909	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1910	if (!(ohci->is_root && is_new_root))
1911		reg_write(ohci, OHCI1394_LinkControlSet,
1912			  OHCI1394_LinkControl_cycleMaster);
1913	ohci->is_root = is_new_root;
1914
1915	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1916	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1917		ohci_notice(ohci, "self ID receive error\n");
1918		return;
1919	}
1920	/*
1921	 * The count in the SelfIDCount register is the number of
1922	 * bytes in the self ID receive buffer.  Since we also receive
1923	 * the inverted quadlets and a header quadlet, we shift one
1924	 * bit extra to get the actual number of self IDs.
1925	 */
1926	self_id_count = (reg >> 3) & 0xff;
1927
1928	if (self_id_count > 252) {
1929		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1930		return;
1931	}
1932
1933	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1934	rmb();
1935
1936	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1937		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1938		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1939
1940		if (id != ~id2) {
1941			/*
1942			 * If the invalid data looks like a cycle start packet,
1943			 * it's likely to be the result of the cycle master
1944			 * having a wrong gap count.  In this case, the self IDs
1945			 * so far are valid and should be processed so that the
1946			 * bus manager can then correct the gap count.
1947			 */
1948			if (id == 0xffff008f) {
1949				ohci_notice(ohci, "ignoring spurious self IDs\n");
1950				self_id_count = j;
1951				break;
1952			}
1953
1954			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1955				    j, self_id_count, id, id2);
1956			return;
1957		}
1958		ohci->self_id_buffer[j] = id;
1959	}
1960
1961	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1962		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1963		if (self_id_count < 0) {
1964			ohci_notice(ohci,
1965				    "could not construct local self ID\n");
1966			return;
1967		}
1968	}
1969
1970	if (self_id_count == 0) {
1971		ohci_notice(ohci, "no self IDs\n");
1972		return;
1973	}
1974	rmb();
1975
1976	/*
1977	 * Check the consistency of the self IDs we just read.  The
1978	 * problem we face is that a new bus reset can start while we
1979	 * read out the self IDs from the DMA buffer. If this happens,
1980	 * the DMA buffer will be overwritten with new self IDs and we
1981	 * will read out inconsistent data.  The OHCI specification
1982	 * (section 11.2) recommends a technique similar to
1983	 * linux/seqlock.h, where we remember the generation of the
1984	 * self IDs in the buffer before reading them out and compare
1985	 * it to the current generation after reading them out.  If
1986	 * the two generations match we know we have a consistent set
1987	 * of self IDs.
1988	 */
1989
1990	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1991	if (new_generation != generation) {
1992		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1993		return;
1994	}
1995
1996	/* FIXME: Document how the locking works. */
1997	spin_lock_irq(&ohci->lock);
1998
1999	ohci->generation = -1; /* prevent AT packet queueing */
2000	context_stop(&ohci->at_request_ctx);
2001	context_stop(&ohci->at_response_ctx);
2002
2003	spin_unlock_irq(&ohci->lock);
2004
2005	/*
2006	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2007	 * packets in the AT queues and software needs to drain them.
2008	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2009	 */
2010	at_context_flush(&ohci->at_request_ctx);
2011	at_context_flush(&ohci->at_response_ctx);
2012
2013	spin_lock_irq(&ohci->lock);
2014
2015	ohci->generation = generation;
2016	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2017
2018	if (ohci->quirks & QUIRK_RESET_PACKET)
2019		ohci->request_generation = generation;
2020
2021	/*
2022	 * This next bit is unrelated to the AT context stuff but we
2023	 * have to do it under the spinlock also.  If a new config rom
2024	 * was set up before this reset, the old one is now no longer
2025	 * in use and we can free it. Update the config rom pointers
2026	 * to point to the current config rom and clear the
2027	 * next_config_rom pointer so a new update can take place.
2028	 */
2029
2030	if (ohci->next_config_rom != NULL) {
2031		if (ohci->next_config_rom != ohci->config_rom) {
2032			free_rom      = ohci->config_rom;
2033			free_rom_bus  = ohci->config_rom_bus;
2034		}
2035		ohci->config_rom      = ohci->next_config_rom;
2036		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2037		ohci->next_config_rom = NULL;
2038
2039		/*
2040		 * Restore config_rom image and manually update
2041		 * config_rom registers.  Writing the header quadlet
2042		 * will indicate that the config rom is ready, so we
2043		 * do that last.
2044		 */
2045		reg_write(ohci, OHCI1394_BusOptions,
2046			  be32_to_cpu(ohci->config_rom[2]));
2047		ohci->config_rom[0] = ohci->next_header;
2048		reg_write(ohci, OHCI1394_ConfigROMhdr,
2049			  be32_to_cpu(ohci->next_header));
2050	}
2051
2052	if (param_remote_dma) {
2053		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2054		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2055	}
2056
2057	spin_unlock_irq(&ohci->lock);
2058
2059	if (free_rom)
2060		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2061				  free_rom, free_rom_bus);
2062
2063	log_selfids(ohci, generation, self_id_count);
2064
2065	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2066				 self_id_count, ohci->self_id_buffer,
2067				 ohci->csr_state_setclear_abdicate);
2068	ohci->csr_state_setclear_abdicate = false;
2069}
2070
2071static irqreturn_t irq_handler(int irq, void *data)
2072{
2073	struct fw_ohci *ohci = data;
2074	u32 event, iso_event;
2075	int i;
2076
2077	event = reg_read(ohci, OHCI1394_IntEventClear);
2078
2079	if (!event || !~event)
2080		return IRQ_NONE;
2081
2082	/*
2083	 * busReset and postedWriteErr must not be cleared yet
2084	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2085	 */
2086	reg_write(ohci, OHCI1394_IntEventClear,
2087		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2088	log_irqs(ohci, event);
2089
2090	if (event & OHCI1394_selfIDComplete)
2091		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2092
2093	if (event & OHCI1394_RQPkt)
2094		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2095
2096	if (event & OHCI1394_RSPkt)
2097		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2098
2099	if (event & OHCI1394_reqTxComplete)
2100		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2101
2102	if (event & OHCI1394_respTxComplete)
2103		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2104
2105	if (event & OHCI1394_isochRx) {
2106		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2107		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2108
2109		while (iso_event) {
2110			i = ffs(iso_event) - 1;
2111			tasklet_schedule(
2112				&ohci->ir_context_list[i].context.tasklet);
2113			iso_event &= ~(1 << i);
2114		}
2115	}
2116
2117	if (event & OHCI1394_isochTx) {
2118		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2119		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2120
2121		while (iso_event) {
2122			i = ffs(iso_event) - 1;
2123			tasklet_schedule(
2124				&ohci->it_context_list[i].context.tasklet);
2125			iso_event &= ~(1 << i);
2126		}
2127	}
2128
2129	if (unlikely(event & OHCI1394_regAccessFail))
2130		ohci_err(ohci, "register access failure\n");
2131
2132	if (unlikely(event & OHCI1394_postedWriteErr)) {
2133		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2134		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2135		reg_write(ohci, OHCI1394_IntEventClear,
2136			  OHCI1394_postedWriteErr);
2137		if (printk_ratelimit())
2138			ohci_err(ohci, "PCI posted write error\n");
2139	}
2140
2141	if (unlikely(event & OHCI1394_cycleTooLong)) {
2142		if (printk_ratelimit())
2143			ohci_notice(ohci, "isochronous cycle too long\n");
2144		reg_write(ohci, OHCI1394_LinkControlSet,
2145			  OHCI1394_LinkControl_cycleMaster);
2146	}
2147
2148	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2149		/*
2150		 * We need to clear this event bit in order to make
2151		 * cycleMatch isochronous I/O work.  In theory we should
2152		 * stop active cycleMatch iso contexts now and restart
2153		 * them at least two cycles later.  (FIXME?)
2154		 */
2155		if (printk_ratelimit())
2156			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2157	}
2158
2159	if (unlikely(event & OHCI1394_unrecoverableError))
2160		handle_dead_contexts(ohci);
2161
2162	if (event & OHCI1394_cycle64Seconds) {
2163		spin_lock(&ohci->lock);
2164		update_bus_time(ohci);
2165		spin_unlock(&ohci->lock);
2166	} else
2167		flush_writes(ohci);
2168
2169	return IRQ_HANDLED;
2170}
2171
2172static int software_reset(struct fw_ohci *ohci)
2173{
2174	u32 val;
2175	int i;
2176
2177	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2178	for (i = 0; i < 500; i++) {
2179		val = reg_read(ohci, OHCI1394_HCControlSet);
2180		if (!~val)
2181			return -ENODEV; /* Card was ejected. */
2182
2183		if (!(val & OHCI1394_HCControl_softReset))
2184			return 0;
2185
2186		msleep(1);
2187	}
2188
2189	return -EBUSY;
2190}
2191
2192static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2193{
2194	size_t size = length * 4;
2195
2196	memcpy(dest, src, size);
2197	if (size < CONFIG_ROM_SIZE)
2198		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2199}
2200
2201static int configure_1394a_enhancements(struct fw_ohci *ohci)
2202{
2203	bool enable_1394a;
2204	int ret, clear, set, offset;
2205
2206	/* Check if the driver should configure link and PHY. */
2207	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2208	      OHCI1394_HCControl_programPhyEnable))
2209		return 0;
2210
2211	/* Paranoia: check whether the PHY supports 1394a, too. */
2212	enable_1394a = false;
2213	ret = read_phy_reg(ohci, 2);
2214	if (ret < 0)
2215		return ret;
2216	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2217		ret = read_paged_phy_reg(ohci, 1, 8);
2218		if (ret < 0)
2219			return ret;
2220		if (ret >= 1)
2221			enable_1394a = true;
2222	}
2223
2224	if (ohci->quirks & QUIRK_NO_1394A)
2225		enable_1394a = false;
2226
2227	/* Configure PHY and link consistently. */
2228	if (enable_1394a) {
2229		clear = 0;
2230		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2231	} else {
2232		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2233		set = 0;
2234	}
2235	ret = update_phy_reg(ohci, 5, clear, set);
2236	if (ret < 0)
2237		return ret;
2238
2239	if (enable_1394a)
2240		offset = OHCI1394_HCControlSet;
2241	else
2242		offset = OHCI1394_HCControlClear;
2243	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2244
2245	/* Clean up: configuration has been taken care of. */
2246	reg_write(ohci, OHCI1394_HCControlClear,
2247		  OHCI1394_HCControl_programPhyEnable);
2248
2249	return 0;
2250}
2251
2252static int probe_tsb41ba3d(struct fw_ohci *ohci)
2253{
2254	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2255	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2256	int reg, i;
2257
2258	reg = read_phy_reg(ohci, 2);
2259	if (reg < 0)
2260		return reg;
2261	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2262		return 0;
2263
2264	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2265		reg = read_paged_phy_reg(ohci, 1, i + 10);
2266		if (reg < 0)
2267			return reg;
2268		if (reg != id[i])
2269			return 0;
2270	}
2271	return 1;
2272}
2273
2274static int ohci_enable(struct fw_card *card,
2275		       const __be32 *config_rom, size_t length)
2276{
2277	struct fw_ohci *ohci = fw_ohci(card);
2278	u32 lps, version, irqs;
2279	int i, ret;
2280
2281	if (software_reset(ohci)) {
 
2282		ohci_err(ohci, "failed to reset ohci card\n");
2283		return -EBUSY;
2284	}
2285
2286	/*
2287	 * Now enable LPS, which we need in order to start accessing
2288	 * most of the registers.  In fact, on some cards (ALI M5251),
2289	 * accessing registers in the SClk domain without LPS enabled
2290	 * will lock up the machine.  Wait 50msec to make sure we have
2291	 * full link enabled.  However, with some cards (well, at least
2292	 * a JMicron PCIe card), we have to try again sometimes.
2293	 *
2294	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2295	 * cannot actually use the phy at that time.  These need tens of
2296	 * millisecods pause between LPS write and first phy access too.
2297	 */
2298
2299	reg_write(ohci, OHCI1394_HCControlSet,
2300		  OHCI1394_HCControl_LPS |
2301		  OHCI1394_HCControl_postedWriteEnable);
2302	flush_writes(ohci);
2303
2304	for (lps = 0, i = 0; !lps && i < 3; i++) {
2305		msleep(50);
2306		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2307		      OHCI1394_HCControl_LPS;
2308	}
2309
2310	if (!lps) {
2311		ohci_err(ohci, "failed to set Link Power Status\n");
2312		return -EIO;
2313	}
2314
2315	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2316		ret = probe_tsb41ba3d(ohci);
2317		if (ret < 0)
2318			return ret;
2319		if (ret)
2320			ohci_notice(ohci, "local TSB41BA3D phy\n");
2321		else
2322			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2323	}
2324
2325	reg_write(ohci, OHCI1394_HCControlClear,
2326		  OHCI1394_HCControl_noByteSwapData);
2327
2328	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2329	reg_write(ohci, OHCI1394_LinkControlSet,
2330		  OHCI1394_LinkControl_cycleTimerEnable |
2331		  OHCI1394_LinkControl_cycleMaster);
2332
2333	reg_write(ohci, OHCI1394_ATRetries,
2334		  OHCI1394_MAX_AT_REQ_RETRIES |
2335		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2336		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2337		  (200 << 16));
2338
2339	ohci->bus_time_running = false;
2340
2341	for (i = 0; i < 32; i++)
2342		if (ohci->ir_context_support & (1 << i))
2343			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2344				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2345
2346	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2347	if (version >= OHCI_VERSION_1_1) {
2348		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2349			  0xfffffffe);
2350		card->broadcast_channel_auto_allocated = true;
2351	}
2352
2353	/* Get implemented bits of the priority arbitration request counter. */
2354	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2355	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2356	reg_write(ohci, OHCI1394_FairnessControl, 0);
2357	card->priority_budget_implemented = ohci->pri_req_max != 0;
2358
2359	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2360	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2361	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2362
2363	ret = configure_1394a_enhancements(ohci);
2364	if (ret < 0)
2365		return ret;
2366
2367	/* Activate link_on bit and contender bit in our self ID packets.*/
2368	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2369	if (ret < 0)
2370		return ret;
2371
2372	/*
2373	 * When the link is not yet enabled, the atomic config rom
2374	 * update mechanism described below in ohci_set_config_rom()
2375	 * is not active.  We have to update ConfigRomHeader and
2376	 * BusOptions manually, and the write to ConfigROMmap takes
2377	 * effect immediately.  We tie this to the enabling of the
2378	 * link, so we have a valid config rom before enabling - the
2379	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2380	 * values before enabling.
2381	 *
2382	 * However, when the ConfigROMmap is written, some controllers
2383	 * always read back quadlets 0 and 2 from the config rom to
2384	 * the ConfigRomHeader and BusOptions registers on bus reset.
2385	 * They shouldn't do that in this initial case where the link
2386	 * isn't enabled.  This means we have to use the same
2387	 * workaround here, setting the bus header to 0 and then write
2388	 * the right values in the bus reset tasklet.
2389	 */
2390
2391	if (config_rom) {
2392		ohci->next_config_rom =
2393			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2394					   &ohci->next_config_rom_bus,
2395					   GFP_KERNEL);
2396		if (ohci->next_config_rom == NULL)
2397			return -ENOMEM;
2398
2399		copy_config_rom(ohci->next_config_rom, config_rom, length);
2400	} else {
2401		/*
2402		 * In the suspend case, config_rom is NULL, which
2403		 * means that we just reuse the old config rom.
2404		 */
2405		ohci->next_config_rom = ohci->config_rom;
2406		ohci->next_config_rom_bus = ohci->config_rom_bus;
2407	}
2408
2409	ohci->next_header = ohci->next_config_rom[0];
2410	ohci->next_config_rom[0] = 0;
2411	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2412	reg_write(ohci, OHCI1394_BusOptions,
2413		  be32_to_cpu(ohci->next_config_rom[2]));
2414	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2415
2416	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2417
2418	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2419		OHCI1394_RQPkt | OHCI1394_RSPkt |
2420		OHCI1394_isochTx | OHCI1394_isochRx |
2421		OHCI1394_postedWriteErr |
2422		OHCI1394_selfIDComplete |
2423		OHCI1394_regAccessFail |
2424		OHCI1394_cycleInconsistent |
2425		OHCI1394_unrecoverableError |
2426		OHCI1394_cycleTooLong |
2427		OHCI1394_masterIntEnable;
2428	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2429		irqs |= OHCI1394_busReset;
2430	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2431
2432	reg_write(ohci, OHCI1394_HCControlSet,
2433		  OHCI1394_HCControl_linkEnable |
2434		  OHCI1394_HCControl_BIBimageValid);
2435
2436	reg_write(ohci, OHCI1394_LinkControlSet,
2437		  OHCI1394_LinkControl_rcvSelfID |
2438		  OHCI1394_LinkControl_rcvPhyPkt);
2439
2440	ar_context_run(&ohci->ar_request_ctx);
2441	ar_context_run(&ohci->ar_response_ctx);
2442
2443	flush_writes(ohci);
2444
2445	/* We are ready to go, reset bus to finish initialization. */
2446	fw_schedule_bus_reset(&ohci->card, false, true);
2447
2448	return 0;
2449}
2450
2451static int ohci_set_config_rom(struct fw_card *card,
2452			       const __be32 *config_rom, size_t length)
2453{
2454	struct fw_ohci *ohci;
2455	__be32 *next_config_rom;
2456	dma_addr_t uninitialized_var(next_config_rom_bus);
2457
2458	ohci = fw_ohci(card);
2459
2460	/*
2461	 * When the OHCI controller is enabled, the config rom update
2462	 * mechanism is a bit tricky, but easy enough to use.  See
2463	 * section 5.5.6 in the OHCI specification.
2464	 *
2465	 * The OHCI controller caches the new config rom address in a
2466	 * shadow register (ConfigROMmapNext) and needs a bus reset
2467	 * for the changes to take place.  When the bus reset is
2468	 * detected, the controller loads the new values for the
2469	 * ConfigRomHeader and BusOptions registers from the specified
2470	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2471	 * shadow register. All automatically and atomically.
2472	 *
2473	 * Now, there's a twist to this story.  The automatic load of
2474	 * ConfigRomHeader and BusOptions doesn't honor the
2475	 * noByteSwapData bit, so with a be32 config rom, the
2476	 * controller will load be32 values in to these registers
2477	 * during the atomic update, even on litte endian
2478	 * architectures.  The workaround we use is to put a 0 in the
2479	 * header quadlet; 0 is endian agnostic and means that the
2480	 * config rom isn't ready yet.  In the bus reset tasklet we
2481	 * then set up the real values for the two registers.
2482	 *
2483	 * We use ohci->lock to avoid racing with the code that sets
2484	 * ohci->next_config_rom to NULL (see bus_reset_work).
2485	 */
2486
2487	next_config_rom =
2488		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2489				   &next_config_rom_bus, GFP_KERNEL);
2490	if (next_config_rom == NULL)
2491		return -ENOMEM;
2492
2493	spin_lock_irq(&ohci->lock);
2494
2495	/*
2496	 * If there is not an already pending config_rom update,
2497	 * push our new allocation into the ohci->next_config_rom
2498	 * and then mark the local variable as null so that we
2499	 * won't deallocate the new buffer.
2500	 *
2501	 * OTOH, if there is a pending config_rom update, just
2502	 * use that buffer with the new config_rom data, and
2503	 * let this routine free the unused DMA allocation.
2504	 */
2505
2506	if (ohci->next_config_rom == NULL) {
2507		ohci->next_config_rom = next_config_rom;
2508		ohci->next_config_rom_bus = next_config_rom_bus;
2509		next_config_rom = NULL;
2510	}
2511
2512	copy_config_rom(ohci->next_config_rom, config_rom, length);
2513
2514	ohci->next_header = config_rom[0];
2515	ohci->next_config_rom[0] = 0;
2516
2517	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2518
2519	spin_unlock_irq(&ohci->lock);
2520
2521	/* If we didn't use the DMA allocation, delete it. */
2522	if (next_config_rom != NULL)
2523		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524				  next_config_rom, next_config_rom_bus);
2525
2526	/*
2527	 * Now initiate a bus reset to have the changes take
2528	 * effect. We clean up the old config rom memory and DMA
2529	 * mappings in the bus reset tasklet, since the OHCI
2530	 * controller could need to access it before the bus reset
2531	 * takes effect.
2532	 */
2533
2534	fw_schedule_bus_reset(&ohci->card, true, true);
2535
2536	return 0;
2537}
2538
2539static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2540{
2541	struct fw_ohci *ohci = fw_ohci(card);
2542
2543	at_context_transmit(&ohci->at_request_ctx, packet);
2544}
2545
2546static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2547{
2548	struct fw_ohci *ohci = fw_ohci(card);
2549
2550	at_context_transmit(&ohci->at_response_ctx, packet);
2551}
2552
2553static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2554{
2555	struct fw_ohci *ohci = fw_ohci(card);
2556	struct context *ctx = &ohci->at_request_ctx;
2557	struct driver_data *driver_data = packet->driver_data;
2558	int ret = -ENOENT;
2559
2560	tasklet_disable(&ctx->tasklet);
2561
2562	if (packet->ack != 0)
2563		goto out;
2564
2565	if (packet->payload_mapped)
2566		dma_unmap_single(ohci->card.device, packet->payload_bus,
2567				 packet->payload_length, DMA_TO_DEVICE);
2568
2569	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2570	driver_data->packet = NULL;
2571	packet->ack = RCODE_CANCELLED;
2572	packet->callback(packet, &ohci->card, packet->ack);
2573	ret = 0;
2574 out:
2575	tasklet_enable(&ctx->tasklet);
2576
2577	return ret;
2578}
2579
2580static int ohci_enable_phys_dma(struct fw_card *card,
2581				int node_id, int generation)
2582{
2583	struct fw_ohci *ohci = fw_ohci(card);
2584	unsigned long flags;
2585	int n, ret = 0;
2586
2587	if (param_remote_dma)
2588		return 0;
2589
2590	/*
2591	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2592	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2593	 */
2594
2595	spin_lock_irqsave(&ohci->lock, flags);
2596
2597	if (ohci->generation != generation) {
2598		ret = -ESTALE;
2599		goto out;
2600	}
2601
2602	/*
2603	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2604	 * enabled for _all_ nodes on remote buses.
2605	 */
2606
2607	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2608	if (n < 32)
2609		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2610	else
2611		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2612
2613	flush_writes(ohci);
2614 out:
2615	spin_unlock_irqrestore(&ohci->lock, flags);
2616
2617	return ret;
2618}
2619
2620static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2621{
2622	struct fw_ohci *ohci = fw_ohci(card);
2623	unsigned long flags;
2624	u32 value;
2625
2626	switch (csr_offset) {
2627	case CSR_STATE_CLEAR:
2628	case CSR_STATE_SET:
2629		if (ohci->is_root &&
2630		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2631		     OHCI1394_LinkControl_cycleMaster))
2632			value = CSR_STATE_BIT_CMSTR;
2633		else
2634			value = 0;
2635		if (ohci->csr_state_setclear_abdicate)
2636			value |= CSR_STATE_BIT_ABDICATE;
2637
2638		return value;
2639
2640	case CSR_NODE_IDS:
2641		return reg_read(ohci, OHCI1394_NodeID) << 16;
2642
2643	case CSR_CYCLE_TIME:
2644		return get_cycle_time(ohci);
2645
2646	case CSR_BUS_TIME:
2647		/*
2648		 * We might be called just after the cycle timer has wrapped
2649		 * around but just before the cycle64Seconds handler, so we
2650		 * better check here, too, if the bus time needs to be updated.
2651		 */
2652		spin_lock_irqsave(&ohci->lock, flags);
2653		value = update_bus_time(ohci);
2654		spin_unlock_irqrestore(&ohci->lock, flags);
2655		return value;
2656
2657	case CSR_BUSY_TIMEOUT:
2658		value = reg_read(ohci, OHCI1394_ATRetries);
2659		return (value >> 4) & 0x0ffff00f;
2660
2661	case CSR_PRIORITY_BUDGET:
2662		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2663			(ohci->pri_req_max << 8);
2664
2665	default:
2666		WARN_ON(1);
2667		return 0;
2668	}
2669}
2670
2671static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2672{
2673	struct fw_ohci *ohci = fw_ohci(card);
2674	unsigned long flags;
2675
2676	switch (csr_offset) {
2677	case CSR_STATE_CLEAR:
2678		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2679			reg_write(ohci, OHCI1394_LinkControlClear,
2680				  OHCI1394_LinkControl_cycleMaster);
2681			flush_writes(ohci);
2682		}
2683		if (value & CSR_STATE_BIT_ABDICATE)
2684			ohci->csr_state_setclear_abdicate = false;
2685		break;
2686
2687	case CSR_STATE_SET:
2688		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2689			reg_write(ohci, OHCI1394_LinkControlSet,
2690				  OHCI1394_LinkControl_cycleMaster);
2691			flush_writes(ohci);
2692		}
2693		if (value & CSR_STATE_BIT_ABDICATE)
2694			ohci->csr_state_setclear_abdicate = true;
2695		break;
2696
2697	case CSR_NODE_IDS:
2698		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2699		flush_writes(ohci);
2700		break;
2701
2702	case CSR_CYCLE_TIME:
2703		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2704		reg_write(ohci, OHCI1394_IntEventSet,
2705			  OHCI1394_cycleInconsistent);
2706		flush_writes(ohci);
2707		break;
2708
2709	case CSR_BUS_TIME:
2710		spin_lock_irqsave(&ohci->lock, flags);
2711		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2712		                 (value & ~0x7f);
2713		spin_unlock_irqrestore(&ohci->lock, flags);
2714		break;
2715
2716	case CSR_BUSY_TIMEOUT:
2717		value = (value & 0xf) | ((value & 0xf) << 4) |
2718			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2719		reg_write(ohci, OHCI1394_ATRetries, value);
2720		flush_writes(ohci);
2721		break;
2722
2723	case CSR_PRIORITY_BUDGET:
2724		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2725		flush_writes(ohci);
2726		break;
2727
2728	default:
2729		WARN_ON(1);
2730		break;
2731	}
2732}
2733
2734static void flush_iso_completions(struct iso_context *ctx)
2735{
2736	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2737			      ctx->header_length, ctx->header,
2738			      ctx->base.callback_data);
2739	ctx->header_length = 0;
2740}
2741
2742static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2743{
2744	u32 *ctx_hdr;
2745
2746	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2747		if (ctx->base.drop_overflow_headers)
2748			return;
2749		flush_iso_completions(ctx);
2750	}
2751
2752	ctx_hdr = ctx->header + ctx->header_length;
2753	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2754
2755	/*
2756	 * The two iso header quadlets are byteswapped to little
2757	 * endian by the controller, but we want to present them
2758	 * as big endian for consistency with the bus endianness.
2759	 */
2760	if (ctx->base.header_size > 0)
2761		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2762	if (ctx->base.header_size > 4)
2763		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2764	if (ctx->base.header_size > 8)
2765		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2766	ctx->header_length += ctx->base.header_size;
2767}
2768
2769static int handle_ir_packet_per_buffer(struct context *context,
2770				       struct descriptor *d,
2771				       struct descriptor *last)
2772{
2773	struct iso_context *ctx =
2774		container_of(context, struct iso_context, context);
2775	struct descriptor *pd;
2776	u32 buffer_dma;
2777
2778	for (pd = d; pd <= last; pd++)
2779		if (pd->transfer_status)
2780			break;
2781	if (pd > last)
2782		/* Descriptor(s) not done yet, stop iteration */
2783		return 0;
2784
2785	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2786		d++;
2787		buffer_dma = le32_to_cpu(d->data_address);
2788		dma_sync_single_range_for_cpu(context->ohci->card.device,
2789					      buffer_dma & PAGE_MASK,
2790					      buffer_dma & ~PAGE_MASK,
2791					      le16_to_cpu(d->req_count),
2792					      DMA_FROM_DEVICE);
2793	}
2794
2795	copy_iso_headers(ctx, (u32 *) (last + 1));
2796
2797	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2798		flush_iso_completions(ctx);
2799
2800	return 1;
2801}
2802
2803/* d == last because each descriptor block is only a single descriptor. */
2804static int handle_ir_buffer_fill(struct context *context,
2805				 struct descriptor *d,
2806				 struct descriptor *last)
2807{
2808	struct iso_context *ctx =
2809		container_of(context, struct iso_context, context);
2810	unsigned int req_count, res_count, completed;
2811	u32 buffer_dma;
2812
2813	req_count = le16_to_cpu(last->req_count);
2814	res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2815	completed = req_count - res_count;
2816	buffer_dma = le32_to_cpu(last->data_address);
2817
2818	if (completed > 0) {
2819		ctx->mc_buffer_bus = buffer_dma;
2820		ctx->mc_completed = completed;
2821	}
2822
2823	if (res_count != 0)
2824		/* Descriptor(s) not done yet, stop iteration */
2825		return 0;
2826
2827	dma_sync_single_range_for_cpu(context->ohci->card.device,
2828				      buffer_dma & PAGE_MASK,
2829				      buffer_dma & ~PAGE_MASK,
2830				      completed, DMA_FROM_DEVICE);
2831
2832	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2833		ctx->base.callback.mc(&ctx->base,
2834				      buffer_dma + completed,
2835				      ctx->base.callback_data);
2836		ctx->mc_completed = 0;
2837	}
2838
2839	return 1;
2840}
2841
2842static void flush_ir_buffer_fill(struct iso_context *ctx)
2843{
2844	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2845				      ctx->mc_buffer_bus & PAGE_MASK,
2846				      ctx->mc_buffer_bus & ~PAGE_MASK,
2847				      ctx->mc_completed, DMA_FROM_DEVICE);
2848
2849	ctx->base.callback.mc(&ctx->base,
2850			      ctx->mc_buffer_bus + ctx->mc_completed,
2851			      ctx->base.callback_data);
2852	ctx->mc_completed = 0;
2853}
2854
2855static inline void sync_it_packet_for_cpu(struct context *context,
2856					  struct descriptor *pd)
2857{
2858	__le16 control;
2859	u32 buffer_dma;
2860
2861	/* only packets beginning with OUTPUT_MORE* have data buffers */
2862	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2863		return;
2864
2865	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2866	pd += 2;
2867
2868	/*
2869	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2870	 * data buffer is in the context program's coherent page and must not
2871	 * be synced.
2872	 */
2873	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2874	    (context->current_bus          & PAGE_MASK)) {
2875		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2876			return;
2877		pd++;
2878	}
2879
2880	do {
2881		buffer_dma = le32_to_cpu(pd->data_address);
2882		dma_sync_single_range_for_cpu(context->ohci->card.device,
2883					      buffer_dma & PAGE_MASK,
2884					      buffer_dma & ~PAGE_MASK,
2885					      le16_to_cpu(pd->req_count),
2886					      DMA_TO_DEVICE);
2887		control = pd->control;
2888		pd++;
2889	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2890}
2891
2892static int handle_it_packet(struct context *context,
2893			    struct descriptor *d,
2894			    struct descriptor *last)
2895{
2896	struct iso_context *ctx =
2897		container_of(context, struct iso_context, context);
2898	struct descriptor *pd;
2899	__be32 *ctx_hdr;
2900
2901	for (pd = d; pd <= last; pd++)
2902		if (pd->transfer_status)
2903			break;
2904	if (pd > last)
2905		/* Descriptor(s) not done yet, stop iteration */
2906		return 0;
2907
2908	sync_it_packet_for_cpu(context, d);
2909
2910	if (ctx->header_length + 4 > PAGE_SIZE) {
2911		if (ctx->base.drop_overflow_headers)
2912			return 1;
2913		flush_iso_completions(ctx);
2914	}
2915
2916	ctx_hdr = ctx->header + ctx->header_length;
2917	ctx->last_timestamp = le16_to_cpu(last->res_count);
2918	/* Present this value as big-endian to match the receive code */
2919	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2920			       le16_to_cpu(pd->res_count));
2921	ctx->header_length += 4;
2922
2923	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2924		flush_iso_completions(ctx);
2925
2926	return 1;
2927}
2928
2929static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2930{
2931	u32 hi = channels >> 32, lo = channels;
2932
2933	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2934	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2935	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2936	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2937	mmiowb();
2938	ohci->mc_channels = channels;
2939}
2940
2941static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2942				int type, int channel, size_t header_size)
2943{
2944	struct fw_ohci *ohci = fw_ohci(card);
2945	struct iso_context *uninitialized_var(ctx);
2946	descriptor_callback_t uninitialized_var(callback);
2947	u64 *uninitialized_var(channels);
2948	u32 *uninitialized_var(mask), uninitialized_var(regs);
2949	int index, ret = -EBUSY;
2950
2951	spin_lock_irq(&ohci->lock);
2952
2953	switch (type) {
2954	case FW_ISO_CONTEXT_TRANSMIT:
2955		mask     = &ohci->it_context_mask;
2956		callback = handle_it_packet;
2957		index    = ffs(*mask) - 1;
2958		if (index >= 0) {
2959			*mask &= ~(1 << index);
2960			regs = OHCI1394_IsoXmitContextBase(index);
2961			ctx  = &ohci->it_context_list[index];
2962		}
2963		break;
2964
2965	case FW_ISO_CONTEXT_RECEIVE:
2966		channels = &ohci->ir_context_channels;
2967		mask     = &ohci->ir_context_mask;
2968		callback = handle_ir_packet_per_buffer;
2969		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2970		if (index >= 0) {
2971			*channels &= ~(1ULL << channel);
2972			*mask     &= ~(1 << index);
2973			regs = OHCI1394_IsoRcvContextBase(index);
2974			ctx  = &ohci->ir_context_list[index];
2975		}
2976		break;
2977
2978	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2979		mask     = &ohci->ir_context_mask;
2980		callback = handle_ir_buffer_fill;
2981		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2982		if (index >= 0) {
2983			ohci->mc_allocated = true;
2984			*mask &= ~(1 << index);
2985			regs = OHCI1394_IsoRcvContextBase(index);
2986			ctx  = &ohci->ir_context_list[index];
2987		}
2988		break;
2989
2990	default:
2991		index = -1;
2992		ret = -ENOSYS;
2993	}
2994
2995	spin_unlock_irq(&ohci->lock);
2996
2997	if (index < 0)
2998		return ERR_PTR(ret);
2999
3000	memset(ctx, 0, sizeof(*ctx));
3001	ctx->header_length = 0;
3002	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3003	if (ctx->header == NULL) {
3004		ret = -ENOMEM;
3005		goto out;
3006	}
3007	ret = context_init(&ctx->context, ohci, regs, callback);
3008	if (ret < 0)
3009		goto out_with_header;
3010
3011	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3012		set_multichannel_mask(ohci, 0);
3013		ctx->mc_completed = 0;
3014	}
3015
3016	return &ctx->base;
3017
3018 out_with_header:
3019	free_page((unsigned long)ctx->header);
3020 out:
3021	spin_lock_irq(&ohci->lock);
3022
3023	switch (type) {
3024	case FW_ISO_CONTEXT_RECEIVE:
3025		*channels |= 1ULL << channel;
3026		break;
3027
3028	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3029		ohci->mc_allocated = false;
3030		break;
3031	}
3032	*mask |= 1 << index;
3033
3034	spin_unlock_irq(&ohci->lock);
3035
3036	return ERR_PTR(ret);
3037}
3038
3039static int ohci_start_iso(struct fw_iso_context *base,
3040			  s32 cycle, u32 sync, u32 tags)
3041{
3042	struct iso_context *ctx = container_of(base, struct iso_context, base);
3043	struct fw_ohci *ohci = ctx->context.ohci;
3044	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3045	int index;
3046
3047	/* the controller cannot start without any queued packets */
3048	if (ctx->context.last->branch_address == 0)
3049		return -ENODATA;
3050
3051	switch (ctx->base.type) {
3052	case FW_ISO_CONTEXT_TRANSMIT:
3053		index = ctx - ohci->it_context_list;
3054		match = 0;
3055		if (cycle >= 0)
3056			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3057				(cycle & 0x7fff) << 16;
3058
3059		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3060		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3061		context_run(&ctx->context, match);
3062		break;
3063
3064	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3065		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3066		/* fall through */
3067	case FW_ISO_CONTEXT_RECEIVE:
3068		index = ctx - ohci->ir_context_list;
3069		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3070		if (cycle >= 0) {
3071			match |= (cycle & 0x07fff) << 12;
3072			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3073		}
3074
3075		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3076		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3077		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3078		context_run(&ctx->context, control);
3079
3080		ctx->sync = sync;
3081		ctx->tags = tags;
3082
3083		break;
3084	}
3085
3086	return 0;
3087}
3088
3089static int ohci_stop_iso(struct fw_iso_context *base)
3090{
3091	struct fw_ohci *ohci = fw_ohci(base->card);
3092	struct iso_context *ctx = container_of(base, struct iso_context, base);
3093	int index;
3094
3095	switch (ctx->base.type) {
3096	case FW_ISO_CONTEXT_TRANSMIT:
3097		index = ctx - ohci->it_context_list;
3098		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3099		break;
3100
3101	case FW_ISO_CONTEXT_RECEIVE:
3102	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3103		index = ctx - ohci->ir_context_list;
3104		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3105		break;
3106	}
3107	flush_writes(ohci);
3108	context_stop(&ctx->context);
3109	tasklet_kill(&ctx->context.tasklet);
3110
3111	return 0;
3112}
3113
3114static void ohci_free_iso_context(struct fw_iso_context *base)
3115{
3116	struct fw_ohci *ohci = fw_ohci(base->card);
3117	struct iso_context *ctx = container_of(base, struct iso_context, base);
3118	unsigned long flags;
3119	int index;
3120
3121	ohci_stop_iso(base);
3122	context_release(&ctx->context);
3123	free_page((unsigned long)ctx->header);
3124
3125	spin_lock_irqsave(&ohci->lock, flags);
3126
3127	switch (base->type) {
3128	case FW_ISO_CONTEXT_TRANSMIT:
3129		index = ctx - ohci->it_context_list;
3130		ohci->it_context_mask |= 1 << index;
3131		break;
3132
3133	case FW_ISO_CONTEXT_RECEIVE:
3134		index = ctx - ohci->ir_context_list;
3135		ohci->ir_context_mask |= 1 << index;
3136		ohci->ir_context_channels |= 1ULL << base->channel;
3137		break;
3138
3139	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3140		index = ctx - ohci->ir_context_list;
3141		ohci->ir_context_mask |= 1 << index;
3142		ohci->ir_context_channels |= ohci->mc_channels;
3143		ohci->mc_channels = 0;
3144		ohci->mc_allocated = false;
3145		break;
3146	}
3147
3148	spin_unlock_irqrestore(&ohci->lock, flags);
3149}
3150
3151static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3152{
3153	struct fw_ohci *ohci = fw_ohci(base->card);
3154	unsigned long flags;
3155	int ret;
3156
3157	switch (base->type) {
3158	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3159
3160		spin_lock_irqsave(&ohci->lock, flags);
3161
3162		/* Don't allow multichannel to grab other contexts' channels. */
3163		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3164			*channels = ohci->ir_context_channels;
3165			ret = -EBUSY;
3166		} else {
3167			set_multichannel_mask(ohci, *channels);
3168			ret = 0;
3169		}
3170
3171		spin_unlock_irqrestore(&ohci->lock, flags);
3172
3173		break;
3174	default:
3175		ret = -EINVAL;
3176	}
3177
3178	return ret;
3179}
3180
3181#ifdef CONFIG_PM
3182static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3183{
3184	int i;
3185	struct iso_context *ctx;
3186
3187	for (i = 0 ; i < ohci->n_ir ; i++) {
3188		ctx = &ohci->ir_context_list[i];
3189		if (ctx->context.running)
3190			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3191	}
3192
3193	for (i = 0 ; i < ohci->n_it ; i++) {
3194		ctx = &ohci->it_context_list[i];
3195		if (ctx->context.running)
3196			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3197	}
3198}
3199#endif
3200
3201static int queue_iso_transmit(struct iso_context *ctx,
3202			      struct fw_iso_packet *packet,
3203			      struct fw_iso_buffer *buffer,
3204			      unsigned long payload)
3205{
3206	struct descriptor *d, *last, *pd;
3207	struct fw_iso_packet *p;
3208	__le32 *header;
3209	dma_addr_t d_bus, page_bus;
3210	u32 z, header_z, payload_z, irq;
3211	u32 payload_index, payload_end_index, next_page_index;
3212	int page, end_page, i, length, offset;
3213
3214	p = packet;
3215	payload_index = payload;
3216
3217	if (p->skip)
3218		z = 1;
3219	else
3220		z = 2;
3221	if (p->header_length > 0)
3222		z++;
3223
3224	/* Determine the first page the payload isn't contained in. */
3225	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3226	if (p->payload_length > 0)
3227		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3228	else
3229		payload_z = 0;
3230
3231	z += payload_z;
3232
3233	/* Get header size in number of descriptors. */
3234	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3235
3236	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3237	if (d == NULL)
3238		return -ENOMEM;
3239
3240	if (!p->skip) {
3241		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3242		d[0].req_count = cpu_to_le16(8);
3243		/*
3244		 * Link the skip address to this descriptor itself.  This causes
3245		 * a context to skip a cycle whenever lost cycles or FIFO
3246		 * overruns occur, without dropping the data.  The application
3247		 * should then decide whether this is an error condition or not.
3248		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3249		 */
3250		d[0].branch_address = cpu_to_le32(d_bus | z);
3251
3252		header = (__le32 *) &d[1];
3253		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3254					IT_HEADER_TAG(p->tag) |
3255					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3256					IT_HEADER_CHANNEL(ctx->base.channel) |
3257					IT_HEADER_SPEED(ctx->base.speed));
3258		header[1] =
3259			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3260							  p->payload_length));
3261	}
3262
3263	if (p->header_length > 0) {
3264		d[2].req_count    = cpu_to_le16(p->header_length);
3265		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3266		memcpy(&d[z], p->header, p->header_length);
3267	}
3268
3269	pd = d + z - payload_z;
3270	payload_end_index = payload_index + p->payload_length;
3271	for (i = 0; i < payload_z; i++) {
3272		page               = payload_index >> PAGE_SHIFT;
3273		offset             = payload_index & ~PAGE_MASK;
3274		next_page_index    = (page + 1) << PAGE_SHIFT;
3275		length             =
3276			min(next_page_index, payload_end_index) - payload_index;
3277		pd[i].req_count    = cpu_to_le16(length);
3278
3279		page_bus = page_private(buffer->pages[page]);
3280		pd[i].data_address = cpu_to_le32(page_bus + offset);
3281
3282		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3283						 page_bus, offset, length,
3284						 DMA_TO_DEVICE);
3285
3286		payload_index += length;
3287	}
3288
3289	if (p->interrupt)
3290		irq = DESCRIPTOR_IRQ_ALWAYS;
3291	else
3292		irq = DESCRIPTOR_NO_IRQ;
3293
3294	last = z == 2 ? d : d + z - 1;
3295	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3296				     DESCRIPTOR_STATUS |
3297				     DESCRIPTOR_BRANCH_ALWAYS |
3298				     irq);
3299
3300	context_append(&ctx->context, d, z, header_z);
3301
3302	return 0;
3303}
3304
3305static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3306				       struct fw_iso_packet *packet,
3307				       struct fw_iso_buffer *buffer,
3308				       unsigned long payload)
3309{
3310	struct device *device = ctx->context.ohci->card.device;
3311	struct descriptor *d, *pd;
3312	dma_addr_t d_bus, page_bus;
3313	u32 z, header_z, rest;
3314	int i, j, length;
3315	int page, offset, packet_count, header_size, payload_per_buffer;
3316
3317	/*
3318	 * The OHCI controller puts the isochronous header and trailer in the
3319	 * buffer, so we need at least 8 bytes.
3320	 */
3321	packet_count = packet->header_length / ctx->base.header_size;
3322	header_size  = max(ctx->base.header_size, (size_t)8);
3323
3324	/* Get header size in number of descriptors. */
3325	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3326	page     = payload >> PAGE_SHIFT;
3327	offset   = payload & ~PAGE_MASK;
3328	payload_per_buffer = packet->payload_length / packet_count;
3329
3330	for (i = 0; i < packet_count; i++) {
3331		/* d points to the header descriptor */
3332		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3333		d = context_get_descriptors(&ctx->context,
3334				z + header_z, &d_bus);
3335		if (d == NULL)
3336			return -ENOMEM;
3337
3338		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3339					      DESCRIPTOR_INPUT_MORE);
3340		if (packet->skip && i == 0)
3341			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3342		d->req_count    = cpu_to_le16(header_size);
3343		d->res_count    = d->req_count;
3344		d->transfer_status = 0;
3345		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3346
3347		rest = payload_per_buffer;
3348		pd = d;
3349		for (j = 1; j < z; j++) {
3350			pd++;
3351			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3352						  DESCRIPTOR_INPUT_MORE);
3353
3354			if (offset + rest < PAGE_SIZE)
3355				length = rest;
3356			else
3357				length = PAGE_SIZE - offset;
3358			pd->req_count = cpu_to_le16(length);
3359			pd->res_count = pd->req_count;
3360			pd->transfer_status = 0;
3361
3362			page_bus = page_private(buffer->pages[page]);
3363			pd->data_address = cpu_to_le32(page_bus + offset);
3364
3365			dma_sync_single_range_for_device(device, page_bus,
3366							 offset, length,
3367							 DMA_FROM_DEVICE);
3368
3369			offset = (offset + length) & ~PAGE_MASK;
3370			rest -= length;
3371			if (offset == 0)
3372				page++;
3373		}
3374		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3375					  DESCRIPTOR_INPUT_LAST |
3376					  DESCRIPTOR_BRANCH_ALWAYS);
3377		if (packet->interrupt && i == packet_count - 1)
3378			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3379
3380		context_append(&ctx->context, d, z, header_z);
3381	}
3382
3383	return 0;
3384}
3385
3386static int queue_iso_buffer_fill(struct iso_context *ctx,
3387				 struct fw_iso_packet *packet,
3388				 struct fw_iso_buffer *buffer,
3389				 unsigned long payload)
3390{
3391	struct descriptor *d;
3392	dma_addr_t d_bus, page_bus;
3393	int page, offset, rest, z, i, length;
3394
3395	page   = payload >> PAGE_SHIFT;
3396	offset = payload & ~PAGE_MASK;
3397	rest   = packet->payload_length;
3398
3399	/* We need one descriptor for each page in the buffer. */
3400	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3401
3402	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3403		return -EFAULT;
3404
3405	for (i = 0; i < z; i++) {
3406		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3407		if (d == NULL)
3408			return -ENOMEM;
3409
3410		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3411					 DESCRIPTOR_BRANCH_ALWAYS);
3412		if (packet->skip && i == 0)
3413			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3414		if (packet->interrupt && i == z - 1)
3415			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3416
3417		if (offset + rest < PAGE_SIZE)
3418			length = rest;
3419		else
3420			length = PAGE_SIZE - offset;
3421		d->req_count = cpu_to_le16(length);
3422		d->res_count = d->req_count;
3423		d->transfer_status = 0;
3424
3425		page_bus = page_private(buffer->pages[page]);
3426		d->data_address = cpu_to_le32(page_bus + offset);
3427
3428		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3429						 page_bus, offset, length,
3430						 DMA_FROM_DEVICE);
3431
3432		rest -= length;
3433		offset = 0;
3434		page++;
3435
3436		context_append(&ctx->context, d, 1, 0);
3437	}
3438
3439	return 0;
3440}
3441
3442static int ohci_queue_iso(struct fw_iso_context *base,
3443			  struct fw_iso_packet *packet,
3444			  struct fw_iso_buffer *buffer,
3445			  unsigned long payload)
3446{
3447	struct iso_context *ctx = container_of(base, struct iso_context, base);
3448	unsigned long flags;
3449	int ret = -ENOSYS;
3450
3451	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3452	switch (base->type) {
3453	case FW_ISO_CONTEXT_TRANSMIT:
3454		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3455		break;
3456	case FW_ISO_CONTEXT_RECEIVE:
3457		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3458		break;
3459	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3460		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3461		break;
3462	}
3463	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3464
3465	return ret;
3466}
3467
3468static void ohci_flush_queue_iso(struct fw_iso_context *base)
3469{
3470	struct context *ctx =
3471			&container_of(base, struct iso_context, base)->context;
3472
3473	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3474}
3475
3476static int ohci_flush_iso_completions(struct fw_iso_context *base)
3477{
3478	struct iso_context *ctx = container_of(base, struct iso_context, base);
3479	int ret = 0;
3480
3481	tasklet_disable(&ctx->context.tasklet);
3482
3483	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3484		context_tasklet((unsigned long)&ctx->context);
3485
3486		switch (base->type) {
3487		case FW_ISO_CONTEXT_TRANSMIT:
3488		case FW_ISO_CONTEXT_RECEIVE:
3489			if (ctx->header_length != 0)
3490				flush_iso_completions(ctx);
3491			break;
3492		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3493			if (ctx->mc_completed != 0)
3494				flush_ir_buffer_fill(ctx);
3495			break;
3496		default:
3497			ret = -ENOSYS;
3498		}
3499
3500		clear_bit_unlock(0, &ctx->flushing_completions);
3501		smp_mb__after_clear_bit();
3502	}
3503
3504	tasklet_enable(&ctx->context.tasklet);
3505
3506	return ret;
3507}
3508
3509static const struct fw_card_driver ohci_driver = {
3510	.enable			= ohci_enable,
3511	.read_phy_reg		= ohci_read_phy_reg,
3512	.update_phy_reg		= ohci_update_phy_reg,
3513	.set_config_rom		= ohci_set_config_rom,
3514	.send_request		= ohci_send_request,
3515	.send_response		= ohci_send_response,
3516	.cancel_packet		= ohci_cancel_packet,
3517	.enable_phys_dma	= ohci_enable_phys_dma,
3518	.read_csr		= ohci_read_csr,
3519	.write_csr		= ohci_write_csr,
3520
3521	.allocate_iso_context	= ohci_allocate_iso_context,
3522	.free_iso_context	= ohci_free_iso_context,
3523	.set_iso_channels	= ohci_set_iso_channels,
3524	.queue_iso		= ohci_queue_iso,
3525	.flush_queue_iso	= ohci_flush_queue_iso,
3526	.flush_iso_completions	= ohci_flush_iso_completions,
3527	.start_iso		= ohci_start_iso,
3528	.stop_iso		= ohci_stop_iso,
3529};
3530
3531#ifdef CONFIG_PPC_PMAC
3532static void pmac_ohci_on(struct pci_dev *dev)
3533{
3534	if (machine_is(powermac)) {
3535		struct device_node *ofn = pci_device_to_OF_node(dev);
3536
3537		if (ofn) {
3538			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3539			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3540		}
3541	}
3542}
3543
3544static void pmac_ohci_off(struct pci_dev *dev)
3545{
3546	if (machine_is(powermac)) {
3547		struct device_node *ofn = pci_device_to_OF_node(dev);
3548
3549		if (ofn) {
3550			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3551			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3552		}
3553	}
3554}
3555#else
3556static inline void pmac_ohci_on(struct pci_dev *dev) {}
3557static inline void pmac_ohci_off(struct pci_dev *dev) {}
3558#endif /* CONFIG_PPC_PMAC */
3559
3560static int pci_probe(struct pci_dev *dev,
3561			       const struct pci_device_id *ent)
3562{
3563	struct fw_ohci *ohci;
3564	u32 bus_options, max_receive, link_speed, version;
3565	u64 guid;
3566	int i, err;
3567	size_t size;
3568
3569	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3570		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3571		return -ENOSYS;
3572	}
3573
3574	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3575	if (ohci == NULL) {
3576		err = -ENOMEM;
3577		goto fail;
3578	}
3579
3580	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3581
3582	pmac_ohci_on(dev);
3583
3584	err = pci_enable_device(dev);
3585	if (err) {
3586		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3587		goto fail_free;
3588	}
3589
3590	pci_set_master(dev);
3591	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3592	pci_set_drvdata(dev, ohci);
3593
3594	spin_lock_init(&ohci->lock);
3595	mutex_init(&ohci->phy_reg_mutex);
3596
3597	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3598
3599	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3600	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3601		ohci_err(ohci, "invalid MMIO resource\n");
3602		err = -ENXIO;
3603		goto fail_disable;
3604	}
3605
3606	err = pci_request_region(dev, 0, ohci_driver_name);
3607	if (err) {
3608		ohci_err(ohci, "MMIO resource unavailable\n");
3609		goto fail_disable;
3610	}
3611
3612	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3613	if (ohci->registers == NULL) {
3614		ohci_err(ohci, "failed to remap registers\n");
3615		err = -ENXIO;
3616		goto fail_iomem;
3617	}
3618
3619	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3620		if ((ohci_quirks[i].vendor == dev->vendor) &&
3621		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3622		     ohci_quirks[i].device == dev->device) &&
3623		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3624		     ohci_quirks[i].revision >= dev->revision)) {
3625			ohci->quirks = ohci_quirks[i].flags;
3626			break;
3627		}
3628	if (param_quirks)
3629		ohci->quirks = param_quirks;
3630
3631	/*
3632	 * Because dma_alloc_coherent() allocates at least one page,
3633	 * we save space by using a common buffer for the AR request/
3634	 * response descriptors and the self IDs buffer.
3635	 */
3636	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3637	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3638	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3639					       PAGE_SIZE,
3640					       &ohci->misc_buffer_bus,
3641					       GFP_KERNEL);
3642	if (!ohci->misc_buffer) {
3643		err = -ENOMEM;
3644		goto fail_iounmap;
3645	}
3646
3647	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3648			      OHCI1394_AsReqRcvContextControlSet);
3649	if (err < 0)
3650		goto fail_misc_buf;
3651
3652	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3653			      OHCI1394_AsRspRcvContextControlSet);
3654	if (err < 0)
3655		goto fail_arreq_ctx;
3656
3657	err = context_init(&ohci->at_request_ctx, ohci,
3658			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3659	if (err < 0)
3660		goto fail_arrsp_ctx;
3661
3662	err = context_init(&ohci->at_response_ctx, ohci,
3663			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3664	if (err < 0)
3665		goto fail_atreq_ctx;
3666
3667	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3668	ohci->ir_context_channels = ~0ULL;
3669	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3670	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3671	ohci->ir_context_mask = ohci->ir_context_support;
3672	ohci->n_ir = hweight32(ohci->ir_context_mask);
3673	size = sizeof(struct iso_context) * ohci->n_ir;
3674	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3675
3676	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3677	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
 
 
 
 
 
3678	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3679	ohci->it_context_mask = ohci->it_context_support;
3680	ohci->n_it = hweight32(ohci->it_context_mask);
3681	size = sizeof(struct iso_context) * ohci->n_it;
3682	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3683
3684	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3685		err = -ENOMEM;
3686		goto fail_contexts;
3687	}
3688
3689	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3690	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3691
3692	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3693	max_receive = (bus_options >> 12) & 0xf;
3694	link_speed = bus_options & 0x7;
3695	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3696		reg_read(ohci, OHCI1394_GUIDLo);
3697
3698	if (!(ohci->quirks & QUIRK_NO_MSI))
3699		pci_enable_msi(dev);
3700	if (request_irq(dev->irq, irq_handler,
3701			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3702			ohci_driver_name, ohci)) {
3703		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3704		err = -EIO;
3705		goto fail_msi;
3706	}
3707
3708	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3709	if (err)
3710		goto fail_irq;
3711
3712	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3713	ohci_notice(ohci,
3714		    "added OHCI v%x.%x device as card %d, "
3715		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3716		    version >> 16, version & 0xff, ohci->card.index,
3717		    ohci->n_ir, ohci->n_it, ohci->quirks,
3718		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3719			", physUB" : "");
3720
3721	return 0;
3722
3723 fail_irq:
3724	free_irq(dev->irq, ohci);
3725 fail_msi:
3726	pci_disable_msi(dev);
3727 fail_contexts:
3728	kfree(ohci->ir_context_list);
3729	kfree(ohci->it_context_list);
3730	context_release(&ohci->at_response_ctx);
3731 fail_atreq_ctx:
3732	context_release(&ohci->at_request_ctx);
3733 fail_arrsp_ctx:
3734	ar_context_release(&ohci->ar_response_ctx);
3735 fail_arreq_ctx:
3736	ar_context_release(&ohci->ar_request_ctx);
3737 fail_misc_buf:
3738	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3739			  ohci->misc_buffer, ohci->misc_buffer_bus);
3740 fail_iounmap:
3741	pci_iounmap(dev, ohci->registers);
3742 fail_iomem:
3743	pci_release_region(dev, 0);
3744 fail_disable:
3745	pci_disable_device(dev);
3746 fail_free:
3747	kfree(ohci);
3748	pmac_ohci_off(dev);
3749 fail:
3750	return err;
3751}
3752
3753static void pci_remove(struct pci_dev *dev)
3754{
3755	struct fw_ohci *ohci = pci_get_drvdata(dev);
3756
3757	/*
3758	 * If the removal is happening from the suspend state, LPS won't be
3759	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3760	 */
3761	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3762		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3763		flush_writes(ohci);
3764	}
3765	cancel_work_sync(&ohci->bus_reset_work);
3766	fw_core_remove_card(&ohci->card);
3767
3768	/*
3769	 * FIXME: Fail all pending packets here, now that the upper
3770	 * layers can't queue any more.
3771	 */
3772
3773	software_reset(ohci);
3774	free_irq(dev->irq, ohci);
3775
3776	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3777		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3778				  ohci->next_config_rom, ohci->next_config_rom_bus);
3779	if (ohci->config_rom)
3780		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3781				  ohci->config_rom, ohci->config_rom_bus);
3782	ar_context_release(&ohci->ar_request_ctx);
3783	ar_context_release(&ohci->ar_response_ctx);
3784	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3785			  ohci->misc_buffer, ohci->misc_buffer_bus);
3786	context_release(&ohci->at_request_ctx);
3787	context_release(&ohci->at_response_ctx);
3788	kfree(ohci->it_context_list);
3789	kfree(ohci->ir_context_list);
3790	pci_disable_msi(dev);
3791	pci_iounmap(dev, ohci->registers);
3792	pci_release_region(dev, 0);
3793	pci_disable_device(dev);
3794	kfree(ohci);
3795	pmac_ohci_off(dev);
3796
3797	dev_notice(&dev->dev, "removed fw-ohci device\n");
3798}
3799
3800#ifdef CONFIG_PM
3801static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3802{
3803	struct fw_ohci *ohci = pci_get_drvdata(dev);
3804	int err;
3805
3806	software_reset(ohci);
3807	err = pci_save_state(dev);
3808	if (err) {
3809		ohci_err(ohci, "pci_save_state failed\n");
3810		return err;
3811	}
3812	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3813	if (err)
3814		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3815	pmac_ohci_off(dev);
3816
3817	return 0;
3818}
3819
3820static int pci_resume(struct pci_dev *dev)
3821{
3822	struct fw_ohci *ohci = pci_get_drvdata(dev);
3823	int err;
3824
3825	pmac_ohci_on(dev);
3826	pci_set_power_state(dev, PCI_D0);
3827	pci_restore_state(dev);
3828	err = pci_enable_device(dev);
3829	if (err) {
3830		ohci_err(ohci, "pci_enable_device failed\n");
3831		return err;
3832	}
3833
3834	/* Some systems don't setup GUID register on resume from ram  */
3835	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3836					!reg_read(ohci, OHCI1394_GUIDHi)) {
3837		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3838		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3839	}
3840
3841	err = ohci_enable(&ohci->card, NULL, 0);
3842	if (err)
3843		return err;
3844
3845	ohci_resume_iso_dma(ohci);
3846
3847	return 0;
3848}
3849#endif
3850
3851static const struct pci_device_id pci_table[] = {
3852	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3853	{ }
3854};
3855
3856MODULE_DEVICE_TABLE(pci, pci_table);
3857
3858static struct pci_driver fw_ohci_pci_driver = {
3859	.name		= ohci_driver_name,
3860	.id_table	= pci_table,
3861	.probe		= pci_probe,
3862	.remove		= pci_remove,
3863#ifdef CONFIG_PM
3864	.resume		= pci_resume,
3865	.suspend	= pci_suspend,
3866#endif
3867};
3868
3869static int __init fw_ohci_init(void)
3870{
3871	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3872	if (!selfid_workqueue)
3873		return -ENOMEM;
3874
3875	return pci_register_driver(&fw_ohci_pci_driver);
3876}
3877
3878static void __exit fw_ohci_cleanup(void)
3879{
3880	pci_unregister_driver(&fw_ohci_pci_driver);
3881	destroy_workqueue(selfid_workqueue);
3882}
3883
3884module_init(fw_ohci_init);
3885module_exit(fw_ohci_cleanup);
3886
3887MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3888MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3889MODULE_LICENSE("GPL");
3890
3891/* Provide a module alias so root-on-sbp2 initrds don't break. */
3892MODULE_ALIAS("ohci1394");