Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Copyright 2013 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * A code-rewriter that handles unaligned exception.
  15 */
  16
  17#include <linux/smp.h>
  18#include <linux/ptrace.h>
  19#include <linux/slab.h>
  20#include <linux/thread_info.h>
  21#include <linux/uaccess.h>
  22#include <linux/mman.h>
  23#include <linux/types.h>
  24#include <linux/err.h>
  25#include <linux/module.h>
  26#include <linux/compat.h>
  27#include <linux/prctl.h>
  28#include <asm/cacheflush.h>
  29#include <asm/traps.h>
  30#include <asm/uaccess.h>
  31#include <asm/unaligned.h>
  32#include <arch/abi.h>
  33#include <arch/spr_def.h>
  34#include <arch/opcode.h>
  35
  36
  37/*
  38 * This file handles unaligned exception for tile-Gx. The tilepro's unaligned
  39 * exception is supported out of single_step.c
  40 */
  41
  42int unaligned_printk;
  43
  44static int __init setup_unaligned_printk(char *str)
  45{
  46	long val;
  47	if (kstrtol(str, 0, &val) != 0)
  48		return 0;
  49	unaligned_printk = val;
  50	pr_info("Printk for each unaligned data accesses is %s\n",
  51		unaligned_printk ? "enabled" : "disabled");
  52	return 1;
  53}
  54__setup("unaligned_printk=", setup_unaligned_printk);
  55
  56unsigned int unaligned_fixup_count;
  57
  58#ifdef __tilegx__
  59
  60/*
  61 * Unalign data jit fixup code fragement. Reserved space is 128 bytes.
  62 * The 1st 64-bit word saves fault PC address, 2nd word is the fault
  63 * instruction bundle followed by 14 JIT bundles.
  64 */
  65
  66struct unaligned_jit_fragment {
  67	unsigned long       pc;
  68	tilegx_bundle_bits  bundle;
  69	tilegx_bundle_bits  insn[14];
  70};
  71
  72/*
  73 * Check if a nop or fnop at bundle's pipeline X0.
  74 */
  75
  76static bool is_bundle_x0_nop(tilegx_bundle_bits bundle)
  77{
  78	return (((get_UnaryOpcodeExtension_X0(bundle) ==
  79		  NOP_UNARY_OPCODE_X0) &&
  80		 (get_RRROpcodeExtension_X0(bundle) ==
  81		  UNARY_RRR_0_OPCODE_X0) &&
  82		 (get_Opcode_X0(bundle) ==
  83		  RRR_0_OPCODE_X0)) ||
  84		((get_UnaryOpcodeExtension_X0(bundle) ==
  85		  FNOP_UNARY_OPCODE_X0) &&
  86		 (get_RRROpcodeExtension_X0(bundle) ==
  87		  UNARY_RRR_0_OPCODE_X0) &&
  88		 (get_Opcode_X0(bundle) ==
  89		  RRR_0_OPCODE_X0)));
  90}
  91
  92/*
  93 * Check if nop or fnop at bundle's pipeline X1.
  94 */
  95
  96static bool is_bundle_x1_nop(tilegx_bundle_bits bundle)
  97{
  98	return (((get_UnaryOpcodeExtension_X1(bundle) ==
  99		  NOP_UNARY_OPCODE_X1) &&
 100		 (get_RRROpcodeExtension_X1(bundle) ==
 101		  UNARY_RRR_0_OPCODE_X1) &&
 102		 (get_Opcode_X1(bundle) ==
 103		  RRR_0_OPCODE_X1)) ||
 104		((get_UnaryOpcodeExtension_X1(bundle) ==
 105		  FNOP_UNARY_OPCODE_X1) &&
 106		 (get_RRROpcodeExtension_X1(bundle) ==
 107		  UNARY_RRR_0_OPCODE_X1) &&
 108		 (get_Opcode_X1(bundle) ==
 109		  RRR_0_OPCODE_X1)));
 110}
 111
 112/*
 113 * Check if nop or fnop at bundle's Y0 pipeline.
 114 */
 115
 116static bool is_bundle_y0_nop(tilegx_bundle_bits bundle)
 117{
 118	return (((get_UnaryOpcodeExtension_Y0(bundle) ==
 119		  NOP_UNARY_OPCODE_Y0) &&
 120		 (get_RRROpcodeExtension_Y0(bundle) ==
 121		  UNARY_RRR_1_OPCODE_Y0) &&
 122		 (get_Opcode_Y0(bundle) ==
 123		  RRR_1_OPCODE_Y0)) ||
 124		((get_UnaryOpcodeExtension_Y0(bundle) ==
 125		  FNOP_UNARY_OPCODE_Y0) &&
 126		 (get_RRROpcodeExtension_Y0(bundle) ==
 127		  UNARY_RRR_1_OPCODE_Y0) &&
 128		 (get_Opcode_Y0(bundle) ==
 129		  RRR_1_OPCODE_Y0)));
 130}
 131
 132/*
 133 * Check if nop or fnop at bundle's pipeline Y1.
 134 */
 135
 136static bool is_bundle_y1_nop(tilegx_bundle_bits bundle)
 137{
 138	return (((get_UnaryOpcodeExtension_Y1(bundle) ==
 139		  NOP_UNARY_OPCODE_Y1) &&
 140		 (get_RRROpcodeExtension_Y1(bundle) ==
 141		  UNARY_RRR_1_OPCODE_Y1) &&
 142		 (get_Opcode_Y1(bundle) ==
 143		  RRR_1_OPCODE_Y1)) ||
 144		((get_UnaryOpcodeExtension_Y1(bundle) ==
 145		  FNOP_UNARY_OPCODE_Y1) &&
 146		 (get_RRROpcodeExtension_Y1(bundle) ==
 147		  UNARY_RRR_1_OPCODE_Y1) &&
 148		 (get_Opcode_Y1(bundle) ==
 149		  RRR_1_OPCODE_Y1)));
 150}
 151
 152/*
 153 * Test if a bundle's y0 and y1 pipelines are both nop or fnop.
 154 */
 155
 156static bool is_y0_y1_nop(tilegx_bundle_bits bundle)
 157{
 158	return is_bundle_y0_nop(bundle) && is_bundle_y1_nop(bundle);
 159}
 160
 161/*
 162 * Test if a bundle's x0 and x1 pipelines are both nop or fnop.
 163 */
 164
 165static bool is_x0_x1_nop(tilegx_bundle_bits bundle)
 166{
 167	return is_bundle_x0_nop(bundle) && is_bundle_x1_nop(bundle);
 168}
 169
 170/*
 171 * Find the destination, source registers of fault unalign access instruction
 172 * at X1 or Y2. Also, allocate up to 3 scratch registers clob1, clob2 and
 173 * clob3, which are guaranteed different from any register used in the fault
 174 * bundle. r_alias is used to return if the other instructions other than the
 175 * unalign load/store shares same register with ra, rb and rd.
 176 */
 177
 178static void find_regs(tilegx_bundle_bits bundle, uint64_t *rd, uint64_t *ra,
 179		      uint64_t *rb, uint64_t *clob1, uint64_t *clob2,
 180		      uint64_t *clob3, bool *r_alias)
 181{
 182	int i;
 183	uint64_t reg;
 184	uint64_t reg_map = 0, alias_reg_map = 0, map;
 185	bool alias;
 186
 187	*ra = -1;
 188	*rb = -1;
 189
 190	if (rd)
 191		*rd = -1;
 192
 193	*clob1 = -1;
 194	*clob2 = -1;
 195	*clob3 = -1;
 196	alias = false;
 197
 198	/*
 199	 * Parse fault bundle, find potential used registers and mark
 200	 * corresponding bits in reg_map and alias_map. These 2 bit maps
 201	 * are used to find the scratch registers and determine if there
 202	 * is register alais.
 203	 */
 204	if (bundle & TILEGX_BUNDLE_MODE_MASK) {  /* Y Mode Bundle. */
 205
 206		reg = get_SrcA_Y2(bundle);
 207		reg_map |= 1ULL << reg;
 208		*ra = reg;
 209		reg = get_SrcBDest_Y2(bundle);
 210		reg_map |= 1ULL << reg;
 211
 212		if (rd) {
 213			/* Load. */
 214			*rd = reg;
 215			alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
 216		} else {
 217			/* Store. */
 218			*rb = reg;
 219			alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
 220		}
 221
 222		if (!is_bundle_y1_nop(bundle)) {
 223			reg = get_SrcA_Y1(bundle);
 224			reg_map |= (1ULL << reg);
 225			map = (1ULL << reg);
 226
 227			reg = get_SrcB_Y1(bundle);
 228			reg_map |= (1ULL << reg);
 229			map |= (1ULL << reg);
 230
 231			reg = get_Dest_Y1(bundle);
 232			reg_map |= (1ULL << reg);
 233			map |= (1ULL << reg);
 234
 235			if (map & alias_reg_map)
 236				alias = true;
 237		}
 238
 239		if (!is_bundle_y0_nop(bundle)) {
 240			reg = get_SrcA_Y0(bundle);
 241			reg_map |= (1ULL << reg);
 242			map = (1ULL << reg);
 243
 244			reg = get_SrcB_Y0(bundle);
 245			reg_map |= (1ULL << reg);
 246			map |= (1ULL << reg);
 247
 248			reg = get_Dest_Y0(bundle);
 249			reg_map |= (1ULL << reg);
 250			map |= (1ULL << reg);
 251
 252			if (map & alias_reg_map)
 253				alias = true;
 254		}
 255	} else	{ /* X Mode Bundle. */
 256
 257		reg = get_SrcA_X1(bundle);
 258		reg_map |= (1ULL << reg);
 259		*ra = reg;
 260		if (rd)	{
 261			/* Load. */
 262			reg = get_Dest_X1(bundle);
 263			reg_map |= (1ULL << reg);
 264			*rd = reg;
 265			alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
 266		} else {
 267			/* Store. */
 268			reg = get_SrcB_X1(bundle);
 269			reg_map |= (1ULL << reg);
 270			*rb = reg;
 271			alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
 272		}
 273
 274		if (!is_bundle_x0_nop(bundle)) {
 275			reg = get_SrcA_X0(bundle);
 276			reg_map |= (1ULL << reg);
 277			map = (1ULL << reg);
 278
 279			reg = get_SrcB_X0(bundle);
 280			reg_map |= (1ULL << reg);
 281			map |= (1ULL << reg);
 282
 283			reg = get_Dest_X0(bundle);
 284			reg_map |= (1ULL << reg);
 285			map |= (1ULL << reg);
 286
 287			if (map & alias_reg_map)
 288				alias = true;
 289		}
 290	}
 291
 292	/*
 293	 * "alias" indicates if the unalign access registers have collision
 294	 * with others in the same bundle. We jsut simply test all register
 295	 * operands case (RRR), ignored the case with immidate. If a bundle
 296	 * has no register alias, we may do fixup in a simple or fast manner.
 297	 * So if an immidata field happens to hit with a register, we may end
 298	 * up fall back to the generic handling.
 299	 */
 300
 301	*r_alias = alias;
 302
 303	/* Flip bits on reg_map. */
 304	reg_map ^= -1ULL;
 305
 306	/* Scan reg_map lower 54(TREG_SP) bits to find 3 set bits. */
 307	for (i = 0; i < TREG_SP; i++) {
 308		if (reg_map & (0x1ULL << i)) {
 309			if (*clob1 == -1) {
 310				*clob1 = i;
 311			} else if (*clob2 == -1) {
 312				*clob2 = i;
 313			} else if (*clob3 == -1) {
 314				*clob3 = i;
 315				return;
 316			}
 317		}
 318	}
 319}
 320
 321/*
 322 * Sanity check for register ra, rb, rd, clob1/2/3. Return true if any of them
 323 * is unexpected.
 324 */
 325
 326static bool check_regs(uint64_t rd, uint64_t ra, uint64_t rb,
 327		       uint64_t clob1, uint64_t clob2,  uint64_t clob3)
 328{
 329	bool unexpected = false;
 330	if ((ra >= 56) && (ra != TREG_ZERO))
 331		unexpected = true;
 332
 333	if ((clob1 >= 56) || (clob2 >= 56) || (clob3 >= 56))
 334		unexpected = true;
 335
 336	if (rd != -1) {
 337		if ((rd >= 56) && (rd != TREG_ZERO))
 338			unexpected = true;
 339	} else {
 340		if ((rb >= 56) && (rb != TREG_ZERO))
 341			unexpected = true;
 342	}
 343	return unexpected;
 344}
 345
 346
 347#define  GX_INSN_X0_MASK   ((1ULL << 31) - 1)
 348#define  GX_INSN_X1_MASK   (((1ULL << 31) - 1) << 31)
 349#define  GX_INSN_Y0_MASK   ((0xFULL << 27) | (0xFFFFFULL))
 350#define  GX_INSN_Y1_MASK   (GX_INSN_Y0_MASK << 31)
 351#define  GX_INSN_Y2_MASK   ((0x7FULL << 51) | (0x7FULL << 20))
 352
 353#ifdef __LITTLE_ENDIAN
 354#define  GX_INSN_BSWAP(_bundle_)    (_bundle_)
 355#else
 356#define  GX_INSN_BSWAP(_bundle_)    swab64(_bundle_)
 357#endif /* __LITTLE_ENDIAN */
 358
 359/*
 360 * __JIT_CODE(.) creates template bundles in .rodata.unalign_data section.
 361 * The corresponding static function jix_x#_###(.) generates partial or
 362 * whole bundle based on the template and given arguments.
 363 */
 364
 365#define __JIT_CODE(_X_)						\
 366	asm (".pushsection .rodata.unalign_data, \"a\"\n"	\
 367	     _X_"\n"						\
 368	     ".popsection\n")
 369
 370__JIT_CODE("__unalign_jit_x1_mtspr:   {mtspr 0,  r0}");
 371static tilegx_bundle_bits jit_x1_mtspr(int spr, int reg)
 372{
 373	extern  tilegx_bundle_bits __unalign_jit_x1_mtspr;
 374	return (GX_INSN_BSWAP(__unalign_jit_x1_mtspr) & GX_INSN_X1_MASK) |
 375		create_MT_Imm14_X1(spr) | create_SrcA_X1(reg);
 376}
 377
 378__JIT_CODE("__unalign_jit_x1_mfspr:   {mfspr r0, 0}");
 379static tilegx_bundle_bits  jit_x1_mfspr(int reg, int spr)
 380{
 381	extern  tilegx_bundle_bits __unalign_jit_x1_mfspr;
 382	return (GX_INSN_BSWAP(__unalign_jit_x1_mfspr) & GX_INSN_X1_MASK) |
 383		create_MF_Imm14_X1(spr) | create_Dest_X1(reg);
 384}
 385
 386__JIT_CODE("__unalign_jit_x0_addi:   {addi  r0, r0, 0; iret}");
 387static tilegx_bundle_bits  jit_x0_addi(int rd, int ra, int imm8)
 388{
 389	extern  tilegx_bundle_bits __unalign_jit_x0_addi;
 390	return (GX_INSN_BSWAP(__unalign_jit_x0_addi) & GX_INSN_X0_MASK) |
 391		create_Dest_X0(rd) | create_SrcA_X0(ra) |
 392		create_Imm8_X0(imm8);
 393}
 394
 395__JIT_CODE("__unalign_jit_x1_ldna:   {ldna  r0, r0}");
 396static tilegx_bundle_bits  jit_x1_ldna(int rd, int ra)
 397{
 398	extern  tilegx_bundle_bits __unalign_jit_x1_ldna;
 399	return (GX_INSN_BSWAP(__unalign_jit_x1_ldna) &  GX_INSN_X1_MASK) |
 400		create_Dest_X1(rd) | create_SrcA_X1(ra);
 401}
 402
 403__JIT_CODE("__unalign_jit_x0_dblalign:   {dblalign r0, r0 ,r0}");
 404static tilegx_bundle_bits  jit_x0_dblalign(int rd, int ra, int rb)
 405{
 406	extern  tilegx_bundle_bits __unalign_jit_x0_dblalign;
 407	return (GX_INSN_BSWAP(__unalign_jit_x0_dblalign) & GX_INSN_X0_MASK) |
 408		create_Dest_X0(rd) | create_SrcA_X0(ra) |
 409		create_SrcB_X0(rb);
 410}
 411
 412__JIT_CODE("__unalign_jit_x1_iret:   {iret}");
 413static tilegx_bundle_bits  jit_x1_iret(void)
 414{
 415	extern  tilegx_bundle_bits __unalign_jit_x1_iret;
 416	return GX_INSN_BSWAP(__unalign_jit_x1_iret) & GX_INSN_X1_MASK;
 417}
 418
 419__JIT_CODE("__unalign_jit_x01_fnop:   {fnop;fnop}");
 420static tilegx_bundle_bits  jit_x0_fnop(void)
 421{
 422	extern  tilegx_bundle_bits __unalign_jit_x01_fnop;
 423	return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X0_MASK;
 424}
 425
 426static tilegx_bundle_bits  jit_x1_fnop(void)
 427{
 428	extern  tilegx_bundle_bits __unalign_jit_x01_fnop;
 429	return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X1_MASK;
 430}
 431
 432__JIT_CODE("__unalign_jit_y2_dummy:   {fnop; fnop; ld zero, sp}");
 433static tilegx_bundle_bits  jit_y2_dummy(void)
 434{
 435	extern  tilegx_bundle_bits __unalign_jit_y2_dummy;
 436	return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y2_MASK;
 437}
 438
 439static tilegx_bundle_bits  jit_y1_fnop(void)
 440{
 441	extern  tilegx_bundle_bits __unalign_jit_y2_dummy;
 442	return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y1_MASK;
 443}
 444
 445__JIT_CODE("__unalign_jit_x1_st1_add:  {st1_add r1, r0, 0}");
 446static tilegx_bundle_bits  jit_x1_st1_add(int ra, int rb, int imm8)
 447{
 448	extern  tilegx_bundle_bits __unalign_jit_x1_st1_add;
 449	return (GX_INSN_BSWAP(__unalign_jit_x1_st1_add) &
 450		(~create_SrcA_X1(-1)) &
 451		GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
 452		create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
 453}
 454
 455__JIT_CODE("__unalign_jit_x1_st:  {crc32_8 r1, r0, r0; st  r0, r0}");
 456static tilegx_bundle_bits  jit_x1_st(int ra, int rb)
 457{
 458	extern  tilegx_bundle_bits __unalign_jit_x1_st;
 459	return (GX_INSN_BSWAP(__unalign_jit_x1_st) & GX_INSN_X1_MASK) |
 460		create_SrcA_X1(ra) | create_SrcB_X1(rb);
 461}
 462
 463__JIT_CODE("__unalign_jit_x1_st_add:  {st_add  r1, r0, 0}");
 464static tilegx_bundle_bits  jit_x1_st_add(int ra, int rb, int imm8)
 465{
 466	extern  tilegx_bundle_bits __unalign_jit_x1_st_add;
 467	return (GX_INSN_BSWAP(__unalign_jit_x1_st_add) &
 468		(~create_SrcA_X1(-1)) &
 469		GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
 470		create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
 471}
 472
 473__JIT_CODE("__unalign_jit_x1_ld:  {crc32_8 r1, r0, r0; ld  r0, r0}");
 474static tilegx_bundle_bits  jit_x1_ld(int rd, int ra)
 475{
 476	extern  tilegx_bundle_bits __unalign_jit_x1_ld;
 477	return (GX_INSN_BSWAP(__unalign_jit_x1_ld) & GX_INSN_X1_MASK) |
 478		create_Dest_X1(rd) | create_SrcA_X1(ra);
 479}
 480
 481__JIT_CODE("__unalign_jit_x1_ld_add:  {ld_add  r1, r0, 0}");
 482static tilegx_bundle_bits  jit_x1_ld_add(int rd, int ra, int imm8)
 483{
 484	extern  tilegx_bundle_bits __unalign_jit_x1_ld_add;
 485	return (GX_INSN_BSWAP(__unalign_jit_x1_ld_add) &
 486		(~create_Dest_X1(-1)) &
 487		GX_INSN_X1_MASK) | create_Dest_X1(rd) |
 488		create_SrcA_X1(ra) | create_Imm8_X1(imm8);
 489}
 490
 491__JIT_CODE("__unalign_jit_x0_bfexts:  {bfexts r0, r0, 0, 0}");
 492static tilegx_bundle_bits  jit_x0_bfexts(int rd, int ra, int bfs, int bfe)
 493{
 494	extern  tilegx_bundle_bits __unalign_jit_x0_bfexts;
 495	return (GX_INSN_BSWAP(__unalign_jit_x0_bfexts) &
 496		GX_INSN_X0_MASK) |
 497		create_Dest_X0(rd) | create_SrcA_X0(ra) |
 498		create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
 499}
 500
 501__JIT_CODE("__unalign_jit_x0_bfextu:  {bfextu r0, r0, 0, 0}");
 502static tilegx_bundle_bits  jit_x0_bfextu(int rd, int ra, int bfs, int bfe)
 503{
 504	extern  tilegx_bundle_bits __unalign_jit_x0_bfextu;
 505	return (GX_INSN_BSWAP(__unalign_jit_x0_bfextu) &
 506		GX_INSN_X0_MASK) |
 507		create_Dest_X0(rd) | create_SrcA_X0(ra) |
 508		create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
 509}
 510
 511__JIT_CODE("__unalign_jit_x1_addi:  {bfextu r1, r1, 0, 0; addi r0, r0, 0}");
 512static tilegx_bundle_bits  jit_x1_addi(int rd, int ra, int imm8)
 513{
 514	extern  tilegx_bundle_bits __unalign_jit_x1_addi;
 515	return (GX_INSN_BSWAP(__unalign_jit_x1_addi) & GX_INSN_X1_MASK) |
 516		create_Dest_X1(rd) | create_SrcA_X1(ra) |
 517		create_Imm8_X1(imm8);
 518}
 519
 520__JIT_CODE("__unalign_jit_x0_shrui:  {shrui r0, r0, 0; iret}");
 521static tilegx_bundle_bits  jit_x0_shrui(int rd, int ra, int imm6)
 522{
 523	extern  tilegx_bundle_bits __unalign_jit_x0_shrui;
 524	return (GX_INSN_BSWAP(__unalign_jit_x0_shrui) &
 525		GX_INSN_X0_MASK) |
 526		create_Dest_X0(rd) | create_SrcA_X0(ra) |
 527		create_ShAmt_X0(imm6);
 528}
 529
 530__JIT_CODE("__unalign_jit_x0_rotli:  {rotli r0, r0, 0; iret}");
 531static tilegx_bundle_bits  jit_x0_rotli(int rd, int ra, int imm6)
 532{
 533	extern  tilegx_bundle_bits __unalign_jit_x0_rotli;
 534	return (GX_INSN_BSWAP(__unalign_jit_x0_rotli) &
 535		GX_INSN_X0_MASK) |
 536		create_Dest_X0(rd) | create_SrcA_X0(ra) |
 537		create_ShAmt_X0(imm6);
 538}
 539
 540__JIT_CODE("__unalign_jit_x1_bnezt:  {bnezt r0, __unalign_jit_x1_bnezt}");
 541static tilegx_bundle_bits  jit_x1_bnezt(int ra, int broff)
 542{
 543	extern  tilegx_bundle_bits __unalign_jit_x1_bnezt;
 544	return (GX_INSN_BSWAP(__unalign_jit_x1_bnezt) &
 545		GX_INSN_X1_MASK) |
 546		create_SrcA_X1(ra) | create_BrOff_X1(broff);
 547}
 548
 549#undef __JIT_CODE
 550
 551/*
 552 * This function generates unalign fixup JIT.
 553 *
 554 * We first find unalign load/store instruction's destination, source
 555 * registers: ra, rb and rd. and 3 scratch registers by calling
 556 * find_regs(...). 3 scratch clobbers should not alias with any register
 557 * used in the fault bundle. Then analyze the fault bundle to determine
 558 * if it's a load or store, operand width, branch or address increment etc.
 559 * At last generated JIT is copied into JIT code area in user space.
 560 */
 561
 562static
 563void jit_bundle_gen(struct pt_regs *regs, tilegx_bundle_bits bundle,
 564		    int align_ctl)
 565{
 566	struct thread_info *info = current_thread_info();
 567	struct unaligned_jit_fragment frag;
 568	struct unaligned_jit_fragment *jit_code_area;
 569	tilegx_bundle_bits bundle_2 = 0;
 570	/* If bundle_2_enable = false, bundle_2 is fnop/nop operation. */
 571	bool     bundle_2_enable = true;
 572	uint64_t ra, rb, rd = -1, clob1, clob2, clob3;
 573	/*
 574	 * Indicate if the unalign access
 575	 * instruction's registers hit with
 576	 * others in the same bundle.
 577	 */
 578	bool     alias = false;
 579	bool     load_n_store = true;
 580	bool     load_store_signed = false;
 581	unsigned int  load_store_size = 8;
 582	bool     y1_br = false;  /* True, for a branch in same bundle at Y1.*/
 583	int      y1_br_reg = 0;
 584	/* True for link operation. i.e. jalr or lnk at Y1 */
 585	bool     y1_lr = false;
 586	int      y1_lr_reg = 0;
 587	bool     x1_add = false;/* True, for load/store ADD instruction at X1*/
 588	int      x1_add_imm8 = 0;
 589	bool     unexpected = false;
 590	int      n = 0, k;
 591
 592	jit_code_area =
 593		(struct unaligned_jit_fragment *)(info->unalign_jit_base);
 594
 595	memset((void *)&frag, 0, sizeof(frag));
 596
 597	/* 0: X mode, Otherwise: Y mode. */
 598	if (bundle & TILEGX_BUNDLE_MODE_MASK) {
 599		unsigned int mod, opcode;
 600
 601		if (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1 &&
 602		    get_RRROpcodeExtension_Y1(bundle) ==
 603		    UNARY_RRR_1_OPCODE_Y1) {
 604
 605			opcode = get_UnaryOpcodeExtension_Y1(bundle);
 606
 607			/*
 608			 * Test "jalr", "jalrp", "jr", "jrp" instruction at Y1
 609			 * pipeline.
 610			 */
 611			switch (opcode) {
 612			case JALR_UNARY_OPCODE_Y1:
 613			case JALRP_UNARY_OPCODE_Y1:
 614				y1_lr = true;
 615				y1_lr_reg = 55; /* Link register. */
 616				/* FALLTHROUGH */
 617			case JR_UNARY_OPCODE_Y1:
 618			case JRP_UNARY_OPCODE_Y1:
 619				y1_br = true;
 620				y1_br_reg = get_SrcA_Y1(bundle);
 621				break;
 622			case LNK_UNARY_OPCODE_Y1:
 623				/* "lnk" at Y1 pipeline. */
 624				y1_lr = true;
 625				y1_lr_reg = get_Dest_Y1(bundle);
 626				break;
 627			}
 628		}
 629
 630		opcode = get_Opcode_Y2(bundle);
 631		mod = get_Mode(bundle);
 632
 633		/*
 634		 *  bundle_2 is bundle after making Y2 as a dummy operation
 635		 *  - ld zero, sp
 636		 */
 637		bundle_2 = (bundle & (~GX_INSN_Y2_MASK)) | jit_y2_dummy();
 638
 639		/* Make Y1 as fnop if Y1 is a branch or lnk operation. */
 640		if (y1_br || y1_lr) {
 641			bundle_2 &= ~(GX_INSN_Y1_MASK);
 642			bundle_2 |= jit_y1_fnop();
 643		}
 644
 645		if (is_y0_y1_nop(bundle_2))
 646			bundle_2_enable = false;
 647
 648		if (mod == MODE_OPCODE_YC2) {
 649			/* Store. */
 650			load_n_store = false;
 651			load_store_size = 1 << opcode;
 652			load_store_signed = false;
 653			find_regs(bundle, 0, &ra, &rb, &clob1, &clob2,
 654				  &clob3, &alias);
 655			if (load_store_size > 8)
 656				unexpected = true;
 657		} else {
 658			/* Load. */
 659			load_n_store = true;
 660			if (mod == MODE_OPCODE_YB2) {
 661				switch (opcode) {
 662				case LD_OPCODE_Y2:
 663					load_store_signed = false;
 664					load_store_size = 8;
 665					break;
 666				case LD4S_OPCODE_Y2:
 667					load_store_signed = true;
 668					load_store_size = 4;
 669					break;
 670				case LD4U_OPCODE_Y2:
 671					load_store_signed = false;
 672					load_store_size = 4;
 673					break;
 674				default:
 675					unexpected = true;
 676				}
 677			} else if (mod == MODE_OPCODE_YA2) {
 678				if (opcode == LD2S_OPCODE_Y2) {
 679					load_store_signed = true;
 680					load_store_size = 2;
 681				} else if (opcode == LD2U_OPCODE_Y2) {
 682					load_store_signed = false;
 683					load_store_size = 2;
 684				} else
 685					unexpected = true;
 686			} else
 687				unexpected = true;
 688			find_regs(bundle, &rd, &ra, &rb, &clob1, &clob2,
 689				  &clob3, &alias);
 690		}
 691	} else {
 692		unsigned int opcode;
 693
 694		/* bundle_2 is bundle after making X1 as "fnop". */
 695		bundle_2 = (bundle & (~GX_INSN_X1_MASK)) | jit_x1_fnop();
 696
 697		if (is_x0_x1_nop(bundle_2))
 698			bundle_2_enable = false;
 699
 700		if (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1) {
 701			opcode = get_UnaryOpcodeExtension_X1(bundle);
 702
 703			if (get_RRROpcodeExtension_X1(bundle) ==
 704			    UNARY_RRR_0_OPCODE_X1) {
 705				load_n_store = true;
 706				find_regs(bundle, &rd, &ra, &rb, &clob1,
 707					  &clob2, &clob3, &alias);
 708
 709				switch (opcode) {
 710				case LD_UNARY_OPCODE_X1:
 711					load_store_signed = false;
 712					load_store_size = 8;
 713					break;
 714				case LD4S_UNARY_OPCODE_X1:
 715					load_store_signed = true;
 716					/* FALLTHROUGH */
 717				case LD4U_UNARY_OPCODE_X1:
 718					load_store_size = 4;
 719					break;
 720
 721				case LD2S_UNARY_OPCODE_X1:
 722					load_store_signed = true;
 723					/* FALLTHROUGH */
 724				case LD2U_UNARY_OPCODE_X1:
 725					load_store_size = 2;
 726					break;
 727				default:
 728					unexpected = true;
 729				}
 730			} else {
 731				load_n_store = false;
 732				load_store_signed = false;
 733				find_regs(bundle, 0, &ra, &rb,
 734					  &clob1, &clob2, &clob3,
 735					  &alias);
 736
 737				opcode = get_RRROpcodeExtension_X1(bundle);
 738				switch (opcode)	{
 739				case ST_RRR_0_OPCODE_X1:
 740					load_store_size = 8;
 741					break;
 742				case ST4_RRR_0_OPCODE_X1:
 743					load_store_size = 4;
 744					break;
 745				case ST2_RRR_0_OPCODE_X1:
 746					load_store_size = 2;
 747					break;
 748				default:
 749					unexpected = true;
 750				}
 751			}
 752		} else if (get_Opcode_X1(bundle) == IMM8_OPCODE_X1) {
 753			load_n_store = true;
 754			opcode = get_Imm8OpcodeExtension_X1(bundle);
 755			switch (opcode)	{
 756			case LD_ADD_IMM8_OPCODE_X1:
 757				load_store_size = 8;
 758				break;
 759
 760			case LD4S_ADD_IMM8_OPCODE_X1:
 761				load_store_signed = true;
 762				/* FALLTHROUGH */
 763			case LD4U_ADD_IMM8_OPCODE_X1:
 764				load_store_size = 4;
 765				break;
 766
 767			case LD2S_ADD_IMM8_OPCODE_X1:
 768				load_store_signed = true;
 769				/* FALLTHROUGH */
 770			case LD2U_ADD_IMM8_OPCODE_X1:
 771				load_store_size = 2;
 772				break;
 773
 774			case ST_ADD_IMM8_OPCODE_X1:
 775				load_n_store = false;
 776				load_store_size = 8;
 777				break;
 778			case ST4_ADD_IMM8_OPCODE_X1:
 779				load_n_store = false;
 780				load_store_size = 4;
 781				break;
 782			case ST2_ADD_IMM8_OPCODE_X1:
 783				load_n_store = false;
 784				load_store_size = 2;
 785				break;
 786			default:
 787				unexpected = true;
 788			}
 789
 790			if (!unexpected) {
 791				x1_add = true;
 792				if (load_n_store)
 793					x1_add_imm8 = get_Imm8_X1(bundle);
 794				else
 795					x1_add_imm8 = get_Dest_Imm8_X1(bundle);
 796			}
 797
 798			find_regs(bundle, load_n_store ? (&rd) : NULL,
 799				  &ra, &rb, &clob1, &clob2, &clob3, &alias);
 800		} else
 801			unexpected = true;
 802	}
 803
 804	/*
 805	 * Some sanity check for register numbers extracted from fault bundle.
 806	 */
 807	if (check_regs(rd, ra, rb, clob1, clob2, clob3) == true)
 808		unexpected = true;
 809
 810	/* Give warning if register ra has an aligned address. */
 811	if (!unexpected)
 812		WARN_ON(!((load_store_size - 1) & (regs->regs[ra])));
 813
 814
 815	/*
 816	 * Fault came from kernel space, here we only need take care of
 817	 * unaligned "get_user/put_user" macros defined in "uaccess.h".
 818	 * Basically, we will handle bundle like this:
 819	 * {ld/2u/4s rd, ra; movei rx, 0} or {st/2/4 ra, rb; movei rx, 0}
 820	 * (Refer to file "arch/tile/include/asm/uaccess.h" for details).
 821	 * For either load or store, byte-wise operation is performed by calling
 822	 * get_user() or put_user(). If the macro returns non-zero value,
 823	 * set the value to rx, otherwise set zero to rx. Finally make pc point
 824	 * to next bundle and return.
 825	 */
 826
 827	if (EX1_PL(regs->ex1) != USER_PL) {
 828
 829		unsigned long rx = 0;
 830		unsigned long x = 0, ret = 0;
 831
 832		if (y1_br || y1_lr || x1_add ||
 833		    (load_store_signed !=
 834		     (load_n_store && load_store_size == 4))) {
 835			/* No branch, link, wrong sign-ext or load/store add. */
 836			unexpected = true;
 837		} else if (!unexpected) {
 838			if (bundle & TILEGX_BUNDLE_MODE_MASK) {
 839				/*
 840				 * Fault bundle is Y mode.
 841				 * Check if the Y1 and Y0 is the form of
 842				 * { movei rx, 0; nop/fnop }, if yes,
 843				 * find the rx.
 844				 */
 845
 846				if ((get_Opcode_Y1(bundle) == ADDI_OPCODE_Y1)
 847				    && (get_SrcA_Y1(bundle) == TREG_ZERO) &&
 848				    (get_Imm8_Y1(bundle) == 0) &&
 849				    is_bundle_y0_nop(bundle)) {
 850					rx = get_Dest_Y1(bundle);
 851				} else if ((get_Opcode_Y0(bundle) ==
 852					    ADDI_OPCODE_Y0) &&
 853					   (get_SrcA_Y0(bundle) == TREG_ZERO) &&
 854					   (get_Imm8_Y0(bundle) == 0) &&
 855					   is_bundle_y1_nop(bundle)) {
 856					rx = get_Dest_Y0(bundle);
 857				} else {
 858					unexpected = true;
 859				}
 860			} else {
 861				/*
 862				 * Fault bundle is X mode.
 863				 * Check if the X0 is 'movei rx, 0',
 864				 * if yes, find the rx.
 865				 */
 866
 867				if ((get_Opcode_X0(bundle) == IMM8_OPCODE_X0)
 868				    && (get_Imm8OpcodeExtension_X0(bundle) ==
 869					ADDI_IMM8_OPCODE_X0) &&
 870				    (get_SrcA_X0(bundle) == TREG_ZERO) &&
 871				    (get_Imm8_X0(bundle) == 0)) {
 872					rx = get_Dest_X0(bundle);
 873				} else {
 874					unexpected = true;
 875				}
 876			}
 877
 878			/* rx should be less than 56. */
 879			if (!unexpected && (rx >= 56))
 880				unexpected = true;
 881		}
 882
 883		if (!search_exception_tables(regs->pc)) {
 884			/* No fixup in the exception tables for the pc. */
 885			unexpected = true;
 886		}
 887
 888		if (unexpected) {
 889			/* Unexpected unalign kernel fault. */
 890			struct task_struct *tsk = validate_current();
 891
 892			bust_spinlocks(1);
 893
 894			show_regs(regs);
 895
 896			if (unlikely(tsk->pid < 2)) {
 897				panic("Kernel unalign fault running %s!",
 898				      tsk->pid ? "init" : "the idle task");
 899			}
 900#ifdef SUPPORT_DIE
 901			die("Oops", regs);
 902#endif
 903			bust_spinlocks(1);
 904
 905			do_group_exit(SIGKILL);
 906
 907		} else {
 908			unsigned long i, b = 0;
 909			unsigned char *ptr =
 910				(unsigned char *)regs->regs[ra];
 911			if (load_n_store) {
 912				/* handle get_user(x, ptr) */
 913				for (i = 0; i < load_store_size; i++) {
 914					ret = get_user(b, ptr++);
 915					if (!ret) {
 916						/* Success! update x. */
 917#ifdef __LITTLE_ENDIAN
 918						x |= (b << (8 * i));
 919#else
 920						x <<= 8;
 921						x |= b;
 922#endif /* __LITTLE_ENDIAN */
 923					} else {
 924						x = 0;
 925						break;
 926					}
 927				}
 928
 929				/* Sign-extend 4-byte loads. */
 930				if (load_store_size == 4)
 931					x = (long)(int)x;
 932
 933				/* Set register rd. */
 934				regs->regs[rd] = x;
 935
 936				/* Set register rx. */
 937				regs->regs[rx] = ret;
 938
 939				/* Bump pc. */
 940				regs->pc += 8;
 941
 942			} else {
 943				/* Handle put_user(x, ptr) */
 944				x = regs->regs[rb];
 945#ifdef __LITTLE_ENDIAN
 946				b = x;
 947#else
 948				/*
 949				 * Swap x in order to store x from low
 950				 * to high memory same as the
 951				 * little-endian case.
 952				 */
 953				switch (load_store_size) {
 954				case 8:
 955					b = swab64(x);
 956					break;
 957				case 4:
 958					b = swab32(x);
 959					break;
 960				case 2:
 961					b = swab16(x);
 962					break;
 963				}
 964#endif /* __LITTLE_ENDIAN */
 965				for (i = 0; i < load_store_size; i++) {
 966					ret = put_user(b, ptr++);
 967					if (ret)
 968						break;
 969					/* Success! shift 1 byte. */
 970					b >>= 8;
 971				}
 972				/* Set register rx. */
 973				regs->regs[rx] = ret;
 974
 975				/* Bump pc. */
 976				regs->pc += 8;
 977			}
 978		}
 979
 980		unaligned_fixup_count++;
 981
 982		if (unaligned_printk) {
 983			pr_info("%s/%d. Unalign fixup for kernel access "
 984				"to userspace %lx.",
 985				current->comm, current->pid, regs->regs[ra]);
 986		}
 987
 988		/* Done! Return to the exception handler. */
 989		return;
 990	}
 991
 992	if ((align_ctl == 0) || unexpected) {
 993		siginfo_t info = {
 994			.si_signo = SIGBUS,
 995			.si_code = BUS_ADRALN,
 996			.si_addr = (unsigned char __user *)0
 997		};
 998		if (unaligned_printk)
 999			pr_info("Unalign bundle: unexp @%llx, %llx",
1000				(unsigned long long)regs->pc,
1001				(unsigned long long)bundle);
1002
1003		if (ra < 56) {
1004			unsigned long uaa = (unsigned long)regs->regs[ra];
1005			/* Set bus Address. */
1006			info.si_addr = (unsigned char __user *)uaa;
1007		}
1008
1009		unaligned_fixup_count++;
1010
1011		trace_unhandled_signal("unaligned fixup trap", regs,
1012				       (unsigned long)info.si_addr, SIGBUS);
1013		force_sig_info(info.si_signo, &info, current);
1014		return;
1015	}
1016
1017#ifdef __LITTLE_ENDIAN
1018#define UA_FIXUP_ADDR_DELTA          1
1019#define UA_FIXUP_BFEXT_START(_B_)    0
1020#define UA_FIXUP_BFEXT_END(_B_)     (8 * (_B_) - 1)
1021#else /* __BIG_ENDIAN */
1022#define UA_FIXUP_ADDR_DELTA          -1
1023#define UA_FIXUP_BFEXT_START(_B_)   (64 - 8 * (_B_))
1024#define UA_FIXUP_BFEXT_END(_B_)      63
1025#endif /* __LITTLE_ENDIAN */
1026
1027
1028
1029	if ((ra != rb) && (rd != TREG_SP) && !alias &&
1030	    !y1_br && !y1_lr && !x1_add) {
1031		/*
1032		 * Simple case: ra != rb and no register alias found,
1033		 * and no branch or link. This will be the majority.
1034		 * We can do a little better for simplae case than the
1035		 * generic scheme below.
1036		 */
1037		if (!load_n_store) {
1038			/*
1039			 * Simple store: ra != rb, no need for scratch register.
1040			 * Just store and rotate to right bytewise.
1041			 */
1042#ifdef __BIG_ENDIAN
1043			frag.insn[n++] =
1044				jit_x0_addi(ra, ra, load_store_size - 1) |
1045				jit_x1_fnop();
1046#endif /* __BIG_ENDIAN */
1047			for (k = 0; k < load_store_size; k++) {
1048				/* Store a byte. */
1049				frag.insn[n++] =
1050					jit_x0_rotli(rb, rb, 56) |
1051					jit_x1_st1_add(ra, rb,
1052						       UA_FIXUP_ADDR_DELTA);
1053			}
1054#ifdef __BIG_ENDIAN
1055			frag.insn[n] = jit_x1_addi(ra, ra, 1);
1056#else
1057			frag.insn[n] = jit_x1_addi(ra, ra,
1058						   -1 * load_store_size);
1059#endif /* __LITTLE_ENDIAN */
1060
1061			if (load_store_size == 8) {
1062				frag.insn[n] |= jit_x0_fnop();
1063			} else if (load_store_size == 4) {
1064				frag.insn[n] |= jit_x0_rotli(rb, rb, 32);
1065			} else { /* = 2 */
1066				frag.insn[n] |= jit_x0_rotli(rb, rb, 16);
1067			}
1068			n++;
1069			if (bundle_2_enable)
1070				frag.insn[n++] = bundle_2;
1071			frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1072		} else {
1073			if (rd == ra) {
1074				/* Use two clobber registers: clob1/2. */
1075				frag.insn[n++] =
1076					jit_x0_addi(TREG_SP, TREG_SP, -16) |
1077					jit_x1_fnop();
1078				frag.insn[n++] =
1079					jit_x0_addi(clob1, ra, 7) |
1080					jit_x1_st_add(TREG_SP, clob1, -8);
1081				frag.insn[n++] =
1082					jit_x0_addi(clob2, ra, 0) |
1083					jit_x1_st(TREG_SP, clob2);
1084				frag.insn[n++] =
1085					jit_x0_fnop() |
1086					jit_x1_ldna(rd, ra);
1087				frag.insn[n++] =
1088					jit_x0_fnop() |
1089					jit_x1_ldna(clob1, clob1);
1090				/*
1091				 * Note: we must make sure that rd must not
1092				 * be sp. Recover clob1/2 from stack.
1093				 */
1094				frag.insn[n++] =
1095					jit_x0_dblalign(rd, clob1, clob2) |
1096					jit_x1_ld_add(clob2, TREG_SP, 8);
1097				frag.insn[n++] =
1098					jit_x0_fnop() |
1099					jit_x1_ld_add(clob1, TREG_SP, 16);
1100			} else {
1101				/* Use one clobber register: clob1 only. */
1102				frag.insn[n++] =
1103					jit_x0_addi(TREG_SP, TREG_SP, -16) |
1104					jit_x1_fnop();
1105				frag.insn[n++] =
1106					jit_x0_addi(clob1, ra, 7) |
1107					jit_x1_st(TREG_SP, clob1);
1108				frag.insn[n++] =
1109					jit_x0_fnop() |
1110					jit_x1_ldna(rd, ra);
1111				frag.insn[n++] =
1112					jit_x0_fnop() |
1113					jit_x1_ldna(clob1, clob1);
1114				/*
1115				 * Note: we must make sure that rd must not
1116				 * be sp. Recover clob1 from stack.
1117				 */
1118				frag.insn[n++] =
1119					jit_x0_dblalign(rd, clob1, ra) |
1120					jit_x1_ld_add(clob1, TREG_SP, 16);
1121			}
1122
1123			if (bundle_2_enable)
1124				frag.insn[n++] = bundle_2;
1125			/*
1126			 * For non 8-byte load, extract corresponding bytes and
1127			 * signed extension.
1128			 */
1129			if (load_store_size == 4) {
1130				if (load_store_signed)
1131					frag.insn[n++] =
1132						jit_x0_bfexts(
1133							rd, rd,
1134							UA_FIXUP_BFEXT_START(4),
1135							UA_FIXUP_BFEXT_END(4)) |
1136						jit_x1_fnop();
1137				else
1138					frag.insn[n++] =
1139						jit_x0_bfextu(
1140							rd, rd,
1141							UA_FIXUP_BFEXT_START(4),
1142							UA_FIXUP_BFEXT_END(4)) |
1143						jit_x1_fnop();
1144			} else if (load_store_size == 2) {
1145				if (load_store_signed)
1146					frag.insn[n++] =
1147						jit_x0_bfexts(
1148							rd, rd,
1149							UA_FIXUP_BFEXT_START(2),
1150							UA_FIXUP_BFEXT_END(2)) |
1151						jit_x1_fnop();
1152				else
1153					frag.insn[n++] =
1154						jit_x0_bfextu(
1155							rd, rd,
1156							UA_FIXUP_BFEXT_START(2),
1157							UA_FIXUP_BFEXT_END(2)) |
1158						jit_x1_fnop();
1159			}
1160
1161			frag.insn[n++] =
1162				jit_x0_fnop()  |
1163				jit_x1_iret();
1164		}
1165	} else if (!load_n_store) {
1166
1167		/*
1168		 * Generic memory store cases: use 3 clobber registers.
1169		 *
1170		 * Alloc space for saveing clob2,1,3 on user's stack.
1171		 * register clob3 points to where clob2 saved, followed by
1172		 * clob1 and 3 from high to low memory.
1173		 */
1174		frag.insn[n++] =
1175			jit_x0_addi(TREG_SP, TREG_SP, -32)    |
1176			jit_x1_fnop();
1177		frag.insn[n++] =
1178			jit_x0_addi(clob3, TREG_SP, 16)  |
1179			jit_x1_st_add(TREG_SP, clob3, 8);
1180#ifdef __LITTLE_ENDIAN
1181		frag.insn[n++] =
1182			jit_x0_addi(clob1, ra, 0)   |
1183			jit_x1_st_add(TREG_SP, clob1, 8);
1184#else
1185		frag.insn[n++] =
1186			jit_x0_addi(clob1, ra, load_store_size - 1)   |
1187			jit_x1_st_add(TREG_SP, clob1, 8);
1188#endif
1189		if (load_store_size == 8) {
1190			/*
1191			 * We save one byte a time, not for fast, but compact
1192			 * code. After each store, data source register shift
1193			 * right one byte. unchanged after 8 stores.
1194			 */
1195			frag.insn[n++] =
1196				jit_x0_addi(clob2, TREG_ZERO, 7)     |
1197				jit_x1_st_add(TREG_SP, clob2, 16);
1198			frag.insn[n++] =
1199				jit_x0_rotli(rb, rb, 56)      |
1200				jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
1201			frag.insn[n++] =
1202				jit_x0_addi(clob2, clob2, -1) |
1203				jit_x1_bnezt(clob2, -1);
1204			frag.insn[n++] =
1205				jit_x0_fnop()                 |
1206				jit_x1_addi(clob2, y1_br_reg, 0);
1207		} else if (load_store_size == 4) {
1208			frag.insn[n++] =
1209				jit_x0_addi(clob2, TREG_ZERO, 3)     |
1210				jit_x1_st_add(TREG_SP, clob2, 16);
1211			frag.insn[n++] =
1212				jit_x0_rotli(rb, rb, 56)      |
1213				jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
1214			frag.insn[n++] =
1215				jit_x0_addi(clob2, clob2, -1) |
1216				jit_x1_bnezt(clob2, -1);
1217			/*
1218			 * same as 8-byte case, but need shift another 4
1219			 * byte to recover rb for 4-byte store.
1220			 */
1221			frag.insn[n++] = jit_x0_rotli(rb, rb, 32)      |
1222				jit_x1_addi(clob2, y1_br_reg, 0);
1223		} else { /* =2 */
1224			frag.insn[n++] =
1225				jit_x0_addi(clob2, rb, 0)     |
1226				jit_x1_st_add(TREG_SP, clob2, 16);
1227			for (k = 0; k < 2; k++) {
1228				frag.insn[n++] =
1229					jit_x0_shrui(rb, rb, 8)  |
1230					jit_x1_st1_add(clob1, rb,
1231						       UA_FIXUP_ADDR_DELTA);
1232			}
1233			frag.insn[n++] =
1234				jit_x0_addi(rb, clob2, 0)       |
1235				jit_x1_addi(clob2, y1_br_reg, 0);
1236		}
1237
1238		if (bundle_2_enable)
1239			frag.insn[n++] = bundle_2;
1240
1241		if (y1_lr) {
1242			frag.insn[n++] =
1243				jit_x0_fnop()                    |
1244				jit_x1_mfspr(y1_lr_reg,
1245					     SPR_EX_CONTEXT_0_0);
1246		}
1247		if (y1_br) {
1248			frag.insn[n++] =
1249				jit_x0_fnop()                    |
1250				jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
1251					     clob2);
1252		}
1253		if (x1_add) {
1254			frag.insn[n++] =
1255				jit_x0_addi(ra, ra, x1_add_imm8) |
1256				jit_x1_ld_add(clob2, clob3, -8);
1257		} else {
1258			frag.insn[n++] =
1259				jit_x0_fnop()                    |
1260				jit_x1_ld_add(clob2, clob3, -8);
1261		}
1262		frag.insn[n++] =
1263			jit_x0_fnop()   |
1264			jit_x1_ld_add(clob1, clob3, -8);
1265		frag.insn[n++] = jit_x0_fnop()   | jit_x1_ld(clob3, clob3);
1266		frag.insn[n++] = jit_x0_fnop()   | jit_x1_iret();
1267
1268	} else {
1269		/*
1270		 * Generic memory load cases.
1271		 *
1272		 * Alloc space for saveing clob1,2,3 on user's stack.
1273		 * register clob3 points to where clob1 saved, followed
1274		 * by clob2 and 3 from high to low memory.
1275		 */
1276
1277		frag.insn[n++] =
1278			jit_x0_addi(TREG_SP, TREG_SP, -32) |
1279			jit_x1_fnop();
1280		frag.insn[n++] =
1281			jit_x0_addi(clob3, TREG_SP, 16) |
1282			jit_x1_st_add(TREG_SP, clob3, 8);
1283		frag.insn[n++] =
1284			jit_x0_addi(clob2, ra, 0) |
1285			jit_x1_st_add(TREG_SP, clob2, 8);
1286
1287		if (y1_br) {
1288			frag.insn[n++] =
1289				jit_x0_addi(clob1, y1_br_reg, 0) |
1290				jit_x1_st_add(TREG_SP, clob1, 16);
1291		} else {
1292			frag.insn[n++] =
1293				jit_x0_fnop() |
1294				jit_x1_st_add(TREG_SP, clob1, 16);
1295		}
1296
1297		if (bundle_2_enable)
1298			frag.insn[n++] = bundle_2;
1299
1300		if (y1_lr) {
1301			frag.insn[n++] =
1302				jit_x0_fnop()  |
1303				jit_x1_mfspr(y1_lr_reg,
1304					     SPR_EX_CONTEXT_0_0);
1305		}
1306
1307		if (y1_br) {
1308			frag.insn[n++] =
1309				jit_x0_fnop() |
1310				jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
1311					     clob1);
1312		}
1313
1314		frag.insn[n++] =
1315			jit_x0_addi(clob1, clob2, 7)      |
1316			jit_x1_ldna(rd, clob2);
1317		frag.insn[n++] =
1318			jit_x0_fnop()                     |
1319			jit_x1_ldna(clob1, clob1);
1320		frag.insn[n++] =
1321			jit_x0_dblalign(rd, clob1, clob2) |
1322			jit_x1_ld_add(clob1, clob3, -8);
1323		if (x1_add) {
1324			frag.insn[n++] =
1325				jit_x0_addi(ra, ra, x1_add_imm8) |
1326				jit_x1_ld_add(clob2, clob3, -8);
1327		} else {
1328			frag.insn[n++] =
1329				jit_x0_fnop()  |
1330				jit_x1_ld_add(clob2, clob3, -8);
1331		}
1332
1333		frag.insn[n++] =
1334			jit_x0_fnop() |
1335			jit_x1_ld(clob3, clob3);
1336
1337		if (load_store_size == 4) {
1338			if (load_store_signed)
1339				frag.insn[n++] =
1340					jit_x0_bfexts(
1341						rd, rd,
1342						UA_FIXUP_BFEXT_START(4),
1343						UA_FIXUP_BFEXT_END(4)) |
1344					jit_x1_fnop();
1345			else
1346				frag.insn[n++] =
1347					jit_x0_bfextu(
1348						rd, rd,
1349						UA_FIXUP_BFEXT_START(4),
1350						UA_FIXUP_BFEXT_END(4)) |
1351					jit_x1_fnop();
1352		} else if (load_store_size == 2) {
1353			if (load_store_signed)
1354				frag.insn[n++] =
1355					jit_x0_bfexts(
1356						rd, rd,
1357						UA_FIXUP_BFEXT_START(2),
1358						UA_FIXUP_BFEXT_END(2)) |
1359					jit_x1_fnop();
1360			else
1361				frag.insn[n++] =
1362					jit_x0_bfextu(
1363						rd, rd,
1364						UA_FIXUP_BFEXT_START(2),
1365						UA_FIXUP_BFEXT_END(2)) |
1366					jit_x1_fnop();
1367		}
1368
1369		frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
1370	}
1371
1372	/* Max JIT bundle count is 14. */
1373	WARN_ON(n > 14);
1374
1375	if (!unexpected) {
1376		int status = 0;
1377		int idx = (regs->pc >> 3) &
1378			((1ULL << (PAGE_SHIFT - UNALIGN_JIT_SHIFT)) - 1);
1379
1380		frag.pc = regs->pc;
1381		frag.bundle = bundle;
1382
1383		if (unaligned_printk) {
1384			pr_info("%s/%d, Unalign fixup: pc=%lx "
1385				"bundle=%lx %d %d %d %d %d %d %d %d.",
1386				current->comm, current->pid,
1387				(unsigned long)frag.pc,
1388				(unsigned long)frag.bundle,
1389				(int)alias, (int)rd, (int)ra,
1390				(int)rb, (int)bundle_2_enable,
1391				(int)y1_lr, (int)y1_br, (int)x1_add);
1392
1393			for (k = 0; k < n; k += 2)
1394				pr_info("[%d] %016llx %016llx", k,
1395					(unsigned long long)frag.insn[k],
1396					(unsigned long long)frag.insn[k+1]);
1397		}
1398
1399		/* Swap bundle byte order for big endian sys. */
1400#ifdef __BIG_ENDIAN
1401		frag.bundle = GX_INSN_BSWAP(frag.bundle);
1402		for (k = 0; k < n; k++)
1403			frag.insn[k] = GX_INSN_BSWAP(frag.insn[k]);
1404#endif /* __BIG_ENDIAN */
1405
1406		status = copy_to_user((void __user *)&jit_code_area[idx],
1407				      &frag, sizeof(frag));
1408		if (status) {
1409			/* Fail to copy JIT into user land. send SIGSEGV. */
1410			siginfo_t info = {
1411				.si_signo = SIGSEGV,
1412				.si_code = SEGV_MAPERR,
1413				.si_addr = (void __user *)&jit_code_area[idx]
1414			};
1415
1416			pr_warn("Unalign fixup: pid=%d %s jit_code_area=%llx",
1417				current->pid, current->comm,
1418				(unsigned long long)&jit_code_area[idx]);
1419
1420			trace_unhandled_signal("segfault in unalign fixup",
1421					       regs,
1422					       (unsigned long)info.si_addr,
1423					       SIGSEGV);
1424			force_sig_info(info.si_signo, &info, current);
1425			return;
1426		}
1427
1428
1429		/* Do a cheaper increment, not accurate. */
1430		unaligned_fixup_count++;
1431		__flush_icache_range((unsigned long)&jit_code_area[idx],
1432				     (unsigned long)&jit_code_area[idx] +
1433				     sizeof(frag));
1434
1435		/* Setup SPR_EX_CONTEXT_0_0/1 for returning to user program.*/
1436		__insn_mtspr(SPR_EX_CONTEXT_0_0, regs->pc + 8);
1437		__insn_mtspr(SPR_EX_CONTEXT_0_1, PL_ICS_EX1(USER_PL, 0));
1438
1439		/* Modify pc at the start of new JIT. */
1440		regs->pc = (unsigned long)&jit_code_area[idx].insn[0];
1441		/* Set ICS in SPR_EX_CONTEXT_K_1. */
1442		regs->ex1 = PL_ICS_EX1(USER_PL, 1);
1443	}
1444}
1445
1446
1447/*
1448 * C function to generate unalign data JIT. Called from unalign data
1449 * interrupt handler.
1450 *
1451 * First check if unalign fix is disabled or exception did not not come from
1452 * user space or sp register points to unalign address, if true, generate a
1453 * SIGBUS. Then map a page into user space as JIT area if it is not mapped
1454 * yet. Genenerate JIT code by calling jit_bundle_gen(). After that return
1455 * back to exception handler.
1456 *
1457 * The exception handler will "iret" to new generated JIT code after
1458 * restoring caller saved registers. In theory, the JIT code will perform
1459 * another "iret" to resume user's program.
1460 */
1461
1462void do_unaligned(struct pt_regs *regs, int vecnum)
1463{
1464	tilegx_bundle_bits __user  *pc;
1465	tilegx_bundle_bits bundle;
1466	struct thread_info *info = current_thread_info();
1467	int align_ctl;
1468
1469	/* Checks the per-process unaligned JIT flags */
1470	align_ctl = unaligned_fixup;
1471	switch (task_thread_info(current)->align_ctl) {
1472	case PR_UNALIGN_NOPRINT:
1473		align_ctl = 1;
1474		break;
1475	case PR_UNALIGN_SIGBUS:
1476		align_ctl = 0;
1477		break;
1478	}
1479
1480	/* Enable iterrupt in order to access user land. */
1481	local_irq_enable();
1482
1483	/*
1484	 * The fault came from kernel space. Two choices:
1485	 * (a) unaligned_fixup < 1, we will first call get/put_user fixup
1486	 *     to return -EFAULT. If no fixup, simply panic the kernel.
1487	 * (b) unaligned_fixup >=1, we will try to fix the unaligned access
1488	 *     if it was triggered by get_user/put_user() macros. Panic the
1489	 *     kernel if it is not fixable.
1490	 */
1491
1492	if (EX1_PL(regs->ex1) != USER_PL) {
1493
1494		if (align_ctl < 1) {
1495			unaligned_fixup_count++;
1496			/* If exception came from kernel, try fix it up. */
1497			if (fixup_exception(regs)) {
1498				if (unaligned_printk)
1499					pr_info("Unalign fixup: %d %llx @%llx",
1500						(int)unaligned_fixup,
1501						(unsigned long long)regs->ex1,
1502						(unsigned long long)regs->pc);
1503				return;
1504			}
1505			/* Not fixable. Go panic. */
1506			panic("Unalign exception in Kernel. pc=%lx",
1507			      regs->pc);
1508			return;
1509		} else {
1510			/*
1511			 * Try to fix the exception. If we can't, panic the
1512			 * kernel.
1513			 */
1514			bundle = GX_INSN_BSWAP(
1515				*((tilegx_bundle_bits *)(regs->pc)));
1516			jit_bundle_gen(regs, bundle, align_ctl);
1517			return;
1518		}
1519	}
1520
1521	/*
1522	 * Fault came from user with ICS or stack is not aligned.
1523	 * If so, we will trigger SIGBUS.
1524	 */
1525	if ((regs->sp & 0x7) || (regs->ex1) || (align_ctl < 0)) {
1526		siginfo_t info = {
1527			.si_signo = SIGBUS,
1528			.si_code = BUS_ADRALN,
1529			.si_addr = (unsigned char __user *)0
1530		};
1531
1532		if (unaligned_printk)
1533			pr_info("Unalign fixup: %d %llx @%llx",
1534				(int)unaligned_fixup,
1535				(unsigned long long)regs->ex1,
1536				(unsigned long long)regs->pc);
1537
1538		unaligned_fixup_count++;
1539
1540		trace_unhandled_signal("unaligned fixup trap", regs, 0, SIGBUS);
1541		force_sig_info(info.si_signo, &info, current);
1542		return;
1543	}
1544
1545
1546	/* Read the bundle casued the exception! */
1547	pc = (tilegx_bundle_bits __user *)(regs->pc);
1548	if (get_user(bundle, pc) != 0) {
1549		/* Probably never be here since pc is valid user address.*/
1550		siginfo_t info = {
1551			.si_signo = SIGSEGV,
1552			.si_code = SEGV_MAPERR,
1553			.si_addr = (void __user *)pc
1554		};
1555		pr_err("Couldn't read instruction at %p trying to step\n", pc);
1556		trace_unhandled_signal("segfault in unalign fixup", regs,
1557				       (unsigned long)info.si_addr, SIGSEGV);
1558		force_sig_info(info.si_signo, &info, current);
1559		return;
1560	}
1561
1562	if (!info->unalign_jit_base) {
1563		void __user *user_page;
1564
1565		/*
1566		 * Allocate a page in userland.
1567		 * For 64-bit processes we try to place the mapping far
1568		 * from anything else that might be going on (specifically
1569		 * 64 GB below the top of the user address space).  If it
1570		 * happens not to be possible to put it there, it's OK;
1571		 * the kernel will choose another location and we'll
1572		 * remember it for later.
1573		 */
1574		if (is_compat_task())
1575			user_page = NULL;
1576		else
1577			user_page = (void __user *)(TASK_SIZE - (1UL << 36)) +
1578				(current->pid << PAGE_SHIFT);
1579
1580		user_page = (void __user *) vm_mmap(NULL,
1581						    (unsigned long)user_page,
1582						    PAGE_SIZE,
1583						    PROT_EXEC | PROT_READ |
1584						    PROT_WRITE,
1585#ifdef CONFIG_HOMECACHE
1586						    MAP_CACHE_HOME_TASK |
1587#endif
1588						    MAP_PRIVATE |
1589						    MAP_ANONYMOUS,
1590						    0);
1591
1592		if (IS_ERR((void __force *)user_page)) {
1593			pr_err("Out of kernel pages trying do_mmap.\n");
1594			return;
1595		}
1596
1597		/* Save the address in the thread_info struct */
1598		info->unalign_jit_base = user_page;
1599		if (unaligned_printk)
1600			pr_info("Unalign bundle: %d:%d, allocate page @%llx",
1601				raw_smp_processor_id(), current->pid,
1602				(unsigned long long)user_page);
1603	}
1604
1605	/* Generate unalign JIT */
1606	jit_bundle_gen(regs, GX_INSN_BSWAP(bundle), align_ctl);
1607}
1608
1609#endif /* __tilegx__ */