Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kallsyms.h>
  22#include <linux/kdebug.h>
  23#include <linux/ftrace.h>
  24#include <linux/reboot.h>
  25#include <linux/gfp.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/smp.h>
  29#include <asm/delay.h>
  30#include <asm/ptrace.h>
  31#include <asm/oplib.h>
  32#include <asm/page.h>
 
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60	struct {
  61		unsigned long tstate;
  62		unsigned long tpc;
  63		unsigned long tnpc;
  64		unsigned long tt;
  65	} trapstack[4];
  66	unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71	int i, limit;
  72
  73	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74	       "dumping track stack.\n", p->tl);
  75
  76	limit = (tlb_type == hypervisor) ? 2 : 4;
  77	for (i = 0; i < limit; i++) {
  78		printk(KERN_EMERG
  79		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80		       "TNPC[%016lx] TT[%lx]\n",
  81		       i + 1,
  82		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85	}
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90	char buffer[36];
 
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
 111			       (void __user *)regs->tpc, lvl);
 
 
 
 
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116	char buffer[36];
 117	
 118	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120		return;
 121
 122	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125	die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131	bust_spinlocks(1);
 132	printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142	unsigned long flags;
 143	int ret = -ENODEV;
 144
 145	spin_lock_irqsave(&dimm_handler_lock, flags);
 146	if (dimm_handler) {
 147		ret = dimm_handler(synd_code, paddr, buf, buflen);
 148	} else if (tlb_type == spitfire) {
 149		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150			ret = -EINVAL;
 151		else
 152			ret = 0;
 153	} else
 154		ret = -ENODEV;
 155	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157	return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162	unsigned long flags;
 163	int ret = 0;
 164
 165	spin_lock_irqsave(&dimm_handler_lock, flags);
 166	if (!dimm_handler)
 167		dimm_handler = func;
 168	else
 169		ret = -EEXIST;
 170	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172	return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178	unsigned long flags;
 179
 180	spin_lock_irqsave(&dimm_handler_lock, flags);
 181	if (dimm_handler == func)
 182		dimm_handler = NULL;
 183	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189	enum ctx_state prev_state = exception_enter();
 
 190
 191	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193		goto out;
 194
 195	if (regs->tstate & TSTATE_PRIV) {
 196		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197		       "SFAR[%016lx], going.\n", sfsr, sfar);
 198		die_if_kernel("Iax", regs);
 199	}
 200	if (test_thread_flag(TIF_32BIT)) {
 201		regs->tpc &= 0xffffffff;
 202		regs->tnpc &= 0xffffffff;
 203	}
 204	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
 
 
 
 
 
 205out:
 206	exception_exit(prev_state);
 207}
 208
 209void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 210{
 211	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 212		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 213		return;
 214
 215	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 216	spitfire_insn_access_exception(regs, sfsr, sfar);
 217}
 218
 219void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 220{
 221	unsigned short type = (type_ctx >> 16);
 222	unsigned short ctx  = (type_ctx & 0xffff);
 
 223
 224	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 225		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 226		return;
 227
 228	if (regs->tstate & TSTATE_PRIV) {
 229		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 230		       "CTX[%04x] TYPE[%04x], going.\n",
 231		       addr, ctx, type);
 232		die_if_kernel("Iax", regs);
 233	}
 234
 235	if (test_thread_flag(TIF_32BIT)) {
 236		regs->tpc &= 0xffffffff;
 237		regs->tnpc &= 0xffffffff;
 238	}
 239	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
 
 
 
 
 
 240}
 241
 242void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 243{
 244	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 245		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 246		return;
 247
 248	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 249	sun4v_insn_access_exception(regs, addr, type_ctx);
 250}
 251
 252bool is_no_fault_exception(struct pt_regs *regs)
 253{
 254	unsigned char asi;
 255	u32 insn;
 256
 257	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 258		return false;
 259
 260	/*
 261	 * Must do a little instruction decoding here in order to
 262	 * decide on a course of action. The bits of interest are:
 263	 *  insn[31:30] = op, where 3 indicates the load/store group
 264	 *  insn[24:19] = op3, which identifies individual opcodes
 265	 *  insn[13] indicates an immediate offset
 266	 *  op3[4]=1 identifies alternate space instructions
 267	 *  op3[5:4]=3 identifies floating point instructions
 268	 *  op3[2]=1 identifies stores
 269	 * See "Opcode Maps" in the appendix of any Sparc V9
 270	 * architecture spec for full details.
 271	 */
 272	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 273		if (insn & 0x2000)		    /* immediate offset */
 274			asi = (regs->tstate >> 24); /* saved %asi       */
 275		else
 276			asi = (insn >> 5);	    /* immediate asi    */
 277		if ((asi & 0xf6) == ASI_PNF) {
 278			if (insn & 0x200000)        /* op3[2], stores   */
 279				return false;
 280			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 281				handle_ldf_stq(insn, regs);
 282			else
 283				handle_ld_nf(insn, regs);
 284			return true;
 285		}
 286	}
 287	return false;
 288}
 289
 290void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 291{
 292	enum ctx_state prev_state = exception_enter();
 
 293
 294	if (notify_die(DIE_TRAP, "data access exception", regs,
 295		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 296		goto out;
 297
 298	if (regs->tstate & TSTATE_PRIV) {
 299		/* Test if this comes from uaccess places. */
 300		const struct exception_table_entry *entry;
 301
 302		entry = search_exception_tables(regs->tpc);
 303		if (entry) {
 304			/* Ouch, somebody is trying VM hole tricks on us... */
 305#ifdef DEBUG_EXCEPTIONS
 306			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 307			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 308			       regs->tpc, entry->fixup);
 309#endif
 310			regs->tpc = entry->fixup;
 311			regs->tnpc = regs->tpc + 4;
 312			goto out;
 313		}
 314		/* Shit... */
 315		printk("spitfire_data_access_exception: SFSR[%016lx] "
 316		       "SFAR[%016lx], going.\n", sfsr, sfar);
 317		die_if_kernel("Dax", regs);
 318	}
 319
 320	if (is_no_fault_exception(regs))
 321		return;
 322
 323	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
 
 
 324out:
 325	exception_exit(prev_state);
 326}
 327
 328void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 329{
 330	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 331		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 332		return;
 333
 334	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 335	spitfire_data_access_exception(regs, sfsr, sfar);
 336}
 337
 338void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 339{
 340	unsigned short type = (type_ctx >> 16);
 341	unsigned short ctx  = (type_ctx & 0xffff);
 
 342
 343	if (notify_die(DIE_TRAP, "data access exception", regs,
 344		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 345		return;
 346
 347	if (regs->tstate & TSTATE_PRIV) {
 348		/* Test if this comes from uaccess places. */
 349		const struct exception_table_entry *entry;
 350
 351		entry = search_exception_tables(regs->tpc);
 352		if (entry) {
 353			/* Ouch, somebody is trying VM hole tricks on us... */
 354#ifdef DEBUG_EXCEPTIONS
 355			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 356			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 357			       regs->tpc, entry->fixup);
 358#endif
 359			regs->tpc = entry->fixup;
 360			regs->tnpc = regs->tpc + 4;
 361			return;
 362		}
 363		printk("sun4v_data_access_exception: ADDR[%016lx] "
 364		       "CTX[%04x] TYPE[%04x], going.\n",
 365		       addr, ctx, type);
 366		die_if_kernel("Dax", regs);
 367	}
 368
 369	if (test_thread_flag(TIF_32BIT)) {
 370		regs->tpc &= 0xffffffff;
 371		regs->tnpc &= 0xffffffff;
 372	}
 373	if (is_no_fault_exception(regs))
 374		return;
 375
 376	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 377	 * is vectored thorugh data access exception trap with fault type
 378	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 379	 * Accessing an address with invalid ASI for the address, for
 380	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 381	 * when TTE.mcd is not set for the VA, is also vectored into
 382	 * kerbel by HV as data access exception with fault type set to
 383	 * HV_FAULT_TYPE_INV_ASI.
 384	 */
 385	switch (type) {
 386	case HV_FAULT_TYPE_INV_ASI:
 387		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
 388		break;
 389	case HV_FAULT_TYPE_MCD_DIS:
 390		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
 391		break;
 392	default:
 393		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
 394		break;
 395	}
 396}
 397
 398void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 399{
 400	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 401		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 402		return;
 403
 404	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 405	sun4v_data_access_exception(regs, addr, type_ctx);
 406}
 407
 408#ifdef CONFIG_PCI
 409#include "pci_impl.h"
 410#endif
 411
 412/* When access exceptions happen, we must do this. */
 413static void spitfire_clean_and_reenable_l1_caches(void)
 414{
 415	unsigned long va;
 416
 417	if (tlb_type != spitfire)
 418		BUG();
 419
 420	/* Clean 'em. */
 421	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 422		spitfire_put_icache_tag(va, 0x0);
 423		spitfire_put_dcache_tag(va, 0x0);
 424	}
 425
 426	/* Re-enable in LSU. */
 427	__asm__ __volatile__("flush %%g6\n\t"
 428			     "membar #Sync\n\t"
 429			     "stxa %0, [%%g0] %1\n\t"
 430			     "membar #Sync"
 431			     : /* no outputs */
 432			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 433				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 434			     "i" (ASI_LSU_CONTROL)
 435			     : "memory");
 436}
 437
 438static void spitfire_enable_estate_errors(void)
 439{
 440	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 441			     "membar	#Sync"
 442			     : /* no outputs */
 443			     : "r" (ESTATE_ERR_ALL),
 444			       "i" (ASI_ESTATE_ERROR_EN));
 445}
 446
 447static char ecc_syndrome_table[] = {
 448	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 449	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 450	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 451	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 452	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 453	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 454	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 455	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 456	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 457	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 458	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 459	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 460	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 461	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 462	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 463	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 464	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 465	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 466	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 467	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 468	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 469	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 470	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 471	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 472	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 473	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 474	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 475	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 476	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 477	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 478	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 479	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 480};
 481
 482static char *syndrome_unknown = "<Unknown>";
 483
 484static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 485{
 486	unsigned short scode;
 487	char memmod_str[64], *p;
 488
 489	if (udbl & bit) {
 490		scode = ecc_syndrome_table[udbl & 0xff];
 491		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 492			p = syndrome_unknown;
 493		else
 494			p = memmod_str;
 495		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 496		       "Memory Module \"%s\"\n",
 497		       smp_processor_id(), scode, p);
 498	}
 499
 500	if (udbh & bit) {
 501		scode = ecc_syndrome_table[udbh & 0xff];
 502		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 503			p = syndrome_unknown;
 504		else
 505			p = memmod_str;
 506		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 507		       "Memory Module \"%s\"\n",
 508		       smp_processor_id(), scode, p);
 509	}
 510
 511}
 512
 513static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 514{
 515
 516	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 517	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 518	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 519
 520	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 521
 522	/* We always log it, even if someone is listening for this
 523	 * trap.
 524	 */
 525	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 526		   0, TRAP_TYPE_CEE, SIGTRAP);
 527
 528	/* The Correctable ECC Error trap does not disable I/D caches.  So
 529	 * we only have to restore the ESTATE Error Enable register.
 530	 */
 531	spitfire_enable_estate_errors();
 532}
 533
 534static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 535{
 
 
 536	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 537	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 538	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 539
 540	/* XXX add more human friendly logging of the error status
 541	 * XXX as is implemented for cheetah
 542	 */
 543
 544	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 545
 546	/* We always log it, even if someone is listening for this
 547	 * trap.
 548	 */
 549	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 550		   0, tt, SIGTRAP);
 551
 552	if (regs->tstate & TSTATE_PRIV) {
 553		if (tl1)
 554			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 555		die_if_kernel("UE", regs);
 556	}
 557
 558	/* XXX need more intelligent processing here, such as is implemented
 559	 * XXX for cheetah errors, in fact if the E-cache still holds the
 560	 * XXX line with bad parity this will loop
 561	 */
 562
 563	spitfire_clean_and_reenable_l1_caches();
 564	spitfire_enable_estate_errors();
 565
 566	if (test_thread_flag(TIF_32BIT)) {
 567		regs->tpc &= 0xffffffff;
 568		regs->tnpc &= 0xffffffff;
 569	}
 570	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
 
 
 
 
 
 571}
 572
 573void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 574{
 575	unsigned long afsr, tt, udbh, udbl;
 576	int tl1;
 577
 578	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 579	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 580	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 581	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 582	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 583
 584#ifdef CONFIG_PCI
 585	if (tt == TRAP_TYPE_DAE &&
 586	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 587		spitfire_clean_and_reenable_l1_caches();
 588		spitfire_enable_estate_errors();
 589
 590		pci_poke_faulted = 1;
 591		regs->tnpc = regs->tpc + 4;
 592		return;
 593	}
 594#endif
 595
 596	if (afsr & SFAFSR_UE)
 597		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 598
 599	if (tt == TRAP_TYPE_CEE) {
 600		/* Handle the case where we took a CEE trap, but ACK'd
 601		 * only the UE state in the UDB error registers.
 602		 */
 603		if (afsr & SFAFSR_UE) {
 604			if (udbh & UDBE_CE) {
 605				__asm__ __volatile__(
 606					"stxa	%0, [%1] %2\n\t"
 607					"membar	#Sync"
 608					: /* no outputs */
 609					: "r" (udbh & UDBE_CE),
 610					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 611			}
 612			if (udbl & UDBE_CE) {
 613				__asm__ __volatile__(
 614					"stxa	%0, [%1] %2\n\t"
 615					"membar	#Sync"
 616					: /* no outputs */
 617					: "r" (udbl & UDBE_CE),
 618					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 619			}
 620		}
 621
 622		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 623	}
 624}
 625
 626int cheetah_pcache_forced_on;
 627
 628void cheetah_enable_pcache(void)
 629{
 630	unsigned long dcr;
 631
 632	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 633	       smp_processor_id());
 634
 635	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 636			     : "=r" (dcr)
 637			     : "i" (ASI_DCU_CONTROL_REG));
 638	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 639	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 640			     "membar #Sync"
 641			     : /* no outputs */
 642			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 643}
 644
 645/* Cheetah error trap handling. */
 646static unsigned long ecache_flush_physbase;
 647static unsigned long ecache_flush_linesize;
 648static unsigned long ecache_flush_size;
 649
 650/* This table is ordered in priority of errors and matches the
 651 * AFAR overwrite policy as well.
 652 */
 653
 654struct afsr_error_table {
 655	unsigned long mask;
 656	const char *name;
 657};
 658
 659static const char CHAFSR_PERR_msg[] =
 660	"System interface protocol error";
 661static const char CHAFSR_IERR_msg[] =
 662	"Internal processor error";
 663static const char CHAFSR_ISAP_msg[] =
 664	"System request parity error on incoming address";
 665static const char CHAFSR_UCU_msg[] =
 666	"Uncorrectable E-cache ECC error for ifetch/data";
 667static const char CHAFSR_UCC_msg[] =
 668	"SW Correctable E-cache ECC error for ifetch/data";
 669static const char CHAFSR_UE_msg[] =
 670	"Uncorrectable system bus data ECC error for read";
 671static const char CHAFSR_EDU_msg[] =
 672	"Uncorrectable E-cache ECC error for stmerge/blkld";
 673static const char CHAFSR_EMU_msg[] =
 674	"Uncorrectable system bus MTAG error";
 675static const char CHAFSR_WDU_msg[] =
 676	"Uncorrectable E-cache ECC error for writeback";
 677static const char CHAFSR_CPU_msg[] =
 678	"Uncorrectable ECC error for copyout";
 679static const char CHAFSR_CE_msg[] =
 680	"HW corrected system bus data ECC error for read";
 681static const char CHAFSR_EDC_msg[] =
 682	"HW corrected E-cache ECC error for stmerge/blkld";
 683static const char CHAFSR_EMC_msg[] =
 684	"HW corrected system bus MTAG ECC error";
 685static const char CHAFSR_WDC_msg[] =
 686	"HW corrected E-cache ECC error for writeback";
 687static const char CHAFSR_CPC_msg[] =
 688	"HW corrected ECC error for copyout";
 689static const char CHAFSR_TO_msg[] =
 690	"Unmapped error from system bus";
 691static const char CHAFSR_BERR_msg[] =
 692	"Bus error response from system bus";
 693static const char CHAFSR_IVC_msg[] =
 694	"HW corrected system bus data ECC error for ivec read";
 695static const char CHAFSR_IVU_msg[] =
 696	"Uncorrectable system bus data ECC error for ivec read";
 697static struct afsr_error_table __cheetah_error_table[] = {
 698	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 699	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 700	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 701	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 702	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 703	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 704	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 705	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 706	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 707	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 708	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 709	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 710	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 711	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 712	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 713	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 714	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 715	/* These two do not update the AFAR. */
 716	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 717	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 718	{	0,		NULL			},
 719};
 720static const char CHPAFSR_DTO_msg[] =
 721	"System bus unmapped error for prefetch/storequeue-read";
 722static const char CHPAFSR_DBERR_msg[] =
 723	"System bus error for prefetch/storequeue-read";
 724static const char CHPAFSR_THCE_msg[] =
 725	"Hardware corrected E-cache Tag ECC error";
 726static const char CHPAFSR_TSCE_msg[] =
 727	"SW handled correctable E-cache Tag ECC error";
 728static const char CHPAFSR_TUE_msg[] =
 729	"Uncorrectable E-cache Tag ECC error";
 730static const char CHPAFSR_DUE_msg[] =
 731	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 732static struct afsr_error_table __cheetah_plus_error_table[] = {
 733	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 734	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 735	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 736	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 737	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 738	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 739	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 740	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 741	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 742	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 743	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 744	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 745	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 746	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 747	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 748	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 749	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 750	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 751	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 752	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 753	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 754	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 755	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 756	/* These two do not update the AFAR. */
 757	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 758	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 759	{	0,		NULL			},
 760};
 761static const char JPAFSR_JETO_msg[] =
 762	"System interface protocol error, hw timeout caused";
 763static const char JPAFSR_SCE_msg[] =
 764	"Parity error on system snoop results";
 765static const char JPAFSR_JEIC_msg[] =
 766	"System interface protocol error, illegal command detected";
 767static const char JPAFSR_JEIT_msg[] =
 768	"System interface protocol error, illegal ADTYPE detected";
 769static const char JPAFSR_OM_msg[] =
 770	"Out of range memory error has occurred";
 771static const char JPAFSR_ETP_msg[] =
 772	"Parity error on L2 cache tag SRAM";
 773static const char JPAFSR_UMS_msg[] =
 774	"Error due to unsupported store";
 775static const char JPAFSR_RUE_msg[] =
 776	"Uncorrectable ECC error from remote cache/memory";
 777static const char JPAFSR_RCE_msg[] =
 778	"Correctable ECC error from remote cache/memory";
 779static const char JPAFSR_BP_msg[] =
 780	"JBUS parity error on returned read data";
 781static const char JPAFSR_WBP_msg[] =
 782	"JBUS parity error on data for writeback or block store";
 783static const char JPAFSR_FRC_msg[] =
 784	"Foreign read to DRAM incurring correctable ECC error";
 785static const char JPAFSR_FRU_msg[] =
 786	"Foreign read to DRAM incurring uncorrectable ECC error";
 787static struct afsr_error_table __jalapeno_error_table[] = {
 788	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 789	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 790	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 791	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 792	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 793	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 794	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 795	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 796	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 797	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 798	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 799	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 800	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 801	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 802	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 803	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 804	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 805	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 806	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 807	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 808	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 809	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 810	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 811	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 812	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 813	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 814	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 815	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 816	/* These two do not update the AFAR. */
 817	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 818	{	0,		NULL			},
 819};
 820static struct afsr_error_table *cheetah_error_table;
 821static unsigned long cheetah_afsr_errors;
 822
 823struct cheetah_err_info *cheetah_error_log;
 824
 825static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 826{
 827	struct cheetah_err_info *p;
 828	int cpu = smp_processor_id();
 829
 830	if (!cheetah_error_log)
 831		return NULL;
 832
 833	p = cheetah_error_log + (cpu * 2);
 834	if ((afsr & CHAFSR_TL1) != 0UL)
 835		p++;
 836
 837	return p;
 838}
 839
 840extern unsigned int tl0_icpe[], tl1_icpe[];
 841extern unsigned int tl0_dcpe[], tl1_dcpe[];
 842extern unsigned int tl0_fecc[], tl1_fecc[];
 843extern unsigned int tl0_cee[], tl1_cee[];
 844extern unsigned int tl0_iae[], tl1_iae[];
 845extern unsigned int tl0_dae[], tl1_dae[];
 846extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 847extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 848extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 849extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 850extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 851
 852void __init cheetah_ecache_flush_init(void)
 853{
 854	unsigned long largest_size, smallest_linesize, order, ver;
 855	int i, sz;
 856
 857	/* Scan all cpu device tree nodes, note two values:
 858	 * 1) largest E-cache size
 859	 * 2) smallest E-cache line size
 860	 */
 861	largest_size = 0UL;
 862	smallest_linesize = ~0UL;
 863
 864	for (i = 0; i < NR_CPUS; i++) {
 865		unsigned long val;
 866
 867		val = cpu_data(i).ecache_size;
 868		if (!val)
 869			continue;
 870
 871		if (val > largest_size)
 872			largest_size = val;
 873
 874		val = cpu_data(i).ecache_line_size;
 875		if (val < smallest_linesize)
 876			smallest_linesize = val;
 877
 878	}
 879
 880	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 881		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 882			    "parameters.\n");
 883		prom_halt();
 884	}
 885
 886	ecache_flush_size = (2 * largest_size);
 887	ecache_flush_linesize = smallest_linesize;
 888
 889	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 890
 891	if (ecache_flush_physbase == ~0UL) {
 892		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 893			    "contiguous physical memory.\n",
 894			    ecache_flush_size);
 895		prom_halt();
 896	}
 897
 898	/* Now allocate error trap reporting scoreboard. */
 899	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 900	for (order = 0; order < MAX_ORDER; order++) {
 901		if ((PAGE_SIZE << order) >= sz)
 902			break;
 903	}
 904	cheetah_error_log = (struct cheetah_err_info *)
 905		__get_free_pages(GFP_KERNEL, order);
 906	if (!cheetah_error_log) {
 907		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 908			    "error logging scoreboard (%d bytes).\n", sz);
 909		prom_halt();
 910	}
 911	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 912
 913	/* Mark all AFSRs as invalid so that the trap handler will
 914	 * log new new information there.
 915	 */
 916	for (i = 0; i < 2 * NR_CPUS; i++)
 917		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 918
 919	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 920	if ((ver >> 32) == __JALAPENO_ID ||
 921	    (ver >> 32) == __SERRANO_ID) {
 922		cheetah_error_table = &__jalapeno_error_table[0];
 923		cheetah_afsr_errors = JPAFSR_ERRORS;
 924	} else if ((ver >> 32) == 0x003e0015) {
 925		cheetah_error_table = &__cheetah_plus_error_table[0];
 926		cheetah_afsr_errors = CHPAFSR_ERRORS;
 927	} else {
 928		cheetah_error_table = &__cheetah_error_table[0];
 929		cheetah_afsr_errors = CHAFSR_ERRORS;
 930	}
 931
 932	/* Now patch trap tables. */
 933	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 934	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 935	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 936	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 937	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 938	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 939	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 940	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 941	if (tlb_type == cheetah_plus) {
 942		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 943		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 944		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 945		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 946	}
 947	flushi(PAGE_OFFSET);
 948}
 949
 950static void cheetah_flush_ecache(void)
 951{
 952	unsigned long flush_base = ecache_flush_physbase;
 953	unsigned long flush_linesize = ecache_flush_linesize;
 954	unsigned long flush_size = ecache_flush_size;
 955
 956	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 957			     "   bne,pt	%%xcc, 1b\n\t"
 958			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 959			     : "=&r" (flush_size)
 960			     : "0" (flush_size), "r" (flush_base),
 961			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 962}
 963
 964static void cheetah_flush_ecache_line(unsigned long physaddr)
 965{
 966	unsigned long alias;
 967
 968	physaddr &= ~(8UL - 1UL);
 969	physaddr = (ecache_flush_physbase +
 970		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 971	alias = physaddr + (ecache_flush_size >> 1UL);
 972	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 973			     "ldxa [%1] %2, %%g0\n\t"
 974			     "membar #Sync"
 975			     : /* no outputs */
 976			     : "r" (physaddr), "r" (alias),
 977			       "i" (ASI_PHYS_USE_EC));
 978}
 979
 980/* Unfortunately, the diagnostic access to the I-cache tags we need to
 981 * use to clear the thing interferes with I-cache coherency transactions.
 982 *
 983 * So we must only flush the I-cache when it is disabled.
 984 */
 985static void __cheetah_flush_icache(void)
 986{
 987	unsigned int icache_size, icache_line_size;
 988	unsigned long addr;
 989
 990	icache_size = local_cpu_data().icache_size;
 991	icache_line_size = local_cpu_data().icache_line_size;
 992
 993	/* Clear the valid bits in all the tags. */
 994	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 995		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 996				     "membar #Sync"
 997				     : /* no outputs */
 998				     : "r" (addr | (2 << 3)),
 999				       "i" (ASI_IC_TAG));
1000	}
1001}
1002
1003static void cheetah_flush_icache(void)
1004{
1005	unsigned long dcu_save;
1006
1007	/* Save current DCU, disable I-cache. */
1008	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1009			     "or %0, %2, %%g1\n\t"
1010			     "stxa %%g1, [%%g0] %1\n\t"
1011			     "membar #Sync"
1012			     : "=r" (dcu_save)
1013			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1014			     : "g1");
1015
1016	__cheetah_flush_icache();
1017
1018	/* Restore DCU register */
1019	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1020			     "membar #Sync"
1021			     : /* no outputs */
1022			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1023}
1024
1025static void cheetah_flush_dcache(void)
1026{
1027	unsigned int dcache_size, dcache_line_size;
1028	unsigned long addr;
1029
1030	dcache_size = local_cpu_data().dcache_size;
1031	dcache_line_size = local_cpu_data().dcache_line_size;
1032
1033	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1034		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1035				     "membar #Sync"
1036				     : /* no outputs */
1037				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1038	}
1039}
1040
1041/* In order to make the even parity correct we must do two things.
1042 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1043 * Next, we clear out all 32-bytes of data for that line.  Data of
1044 * all-zero + tag parity value of zero == correct parity.
1045 */
1046static void cheetah_plus_zap_dcache_parity(void)
1047{
1048	unsigned int dcache_size, dcache_line_size;
1049	unsigned long addr;
1050
1051	dcache_size = local_cpu_data().dcache_size;
1052	dcache_line_size = local_cpu_data().dcache_line_size;
1053
1054	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1055		unsigned long tag = (addr >> 14);
1056		unsigned long line;
1057
1058		__asm__ __volatile__("membar	#Sync\n\t"
1059				     "stxa	%0, [%1] %2\n\t"
1060				     "membar	#Sync"
1061				     : /* no outputs */
1062				     : "r" (tag), "r" (addr),
1063				       "i" (ASI_DCACHE_UTAG));
1064		for (line = addr; line < addr + dcache_line_size; line += 8)
1065			__asm__ __volatile__("membar	#Sync\n\t"
1066					     "stxa	%%g0, [%0] %1\n\t"
1067					     "membar	#Sync"
1068					     : /* no outputs */
1069					     : "r" (line),
1070					       "i" (ASI_DCACHE_DATA));
1071	}
1072}
1073
1074/* Conversion tables used to frob Cheetah AFSR syndrome values into
1075 * something palatable to the memory controller driver get_unumber
1076 * routine.
1077 */
1078#define MT0	137
1079#define MT1	138
1080#define MT2	139
1081#define NONE	254
1082#define MTC0	140
1083#define MTC1	141
1084#define MTC2	142
1085#define MTC3	143
1086#define C0	128
1087#define C1	129
1088#define C2	130
1089#define C3	131
1090#define C4	132
1091#define C5	133
1092#define C6	134
1093#define C7	135
1094#define C8	136
1095#define M2	144
1096#define M3	145
1097#define M4	146
1098#define M	147
1099static unsigned char cheetah_ecc_syntab[] = {
1100/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1101/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1102/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1103/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1104/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1105/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1106/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1107/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1108/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1109/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1110/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1111/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1112/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1113/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1114/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1115/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1116/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1117/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1118/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1119/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1120/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1121/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1122/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1123/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1124/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1125/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1126/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1127/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1128/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1129/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1130/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1131/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1132};
1133static unsigned char cheetah_mtag_syntab[] = {
1134       NONE, MTC0,
1135       MTC1, NONE,
1136       MTC2, NONE,
1137       NONE, MT0,
1138       MTC3, NONE,
1139       NONE, MT1,
1140       NONE, MT2,
1141       NONE, NONE
1142};
1143
1144/* Return the highest priority error conditon mentioned. */
1145static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1146{
1147	unsigned long tmp = 0;
1148	int i;
1149
1150	for (i = 0; cheetah_error_table[i].mask; i++) {
1151		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1152			return tmp;
1153	}
1154	return tmp;
1155}
1156
1157static const char *cheetah_get_string(unsigned long bit)
1158{
1159	int i;
1160
1161	for (i = 0; cheetah_error_table[i].mask; i++) {
1162		if ((bit & cheetah_error_table[i].mask) != 0UL)
1163			return cheetah_error_table[i].name;
1164	}
1165	return "???";
1166}
1167
1168static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1169			       unsigned long afsr, unsigned long afar, int recoverable)
1170{
1171	unsigned long hipri;
1172	char unum[256];
1173
1174	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1175	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1176	       afsr, afar,
1177	       (afsr & CHAFSR_TL1) ? 1 : 0);
1178	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1179	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1180	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1181	printk("%s" "ERROR(%d): ",
1182	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1183	printk("TPC<%pS>\n", (void *) regs->tpc);
1184	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1185	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1186	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1187	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1188	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1189	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1190	hipri = cheetah_get_hipri(afsr);
1191	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1192	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1193	       hipri, cheetah_get_string(hipri));
1194
1195	/* Try to get unumber if relevant. */
1196#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1197			 CHAFSR_CPC | CHAFSR_CPU | \
1198			 CHAFSR_UE  | CHAFSR_CE  | \
1199			 CHAFSR_EDC | CHAFSR_EDU  | \
1200			 CHAFSR_UCC | CHAFSR_UCU  | \
1201			 CHAFSR_WDU | CHAFSR_WDC)
1202#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1203	if (afsr & ESYND_ERRORS) {
1204		int syndrome;
1205		int ret;
1206
1207		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1208		syndrome = cheetah_ecc_syntab[syndrome];
1209		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1210		if (ret != -1)
1211			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1212			       (recoverable ? KERN_WARNING : KERN_CRIT),
1213			       smp_processor_id(), unum);
1214	} else if (afsr & MSYND_ERRORS) {
1215		int syndrome;
1216		int ret;
1217
1218		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1219		syndrome = cheetah_mtag_syntab[syndrome];
1220		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1221		if (ret != -1)
1222			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1223			       (recoverable ? KERN_WARNING : KERN_CRIT),
1224			       smp_processor_id(), unum);
1225	}
1226
1227	/* Now dump the cache snapshots. */
1228	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1229	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1230	       (int) info->dcache_index,
1231	       info->dcache_tag,
1232	       info->dcache_utag,
1233	       info->dcache_stag);
1234	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1235	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1236	       info->dcache_data[0],
1237	       info->dcache_data[1],
1238	       info->dcache_data[2],
1239	       info->dcache_data[3]);
1240	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1241	       "u[%016llx] l[%016llx]\n",
1242	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1243	       (int) info->icache_index,
1244	       info->icache_tag,
1245	       info->icache_utag,
1246	       info->icache_stag,
1247	       info->icache_upper,
1248	       info->icache_lower);
1249	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1250	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1251	       info->icache_data[0],
1252	       info->icache_data[1],
1253	       info->icache_data[2],
1254	       info->icache_data[3]);
1255	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1256	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1257	       info->icache_data[4],
1258	       info->icache_data[5],
1259	       info->icache_data[6],
1260	       info->icache_data[7]);
1261	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1262	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263	       (int) info->ecache_index, info->ecache_tag);
1264	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1265	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1266	       info->ecache_data[0],
1267	       info->ecache_data[1],
1268	       info->ecache_data[2],
1269	       info->ecache_data[3]);
1270
1271	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1272	while (afsr != 0UL) {
1273		unsigned long bit = cheetah_get_hipri(afsr);
1274
1275		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1276		       (recoverable ? KERN_WARNING : KERN_CRIT),
1277		       bit, cheetah_get_string(bit));
1278
1279		afsr &= ~bit;
1280	}
1281
1282	if (!recoverable)
1283		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1284}
1285
1286static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1287{
1288	unsigned long afsr, afar;
1289	int ret = 0;
1290
1291	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1292			     : "=r" (afsr)
1293			     : "i" (ASI_AFSR));
1294	if ((afsr & cheetah_afsr_errors) != 0) {
1295		if (logp != NULL) {
1296			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1297					     : "=r" (afar)
1298					     : "i" (ASI_AFAR));
1299			logp->afsr = afsr;
1300			logp->afar = afar;
1301		}
1302		ret = 1;
1303	}
1304	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1305			     "membar #Sync\n\t"
1306			     : : "r" (afsr), "i" (ASI_AFSR));
1307
1308	return ret;
1309}
1310
1311void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1312{
1313	struct cheetah_err_info local_snapshot, *p;
1314	int recoverable;
1315
1316	/* Flush E-cache */
1317	cheetah_flush_ecache();
1318
1319	p = cheetah_get_error_log(afsr);
1320	if (!p) {
1321		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1322			    afsr, afar);
1323		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1324			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1325		prom_halt();
1326	}
1327
1328	/* Grab snapshot of logged error. */
1329	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1330
1331	/* If the current trap snapshot does not match what the
1332	 * trap handler passed along into our args, big trouble.
1333	 * In such a case, mark the local copy as invalid.
1334	 *
1335	 * Else, it matches and we mark the afsr in the non-local
1336	 * copy as invalid so we may log new error traps there.
1337	 */
1338	if (p->afsr != afsr || p->afar != afar)
1339		local_snapshot.afsr = CHAFSR_INVALID;
1340	else
1341		p->afsr = CHAFSR_INVALID;
1342
1343	cheetah_flush_icache();
1344	cheetah_flush_dcache();
1345
1346	/* Re-enable I-cache/D-cache */
1347	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1348			     "or %%g1, %1, %%g1\n\t"
1349			     "stxa %%g1, [%%g0] %0\n\t"
1350			     "membar #Sync"
1351			     : /* no outputs */
1352			     : "i" (ASI_DCU_CONTROL_REG),
1353			       "i" (DCU_DC | DCU_IC)
1354			     : "g1");
1355
1356	/* Re-enable error reporting */
1357	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1358			     "or %%g1, %1, %%g1\n\t"
1359			     "stxa %%g1, [%%g0] %0\n\t"
1360			     "membar #Sync"
1361			     : /* no outputs */
1362			     : "i" (ASI_ESTATE_ERROR_EN),
1363			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1364			     : "g1");
1365
1366	/* Decide if we can continue after handling this trap and
1367	 * logging the error.
1368	 */
1369	recoverable = 1;
1370	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1371		recoverable = 0;
1372
1373	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1374	 * error was logged while we had error reporting traps disabled.
1375	 */
1376	if (cheetah_recheck_errors(&local_snapshot)) {
1377		unsigned long new_afsr = local_snapshot.afsr;
1378
1379		/* If we got a new asynchronous error, die... */
1380		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1381				CHAFSR_WDU | CHAFSR_CPU |
1382				CHAFSR_IVU | CHAFSR_UE |
1383				CHAFSR_BERR | CHAFSR_TO))
1384			recoverable = 0;
1385	}
1386
1387	/* Log errors. */
1388	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1389
1390	if (!recoverable)
1391		panic("Irrecoverable Fast-ECC error trap.\n");
1392
1393	/* Flush E-cache to kick the error trap handlers out. */
1394	cheetah_flush_ecache();
1395}
1396
1397/* Try to fix a correctable error by pushing the line out from
1398 * the E-cache.  Recheck error reporting registers to see if the
1399 * problem is intermittent.
1400 */
1401static int cheetah_fix_ce(unsigned long physaddr)
1402{
1403	unsigned long orig_estate;
1404	unsigned long alias1, alias2;
1405	int ret;
1406
1407	/* Make sure correctable error traps are disabled. */
1408	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1409			     "andn	%0, %1, %%g1\n\t"
1410			     "stxa	%%g1, [%%g0] %2\n\t"
1411			     "membar	#Sync"
1412			     : "=&r" (orig_estate)
1413			     : "i" (ESTATE_ERROR_CEEN),
1414			       "i" (ASI_ESTATE_ERROR_EN)
1415			     : "g1");
1416
1417	/* We calculate alias addresses that will force the
1418	 * cache line in question out of the E-cache.  Then
1419	 * we bring it back in with an atomic instruction so
1420	 * that we get it in some modified/exclusive state,
1421	 * then we displace it again to try and get proper ECC
1422	 * pushed back into the system.
1423	 */
1424	physaddr &= ~(8UL - 1UL);
1425	alias1 = (ecache_flush_physbase +
1426		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1427	alias2 = alias1 + (ecache_flush_size >> 1);
1428	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1429			     "ldxa	[%1] %3, %%g0\n\t"
1430			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1431			     "ldxa	[%0] %3, %%g0\n\t"
1432			     "ldxa	[%1] %3, %%g0\n\t"
1433			     "membar	#Sync"
1434			     : /* no outputs */
1435			     : "r" (alias1), "r" (alias2),
1436			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1437
1438	/* Did that trigger another error? */
1439	if (cheetah_recheck_errors(NULL)) {
1440		/* Try one more time. */
1441		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1442				     "membar #Sync"
1443				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1444		if (cheetah_recheck_errors(NULL))
1445			ret = 2;
1446		else
1447			ret = 1;
1448	} else {
1449		/* No new error, intermittent problem. */
1450		ret = 0;
1451	}
1452
1453	/* Restore error enables. */
1454	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1455			     "membar	#Sync"
1456			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1457
1458	return ret;
1459}
1460
1461/* Return non-zero if PADDR is a valid physical memory address. */
1462static int cheetah_check_main_memory(unsigned long paddr)
1463{
1464	unsigned long vaddr = PAGE_OFFSET + paddr;
1465
1466	if (vaddr > (unsigned long) high_memory)
1467		return 0;
1468
1469	return kern_addr_valid(vaddr);
1470}
1471
1472void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1473{
1474	struct cheetah_err_info local_snapshot, *p;
1475	int recoverable, is_memory;
1476
1477	p = cheetah_get_error_log(afsr);
1478	if (!p) {
1479		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1480			    afsr, afar);
1481		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1482			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1483		prom_halt();
1484	}
1485
1486	/* Grab snapshot of logged error. */
1487	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1488
1489	/* If the current trap snapshot does not match what the
1490	 * trap handler passed along into our args, big trouble.
1491	 * In such a case, mark the local copy as invalid.
1492	 *
1493	 * Else, it matches and we mark the afsr in the non-local
1494	 * copy as invalid so we may log new error traps there.
1495	 */
1496	if (p->afsr != afsr || p->afar != afar)
1497		local_snapshot.afsr = CHAFSR_INVALID;
1498	else
1499		p->afsr = CHAFSR_INVALID;
1500
1501	is_memory = cheetah_check_main_memory(afar);
1502
1503	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1504		/* XXX Might want to log the results of this operation
1505		 * XXX somewhere... -DaveM
1506		 */
1507		cheetah_fix_ce(afar);
1508	}
1509
1510	{
1511		int flush_all, flush_line;
1512
1513		flush_all = flush_line = 0;
1514		if ((afsr & CHAFSR_EDC) != 0UL) {
1515			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1516				flush_line = 1;
1517			else
1518				flush_all = 1;
1519		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1520			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1521				flush_line = 1;
1522			else
1523				flush_all = 1;
1524		}
1525
1526		/* Trap handler only disabled I-cache, flush it. */
1527		cheetah_flush_icache();
1528
1529		/* Re-enable I-cache */
1530		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1531				     "or %%g1, %1, %%g1\n\t"
1532				     "stxa %%g1, [%%g0] %0\n\t"
1533				     "membar #Sync"
1534				     : /* no outputs */
1535				     : "i" (ASI_DCU_CONTROL_REG),
1536				     "i" (DCU_IC)
1537				     : "g1");
1538
1539		if (flush_all)
1540			cheetah_flush_ecache();
1541		else if (flush_line)
1542			cheetah_flush_ecache_line(afar);
1543	}
1544
1545	/* Re-enable error reporting */
1546	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1547			     "or %%g1, %1, %%g1\n\t"
1548			     "stxa %%g1, [%%g0] %0\n\t"
1549			     "membar #Sync"
1550			     : /* no outputs */
1551			     : "i" (ASI_ESTATE_ERROR_EN),
1552			       "i" (ESTATE_ERROR_CEEN)
1553			     : "g1");
1554
1555	/* Decide if we can continue after handling this trap and
1556	 * logging the error.
1557	 */
1558	recoverable = 1;
1559	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1560		recoverable = 0;
1561
1562	/* Re-check AFSR/AFAR */
1563	(void) cheetah_recheck_errors(&local_snapshot);
1564
1565	/* Log errors. */
1566	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1567
1568	if (!recoverable)
1569		panic("Irrecoverable Correctable-ECC error trap.\n");
1570}
1571
1572void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1573{
1574	struct cheetah_err_info local_snapshot, *p;
1575	int recoverable, is_memory;
1576
1577#ifdef CONFIG_PCI
1578	/* Check for the special PCI poke sequence. */
1579	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1580		cheetah_flush_icache();
1581		cheetah_flush_dcache();
1582
1583		/* Re-enable I-cache/D-cache */
1584		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1585				     "or %%g1, %1, %%g1\n\t"
1586				     "stxa %%g1, [%%g0] %0\n\t"
1587				     "membar #Sync"
1588				     : /* no outputs */
1589				     : "i" (ASI_DCU_CONTROL_REG),
1590				       "i" (DCU_DC | DCU_IC)
1591				     : "g1");
1592
1593		/* Re-enable error reporting */
1594		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1595				     "or %%g1, %1, %%g1\n\t"
1596				     "stxa %%g1, [%%g0] %0\n\t"
1597				     "membar #Sync"
1598				     : /* no outputs */
1599				     : "i" (ASI_ESTATE_ERROR_EN),
1600				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1601				     : "g1");
1602
1603		(void) cheetah_recheck_errors(NULL);
1604
1605		pci_poke_faulted = 1;
1606		regs->tpc += 4;
1607		regs->tnpc = regs->tpc + 4;
1608		return;
1609	}
1610#endif
1611
1612	p = cheetah_get_error_log(afsr);
1613	if (!p) {
1614		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1615			    afsr, afar);
1616		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1617			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1618		prom_halt();
1619	}
1620
1621	/* Grab snapshot of logged error. */
1622	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1623
1624	/* If the current trap snapshot does not match what the
1625	 * trap handler passed along into our args, big trouble.
1626	 * In such a case, mark the local copy as invalid.
1627	 *
1628	 * Else, it matches and we mark the afsr in the non-local
1629	 * copy as invalid so we may log new error traps there.
1630	 */
1631	if (p->afsr != afsr || p->afar != afar)
1632		local_snapshot.afsr = CHAFSR_INVALID;
1633	else
1634		p->afsr = CHAFSR_INVALID;
1635
1636	is_memory = cheetah_check_main_memory(afar);
1637
1638	{
1639		int flush_all, flush_line;
1640
1641		flush_all = flush_line = 0;
1642		if ((afsr & CHAFSR_EDU) != 0UL) {
1643			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1644				flush_line = 1;
1645			else
1646				flush_all = 1;
1647		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1648			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1649				flush_line = 1;
1650			else
1651				flush_all = 1;
1652		}
1653
1654		cheetah_flush_icache();
1655		cheetah_flush_dcache();
1656
1657		/* Re-enable I/D caches */
1658		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1659				     "or %%g1, %1, %%g1\n\t"
1660				     "stxa %%g1, [%%g0] %0\n\t"
1661				     "membar #Sync"
1662				     : /* no outputs */
1663				     : "i" (ASI_DCU_CONTROL_REG),
1664				     "i" (DCU_IC | DCU_DC)
1665				     : "g1");
1666
1667		if (flush_all)
1668			cheetah_flush_ecache();
1669		else if (flush_line)
1670			cheetah_flush_ecache_line(afar);
1671	}
1672
1673	/* Re-enable error reporting */
1674	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1675			     "or %%g1, %1, %%g1\n\t"
1676			     "stxa %%g1, [%%g0] %0\n\t"
1677			     "membar #Sync"
1678			     : /* no outputs */
1679			     : "i" (ASI_ESTATE_ERROR_EN),
1680			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1681			     : "g1");
1682
1683	/* Decide if we can continue after handling this trap and
1684	 * logging the error.
1685	 */
1686	recoverable = 1;
1687	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1688		recoverable = 0;
1689
1690	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1691	 * error was logged while we had error reporting traps disabled.
1692	 */
1693	if (cheetah_recheck_errors(&local_snapshot)) {
1694		unsigned long new_afsr = local_snapshot.afsr;
1695
1696		/* If we got a new asynchronous error, die... */
1697		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1698				CHAFSR_WDU | CHAFSR_CPU |
1699				CHAFSR_IVU | CHAFSR_UE |
1700				CHAFSR_BERR | CHAFSR_TO))
1701			recoverable = 0;
1702	}
1703
1704	/* Log errors. */
1705	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1706
1707	/* "Recoverable" here means we try to yank the page from ever
1708	 * being newly used again.  This depends upon a few things:
1709	 * 1) Must be main memory, and AFAR must be valid.
1710	 * 2) If we trapped from user, OK.
1711	 * 3) Else, if we trapped from kernel we must find exception
1712	 *    table entry (ie. we have to have been accessing user
1713	 *    space).
1714	 *
1715	 * If AFAR is not in main memory, or we trapped from kernel
1716	 * and cannot find an exception table entry, it is unacceptable
1717	 * to try and continue.
1718	 */
1719	if (recoverable && is_memory) {
1720		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1721			/* OK, usermode access. */
1722			recoverable = 1;
1723		} else {
1724			const struct exception_table_entry *entry;
1725
1726			entry = search_exception_tables(regs->tpc);
1727			if (entry) {
1728				/* OK, kernel access to userspace. */
1729				recoverable = 1;
1730
1731			} else {
1732				/* BAD, privileged state is corrupted. */
1733				recoverable = 0;
1734			}
1735
1736			if (recoverable) {
1737				if (pfn_valid(afar >> PAGE_SHIFT))
1738					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1739				else
1740					recoverable = 0;
1741
1742				/* Only perform fixup if we still have a
1743				 * recoverable condition.
1744				 */
1745				if (recoverable) {
1746					regs->tpc = entry->fixup;
1747					regs->tnpc = regs->tpc + 4;
1748				}
1749			}
1750		}
1751	} else {
1752		recoverable = 0;
1753	}
1754
1755	if (!recoverable)
1756		panic("Irrecoverable deferred error trap.\n");
1757}
1758
1759/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1760 *
1761 * Bit0:	0=dcache,1=icache
1762 * Bit1:	0=recoverable,1=unrecoverable
1763 *
1764 * The hardware has disabled both the I-cache and D-cache in
1765 * the %dcr register.  
1766 */
1767void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1768{
1769	if (type & 0x1)
1770		__cheetah_flush_icache();
1771	else
1772		cheetah_plus_zap_dcache_parity();
1773	cheetah_flush_dcache();
1774
1775	/* Re-enable I-cache/D-cache */
1776	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1777			     "or %%g1, %1, %%g1\n\t"
1778			     "stxa %%g1, [%%g0] %0\n\t"
1779			     "membar #Sync"
1780			     : /* no outputs */
1781			     : "i" (ASI_DCU_CONTROL_REG),
1782			       "i" (DCU_DC | DCU_IC)
1783			     : "g1");
1784
1785	if (type & 0x2) {
1786		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1787		       smp_processor_id(),
1788		       (type & 0x1) ? 'I' : 'D',
1789		       regs->tpc);
1790		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1791		panic("Irrecoverable Cheetah+ parity error.");
1792	}
1793
1794	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1795	       smp_processor_id(),
1796	       (type & 0x1) ? 'I' : 'D',
1797	       regs->tpc);
1798	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1799}
1800
1801struct sun4v_error_entry {
1802	/* Unique error handle */
1803/*0x00*/u64		err_handle;
1804
1805	/* %stick value at the time of the error */
1806/*0x08*/u64		err_stick;
1807
1808/*0x10*/u8		reserved_1[3];
1809
1810	/* Error type */
1811/*0x13*/u8		err_type;
1812#define SUN4V_ERR_TYPE_UNDEFINED	0
1813#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1814#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1815#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1816#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1817#define SUN4V_ERR_TYPE_DUMP_CORE	5
1818#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1819#define SUN4V_ERR_TYPE_NUM		7
1820
1821	/* Error attributes */
1822/*0x14*/u32		err_attrs;
1823#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1824#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1825#define SUN4V_ERR_ATTRS_PIO		0x00000004
1826#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1827#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1828#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1829#define SUN4V_ERR_ATTRS_ASR		0x00000040
1830#define SUN4V_ERR_ATTRS_ASI		0x00000080
1831#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1832#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1833#define SUN4V_ERR_ATTRS_MCD		0x00000800
1834#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1835#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1836#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1837#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1838
1839#define SUN4V_ERR_SPSTATE_FAULTED	0
1840#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1841#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1842
1843#define SUN4V_ERR_MODE_USER		1
1844#define SUN4V_ERR_MODE_PRIV		2
1845
1846	/* Real address of the memory region or PIO transaction */
1847/*0x18*/u64		err_raddr;
1848
1849	/* Size of the operation triggering the error, in bytes */
1850/*0x20*/u32		err_size;
1851
1852	/* ID of the CPU */
1853/*0x24*/u16		err_cpu;
1854
1855	/* Grace periof for shutdown, in seconds */
1856/*0x26*/u16		err_secs;
1857
1858	/* Value of the %asi register */
1859/*0x28*/u8		err_asi;
1860
1861/*0x29*/u8		reserved_2;
1862
1863	/* Value of the ASR register number */
1864/*0x2a*/u16		err_asr;
1865#define SUN4V_ERR_ASR_VALID		0x8000
1866
1867/*0x2c*/u32		reserved_3;
1868/*0x30*/u64		reserved_4;
1869/*0x38*/u64		reserved_5;
1870};
1871
1872static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1873static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1874
1875static const char *sun4v_err_type_to_str(u8 type)
1876{
1877	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1878		"undefined",
1879		"uncorrected resumable",
1880		"precise nonresumable",
1881		"deferred nonresumable",
1882		"shutdown request",
1883		"dump core",
1884		"SP state change",
1885	};
1886
1887	if (type < SUN4V_ERR_TYPE_NUM)
1888		return types[type];
1889
1890	return "unknown";
1891}
1892
1893static void sun4v_emit_err_attr_strings(u32 attrs)
1894{
1895	static const char *attr_names[] = {
1896		"processor",
1897		"memory",
1898		"PIO",
1899		"int-registers",
1900		"fpu-registers",
1901		"shutdown-request",
1902		"ASR",
1903		"ASI",
1904		"priv-reg",
1905	};
1906	static const char *sp_states[] = {
1907		"sp-faulted",
1908		"sp-available",
1909		"sp-not-present",
1910		"sp-state-reserved",
1911	};
1912	static const char *modes[] = {
1913		"mode-reserved0",
1914		"user",
1915		"priv",
1916		"mode-reserved1",
1917	};
1918	u32 sp_state, mode;
1919	int i;
1920
1921	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1922		if (attrs & (1U << i)) {
1923			const char *s = attr_names[i];
1924
1925			pr_cont("%s ", s);
1926		}
1927	}
1928
1929	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1930		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1931	pr_cont("%s ", sp_states[sp_state]);
1932
1933	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1934		SUN4V_ERR_ATTRS_MODE_SHFT);
1935	pr_cont("%s ", modes[mode]);
1936
1937	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1938		pr_cont("res-queue-full ");
1939}
1940
1941/* When the report contains a real-address of "-1" it means that the
1942 * hardware did not provide the address.  So we compute the effective
1943 * address of the load or store instruction at regs->tpc and report
1944 * that.  Usually when this happens it's a PIO and in such a case we
1945 * are using physical addresses with bypass ASIs anyways, so what we
1946 * report here is exactly what we want.
1947 */
1948static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1949{
1950	unsigned int insn;
1951	u64 addr;
1952
1953	if (!(regs->tstate & TSTATE_PRIV))
1954		return;
1955
1956	insn = *(unsigned int *) regs->tpc;
1957
1958	addr = compute_effective_address(regs, insn, 0);
1959
1960	printk("%s: insn effective address [0x%016llx]\n",
1961	       pfx, addr);
1962}
1963
1964static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1965			    int cpu, const char *pfx, atomic_t *ocnt)
1966{
1967	u64 *raw_ptr = (u64 *) ent;
1968	u32 attrs;
1969	int cnt;
1970
1971	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1972	printk("%s: TPC [0x%016lx] <%pS>\n",
1973	       pfx, regs->tpc, (void *) regs->tpc);
1974
1975	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1976	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1977	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1978	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1979
1980	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1981	       pfx, ent->err_handle, ent->err_stick);
1982
1983	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1984
1985	attrs = ent->err_attrs;
1986	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1987	sun4v_emit_err_attr_strings(attrs);
1988	pr_cont(">\n");
1989
1990	/* Various fields in the error report are only valid if
1991	 * certain attribute bits are set.
1992	 */
1993	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1994		     SUN4V_ERR_ATTRS_PIO |
1995		     SUN4V_ERR_ATTRS_ASI)) {
1996		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1997
1998		if (ent->err_raddr == ~(u64)0)
1999			sun4v_report_real_raddr(pfx, regs);
2000	}
2001
2002	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2003		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2004
2005	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2006		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2007		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2008		     SUN4V_ERR_ATTRS_PRIV_REG))
2009		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2010
2011	if (attrs & SUN4V_ERR_ATTRS_ASI)
2012		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2013
2014	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2015		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2016		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2017	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2018		printk("%s: reg [0x%04x]\n",
2019		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2020
2021	show_regs(regs);
2022
2023	if ((cnt = atomic_read(ocnt)) != 0) {
2024		atomic_set(ocnt, 0);
2025		wmb();
2026		printk("%s: Queue overflowed %d times.\n",
2027		       pfx, cnt);
2028	}
2029}
2030
2031/* Handle memory corruption detected error which is vectored in
2032 * through resumable error trap.
2033 */
2034void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2035{
2036	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2037		       SIGSEGV) == NOTIFY_STOP)
2038		return;
2039
2040	if (regs->tstate & TSTATE_PRIV) {
2041		/* MCD exception could happen because the task was
2042		 * running a system call with MCD enabled and passed a
2043		 * non-versioned pointer or pointer with bad version
2044		 * tag to the system call. In such cases, hypervisor
2045		 * places the address of offending instruction in the
2046		 * resumable error report. This is a deferred error,
2047		 * so the read/write that caused the trap was potentially
2048		 * retired long time back and we may have no choice
2049		 * but to send SIGSEGV to the process.
2050		 */
2051		const struct exception_table_entry *entry;
2052
2053		entry = search_exception_tables(regs->tpc);
2054		if (entry) {
2055			/* Looks like a bad syscall parameter */
2056#ifdef DEBUG_EXCEPTIONS
2057			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2058				 regs->tpc);
2059			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2060				 ent.err_raddr, entry->fixup);
2061#endif
2062			regs->tpc = entry->fixup;
2063			regs->tnpc = regs->tpc + 4;
2064			return;
2065		}
2066	}
2067
2068	/* Send SIGSEGV to the userspace process with the right signal
2069	 * code
2070	 */
2071	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
2072}
2073
2074/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2075 * Log the event and clear the first word of the entry.
2076 */
2077void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2078{
2079	enum ctx_state prev_state = exception_enter();
2080	struct sun4v_error_entry *ent, local_copy;
2081	struct trap_per_cpu *tb;
2082	unsigned long paddr;
2083	int cpu;
2084
2085	cpu = get_cpu();
2086
2087	tb = &trap_block[cpu];
2088	paddr = tb->resum_kernel_buf_pa + offset;
2089	ent = __va(paddr);
2090
2091	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2092
2093	/* We have a local copy now, so release the entry.  */
2094	ent->err_handle = 0;
2095	wmb();
2096
2097	put_cpu();
2098
2099	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2100		/* We should really take the seconds field of
2101		 * the error report and use it for the shutdown
2102		 * invocation, but for now do the same thing we
2103		 * do for a DS shutdown request.
2104		 */
2105		pr_info("Shutdown request, %u seconds...\n",
2106			local_copy.err_secs);
2107		orderly_poweroff(true);
2108		goto out;
2109	}
2110
2111	/* If this is a memory corruption detected error vectored in
2112	 * by HV through resumable error trap, call the handler
2113	 */
2114	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2115		do_mcd_err(regs, local_copy);
2116		return;
2117	}
2118
2119	sun4v_log_error(regs, &local_copy, cpu,
2120			KERN_ERR "RESUMABLE ERROR",
2121			&sun4v_resum_oflow_cnt);
2122out:
2123	exception_exit(prev_state);
2124}
2125
2126/* If we try to printk() we'll probably make matters worse, by trying
2127 * to retake locks this cpu already holds or causing more errors. So
2128 * just bump a counter, and we'll report these counter bumps above.
2129 */
2130void sun4v_resum_overflow(struct pt_regs *regs)
2131{
2132	atomic_inc(&sun4v_resum_oflow_cnt);
2133}
2134
2135/* Given a set of registers, get the virtual addressi that was being accessed
2136 * by the faulting instructions at tpc.
2137 */
2138static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2139{
2140	unsigned int insn;
2141
2142	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2143		return compute_effective_address(regs, insn,
2144						 (insn >> 25) & 0x1f);
2145	}
2146	return 0;
2147}
2148
2149/* Attempt to handle non-resumable errors generated from userspace.
2150 * Returns true if the signal was handled, false otherwise.
2151 */
2152bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2153				  struct sun4v_error_entry *ent) {
2154
2155	unsigned int attrs = ent->err_attrs;
2156
2157	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2158		unsigned long addr = ent->err_raddr;
2159
2160		if (addr == ~(u64)0) {
2161			/* This seems highly unlikely to ever occur */
2162			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2163		} else {
2164			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2165							      PAGE_SIZE);
2166
2167			/* Break the unfortunate news. */
2168			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2169				 addr);
2170			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2171				 page_cnt);
2172
2173			while (page_cnt-- > 0) {
2174				if (pfn_valid(addr >> PAGE_SHIFT))
2175					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2176				addr += PAGE_SIZE;
2177			}
2178		}
2179		force_sig(SIGKILL);
2180
2181		return true;
2182	}
2183	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2184		force_sig_fault(SIGBUS, BUS_ADRERR,
2185				(void __user *)sun4v_get_vaddr(regs));
2186		return true;
2187	}
2188
2189	/* Default to doing nothing */
2190	return false;
2191}
2192
2193/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2194 * Log the event, clear the first word of the entry, and die.
2195 */
2196void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2197{
2198	struct sun4v_error_entry *ent, local_copy;
2199	struct trap_per_cpu *tb;
2200	unsigned long paddr;
2201	int cpu;
2202
2203	cpu = get_cpu();
2204
2205	tb = &trap_block[cpu];
2206	paddr = tb->nonresum_kernel_buf_pa + offset;
2207	ent = __va(paddr);
2208
2209	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2210
2211	/* We have a local copy now, so release the entry.  */
2212	ent->err_handle = 0;
2213	wmb();
2214
2215	put_cpu();
2216
2217	if (!(regs->tstate & TSTATE_PRIV) &&
2218	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2219		/* DON'T PANIC: This userspace error was handled. */
2220		return;
2221	}
2222
2223#ifdef CONFIG_PCI
2224	/* Check for the special PCI poke sequence. */
2225	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2226		pci_poke_faulted = 1;
2227		regs->tpc += 4;
2228		regs->tnpc = regs->tpc + 4;
2229		return;
2230	}
2231#endif
2232
2233	sun4v_log_error(regs, &local_copy, cpu,
2234			KERN_EMERG "NON-RESUMABLE ERROR",
2235			&sun4v_nonresum_oflow_cnt);
2236
2237	panic("Non-resumable error.");
2238}
2239
2240/* If we try to printk() we'll probably make matters worse, by trying
2241 * to retake locks this cpu already holds or causing more errors. So
2242 * just bump a counter, and we'll report these counter bumps above.
2243 */
2244void sun4v_nonresum_overflow(struct pt_regs *regs)
2245{
2246	/* XXX Actually even this can make not that much sense.  Perhaps
2247	 * XXX we should just pull the plug and panic directly from here?
2248	 */
2249	atomic_inc(&sun4v_nonresum_oflow_cnt);
2250}
2251
2252static void sun4v_tlb_error(struct pt_regs *regs)
2253{
2254	die_if_kernel("TLB/TSB error", regs);
2255}
2256
2257unsigned long sun4v_err_itlb_vaddr;
2258unsigned long sun4v_err_itlb_ctx;
2259unsigned long sun4v_err_itlb_pte;
2260unsigned long sun4v_err_itlb_error;
2261
2262void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2263{
2264	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 
2265
2266	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2267	       regs->tpc, tl);
2268	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2269	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2270	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2271	       (void *) regs->u_regs[UREG_I7]);
2272	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2273	       "pte[%lx] error[%lx]\n",
2274	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2275	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2276
2277	sun4v_tlb_error(regs);
2278}
2279
2280unsigned long sun4v_err_dtlb_vaddr;
2281unsigned long sun4v_err_dtlb_ctx;
2282unsigned long sun4v_err_dtlb_pte;
2283unsigned long sun4v_err_dtlb_error;
2284
2285void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2286{
2287	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 
2288
2289	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2290	       regs->tpc, tl);
2291	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2292	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2293	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2294	       (void *) regs->u_regs[UREG_I7]);
2295	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2296	       "pte[%lx] error[%lx]\n",
2297	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2298	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2299
2300	sun4v_tlb_error(regs);
2301}
2302
2303void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2304{
2305	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2306	       err, op);
2307}
2308
2309void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2310{
2311	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2312	       err, op);
2313}
2314
2315static void do_fpe_common(struct pt_regs *regs)
2316{
2317	if (regs->tstate & TSTATE_PRIV) {
2318		regs->tpc = regs->tnpc;
2319		regs->tnpc += 4;
2320	} else {
2321		unsigned long fsr = current_thread_info()->xfsr[0];
2322		int code;
2323
2324		if (test_thread_flag(TIF_32BIT)) {
2325			regs->tpc &= 0xffffffff;
2326			regs->tnpc &= 0xffffffff;
2327		}
2328		code = FPE_FLTUNK;
 
 
 
 
2329		if ((fsr & 0x1c000) == (1 << 14)) {
2330			if (fsr & 0x10)
2331				code = FPE_FLTINV;
2332			else if (fsr & 0x08)
2333				code = FPE_FLTOVF;
2334			else if (fsr & 0x04)
2335				code = FPE_FLTUND;
2336			else if (fsr & 0x02)
2337				code = FPE_FLTDIV;
2338			else if (fsr & 0x01)
2339				code = FPE_FLTRES;
2340		}
2341		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2342	}
2343}
2344
2345void do_fpieee(struct pt_regs *regs)
2346{
2347	enum ctx_state prev_state = exception_enter();
2348
2349	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2350		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2351		goto out;
2352
2353	do_fpe_common(regs);
2354out:
2355	exception_exit(prev_state);
2356}
2357
 
 
2358void do_fpother(struct pt_regs *regs)
2359{
2360	enum ctx_state prev_state = exception_enter();
2361	struct fpustate *f = FPUSTATE;
2362	int ret = 0;
2363
2364	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2365		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2366		goto out;
2367
2368	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2369	case (2 << 14): /* unfinished_FPop */
2370	case (3 << 14): /* unimplemented_FPop */
2371		ret = do_mathemu(regs, f, false);
2372		break;
2373	}
2374	if (ret)
2375		goto out;
2376	do_fpe_common(regs);
2377out:
2378	exception_exit(prev_state);
2379}
2380
2381void do_tof(struct pt_regs *regs)
2382{
2383	enum ctx_state prev_state = exception_enter();
 
2384
2385	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2386		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2387		goto out;
2388
2389	if (regs->tstate & TSTATE_PRIV)
2390		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2391	if (test_thread_flag(TIF_32BIT)) {
2392		regs->tpc &= 0xffffffff;
2393		regs->tnpc &= 0xffffffff;
2394	}
2395	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
 
 
 
 
 
2396out:
2397	exception_exit(prev_state);
2398}
2399
2400void do_div0(struct pt_regs *regs)
2401{
2402	enum ctx_state prev_state = exception_enter();
 
2403
2404	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2405		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2406		goto out;
2407
2408	if (regs->tstate & TSTATE_PRIV)
2409		die_if_kernel("TL0: Kernel divide by zero.", regs);
2410	if (test_thread_flag(TIF_32BIT)) {
2411		regs->tpc &= 0xffffffff;
2412		regs->tnpc &= 0xffffffff;
2413	}
2414	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
 
 
 
 
 
2415out:
2416	exception_exit(prev_state);
2417}
2418
2419static void instruction_dump(unsigned int *pc)
2420{
2421	int i;
2422
2423	if ((((unsigned long) pc) & 3))
2424		return;
2425
2426	printk("Instruction DUMP:");
2427	for (i = -3; i < 6; i++)
2428		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2429	printk("\n");
2430}
2431
2432static void user_instruction_dump(unsigned int __user *pc)
2433{
2434	int i;
2435	unsigned int buf[9];
2436	
2437	if ((((unsigned long) pc) & 3))
2438		return;
2439		
2440	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2441		return;
2442
2443	printk("Instruction DUMP:");
2444	for (i = 0; i < 9; i++)
2445		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2446	printk("\n");
2447}
2448
2449void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2450{
2451	unsigned long fp, ksp;
2452	struct thread_info *tp;
2453	int count = 0;
2454#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2455	int graph = 0;
2456#endif
2457
2458	ksp = (unsigned long) _ksp;
2459	if (!tsk)
2460		tsk = current;
2461	tp = task_thread_info(tsk);
2462	if (ksp == 0UL) {
2463		if (tsk == current)
2464			asm("mov %%fp, %0" : "=r" (ksp));
2465		else
2466			ksp = tp->ksp;
2467	}
2468	if (tp == current_thread_info())
2469		flushw_all();
2470
2471	fp = ksp + STACK_BIAS;
2472
2473	printk("%sCall Trace:\n", loglvl);
2474	do {
2475		struct sparc_stackf *sf;
2476		struct pt_regs *regs;
2477		unsigned long pc;
2478
2479		if (!kstack_valid(tp, fp))
2480			break;
2481		sf = (struct sparc_stackf *) fp;
2482		regs = (struct pt_regs *) (sf + 1);
2483
2484		if (kstack_is_trap_frame(tp, regs)) {
2485			if (!(regs->tstate & TSTATE_PRIV))
2486				break;
2487			pc = regs->tpc;
2488			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2489		} else {
2490			pc = sf->callers_pc;
2491			fp = (unsigned long)sf->fp + STACK_BIAS;
2492		}
2493
2494		print_ip_sym(loglvl, pc);
2495#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2496		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2497			struct ftrace_ret_stack *ret_stack;
2498			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2499			if (ret_stack) {
2500				pc = ret_stack->ret;
2501				print_ip_sym(loglvl, pc);
2502				graph++;
2503			}
2504		}
2505#endif
2506	} while (++count < 16);
2507}
2508
2509static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2510{
2511	unsigned long fp = rw->ins[6];
2512
2513	if (!fp)
2514		return NULL;
2515
2516	return (struct reg_window *) (fp + STACK_BIAS);
2517}
2518
2519void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2520{
2521	static int die_counter;
2522	int count = 0;
2523	
2524	/* Amuse the user. */
2525	printk(
2526"              \\|/ ____ \\|/\n"
2527"              \"@'/ .. \\`@\"\n"
2528"              /_| \\__/ |_\\\n"
2529"                 \\__U_/\n");
2530
2531	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2532	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2533	__asm__ __volatile__("flushw");
2534	show_regs(regs);
2535	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2536	if (regs->tstate & TSTATE_PRIV) {
2537		struct thread_info *tp = current_thread_info();
2538		struct reg_window *rw = (struct reg_window *)
2539			(regs->u_regs[UREG_FP] + STACK_BIAS);
2540
2541		/* Stop the back trace when we hit userland or we
2542		 * find some badly aligned kernel stack.
2543		 */
2544		while (rw &&
2545		       count++ < 30 &&
2546		       kstack_valid(tp, (unsigned long) rw)) {
2547			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2548			       (void *) rw->ins[7]);
2549
2550			rw = kernel_stack_up(rw);
2551		}
2552		instruction_dump ((unsigned int *) regs->tpc);
2553	} else {
2554		if (test_thread_flag(TIF_32BIT)) {
2555			regs->tpc &= 0xffffffff;
2556			regs->tnpc &= 0xffffffff;
2557		}
2558		user_instruction_dump ((unsigned int __user *) regs->tpc);
2559	}
2560	if (panic_on_oops)
2561		panic("Fatal exception");
2562	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
2563}
2564EXPORT_SYMBOL(die_if_kernel);
2565
2566#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2567#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2568
 
 
 
2569void do_illegal_instruction(struct pt_regs *regs)
2570{
2571	enum ctx_state prev_state = exception_enter();
2572	unsigned long pc = regs->tpc;
2573	unsigned long tstate = regs->tstate;
2574	u32 insn;
 
2575
2576	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2577		       0, 0x10, SIGILL) == NOTIFY_STOP)
2578		goto out;
2579
2580	if (tstate & TSTATE_PRIV)
2581		die_if_kernel("Kernel illegal instruction", regs);
2582	if (test_thread_flag(TIF_32BIT))
2583		pc = (u32)pc;
2584	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2585		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2586			if (handle_popc(insn, regs))
2587				goto out;
2588		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2589			if (handle_ldf_stq(insn, regs))
2590				goto out;
2591		} else if (tlb_type == hypervisor) {
2592			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2593				if (!vis_emul(regs, insn))
2594					goto out;
2595			} else {
2596				struct fpustate *f = FPUSTATE;
2597
2598				/* On UltraSPARC T2 and later, FPU insns which
2599				 * are not implemented in HW signal an illegal
2600				 * instruction trap and do not set the FP Trap
2601				 * Trap in the %fsr to unimplemented_FPop.
2602				 */
2603				if (do_mathemu(regs, f, true))
2604					goto out;
2605			}
2606		}
2607	}
2608	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
 
 
 
 
 
2609out:
2610	exception_exit(prev_state);
2611}
2612
 
 
2613void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2614{
2615	enum ctx_state prev_state = exception_enter();
 
2616
2617	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2618		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2619		goto out;
2620
2621	if (regs->tstate & TSTATE_PRIV) {
2622		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2623		goto out;
2624	}
2625	if (is_no_fault_exception(regs))
2626		return;
2627
2628	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
 
 
2629out:
2630	exception_exit(prev_state);
2631}
2632
2633void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2634{
 
 
2635	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2636		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2637		return;
2638
2639	if (regs->tstate & TSTATE_PRIV) {
2640		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2641		return;
2642	}
2643	if (is_no_fault_exception(regs))
2644		return;
2645
2646	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2647}
2648
2649/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2650 * tag mismatch.
2651 *
2652 * ADI version tag mismatch on a load from memory always results in a
2653 * precise exception. Tag mismatch on a store to memory will result in
2654 * precise exception if MCDPER or PMCDPER is set to 1.
2655 */
2656void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2657				      unsigned long context)
2658{
2659	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2660		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2661		return;
2662
2663	if (regs->tstate & TSTATE_PRIV) {
2664		/* MCD exception could happen because the task was running
2665		 * a system call with MCD enabled and passed a non-versioned
2666		 * pointer or pointer with bad version tag to  the system
2667		 * call.
2668		 */
2669		const struct exception_table_entry *entry;
2670
2671		entry = search_exception_tables(regs->tpc);
2672		if (entry) {
2673			/* Looks like a bad syscall parameter */
2674#ifdef DEBUG_EXCEPTIONS
2675			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2676				 regs->tpc);
2677			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2678				 regs->tpc, entry->fixup);
2679#endif
2680			regs->tpc = entry->fixup;
2681			regs->tnpc = regs->tpc + 4;
2682			return;
2683		}
2684		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2685			 __func__, addr, context);
2686		die_if_kernel("MCD precise", regs);
2687	}
2688
2689	if (test_thread_flag(TIF_32BIT)) {
2690		regs->tpc &= 0xffffffff;
2691		regs->tnpc &= 0xffffffff;
2692	}
2693	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2694}
2695
2696void do_privop(struct pt_regs *regs)
2697{
2698	enum ctx_state prev_state = exception_enter();
 
2699
2700	if (notify_die(DIE_TRAP, "privileged operation", regs,
2701		       0, 0x11, SIGILL) == NOTIFY_STOP)
2702		goto out;
2703
2704	if (test_thread_flag(TIF_32BIT)) {
2705		regs->tpc &= 0xffffffff;
2706		regs->tnpc &= 0xffffffff;
2707	}
2708	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
 
 
 
 
 
2709out:
2710	exception_exit(prev_state);
2711}
2712
2713void do_privact(struct pt_regs *regs)
2714{
2715	do_privop(regs);
2716}
2717
2718/* Trap level 1 stuff or other traps we should never see... */
2719void do_cee(struct pt_regs *regs)
2720{
2721	exception_enter();
2722	die_if_kernel("TL0: Cache Error Exception", regs);
2723}
2724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725void do_div0_tl1(struct pt_regs *regs)
2726{
2727	exception_enter();
2728	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2729	die_if_kernel("TL1: DIV0 Exception", regs);
2730}
2731
 
 
 
 
 
 
 
2732void do_fpieee_tl1(struct pt_regs *regs)
2733{
2734	exception_enter();
2735	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2736	die_if_kernel("TL1: FPU IEEE Exception", regs);
2737}
2738
2739void do_fpother_tl1(struct pt_regs *regs)
2740{
2741	exception_enter();
2742	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2743	die_if_kernel("TL1: FPU Other Exception", regs);
2744}
2745
2746void do_ill_tl1(struct pt_regs *regs)
2747{
2748	exception_enter();
2749	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2750	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2751}
2752
2753void do_irq_tl1(struct pt_regs *regs)
2754{
2755	exception_enter();
2756	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2757	die_if_kernel("TL1: IRQ Exception", regs);
2758}
2759
2760void do_lddfmna_tl1(struct pt_regs *regs)
2761{
2762	exception_enter();
2763	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2764	die_if_kernel("TL1: LDDF Exception", regs);
2765}
2766
2767void do_stdfmna_tl1(struct pt_regs *regs)
2768{
2769	exception_enter();
2770	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2771	die_if_kernel("TL1: STDF Exception", regs);
2772}
2773
2774void do_paw(struct pt_regs *regs)
2775{
2776	exception_enter();
2777	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2778}
2779
2780void do_paw_tl1(struct pt_regs *regs)
2781{
2782	exception_enter();
2783	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2784	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2785}
2786
2787void do_vaw(struct pt_regs *regs)
2788{
2789	exception_enter();
2790	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2791}
2792
2793void do_vaw_tl1(struct pt_regs *regs)
2794{
2795	exception_enter();
2796	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2797	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2798}
2799
2800void do_tof_tl1(struct pt_regs *regs)
2801{
2802	exception_enter();
2803	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2804	die_if_kernel("TL1: Tag Overflow Exception", regs);
2805}
2806
2807void do_getpsr(struct pt_regs *regs)
2808{
2809	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2810	regs->tpc   = regs->tnpc;
2811	regs->tnpc += 4;
2812	if (test_thread_flag(TIF_32BIT)) {
2813		regs->tpc &= 0xffffffff;
2814		regs->tnpc &= 0xffffffff;
2815	}
2816}
2817
2818u64 cpu_mondo_counter[NR_CPUS] = {0};
2819struct trap_per_cpu trap_block[NR_CPUS];
2820EXPORT_SYMBOL(trap_block);
2821
2822/* This can get invoked before sched_init() so play it super safe
2823 * and use hard_smp_processor_id().
2824 */
2825void notrace init_cur_cpu_trap(struct thread_info *t)
2826{
2827	int cpu = hard_smp_processor_id();
2828	struct trap_per_cpu *p = &trap_block[cpu];
2829
2830	p->thread = t;
2831	p->pgd_paddr = 0;
2832}
2833
2834extern void thread_info_offsets_are_bolixed_dave(void);
2835extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2836extern void tsb_config_offsets_are_bolixed_dave(void);
2837
2838/* Only invoked on boot processor. */
2839void __init trap_init(void)
2840{
2841	/* Compile time sanity check. */
2842	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2843		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2844		     TI_CPU != offsetof(struct thread_info, cpu) ||
2845		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2846		     TI_KSP != offsetof(struct thread_info, ksp) ||
2847		     TI_FAULT_ADDR != offsetof(struct thread_info,
2848					       fault_address) ||
2849		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2850		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
 
 
2851		     TI_REG_WINDOW != offsetof(struct thread_info,
2852					       reg_window) ||
2853		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2854					       rwbuf_stkptrs) ||
2855		     TI_GSR != offsetof(struct thread_info, gsr) ||
2856		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2857		     TI_PRE_COUNT != offsetof(struct thread_info,
2858					      preempt_count) ||
2859		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
 
 
 
 
2860		     TI_KUNA_REGS != offsetof(struct thread_info,
2861					      kern_una_regs) ||
2862		     TI_KUNA_INSN != offsetof(struct thread_info,
2863					      kern_una_insn) ||
2864		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2865		     (TI_FPREGS & (64 - 1)));
2866
2867	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2868						     thread) ||
2869		     (TRAP_PER_CPU_PGD_PADDR !=
2870		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2871		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2872		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2873		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2874		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2875		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2876		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2877		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2878		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2879		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2880		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2881		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2882		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2883		     (TRAP_PER_CPU_FAULT_INFO !=
2884		      offsetof(struct trap_per_cpu, fault_info)) ||
2885		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2886		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2887		     (TRAP_PER_CPU_CPU_LIST_PA !=
2888		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2889		     (TRAP_PER_CPU_TSB_HUGE !=
2890		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2891		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2892		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2893		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2894		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2895		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2896		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2897		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2898		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2899		     (TRAP_PER_CPU_RESUM_QMASK !=
2900		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2901		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2902		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2903		     (TRAP_PER_CPU_PER_CPU_BASE !=
2904		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2905
2906	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2907		      offsetof(struct tsb_config, tsb)) ||
2908		     (TSB_CONFIG_RSS_LIMIT !=
2909		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2910		     (TSB_CONFIG_NENTRIES !=
2911		      offsetof(struct tsb_config, tsb_nentries)) ||
2912		     (TSB_CONFIG_REG_VAL !=
2913		      offsetof(struct tsb_config, tsb_reg_val)) ||
2914		     (TSB_CONFIG_MAP_VADDR !=
2915		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2916		     (TSB_CONFIG_MAP_PTE !=
2917		      offsetof(struct tsb_config, tsb_map_pte)));
2918
2919	/* Attach to the address space of init_task.  On SMP we
2920	 * do this in smp.c:smp_callin for other cpus.
2921	 */
2922	mmgrab(&init_mm);
2923	current->active_mm = &init_mm;
2924}
v3.15
 
   1/* arch/sparc64/kernel/traps.c
   2 *
   3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   5 */
   6
   7/*
   8 * I like traps on v9, :))))
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/sched.h>
 
  13#include <linux/linkage.h>
  14#include <linux/kernel.h>
  15#include <linux/signal.h>
  16#include <linux/smp.h>
  17#include <linux/mm.h>
  18#include <linux/init.h>
 
  19#include <linux/kdebug.h>
  20#include <linux/ftrace.h>
  21#include <linux/reboot.h>
  22#include <linux/gfp.h>
  23#include <linux/context_tracking.h>
  24
  25#include <asm/smp.h>
  26#include <asm/delay.h>
  27#include <asm/ptrace.h>
  28#include <asm/oplib.h>
  29#include <asm/page.h>
  30#include <asm/pgtable.h>
  31#include <asm/unistd.h>
  32#include <asm/uaccess.h>
  33#include <asm/fpumacro.h>
  34#include <asm/lsu.h>
  35#include <asm/dcu.h>
  36#include <asm/estate.h>
  37#include <asm/chafsr.h>
  38#include <asm/sfafsr.h>
  39#include <asm/psrcompat.h>
  40#include <asm/processor.h>
  41#include <asm/timer.h>
  42#include <asm/head.h>
  43#include <asm/prom.h>
  44#include <asm/memctrl.h>
  45#include <asm/cacheflush.h>
 
  46
  47#include "entry.h"
 
  48#include "kstack.h"
  49
  50/* When an irrecoverable trap occurs at tl > 0, the trap entry
  51 * code logs the trap state registers at every level in the trap
  52 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  53 * is as follows:
  54 */
  55struct tl1_traplog {
  56	struct {
  57		unsigned long tstate;
  58		unsigned long tpc;
  59		unsigned long tnpc;
  60		unsigned long tt;
  61	} trapstack[4];
  62	unsigned long tl;
  63};
  64
  65static void dump_tl1_traplog(struct tl1_traplog *p)
  66{
  67	int i, limit;
  68
  69	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  70	       "dumping track stack.\n", p->tl);
  71
  72	limit = (tlb_type == hypervisor) ? 2 : 4;
  73	for (i = 0; i < limit; i++) {
  74		printk(KERN_EMERG
  75		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  76		       "TNPC[%016lx] TT[%lx]\n",
  77		       i + 1,
  78		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  79		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  80		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  81	}
  82}
  83
  84void bad_trap(struct pt_regs *regs, long lvl)
  85{
  86	char buffer[32];
  87	siginfo_t info;
  88
  89	if (notify_die(DIE_TRAP, "bad trap", regs,
  90		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  91		return;
  92
  93	if (lvl < 0x100) {
  94		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  95		die_if_kernel(buffer, regs);
  96	}
  97
  98	lvl -= 0x100;
  99	if (regs->tstate & TSTATE_PRIV) {
 100		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 101		die_if_kernel(buffer, regs);
 102	}
 103	if (test_thread_flag(TIF_32BIT)) {
 104		regs->tpc &= 0xffffffff;
 105		regs->tnpc &= 0xffffffff;
 106	}
 107	info.si_signo = SIGILL;
 108	info.si_errno = 0;
 109	info.si_code = ILL_ILLTRP;
 110	info.si_addr = (void __user *)regs->tpc;
 111	info.si_trapno = lvl;
 112	force_sig_info(SIGILL, &info, current);
 113}
 114
 115void bad_trap_tl1(struct pt_regs *regs, long lvl)
 116{
 117	char buffer[32];
 118	
 119	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 120		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 121		return;
 122
 123	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 124
 125	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 126	die_if_kernel (buffer, regs);
 127}
 128
 129#ifdef CONFIG_DEBUG_BUGVERBOSE
 130void do_BUG(const char *file, int line)
 131{
 132	bust_spinlocks(1);
 133	printk("kernel BUG at %s:%d!\n", file, line);
 134}
 135EXPORT_SYMBOL(do_BUG);
 136#endif
 137
 138static DEFINE_SPINLOCK(dimm_handler_lock);
 139static dimm_printer_t dimm_handler;
 140
 141static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 142{
 143	unsigned long flags;
 144	int ret = -ENODEV;
 145
 146	spin_lock_irqsave(&dimm_handler_lock, flags);
 147	if (dimm_handler) {
 148		ret = dimm_handler(synd_code, paddr, buf, buflen);
 149	} else if (tlb_type == spitfire) {
 150		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 151			ret = -EINVAL;
 152		else
 153			ret = 0;
 154	} else
 155		ret = -ENODEV;
 156	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 157
 158	return ret;
 159}
 160
 161int register_dimm_printer(dimm_printer_t func)
 162{
 163	unsigned long flags;
 164	int ret = 0;
 165
 166	spin_lock_irqsave(&dimm_handler_lock, flags);
 167	if (!dimm_handler)
 168		dimm_handler = func;
 169	else
 170		ret = -EEXIST;
 171	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 172
 173	return ret;
 174}
 175EXPORT_SYMBOL_GPL(register_dimm_printer);
 176
 177void unregister_dimm_printer(dimm_printer_t func)
 178{
 179	unsigned long flags;
 180
 181	spin_lock_irqsave(&dimm_handler_lock, flags);
 182	if (dimm_handler == func)
 183		dimm_handler = NULL;
 184	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 185}
 186EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 187
 188void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 189{
 190	enum ctx_state prev_state = exception_enter();
 191	siginfo_t info;
 192
 193	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 194		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 195		goto out;
 196
 197	if (regs->tstate & TSTATE_PRIV) {
 198		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 199		       "SFAR[%016lx], going.\n", sfsr, sfar);
 200		die_if_kernel("Iax", regs);
 201	}
 202	if (test_thread_flag(TIF_32BIT)) {
 203		regs->tpc &= 0xffffffff;
 204		regs->tnpc &= 0xffffffff;
 205	}
 206	info.si_signo = SIGSEGV;
 207	info.si_errno = 0;
 208	info.si_code = SEGV_MAPERR;
 209	info.si_addr = (void __user *)regs->tpc;
 210	info.si_trapno = 0;
 211	force_sig_info(SIGSEGV, &info, current);
 212out:
 213	exception_exit(prev_state);
 214}
 215
 216void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 217{
 218	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 219		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 220		return;
 221
 222	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 223	spitfire_insn_access_exception(regs, sfsr, sfar);
 224}
 225
 226void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 227{
 228	unsigned short type = (type_ctx >> 16);
 229	unsigned short ctx  = (type_ctx & 0xffff);
 230	siginfo_t info;
 231
 232	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 233		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 234		return;
 235
 236	if (regs->tstate & TSTATE_PRIV) {
 237		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 238		       "CTX[%04x] TYPE[%04x], going.\n",
 239		       addr, ctx, type);
 240		die_if_kernel("Iax", regs);
 241	}
 242
 243	if (test_thread_flag(TIF_32BIT)) {
 244		regs->tpc &= 0xffffffff;
 245		regs->tnpc &= 0xffffffff;
 246	}
 247	info.si_signo = SIGSEGV;
 248	info.si_errno = 0;
 249	info.si_code = SEGV_MAPERR;
 250	info.si_addr = (void __user *) addr;
 251	info.si_trapno = 0;
 252	force_sig_info(SIGSEGV, &info, current);
 253}
 254
 255void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 256{
 257	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 258		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 259		return;
 260
 261	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 262	sun4v_insn_access_exception(regs, addr, type_ctx);
 263}
 264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 266{
 267	enum ctx_state prev_state = exception_enter();
 268	siginfo_t info;
 269
 270	if (notify_die(DIE_TRAP, "data access exception", regs,
 271		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 272		goto out;
 273
 274	if (regs->tstate & TSTATE_PRIV) {
 275		/* Test if this comes from uaccess places. */
 276		const struct exception_table_entry *entry;
 277
 278		entry = search_exception_tables(regs->tpc);
 279		if (entry) {
 280			/* Ouch, somebody is trying VM hole tricks on us... */
 281#ifdef DEBUG_EXCEPTIONS
 282			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 283			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 284			       regs->tpc, entry->fixup);
 285#endif
 286			regs->tpc = entry->fixup;
 287			regs->tnpc = regs->tpc + 4;
 288			goto out;
 289		}
 290		/* Shit... */
 291		printk("spitfire_data_access_exception: SFSR[%016lx] "
 292		       "SFAR[%016lx], going.\n", sfsr, sfar);
 293		die_if_kernel("Dax", regs);
 294	}
 295
 296	info.si_signo = SIGSEGV;
 297	info.si_errno = 0;
 298	info.si_code = SEGV_MAPERR;
 299	info.si_addr = (void __user *)sfar;
 300	info.si_trapno = 0;
 301	force_sig_info(SIGSEGV, &info, current);
 302out:
 303	exception_exit(prev_state);
 304}
 305
 306void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 307{
 308	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 309		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 310		return;
 311
 312	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 313	spitfire_data_access_exception(regs, sfsr, sfar);
 314}
 315
 316void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 317{
 318	unsigned short type = (type_ctx >> 16);
 319	unsigned short ctx  = (type_ctx & 0xffff);
 320	siginfo_t info;
 321
 322	if (notify_die(DIE_TRAP, "data access exception", regs,
 323		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 324		return;
 325
 326	if (regs->tstate & TSTATE_PRIV) {
 327		/* Test if this comes from uaccess places. */
 328		const struct exception_table_entry *entry;
 329
 330		entry = search_exception_tables(regs->tpc);
 331		if (entry) {
 332			/* Ouch, somebody is trying VM hole tricks on us... */
 333#ifdef DEBUG_EXCEPTIONS
 334			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 335			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 336			       regs->tpc, entry->fixup);
 337#endif
 338			regs->tpc = entry->fixup;
 339			regs->tnpc = regs->tpc + 4;
 340			return;
 341		}
 342		printk("sun4v_data_access_exception: ADDR[%016lx] "
 343		       "CTX[%04x] TYPE[%04x], going.\n",
 344		       addr, ctx, type);
 345		die_if_kernel("Dax", regs);
 346	}
 347
 348	if (test_thread_flag(TIF_32BIT)) {
 349		regs->tpc &= 0xffffffff;
 350		regs->tnpc &= 0xffffffff;
 351	}
 352	info.si_signo = SIGSEGV;
 353	info.si_errno = 0;
 354	info.si_code = SEGV_MAPERR;
 355	info.si_addr = (void __user *) addr;
 356	info.si_trapno = 0;
 357	force_sig_info(SIGSEGV, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359
 360void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 361{
 362	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 363		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 364		return;
 365
 366	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 367	sun4v_data_access_exception(regs, addr, type_ctx);
 368}
 369
 370#ifdef CONFIG_PCI
 371#include "pci_impl.h"
 372#endif
 373
 374/* When access exceptions happen, we must do this. */
 375static void spitfire_clean_and_reenable_l1_caches(void)
 376{
 377	unsigned long va;
 378
 379	if (tlb_type != spitfire)
 380		BUG();
 381
 382	/* Clean 'em. */
 383	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 384		spitfire_put_icache_tag(va, 0x0);
 385		spitfire_put_dcache_tag(va, 0x0);
 386	}
 387
 388	/* Re-enable in LSU. */
 389	__asm__ __volatile__("flush %%g6\n\t"
 390			     "membar #Sync\n\t"
 391			     "stxa %0, [%%g0] %1\n\t"
 392			     "membar #Sync"
 393			     : /* no outputs */
 394			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 395				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 396			     "i" (ASI_LSU_CONTROL)
 397			     : "memory");
 398}
 399
 400static void spitfire_enable_estate_errors(void)
 401{
 402	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 403			     "membar	#Sync"
 404			     : /* no outputs */
 405			     : "r" (ESTATE_ERR_ALL),
 406			       "i" (ASI_ESTATE_ERROR_EN));
 407}
 408
 409static char ecc_syndrome_table[] = {
 410	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 411	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 412	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 413	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 414	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 415	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 416	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 417	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 418	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 419	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 420	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 421	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 422	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 423	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 424	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 425	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 426	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 427	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 428	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 429	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 430	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 431	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 432	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 433	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 434	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 435	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 436	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 437	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 438	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 439	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 440	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 441	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 442};
 443
 444static char *syndrome_unknown = "<Unknown>";
 445
 446static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 447{
 448	unsigned short scode;
 449	char memmod_str[64], *p;
 450
 451	if (udbl & bit) {
 452		scode = ecc_syndrome_table[udbl & 0xff];
 453		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 454			p = syndrome_unknown;
 455		else
 456			p = memmod_str;
 457		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 458		       "Memory Module \"%s\"\n",
 459		       smp_processor_id(), scode, p);
 460	}
 461
 462	if (udbh & bit) {
 463		scode = ecc_syndrome_table[udbh & 0xff];
 464		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 465			p = syndrome_unknown;
 466		else
 467			p = memmod_str;
 468		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 469		       "Memory Module \"%s\"\n",
 470		       smp_processor_id(), scode, p);
 471	}
 472
 473}
 474
 475static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 476{
 477
 478	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 479	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 480	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 481
 482	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 483
 484	/* We always log it, even if someone is listening for this
 485	 * trap.
 486	 */
 487	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 488		   0, TRAP_TYPE_CEE, SIGTRAP);
 489
 490	/* The Correctable ECC Error trap does not disable I/D caches.  So
 491	 * we only have to restore the ESTATE Error Enable register.
 492	 */
 493	spitfire_enable_estate_errors();
 494}
 495
 496static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 497{
 498	siginfo_t info;
 499
 500	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 501	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 502	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 503
 504	/* XXX add more human friendly logging of the error status
 505	 * XXX as is implemented for cheetah
 506	 */
 507
 508	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 509
 510	/* We always log it, even if someone is listening for this
 511	 * trap.
 512	 */
 513	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 514		   0, tt, SIGTRAP);
 515
 516	if (regs->tstate & TSTATE_PRIV) {
 517		if (tl1)
 518			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 519		die_if_kernel("UE", regs);
 520	}
 521
 522	/* XXX need more intelligent processing here, such as is implemented
 523	 * XXX for cheetah errors, in fact if the E-cache still holds the
 524	 * XXX line with bad parity this will loop
 525	 */
 526
 527	spitfire_clean_and_reenable_l1_caches();
 528	spitfire_enable_estate_errors();
 529
 530	if (test_thread_flag(TIF_32BIT)) {
 531		regs->tpc &= 0xffffffff;
 532		regs->tnpc &= 0xffffffff;
 533	}
 534	info.si_signo = SIGBUS;
 535	info.si_errno = 0;
 536	info.si_code = BUS_OBJERR;
 537	info.si_addr = (void *)0;
 538	info.si_trapno = 0;
 539	force_sig_info(SIGBUS, &info, current);
 540}
 541
 542void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 543{
 544	unsigned long afsr, tt, udbh, udbl;
 545	int tl1;
 546
 547	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 548	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 549	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 550	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 551	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 552
 553#ifdef CONFIG_PCI
 554	if (tt == TRAP_TYPE_DAE &&
 555	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 556		spitfire_clean_and_reenable_l1_caches();
 557		spitfire_enable_estate_errors();
 558
 559		pci_poke_faulted = 1;
 560		regs->tnpc = regs->tpc + 4;
 561		return;
 562	}
 563#endif
 564
 565	if (afsr & SFAFSR_UE)
 566		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 567
 568	if (tt == TRAP_TYPE_CEE) {
 569		/* Handle the case where we took a CEE trap, but ACK'd
 570		 * only the UE state in the UDB error registers.
 571		 */
 572		if (afsr & SFAFSR_UE) {
 573			if (udbh & UDBE_CE) {
 574				__asm__ __volatile__(
 575					"stxa	%0, [%1] %2\n\t"
 576					"membar	#Sync"
 577					: /* no outputs */
 578					: "r" (udbh & UDBE_CE),
 579					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 580			}
 581			if (udbl & UDBE_CE) {
 582				__asm__ __volatile__(
 583					"stxa	%0, [%1] %2\n\t"
 584					"membar	#Sync"
 585					: /* no outputs */
 586					: "r" (udbl & UDBE_CE),
 587					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 588			}
 589		}
 590
 591		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 592	}
 593}
 594
 595int cheetah_pcache_forced_on;
 596
 597void cheetah_enable_pcache(void)
 598{
 599	unsigned long dcr;
 600
 601	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 602	       smp_processor_id());
 603
 604	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 605			     : "=r" (dcr)
 606			     : "i" (ASI_DCU_CONTROL_REG));
 607	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 608	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 609			     "membar #Sync"
 610			     : /* no outputs */
 611			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 612}
 613
 614/* Cheetah error trap handling. */
 615static unsigned long ecache_flush_physbase;
 616static unsigned long ecache_flush_linesize;
 617static unsigned long ecache_flush_size;
 618
 619/* This table is ordered in priority of errors and matches the
 620 * AFAR overwrite policy as well.
 621 */
 622
 623struct afsr_error_table {
 624	unsigned long mask;
 625	const char *name;
 626};
 627
 628static const char CHAFSR_PERR_msg[] =
 629	"System interface protocol error";
 630static const char CHAFSR_IERR_msg[] =
 631	"Internal processor error";
 632static const char CHAFSR_ISAP_msg[] =
 633	"System request parity error on incoming address";
 634static const char CHAFSR_UCU_msg[] =
 635	"Uncorrectable E-cache ECC error for ifetch/data";
 636static const char CHAFSR_UCC_msg[] =
 637	"SW Correctable E-cache ECC error for ifetch/data";
 638static const char CHAFSR_UE_msg[] =
 639	"Uncorrectable system bus data ECC error for read";
 640static const char CHAFSR_EDU_msg[] =
 641	"Uncorrectable E-cache ECC error for stmerge/blkld";
 642static const char CHAFSR_EMU_msg[] =
 643	"Uncorrectable system bus MTAG error";
 644static const char CHAFSR_WDU_msg[] =
 645	"Uncorrectable E-cache ECC error for writeback";
 646static const char CHAFSR_CPU_msg[] =
 647	"Uncorrectable ECC error for copyout";
 648static const char CHAFSR_CE_msg[] =
 649	"HW corrected system bus data ECC error for read";
 650static const char CHAFSR_EDC_msg[] =
 651	"HW corrected E-cache ECC error for stmerge/blkld";
 652static const char CHAFSR_EMC_msg[] =
 653	"HW corrected system bus MTAG ECC error";
 654static const char CHAFSR_WDC_msg[] =
 655	"HW corrected E-cache ECC error for writeback";
 656static const char CHAFSR_CPC_msg[] =
 657	"HW corrected ECC error for copyout";
 658static const char CHAFSR_TO_msg[] =
 659	"Unmapped error from system bus";
 660static const char CHAFSR_BERR_msg[] =
 661	"Bus error response from system bus";
 662static const char CHAFSR_IVC_msg[] =
 663	"HW corrected system bus data ECC error for ivec read";
 664static const char CHAFSR_IVU_msg[] =
 665	"Uncorrectable system bus data ECC error for ivec read";
 666static struct afsr_error_table __cheetah_error_table[] = {
 667	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 668	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 669	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 670	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 671	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 672	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 673	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 674	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 675	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 676	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 677	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 678	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 679	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 680	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 681	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 682	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 683	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 684	/* These two do not update the AFAR. */
 685	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 686	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 687	{	0,		NULL			},
 688};
 689static const char CHPAFSR_DTO_msg[] =
 690	"System bus unmapped error for prefetch/storequeue-read";
 691static const char CHPAFSR_DBERR_msg[] =
 692	"System bus error for prefetch/storequeue-read";
 693static const char CHPAFSR_THCE_msg[] =
 694	"Hardware corrected E-cache Tag ECC error";
 695static const char CHPAFSR_TSCE_msg[] =
 696	"SW handled correctable E-cache Tag ECC error";
 697static const char CHPAFSR_TUE_msg[] =
 698	"Uncorrectable E-cache Tag ECC error";
 699static const char CHPAFSR_DUE_msg[] =
 700	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 701static struct afsr_error_table __cheetah_plus_error_table[] = {
 702	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 703	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 704	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 705	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 706	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 707	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 708	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 709	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 710	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 711	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 712	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 713	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 714	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 715	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 716	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 717	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 718	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 719	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 720	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 721	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 722	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 723	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 724	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 725	/* These two do not update the AFAR. */
 726	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 727	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 728	{	0,		NULL			},
 729};
 730static const char JPAFSR_JETO_msg[] =
 731	"System interface protocol error, hw timeout caused";
 732static const char JPAFSR_SCE_msg[] =
 733	"Parity error on system snoop results";
 734static const char JPAFSR_JEIC_msg[] =
 735	"System interface protocol error, illegal command detected";
 736static const char JPAFSR_JEIT_msg[] =
 737	"System interface protocol error, illegal ADTYPE detected";
 738static const char JPAFSR_OM_msg[] =
 739	"Out of range memory error has occurred";
 740static const char JPAFSR_ETP_msg[] =
 741	"Parity error on L2 cache tag SRAM";
 742static const char JPAFSR_UMS_msg[] =
 743	"Error due to unsupported store";
 744static const char JPAFSR_RUE_msg[] =
 745	"Uncorrectable ECC error from remote cache/memory";
 746static const char JPAFSR_RCE_msg[] =
 747	"Correctable ECC error from remote cache/memory";
 748static const char JPAFSR_BP_msg[] =
 749	"JBUS parity error on returned read data";
 750static const char JPAFSR_WBP_msg[] =
 751	"JBUS parity error on data for writeback or block store";
 752static const char JPAFSR_FRC_msg[] =
 753	"Foreign read to DRAM incurring correctable ECC error";
 754static const char JPAFSR_FRU_msg[] =
 755	"Foreign read to DRAM incurring uncorrectable ECC error";
 756static struct afsr_error_table __jalapeno_error_table[] = {
 757	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 758	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 759	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 760	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 761	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 762	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 763	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 764	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 765	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 766	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 767	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 768	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 769	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 770	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 771	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 772	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 773	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 774	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 775	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 776	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 777	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 778	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 779	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 780	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 781	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 782	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 783	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 784	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 785	/* These two do not update the AFAR. */
 786	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 787	{	0,		NULL			},
 788};
 789static struct afsr_error_table *cheetah_error_table;
 790static unsigned long cheetah_afsr_errors;
 791
 792struct cheetah_err_info *cheetah_error_log;
 793
 794static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 795{
 796	struct cheetah_err_info *p;
 797	int cpu = smp_processor_id();
 798
 799	if (!cheetah_error_log)
 800		return NULL;
 801
 802	p = cheetah_error_log + (cpu * 2);
 803	if ((afsr & CHAFSR_TL1) != 0UL)
 804		p++;
 805
 806	return p;
 807}
 808
 809extern unsigned int tl0_icpe[], tl1_icpe[];
 810extern unsigned int tl0_dcpe[], tl1_dcpe[];
 811extern unsigned int tl0_fecc[], tl1_fecc[];
 812extern unsigned int tl0_cee[], tl1_cee[];
 813extern unsigned int tl0_iae[], tl1_iae[];
 814extern unsigned int tl0_dae[], tl1_dae[];
 815extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 816extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 817extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 818extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 819extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 820
 821void __init cheetah_ecache_flush_init(void)
 822{
 823	unsigned long largest_size, smallest_linesize, order, ver;
 824	int i, sz;
 825
 826	/* Scan all cpu device tree nodes, note two values:
 827	 * 1) largest E-cache size
 828	 * 2) smallest E-cache line size
 829	 */
 830	largest_size = 0UL;
 831	smallest_linesize = ~0UL;
 832
 833	for (i = 0; i < NR_CPUS; i++) {
 834		unsigned long val;
 835
 836		val = cpu_data(i).ecache_size;
 837		if (!val)
 838			continue;
 839
 840		if (val > largest_size)
 841			largest_size = val;
 842
 843		val = cpu_data(i).ecache_line_size;
 844		if (val < smallest_linesize)
 845			smallest_linesize = val;
 846
 847	}
 848
 849	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 850		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 851			    "parameters.\n");
 852		prom_halt();
 853	}
 854
 855	ecache_flush_size = (2 * largest_size);
 856	ecache_flush_linesize = smallest_linesize;
 857
 858	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 859
 860	if (ecache_flush_physbase == ~0UL) {
 861		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 862			    "contiguous physical memory.\n",
 863			    ecache_flush_size);
 864		prom_halt();
 865	}
 866
 867	/* Now allocate error trap reporting scoreboard. */
 868	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 869	for (order = 0; order < MAX_ORDER; order++) {
 870		if ((PAGE_SIZE << order) >= sz)
 871			break;
 872	}
 873	cheetah_error_log = (struct cheetah_err_info *)
 874		__get_free_pages(GFP_KERNEL, order);
 875	if (!cheetah_error_log) {
 876		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 877			    "error logging scoreboard (%d bytes).\n", sz);
 878		prom_halt();
 879	}
 880	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 881
 882	/* Mark all AFSRs as invalid so that the trap handler will
 883	 * log new new information there.
 884	 */
 885	for (i = 0; i < 2 * NR_CPUS; i++)
 886		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 887
 888	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 889	if ((ver >> 32) == __JALAPENO_ID ||
 890	    (ver >> 32) == __SERRANO_ID) {
 891		cheetah_error_table = &__jalapeno_error_table[0];
 892		cheetah_afsr_errors = JPAFSR_ERRORS;
 893	} else if ((ver >> 32) == 0x003e0015) {
 894		cheetah_error_table = &__cheetah_plus_error_table[0];
 895		cheetah_afsr_errors = CHPAFSR_ERRORS;
 896	} else {
 897		cheetah_error_table = &__cheetah_error_table[0];
 898		cheetah_afsr_errors = CHAFSR_ERRORS;
 899	}
 900
 901	/* Now patch trap tables. */
 902	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 903	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 904	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 905	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 906	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 907	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 908	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 909	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 910	if (tlb_type == cheetah_plus) {
 911		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 912		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 913		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 914		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 915	}
 916	flushi(PAGE_OFFSET);
 917}
 918
 919static void cheetah_flush_ecache(void)
 920{
 921	unsigned long flush_base = ecache_flush_physbase;
 922	unsigned long flush_linesize = ecache_flush_linesize;
 923	unsigned long flush_size = ecache_flush_size;
 924
 925	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 926			     "   bne,pt	%%xcc, 1b\n\t"
 927			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 928			     : "=&r" (flush_size)
 929			     : "0" (flush_size), "r" (flush_base),
 930			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 931}
 932
 933static void cheetah_flush_ecache_line(unsigned long physaddr)
 934{
 935	unsigned long alias;
 936
 937	physaddr &= ~(8UL - 1UL);
 938	physaddr = (ecache_flush_physbase +
 939		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 940	alias = physaddr + (ecache_flush_size >> 1UL);
 941	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 942			     "ldxa [%1] %2, %%g0\n\t"
 943			     "membar #Sync"
 944			     : /* no outputs */
 945			     : "r" (physaddr), "r" (alias),
 946			       "i" (ASI_PHYS_USE_EC));
 947}
 948
 949/* Unfortunately, the diagnostic access to the I-cache tags we need to
 950 * use to clear the thing interferes with I-cache coherency transactions.
 951 *
 952 * So we must only flush the I-cache when it is disabled.
 953 */
 954static void __cheetah_flush_icache(void)
 955{
 956	unsigned int icache_size, icache_line_size;
 957	unsigned long addr;
 958
 959	icache_size = local_cpu_data().icache_size;
 960	icache_line_size = local_cpu_data().icache_line_size;
 961
 962	/* Clear the valid bits in all the tags. */
 963	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 964		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 965				     "membar #Sync"
 966				     : /* no outputs */
 967				     : "r" (addr | (2 << 3)),
 968				       "i" (ASI_IC_TAG));
 969	}
 970}
 971
 972static void cheetah_flush_icache(void)
 973{
 974	unsigned long dcu_save;
 975
 976	/* Save current DCU, disable I-cache. */
 977	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
 978			     "or %0, %2, %%g1\n\t"
 979			     "stxa %%g1, [%%g0] %1\n\t"
 980			     "membar #Sync"
 981			     : "=r" (dcu_save)
 982			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
 983			     : "g1");
 984
 985	__cheetah_flush_icache();
 986
 987	/* Restore DCU register */
 988	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 989			     "membar #Sync"
 990			     : /* no outputs */
 991			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
 992}
 993
 994static void cheetah_flush_dcache(void)
 995{
 996	unsigned int dcache_size, dcache_line_size;
 997	unsigned long addr;
 998
 999	dcache_size = local_cpu_data().dcache_size;
1000	dcache_line_size = local_cpu_data().dcache_line_size;
1001
1002	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1003		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1004				     "membar #Sync"
1005				     : /* no outputs */
1006				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1007	}
1008}
1009
1010/* In order to make the even parity correct we must do two things.
1011 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1012 * Next, we clear out all 32-bytes of data for that line.  Data of
1013 * all-zero + tag parity value of zero == correct parity.
1014 */
1015static void cheetah_plus_zap_dcache_parity(void)
1016{
1017	unsigned int dcache_size, dcache_line_size;
1018	unsigned long addr;
1019
1020	dcache_size = local_cpu_data().dcache_size;
1021	dcache_line_size = local_cpu_data().dcache_line_size;
1022
1023	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1024		unsigned long tag = (addr >> 14);
1025		unsigned long line;
1026
1027		__asm__ __volatile__("membar	#Sync\n\t"
1028				     "stxa	%0, [%1] %2\n\t"
1029				     "membar	#Sync"
1030				     : /* no outputs */
1031				     : "r" (tag), "r" (addr),
1032				       "i" (ASI_DCACHE_UTAG));
1033		for (line = addr; line < addr + dcache_line_size; line += 8)
1034			__asm__ __volatile__("membar	#Sync\n\t"
1035					     "stxa	%%g0, [%0] %1\n\t"
1036					     "membar	#Sync"
1037					     : /* no outputs */
1038					     : "r" (line),
1039					       "i" (ASI_DCACHE_DATA));
1040	}
1041}
1042
1043/* Conversion tables used to frob Cheetah AFSR syndrome values into
1044 * something palatable to the memory controller driver get_unumber
1045 * routine.
1046 */
1047#define MT0	137
1048#define MT1	138
1049#define MT2	139
1050#define NONE	254
1051#define MTC0	140
1052#define MTC1	141
1053#define MTC2	142
1054#define MTC3	143
1055#define C0	128
1056#define C1	129
1057#define C2	130
1058#define C3	131
1059#define C4	132
1060#define C5	133
1061#define C6	134
1062#define C7	135
1063#define C8	136
1064#define M2	144
1065#define M3	145
1066#define M4	146
1067#define M	147
1068static unsigned char cheetah_ecc_syntab[] = {
1069/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1070/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1071/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1072/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1073/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1074/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1075/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1076/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1077/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1078/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1079/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1080/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1081/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1082/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1083/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1084/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1085/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1086/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1087/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1088/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1089/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1090/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1091/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1092/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1093/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1094/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1095/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1096/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1097/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1098/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1099/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1100/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1101};
1102static unsigned char cheetah_mtag_syntab[] = {
1103       NONE, MTC0,
1104       MTC1, NONE,
1105       MTC2, NONE,
1106       NONE, MT0,
1107       MTC3, NONE,
1108       NONE, MT1,
1109       NONE, MT2,
1110       NONE, NONE
1111};
1112
1113/* Return the highest priority error conditon mentioned. */
1114static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1115{
1116	unsigned long tmp = 0;
1117	int i;
1118
1119	for (i = 0; cheetah_error_table[i].mask; i++) {
1120		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1121			return tmp;
1122	}
1123	return tmp;
1124}
1125
1126static const char *cheetah_get_string(unsigned long bit)
1127{
1128	int i;
1129
1130	for (i = 0; cheetah_error_table[i].mask; i++) {
1131		if ((bit & cheetah_error_table[i].mask) != 0UL)
1132			return cheetah_error_table[i].name;
1133	}
1134	return "???";
1135}
1136
1137static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1138			       unsigned long afsr, unsigned long afar, int recoverable)
1139{
1140	unsigned long hipri;
1141	char unum[256];
1142
1143	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1144	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1145	       afsr, afar,
1146	       (afsr & CHAFSR_TL1) ? 1 : 0);
1147	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1148	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1149	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1150	printk("%s" "ERROR(%d): ",
1151	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1152	printk("TPC<%pS>\n", (void *) regs->tpc);
1153	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1154	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1155	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1156	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1157	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1158	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1159	hipri = cheetah_get_hipri(afsr);
1160	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1161	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1162	       hipri, cheetah_get_string(hipri));
1163
1164	/* Try to get unumber if relevant. */
1165#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1166			 CHAFSR_CPC | CHAFSR_CPU | \
1167			 CHAFSR_UE  | CHAFSR_CE  | \
1168			 CHAFSR_EDC | CHAFSR_EDU  | \
1169			 CHAFSR_UCC | CHAFSR_UCU  | \
1170			 CHAFSR_WDU | CHAFSR_WDC)
1171#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1172	if (afsr & ESYND_ERRORS) {
1173		int syndrome;
1174		int ret;
1175
1176		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1177		syndrome = cheetah_ecc_syntab[syndrome];
1178		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1179		if (ret != -1)
1180			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1181			       (recoverable ? KERN_WARNING : KERN_CRIT),
1182			       smp_processor_id(), unum);
1183	} else if (afsr & MSYND_ERRORS) {
1184		int syndrome;
1185		int ret;
1186
1187		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1188		syndrome = cheetah_mtag_syntab[syndrome];
1189		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1190		if (ret != -1)
1191			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1192			       (recoverable ? KERN_WARNING : KERN_CRIT),
1193			       smp_processor_id(), unum);
1194	}
1195
1196	/* Now dump the cache snapshots. */
1197	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1198	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1199	       (int) info->dcache_index,
1200	       info->dcache_tag,
1201	       info->dcache_utag,
1202	       info->dcache_stag);
1203	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1204	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1205	       info->dcache_data[0],
1206	       info->dcache_data[1],
1207	       info->dcache_data[2],
1208	       info->dcache_data[3]);
1209	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1210	       "u[%016llx] l[%016llx]\n",
1211	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1212	       (int) info->icache_index,
1213	       info->icache_tag,
1214	       info->icache_utag,
1215	       info->icache_stag,
1216	       info->icache_upper,
1217	       info->icache_lower);
1218	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1219	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1220	       info->icache_data[0],
1221	       info->icache_data[1],
1222	       info->icache_data[2],
1223	       info->icache_data[3]);
1224	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1225	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1226	       info->icache_data[4],
1227	       info->icache_data[5],
1228	       info->icache_data[6],
1229	       info->icache_data[7]);
1230	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1231	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1232	       (int) info->ecache_index, info->ecache_tag);
1233	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1234	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1235	       info->ecache_data[0],
1236	       info->ecache_data[1],
1237	       info->ecache_data[2],
1238	       info->ecache_data[3]);
1239
1240	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1241	while (afsr != 0UL) {
1242		unsigned long bit = cheetah_get_hipri(afsr);
1243
1244		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1245		       (recoverable ? KERN_WARNING : KERN_CRIT),
1246		       bit, cheetah_get_string(bit));
1247
1248		afsr &= ~bit;
1249	}
1250
1251	if (!recoverable)
1252		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1253}
1254
1255static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1256{
1257	unsigned long afsr, afar;
1258	int ret = 0;
1259
1260	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1261			     : "=r" (afsr)
1262			     : "i" (ASI_AFSR));
1263	if ((afsr & cheetah_afsr_errors) != 0) {
1264		if (logp != NULL) {
1265			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1266					     : "=r" (afar)
1267					     : "i" (ASI_AFAR));
1268			logp->afsr = afsr;
1269			logp->afar = afar;
1270		}
1271		ret = 1;
1272	}
1273	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1274			     "membar #Sync\n\t"
1275			     : : "r" (afsr), "i" (ASI_AFSR));
1276
1277	return ret;
1278}
1279
1280void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1281{
1282	struct cheetah_err_info local_snapshot, *p;
1283	int recoverable;
1284
1285	/* Flush E-cache */
1286	cheetah_flush_ecache();
1287
1288	p = cheetah_get_error_log(afsr);
1289	if (!p) {
1290		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1291			    afsr, afar);
1292		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1293			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1294		prom_halt();
1295	}
1296
1297	/* Grab snapshot of logged error. */
1298	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1299
1300	/* If the current trap snapshot does not match what the
1301	 * trap handler passed along into our args, big trouble.
1302	 * In such a case, mark the local copy as invalid.
1303	 *
1304	 * Else, it matches and we mark the afsr in the non-local
1305	 * copy as invalid so we may log new error traps there.
1306	 */
1307	if (p->afsr != afsr || p->afar != afar)
1308		local_snapshot.afsr = CHAFSR_INVALID;
1309	else
1310		p->afsr = CHAFSR_INVALID;
1311
1312	cheetah_flush_icache();
1313	cheetah_flush_dcache();
1314
1315	/* Re-enable I-cache/D-cache */
1316	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1317			     "or %%g1, %1, %%g1\n\t"
1318			     "stxa %%g1, [%%g0] %0\n\t"
1319			     "membar #Sync"
1320			     : /* no outputs */
1321			     : "i" (ASI_DCU_CONTROL_REG),
1322			       "i" (DCU_DC | DCU_IC)
1323			     : "g1");
1324
1325	/* Re-enable error reporting */
1326	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1327			     "or %%g1, %1, %%g1\n\t"
1328			     "stxa %%g1, [%%g0] %0\n\t"
1329			     "membar #Sync"
1330			     : /* no outputs */
1331			     : "i" (ASI_ESTATE_ERROR_EN),
1332			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1333			     : "g1");
1334
1335	/* Decide if we can continue after handling this trap and
1336	 * logging the error.
1337	 */
1338	recoverable = 1;
1339	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1340		recoverable = 0;
1341
1342	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1343	 * error was logged while we had error reporting traps disabled.
1344	 */
1345	if (cheetah_recheck_errors(&local_snapshot)) {
1346		unsigned long new_afsr = local_snapshot.afsr;
1347
1348		/* If we got a new asynchronous error, die... */
1349		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1350				CHAFSR_WDU | CHAFSR_CPU |
1351				CHAFSR_IVU | CHAFSR_UE |
1352				CHAFSR_BERR | CHAFSR_TO))
1353			recoverable = 0;
1354	}
1355
1356	/* Log errors. */
1357	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1358
1359	if (!recoverable)
1360		panic("Irrecoverable Fast-ECC error trap.\n");
1361
1362	/* Flush E-cache to kick the error trap handlers out. */
1363	cheetah_flush_ecache();
1364}
1365
1366/* Try to fix a correctable error by pushing the line out from
1367 * the E-cache.  Recheck error reporting registers to see if the
1368 * problem is intermittent.
1369 */
1370static int cheetah_fix_ce(unsigned long physaddr)
1371{
1372	unsigned long orig_estate;
1373	unsigned long alias1, alias2;
1374	int ret;
1375
1376	/* Make sure correctable error traps are disabled. */
1377	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1378			     "andn	%0, %1, %%g1\n\t"
1379			     "stxa	%%g1, [%%g0] %2\n\t"
1380			     "membar	#Sync"
1381			     : "=&r" (orig_estate)
1382			     : "i" (ESTATE_ERROR_CEEN),
1383			       "i" (ASI_ESTATE_ERROR_EN)
1384			     : "g1");
1385
1386	/* We calculate alias addresses that will force the
1387	 * cache line in question out of the E-cache.  Then
1388	 * we bring it back in with an atomic instruction so
1389	 * that we get it in some modified/exclusive state,
1390	 * then we displace it again to try and get proper ECC
1391	 * pushed back into the system.
1392	 */
1393	physaddr &= ~(8UL - 1UL);
1394	alias1 = (ecache_flush_physbase +
1395		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1396	alias2 = alias1 + (ecache_flush_size >> 1);
1397	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1398			     "ldxa	[%1] %3, %%g0\n\t"
1399			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1400			     "ldxa	[%0] %3, %%g0\n\t"
1401			     "ldxa	[%1] %3, %%g0\n\t"
1402			     "membar	#Sync"
1403			     : /* no outputs */
1404			     : "r" (alias1), "r" (alias2),
1405			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1406
1407	/* Did that trigger another error? */
1408	if (cheetah_recheck_errors(NULL)) {
1409		/* Try one more time. */
1410		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1411				     "membar #Sync"
1412				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1413		if (cheetah_recheck_errors(NULL))
1414			ret = 2;
1415		else
1416			ret = 1;
1417	} else {
1418		/* No new error, intermittent problem. */
1419		ret = 0;
1420	}
1421
1422	/* Restore error enables. */
1423	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1424			     "membar	#Sync"
1425			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1426
1427	return ret;
1428}
1429
1430/* Return non-zero if PADDR is a valid physical memory address. */
1431static int cheetah_check_main_memory(unsigned long paddr)
1432{
1433	unsigned long vaddr = PAGE_OFFSET + paddr;
1434
1435	if (vaddr > (unsigned long) high_memory)
1436		return 0;
1437
1438	return kern_addr_valid(vaddr);
1439}
1440
1441void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1442{
1443	struct cheetah_err_info local_snapshot, *p;
1444	int recoverable, is_memory;
1445
1446	p = cheetah_get_error_log(afsr);
1447	if (!p) {
1448		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1449			    afsr, afar);
1450		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1451			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1452		prom_halt();
1453	}
1454
1455	/* Grab snapshot of logged error. */
1456	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1457
1458	/* If the current trap snapshot does not match what the
1459	 * trap handler passed along into our args, big trouble.
1460	 * In such a case, mark the local copy as invalid.
1461	 *
1462	 * Else, it matches and we mark the afsr in the non-local
1463	 * copy as invalid so we may log new error traps there.
1464	 */
1465	if (p->afsr != afsr || p->afar != afar)
1466		local_snapshot.afsr = CHAFSR_INVALID;
1467	else
1468		p->afsr = CHAFSR_INVALID;
1469
1470	is_memory = cheetah_check_main_memory(afar);
1471
1472	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1473		/* XXX Might want to log the results of this operation
1474		 * XXX somewhere... -DaveM
1475		 */
1476		cheetah_fix_ce(afar);
1477	}
1478
1479	{
1480		int flush_all, flush_line;
1481
1482		flush_all = flush_line = 0;
1483		if ((afsr & CHAFSR_EDC) != 0UL) {
1484			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1485				flush_line = 1;
1486			else
1487				flush_all = 1;
1488		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1489			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1490				flush_line = 1;
1491			else
1492				flush_all = 1;
1493		}
1494
1495		/* Trap handler only disabled I-cache, flush it. */
1496		cheetah_flush_icache();
1497
1498		/* Re-enable I-cache */
1499		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1500				     "or %%g1, %1, %%g1\n\t"
1501				     "stxa %%g1, [%%g0] %0\n\t"
1502				     "membar #Sync"
1503				     : /* no outputs */
1504				     : "i" (ASI_DCU_CONTROL_REG),
1505				     "i" (DCU_IC)
1506				     : "g1");
1507
1508		if (flush_all)
1509			cheetah_flush_ecache();
1510		else if (flush_line)
1511			cheetah_flush_ecache_line(afar);
1512	}
1513
1514	/* Re-enable error reporting */
1515	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1516			     "or %%g1, %1, %%g1\n\t"
1517			     "stxa %%g1, [%%g0] %0\n\t"
1518			     "membar #Sync"
1519			     : /* no outputs */
1520			     : "i" (ASI_ESTATE_ERROR_EN),
1521			       "i" (ESTATE_ERROR_CEEN)
1522			     : "g1");
1523
1524	/* Decide if we can continue after handling this trap and
1525	 * logging the error.
1526	 */
1527	recoverable = 1;
1528	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1529		recoverable = 0;
1530
1531	/* Re-check AFSR/AFAR */
1532	(void) cheetah_recheck_errors(&local_snapshot);
1533
1534	/* Log errors. */
1535	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1536
1537	if (!recoverable)
1538		panic("Irrecoverable Correctable-ECC error trap.\n");
1539}
1540
1541void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1542{
1543	struct cheetah_err_info local_snapshot, *p;
1544	int recoverable, is_memory;
1545
1546#ifdef CONFIG_PCI
1547	/* Check for the special PCI poke sequence. */
1548	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1549		cheetah_flush_icache();
1550		cheetah_flush_dcache();
1551
1552		/* Re-enable I-cache/D-cache */
1553		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1554				     "or %%g1, %1, %%g1\n\t"
1555				     "stxa %%g1, [%%g0] %0\n\t"
1556				     "membar #Sync"
1557				     : /* no outputs */
1558				     : "i" (ASI_DCU_CONTROL_REG),
1559				       "i" (DCU_DC | DCU_IC)
1560				     : "g1");
1561
1562		/* Re-enable error reporting */
1563		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1564				     "or %%g1, %1, %%g1\n\t"
1565				     "stxa %%g1, [%%g0] %0\n\t"
1566				     "membar #Sync"
1567				     : /* no outputs */
1568				     : "i" (ASI_ESTATE_ERROR_EN),
1569				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1570				     : "g1");
1571
1572		(void) cheetah_recheck_errors(NULL);
1573
1574		pci_poke_faulted = 1;
1575		regs->tpc += 4;
1576		regs->tnpc = regs->tpc + 4;
1577		return;
1578	}
1579#endif
1580
1581	p = cheetah_get_error_log(afsr);
1582	if (!p) {
1583		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1584			    afsr, afar);
1585		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1586			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1587		prom_halt();
1588	}
1589
1590	/* Grab snapshot of logged error. */
1591	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1592
1593	/* If the current trap snapshot does not match what the
1594	 * trap handler passed along into our args, big trouble.
1595	 * In such a case, mark the local copy as invalid.
1596	 *
1597	 * Else, it matches and we mark the afsr in the non-local
1598	 * copy as invalid so we may log new error traps there.
1599	 */
1600	if (p->afsr != afsr || p->afar != afar)
1601		local_snapshot.afsr = CHAFSR_INVALID;
1602	else
1603		p->afsr = CHAFSR_INVALID;
1604
1605	is_memory = cheetah_check_main_memory(afar);
1606
1607	{
1608		int flush_all, flush_line;
1609
1610		flush_all = flush_line = 0;
1611		if ((afsr & CHAFSR_EDU) != 0UL) {
1612			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1613				flush_line = 1;
1614			else
1615				flush_all = 1;
1616		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1617			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1618				flush_line = 1;
1619			else
1620				flush_all = 1;
1621		}
1622
1623		cheetah_flush_icache();
1624		cheetah_flush_dcache();
1625
1626		/* Re-enable I/D caches */
1627		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1628				     "or %%g1, %1, %%g1\n\t"
1629				     "stxa %%g1, [%%g0] %0\n\t"
1630				     "membar #Sync"
1631				     : /* no outputs */
1632				     : "i" (ASI_DCU_CONTROL_REG),
1633				     "i" (DCU_IC | DCU_DC)
1634				     : "g1");
1635
1636		if (flush_all)
1637			cheetah_flush_ecache();
1638		else if (flush_line)
1639			cheetah_flush_ecache_line(afar);
1640	}
1641
1642	/* Re-enable error reporting */
1643	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1644			     "or %%g1, %1, %%g1\n\t"
1645			     "stxa %%g1, [%%g0] %0\n\t"
1646			     "membar #Sync"
1647			     : /* no outputs */
1648			     : "i" (ASI_ESTATE_ERROR_EN),
1649			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1650			     : "g1");
1651
1652	/* Decide if we can continue after handling this trap and
1653	 * logging the error.
1654	 */
1655	recoverable = 1;
1656	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1657		recoverable = 0;
1658
1659	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1660	 * error was logged while we had error reporting traps disabled.
1661	 */
1662	if (cheetah_recheck_errors(&local_snapshot)) {
1663		unsigned long new_afsr = local_snapshot.afsr;
1664
1665		/* If we got a new asynchronous error, die... */
1666		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1667				CHAFSR_WDU | CHAFSR_CPU |
1668				CHAFSR_IVU | CHAFSR_UE |
1669				CHAFSR_BERR | CHAFSR_TO))
1670			recoverable = 0;
1671	}
1672
1673	/* Log errors. */
1674	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1675
1676	/* "Recoverable" here means we try to yank the page from ever
1677	 * being newly used again.  This depends upon a few things:
1678	 * 1) Must be main memory, and AFAR must be valid.
1679	 * 2) If we trapped from user, OK.
1680	 * 3) Else, if we trapped from kernel we must find exception
1681	 *    table entry (ie. we have to have been accessing user
1682	 *    space).
1683	 *
1684	 * If AFAR is not in main memory, or we trapped from kernel
1685	 * and cannot find an exception table entry, it is unacceptable
1686	 * to try and continue.
1687	 */
1688	if (recoverable && is_memory) {
1689		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1690			/* OK, usermode access. */
1691			recoverable = 1;
1692		} else {
1693			const struct exception_table_entry *entry;
1694
1695			entry = search_exception_tables(regs->tpc);
1696			if (entry) {
1697				/* OK, kernel access to userspace. */
1698				recoverable = 1;
1699
1700			} else {
1701				/* BAD, privileged state is corrupted. */
1702				recoverable = 0;
1703			}
1704
1705			if (recoverable) {
1706				if (pfn_valid(afar >> PAGE_SHIFT))
1707					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1708				else
1709					recoverable = 0;
1710
1711				/* Only perform fixup if we still have a
1712				 * recoverable condition.
1713				 */
1714				if (recoverable) {
1715					regs->tpc = entry->fixup;
1716					regs->tnpc = regs->tpc + 4;
1717				}
1718			}
1719		}
1720	} else {
1721		recoverable = 0;
1722	}
1723
1724	if (!recoverable)
1725		panic("Irrecoverable deferred error trap.\n");
1726}
1727
1728/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1729 *
1730 * Bit0:	0=dcache,1=icache
1731 * Bit1:	0=recoverable,1=unrecoverable
1732 *
1733 * The hardware has disabled both the I-cache and D-cache in
1734 * the %dcr register.  
1735 */
1736void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1737{
1738	if (type & 0x1)
1739		__cheetah_flush_icache();
1740	else
1741		cheetah_plus_zap_dcache_parity();
1742	cheetah_flush_dcache();
1743
1744	/* Re-enable I-cache/D-cache */
1745	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1746			     "or %%g1, %1, %%g1\n\t"
1747			     "stxa %%g1, [%%g0] %0\n\t"
1748			     "membar #Sync"
1749			     : /* no outputs */
1750			     : "i" (ASI_DCU_CONTROL_REG),
1751			       "i" (DCU_DC | DCU_IC)
1752			     : "g1");
1753
1754	if (type & 0x2) {
1755		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1756		       smp_processor_id(),
1757		       (type & 0x1) ? 'I' : 'D',
1758		       regs->tpc);
1759		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1760		panic("Irrecoverable Cheetah+ parity error.");
1761	}
1762
1763	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1764	       smp_processor_id(),
1765	       (type & 0x1) ? 'I' : 'D',
1766	       regs->tpc);
1767	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1768}
1769
1770struct sun4v_error_entry {
1771	/* Unique error handle */
1772/*0x00*/u64		err_handle;
1773
1774	/* %stick value at the time of the error */
1775/*0x08*/u64		err_stick;
1776
1777/*0x10*/u8		reserved_1[3];
1778
1779	/* Error type */
1780/*0x13*/u8		err_type;
1781#define SUN4V_ERR_TYPE_UNDEFINED	0
1782#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1783#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1784#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1785#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1786#define SUN4V_ERR_TYPE_DUMP_CORE	5
1787#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1788#define SUN4V_ERR_TYPE_NUM		7
1789
1790	/* Error attributes */
1791/*0x14*/u32		err_attrs;
1792#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1793#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1794#define SUN4V_ERR_ATTRS_PIO		0x00000004
1795#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1796#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1797#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1798#define SUN4V_ERR_ATTRS_ASR		0x00000040
1799#define SUN4V_ERR_ATTRS_ASI		0x00000080
1800#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1801#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
 
1802#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1803#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1804#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1805#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1806
1807#define SUN4V_ERR_SPSTATE_FAULTED	0
1808#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1809#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1810
1811#define SUN4V_ERR_MODE_USER		1
1812#define SUN4V_ERR_MODE_PRIV		2
1813
1814	/* Real address of the memory region or PIO transaction */
1815/*0x18*/u64		err_raddr;
1816
1817	/* Size of the operation triggering the error, in bytes */
1818/*0x20*/u32		err_size;
1819
1820	/* ID of the CPU */
1821/*0x24*/u16		err_cpu;
1822
1823	/* Grace periof for shutdown, in seconds */
1824/*0x26*/u16		err_secs;
1825
1826	/* Value of the %asi register */
1827/*0x28*/u8		err_asi;
1828
1829/*0x29*/u8		reserved_2;
1830
1831	/* Value of the ASR register number */
1832/*0x2a*/u16		err_asr;
1833#define SUN4V_ERR_ASR_VALID		0x8000
1834
1835/*0x2c*/u32		reserved_3;
1836/*0x30*/u64		reserved_4;
1837/*0x38*/u64		reserved_5;
1838};
1839
1840static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1841static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1842
1843static const char *sun4v_err_type_to_str(u8 type)
1844{
1845	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1846		"undefined",
1847		"uncorrected resumable",
1848		"precise nonresumable",
1849		"deferred nonresumable",
1850		"shutdown request",
1851		"dump core",
1852		"SP state change",
1853	};
1854
1855	if (type < SUN4V_ERR_TYPE_NUM)
1856		return types[type];
1857
1858	return "unknown";
1859}
1860
1861static void sun4v_emit_err_attr_strings(u32 attrs)
1862{
1863	static const char *attr_names[] = {
1864		"processor",
1865		"memory",
1866		"PIO",
1867		"int-registers",
1868		"fpu-registers",
1869		"shutdown-request",
1870		"ASR",
1871		"ASI",
1872		"priv-reg",
1873	};
1874	static const char *sp_states[] = {
1875		"sp-faulted",
1876		"sp-available",
1877		"sp-not-present",
1878		"sp-state-reserved",
1879	};
1880	static const char *modes[] = {
1881		"mode-reserved0",
1882		"user",
1883		"priv",
1884		"mode-reserved1",
1885	};
1886	u32 sp_state, mode;
1887	int i;
1888
1889	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1890		if (attrs & (1U << i)) {
1891			const char *s = attr_names[i];
1892
1893			pr_cont("%s ", s);
1894		}
1895	}
1896
1897	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1898		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1899	pr_cont("%s ", sp_states[sp_state]);
1900
1901	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1902		SUN4V_ERR_ATTRS_MODE_SHFT);
1903	pr_cont("%s ", modes[mode]);
1904
1905	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1906		pr_cont("res-queue-full ");
1907}
1908
1909/* When the report contains a real-address of "-1" it means that the
1910 * hardware did not provide the address.  So we compute the effective
1911 * address of the load or store instruction at regs->tpc and report
1912 * that.  Usually when this happens it's a PIO and in such a case we
1913 * are using physical addresses with bypass ASIs anyways, so what we
1914 * report here is exactly what we want.
1915 */
1916static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1917{
1918	unsigned int insn;
1919	u64 addr;
1920
1921	if (!(regs->tstate & TSTATE_PRIV))
1922		return;
1923
1924	insn = *(unsigned int *) regs->tpc;
1925
1926	addr = compute_effective_address(regs, insn, 0);
1927
1928	printk("%s: insn effective address [0x%016llx]\n",
1929	       pfx, addr);
1930}
1931
1932static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1933			    int cpu, const char *pfx, atomic_t *ocnt)
1934{
1935	u64 *raw_ptr = (u64 *) ent;
1936	u32 attrs;
1937	int cnt;
1938
1939	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1940	printk("%s: TPC [0x%016lx] <%pS>\n",
1941	       pfx, regs->tpc, (void *) regs->tpc);
1942
1943	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1944	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1945	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1946	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1947
1948	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1949	       pfx, ent->err_handle, ent->err_stick);
1950
1951	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1952
1953	attrs = ent->err_attrs;
1954	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1955	sun4v_emit_err_attr_strings(attrs);
1956	pr_cont(">\n");
1957
1958	/* Various fields in the error report are only valid if
1959	 * certain attribute bits are set.
1960	 */
1961	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1962		     SUN4V_ERR_ATTRS_PIO |
1963		     SUN4V_ERR_ATTRS_ASI)) {
1964		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1965
1966		if (ent->err_raddr == ~(u64)0)
1967			sun4v_report_real_raddr(pfx, regs);
1968	}
1969
1970	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
1971		printk("%s: size [0x%x]\n", pfx, ent->err_size);
1972
1973	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
1974		     SUN4V_ERR_ATTRS_INT_REGISTERS |
1975		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
1976		     SUN4V_ERR_ATTRS_PRIV_REG))
1977		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
1978
1979	if (attrs & SUN4V_ERR_ATTRS_ASI)
1980		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
1981
1982	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
1983		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
1984		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
1985	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
1986		printk("%s: reg [0x%04x]\n",
1987		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
1988
1989	show_regs(regs);
1990
1991	if ((cnt = atomic_read(ocnt)) != 0) {
1992		atomic_set(ocnt, 0);
1993		wmb();
1994		printk("%s: Queue overflowed %d times.\n",
1995		       pfx, cnt);
1996	}
1997}
1998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2000 * Log the event and clear the first word of the entry.
2001 */
2002void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2003{
2004	enum ctx_state prev_state = exception_enter();
2005	struct sun4v_error_entry *ent, local_copy;
2006	struct trap_per_cpu *tb;
2007	unsigned long paddr;
2008	int cpu;
2009
2010	cpu = get_cpu();
2011
2012	tb = &trap_block[cpu];
2013	paddr = tb->resum_kernel_buf_pa + offset;
2014	ent = __va(paddr);
2015
2016	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2017
2018	/* We have a local copy now, so release the entry.  */
2019	ent->err_handle = 0;
2020	wmb();
2021
2022	put_cpu();
2023
2024	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2025		/* We should really take the seconds field of
2026		 * the error report and use it for the shutdown
2027		 * invocation, but for now do the same thing we
2028		 * do for a DS shutdown request.
2029		 */
2030		pr_info("Shutdown request, %u seconds...\n",
2031			local_copy.err_secs);
2032		orderly_poweroff(true);
2033		goto out;
2034	}
2035
 
 
 
 
 
 
 
 
2036	sun4v_log_error(regs, &local_copy, cpu,
2037			KERN_ERR "RESUMABLE ERROR",
2038			&sun4v_resum_oflow_cnt);
2039out:
2040	exception_exit(prev_state);
2041}
2042
2043/* If we try to printk() we'll probably make matters worse, by trying
2044 * to retake locks this cpu already holds or causing more errors. So
2045 * just bump a counter, and we'll report these counter bumps above.
2046 */
2047void sun4v_resum_overflow(struct pt_regs *regs)
2048{
2049	atomic_inc(&sun4v_resum_oflow_cnt);
2050}
2051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2053 * Log the event, clear the first word of the entry, and die.
2054 */
2055void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2056{
2057	struct sun4v_error_entry *ent, local_copy;
2058	struct trap_per_cpu *tb;
2059	unsigned long paddr;
2060	int cpu;
2061
2062	cpu = get_cpu();
2063
2064	tb = &trap_block[cpu];
2065	paddr = tb->nonresum_kernel_buf_pa + offset;
2066	ent = __va(paddr);
2067
2068	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2069
2070	/* We have a local copy now, so release the entry.  */
2071	ent->err_handle = 0;
2072	wmb();
2073
2074	put_cpu();
2075
 
 
 
 
 
 
2076#ifdef CONFIG_PCI
2077	/* Check for the special PCI poke sequence. */
2078	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2079		pci_poke_faulted = 1;
2080		regs->tpc += 4;
2081		regs->tnpc = regs->tpc + 4;
2082		return;
2083	}
2084#endif
2085
2086	sun4v_log_error(regs, &local_copy, cpu,
2087			KERN_EMERG "NON-RESUMABLE ERROR",
2088			&sun4v_nonresum_oflow_cnt);
2089
2090	panic("Non-resumable error.");
2091}
2092
2093/* If we try to printk() we'll probably make matters worse, by trying
2094 * to retake locks this cpu already holds or causing more errors. So
2095 * just bump a counter, and we'll report these counter bumps above.
2096 */
2097void sun4v_nonresum_overflow(struct pt_regs *regs)
2098{
2099	/* XXX Actually even this can make not that much sense.  Perhaps
2100	 * XXX we should just pull the plug and panic directly from here?
2101	 */
2102	atomic_inc(&sun4v_nonresum_oflow_cnt);
2103}
2104
 
 
 
 
 
2105unsigned long sun4v_err_itlb_vaddr;
2106unsigned long sun4v_err_itlb_ctx;
2107unsigned long sun4v_err_itlb_pte;
2108unsigned long sun4v_err_itlb_error;
2109
2110void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2111{
2112	if (tl > 1)
2113		dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2114
2115	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2116	       regs->tpc, tl);
2117	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2118	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2119	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2120	       (void *) regs->u_regs[UREG_I7]);
2121	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2122	       "pte[%lx] error[%lx]\n",
2123	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2124	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2125
2126	prom_halt();
2127}
2128
2129unsigned long sun4v_err_dtlb_vaddr;
2130unsigned long sun4v_err_dtlb_ctx;
2131unsigned long sun4v_err_dtlb_pte;
2132unsigned long sun4v_err_dtlb_error;
2133
2134void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2135{
2136	if (tl > 1)
2137		dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2138
2139	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2140	       regs->tpc, tl);
2141	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2142	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2143	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2144	       (void *) regs->u_regs[UREG_I7]);
2145	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2146	       "pte[%lx] error[%lx]\n",
2147	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2148	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2149
2150	prom_halt();
2151}
2152
2153void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2154{
2155	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2156	       err, op);
2157}
2158
2159void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2160{
2161	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2162	       err, op);
2163}
2164
2165static void do_fpe_common(struct pt_regs *regs)
2166{
2167	if (regs->tstate & TSTATE_PRIV) {
2168		regs->tpc = regs->tnpc;
2169		regs->tnpc += 4;
2170	} else {
2171		unsigned long fsr = current_thread_info()->xfsr[0];
2172		siginfo_t info;
2173
2174		if (test_thread_flag(TIF_32BIT)) {
2175			regs->tpc &= 0xffffffff;
2176			regs->tnpc &= 0xffffffff;
2177		}
2178		info.si_signo = SIGFPE;
2179		info.si_errno = 0;
2180		info.si_addr = (void __user *)regs->tpc;
2181		info.si_trapno = 0;
2182		info.si_code = __SI_FAULT;
2183		if ((fsr & 0x1c000) == (1 << 14)) {
2184			if (fsr & 0x10)
2185				info.si_code = FPE_FLTINV;
2186			else if (fsr & 0x08)
2187				info.si_code = FPE_FLTOVF;
2188			else if (fsr & 0x04)
2189				info.si_code = FPE_FLTUND;
2190			else if (fsr & 0x02)
2191				info.si_code = FPE_FLTDIV;
2192			else if (fsr & 0x01)
2193				info.si_code = FPE_FLTRES;
2194		}
2195		force_sig_info(SIGFPE, &info, current);
2196	}
2197}
2198
2199void do_fpieee(struct pt_regs *regs)
2200{
2201	enum ctx_state prev_state = exception_enter();
2202
2203	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2204		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2205		goto out;
2206
2207	do_fpe_common(regs);
2208out:
2209	exception_exit(prev_state);
2210}
2211
2212extern int do_mathemu(struct pt_regs *, struct fpustate *, bool);
2213
2214void do_fpother(struct pt_regs *regs)
2215{
2216	enum ctx_state prev_state = exception_enter();
2217	struct fpustate *f = FPUSTATE;
2218	int ret = 0;
2219
2220	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2221		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2222		goto out;
2223
2224	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2225	case (2 << 14): /* unfinished_FPop */
2226	case (3 << 14): /* unimplemented_FPop */
2227		ret = do_mathemu(regs, f, false);
2228		break;
2229	}
2230	if (ret)
2231		goto out;
2232	do_fpe_common(regs);
2233out:
2234	exception_exit(prev_state);
2235}
2236
2237void do_tof(struct pt_regs *regs)
2238{
2239	enum ctx_state prev_state = exception_enter();
2240	siginfo_t info;
2241
2242	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2243		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2244		goto out;
2245
2246	if (regs->tstate & TSTATE_PRIV)
2247		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2248	if (test_thread_flag(TIF_32BIT)) {
2249		regs->tpc &= 0xffffffff;
2250		regs->tnpc &= 0xffffffff;
2251	}
2252	info.si_signo = SIGEMT;
2253	info.si_errno = 0;
2254	info.si_code = EMT_TAGOVF;
2255	info.si_addr = (void __user *)regs->tpc;
2256	info.si_trapno = 0;
2257	force_sig_info(SIGEMT, &info, current);
2258out:
2259	exception_exit(prev_state);
2260}
2261
2262void do_div0(struct pt_regs *regs)
2263{
2264	enum ctx_state prev_state = exception_enter();
2265	siginfo_t info;
2266
2267	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2268		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2269		goto out;
2270
2271	if (regs->tstate & TSTATE_PRIV)
2272		die_if_kernel("TL0: Kernel divide by zero.", regs);
2273	if (test_thread_flag(TIF_32BIT)) {
2274		regs->tpc &= 0xffffffff;
2275		regs->tnpc &= 0xffffffff;
2276	}
2277	info.si_signo = SIGFPE;
2278	info.si_errno = 0;
2279	info.si_code = FPE_INTDIV;
2280	info.si_addr = (void __user *)regs->tpc;
2281	info.si_trapno = 0;
2282	force_sig_info(SIGFPE, &info, current);
2283out:
2284	exception_exit(prev_state);
2285}
2286
2287static void instruction_dump(unsigned int *pc)
2288{
2289	int i;
2290
2291	if ((((unsigned long) pc) & 3))
2292		return;
2293
2294	printk("Instruction DUMP:");
2295	for (i = -3; i < 6; i++)
2296		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2297	printk("\n");
2298}
2299
2300static void user_instruction_dump(unsigned int __user *pc)
2301{
2302	int i;
2303	unsigned int buf[9];
2304	
2305	if ((((unsigned long) pc) & 3))
2306		return;
2307		
2308	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2309		return;
2310
2311	printk("Instruction DUMP:");
2312	for (i = 0; i < 9; i++)
2313		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2314	printk("\n");
2315}
2316
2317void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2318{
2319	unsigned long fp, ksp;
2320	struct thread_info *tp;
2321	int count = 0;
2322#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2323	int graph = 0;
2324#endif
2325
2326	ksp = (unsigned long) _ksp;
2327	if (!tsk)
2328		tsk = current;
2329	tp = task_thread_info(tsk);
2330	if (ksp == 0UL) {
2331		if (tsk == current)
2332			asm("mov %%fp, %0" : "=r" (ksp));
2333		else
2334			ksp = tp->ksp;
2335	}
2336	if (tp == current_thread_info())
2337		flushw_all();
2338
2339	fp = ksp + STACK_BIAS;
2340
2341	printk("Call Trace:\n");
2342	do {
2343		struct sparc_stackf *sf;
2344		struct pt_regs *regs;
2345		unsigned long pc;
2346
2347		if (!kstack_valid(tp, fp))
2348			break;
2349		sf = (struct sparc_stackf *) fp;
2350		regs = (struct pt_regs *) (sf + 1);
2351
2352		if (kstack_is_trap_frame(tp, regs)) {
2353			if (!(regs->tstate & TSTATE_PRIV))
2354				break;
2355			pc = regs->tpc;
2356			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2357		} else {
2358			pc = sf->callers_pc;
2359			fp = (unsigned long)sf->fp + STACK_BIAS;
2360		}
2361
2362		printk(" [%016lx] %pS\n", pc, (void *) pc);
2363#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2364		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2365			int index = tsk->curr_ret_stack;
2366			if (tsk->ret_stack && index >= graph) {
2367				pc = tsk->ret_stack[index - graph].ret;
2368				printk(" [%016lx] %pS\n", pc, (void *) pc);
 
2369				graph++;
2370			}
2371		}
2372#endif
2373	} while (++count < 16);
2374}
2375
2376static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2377{
2378	unsigned long fp = rw->ins[6];
2379
2380	if (!fp)
2381		return NULL;
2382
2383	return (struct reg_window *) (fp + STACK_BIAS);
2384}
2385
2386void die_if_kernel(char *str, struct pt_regs *regs)
2387{
2388	static int die_counter;
2389	int count = 0;
2390	
2391	/* Amuse the user. */
2392	printk(
2393"              \\|/ ____ \\|/\n"
2394"              \"@'/ .. \\`@\"\n"
2395"              /_| \\__/ |_\\\n"
2396"                 \\__U_/\n");
2397
2398	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2399	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2400	__asm__ __volatile__("flushw");
2401	show_regs(regs);
2402	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2403	if (regs->tstate & TSTATE_PRIV) {
2404		struct thread_info *tp = current_thread_info();
2405		struct reg_window *rw = (struct reg_window *)
2406			(regs->u_regs[UREG_FP] + STACK_BIAS);
2407
2408		/* Stop the back trace when we hit userland or we
2409		 * find some badly aligned kernel stack.
2410		 */
2411		while (rw &&
2412		       count++ < 30 &&
2413		       kstack_valid(tp, (unsigned long) rw)) {
2414			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2415			       (void *) rw->ins[7]);
2416
2417			rw = kernel_stack_up(rw);
2418		}
2419		instruction_dump ((unsigned int *) regs->tpc);
2420	} else {
2421		if (test_thread_flag(TIF_32BIT)) {
2422			regs->tpc &= 0xffffffff;
2423			regs->tnpc &= 0xffffffff;
2424		}
2425		user_instruction_dump ((unsigned int __user *) regs->tpc);
2426	}
2427	if (regs->tstate & TSTATE_PRIV)
2428		do_exit(SIGKILL);
2429	do_exit(SIGSEGV);
2430}
2431EXPORT_SYMBOL(die_if_kernel);
2432
2433#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2434#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2435
2436extern int handle_popc(u32 insn, struct pt_regs *regs);
2437extern int handle_ldf_stq(u32 insn, struct pt_regs *regs);
2438
2439void do_illegal_instruction(struct pt_regs *regs)
2440{
2441	enum ctx_state prev_state = exception_enter();
2442	unsigned long pc = regs->tpc;
2443	unsigned long tstate = regs->tstate;
2444	u32 insn;
2445	siginfo_t info;
2446
2447	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2448		       0, 0x10, SIGILL) == NOTIFY_STOP)
2449		goto out;
2450
2451	if (tstate & TSTATE_PRIV)
2452		die_if_kernel("Kernel illegal instruction", regs);
2453	if (test_thread_flag(TIF_32BIT))
2454		pc = (u32)pc;
2455	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2456		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2457			if (handle_popc(insn, regs))
2458				goto out;
2459		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2460			if (handle_ldf_stq(insn, regs))
2461				goto out;
2462		} else if (tlb_type == hypervisor) {
2463			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2464				if (!vis_emul(regs, insn))
2465					goto out;
2466			} else {
2467				struct fpustate *f = FPUSTATE;
2468
2469				/* On UltraSPARC T2 and later, FPU insns which
2470				 * are not implemented in HW signal an illegal
2471				 * instruction trap and do not set the FP Trap
2472				 * Trap in the %fsr to unimplemented_FPop.
2473				 */
2474				if (do_mathemu(regs, f, true))
2475					goto out;
2476			}
2477		}
2478	}
2479	info.si_signo = SIGILL;
2480	info.si_errno = 0;
2481	info.si_code = ILL_ILLOPC;
2482	info.si_addr = (void __user *)pc;
2483	info.si_trapno = 0;
2484	force_sig_info(SIGILL, &info, current);
2485out:
2486	exception_exit(prev_state);
2487}
2488
2489extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn);
2490
2491void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2492{
2493	enum ctx_state prev_state = exception_enter();
2494	siginfo_t info;
2495
2496	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2497		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2498		goto out;
2499
2500	if (regs->tstate & TSTATE_PRIV) {
2501		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2502		goto out;
2503	}
2504	info.si_signo = SIGBUS;
2505	info.si_errno = 0;
2506	info.si_code = BUS_ADRALN;
2507	info.si_addr = (void __user *)sfar;
2508	info.si_trapno = 0;
2509	force_sig_info(SIGBUS, &info, current);
2510out:
2511	exception_exit(prev_state);
2512}
2513
2514void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2515{
2516	siginfo_t info;
2517
2518	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2519		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2520		return;
2521
2522	if (regs->tstate & TSTATE_PRIV) {
2523		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2524		return;
2525	}
2526	info.si_signo = SIGBUS;
2527	info.si_errno = 0;
2528	info.si_code = BUS_ADRALN;
2529	info.si_addr = (void __user *) addr;
2530	info.si_trapno = 0;
2531	force_sig_info(SIGBUS, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2532}
2533
2534void do_privop(struct pt_regs *regs)
2535{
2536	enum ctx_state prev_state = exception_enter();
2537	siginfo_t info;
2538
2539	if (notify_die(DIE_TRAP, "privileged operation", regs,
2540		       0, 0x11, SIGILL) == NOTIFY_STOP)
2541		goto out;
2542
2543	if (test_thread_flag(TIF_32BIT)) {
2544		regs->tpc &= 0xffffffff;
2545		regs->tnpc &= 0xffffffff;
2546	}
2547	info.si_signo = SIGILL;
2548	info.si_errno = 0;
2549	info.si_code = ILL_PRVOPC;
2550	info.si_addr = (void __user *)regs->tpc;
2551	info.si_trapno = 0;
2552	force_sig_info(SIGILL, &info, current);
2553out:
2554	exception_exit(prev_state);
2555}
2556
2557void do_privact(struct pt_regs *regs)
2558{
2559	do_privop(regs);
2560}
2561
2562/* Trap level 1 stuff or other traps we should never see... */
2563void do_cee(struct pt_regs *regs)
2564{
2565	exception_enter();
2566	die_if_kernel("TL0: Cache Error Exception", regs);
2567}
2568
2569void do_cee_tl1(struct pt_regs *regs)
2570{
2571	exception_enter();
2572	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2573	die_if_kernel("TL1: Cache Error Exception", regs);
2574}
2575
2576void do_dae_tl1(struct pt_regs *regs)
2577{
2578	exception_enter();
2579	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2580	die_if_kernel("TL1: Data Access Exception", regs);
2581}
2582
2583void do_iae_tl1(struct pt_regs *regs)
2584{
2585	exception_enter();
2586	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2587	die_if_kernel("TL1: Instruction Access Exception", regs);
2588}
2589
2590void do_div0_tl1(struct pt_regs *regs)
2591{
2592	exception_enter();
2593	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2594	die_if_kernel("TL1: DIV0 Exception", regs);
2595}
2596
2597void do_fpdis_tl1(struct pt_regs *regs)
2598{
2599	exception_enter();
2600	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2601	die_if_kernel("TL1: FPU Disabled", regs);
2602}
2603
2604void do_fpieee_tl1(struct pt_regs *regs)
2605{
2606	exception_enter();
2607	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2608	die_if_kernel("TL1: FPU IEEE Exception", regs);
2609}
2610
2611void do_fpother_tl1(struct pt_regs *regs)
2612{
2613	exception_enter();
2614	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2615	die_if_kernel("TL1: FPU Other Exception", regs);
2616}
2617
2618void do_ill_tl1(struct pt_regs *regs)
2619{
2620	exception_enter();
2621	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2622	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2623}
2624
2625void do_irq_tl1(struct pt_regs *regs)
2626{
2627	exception_enter();
2628	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2629	die_if_kernel("TL1: IRQ Exception", regs);
2630}
2631
2632void do_lddfmna_tl1(struct pt_regs *regs)
2633{
2634	exception_enter();
2635	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2636	die_if_kernel("TL1: LDDF Exception", regs);
2637}
2638
2639void do_stdfmna_tl1(struct pt_regs *regs)
2640{
2641	exception_enter();
2642	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2643	die_if_kernel("TL1: STDF Exception", regs);
2644}
2645
2646void do_paw(struct pt_regs *regs)
2647{
2648	exception_enter();
2649	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2650}
2651
2652void do_paw_tl1(struct pt_regs *regs)
2653{
2654	exception_enter();
2655	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2656	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2657}
2658
2659void do_vaw(struct pt_regs *regs)
2660{
2661	exception_enter();
2662	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2663}
2664
2665void do_vaw_tl1(struct pt_regs *regs)
2666{
2667	exception_enter();
2668	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2669	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2670}
2671
2672void do_tof_tl1(struct pt_regs *regs)
2673{
2674	exception_enter();
2675	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2676	die_if_kernel("TL1: Tag Overflow Exception", regs);
2677}
2678
2679void do_getpsr(struct pt_regs *regs)
2680{
2681	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2682	regs->tpc   = regs->tnpc;
2683	regs->tnpc += 4;
2684	if (test_thread_flag(TIF_32BIT)) {
2685		regs->tpc &= 0xffffffff;
2686		regs->tnpc &= 0xffffffff;
2687	}
2688}
2689
 
2690struct trap_per_cpu trap_block[NR_CPUS];
2691EXPORT_SYMBOL(trap_block);
2692
2693/* This can get invoked before sched_init() so play it super safe
2694 * and use hard_smp_processor_id().
2695 */
2696void notrace init_cur_cpu_trap(struct thread_info *t)
2697{
2698	int cpu = hard_smp_processor_id();
2699	struct trap_per_cpu *p = &trap_block[cpu];
2700
2701	p->thread = t;
2702	p->pgd_paddr = 0;
2703}
2704
2705extern void thread_info_offsets_are_bolixed_dave(void);
2706extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2707extern void tsb_config_offsets_are_bolixed_dave(void);
2708
2709/* Only invoked on boot processor. */
2710void __init trap_init(void)
2711{
2712	/* Compile time sanity check. */
2713	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2714		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2715		     TI_CPU != offsetof(struct thread_info, cpu) ||
2716		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2717		     TI_KSP != offsetof(struct thread_info, ksp) ||
2718		     TI_FAULT_ADDR != offsetof(struct thread_info,
2719					       fault_address) ||
2720		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2721		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2722		     TI_EXEC_DOMAIN != offsetof(struct thread_info,
2723						exec_domain) ||
2724		     TI_REG_WINDOW != offsetof(struct thread_info,
2725					       reg_window) ||
2726		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2727					       rwbuf_stkptrs) ||
2728		     TI_GSR != offsetof(struct thread_info, gsr) ||
2729		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2730		     TI_PRE_COUNT != offsetof(struct thread_info,
2731					      preempt_count) ||
2732		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2733		     TI_CURRENT_DS != offsetof(struct thread_info,
2734						current_ds) ||
2735		     TI_RESTART_BLOCK != offsetof(struct thread_info,
2736						  restart_block) ||
2737		     TI_KUNA_REGS != offsetof(struct thread_info,
2738					      kern_una_regs) ||
2739		     TI_KUNA_INSN != offsetof(struct thread_info,
2740					      kern_una_insn) ||
2741		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2742		     (TI_FPREGS & (64 - 1)));
2743
2744	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2745						     thread) ||
2746		     (TRAP_PER_CPU_PGD_PADDR !=
2747		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2748		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2749		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2750		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2751		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2752		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2753		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2754		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2755		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2756		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2757		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2758		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2759		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2760		     (TRAP_PER_CPU_FAULT_INFO !=
2761		      offsetof(struct trap_per_cpu, fault_info)) ||
2762		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2763		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2764		     (TRAP_PER_CPU_CPU_LIST_PA !=
2765		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2766		     (TRAP_PER_CPU_TSB_HUGE !=
2767		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2768		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2769		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2770		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2771		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2772		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2773		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2774		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2775		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2776		     (TRAP_PER_CPU_RESUM_QMASK !=
2777		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2778		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2779		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2780		     (TRAP_PER_CPU_PER_CPU_BASE !=
2781		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2782
2783	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2784		      offsetof(struct tsb_config, tsb)) ||
2785		     (TSB_CONFIG_RSS_LIMIT !=
2786		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2787		     (TSB_CONFIG_NENTRIES !=
2788		      offsetof(struct tsb_config, tsb_nentries)) ||
2789		     (TSB_CONFIG_REG_VAL !=
2790		      offsetof(struct tsb_config, tsb_reg_val)) ||
2791		     (TSB_CONFIG_MAP_VADDR !=
2792		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2793		     (TSB_CONFIG_MAP_PTE !=
2794		      offsetof(struct tsb_config, tsb_map_pte)));
2795
2796	/* Attach to the address space of init_task.  On SMP we
2797	 * do this in smp.c:smp_callin for other cpus.
2798	 */
2799	atomic_inc(&init_mm.mm_count);
2800	current->active_mm = &init_mm;
2801}