Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* arch/sparc64/kernel/process.c
3 *
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9/*
10 * This file handles the architecture-dependent parts of process handling..
11 */
12#include <linux/errno.h>
13#include <linux/export.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/delay.h>
27#include <linux/compat.h>
28#include <linux/tick.h>
29#include <linux/init.h>
30#include <linux/cpu.h>
31#include <linux/perf_event.h>
32#include <linux/elfcore.h>
33#include <linux/sysrq.h>
34#include <linux/nmi.h>
35#include <linux/context_tracking.h>
36#include <linux/signal.h>
37
38#include <linux/uaccess.h>
39#include <asm/page.h>
40#include <asm/pgalloc.h>
41#include <asm/processor.h>
42#include <asm/pstate.h>
43#include <asm/elf.h>
44#include <asm/fpumacro.h>
45#include <asm/head.h>
46#include <asm/cpudata.h>
47#include <asm/mmu_context.h>
48#include <asm/unistd.h>
49#include <asm/hypervisor.h>
50#include <asm/syscalls.h>
51#include <asm/irq_regs.h>
52#include <asm/smp.h>
53#include <asm/pcr.h>
54
55#include "kstack.h"
56
57/* Idle loop support on sparc64. */
58void arch_cpu_idle(void)
59{
60 if (tlb_type != hypervisor) {
61 touch_nmi_watchdog();
62 raw_local_irq_enable();
63 } else {
64 unsigned long pstate;
65
66 raw_local_irq_enable();
67
68 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
69 * the cpu sleep hypervisor call.
70 */
71 __asm__ __volatile__(
72 "rdpr %%pstate, %0\n\t"
73 "andn %0, %1, %0\n\t"
74 "wrpr %0, %%g0, %%pstate"
75 : "=&r" (pstate)
76 : "i" (PSTATE_IE));
77
78 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
79 sun4v_cpu_yield();
80 /* If resumed by cpu_poke then we need to explicitly
81 * call scheduler_ipi().
82 */
83 scheduler_poke();
84 }
85
86 /* Re-enable interrupts. */
87 __asm__ __volatile__(
88 "rdpr %%pstate, %0\n\t"
89 "or %0, %1, %0\n\t"
90 "wrpr %0, %%g0, %%pstate"
91 : "=&r" (pstate)
92 : "i" (PSTATE_IE));
93 }
94}
95
96#ifdef CONFIG_HOTPLUG_CPU
97void arch_cpu_idle_dead(void)
98{
99 sched_preempt_enable_no_resched();
100 cpu_play_dead();
101}
102#endif
103
104#ifdef CONFIG_COMPAT
105static void show_regwindow32(struct pt_regs *regs)
106{
107 struct reg_window32 __user *rw;
108 struct reg_window32 r_w;
109
110 __asm__ __volatile__ ("flushw");
111 rw = compat_ptr((unsigned int)regs->u_regs[14]);
112 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
113 return;
114 }
115
116 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
117 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
118 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
119 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
120 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
121 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
122 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
123 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
124}
125#else
126#define show_regwindow32(regs) do { } while (0)
127#endif
128
129static void show_regwindow(struct pt_regs *regs)
130{
131 struct reg_window __user *rw;
132 struct reg_window *rwk;
133 struct reg_window r_w;
134
135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
136 __asm__ __volatile__ ("flushw");
137 rw = (struct reg_window __user *)
138 (regs->u_regs[14] + STACK_BIAS);
139 rwk = (struct reg_window *)
140 (regs->u_regs[14] + STACK_BIAS);
141 if (!(regs->tstate & TSTATE_PRIV)) {
142 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
143 return;
144 }
145 rwk = &r_w;
146 }
147 } else {
148 show_regwindow32(regs);
149 return;
150 }
151 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
152 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
153 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
154 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
155 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
156 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
157 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
158 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
159 if (regs->tstate & TSTATE_PRIV)
160 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
161}
162
163void show_regs(struct pt_regs *regs)
164{
165 show_regs_print_info(KERN_DEFAULT);
166
167 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
168 regs->tpc, regs->tnpc, regs->y, print_tainted());
169 printk("TPC: <%pS>\n", (void *) regs->tpc);
170 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
171 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
172 regs->u_regs[3]);
173 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
174 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
175 regs->u_regs[7]);
176 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
177 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
178 regs->u_regs[11]);
179 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
180 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
181 regs->u_regs[15]);
182 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
183 show_regwindow(regs);
184 show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
185}
186
187union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
188static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
189
190static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
191 int this_cpu)
192{
193 struct global_reg_snapshot *rp;
194
195 flushw_all();
196
197 rp = &global_cpu_snapshot[this_cpu].reg;
198
199 rp->tstate = regs->tstate;
200 rp->tpc = regs->tpc;
201 rp->tnpc = regs->tnpc;
202 rp->o7 = regs->u_regs[UREG_I7];
203
204 if (regs->tstate & TSTATE_PRIV) {
205 struct reg_window *rw;
206
207 rw = (struct reg_window *)
208 (regs->u_regs[UREG_FP] + STACK_BIAS);
209 if (kstack_valid(tp, (unsigned long) rw)) {
210 rp->i7 = rw->ins[7];
211 rw = (struct reg_window *)
212 (rw->ins[6] + STACK_BIAS);
213 if (kstack_valid(tp, (unsigned long) rw))
214 rp->rpc = rw->ins[7];
215 }
216 } else {
217 rp->i7 = 0;
218 rp->rpc = 0;
219 }
220 rp->thread = tp;
221}
222
223/* In order to avoid hangs we do not try to synchronize with the
224 * global register dump client cpus. The last store they make is to
225 * the thread pointer, so do a short poll waiting for that to become
226 * non-NULL.
227 */
228static void __global_reg_poll(struct global_reg_snapshot *gp)
229{
230 int limit = 0;
231
232 while (!gp->thread && ++limit < 100) {
233 barrier();
234 udelay(1);
235 }
236}
237
238void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
239{
240 struct thread_info *tp = current_thread_info();
241 struct pt_regs *regs = get_irq_regs();
242 unsigned long flags;
243 int this_cpu, cpu;
244
245 if (!regs)
246 regs = tp->kregs;
247
248 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
249
250 this_cpu = raw_smp_processor_id();
251
252 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
253
254 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
255 __global_reg_self(tp, regs, this_cpu);
256
257 smp_fetch_global_regs();
258
259 for_each_cpu(cpu, mask) {
260 struct global_reg_snapshot *gp;
261
262 if (exclude_self && cpu == this_cpu)
263 continue;
264
265 gp = &global_cpu_snapshot[cpu].reg;
266
267 __global_reg_poll(gp);
268
269 tp = gp->thread;
270 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
271 (cpu == this_cpu ? '*' : ' '), cpu,
272 gp->tstate, gp->tpc, gp->tnpc,
273 ((tp && tp->task) ? tp->task->comm : "NULL"),
274 ((tp && tp->task) ? tp->task->pid : -1));
275
276 if (gp->tstate & TSTATE_PRIV) {
277 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
278 (void *) gp->tpc,
279 (void *) gp->o7,
280 (void *) gp->i7,
281 (void *) gp->rpc);
282 } else {
283 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
284 gp->tpc, gp->o7, gp->i7, gp->rpc);
285 }
286
287 touch_nmi_watchdog();
288 }
289
290 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
291
292 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
293}
294
295#ifdef CONFIG_MAGIC_SYSRQ
296
297static void sysrq_handle_globreg(int key)
298{
299 trigger_all_cpu_backtrace();
300}
301
302static const struct sysrq_key_op sparc_globalreg_op = {
303 .handler = sysrq_handle_globreg,
304 .help_msg = "global-regs(y)",
305 .action_msg = "Show Global CPU Regs",
306};
307
308static void __global_pmu_self(int this_cpu)
309{
310 struct global_pmu_snapshot *pp;
311 int i, num;
312
313 if (!pcr_ops)
314 return;
315
316 pp = &global_cpu_snapshot[this_cpu].pmu;
317
318 num = 1;
319 if (tlb_type == hypervisor &&
320 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
321 num = 4;
322
323 for (i = 0; i < num; i++) {
324 pp->pcr[i] = pcr_ops->read_pcr(i);
325 pp->pic[i] = pcr_ops->read_pic(i);
326 }
327}
328
329static void __global_pmu_poll(struct global_pmu_snapshot *pp)
330{
331 int limit = 0;
332
333 while (!pp->pcr[0] && ++limit < 100) {
334 barrier();
335 udelay(1);
336 }
337}
338
339static void pmu_snapshot_all_cpus(void)
340{
341 unsigned long flags;
342 int this_cpu, cpu;
343
344 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
345
346 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
347
348 this_cpu = raw_smp_processor_id();
349
350 __global_pmu_self(this_cpu);
351
352 smp_fetch_global_pmu();
353
354 for_each_online_cpu(cpu) {
355 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
356
357 __global_pmu_poll(pp);
358
359 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
360 (cpu == this_cpu ? '*' : ' '), cpu,
361 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
362 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
363
364 touch_nmi_watchdog();
365 }
366
367 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
368
369 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
370}
371
372static void sysrq_handle_globpmu(int key)
373{
374 pmu_snapshot_all_cpus();
375}
376
377static const struct sysrq_key_op sparc_globalpmu_op = {
378 .handler = sysrq_handle_globpmu,
379 .help_msg = "global-pmu(x)",
380 .action_msg = "Show Global PMU Regs",
381};
382
383static int __init sparc_sysrq_init(void)
384{
385 int ret = register_sysrq_key('y', &sparc_globalreg_op);
386
387 if (!ret)
388 ret = register_sysrq_key('x', &sparc_globalpmu_op);
389 return ret;
390}
391
392core_initcall(sparc_sysrq_init);
393
394#endif
395
396/* Free current thread data structures etc.. */
397void exit_thread(struct task_struct *tsk)
398{
399 struct thread_info *t = task_thread_info(tsk);
400
401 if (t->utraps) {
402 if (t->utraps[0] < 2)
403 kfree (t->utraps);
404 else
405 t->utraps[0]--;
406 }
407}
408
409void flush_thread(void)
410{
411 struct thread_info *t = current_thread_info();
412 struct mm_struct *mm;
413
414 mm = t->task->mm;
415 if (mm)
416 tsb_context_switch(mm);
417
418 set_thread_wsaved(0);
419
420 /* Clear FPU register state. */
421 t->fpsaved[0] = 0;
422}
423
424/* It's a bit more tricky when 64-bit tasks are involved... */
425static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
426{
427 bool stack_64bit = test_thread_64bit_stack(psp);
428 unsigned long fp, distance, rval;
429
430 if (stack_64bit) {
431 csp += STACK_BIAS;
432 psp += STACK_BIAS;
433 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
434 fp += STACK_BIAS;
435 if (test_thread_flag(TIF_32BIT))
436 fp &= 0xffffffff;
437 } else
438 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
439
440 /* Now align the stack as this is mandatory in the Sparc ABI
441 * due to how register windows work. This hides the
442 * restriction from thread libraries etc.
443 */
444 csp &= ~15UL;
445
446 distance = fp - psp;
447 rval = (csp - distance);
448 if (raw_copy_in_user((void __user *)rval, (void __user *)psp, distance))
449 rval = 0;
450 else if (!stack_64bit) {
451 if (put_user(((u32)csp),
452 &(((struct reg_window32 __user *)rval)->ins[6])))
453 rval = 0;
454 } else {
455 if (put_user(((u64)csp - STACK_BIAS),
456 &(((struct reg_window __user *)rval)->ins[6])))
457 rval = 0;
458 else
459 rval = rval - STACK_BIAS;
460 }
461
462 return rval;
463}
464
465/* Standard stuff. */
466static inline void shift_window_buffer(int first_win, int last_win,
467 struct thread_info *t)
468{
469 int i;
470
471 for (i = first_win; i < last_win; i++) {
472 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
473 memcpy(&t->reg_window[i], &t->reg_window[i+1],
474 sizeof(struct reg_window));
475 }
476}
477
478void synchronize_user_stack(void)
479{
480 struct thread_info *t = current_thread_info();
481 unsigned long window;
482
483 flush_user_windows();
484 if ((window = get_thread_wsaved()) != 0) {
485 window -= 1;
486 do {
487 struct reg_window *rwin = &t->reg_window[window];
488 int winsize = sizeof(struct reg_window);
489 unsigned long sp;
490
491 sp = t->rwbuf_stkptrs[window];
492
493 if (test_thread_64bit_stack(sp))
494 sp += STACK_BIAS;
495 else
496 winsize = sizeof(struct reg_window32);
497
498 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
499 shift_window_buffer(window, get_thread_wsaved() - 1, t);
500 set_thread_wsaved(get_thread_wsaved() - 1);
501 }
502 } while (window--);
503 }
504}
505
506static void stack_unaligned(unsigned long sp)
507{
508 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp);
509}
510
511static const char uwfault32[] = KERN_INFO \
512 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
513static const char uwfault64[] = KERN_INFO \
514 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
515
516void fault_in_user_windows(struct pt_regs *regs)
517{
518 struct thread_info *t = current_thread_info();
519 unsigned long window;
520
521 flush_user_windows();
522 window = get_thread_wsaved();
523
524 if (likely(window != 0)) {
525 window -= 1;
526 do {
527 struct reg_window *rwin = &t->reg_window[window];
528 int winsize = sizeof(struct reg_window);
529 unsigned long sp, orig_sp;
530
531 orig_sp = sp = t->rwbuf_stkptrs[window];
532
533 if (test_thread_64bit_stack(sp))
534 sp += STACK_BIAS;
535 else
536 winsize = sizeof(struct reg_window32);
537
538 if (unlikely(sp & 0x7UL))
539 stack_unaligned(sp);
540
541 if (unlikely(copy_to_user((char __user *)sp,
542 rwin, winsize))) {
543 if (show_unhandled_signals)
544 printk_ratelimited(is_compat_task() ?
545 uwfault32 : uwfault64,
546 current->comm, current->pid,
547 sp, orig_sp,
548 regs->tpc,
549 regs->u_regs[UREG_I7]);
550 goto barf;
551 }
552 } while (window--);
553 }
554 set_thread_wsaved(0);
555 return;
556
557barf:
558 set_thread_wsaved(window + 1);
559 force_sig(SIGSEGV);
560}
561
562/* Copy a Sparc thread. The fork() return value conventions
563 * under SunOS are nothing short of bletcherous:
564 * Parent --> %o0 == childs pid, %o1 == 0
565 * Child --> %o0 == parents pid, %o1 == 1
566 */
567int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
568{
569 unsigned long clone_flags = args->flags;
570 unsigned long sp = args->stack;
571 unsigned long tls = args->tls;
572 struct thread_info *t = task_thread_info(p);
573 struct pt_regs *regs = current_pt_regs();
574 struct sparc_stackf *parent_sf;
575 unsigned long child_stack_sz;
576 char *child_trap_frame;
577
578 /* Calculate offset to stack_frame & pt_regs */
579 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
580 child_trap_frame = (task_stack_page(p) +
581 (THREAD_SIZE - child_stack_sz));
582
583 t->new_child = 1;
584 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
585 t->kregs = (struct pt_regs *) (child_trap_frame +
586 sizeof(struct sparc_stackf));
587 t->fpsaved[0] = 0;
588
589 if (unlikely(args->fn)) {
590 memset(child_trap_frame, 0, child_stack_sz);
591 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
592 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
593 t->kregs->u_regs[UREG_G1] = (unsigned long) args->fn;
594 t->kregs->u_regs[UREG_G2] = (unsigned long) args->fn_arg;
595 return 0;
596 }
597
598 parent_sf = ((struct sparc_stackf *) regs) - 1;
599 memcpy(child_trap_frame, parent_sf, child_stack_sz);
600 if (t->flags & _TIF_32BIT) {
601 sp &= 0x00000000ffffffffUL;
602 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
603 }
604 t->kregs->u_regs[UREG_FP] = sp;
605 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
606 (regs->tstate + 1) & TSTATE_CWP;
607 if (sp != regs->u_regs[UREG_FP]) {
608 unsigned long csp;
609
610 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
611 if (!csp)
612 return -EFAULT;
613 t->kregs->u_regs[UREG_FP] = csp;
614 }
615 if (t->utraps)
616 t->utraps[0]++;
617
618 /* Set the return value for the child. */
619 t->kregs->u_regs[UREG_I0] = current->pid;
620 t->kregs->u_regs[UREG_I1] = 1;
621
622 /* Set the second return value for the parent. */
623 regs->u_regs[UREG_I1] = 0;
624
625 if (clone_flags & CLONE_SETTLS)
626 t->kregs->u_regs[UREG_G7] = tls;
627
628 return 0;
629}
630
631/* TIF_MCDPER in thread info flags for current task is updated lazily upon
632 * a context switch. Update this flag in current task's thread flags
633 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
634 */
635int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
636{
637 if (adi_capable()) {
638 register unsigned long tmp_mcdper;
639
640 __asm__ __volatile__(
641 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */
642 "mov %%g1, %0\n\t"
643 : "=r" (tmp_mcdper)
644 :
645 : "g1");
646 if (tmp_mcdper)
647 set_thread_flag(TIF_MCDPER);
648 else
649 clear_thread_flag(TIF_MCDPER);
650 }
651
652 *dst = *src;
653 return 0;
654}
655
656unsigned long __get_wchan(struct task_struct *task)
657{
658 unsigned long pc, fp, bias = 0;
659 struct thread_info *tp;
660 struct reg_window *rw;
661 unsigned long ret = 0;
662 int count = 0;
663
664 tp = task_thread_info(task);
665 bias = STACK_BIAS;
666 fp = task_thread_info(task)->ksp + bias;
667
668 do {
669 if (!kstack_valid(tp, fp))
670 break;
671 rw = (struct reg_window *) fp;
672 pc = rw->ins[7];
673 if (!in_sched_functions(pc)) {
674 ret = pc;
675 goto out;
676 }
677 fp = rw->ins[6] + bias;
678 } while (++count < 16);
679
680out:
681 return ret;
682}
1/* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/errno.h>
15#include <linux/export.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/ptrace.h>
23#include <linux/slab.h>
24#include <linux/user.h>
25#include <linux/delay.h>
26#include <linux/compat.h>
27#include <linux/tick.h>
28#include <linux/init.h>
29#include <linux/cpu.h>
30#include <linux/perf_event.h>
31#include <linux/elfcore.h>
32#include <linux/sysrq.h>
33#include <linux/nmi.h>
34#include <linux/context_tracking.h>
35
36#include <asm/uaccess.h>
37#include <asm/page.h>
38#include <asm/pgalloc.h>
39#include <asm/pgtable.h>
40#include <asm/processor.h>
41#include <asm/pstate.h>
42#include <asm/elf.h>
43#include <asm/fpumacro.h>
44#include <asm/head.h>
45#include <asm/cpudata.h>
46#include <asm/mmu_context.h>
47#include <asm/unistd.h>
48#include <asm/hypervisor.h>
49#include <asm/syscalls.h>
50#include <asm/irq_regs.h>
51#include <asm/smp.h>
52#include <asm/pcr.h>
53
54#include "kstack.h"
55
56/* Idle loop support on sparc64. */
57void arch_cpu_idle(void)
58{
59 if (tlb_type != hypervisor) {
60 touch_nmi_watchdog();
61 local_irq_enable();
62 } else {
63 unsigned long pstate;
64
65 local_irq_enable();
66
67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
68 * the cpu sleep hypervisor call.
69 */
70 __asm__ __volatile__(
71 "rdpr %%pstate, %0\n\t"
72 "andn %0, %1, %0\n\t"
73 "wrpr %0, %%g0, %%pstate"
74 : "=&r" (pstate)
75 : "i" (PSTATE_IE));
76
77 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
78 sun4v_cpu_yield();
79
80 /* Re-enable interrupts. */
81 __asm__ __volatile__(
82 "rdpr %%pstate, %0\n\t"
83 "or %0, %1, %0\n\t"
84 "wrpr %0, %%g0, %%pstate"
85 : "=&r" (pstate)
86 : "i" (PSTATE_IE));
87 }
88}
89
90#ifdef CONFIG_HOTPLUG_CPU
91void arch_cpu_idle_dead()
92{
93 sched_preempt_enable_no_resched();
94 cpu_play_dead();
95}
96#endif
97
98#ifdef CONFIG_COMPAT
99static void show_regwindow32(struct pt_regs *regs)
100{
101 struct reg_window32 __user *rw;
102 struct reg_window32 r_w;
103 mm_segment_t old_fs;
104
105 __asm__ __volatile__ ("flushw");
106 rw = compat_ptr((unsigned)regs->u_regs[14]);
107 old_fs = get_fs();
108 set_fs (USER_DS);
109 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
110 set_fs (old_fs);
111 return;
112 }
113
114 set_fs (old_fs);
115 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
116 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
117 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
118 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
119 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
120 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
121 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
122 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
123}
124#else
125#define show_regwindow32(regs) do { } while (0)
126#endif
127
128static void show_regwindow(struct pt_regs *regs)
129{
130 struct reg_window __user *rw;
131 struct reg_window *rwk;
132 struct reg_window r_w;
133 mm_segment_t old_fs;
134
135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
136 __asm__ __volatile__ ("flushw");
137 rw = (struct reg_window __user *)
138 (regs->u_regs[14] + STACK_BIAS);
139 rwk = (struct reg_window *)
140 (regs->u_regs[14] + STACK_BIAS);
141 if (!(regs->tstate & TSTATE_PRIV)) {
142 old_fs = get_fs();
143 set_fs (USER_DS);
144 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
145 set_fs (old_fs);
146 return;
147 }
148 rwk = &r_w;
149 set_fs (old_fs);
150 }
151 } else {
152 show_regwindow32(regs);
153 return;
154 }
155 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
156 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
157 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
158 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
159 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
160 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
161 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
162 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
163 if (regs->tstate & TSTATE_PRIV)
164 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
165}
166
167void show_regs(struct pt_regs *regs)
168{
169 show_regs_print_info(KERN_DEFAULT);
170
171 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
172 regs->tpc, regs->tnpc, regs->y, print_tainted());
173 printk("TPC: <%pS>\n", (void *) regs->tpc);
174 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
175 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
176 regs->u_regs[3]);
177 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
178 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
179 regs->u_regs[7]);
180 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
181 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
182 regs->u_regs[11]);
183 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
184 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
185 regs->u_regs[15]);
186 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
187 show_regwindow(regs);
188 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
189}
190
191union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
192static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
193
194static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
195 int this_cpu)
196{
197 struct global_reg_snapshot *rp;
198
199 flushw_all();
200
201 rp = &global_cpu_snapshot[this_cpu].reg;
202
203 rp->tstate = regs->tstate;
204 rp->tpc = regs->tpc;
205 rp->tnpc = regs->tnpc;
206 rp->o7 = regs->u_regs[UREG_I7];
207
208 if (regs->tstate & TSTATE_PRIV) {
209 struct reg_window *rw;
210
211 rw = (struct reg_window *)
212 (regs->u_regs[UREG_FP] + STACK_BIAS);
213 if (kstack_valid(tp, (unsigned long) rw)) {
214 rp->i7 = rw->ins[7];
215 rw = (struct reg_window *)
216 (rw->ins[6] + STACK_BIAS);
217 if (kstack_valid(tp, (unsigned long) rw))
218 rp->rpc = rw->ins[7];
219 }
220 } else {
221 rp->i7 = 0;
222 rp->rpc = 0;
223 }
224 rp->thread = tp;
225}
226
227/* In order to avoid hangs we do not try to synchronize with the
228 * global register dump client cpus. The last store they make is to
229 * the thread pointer, so do a short poll waiting for that to become
230 * non-NULL.
231 */
232static void __global_reg_poll(struct global_reg_snapshot *gp)
233{
234 int limit = 0;
235
236 while (!gp->thread && ++limit < 100) {
237 barrier();
238 udelay(1);
239 }
240}
241
242void arch_trigger_all_cpu_backtrace(void)
243{
244 struct thread_info *tp = current_thread_info();
245 struct pt_regs *regs = get_irq_regs();
246 unsigned long flags;
247 int this_cpu, cpu;
248
249 if (!regs)
250 regs = tp->kregs;
251
252 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
253
254 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
255
256 this_cpu = raw_smp_processor_id();
257
258 __global_reg_self(tp, regs, this_cpu);
259
260 smp_fetch_global_regs();
261
262 for_each_online_cpu(cpu) {
263 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
264
265 __global_reg_poll(gp);
266
267 tp = gp->thread;
268 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
269 (cpu == this_cpu ? '*' : ' '), cpu,
270 gp->tstate, gp->tpc, gp->tnpc,
271 ((tp && tp->task) ? tp->task->comm : "NULL"),
272 ((tp && tp->task) ? tp->task->pid : -1));
273
274 if (gp->tstate & TSTATE_PRIV) {
275 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
276 (void *) gp->tpc,
277 (void *) gp->o7,
278 (void *) gp->i7,
279 (void *) gp->rpc);
280 } else {
281 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
282 gp->tpc, gp->o7, gp->i7, gp->rpc);
283 }
284 }
285
286 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
287
288 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
289}
290
291#ifdef CONFIG_MAGIC_SYSRQ
292
293static void sysrq_handle_globreg(int key)
294{
295 arch_trigger_all_cpu_backtrace();
296}
297
298static struct sysrq_key_op sparc_globalreg_op = {
299 .handler = sysrq_handle_globreg,
300 .help_msg = "global-regs(y)",
301 .action_msg = "Show Global CPU Regs",
302};
303
304static void __global_pmu_self(int this_cpu)
305{
306 struct global_pmu_snapshot *pp;
307 int i, num;
308
309 pp = &global_cpu_snapshot[this_cpu].pmu;
310
311 num = 1;
312 if (tlb_type == hypervisor &&
313 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
314 num = 4;
315
316 for (i = 0; i < num; i++) {
317 pp->pcr[i] = pcr_ops->read_pcr(i);
318 pp->pic[i] = pcr_ops->read_pic(i);
319 }
320}
321
322static void __global_pmu_poll(struct global_pmu_snapshot *pp)
323{
324 int limit = 0;
325
326 while (!pp->pcr[0] && ++limit < 100) {
327 barrier();
328 udelay(1);
329 }
330}
331
332static void pmu_snapshot_all_cpus(void)
333{
334 unsigned long flags;
335 int this_cpu, cpu;
336
337 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
338
339 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
340
341 this_cpu = raw_smp_processor_id();
342
343 __global_pmu_self(this_cpu);
344
345 smp_fetch_global_pmu();
346
347 for_each_online_cpu(cpu) {
348 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
349
350 __global_pmu_poll(pp);
351
352 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
353 (cpu == this_cpu ? '*' : ' '), cpu,
354 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
355 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
356 }
357
358 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
359
360 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
361}
362
363static void sysrq_handle_globpmu(int key)
364{
365 pmu_snapshot_all_cpus();
366}
367
368static struct sysrq_key_op sparc_globalpmu_op = {
369 .handler = sysrq_handle_globpmu,
370 .help_msg = "global-pmu(x)",
371 .action_msg = "Show Global PMU Regs",
372};
373
374static int __init sparc_sysrq_init(void)
375{
376 int ret = register_sysrq_key('y', &sparc_globalreg_op);
377
378 if (!ret)
379 ret = register_sysrq_key('x', &sparc_globalpmu_op);
380 return ret;
381}
382
383core_initcall(sparc_sysrq_init);
384
385#endif
386
387unsigned long thread_saved_pc(struct task_struct *tsk)
388{
389 struct thread_info *ti = task_thread_info(tsk);
390 unsigned long ret = 0xdeadbeefUL;
391
392 if (ti && ti->ksp) {
393 unsigned long *sp;
394 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
395 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
396 sp[14]) {
397 unsigned long *fp;
398 fp = (unsigned long *)(sp[14] + STACK_BIAS);
399 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
400 ret = fp[15];
401 }
402 }
403 return ret;
404}
405
406/* Free current thread data structures etc.. */
407void exit_thread(void)
408{
409 struct thread_info *t = current_thread_info();
410
411 if (t->utraps) {
412 if (t->utraps[0] < 2)
413 kfree (t->utraps);
414 else
415 t->utraps[0]--;
416 }
417}
418
419void flush_thread(void)
420{
421 struct thread_info *t = current_thread_info();
422 struct mm_struct *mm;
423
424 mm = t->task->mm;
425 if (mm)
426 tsb_context_switch(mm);
427
428 set_thread_wsaved(0);
429
430 /* Clear FPU register state. */
431 t->fpsaved[0] = 0;
432}
433
434/* It's a bit more tricky when 64-bit tasks are involved... */
435static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
436{
437 bool stack_64bit = test_thread_64bit_stack(psp);
438 unsigned long fp, distance, rval;
439
440 if (stack_64bit) {
441 csp += STACK_BIAS;
442 psp += STACK_BIAS;
443 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
444 fp += STACK_BIAS;
445 if (test_thread_flag(TIF_32BIT))
446 fp &= 0xffffffff;
447 } else
448 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
449
450 /* Now align the stack as this is mandatory in the Sparc ABI
451 * due to how register windows work. This hides the
452 * restriction from thread libraries etc.
453 */
454 csp &= ~15UL;
455
456 distance = fp - psp;
457 rval = (csp - distance);
458 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
459 rval = 0;
460 else if (!stack_64bit) {
461 if (put_user(((u32)csp),
462 &(((struct reg_window32 __user *)rval)->ins[6])))
463 rval = 0;
464 } else {
465 if (put_user(((u64)csp - STACK_BIAS),
466 &(((struct reg_window __user *)rval)->ins[6])))
467 rval = 0;
468 else
469 rval = rval - STACK_BIAS;
470 }
471
472 return rval;
473}
474
475/* Standard stuff. */
476static inline void shift_window_buffer(int first_win, int last_win,
477 struct thread_info *t)
478{
479 int i;
480
481 for (i = first_win; i < last_win; i++) {
482 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
483 memcpy(&t->reg_window[i], &t->reg_window[i+1],
484 sizeof(struct reg_window));
485 }
486}
487
488void synchronize_user_stack(void)
489{
490 struct thread_info *t = current_thread_info();
491 unsigned long window;
492
493 flush_user_windows();
494 if ((window = get_thread_wsaved()) != 0) {
495 window -= 1;
496 do {
497 struct reg_window *rwin = &t->reg_window[window];
498 int winsize = sizeof(struct reg_window);
499 unsigned long sp;
500
501 sp = t->rwbuf_stkptrs[window];
502
503 if (test_thread_64bit_stack(sp))
504 sp += STACK_BIAS;
505 else
506 winsize = sizeof(struct reg_window32);
507
508 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
509 shift_window_buffer(window, get_thread_wsaved() - 1, t);
510 set_thread_wsaved(get_thread_wsaved() - 1);
511 }
512 } while (window--);
513 }
514}
515
516static void stack_unaligned(unsigned long sp)
517{
518 siginfo_t info;
519
520 info.si_signo = SIGBUS;
521 info.si_errno = 0;
522 info.si_code = BUS_ADRALN;
523 info.si_addr = (void __user *) sp;
524 info.si_trapno = 0;
525 force_sig_info(SIGBUS, &info, current);
526}
527
528void fault_in_user_windows(void)
529{
530 struct thread_info *t = current_thread_info();
531 unsigned long window;
532
533 flush_user_windows();
534 window = get_thread_wsaved();
535
536 if (likely(window != 0)) {
537 window -= 1;
538 do {
539 struct reg_window *rwin = &t->reg_window[window];
540 int winsize = sizeof(struct reg_window);
541 unsigned long sp;
542
543 sp = t->rwbuf_stkptrs[window];
544
545 if (test_thread_64bit_stack(sp))
546 sp += STACK_BIAS;
547 else
548 winsize = sizeof(struct reg_window32);
549
550 if (unlikely(sp & 0x7UL))
551 stack_unaligned(sp);
552
553 if (unlikely(copy_to_user((char __user *)sp,
554 rwin, winsize)))
555 goto barf;
556 } while (window--);
557 }
558 set_thread_wsaved(0);
559 return;
560
561barf:
562 set_thread_wsaved(window + 1);
563 user_exit();
564 do_exit(SIGILL);
565}
566
567asmlinkage long sparc_do_fork(unsigned long clone_flags,
568 unsigned long stack_start,
569 struct pt_regs *regs,
570 unsigned long stack_size)
571{
572 int __user *parent_tid_ptr, *child_tid_ptr;
573 unsigned long orig_i1 = regs->u_regs[UREG_I1];
574 long ret;
575
576#ifdef CONFIG_COMPAT
577 if (test_thread_flag(TIF_32BIT)) {
578 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
579 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
580 } else
581#endif
582 {
583 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
584 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
585 }
586
587 ret = do_fork(clone_flags, stack_start, stack_size,
588 parent_tid_ptr, child_tid_ptr);
589
590 /* If we get an error and potentially restart the system
591 * call, we're screwed because copy_thread() clobbered
592 * the parent's %o1. So detect that case and restore it
593 * here.
594 */
595 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
596 regs->u_regs[UREG_I1] = orig_i1;
597
598 return ret;
599}
600
601/* Copy a Sparc thread. The fork() return value conventions
602 * under SunOS are nothing short of bletcherous:
603 * Parent --> %o0 == childs pid, %o1 == 0
604 * Child --> %o0 == parents pid, %o1 == 1
605 */
606int copy_thread(unsigned long clone_flags, unsigned long sp,
607 unsigned long arg, struct task_struct *p)
608{
609 struct thread_info *t = task_thread_info(p);
610 struct pt_regs *regs = current_pt_regs();
611 struct sparc_stackf *parent_sf;
612 unsigned long child_stack_sz;
613 char *child_trap_frame;
614
615 /* Calculate offset to stack_frame & pt_regs */
616 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
617 child_trap_frame = (task_stack_page(p) +
618 (THREAD_SIZE - child_stack_sz));
619
620 t->new_child = 1;
621 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
622 t->kregs = (struct pt_regs *) (child_trap_frame +
623 sizeof(struct sparc_stackf));
624 t->fpsaved[0] = 0;
625
626 if (unlikely(p->flags & PF_KTHREAD)) {
627 memset(child_trap_frame, 0, child_stack_sz);
628 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
629 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
630 t->current_ds = ASI_P;
631 t->kregs->u_regs[UREG_G1] = sp; /* function */
632 t->kregs->u_regs[UREG_G2] = arg;
633 return 0;
634 }
635
636 parent_sf = ((struct sparc_stackf *) regs) - 1;
637 memcpy(child_trap_frame, parent_sf, child_stack_sz);
638 if (t->flags & _TIF_32BIT) {
639 sp &= 0x00000000ffffffffUL;
640 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
641 }
642 t->kregs->u_regs[UREG_FP] = sp;
643 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
644 (regs->tstate + 1) & TSTATE_CWP;
645 t->current_ds = ASI_AIUS;
646 if (sp != regs->u_regs[UREG_FP]) {
647 unsigned long csp;
648
649 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
650 if (!csp)
651 return -EFAULT;
652 t->kregs->u_regs[UREG_FP] = csp;
653 }
654 if (t->utraps)
655 t->utraps[0]++;
656
657 /* Set the return value for the child. */
658 t->kregs->u_regs[UREG_I0] = current->pid;
659 t->kregs->u_regs[UREG_I1] = 1;
660
661 /* Set the second return value for the parent. */
662 regs->u_regs[UREG_I1] = 0;
663
664 if (clone_flags & CLONE_SETTLS)
665 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
666
667 return 0;
668}
669
670typedef struct {
671 union {
672 unsigned int pr_regs[32];
673 unsigned long pr_dregs[16];
674 } pr_fr;
675 unsigned int __unused;
676 unsigned int pr_fsr;
677 unsigned char pr_qcnt;
678 unsigned char pr_q_entrysize;
679 unsigned char pr_en;
680 unsigned int pr_q[64];
681} elf_fpregset_t32;
682
683/*
684 * fill in the fpu structure for a core dump.
685 */
686int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
687{
688 unsigned long *kfpregs = current_thread_info()->fpregs;
689 unsigned long fprs = current_thread_info()->fpsaved[0];
690
691 if (test_thread_flag(TIF_32BIT)) {
692 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
693
694 if (fprs & FPRS_DL)
695 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
696 sizeof(unsigned int) * 32);
697 else
698 memset(&fpregs32->pr_fr.pr_regs[0], 0,
699 sizeof(unsigned int) * 32);
700 fpregs32->pr_qcnt = 0;
701 fpregs32->pr_q_entrysize = 8;
702 memset(&fpregs32->pr_q[0], 0,
703 (sizeof(unsigned int) * 64));
704 if (fprs & FPRS_FEF) {
705 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
706 fpregs32->pr_en = 1;
707 } else {
708 fpregs32->pr_fsr = 0;
709 fpregs32->pr_en = 0;
710 }
711 } else {
712 if(fprs & FPRS_DL)
713 memcpy(&fpregs->pr_regs[0], kfpregs,
714 sizeof(unsigned int) * 32);
715 else
716 memset(&fpregs->pr_regs[0], 0,
717 sizeof(unsigned int) * 32);
718 if(fprs & FPRS_DU)
719 memcpy(&fpregs->pr_regs[16], kfpregs+16,
720 sizeof(unsigned int) * 32);
721 else
722 memset(&fpregs->pr_regs[16], 0,
723 sizeof(unsigned int) * 32);
724 if(fprs & FPRS_FEF) {
725 fpregs->pr_fsr = current_thread_info()->xfsr[0];
726 fpregs->pr_gsr = current_thread_info()->gsr[0];
727 } else {
728 fpregs->pr_fsr = fpregs->pr_gsr = 0;
729 }
730 fpregs->pr_fprs = fprs;
731 }
732 return 1;
733}
734EXPORT_SYMBOL(dump_fpu);
735
736unsigned long get_wchan(struct task_struct *task)
737{
738 unsigned long pc, fp, bias = 0;
739 struct thread_info *tp;
740 struct reg_window *rw;
741 unsigned long ret = 0;
742 int count = 0;
743
744 if (!task || task == current ||
745 task->state == TASK_RUNNING)
746 goto out;
747
748 tp = task_thread_info(task);
749 bias = STACK_BIAS;
750 fp = task_thread_info(task)->ksp + bias;
751
752 do {
753 if (!kstack_valid(tp, fp))
754 break;
755 rw = (struct reg_window *) fp;
756 pc = rw->ins[7];
757 if (!in_sched_functions(pc)) {
758 ret = pc;
759 goto out;
760 }
761 fp = rw->ins[6] + bias;
762 } while (++count < 16);
763
764out:
765 return ret;
766}