Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Performance event support for sparc64.
   3 *
   4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   5 *
   6 * This code is based almost entirely upon the x86 perf event
   7 * code, which is:
   8 *
   9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11 *  Copyright (C) 2009 Jaswinder Singh Rajput
  12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  14 */
  15
  16#include <linux/perf_event.h>
  17#include <linux/kprobes.h>
  18#include <linux/ftrace.h>
  19#include <linux/kernel.h>
  20#include <linux/kdebug.h>
  21#include <linux/mutex.h>
  22
  23#include <asm/stacktrace.h>
  24#include <asm/cpudata.h>
  25#include <linux/uaccess.h>
  26#include <linux/atomic.h>
  27#include <linux/sched/clock.h>
  28#include <asm/nmi.h>
  29#include <asm/pcr.h>
  30#include <asm/cacheflush.h>
  31
  32#include "kernel.h"
  33#include "kstack.h"
  34
  35/* Two classes of sparc64 chips currently exist.  All of which have
  36 * 32-bit counters which can generate overflow interrupts on the
  37 * transition from 0xffffffff to 0.
  38 *
  39 * All chips upto and including SPARC-T3 have two performance
  40 * counters.  The two 32-bit counters are accessed in one go using a
  41 * single 64-bit register.
  42 *
  43 * On these older chips both counters are controlled using a single
  44 * control register.  The only way to stop all sampling is to clear
  45 * all of the context (user, supervisor, hypervisor) sampling enable
  46 * bits.  But these bits apply to both counters, thus the two counters
  47 * can't be enabled/disabled individually.
  48 *
  49 * Furthermore, the control register on these older chips have two
  50 * event fields, one for each of the two counters.  It's thus nearly
  51 * impossible to have one counter going while keeping the other one
  52 * stopped.  Therefore it is possible to get overflow interrupts for
  53 * counters not currently "in use" and that condition must be checked
  54 * in the overflow interrupt handler.
  55 *
  56 * So we use a hack, in that we program inactive counters with the
  57 * "sw_count0" and "sw_count1" events.  These count how many times
  58 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  59 * unusual way to encode a NOP and therefore will not trigger in
  60 * normal code.
  61 *
  62 * Starting with SPARC-T4 we have one control register per counter.
  63 * And the counters are stored in individual registers.  The registers
  64 * for the counters are 64-bit but only a 32-bit counter is
  65 * implemented.  The event selections on SPARC-T4 lack any
  66 * restrictions, therefore we can elide all of the complicated
  67 * conflict resolution code we have for SPARC-T3 and earlier chips.
  68 */
  69
  70#define MAX_HWEVENTS			4
  71#define MAX_PCRS			4
  72#define MAX_PERIOD			((1UL << 32) - 1)
  73
  74#define PIC_UPPER_INDEX			0
  75#define PIC_LOWER_INDEX			1
  76#define PIC_NO_INDEX			-1
  77
  78struct cpu_hw_events {
  79	/* Number of events currently scheduled onto this cpu.
  80	 * This tells how many entries in the arrays below
  81	 * are valid.
  82	 */
  83	int			n_events;
  84
  85	/* Number of new events added since the last hw_perf_disable().
  86	 * This works because the perf event layer always adds new
  87	 * events inside of a perf_{disable,enable}() sequence.
  88	 */
  89	int			n_added;
  90
  91	/* Array of events current scheduled on this cpu.  */
  92	struct perf_event	*event[MAX_HWEVENTS];
  93
  94	/* Array of encoded longs, specifying the %pcr register
  95	 * encoding and the mask of PIC counters this even can
  96	 * be scheduled on.  See perf_event_encode() et al.
  97	 */
  98	unsigned long		events[MAX_HWEVENTS];
  99
 100	/* The current counter index assigned to an event.  When the
 101	 * event hasn't been programmed into the cpu yet, this will
 102	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 103	 * we ought to schedule the event.
 104	 */
 105	int			current_idx[MAX_HWEVENTS];
 106
 107	/* Software copy of %pcr register(s) on this cpu.  */
 108	u64			pcr[MAX_HWEVENTS];
 109
 110	/* Enabled/disable state.  */
 111	int			enabled;
 112
 113	unsigned int		txn_flags;
 114};
 115static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 116
 117/* An event map describes the characteristics of a performance
 118 * counter event.  In particular it gives the encoding as well as
 119 * a mask telling which counters the event can be measured on.
 120 *
 121 * The mask is unused on SPARC-T4 and later.
 122 */
 123struct perf_event_map {
 124	u16	encoding;
 125	u8	pic_mask;
 126#define PIC_NONE	0x00
 127#define PIC_UPPER	0x01
 128#define PIC_LOWER	0x02
 129};
 130
 131/* Encode a perf_event_map entry into a long.  */
 132static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 133{
 134	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 135}
 136
 137static u8 perf_event_get_msk(unsigned long val)
 138{
 139	return val & 0xff;
 140}
 141
 142static u64 perf_event_get_enc(unsigned long val)
 143{
 144	return val >> 16;
 145}
 146
 147#define C(x) PERF_COUNT_HW_CACHE_##x
 148
 149#define CACHE_OP_UNSUPPORTED	0xfffe
 150#define CACHE_OP_NONSENSE	0xffff
 151
 152typedef struct perf_event_map cache_map_t
 153				[PERF_COUNT_HW_CACHE_MAX]
 154				[PERF_COUNT_HW_CACHE_OP_MAX]
 155				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 156
 157struct sparc_pmu {
 158	const struct perf_event_map	*(*event_map)(int);
 159	const cache_map_t		*cache_map;
 160	int				max_events;
 161	u32				(*read_pmc)(int);
 162	void				(*write_pmc)(int, u64);
 163	int				upper_shift;
 164	int				lower_shift;
 165	int				event_mask;
 166	int				user_bit;
 167	int				priv_bit;
 168	int				hv_bit;
 169	int				irq_bit;
 170	int				upper_nop;
 171	int				lower_nop;
 172	unsigned int			flags;
 173#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 174#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 175	int				max_hw_events;
 176	int				num_pcrs;
 177	int				num_pic_regs;
 178};
 179
 180static u32 sparc_default_read_pmc(int idx)
 181{
 182	u64 val;
 183
 184	val = pcr_ops->read_pic(0);
 185	if (idx == PIC_UPPER_INDEX)
 186		val >>= 32;
 187
 188	return val & 0xffffffff;
 189}
 190
 191static void sparc_default_write_pmc(int idx, u64 val)
 192{
 193	u64 shift, mask, pic;
 194
 195	shift = 0;
 196	if (idx == PIC_UPPER_INDEX)
 197		shift = 32;
 198
 199	mask = ((u64) 0xffffffff) << shift;
 200	val <<= shift;
 201
 202	pic = pcr_ops->read_pic(0);
 203	pic &= ~mask;
 204	pic |= val;
 205	pcr_ops->write_pic(0, pic);
 206}
 207
 208static const struct perf_event_map ultra3_perfmon_event_map[] = {
 209	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 210	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 211	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 212	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 213};
 214
 215static const struct perf_event_map *ultra3_event_map(int event_id)
 216{
 217	return &ultra3_perfmon_event_map[event_id];
 218}
 219
 220static const cache_map_t ultra3_cache_map = {
 221[C(L1D)] = {
 222	[C(OP_READ)] = {
 223		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 224		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 225	},
 226	[C(OP_WRITE)] = {
 227		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 228		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 229	},
 230	[C(OP_PREFETCH)] = {
 231		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 232		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 233	},
 234},
 235[C(L1I)] = {
 236	[C(OP_READ)] = {
 237		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 238		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 239	},
 240	[ C(OP_WRITE) ] = {
 241		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 242		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 243	},
 244	[ C(OP_PREFETCH) ] = {
 245		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 246		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 247	},
 248},
 249[C(LL)] = {
 250	[C(OP_READ)] = {
 251		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 252		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 253	},
 254	[C(OP_WRITE)] = {
 255		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 256		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 257	},
 258	[C(OP_PREFETCH)] = {
 259		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 260		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 261	},
 262},
 263[C(DTLB)] = {
 264	[C(OP_READ)] = {
 265		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 266		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 267	},
 268	[ C(OP_WRITE) ] = {
 269		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 270		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 271	},
 272	[ C(OP_PREFETCH) ] = {
 273		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 274		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 275	},
 276},
 277[C(ITLB)] = {
 278	[C(OP_READ)] = {
 279		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 280		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 281	},
 282	[ C(OP_WRITE) ] = {
 283		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 284		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 285	},
 286	[ C(OP_PREFETCH) ] = {
 287		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 288		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 289	},
 290},
 291[C(BPU)] = {
 292	[C(OP_READ)] = {
 293		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 294		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 295	},
 296	[ C(OP_WRITE) ] = {
 297		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 298		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 299	},
 300	[ C(OP_PREFETCH) ] = {
 301		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 302		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 303	},
 304},
 305[C(NODE)] = {
 306	[C(OP_READ)] = {
 307		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 308		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 309	},
 310	[ C(OP_WRITE) ] = {
 311		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 312		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 313	},
 314	[ C(OP_PREFETCH) ] = {
 315		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 316		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 317	},
 318},
 319};
 320
 321static const struct sparc_pmu ultra3_pmu = {
 322	.event_map	= ultra3_event_map,
 323	.cache_map	= &ultra3_cache_map,
 324	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 325	.read_pmc	= sparc_default_read_pmc,
 326	.write_pmc	= sparc_default_write_pmc,
 327	.upper_shift	= 11,
 328	.lower_shift	= 4,
 329	.event_mask	= 0x3f,
 330	.user_bit	= PCR_UTRACE,
 331	.priv_bit	= PCR_STRACE,
 332	.upper_nop	= 0x1c,
 333	.lower_nop	= 0x14,
 334	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 335			   SPARC_PMU_HAS_CONFLICTS),
 336	.max_hw_events	= 2,
 337	.num_pcrs	= 1,
 338	.num_pic_regs	= 1,
 339};
 340
 341/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 342 * only instructions, so it is free running which creates all kinds of
 343 * problems.  Some hardware designs make one wonder if the creator
 344 * even looked at how this stuff gets used by software.
 345 */
 346static const struct perf_event_map niagara1_perfmon_event_map[] = {
 347	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 348	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 349	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 350	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 351};
 352
 353static const struct perf_event_map *niagara1_event_map(int event_id)
 354{
 355	return &niagara1_perfmon_event_map[event_id];
 356}
 357
 358static const cache_map_t niagara1_cache_map = {
 359[C(L1D)] = {
 360	[C(OP_READ)] = {
 361		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 362		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 363	},
 364	[C(OP_WRITE)] = {
 365		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 366		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 367	},
 368	[C(OP_PREFETCH)] = {
 369		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 370		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 371	},
 372},
 373[C(L1I)] = {
 374	[C(OP_READ)] = {
 375		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 376		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 377	},
 378	[ C(OP_WRITE) ] = {
 379		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 380		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 381	},
 382	[ C(OP_PREFETCH) ] = {
 383		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 384		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 385	},
 386},
 387[C(LL)] = {
 388	[C(OP_READ)] = {
 389		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 390		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 391	},
 392	[C(OP_WRITE)] = {
 393		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 394		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 395	},
 396	[C(OP_PREFETCH)] = {
 397		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 398		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 399	},
 400},
 401[C(DTLB)] = {
 402	[C(OP_READ)] = {
 403		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 404		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 405	},
 406	[ C(OP_WRITE) ] = {
 407		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 408		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 409	},
 410	[ C(OP_PREFETCH) ] = {
 411		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 412		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 413	},
 414},
 415[C(ITLB)] = {
 416	[C(OP_READ)] = {
 417		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 418		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 419	},
 420	[ C(OP_WRITE) ] = {
 421		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 422		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 423	},
 424	[ C(OP_PREFETCH) ] = {
 425		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 426		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 427	},
 428},
 429[C(BPU)] = {
 430	[C(OP_READ)] = {
 431		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 432		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 433	},
 434	[ C(OP_WRITE) ] = {
 435		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 436		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 437	},
 438	[ C(OP_PREFETCH) ] = {
 439		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 440		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 441	},
 442},
 443[C(NODE)] = {
 444	[C(OP_READ)] = {
 445		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 446		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 447	},
 448	[ C(OP_WRITE) ] = {
 449		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 450		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 451	},
 452	[ C(OP_PREFETCH) ] = {
 453		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 454		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 455	},
 456},
 457};
 458
 459static const struct sparc_pmu niagara1_pmu = {
 460	.event_map	= niagara1_event_map,
 461	.cache_map	= &niagara1_cache_map,
 462	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 463	.read_pmc	= sparc_default_read_pmc,
 464	.write_pmc	= sparc_default_write_pmc,
 465	.upper_shift	= 0,
 466	.lower_shift	= 4,
 467	.event_mask	= 0x7,
 468	.user_bit	= PCR_UTRACE,
 469	.priv_bit	= PCR_STRACE,
 470	.upper_nop	= 0x0,
 471	.lower_nop	= 0x0,
 472	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 473			   SPARC_PMU_HAS_CONFLICTS),
 474	.max_hw_events	= 2,
 475	.num_pcrs	= 1,
 476	.num_pic_regs	= 1,
 477};
 478
 479static const struct perf_event_map niagara2_perfmon_event_map[] = {
 480	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 484	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 485	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 486};
 487
 488static const struct perf_event_map *niagara2_event_map(int event_id)
 489{
 490	return &niagara2_perfmon_event_map[event_id];
 491}
 492
 493static const cache_map_t niagara2_cache_map = {
 494[C(L1D)] = {
 495	[C(OP_READ)] = {
 496		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 497		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 498	},
 499	[C(OP_WRITE)] = {
 500		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 501		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 502	},
 503	[C(OP_PREFETCH)] = {
 504		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 505		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 506	},
 507},
 508[C(L1I)] = {
 509	[C(OP_READ)] = {
 510		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 511		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 512	},
 513	[ C(OP_WRITE) ] = {
 514		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 515		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 516	},
 517	[ C(OP_PREFETCH) ] = {
 518		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 519		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 520	},
 521},
 522[C(LL)] = {
 523	[C(OP_READ)] = {
 524		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 525		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 526	},
 527	[C(OP_WRITE)] = {
 528		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 529		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 530	},
 531	[C(OP_PREFETCH)] = {
 532		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 533		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 534	},
 535},
 536[C(DTLB)] = {
 537	[C(OP_READ)] = {
 538		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 539		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 540	},
 541	[ C(OP_WRITE) ] = {
 542		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 543		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 544	},
 545	[ C(OP_PREFETCH) ] = {
 546		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 547		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 548	},
 549},
 550[C(ITLB)] = {
 551	[C(OP_READ)] = {
 552		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 553		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 554	},
 555	[ C(OP_WRITE) ] = {
 556		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 557		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 558	},
 559	[ C(OP_PREFETCH) ] = {
 560		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 561		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 562	},
 563},
 564[C(BPU)] = {
 565	[C(OP_READ)] = {
 566		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 567		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 568	},
 569	[ C(OP_WRITE) ] = {
 570		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 571		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 572	},
 573	[ C(OP_PREFETCH) ] = {
 574		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 575		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 576	},
 577},
 578[C(NODE)] = {
 579	[C(OP_READ)] = {
 580		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 581		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 582	},
 583	[ C(OP_WRITE) ] = {
 584		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 585		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 586	},
 587	[ C(OP_PREFETCH) ] = {
 588		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 589		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 590	},
 591},
 592};
 593
 594static const struct sparc_pmu niagara2_pmu = {
 595	.event_map	= niagara2_event_map,
 596	.cache_map	= &niagara2_cache_map,
 597	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 598	.read_pmc	= sparc_default_read_pmc,
 599	.write_pmc	= sparc_default_write_pmc,
 600	.upper_shift	= 19,
 601	.lower_shift	= 6,
 602	.event_mask	= 0xfff,
 603	.user_bit	= PCR_UTRACE,
 604	.priv_bit	= PCR_STRACE,
 605	.hv_bit		= PCR_N2_HTRACE,
 606	.irq_bit	= 0x30,
 607	.upper_nop	= 0x220,
 608	.lower_nop	= 0x220,
 609	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 610			   SPARC_PMU_HAS_CONFLICTS),
 611	.max_hw_events	= 2,
 612	.num_pcrs	= 1,
 613	.num_pic_regs	= 1,
 614};
 615
 616static const struct perf_event_map niagara4_perfmon_event_map[] = {
 617	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 618	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 619	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 620	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 621	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 622	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 623};
 624
 625static const struct perf_event_map *niagara4_event_map(int event_id)
 626{
 627	return &niagara4_perfmon_event_map[event_id];
 628}
 629
 630static const cache_map_t niagara4_cache_map = {
 631[C(L1D)] = {
 632	[C(OP_READ)] = {
 633		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 634		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 635	},
 636	[C(OP_WRITE)] = {
 637		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 638		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 639	},
 640	[C(OP_PREFETCH)] = {
 641		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 642		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 643	},
 644},
 645[C(L1I)] = {
 646	[C(OP_READ)] = {
 647		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 648		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 649	},
 650	[ C(OP_WRITE) ] = {
 651		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 652		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 653	},
 654	[ C(OP_PREFETCH) ] = {
 655		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 656		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 657	},
 658},
 659[C(LL)] = {
 660	[C(OP_READ)] = {
 661		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 662		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 663	},
 664	[C(OP_WRITE)] = {
 665		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 666		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 667	},
 668	[C(OP_PREFETCH)] = {
 669		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 670		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 671	},
 672},
 673[C(DTLB)] = {
 674	[C(OP_READ)] = {
 675		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 676		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 677	},
 678	[ C(OP_WRITE) ] = {
 679		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 680		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 681	},
 682	[ C(OP_PREFETCH) ] = {
 683		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 684		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 685	},
 686},
 687[C(ITLB)] = {
 688	[C(OP_READ)] = {
 689		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 690		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 691	},
 692	[ C(OP_WRITE) ] = {
 693		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 694		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 695	},
 696	[ C(OP_PREFETCH) ] = {
 697		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 698		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 699	},
 700},
 701[C(BPU)] = {
 702	[C(OP_READ)] = {
 703		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 704		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 705	},
 706	[ C(OP_WRITE) ] = {
 707		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 708		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 709	},
 710	[ C(OP_PREFETCH) ] = {
 711		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 712		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 713	},
 714},
 715[C(NODE)] = {
 716	[C(OP_READ)] = {
 717		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 718		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 719	},
 720	[ C(OP_WRITE) ] = {
 721		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 722		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 723	},
 724	[ C(OP_PREFETCH) ] = {
 725		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 726		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 727	},
 728},
 729};
 730
 731static u32 sparc_vt_read_pmc(int idx)
 732{
 733	u64 val = pcr_ops->read_pic(idx);
 734
 735	return val & 0xffffffff;
 736}
 737
 738static void sparc_vt_write_pmc(int idx, u64 val)
 739{
 740	u64 pcr;
 741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742	pcr = pcr_ops->read_pcr(idx);
 743	/* ensure ov and ntc are reset */
 744	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 745
 746	pcr_ops->write_pic(idx, val & 0xffffffff);
 747
 748	pcr_ops->write_pcr(idx, pcr);
 749}
 750
 751static const struct sparc_pmu niagara4_pmu = {
 752	.event_map	= niagara4_event_map,
 753	.cache_map	= &niagara4_cache_map,
 754	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 755	.read_pmc	= sparc_vt_read_pmc,
 756	.write_pmc	= sparc_vt_write_pmc,
 757	.upper_shift	= 5,
 758	.lower_shift	= 5,
 759	.event_mask	= 0x7ff,
 760	.user_bit	= PCR_N4_UTRACE,
 761	.priv_bit	= PCR_N4_STRACE,
 762
 763	/* We explicitly don't support hypervisor tracing.  The T4
 764	 * generates the overflow event for precise events via a trap
 765	 * which will not be generated (ie. it's completely lost) if
 766	 * we happen to be in the hypervisor when the event triggers.
 767	 * Essentially, the overflow event reporting is completely
 768	 * unusable when you have hypervisor mode tracing enabled.
 769	 */
 770	.hv_bit		= 0,
 771
 772	.irq_bit	= PCR_N4_TOE,
 773	.upper_nop	= 0,
 774	.lower_nop	= 0,
 775	.flags		= 0,
 776	.max_hw_events	= 4,
 777	.num_pcrs	= 4,
 778	.num_pic_regs	= 4,
 779};
 780
 781static const struct sparc_pmu sparc_m7_pmu = {
 782	.event_map	= niagara4_event_map,
 783	.cache_map	= &niagara4_cache_map,
 784	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 785	.read_pmc	= sparc_vt_read_pmc,
 786	.write_pmc	= sparc_vt_write_pmc,
 787	.upper_shift	= 5,
 788	.lower_shift	= 5,
 789	.event_mask	= 0x7ff,
 790	.user_bit	= PCR_N4_UTRACE,
 791	.priv_bit	= PCR_N4_STRACE,
 792
 793	/* We explicitly don't support hypervisor tracing. */
 794	.hv_bit		= 0,
 795
 796	.irq_bit	= PCR_N4_TOE,
 797	.upper_nop	= 0,
 798	.lower_nop	= 0,
 799	.flags		= 0,
 800	.max_hw_events	= 4,
 801	.num_pcrs	= 4,
 802	.num_pic_regs	= 4,
 803};
 804static const struct sparc_pmu *sparc_pmu __read_mostly;
 805
 806static u64 event_encoding(u64 event_id, int idx)
 807{
 808	if (idx == PIC_UPPER_INDEX)
 809		event_id <<= sparc_pmu->upper_shift;
 810	else
 811		event_id <<= sparc_pmu->lower_shift;
 812	return event_id;
 813}
 814
 815static u64 mask_for_index(int idx)
 816{
 817	return event_encoding(sparc_pmu->event_mask, idx);
 818}
 819
 820static u64 nop_for_index(int idx)
 821{
 822	return event_encoding(idx == PIC_UPPER_INDEX ?
 823			      sparc_pmu->upper_nop :
 824			      sparc_pmu->lower_nop, idx);
 825}
 826
 827static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 828{
 829	u64 enc, val, mask = mask_for_index(idx);
 830	int pcr_index = 0;
 831
 832	if (sparc_pmu->num_pcrs > 1)
 833		pcr_index = idx;
 834
 835	enc = perf_event_get_enc(cpuc->events[idx]);
 836
 837	val = cpuc->pcr[pcr_index];
 838	val &= ~mask;
 839	val |= event_encoding(enc, idx);
 840	cpuc->pcr[pcr_index] = val;
 841
 842	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 843}
 844
 845static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 846{
 847	u64 mask = mask_for_index(idx);
 848	u64 nop = nop_for_index(idx);
 849	int pcr_index = 0;
 850	u64 val;
 851
 852	if (sparc_pmu->num_pcrs > 1)
 853		pcr_index = idx;
 854
 855	val = cpuc->pcr[pcr_index];
 856	val &= ~mask;
 857	val |= nop;
 858	cpuc->pcr[pcr_index] = val;
 859
 860	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 861}
 862
 863static u64 sparc_perf_event_update(struct perf_event *event,
 864				   struct hw_perf_event *hwc, int idx)
 865{
 866	int shift = 64 - 32;
 867	u64 prev_raw_count, new_raw_count;
 868	s64 delta;
 869
 870again:
 871	prev_raw_count = local64_read(&hwc->prev_count);
 872	new_raw_count = sparc_pmu->read_pmc(idx);
 873
 874	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 875			     new_raw_count) != prev_raw_count)
 876		goto again;
 877
 878	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 879	delta >>= shift;
 880
 881	local64_add(delta, &event->count);
 882	local64_sub(delta, &hwc->period_left);
 883
 884	return new_raw_count;
 885}
 886
 887static int sparc_perf_event_set_period(struct perf_event *event,
 888				       struct hw_perf_event *hwc, int idx)
 889{
 890	s64 left = local64_read(&hwc->period_left);
 891	s64 period = hwc->sample_period;
 892	int ret = 0;
 893
 894	/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
 895	if (unlikely(period != hwc->last_period))
 896		left = period - (hwc->last_period - left);
 897
 898	if (unlikely(left <= -period)) {
 899		left = period;
 900		local64_set(&hwc->period_left, left);
 901		hwc->last_period = period;
 902		ret = 1;
 903	}
 904
 905	if (unlikely(left <= 0)) {
 906		left += period;
 907		local64_set(&hwc->period_left, left);
 908		hwc->last_period = period;
 909		ret = 1;
 910	}
 911	if (left > MAX_PERIOD)
 912		left = MAX_PERIOD;
 913
 914	local64_set(&hwc->prev_count, (u64)-left);
 915
 916	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 917
 918	perf_event_update_userpage(event);
 919
 920	return ret;
 921}
 922
 923static void read_in_all_counters(struct cpu_hw_events *cpuc)
 924{
 925	int i;
 926
 927	for (i = 0; i < cpuc->n_events; i++) {
 928		struct perf_event *cp = cpuc->event[i];
 929
 930		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 931		    cpuc->current_idx[i] != cp->hw.idx) {
 932			sparc_perf_event_update(cp, &cp->hw,
 933						cpuc->current_idx[i]);
 934			cpuc->current_idx[i] = PIC_NO_INDEX;
 935			if (cp->hw.state & PERF_HES_STOPPED)
 936				cp->hw.state |= PERF_HES_ARCH;
 937		}
 938	}
 939}
 940
 941/* On this PMU all PICs are programmed using a single PCR.  Calculate
 942 * the combined control register value.
 943 *
 944 * For such chips we require that all of the events have the same
 945 * configuration, so just fetch the settings from the first entry.
 946 */
 947static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 948{
 949	int i;
 950
 951	if (!cpuc->n_added)
 952		goto out;
 953
 954	/* Assign to counters all unassigned events.  */
 955	for (i = 0; i < cpuc->n_events; i++) {
 956		struct perf_event *cp = cpuc->event[i];
 957		struct hw_perf_event *hwc = &cp->hw;
 958		int idx = hwc->idx;
 959		u64 enc;
 960
 961		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 962			continue;
 963
 964		sparc_perf_event_set_period(cp, hwc, idx);
 965		cpuc->current_idx[i] = idx;
 966
 967		enc = perf_event_get_enc(cpuc->events[i]);
 968		cpuc->pcr[0] &= ~mask_for_index(idx);
 969		if (hwc->state & PERF_HES_ARCH) {
 970			cpuc->pcr[0] |= nop_for_index(idx);
 971		} else {
 972			cpuc->pcr[0] |= event_encoding(enc, idx);
 973			hwc->state = 0;
 974		}
 975	}
 976out:
 977	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 978}
 979
 980static void sparc_pmu_start(struct perf_event *event, int flags);
 981
 982/* On this PMU each PIC has it's own PCR control register.  */
 983static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 984{
 985	int i;
 986
 987	if (!cpuc->n_added)
 988		goto out;
 989
 990	for (i = 0; i < cpuc->n_events; i++) {
 991		struct perf_event *cp = cpuc->event[i];
 992		struct hw_perf_event *hwc = &cp->hw;
 993		int idx = hwc->idx;
 
 994
 995		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 996			continue;
 997
 
 998		cpuc->current_idx[i] = idx;
 999
1000		if (cp->hw.state & PERF_HES_ARCH)
1001			continue;
1002
1003		sparc_pmu_start(cp, PERF_EF_RELOAD);
 
 
1004	}
1005out:
1006	for (i = 0; i < cpuc->n_events; i++) {
1007		struct perf_event *cp = cpuc->event[i];
1008		int idx = cp->hw.idx;
1009
1010		cpuc->pcr[idx] |= cp->hw.config_base;
1011	}
1012}
1013
1014/* If performance event entries have been added, move existing events
1015 * around (if necessary) and then assign new entries to counters.
1016 */
1017static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1018{
1019	if (cpuc->n_added)
1020		read_in_all_counters(cpuc);
1021
1022	if (sparc_pmu->num_pcrs == 1) {
1023		calculate_single_pcr(cpuc);
1024	} else {
1025		calculate_multiple_pcrs(cpuc);
1026	}
1027}
1028
1029static void sparc_pmu_enable(struct pmu *pmu)
1030{
1031	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1032	int i;
1033
1034	if (cpuc->enabled)
1035		return;
1036
1037	cpuc->enabled = 1;
1038	barrier();
1039
1040	if (cpuc->n_events)
1041		update_pcrs_for_enable(cpuc);
1042
1043	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1044		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1045}
1046
1047static void sparc_pmu_disable(struct pmu *pmu)
1048{
1049	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1050	int i;
1051
1052	if (!cpuc->enabled)
1053		return;
1054
1055	cpuc->enabled = 0;
1056	cpuc->n_added = 0;
1057
1058	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1059		u64 val = cpuc->pcr[i];
1060
1061		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1062			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1063		cpuc->pcr[i] = val;
1064		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1065	}
1066}
1067
1068static int active_event_index(struct cpu_hw_events *cpuc,
1069			      struct perf_event *event)
1070{
1071	int i;
1072
1073	for (i = 0; i < cpuc->n_events; i++) {
1074		if (cpuc->event[i] == event)
1075			break;
1076	}
1077	BUG_ON(i == cpuc->n_events);
1078	return cpuc->current_idx[i];
1079}
1080
1081static void sparc_pmu_start(struct perf_event *event, int flags)
1082{
1083	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1084	int idx = active_event_index(cpuc, event);
1085
1086	if (flags & PERF_EF_RELOAD) {
1087		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1088		sparc_perf_event_set_period(event, &event->hw, idx);
1089	}
1090
1091	event->hw.state = 0;
1092
1093	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1094
1095	perf_event_update_userpage(event);
1096}
1097
1098static void sparc_pmu_stop(struct perf_event *event, int flags)
1099{
1100	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101	int idx = active_event_index(cpuc, event);
1102
1103	if (!(event->hw.state & PERF_HES_STOPPED)) {
1104		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1105		event->hw.state |= PERF_HES_STOPPED;
1106	}
1107
1108	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1109		sparc_perf_event_update(event, &event->hw, idx);
1110		event->hw.state |= PERF_HES_UPTODATE;
1111	}
1112}
1113
1114static void sparc_pmu_del(struct perf_event *event, int _flags)
1115{
1116	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1117	unsigned long flags;
1118	int i;
1119
1120	local_irq_save(flags);
 
1121
1122	for (i = 0; i < cpuc->n_events; i++) {
1123		if (event == cpuc->event[i]) {
1124			/* Absorb the final count and turn off the
1125			 * event.
1126			 */
1127			sparc_pmu_stop(event, PERF_EF_UPDATE);
1128
1129			/* Shift remaining entries down into
1130			 * the existing slot.
1131			 */
1132			while (++i < cpuc->n_events) {
1133				cpuc->event[i - 1] = cpuc->event[i];
1134				cpuc->events[i - 1] = cpuc->events[i];
1135				cpuc->current_idx[i - 1] =
1136					cpuc->current_idx[i];
1137			}
1138
1139			perf_event_update_userpage(event);
1140
1141			cpuc->n_events--;
1142			break;
1143		}
1144	}
1145
 
1146	local_irq_restore(flags);
1147}
1148
1149static void sparc_pmu_read(struct perf_event *event)
1150{
1151	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152	int idx = active_event_index(cpuc, event);
1153	struct hw_perf_event *hwc = &event->hw;
1154
1155	sparc_perf_event_update(event, hwc, idx);
1156}
1157
1158static atomic_t active_events = ATOMIC_INIT(0);
1159static DEFINE_MUTEX(pmc_grab_mutex);
1160
1161static void perf_stop_nmi_watchdog(void *unused)
1162{
1163	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164	int i;
1165
1166	stop_nmi_watchdog(NULL);
1167	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1168		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1169}
1170
1171static void perf_event_grab_pmc(void)
1172{
1173	if (atomic_inc_not_zero(&active_events))
1174		return;
1175
1176	mutex_lock(&pmc_grab_mutex);
1177	if (atomic_read(&active_events) == 0) {
1178		if (atomic_read(&nmi_active) > 0) {
1179			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1180			BUG_ON(atomic_read(&nmi_active) != 0);
1181		}
1182		atomic_inc(&active_events);
1183	}
1184	mutex_unlock(&pmc_grab_mutex);
1185}
1186
1187static void perf_event_release_pmc(void)
1188{
1189	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1190		if (atomic_read(&nmi_active) == 0)
1191			on_each_cpu(start_nmi_watchdog, NULL, 1);
1192		mutex_unlock(&pmc_grab_mutex);
1193	}
1194}
1195
1196static const struct perf_event_map *sparc_map_cache_event(u64 config)
1197{
1198	unsigned int cache_type, cache_op, cache_result;
1199	const struct perf_event_map *pmap;
1200
1201	if (!sparc_pmu->cache_map)
1202		return ERR_PTR(-ENOENT);
1203
1204	cache_type = (config >>  0) & 0xff;
1205	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1206		return ERR_PTR(-EINVAL);
1207
1208	cache_op = (config >>  8) & 0xff;
1209	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1210		return ERR_PTR(-EINVAL);
1211
1212	cache_result = (config >> 16) & 0xff;
1213	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1214		return ERR_PTR(-EINVAL);
1215
1216	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1217
1218	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1219		return ERR_PTR(-ENOENT);
1220
1221	if (pmap->encoding == CACHE_OP_NONSENSE)
1222		return ERR_PTR(-EINVAL);
1223
1224	return pmap;
1225}
1226
1227static void hw_perf_event_destroy(struct perf_event *event)
1228{
1229	perf_event_release_pmc();
1230}
1231
1232/* Make sure all events can be scheduled into the hardware at
1233 * the same time.  This is simplified by the fact that we only
1234 * need to support 2 simultaneous HW events.
1235 *
1236 * As a side effect, the evts[]->hw.idx values will be assigned
1237 * on success.  These are pending indexes.  When the events are
1238 * actually programmed into the chip, these values will propagate
1239 * to the per-cpu cpuc->current_idx[] slots, see the code in
1240 * maybe_change_configuration() for details.
1241 */
1242static int sparc_check_constraints(struct perf_event **evts,
1243				   unsigned long *events, int n_ev)
1244{
1245	u8 msk0 = 0, msk1 = 0;
1246	int idx0 = 0;
1247
1248	/* This case is possible when we are invoked from
1249	 * hw_perf_group_sched_in().
1250	 */
1251	if (!n_ev)
1252		return 0;
1253
1254	if (n_ev > sparc_pmu->max_hw_events)
1255		return -1;
1256
1257	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1258		int i;
1259
1260		for (i = 0; i < n_ev; i++)
1261			evts[i]->hw.idx = i;
1262		return 0;
1263	}
1264
1265	msk0 = perf_event_get_msk(events[0]);
1266	if (n_ev == 1) {
1267		if (msk0 & PIC_LOWER)
1268			idx0 = 1;
1269		goto success;
1270	}
1271	BUG_ON(n_ev != 2);
1272	msk1 = perf_event_get_msk(events[1]);
1273
1274	/* If both events can go on any counter, OK.  */
1275	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1276	    msk1 == (PIC_UPPER | PIC_LOWER))
1277		goto success;
1278
1279	/* If one event is limited to a specific counter,
1280	 * and the other can go on both, OK.
1281	 */
1282	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1283	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1290	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1291		if (msk1 & PIC_UPPER)
1292			idx0 = 1;
1293		goto success;
1294	}
1295
1296	/* If the events are fixed to different counters, OK.  */
1297	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1298	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1299		if (msk0 & PIC_LOWER)
1300			idx0 = 1;
1301		goto success;
1302	}
1303
1304	/* Otherwise, there is a conflict.  */
1305	return -1;
1306
1307success:
1308	evts[0]->hw.idx = idx0;
1309	if (n_ev == 2)
1310		evts[1]->hw.idx = idx0 ^ 1;
1311	return 0;
1312}
1313
1314static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1315{
1316	int eu = 0, ek = 0, eh = 0;
1317	struct perf_event *event;
1318	int i, n, first;
1319
1320	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1321		return 0;
1322
1323	n = n_prev + n_new;
1324	if (n <= 1)
1325		return 0;
1326
1327	first = 1;
1328	for (i = 0; i < n; i++) {
1329		event = evts[i];
1330		if (first) {
1331			eu = event->attr.exclude_user;
1332			ek = event->attr.exclude_kernel;
1333			eh = event->attr.exclude_hv;
1334			first = 0;
1335		} else if (event->attr.exclude_user != eu ||
1336			   event->attr.exclude_kernel != ek ||
1337			   event->attr.exclude_hv != eh) {
1338			return -EAGAIN;
1339		}
1340	}
1341
1342	return 0;
1343}
1344
1345static int collect_events(struct perf_event *group, int max_count,
1346			  struct perf_event *evts[], unsigned long *events,
1347			  int *current_idx)
1348{
1349	struct perf_event *event;
1350	int n = 0;
1351
1352	if (!is_software_event(group)) {
1353		if (n >= max_count)
1354			return -1;
1355		evts[n] = group;
1356		events[n] = group->hw.event_base;
1357		current_idx[n++] = PIC_NO_INDEX;
1358	}
1359	for_each_sibling_event(event, group) {
1360		if (!is_software_event(event) &&
1361		    event->state != PERF_EVENT_STATE_OFF) {
1362			if (n >= max_count)
1363				return -1;
1364			evts[n] = event;
1365			events[n] = event->hw.event_base;
1366			current_idx[n++] = PIC_NO_INDEX;
1367		}
1368	}
1369	return n;
1370}
1371
1372static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1373{
1374	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375	int n0, ret = -EAGAIN;
1376	unsigned long flags;
1377
1378	local_irq_save(flags);
 
1379
1380	n0 = cpuc->n_events;
1381	if (n0 >= sparc_pmu->max_hw_events)
1382		goto out;
1383
1384	cpuc->event[n0] = event;
1385	cpuc->events[n0] = event->hw.event_base;
1386	cpuc->current_idx[n0] = PIC_NO_INDEX;
1387
1388	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1389	if (!(ef_flags & PERF_EF_START))
1390		event->hw.state |= PERF_HES_ARCH;
1391
1392	/*
1393	 * If group events scheduling transaction was started,
1394	 * skip the schedulability test here, it will be performed
1395	 * at commit time(->commit_txn) as a whole
1396	 */
1397	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1398		goto nocheck;
1399
1400	if (check_excludes(cpuc->event, n0, 1))
1401		goto out;
1402	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1403		goto out;
1404
1405nocheck:
1406	cpuc->n_events++;
1407	cpuc->n_added++;
1408
1409	ret = 0;
1410out:
 
1411	local_irq_restore(flags);
1412	return ret;
1413}
1414
1415static int sparc_pmu_event_init(struct perf_event *event)
1416{
1417	struct perf_event_attr *attr = &event->attr;
1418	struct perf_event *evts[MAX_HWEVENTS];
1419	struct hw_perf_event *hwc = &event->hw;
1420	unsigned long events[MAX_HWEVENTS];
1421	int current_idx_dmy[MAX_HWEVENTS];
1422	const struct perf_event_map *pmap;
1423	int n;
1424
1425	if (atomic_read(&nmi_active) < 0)
1426		return -ENODEV;
1427
1428	/* does not support taken branch sampling */
1429	if (has_branch_stack(event))
1430		return -EOPNOTSUPP;
1431
1432	switch (attr->type) {
1433	case PERF_TYPE_HARDWARE:
1434		if (attr->config >= sparc_pmu->max_events)
1435			return -EINVAL;
1436		pmap = sparc_pmu->event_map(attr->config);
1437		break;
1438
1439	case PERF_TYPE_HW_CACHE:
1440		pmap = sparc_map_cache_event(attr->config);
1441		if (IS_ERR(pmap))
1442			return PTR_ERR(pmap);
1443		break;
1444
1445	case PERF_TYPE_RAW:
1446		pmap = NULL;
1447		break;
1448
1449	default:
1450		return -ENOENT;
1451
1452	}
1453
1454	if (pmap) {
1455		hwc->event_base = perf_event_encode(pmap);
1456	} else {
1457		/*
1458		 * User gives us "(encoding << 16) | pic_mask" for
1459		 * PERF_TYPE_RAW events.
1460		 */
1461		hwc->event_base = attr->config;
1462	}
1463
1464	/* We save the enable bits in the config_base.  */
1465	hwc->config_base = sparc_pmu->irq_bit;
1466	if (!attr->exclude_user)
1467		hwc->config_base |= sparc_pmu->user_bit;
1468	if (!attr->exclude_kernel)
1469		hwc->config_base |= sparc_pmu->priv_bit;
1470	if (!attr->exclude_hv)
1471		hwc->config_base |= sparc_pmu->hv_bit;
1472
1473	n = 0;
1474	if (event->group_leader != event) {
1475		n = collect_events(event->group_leader,
1476				   sparc_pmu->max_hw_events - 1,
1477				   evts, events, current_idx_dmy);
1478		if (n < 0)
1479			return -EINVAL;
1480	}
1481	events[n] = hwc->event_base;
1482	evts[n] = event;
1483
1484	if (check_excludes(evts, n, 1))
1485		return -EINVAL;
1486
1487	if (sparc_check_constraints(evts, events, n + 1))
1488		return -EINVAL;
1489
1490	hwc->idx = PIC_NO_INDEX;
1491
1492	/* Try to do all error checking before this point, as unwinding
1493	 * state after grabbing the PMC is difficult.
1494	 */
1495	perf_event_grab_pmc();
1496	event->destroy = hw_perf_event_destroy;
1497
1498	if (!hwc->sample_period) {
1499		hwc->sample_period = MAX_PERIOD;
1500		hwc->last_period = hwc->sample_period;
1501		local64_set(&hwc->period_left, hwc->sample_period);
1502	}
1503
1504	return 0;
1505}
1506
1507/*
1508 * Start group events scheduling transaction
1509 * Set the flag to make pmu::enable() not perform the
1510 * schedulability test, it will be performed at commit time
1511 */
1512static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1513{
1514	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1515
1516	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1517
1518	cpuhw->txn_flags = txn_flags;
1519	if (txn_flags & ~PERF_PMU_TXN_ADD)
1520		return;
1521
1522	perf_pmu_disable(pmu);
 
1523}
1524
1525/*
1526 * Stop group events scheduling transaction
1527 * Clear the flag and pmu::enable() will perform the
1528 * schedulability test.
1529 */
1530static void sparc_pmu_cancel_txn(struct pmu *pmu)
1531{
1532	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1533	unsigned int txn_flags;
1534
1535	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1536
1537	txn_flags = cpuhw->txn_flags;
1538	cpuhw->txn_flags = 0;
1539	if (txn_flags & ~PERF_PMU_TXN_ADD)
1540		return;
1541
 
1542	perf_pmu_enable(pmu);
1543}
1544
1545/*
1546 * Commit group events scheduling transaction
1547 * Perform the group schedulability test as a whole
1548 * Return 0 if success
1549 */
1550static int sparc_pmu_commit_txn(struct pmu *pmu)
1551{
1552	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1553	int n;
1554
1555	if (!sparc_pmu)
1556		return -EINVAL;
1557
1558	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1559
1560	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1561		cpuc->txn_flags = 0;
1562		return 0;
1563	}
1564
1565	n = cpuc->n_events;
1566	if (check_excludes(cpuc->event, 0, n))
1567		return -EINVAL;
1568	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1569		return -EAGAIN;
1570
1571	cpuc->txn_flags = 0;
1572	perf_pmu_enable(pmu);
1573	return 0;
1574}
1575
1576static struct pmu pmu = {
1577	.pmu_enable	= sparc_pmu_enable,
1578	.pmu_disable	= sparc_pmu_disable,
1579	.event_init	= sparc_pmu_event_init,
1580	.add		= sparc_pmu_add,
1581	.del		= sparc_pmu_del,
1582	.start		= sparc_pmu_start,
1583	.stop		= sparc_pmu_stop,
1584	.read		= sparc_pmu_read,
1585	.start_txn	= sparc_pmu_start_txn,
1586	.cancel_txn	= sparc_pmu_cancel_txn,
1587	.commit_txn	= sparc_pmu_commit_txn,
1588};
1589
1590void perf_event_print_debug(void)
1591{
1592	unsigned long flags;
1593	int cpu, i;
1594
1595	if (!sparc_pmu)
1596		return;
1597
1598	local_irq_save(flags);
1599
1600	cpu = smp_processor_id();
1601
1602	pr_info("\n");
1603	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1604		pr_info("CPU#%d: PCR%d[%016llx]\n",
1605			cpu, i, pcr_ops->read_pcr(i));
1606	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1607		pr_info("CPU#%d: PIC%d[%016llx]\n",
1608			cpu, i, pcr_ops->read_pic(i));
1609
1610	local_irq_restore(flags);
1611}
1612
1613static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1614					    unsigned long cmd, void *__args)
1615{
1616	struct die_args *args = __args;
1617	struct perf_sample_data data;
1618	struct cpu_hw_events *cpuc;
1619	struct pt_regs *regs;
1620	u64 finish_clock;
1621	u64 start_clock;
1622	int i;
1623
1624	if (!atomic_read(&active_events))
1625		return NOTIFY_DONE;
1626
1627	switch (cmd) {
1628	case DIE_NMI:
1629		break;
1630
1631	default:
1632		return NOTIFY_DONE;
1633	}
1634
1635	start_clock = sched_clock();
1636
1637	regs = args->regs;
1638
1639	cpuc = this_cpu_ptr(&cpu_hw_events);
1640
1641	/* If the PMU has the TOE IRQ enable bits, we need to do a
1642	 * dummy write to the %pcr to clear the overflow bits and thus
1643	 * the interrupt.
1644	 *
1645	 * Do this before we peek at the counters to determine
1646	 * overflow so we don't lose any events.
1647	 */
1648	if (sparc_pmu->irq_bit &&
1649	    sparc_pmu->num_pcrs == 1)
1650		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1651
1652	for (i = 0; i < cpuc->n_events; i++) {
1653		struct perf_event *event = cpuc->event[i];
1654		int idx = cpuc->current_idx[i];
1655		struct hw_perf_event *hwc;
1656		u64 val;
1657
1658		if (sparc_pmu->irq_bit &&
1659		    sparc_pmu->num_pcrs > 1)
1660			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1661
1662		hwc = &event->hw;
1663		val = sparc_perf_event_update(event, hwc, idx);
1664		if (val & (1ULL << 31))
1665			continue;
1666
1667		perf_sample_data_init(&data, 0, hwc->last_period);
1668		if (!sparc_perf_event_set_period(event, hwc, idx))
1669			continue;
1670
1671		if (perf_event_overflow(event, &data, regs))
1672			sparc_pmu_stop(event, 0);
1673	}
1674
1675	finish_clock = sched_clock();
1676
1677	perf_sample_event_took(finish_clock - start_clock);
1678
1679	return NOTIFY_STOP;
1680}
1681
1682static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1683	.notifier_call		= perf_event_nmi_handler,
1684};
1685
1686static bool __init supported_pmu(void)
1687{
1688	if (!strcmp(sparc_pmu_type, "ultra3") ||
1689	    !strcmp(sparc_pmu_type, "ultra3+") ||
1690	    !strcmp(sparc_pmu_type, "ultra3i") ||
1691	    !strcmp(sparc_pmu_type, "ultra4+")) {
1692		sparc_pmu = &ultra3_pmu;
1693		return true;
1694	}
1695	if (!strcmp(sparc_pmu_type, "niagara")) {
1696		sparc_pmu = &niagara1_pmu;
1697		return true;
1698	}
1699	if (!strcmp(sparc_pmu_type, "niagara2") ||
1700	    !strcmp(sparc_pmu_type, "niagara3")) {
1701		sparc_pmu = &niagara2_pmu;
1702		return true;
1703	}
1704	if (!strcmp(sparc_pmu_type, "niagara4") ||
1705	    !strcmp(sparc_pmu_type, "niagara5")) {
1706		sparc_pmu = &niagara4_pmu;
1707		return true;
1708	}
1709	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1710		sparc_pmu = &sparc_m7_pmu;
1711		return true;
1712	}
1713	return false;
1714}
1715
1716static int __init init_hw_perf_events(void)
1717{
1718	int err;
1719
1720	pr_info("Performance events: ");
1721
1722	err = pcr_arch_init();
1723	if (err || !supported_pmu()) {
1724		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1725		return 0;
1726	}
1727
1728	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1729
1730	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1731	register_die_notifier(&perf_event_nmi_notifier);
1732
1733	return 0;
1734}
1735pure_initcall(init_hw_perf_events);
1736
1737void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1738			   struct pt_regs *regs)
1739{
1740	unsigned long ksp, fp;
1741#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1742	int graph = 0;
1743#endif
1744
1745	stack_trace_flush();
1746
1747	perf_callchain_store(entry, regs->tpc);
1748
1749	ksp = regs->u_regs[UREG_I6];
1750	fp = ksp + STACK_BIAS;
1751	do {
1752		struct sparc_stackf *sf;
1753		struct pt_regs *regs;
1754		unsigned long pc;
1755
1756		if (!kstack_valid(current_thread_info(), fp))
1757			break;
1758
1759		sf = (struct sparc_stackf *) fp;
1760		regs = (struct pt_regs *) (sf + 1);
1761
1762		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1763			if (user_mode(regs))
1764				break;
1765			pc = regs->tpc;
1766			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1767		} else {
1768			pc = sf->callers_pc;
1769			fp = (unsigned long)sf->fp + STACK_BIAS;
1770		}
1771		perf_callchain_store(entry, pc);
1772#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1773		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1774			struct ftrace_ret_stack *ret_stack;
1775			ret_stack = ftrace_graph_get_ret_stack(current,
1776							       graph);
1777			if (ret_stack) {
1778				pc = ret_stack->ret;
1779				perf_callchain_store(entry, pc);
1780				graph++;
1781			}
1782		}
1783#endif
1784	} while (entry->nr < entry->max_stack);
1785}
1786
1787static inline int
1788valid_user_frame(const void __user *fp, unsigned long size)
1789{
1790	/* addresses should be at least 4-byte aligned */
1791	if (((unsigned long) fp) & 3)
1792		return 0;
1793
1794	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1795}
1796
1797static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1798				   struct pt_regs *regs)
1799{
1800	unsigned long ufp;
1801
1802	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1803	do {
1804		struct sparc_stackf __user *usf;
1805		struct sparc_stackf sf;
1806		unsigned long pc;
1807
1808		usf = (struct sparc_stackf __user *)ufp;
1809		if (!valid_user_frame(usf, sizeof(sf)))
1810			break;
1811
1812		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813			break;
1814
1815		pc = sf.callers_pc;
1816		ufp = (unsigned long)sf.fp + STACK_BIAS;
1817		perf_callchain_store(entry, pc);
1818	} while (entry->nr < entry->max_stack);
1819}
1820
1821static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1822				   struct pt_regs *regs)
1823{
1824	unsigned long ufp;
1825
1826	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1827	do {
1828		unsigned long pc;
1829
1830		if (thread32_stack_is_64bit(ufp)) {
1831			struct sparc_stackf __user *usf;
1832			struct sparc_stackf sf;
1833
1834			ufp += STACK_BIAS;
1835			usf = (struct sparc_stackf __user *)ufp;
1836			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1837				break;
1838			pc = sf.callers_pc & 0xffffffff;
1839			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1840		} else {
1841			struct sparc_stackf32 __user *usf;
1842			struct sparc_stackf32 sf;
1843			usf = (struct sparc_stackf32 __user *)ufp;
1844			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1845				break;
1846			pc = sf.callers_pc;
1847			ufp = (unsigned long)sf.fp;
1848		}
1849		perf_callchain_store(entry, pc);
1850	} while (entry->nr < entry->max_stack);
1851}
1852
1853void
1854perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1855{
1856	u64 saved_fault_address = current_thread_info()->fault_address;
1857	u8 saved_fault_code = get_thread_fault_code();
1858
1859	perf_callchain_store(entry, regs->tpc);
1860
1861	if (!current->mm)
1862		return;
1863
1864	flushw_user();
1865
1866	pagefault_disable();
1867
1868	if (test_thread_flag(TIF_32BIT))
1869		perf_callchain_user_32(entry, regs);
1870	else
1871		perf_callchain_user_64(entry, regs);
1872
1873	pagefault_enable();
1874
1875	set_thread_fault_code(saved_fault_code);
1876	current_thread_info()->fault_address = saved_fault_address;
1877}
v3.15
 
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
 
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
  28#include <asm/cacheflush.h>
  29
  30#include "kernel.h"
  31#include "kstack.h"
  32
  33/* Two classes of sparc64 chips currently exist.  All of which have
  34 * 32-bit counters which can generate overflow interrupts on the
  35 * transition from 0xffffffff to 0.
  36 *
  37 * All chips upto and including SPARC-T3 have two performance
  38 * counters.  The two 32-bit counters are accessed in one go using a
  39 * single 64-bit register.
  40 *
  41 * On these older chips both counters are controlled using a single
  42 * control register.  The only way to stop all sampling is to clear
  43 * all of the context (user, supervisor, hypervisor) sampling enable
  44 * bits.  But these bits apply to both counters, thus the two counters
  45 * can't be enabled/disabled individually.
  46 *
  47 * Furthermore, the control register on these older chips have two
  48 * event fields, one for each of the two counters.  It's thus nearly
  49 * impossible to have one counter going while keeping the other one
  50 * stopped.  Therefore it is possible to get overflow interrupts for
  51 * counters not currently "in use" and that condition must be checked
  52 * in the overflow interrupt handler.
  53 *
  54 * So we use a hack, in that we program inactive counters with the
  55 * "sw_count0" and "sw_count1" events.  These count how many times
  56 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  57 * unusual way to encode a NOP and therefore will not trigger in
  58 * normal code.
  59 *
  60 * Starting with SPARC-T4 we have one control register per counter.
  61 * And the counters are stored in individual registers.  The registers
  62 * for the counters are 64-bit but only a 32-bit counter is
  63 * implemented.  The event selections on SPARC-T4 lack any
  64 * restrictions, therefore we can elide all of the complicated
  65 * conflict resolution code we have for SPARC-T3 and earlier chips.
  66 */
  67
  68#define MAX_HWEVENTS			4
  69#define MAX_PCRS			4
  70#define MAX_PERIOD			((1UL << 32) - 1)
  71
  72#define PIC_UPPER_INDEX			0
  73#define PIC_LOWER_INDEX			1
  74#define PIC_NO_INDEX			-1
  75
  76struct cpu_hw_events {
  77	/* Number of events currently scheduled onto this cpu.
  78	 * This tells how many entries in the arrays below
  79	 * are valid.
  80	 */
  81	int			n_events;
  82
  83	/* Number of new events added since the last hw_perf_disable().
  84	 * This works because the perf event layer always adds new
  85	 * events inside of a perf_{disable,enable}() sequence.
  86	 */
  87	int			n_added;
  88
  89	/* Array of events current scheduled on this cpu.  */
  90	struct perf_event	*event[MAX_HWEVENTS];
  91
  92	/* Array of encoded longs, specifying the %pcr register
  93	 * encoding and the mask of PIC counters this even can
  94	 * be scheduled on.  See perf_event_encode() et al.
  95	 */
  96	unsigned long		events[MAX_HWEVENTS];
  97
  98	/* The current counter index assigned to an event.  When the
  99	 * event hasn't been programmed into the cpu yet, this will
 100	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 101	 * we ought to schedule the event.
 102	 */
 103	int			current_idx[MAX_HWEVENTS];
 104
 105	/* Software copy of %pcr register(s) on this cpu.  */
 106	u64			pcr[MAX_HWEVENTS];
 107
 108	/* Enabled/disable state.  */
 109	int			enabled;
 110
 111	unsigned int		group_flag;
 112};
 113DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 114
 115/* An event map describes the characteristics of a performance
 116 * counter event.  In particular it gives the encoding as well as
 117 * a mask telling which counters the event can be measured on.
 118 *
 119 * The mask is unused on SPARC-T4 and later.
 120 */
 121struct perf_event_map {
 122	u16	encoding;
 123	u8	pic_mask;
 124#define PIC_NONE	0x00
 125#define PIC_UPPER	0x01
 126#define PIC_LOWER	0x02
 127};
 128
 129/* Encode a perf_event_map entry into a long.  */
 130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 131{
 132	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 133}
 134
 135static u8 perf_event_get_msk(unsigned long val)
 136{
 137	return val & 0xff;
 138}
 139
 140static u64 perf_event_get_enc(unsigned long val)
 141{
 142	return val >> 16;
 143}
 144
 145#define C(x) PERF_COUNT_HW_CACHE_##x
 146
 147#define CACHE_OP_UNSUPPORTED	0xfffe
 148#define CACHE_OP_NONSENSE	0xffff
 149
 150typedef struct perf_event_map cache_map_t
 151				[PERF_COUNT_HW_CACHE_MAX]
 152				[PERF_COUNT_HW_CACHE_OP_MAX]
 153				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 154
 155struct sparc_pmu {
 156	const struct perf_event_map	*(*event_map)(int);
 157	const cache_map_t		*cache_map;
 158	int				max_events;
 159	u32				(*read_pmc)(int);
 160	void				(*write_pmc)(int, u64);
 161	int				upper_shift;
 162	int				lower_shift;
 163	int				event_mask;
 164	int				user_bit;
 165	int				priv_bit;
 166	int				hv_bit;
 167	int				irq_bit;
 168	int				upper_nop;
 169	int				lower_nop;
 170	unsigned int			flags;
 171#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 172#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 173	int				max_hw_events;
 174	int				num_pcrs;
 175	int				num_pic_regs;
 176};
 177
 178static u32 sparc_default_read_pmc(int idx)
 179{
 180	u64 val;
 181
 182	val = pcr_ops->read_pic(0);
 183	if (idx == PIC_UPPER_INDEX)
 184		val >>= 32;
 185
 186	return val & 0xffffffff;
 187}
 188
 189static void sparc_default_write_pmc(int idx, u64 val)
 190{
 191	u64 shift, mask, pic;
 192
 193	shift = 0;
 194	if (idx == PIC_UPPER_INDEX)
 195		shift = 32;
 196
 197	mask = ((u64) 0xffffffff) << shift;
 198	val <<= shift;
 199
 200	pic = pcr_ops->read_pic(0);
 201	pic &= ~mask;
 202	pic |= val;
 203	pcr_ops->write_pic(0, pic);
 204}
 205
 206static const struct perf_event_map ultra3_perfmon_event_map[] = {
 207	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 208	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 209	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 210	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 211};
 212
 213static const struct perf_event_map *ultra3_event_map(int event_id)
 214{
 215	return &ultra3_perfmon_event_map[event_id];
 216}
 217
 218static const cache_map_t ultra3_cache_map = {
 219[C(L1D)] = {
 220	[C(OP_READ)] = {
 221		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 222		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 223	},
 224	[C(OP_WRITE)] = {
 225		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 226		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 227	},
 228	[C(OP_PREFETCH)] = {
 229		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 230		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 231	},
 232},
 233[C(L1I)] = {
 234	[C(OP_READ)] = {
 235		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 236		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 237	},
 238	[ C(OP_WRITE) ] = {
 239		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 240		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 241	},
 242	[ C(OP_PREFETCH) ] = {
 243		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245	},
 246},
 247[C(LL)] = {
 248	[C(OP_READ)] = {
 249		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 250		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 251	},
 252	[C(OP_WRITE)] = {
 253		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 254		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 255	},
 256	[C(OP_PREFETCH)] = {
 257		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 258		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 259	},
 260},
 261[C(DTLB)] = {
 262	[C(OP_READ)] = {
 263		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 264		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 265	},
 266	[ C(OP_WRITE) ] = {
 267		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 268		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 269	},
 270	[ C(OP_PREFETCH) ] = {
 271		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 272		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 273	},
 274},
 275[C(ITLB)] = {
 276	[C(OP_READ)] = {
 277		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 278		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 279	},
 280	[ C(OP_WRITE) ] = {
 281		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 282		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 283	},
 284	[ C(OP_PREFETCH) ] = {
 285		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 286		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 287	},
 288},
 289[C(BPU)] = {
 290	[C(OP_READ)] = {
 291		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 292		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 293	},
 294	[ C(OP_WRITE) ] = {
 295		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 296		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 297	},
 298	[ C(OP_PREFETCH) ] = {
 299		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 300		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 301	},
 302},
 303[C(NODE)] = {
 304	[C(OP_READ)] = {
 305		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 306		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 307	},
 308	[ C(OP_WRITE) ] = {
 309		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 310		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 311	},
 312	[ C(OP_PREFETCH) ] = {
 313		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 314		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 315	},
 316},
 317};
 318
 319static const struct sparc_pmu ultra3_pmu = {
 320	.event_map	= ultra3_event_map,
 321	.cache_map	= &ultra3_cache_map,
 322	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 323	.read_pmc	= sparc_default_read_pmc,
 324	.write_pmc	= sparc_default_write_pmc,
 325	.upper_shift	= 11,
 326	.lower_shift	= 4,
 327	.event_mask	= 0x3f,
 328	.user_bit	= PCR_UTRACE,
 329	.priv_bit	= PCR_STRACE,
 330	.upper_nop	= 0x1c,
 331	.lower_nop	= 0x14,
 332	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 333			   SPARC_PMU_HAS_CONFLICTS),
 334	.max_hw_events	= 2,
 335	.num_pcrs	= 1,
 336	.num_pic_regs	= 1,
 337};
 338
 339/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 340 * only instructions, so it is free running which creates all kinds of
 341 * problems.  Some hardware designs make one wonder if the creator
 342 * even looked at how this stuff gets used by software.
 343 */
 344static const struct perf_event_map niagara1_perfmon_event_map[] = {
 345	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 346	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 347	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 348	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 349};
 350
 351static const struct perf_event_map *niagara1_event_map(int event_id)
 352{
 353	return &niagara1_perfmon_event_map[event_id];
 354}
 355
 356static const cache_map_t niagara1_cache_map = {
 357[C(L1D)] = {
 358	[C(OP_READ)] = {
 359		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 360		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 361	},
 362	[C(OP_WRITE)] = {
 363		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 364		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 365	},
 366	[C(OP_PREFETCH)] = {
 367		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 368		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 369	},
 370},
 371[C(L1I)] = {
 372	[C(OP_READ)] = {
 373		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 374		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 375	},
 376	[ C(OP_WRITE) ] = {
 377		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 378		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 379	},
 380	[ C(OP_PREFETCH) ] = {
 381		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 382		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 383	},
 384},
 385[C(LL)] = {
 386	[C(OP_READ)] = {
 387		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 388		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 389	},
 390	[C(OP_WRITE)] = {
 391		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 392		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 393	},
 394	[C(OP_PREFETCH)] = {
 395		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 396		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 397	},
 398},
 399[C(DTLB)] = {
 400	[C(OP_READ)] = {
 401		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 402		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 403	},
 404	[ C(OP_WRITE) ] = {
 405		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 406		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 407	},
 408	[ C(OP_PREFETCH) ] = {
 409		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 410		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 411	},
 412},
 413[C(ITLB)] = {
 414	[C(OP_READ)] = {
 415		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 416		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 417	},
 418	[ C(OP_WRITE) ] = {
 419		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 420		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 421	},
 422	[ C(OP_PREFETCH) ] = {
 423		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 424		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 425	},
 426},
 427[C(BPU)] = {
 428	[C(OP_READ)] = {
 429		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 430		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 431	},
 432	[ C(OP_WRITE) ] = {
 433		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 434		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 435	},
 436	[ C(OP_PREFETCH) ] = {
 437		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 438		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 439	},
 440},
 441[C(NODE)] = {
 442	[C(OP_READ)] = {
 443		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 444		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 445	},
 446	[ C(OP_WRITE) ] = {
 447		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 448		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 449	},
 450	[ C(OP_PREFETCH) ] = {
 451		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 452		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 453	},
 454},
 455};
 456
 457static const struct sparc_pmu niagara1_pmu = {
 458	.event_map	= niagara1_event_map,
 459	.cache_map	= &niagara1_cache_map,
 460	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 461	.read_pmc	= sparc_default_read_pmc,
 462	.write_pmc	= sparc_default_write_pmc,
 463	.upper_shift	= 0,
 464	.lower_shift	= 4,
 465	.event_mask	= 0x7,
 466	.user_bit	= PCR_UTRACE,
 467	.priv_bit	= PCR_STRACE,
 468	.upper_nop	= 0x0,
 469	.lower_nop	= 0x0,
 470	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 471			   SPARC_PMU_HAS_CONFLICTS),
 472	.max_hw_events	= 2,
 473	.num_pcrs	= 1,
 474	.num_pic_regs	= 1,
 475};
 476
 477static const struct perf_event_map niagara2_perfmon_event_map[] = {
 478	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 479	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 484};
 485
 486static const struct perf_event_map *niagara2_event_map(int event_id)
 487{
 488	return &niagara2_perfmon_event_map[event_id];
 489}
 490
 491static const cache_map_t niagara2_cache_map = {
 492[C(L1D)] = {
 493	[C(OP_READ)] = {
 494		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 495		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 496	},
 497	[C(OP_WRITE)] = {
 498		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 499		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 500	},
 501	[C(OP_PREFETCH)] = {
 502		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 503		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 504	},
 505},
 506[C(L1I)] = {
 507	[C(OP_READ)] = {
 508		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 509		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 510	},
 511	[ C(OP_WRITE) ] = {
 512		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 513		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 514	},
 515	[ C(OP_PREFETCH) ] = {
 516		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518	},
 519},
 520[C(LL)] = {
 521	[C(OP_READ)] = {
 522		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 523		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 524	},
 525	[C(OP_WRITE)] = {
 526		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 527		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 528	},
 529	[C(OP_PREFETCH)] = {
 530		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 531		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 532	},
 533},
 534[C(DTLB)] = {
 535	[C(OP_READ)] = {
 536		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 537		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 538	},
 539	[ C(OP_WRITE) ] = {
 540		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 541		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 542	},
 543	[ C(OP_PREFETCH) ] = {
 544		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 545		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 546	},
 547},
 548[C(ITLB)] = {
 549	[C(OP_READ)] = {
 550		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 551		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 552	},
 553	[ C(OP_WRITE) ] = {
 554		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 555		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 556	},
 557	[ C(OP_PREFETCH) ] = {
 558		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 559		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 560	},
 561},
 562[C(BPU)] = {
 563	[C(OP_READ)] = {
 564		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 565		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 566	},
 567	[ C(OP_WRITE) ] = {
 568		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 569		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 570	},
 571	[ C(OP_PREFETCH) ] = {
 572		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 573		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 574	},
 575},
 576[C(NODE)] = {
 577	[C(OP_READ)] = {
 578		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 579		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 580	},
 581	[ C(OP_WRITE) ] = {
 582		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 583		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 584	},
 585	[ C(OP_PREFETCH) ] = {
 586		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 587		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 588	},
 589},
 590};
 591
 592static const struct sparc_pmu niagara2_pmu = {
 593	.event_map	= niagara2_event_map,
 594	.cache_map	= &niagara2_cache_map,
 595	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 596	.read_pmc	= sparc_default_read_pmc,
 597	.write_pmc	= sparc_default_write_pmc,
 598	.upper_shift	= 19,
 599	.lower_shift	= 6,
 600	.event_mask	= 0xfff,
 601	.user_bit	= PCR_UTRACE,
 602	.priv_bit	= PCR_STRACE,
 603	.hv_bit		= PCR_N2_HTRACE,
 604	.irq_bit	= 0x30,
 605	.upper_nop	= 0x220,
 606	.lower_nop	= 0x220,
 607	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 608			   SPARC_PMU_HAS_CONFLICTS),
 609	.max_hw_events	= 2,
 610	.num_pcrs	= 1,
 611	.num_pic_regs	= 1,
 612};
 613
 614static const struct perf_event_map niagara4_perfmon_event_map[] = {
 615	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 616	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 617	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 618	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 619	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 620	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 621};
 622
 623static const struct perf_event_map *niagara4_event_map(int event_id)
 624{
 625	return &niagara4_perfmon_event_map[event_id];
 626}
 627
 628static const cache_map_t niagara4_cache_map = {
 629[C(L1D)] = {
 630	[C(OP_READ)] = {
 631		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 632		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 633	},
 634	[C(OP_WRITE)] = {
 635		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 636		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 637	},
 638	[C(OP_PREFETCH)] = {
 639		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 640		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 641	},
 642},
 643[C(L1I)] = {
 644	[C(OP_READ)] = {
 645		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 646		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 647	},
 648	[ C(OP_WRITE) ] = {
 649		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 650		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 651	},
 652	[ C(OP_PREFETCH) ] = {
 653		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 654		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 655	},
 656},
 657[C(LL)] = {
 658	[C(OP_READ)] = {
 659		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 660		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 661	},
 662	[C(OP_WRITE)] = {
 663		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 664		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 665	},
 666	[C(OP_PREFETCH)] = {
 667		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 668		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 669	},
 670},
 671[C(DTLB)] = {
 672	[C(OP_READ)] = {
 673		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 674		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 675	},
 676	[ C(OP_WRITE) ] = {
 677		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 678		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 679	},
 680	[ C(OP_PREFETCH) ] = {
 681		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 682		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 683	},
 684},
 685[C(ITLB)] = {
 686	[C(OP_READ)] = {
 687		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 688		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 689	},
 690	[ C(OP_WRITE) ] = {
 691		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 692		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 693	},
 694	[ C(OP_PREFETCH) ] = {
 695		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 696		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 697	},
 698},
 699[C(BPU)] = {
 700	[C(OP_READ)] = {
 701		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 702		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 703	},
 704	[ C(OP_WRITE) ] = {
 705		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 706		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 707	},
 708	[ C(OP_PREFETCH) ] = {
 709		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 710		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 711	},
 712},
 713[C(NODE)] = {
 714	[C(OP_READ)] = {
 715		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 716		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 717	},
 718	[ C(OP_WRITE) ] = {
 719		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 720		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 721	},
 722	[ C(OP_PREFETCH) ] = {
 723		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 724		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 725	},
 726},
 727};
 728
 729static u32 sparc_vt_read_pmc(int idx)
 730{
 731	u64 val = pcr_ops->read_pic(idx);
 732
 733	return val & 0xffffffff;
 734}
 735
 736static void sparc_vt_write_pmc(int idx, u64 val)
 737{
 738	u64 pcr;
 739
 740	/* There seems to be an internal latch on the overflow event
 741	 * on SPARC-T4 that prevents it from triggering unless you
 742	 * update the PIC exactly as we do here.  The requirement
 743	 * seems to be that you have to turn off event counting in the
 744	 * PCR around the PIC update.
 745	 *
 746	 * For example, after the following sequence:
 747	 *
 748	 * 1) set PIC to -1
 749	 * 2) enable event counting and overflow reporting in PCR
 750	 * 3) overflow triggers, softint 15 handler invoked
 751	 * 4) clear OV bit in PCR
 752	 * 5) write PIC to -1
 753	 *
 754	 * a subsequent overflow event will not trigger.  This
 755	 * sequence works on SPARC-T3 and previous chips.
 756	 */
 757	pcr = pcr_ops->read_pcr(idx);
 758	pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
 
 759
 760	pcr_ops->write_pic(idx, val & 0xffffffff);
 761
 762	pcr_ops->write_pcr(idx, pcr);
 763}
 764
 765static const struct sparc_pmu niagara4_pmu = {
 766	.event_map	= niagara4_event_map,
 767	.cache_map	= &niagara4_cache_map,
 768	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 769	.read_pmc	= sparc_vt_read_pmc,
 770	.write_pmc	= sparc_vt_write_pmc,
 771	.upper_shift	= 5,
 772	.lower_shift	= 5,
 773	.event_mask	= 0x7ff,
 774	.user_bit	= PCR_N4_UTRACE,
 775	.priv_bit	= PCR_N4_STRACE,
 776
 777	/* We explicitly don't support hypervisor tracing.  The T4
 778	 * generates the overflow event for precise events via a trap
 779	 * which will not be generated (ie. it's completely lost) if
 780	 * we happen to be in the hypervisor when the event triggers.
 781	 * Essentially, the overflow event reporting is completely
 782	 * unusable when you have hypervisor mode tracing enabled.
 783	 */
 784	.hv_bit		= 0,
 785
 786	.irq_bit	= PCR_N4_TOE,
 787	.upper_nop	= 0,
 788	.lower_nop	= 0,
 789	.flags		= 0,
 790	.max_hw_events	= 4,
 791	.num_pcrs	= 4,
 792	.num_pic_regs	= 4,
 793};
 794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795static const struct sparc_pmu *sparc_pmu __read_mostly;
 796
 797static u64 event_encoding(u64 event_id, int idx)
 798{
 799	if (idx == PIC_UPPER_INDEX)
 800		event_id <<= sparc_pmu->upper_shift;
 801	else
 802		event_id <<= sparc_pmu->lower_shift;
 803	return event_id;
 804}
 805
 806static u64 mask_for_index(int idx)
 807{
 808	return event_encoding(sparc_pmu->event_mask, idx);
 809}
 810
 811static u64 nop_for_index(int idx)
 812{
 813	return event_encoding(idx == PIC_UPPER_INDEX ?
 814			      sparc_pmu->upper_nop :
 815			      sparc_pmu->lower_nop, idx);
 816}
 817
 818static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 819{
 820	u64 enc, val, mask = mask_for_index(idx);
 821	int pcr_index = 0;
 822
 823	if (sparc_pmu->num_pcrs > 1)
 824		pcr_index = idx;
 825
 826	enc = perf_event_get_enc(cpuc->events[idx]);
 827
 828	val = cpuc->pcr[pcr_index];
 829	val &= ~mask;
 830	val |= event_encoding(enc, idx);
 831	cpuc->pcr[pcr_index] = val;
 832
 833	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 834}
 835
 836static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 837{
 838	u64 mask = mask_for_index(idx);
 839	u64 nop = nop_for_index(idx);
 840	int pcr_index = 0;
 841	u64 val;
 842
 843	if (sparc_pmu->num_pcrs > 1)
 844		pcr_index = idx;
 845
 846	val = cpuc->pcr[pcr_index];
 847	val &= ~mask;
 848	val |= nop;
 849	cpuc->pcr[pcr_index] = val;
 850
 851	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 852}
 853
 854static u64 sparc_perf_event_update(struct perf_event *event,
 855				   struct hw_perf_event *hwc, int idx)
 856{
 857	int shift = 64 - 32;
 858	u64 prev_raw_count, new_raw_count;
 859	s64 delta;
 860
 861again:
 862	prev_raw_count = local64_read(&hwc->prev_count);
 863	new_raw_count = sparc_pmu->read_pmc(idx);
 864
 865	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 866			     new_raw_count) != prev_raw_count)
 867		goto again;
 868
 869	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 870	delta >>= shift;
 871
 872	local64_add(delta, &event->count);
 873	local64_sub(delta, &hwc->period_left);
 874
 875	return new_raw_count;
 876}
 877
 878static int sparc_perf_event_set_period(struct perf_event *event,
 879				       struct hw_perf_event *hwc, int idx)
 880{
 881	s64 left = local64_read(&hwc->period_left);
 882	s64 period = hwc->sample_period;
 883	int ret = 0;
 884
 
 
 
 
 885	if (unlikely(left <= -period)) {
 886		left = period;
 887		local64_set(&hwc->period_left, left);
 888		hwc->last_period = period;
 889		ret = 1;
 890	}
 891
 892	if (unlikely(left <= 0)) {
 893		left += period;
 894		local64_set(&hwc->period_left, left);
 895		hwc->last_period = period;
 896		ret = 1;
 897	}
 898	if (left > MAX_PERIOD)
 899		left = MAX_PERIOD;
 900
 901	local64_set(&hwc->prev_count, (u64)-left);
 902
 903	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 904
 905	perf_event_update_userpage(event);
 906
 907	return ret;
 908}
 909
 910static void read_in_all_counters(struct cpu_hw_events *cpuc)
 911{
 912	int i;
 913
 914	for (i = 0; i < cpuc->n_events; i++) {
 915		struct perf_event *cp = cpuc->event[i];
 916
 917		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 918		    cpuc->current_idx[i] != cp->hw.idx) {
 919			sparc_perf_event_update(cp, &cp->hw,
 920						cpuc->current_idx[i]);
 921			cpuc->current_idx[i] = PIC_NO_INDEX;
 
 
 922		}
 923	}
 924}
 925
 926/* On this PMU all PICs are programmed using a single PCR.  Calculate
 927 * the combined control register value.
 928 *
 929 * For such chips we require that all of the events have the same
 930 * configuration, so just fetch the settings from the first entry.
 931 */
 932static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 933{
 934	int i;
 935
 936	if (!cpuc->n_added)
 937		goto out;
 938
 939	/* Assign to counters all unassigned events.  */
 940	for (i = 0; i < cpuc->n_events; i++) {
 941		struct perf_event *cp = cpuc->event[i];
 942		struct hw_perf_event *hwc = &cp->hw;
 943		int idx = hwc->idx;
 944		u64 enc;
 945
 946		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 947			continue;
 948
 949		sparc_perf_event_set_period(cp, hwc, idx);
 950		cpuc->current_idx[i] = idx;
 951
 952		enc = perf_event_get_enc(cpuc->events[i]);
 953		cpuc->pcr[0] &= ~mask_for_index(idx);
 954		if (hwc->state & PERF_HES_STOPPED)
 955			cpuc->pcr[0] |= nop_for_index(idx);
 956		else
 957			cpuc->pcr[0] |= event_encoding(enc, idx);
 
 
 958	}
 959out:
 960	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 961}
 962
 
 
 963/* On this PMU each PIC has it's own PCR control register.  */
 964static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 965{
 966	int i;
 967
 968	if (!cpuc->n_added)
 969		goto out;
 970
 971	for (i = 0; i < cpuc->n_events; i++) {
 972		struct perf_event *cp = cpuc->event[i];
 973		struct hw_perf_event *hwc = &cp->hw;
 974		int idx = hwc->idx;
 975		u64 enc;
 976
 977		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 978			continue;
 979
 980		sparc_perf_event_set_period(cp, hwc, idx);
 981		cpuc->current_idx[i] = idx;
 982
 983		enc = perf_event_get_enc(cpuc->events[i]);
 984		cpuc->pcr[idx] &= ~mask_for_index(idx);
 985		if (hwc->state & PERF_HES_STOPPED)
 986			cpuc->pcr[idx] |= nop_for_index(idx);
 987		else
 988			cpuc->pcr[idx] |= event_encoding(enc, idx);
 989	}
 990out:
 991	for (i = 0; i < cpuc->n_events; i++) {
 992		struct perf_event *cp = cpuc->event[i];
 993		int idx = cp->hw.idx;
 994
 995		cpuc->pcr[idx] |= cp->hw.config_base;
 996	}
 997}
 998
 999/* If performance event entries have been added, move existing events
1000 * around (if necessary) and then assign new entries to counters.
1001 */
1002static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003{
1004	if (cpuc->n_added)
1005		read_in_all_counters(cpuc);
1006
1007	if (sparc_pmu->num_pcrs == 1) {
1008		calculate_single_pcr(cpuc);
1009	} else {
1010		calculate_multiple_pcrs(cpuc);
1011	}
1012}
1013
1014static void sparc_pmu_enable(struct pmu *pmu)
1015{
1016	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1017	int i;
1018
1019	if (cpuc->enabled)
1020		return;
1021
1022	cpuc->enabled = 1;
1023	barrier();
1024
1025	if (cpuc->n_events)
1026		update_pcrs_for_enable(cpuc);
1027
1028	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1029		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030}
1031
1032static void sparc_pmu_disable(struct pmu *pmu)
1033{
1034	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035	int i;
1036
1037	if (!cpuc->enabled)
1038		return;
1039
1040	cpuc->enabled = 0;
1041	cpuc->n_added = 0;
1042
1043	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1044		u64 val = cpuc->pcr[i];
1045
1046		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1047			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1048		cpuc->pcr[i] = val;
1049		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1050	}
1051}
1052
1053static int active_event_index(struct cpu_hw_events *cpuc,
1054			      struct perf_event *event)
1055{
1056	int i;
1057
1058	for (i = 0; i < cpuc->n_events; i++) {
1059		if (cpuc->event[i] == event)
1060			break;
1061	}
1062	BUG_ON(i == cpuc->n_events);
1063	return cpuc->current_idx[i];
1064}
1065
1066static void sparc_pmu_start(struct perf_event *event, int flags)
1067{
1068	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1069	int idx = active_event_index(cpuc, event);
1070
1071	if (flags & PERF_EF_RELOAD) {
1072		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1073		sparc_perf_event_set_period(event, &event->hw, idx);
1074	}
1075
1076	event->hw.state = 0;
1077
1078	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 
 
1079}
1080
1081static void sparc_pmu_stop(struct perf_event *event, int flags)
1082{
1083	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1084	int idx = active_event_index(cpuc, event);
1085
1086	if (!(event->hw.state & PERF_HES_STOPPED)) {
1087		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1088		event->hw.state |= PERF_HES_STOPPED;
1089	}
1090
1091	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1092		sparc_perf_event_update(event, &event->hw, idx);
1093		event->hw.state |= PERF_HES_UPTODATE;
1094	}
1095}
1096
1097static void sparc_pmu_del(struct perf_event *event, int _flags)
1098{
1099	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100	unsigned long flags;
1101	int i;
1102
1103	local_irq_save(flags);
1104	perf_pmu_disable(event->pmu);
1105
1106	for (i = 0; i < cpuc->n_events; i++) {
1107		if (event == cpuc->event[i]) {
1108			/* Absorb the final count and turn off the
1109			 * event.
1110			 */
1111			sparc_pmu_stop(event, PERF_EF_UPDATE);
1112
1113			/* Shift remaining entries down into
1114			 * the existing slot.
1115			 */
1116			while (++i < cpuc->n_events) {
1117				cpuc->event[i - 1] = cpuc->event[i];
1118				cpuc->events[i - 1] = cpuc->events[i];
1119				cpuc->current_idx[i - 1] =
1120					cpuc->current_idx[i];
1121			}
1122
1123			perf_event_update_userpage(event);
1124
1125			cpuc->n_events--;
1126			break;
1127		}
1128	}
1129
1130	perf_pmu_enable(event->pmu);
1131	local_irq_restore(flags);
1132}
1133
1134static void sparc_pmu_read(struct perf_event *event)
1135{
1136	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1137	int idx = active_event_index(cpuc, event);
1138	struct hw_perf_event *hwc = &event->hw;
1139
1140	sparc_perf_event_update(event, hwc, idx);
1141}
1142
1143static atomic_t active_events = ATOMIC_INIT(0);
1144static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146static void perf_stop_nmi_watchdog(void *unused)
1147{
1148	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149	int i;
1150
1151	stop_nmi_watchdog(NULL);
1152	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154}
1155
1156void perf_event_grab_pmc(void)
1157{
1158	if (atomic_inc_not_zero(&active_events))
1159		return;
1160
1161	mutex_lock(&pmc_grab_mutex);
1162	if (atomic_read(&active_events) == 0) {
1163		if (atomic_read(&nmi_active) > 0) {
1164			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165			BUG_ON(atomic_read(&nmi_active) != 0);
1166		}
1167		atomic_inc(&active_events);
1168	}
1169	mutex_unlock(&pmc_grab_mutex);
1170}
1171
1172void perf_event_release_pmc(void)
1173{
1174	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175		if (atomic_read(&nmi_active) == 0)
1176			on_each_cpu(start_nmi_watchdog, NULL, 1);
1177		mutex_unlock(&pmc_grab_mutex);
1178	}
1179}
1180
1181static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182{
1183	unsigned int cache_type, cache_op, cache_result;
1184	const struct perf_event_map *pmap;
1185
1186	if (!sparc_pmu->cache_map)
1187		return ERR_PTR(-ENOENT);
1188
1189	cache_type = (config >>  0) & 0xff;
1190	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191		return ERR_PTR(-EINVAL);
1192
1193	cache_op = (config >>  8) & 0xff;
1194	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195		return ERR_PTR(-EINVAL);
1196
1197	cache_result = (config >> 16) & 0xff;
1198	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199		return ERR_PTR(-EINVAL);
1200
1201	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204		return ERR_PTR(-ENOENT);
1205
1206	if (pmap->encoding == CACHE_OP_NONSENSE)
1207		return ERR_PTR(-EINVAL);
1208
1209	return pmap;
1210}
1211
1212static void hw_perf_event_destroy(struct perf_event *event)
1213{
1214	perf_event_release_pmc();
1215}
1216
1217/* Make sure all events can be scheduled into the hardware at
1218 * the same time.  This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success.  These are pending indexes.  When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227static int sparc_check_constraints(struct perf_event **evts,
1228				   unsigned long *events, int n_ev)
1229{
1230	u8 msk0 = 0, msk1 = 0;
1231	int idx0 = 0;
1232
1233	/* This case is possible when we are invoked from
1234	 * hw_perf_group_sched_in().
1235	 */
1236	if (!n_ev)
1237		return 0;
1238
1239	if (n_ev > sparc_pmu->max_hw_events)
1240		return -1;
1241
1242	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243		int i;
1244
1245		for (i = 0; i < n_ev; i++)
1246			evts[i]->hw.idx = i;
1247		return 0;
1248	}
1249
1250	msk0 = perf_event_get_msk(events[0]);
1251	if (n_ev == 1) {
1252		if (msk0 & PIC_LOWER)
1253			idx0 = 1;
1254		goto success;
1255	}
1256	BUG_ON(n_ev != 2);
1257	msk1 = perf_event_get_msk(events[1]);
1258
1259	/* If both events can go on any counter, OK.  */
1260	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261	    msk1 == (PIC_UPPER | PIC_LOWER))
1262		goto success;
1263
1264	/* If one event is limited to a specific counter,
1265	 * and the other can go on both, OK.
1266	 */
1267	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1269		if (msk0 & PIC_LOWER)
1270			idx0 = 1;
1271		goto success;
1272	}
1273
1274	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1276		if (msk1 & PIC_UPPER)
1277			idx0 = 1;
1278		goto success;
1279	}
1280
1281	/* If the events are fixed to different counters, OK.  */
1282	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	/* Otherwise, there is a conflict.  */
1290	return -1;
1291
1292success:
1293	evts[0]->hw.idx = idx0;
1294	if (n_ev == 2)
1295		evts[1]->hw.idx = idx0 ^ 1;
1296	return 0;
1297}
1298
1299static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300{
1301	int eu = 0, ek = 0, eh = 0;
1302	struct perf_event *event;
1303	int i, n, first;
1304
1305	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306		return 0;
1307
1308	n = n_prev + n_new;
1309	if (n <= 1)
1310		return 0;
1311
1312	first = 1;
1313	for (i = 0; i < n; i++) {
1314		event = evts[i];
1315		if (first) {
1316			eu = event->attr.exclude_user;
1317			ek = event->attr.exclude_kernel;
1318			eh = event->attr.exclude_hv;
1319			first = 0;
1320		} else if (event->attr.exclude_user != eu ||
1321			   event->attr.exclude_kernel != ek ||
1322			   event->attr.exclude_hv != eh) {
1323			return -EAGAIN;
1324		}
1325	}
1326
1327	return 0;
1328}
1329
1330static int collect_events(struct perf_event *group, int max_count,
1331			  struct perf_event *evts[], unsigned long *events,
1332			  int *current_idx)
1333{
1334	struct perf_event *event;
1335	int n = 0;
1336
1337	if (!is_software_event(group)) {
1338		if (n >= max_count)
1339			return -1;
1340		evts[n] = group;
1341		events[n] = group->hw.event_base;
1342		current_idx[n++] = PIC_NO_INDEX;
1343	}
1344	list_for_each_entry(event, &group->sibling_list, group_entry) {
1345		if (!is_software_event(event) &&
1346		    event->state != PERF_EVENT_STATE_OFF) {
1347			if (n >= max_count)
1348				return -1;
1349			evts[n] = event;
1350			events[n] = event->hw.event_base;
1351			current_idx[n++] = PIC_NO_INDEX;
1352		}
1353	}
1354	return n;
1355}
1356
1357static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358{
1359	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1360	int n0, ret = -EAGAIN;
1361	unsigned long flags;
1362
1363	local_irq_save(flags);
1364	perf_pmu_disable(event->pmu);
1365
1366	n0 = cpuc->n_events;
1367	if (n0 >= sparc_pmu->max_hw_events)
1368		goto out;
1369
1370	cpuc->event[n0] = event;
1371	cpuc->events[n0] = event->hw.event_base;
1372	cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374	event->hw.state = PERF_HES_UPTODATE;
1375	if (!(ef_flags & PERF_EF_START))
1376		event->hw.state |= PERF_HES_STOPPED;
1377
1378	/*
1379	 * If group events scheduling transaction was started,
1380	 * skip the schedulability test here, it will be performed
1381	 * at commit time(->commit_txn) as a whole
1382	 */
1383	if (cpuc->group_flag & PERF_EVENT_TXN)
1384		goto nocheck;
1385
1386	if (check_excludes(cpuc->event, n0, 1))
1387		goto out;
1388	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389		goto out;
1390
1391nocheck:
1392	cpuc->n_events++;
1393	cpuc->n_added++;
1394
1395	ret = 0;
1396out:
1397	perf_pmu_enable(event->pmu);
1398	local_irq_restore(flags);
1399	return ret;
1400}
1401
1402static int sparc_pmu_event_init(struct perf_event *event)
1403{
1404	struct perf_event_attr *attr = &event->attr;
1405	struct perf_event *evts[MAX_HWEVENTS];
1406	struct hw_perf_event *hwc = &event->hw;
1407	unsigned long events[MAX_HWEVENTS];
1408	int current_idx_dmy[MAX_HWEVENTS];
1409	const struct perf_event_map *pmap;
1410	int n;
1411
1412	if (atomic_read(&nmi_active) < 0)
1413		return -ENODEV;
1414
1415	/* does not support taken branch sampling */
1416	if (has_branch_stack(event))
1417		return -EOPNOTSUPP;
1418
1419	switch (attr->type) {
1420	case PERF_TYPE_HARDWARE:
1421		if (attr->config >= sparc_pmu->max_events)
1422			return -EINVAL;
1423		pmap = sparc_pmu->event_map(attr->config);
1424		break;
1425
1426	case PERF_TYPE_HW_CACHE:
1427		pmap = sparc_map_cache_event(attr->config);
1428		if (IS_ERR(pmap))
1429			return PTR_ERR(pmap);
1430		break;
1431
1432	case PERF_TYPE_RAW:
1433		pmap = NULL;
1434		break;
1435
1436	default:
1437		return -ENOENT;
1438
1439	}
1440
1441	if (pmap) {
1442		hwc->event_base = perf_event_encode(pmap);
1443	} else {
1444		/*
1445		 * User gives us "(encoding << 16) | pic_mask" for
1446		 * PERF_TYPE_RAW events.
1447		 */
1448		hwc->event_base = attr->config;
1449	}
1450
1451	/* We save the enable bits in the config_base.  */
1452	hwc->config_base = sparc_pmu->irq_bit;
1453	if (!attr->exclude_user)
1454		hwc->config_base |= sparc_pmu->user_bit;
1455	if (!attr->exclude_kernel)
1456		hwc->config_base |= sparc_pmu->priv_bit;
1457	if (!attr->exclude_hv)
1458		hwc->config_base |= sparc_pmu->hv_bit;
1459
1460	n = 0;
1461	if (event->group_leader != event) {
1462		n = collect_events(event->group_leader,
1463				   sparc_pmu->max_hw_events - 1,
1464				   evts, events, current_idx_dmy);
1465		if (n < 0)
1466			return -EINVAL;
1467	}
1468	events[n] = hwc->event_base;
1469	evts[n] = event;
1470
1471	if (check_excludes(evts, n, 1))
1472		return -EINVAL;
1473
1474	if (sparc_check_constraints(evts, events, n + 1))
1475		return -EINVAL;
1476
1477	hwc->idx = PIC_NO_INDEX;
1478
1479	/* Try to do all error checking before this point, as unwinding
1480	 * state after grabbing the PMC is difficult.
1481	 */
1482	perf_event_grab_pmc();
1483	event->destroy = hw_perf_event_destroy;
1484
1485	if (!hwc->sample_period) {
1486		hwc->sample_period = MAX_PERIOD;
1487		hwc->last_period = hwc->sample_period;
1488		local64_set(&hwc->period_left, hwc->sample_period);
1489	}
1490
1491	return 0;
1492}
1493
1494/*
1495 * Start group events scheduling transaction
1496 * Set the flag to make pmu::enable() not perform the
1497 * schedulability test, it will be performed at commit time
1498 */
1499static void sparc_pmu_start_txn(struct pmu *pmu)
1500{
1501	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1502
1503	perf_pmu_disable(pmu);
1504	cpuhw->group_flag |= PERF_EVENT_TXN;
1505}
1506
1507/*
1508 * Stop group events scheduling transaction
1509 * Clear the flag and pmu::enable() will perform the
1510 * schedulability test.
1511 */
1512static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513{
1514	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 
 
1515
1516	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1517	perf_pmu_enable(pmu);
1518}
1519
1520/*
1521 * Commit group events scheduling transaction
1522 * Perform the group schedulability test as a whole
1523 * Return 0 if success
1524 */
1525static int sparc_pmu_commit_txn(struct pmu *pmu)
1526{
1527	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1528	int n;
1529
1530	if (!sparc_pmu)
1531		return -EINVAL;
1532
1533	cpuc = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1534	n = cpuc->n_events;
1535	if (check_excludes(cpuc->event, 0, n))
1536		return -EINVAL;
1537	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538		return -EAGAIN;
1539
1540	cpuc->group_flag &= ~PERF_EVENT_TXN;
1541	perf_pmu_enable(pmu);
1542	return 0;
1543}
1544
1545static struct pmu pmu = {
1546	.pmu_enable	= sparc_pmu_enable,
1547	.pmu_disable	= sparc_pmu_disable,
1548	.event_init	= sparc_pmu_event_init,
1549	.add		= sparc_pmu_add,
1550	.del		= sparc_pmu_del,
1551	.start		= sparc_pmu_start,
1552	.stop		= sparc_pmu_stop,
1553	.read		= sparc_pmu_read,
1554	.start_txn	= sparc_pmu_start_txn,
1555	.cancel_txn	= sparc_pmu_cancel_txn,
1556	.commit_txn	= sparc_pmu_commit_txn,
1557};
1558
1559void perf_event_print_debug(void)
1560{
1561	unsigned long flags;
1562	int cpu, i;
1563
1564	if (!sparc_pmu)
1565		return;
1566
1567	local_irq_save(flags);
1568
1569	cpu = smp_processor_id();
1570
1571	pr_info("\n");
1572	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1573		pr_info("CPU#%d: PCR%d[%016llx]\n",
1574			cpu, i, pcr_ops->read_pcr(i));
1575	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1576		pr_info("CPU#%d: PIC%d[%016llx]\n",
1577			cpu, i, pcr_ops->read_pic(i));
1578
1579	local_irq_restore(flags);
1580}
1581
1582static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583					    unsigned long cmd, void *__args)
1584{
1585	struct die_args *args = __args;
1586	struct perf_sample_data data;
1587	struct cpu_hw_events *cpuc;
1588	struct pt_regs *regs;
 
 
1589	int i;
1590
1591	if (!atomic_read(&active_events))
1592		return NOTIFY_DONE;
1593
1594	switch (cmd) {
1595	case DIE_NMI:
1596		break;
1597
1598	default:
1599		return NOTIFY_DONE;
1600	}
1601
 
 
1602	regs = args->regs;
1603
1604	cpuc = &__get_cpu_var(cpu_hw_events);
1605
1606	/* If the PMU has the TOE IRQ enable bits, we need to do a
1607	 * dummy write to the %pcr to clear the overflow bits and thus
1608	 * the interrupt.
1609	 *
1610	 * Do this before we peek at the counters to determine
1611	 * overflow so we don't lose any events.
1612	 */
1613	if (sparc_pmu->irq_bit &&
1614	    sparc_pmu->num_pcrs == 1)
1615		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616
1617	for (i = 0; i < cpuc->n_events; i++) {
1618		struct perf_event *event = cpuc->event[i];
1619		int idx = cpuc->current_idx[i];
1620		struct hw_perf_event *hwc;
1621		u64 val;
1622
1623		if (sparc_pmu->irq_bit &&
1624		    sparc_pmu->num_pcrs > 1)
1625			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626
1627		hwc = &event->hw;
1628		val = sparc_perf_event_update(event, hwc, idx);
1629		if (val & (1ULL << 31))
1630			continue;
1631
1632		perf_sample_data_init(&data, 0, hwc->last_period);
1633		if (!sparc_perf_event_set_period(event, hwc, idx))
1634			continue;
1635
1636		if (perf_event_overflow(event, &data, regs))
1637			sparc_pmu_stop(event, 0);
1638	}
1639
 
 
 
 
1640	return NOTIFY_STOP;
1641}
1642
1643static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1644	.notifier_call		= perf_event_nmi_handler,
1645};
1646
1647static bool __init supported_pmu(void)
1648{
1649	if (!strcmp(sparc_pmu_type, "ultra3") ||
1650	    !strcmp(sparc_pmu_type, "ultra3+") ||
1651	    !strcmp(sparc_pmu_type, "ultra3i") ||
1652	    !strcmp(sparc_pmu_type, "ultra4+")) {
1653		sparc_pmu = &ultra3_pmu;
1654		return true;
1655	}
1656	if (!strcmp(sparc_pmu_type, "niagara")) {
1657		sparc_pmu = &niagara1_pmu;
1658		return true;
1659	}
1660	if (!strcmp(sparc_pmu_type, "niagara2") ||
1661	    !strcmp(sparc_pmu_type, "niagara3")) {
1662		sparc_pmu = &niagara2_pmu;
1663		return true;
1664	}
1665	if (!strcmp(sparc_pmu_type, "niagara4")) {
 
1666		sparc_pmu = &niagara4_pmu;
1667		return true;
1668	}
 
 
 
 
1669	return false;
1670}
1671
1672int __init init_hw_perf_events(void)
1673{
 
 
1674	pr_info("Performance events: ");
1675
1676	if (!supported_pmu()) {
 
1677		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1678		return 0;
1679	}
1680
1681	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1682
1683	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1684	register_die_notifier(&perf_event_nmi_notifier);
1685
1686	return 0;
1687}
1688early_initcall(init_hw_perf_events);
1689
1690void perf_callchain_kernel(struct perf_callchain_entry *entry,
1691			   struct pt_regs *regs)
1692{
1693	unsigned long ksp, fp;
1694#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1695	int graph = 0;
1696#endif
1697
1698	stack_trace_flush();
1699
1700	perf_callchain_store(entry, regs->tpc);
1701
1702	ksp = regs->u_regs[UREG_I6];
1703	fp = ksp + STACK_BIAS;
1704	do {
1705		struct sparc_stackf *sf;
1706		struct pt_regs *regs;
1707		unsigned long pc;
1708
1709		if (!kstack_valid(current_thread_info(), fp))
1710			break;
1711
1712		sf = (struct sparc_stackf *) fp;
1713		regs = (struct pt_regs *) (sf + 1);
1714
1715		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1716			if (user_mode(regs))
1717				break;
1718			pc = regs->tpc;
1719			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1720		} else {
1721			pc = sf->callers_pc;
1722			fp = (unsigned long)sf->fp + STACK_BIAS;
1723		}
1724		perf_callchain_store(entry, pc);
1725#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1726		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1727			int index = current->curr_ret_stack;
1728			if (current->ret_stack && index >= graph) {
1729				pc = current->ret_stack[index - graph].ret;
 
 
1730				perf_callchain_store(entry, pc);
1731				graph++;
1732			}
1733		}
1734#endif
1735	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 
 
 
 
 
 
 
 
 
 
1736}
1737
1738static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1739				   struct pt_regs *regs)
1740{
1741	unsigned long ufp;
1742
1743	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744	do {
1745		struct sparc_stackf *usf, sf;
 
1746		unsigned long pc;
1747
1748		usf = (struct sparc_stackf *) ufp;
 
 
 
1749		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1750			break;
1751
1752		pc = sf.callers_pc;
1753		ufp = (unsigned long)sf.fp + STACK_BIAS;
1754		perf_callchain_store(entry, pc);
1755	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1756}
1757
1758static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1759				   struct pt_regs *regs)
1760{
1761	unsigned long ufp;
1762
1763	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1764	do {
1765		unsigned long pc;
1766
1767		if (thread32_stack_is_64bit(ufp)) {
1768			struct sparc_stackf *usf, sf;
 
1769
1770			ufp += STACK_BIAS;
1771			usf = (struct sparc_stackf *) ufp;
1772			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1773				break;
1774			pc = sf.callers_pc & 0xffffffff;
1775			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1776		} else {
1777			struct sparc_stackf32 *usf, sf;
1778			usf = (struct sparc_stackf32 *) ufp;
 
1779			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1780				break;
1781			pc = sf.callers_pc;
1782			ufp = (unsigned long)sf.fp;
1783		}
1784		perf_callchain_store(entry, pc);
1785	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1786}
1787
1788void
1789perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1790{
 
 
 
1791	perf_callchain_store(entry, regs->tpc);
1792
1793	if (!current->mm)
1794		return;
1795
1796	flushw_user();
 
 
 
1797	if (test_thread_flag(TIF_32BIT))
1798		perf_callchain_user_32(entry, regs);
1799	else
1800		perf_callchain_user_64(entry, regs);
 
 
 
 
 
1801}