Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common Ultravisor functions and initialization
  4 *
  5 * Copyright IBM Corp. 2019, 2020
  6 */
  7#define KMSG_COMPONENT "prot_virt"
  8#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  9
 10#include <linux/kernel.h>
 11#include <linux/types.h>
 12#include <linux/sizes.h>
 13#include <linux/bitmap.h>
 14#include <linux/memblock.h>
 15#include <linux/pagemap.h>
 16#include <linux/swap.h>
 17#include <asm/facility.h>
 18#include <asm/sections.h>
 19#include <asm/uv.h>
 20
 21/* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
 22#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
 23int __bootdata_preserved(prot_virt_guest);
 24#endif
 25
 26struct uv_info __bootdata_preserved(uv_info);
 27
 28#if IS_ENABLED(CONFIG_KVM)
 29int __bootdata_preserved(prot_virt_host);
 30EXPORT_SYMBOL(prot_virt_host);
 31EXPORT_SYMBOL(uv_info);
 32
 33static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
 34{
 35	struct uv_cb_init uvcb = {
 36		.header.cmd = UVC_CMD_INIT_UV,
 37		.header.len = sizeof(uvcb),
 38		.stor_origin = stor_base,
 39		.stor_len = stor_len,
 40	};
 41
 42	if (uv_call(0, (uint64_t)&uvcb)) {
 43		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
 44		       uvcb.header.rc, uvcb.header.rrc);
 45		return -1;
 46	}
 47	return 0;
 48}
 49
 50void __init setup_uv(void)
 51{
 52	void *uv_stor_base;
 53
 54	if (!is_prot_virt_host())
 55		return;
 56
 57	uv_stor_base = memblock_alloc_try_nid(
 58		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
 59		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
 60	if (!uv_stor_base) {
 61		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
 62			uv_info.uv_base_stor_len);
 63		goto fail;
 64	}
 65
 66	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
 67		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
 68		goto fail;
 69	}
 70
 71	pr_info("Reserving %luMB as ultravisor base storage\n",
 72		uv_info.uv_base_stor_len >> 20);
 73	return;
 74fail:
 75	pr_info("Disabling support for protected virtualization");
 76	prot_virt_host = 0;
 77}
 78
 79/*
 80 * Requests the Ultravisor to pin the page in the shared state. This will
 81 * cause an intercept when the guest attempts to unshare the pinned page.
 82 */
 83static int uv_pin_shared(unsigned long paddr)
 84{
 85	struct uv_cb_cfs uvcb = {
 86		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
 87		.header.len = sizeof(uvcb),
 88		.paddr = paddr,
 89	};
 90
 91	if (uv_call(0, (u64)&uvcb))
 92		return -EINVAL;
 93	return 0;
 94}
 95
 96/*
 97 * Requests the Ultravisor to destroy a guest page and make it
 98 * accessible to the host. The destroy clears the page instead of
 99 * exporting.
100 *
101 * @paddr: Absolute host address of page to be destroyed
102 */
103static int uv_destroy_page(unsigned long paddr)
104{
105	struct uv_cb_cfs uvcb = {
106		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
107		.header.len = sizeof(uvcb),
108		.paddr = paddr
109	};
110
111	if (uv_call(0, (u64)&uvcb)) {
112		/*
113		 * Older firmware uses 107/d as an indication of a non secure
114		 * page. Let us emulate the newer variant (no-op).
115		 */
116		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
117			return 0;
118		return -EINVAL;
119	}
120	return 0;
121}
122
123/*
124 * The caller must already hold a reference to the page
125 */
126int uv_destroy_owned_page(unsigned long paddr)
127{
128	struct page *page = phys_to_page(paddr);
129	int rc;
130
131	get_page(page);
132	rc = uv_destroy_page(paddr);
133	if (!rc)
134		clear_bit(PG_arch_1, &page->flags);
135	put_page(page);
136	return rc;
137}
138
139/*
140 * Requests the Ultravisor to encrypt a guest page and make it
141 * accessible to the host for paging (export).
142 *
143 * @paddr: Absolute host address of page to be exported
144 */
145int uv_convert_from_secure(unsigned long paddr)
146{
147	struct uv_cb_cfs uvcb = {
148		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
149		.header.len = sizeof(uvcb),
150		.paddr = paddr
151	};
152
153	if (uv_call(0, (u64)&uvcb))
154		return -EINVAL;
155	return 0;
156}
157
158/*
159 * The caller must already hold a reference to the page
160 */
161int uv_convert_owned_from_secure(unsigned long paddr)
162{
163	struct page *page = phys_to_page(paddr);
164	int rc;
165
166	get_page(page);
167	rc = uv_convert_from_secure(paddr);
168	if (!rc)
169		clear_bit(PG_arch_1, &page->flags);
170	put_page(page);
171	return rc;
172}
173
174/*
175 * Calculate the expected ref_count for a page that would otherwise have no
176 * further pins. This was cribbed from similar functions in other places in
177 * the kernel, but with some slight modifications. We know that a secure
178 * page can not be a huge page for example.
179 */
180static int expected_page_refs(struct page *page)
181{
182	int res;
183
184	res = page_mapcount(page);
185	if (PageSwapCache(page)) {
186		res++;
187	} else if (page_mapping(page)) {
188		res++;
189		if (page_has_private(page))
190			res++;
191	}
192	return res;
193}
194
195static int make_secure_pte(pte_t *ptep, unsigned long addr,
196			   struct page *exp_page, struct uv_cb_header *uvcb)
197{
198	pte_t entry = READ_ONCE(*ptep);
199	struct page *page;
200	int expected, cc = 0;
201
202	if (!pte_present(entry))
203		return -ENXIO;
204	if (pte_val(entry) & _PAGE_INVALID)
205		return -ENXIO;
206
207	page = pte_page(entry);
208	if (page != exp_page)
209		return -ENXIO;
210	if (PageWriteback(page))
211		return -EAGAIN;
212	expected = expected_page_refs(page);
213	if (!page_ref_freeze(page, expected))
214		return -EBUSY;
215	set_bit(PG_arch_1, &page->flags);
216	/*
217	 * If the UVC does not succeed or fail immediately, we don't want to
218	 * loop for long, or we might get stall notifications.
219	 * On the other hand, this is a complex scenario and we are holding a lot of
220	 * locks, so we can't easily sleep and reschedule. We try only once,
221	 * and if the UVC returned busy or partial completion, we return
222	 * -EAGAIN and we let the callers deal with it.
223	 */
224	cc = __uv_call(0, (u64)uvcb);
225	page_ref_unfreeze(page, expected);
226	/*
227	 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
228	 * If busy or partially completed, return -EAGAIN.
229	 */
230	if (cc == UVC_CC_OK)
231		return 0;
232	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
233		return -EAGAIN;
234	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
235}
236
237/**
238 * should_export_before_import - Determine whether an export is needed
239 * before an import-like operation
240 * @uvcb: the Ultravisor control block of the UVC to be performed
241 * @mm: the mm of the process
242 *
243 * Returns whether an export is needed before every import-like operation.
244 * This is needed for shared pages, which don't trigger a secure storage
245 * exception when accessed from a different guest.
246 *
247 * Although considered as one, the Unpin Page UVC is not an actual import,
248 * so it is not affected.
249 *
250 * No export is needed also when there is only one protected VM, because the
251 * page cannot belong to the wrong VM in that case (there is no "other VM"
252 * it can belong to).
253 *
254 * Return: true if an export is needed before every import, otherwise false.
255 */
256static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
257{
258	/*
259	 * The misc feature indicates, among other things, that importing a
260	 * shared page from a different protected VM will automatically also
261	 * transfer its ownership.
262	 */
263	if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications))
264		return false;
265	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
266		return false;
267	return atomic_read(&mm->context.protected_count) > 1;
268}
269
270/*
271 * Requests the Ultravisor to make a page accessible to a guest.
272 * If it's brought in the first time, it will be cleared. If
273 * it has been exported before, it will be decrypted and integrity
274 * checked.
275 */
276int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
277{
278	struct vm_area_struct *vma;
279	bool local_drain = false;
280	spinlock_t *ptelock;
281	unsigned long uaddr;
282	struct page *page;
283	pte_t *ptep;
284	int rc;
285
286again:
287	rc = -EFAULT;
288	mmap_read_lock(gmap->mm);
289
290	uaddr = __gmap_translate(gmap, gaddr);
291	if (IS_ERR_VALUE(uaddr))
292		goto out;
293	vma = vma_lookup(gmap->mm, uaddr);
294	if (!vma)
295		goto out;
296	/*
297	 * Secure pages cannot be huge and userspace should not combine both.
298	 * In case userspace does it anyway this will result in an -EFAULT for
299	 * the unpack. The guest is thus never reaching secure mode. If
300	 * userspace is playing dirty tricky with mapping huge pages later
301	 * on this will result in a segmentation fault.
302	 */
303	if (is_vm_hugetlb_page(vma))
304		goto out;
305
306	rc = -ENXIO;
307	page = follow_page(vma, uaddr, FOLL_WRITE);
308	if (IS_ERR_OR_NULL(page))
309		goto out;
310
311	lock_page(page);
312	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
313	if (should_export_before_import(uvcb, gmap->mm))
314		uv_convert_from_secure(page_to_phys(page));
315	rc = make_secure_pte(ptep, uaddr, page, uvcb);
316	pte_unmap_unlock(ptep, ptelock);
317	unlock_page(page);
318out:
319	mmap_read_unlock(gmap->mm);
320
321	if (rc == -EAGAIN) {
322		/*
323		 * If we are here because the UVC returned busy or partial
324		 * completion, this is just a useless check, but it is safe.
325		 */
326		wait_on_page_writeback(page);
327	} else if (rc == -EBUSY) {
328		/*
329		 * If we have tried a local drain and the page refcount
330		 * still does not match our expected safe value, try with a
331		 * system wide drain. This is needed if the pagevecs holding
332		 * the page are on a different CPU.
333		 */
334		if (local_drain) {
335			lru_add_drain_all();
336			/* We give up here, and let the caller try again */
337			return -EAGAIN;
338		}
339		/*
340		 * We are here if the page refcount does not match the
341		 * expected safe value. The main culprits are usually
342		 * pagevecs. With lru_add_drain() we drain the pagevecs
343		 * on the local CPU so that hopefully the refcount will
344		 * reach the expected safe value.
345		 */
346		lru_add_drain();
347		local_drain = true;
348		/* And now we try again immediately after draining */
349		goto again;
350	} else if (rc == -ENXIO) {
351		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
352			return -EFAULT;
353		return -EAGAIN;
354	}
355	return rc;
356}
357EXPORT_SYMBOL_GPL(gmap_make_secure);
358
359int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
360{
361	struct uv_cb_cts uvcb = {
362		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
363		.header.len = sizeof(uvcb),
364		.guest_handle = gmap->guest_handle,
365		.gaddr = gaddr,
366	};
367
368	return gmap_make_secure(gmap, gaddr, &uvcb);
369}
370EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
371
372/**
373 * gmap_destroy_page - Destroy a guest page.
374 * @gmap: the gmap of the guest
375 * @gaddr: the guest address to destroy
376 *
377 * An attempt will be made to destroy the given guest page. If the attempt
378 * fails, an attempt is made to export the page. If both attempts fail, an
379 * appropriate error is returned.
380 */
381int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
382{
383	struct vm_area_struct *vma;
384	unsigned long uaddr;
385	struct page *page;
386	int rc;
387
388	rc = -EFAULT;
389	mmap_read_lock(gmap->mm);
390
391	uaddr = __gmap_translate(gmap, gaddr);
392	if (IS_ERR_VALUE(uaddr))
393		goto out;
394	vma = vma_lookup(gmap->mm, uaddr);
395	if (!vma)
396		goto out;
397	/*
398	 * Huge pages should not be able to become secure
399	 */
400	if (is_vm_hugetlb_page(vma))
401		goto out;
402
403	rc = 0;
404	/* we take an extra reference here */
405	page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
406	if (IS_ERR_OR_NULL(page))
407		goto out;
408	rc = uv_destroy_owned_page(page_to_phys(page));
409	/*
410	 * Fault handlers can race; it is possible that two CPUs will fault
411	 * on the same secure page. One CPU can destroy the page, reboot,
412	 * re-enter secure mode and import it, while the second CPU was
413	 * stuck at the beginning of the handler. At some point the second
414	 * CPU will be able to progress, and it will not be able to destroy
415	 * the page. In that case we do not want to terminate the process,
416	 * we instead try to export the page.
417	 */
418	if (rc)
419		rc = uv_convert_owned_from_secure(page_to_phys(page));
420	put_page(page);
421out:
422	mmap_read_unlock(gmap->mm);
423	return rc;
424}
425EXPORT_SYMBOL_GPL(gmap_destroy_page);
426
427/*
428 * To be called with the page locked or with an extra reference! This will
429 * prevent gmap_make_secure from touching the page concurrently. Having 2
430 * parallel make_page_accessible is fine, as the UV calls will become a
431 * no-op if the page is already exported.
432 */
433int arch_make_page_accessible(struct page *page)
434{
435	int rc = 0;
436
437	/* Hugepage cannot be protected, so nothing to do */
438	if (PageHuge(page))
439		return 0;
440
441	/*
442	 * PG_arch_1 is used in 3 places:
443	 * 1. for kernel page tables during early boot
444	 * 2. for storage keys of huge pages and KVM
445	 * 3. As an indication that this page might be secure. This can
446	 *    overindicate, e.g. we set the bit before calling
447	 *    convert_to_secure.
448	 * As secure pages are never huge, all 3 variants can co-exists.
449	 */
450	if (!test_bit(PG_arch_1, &page->flags))
451		return 0;
452
453	rc = uv_pin_shared(page_to_phys(page));
454	if (!rc) {
455		clear_bit(PG_arch_1, &page->flags);
456		return 0;
457	}
458
459	rc = uv_convert_from_secure(page_to_phys(page));
460	if (!rc) {
461		clear_bit(PG_arch_1, &page->flags);
462		return 0;
463	}
464
465	return rc;
466}
467EXPORT_SYMBOL_GPL(arch_make_page_accessible);
468
469#endif
470
471#if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
472static ssize_t uv_query_facilities(struct kobject *kobj,
473				   struct kobj_attribute *attr, char *page)
474{
475	return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
476			uv_info.inst_calls_list[0],
477			uv_info.inst_calls_list[1],
478			uv_info.inst_calls_list[2],
479			uv_info.inst_calls_list[3]);
480}
481
482static struct kobj_attribute uv_query_facilities_attr =
483	__ATTR(facilities, 0444, uv_query_facilities, NULL);
484
485static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
486					struct kobj_attribute *attr, char *buf)
487{
488	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
489}
490
491static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
492	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
493
494static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
495					struct kobj_attribute *attr, char *buf)
496{
497	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
498}
499
500static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
501	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
502
503static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
504				     struct kobj_attribute *attr, char *page)
505{
506	return scnprintf(page, PAGE_SIZE, "%lx\n",
507			uv_info.guest_cpu_stor_len);
508}
509
510static struct kobj_attribute uv_query_dump_cpu_len_attr =
511	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
512
513static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
514					       struct kobj_attribute *attr, char *page)
515{
516	return scnprintf(page, PAGE_SIZE, "%lx\n",
517			uv_info.conf_dump_storage_state_len);
518}
519
520static struct kobj_attribute uv_query_dump_storage_state_len_attr =
521	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
522
523static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
524					  struct kobj_attribute *attr, char *page)
525{
526	return scnprintf(page, PAGE_SIZE, "%lx\n",
527			uv_info.conf_dump_finalize_len);
528}
529
530static struct kobj_attribute uv_query_dump_finalize_len_attr =
531	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
532
533static ssize_t uv_query_feature_indications(struct kobject *kobj,
534					    struct kobj_attribute *attr, char *buf)
535{
536	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
537}
538
539static struct kobj_attribute uv_query_feature_indications_attr =
540	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
541
542static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
543				       struct kobj_attribute *attr, char *page)
544{
545	return scnprintf(page, PAGE_SIZE, "%d\n",
546			uv_info.max_guest_cpu_id + 1);
547}
548
549static struct kobj_attribute uv_query_max_guest_cpus_attr =
550	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
551
552static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
553				      struct kobj_attribute *attr, char *page)
554{
555	return scnprintf(page, PAGE_SIZE, "%d\n",
556			uv_info.max_num_sec_conf);
557}
558
559static struct kobj_attribute uv_query_max_guest_vms_attr =
560	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
561
562static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
563				       struct kobj_attribute *attr, char *page)
564{
565	return scnprintf(page, PAGE_SIZE, "%lx\n",
566			uv_info.max_sec_stor_addr);
567}
568
569static struct kobj_attribute uv_query_max_guest_addr_attr =
570	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
571
572static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
573					     struct kobj_attribute *attr, char *page)
574{
575	return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_req_hdr_ver);
576}
577
578static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
579	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
580
581static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
582					struct kobj_attribute *attr, char *page)
583{
584	return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_pflags);
585}
586
587static struct kobj_attribute uv_query_supp_att_pflags_attr =
588	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
589
590static struct attribute *uv_query_attrs[] = {
591	&uv_query_facilities_attr.attr,
592	&uv_query_feature_indications_attr.attr,
593	&uv_query_max_guest_cpus_attr.attr,
594	&uv_query_max_guest_vms_attr.attr,
595	&uv_query_max_guest_addr_attr.attr,
596	&uv_query_supp_se_hdr_ver_attr.attr,
597	&uv_query_supp_se_hdr_pcf_attr.attr,
598	&uv_query_dump_storage_state_len_attr.attr,
599	&uv_query_dump_finalize_len_attr.attr,
600	&uv_query_dump_cpu_len_attr.attr,
601	&uv_query_supp_att_req_hdr_ver_attr.attr,
602	&uv_query_supp_att_pflags_attr.attr,
603	NULL,
604};
605
606static struct attribute_group uv_query_attr_group = {
607	.attrs = uv_query_attrs,
608};
609
610static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
611				     struct kobj_attribute *attr, char *page)
612{
613	int val = 0;
614
615#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
616	val = prot_virt_guest;
617#endif
618	return scnprintf(page, PAGE_SIZE, "%d\n", val);
619}
620
621static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
622				    struct kobj_attribute *attr, char *page)
623{
624	int val = 0;
625
626#if IS_ENABLED(CONFIG_KVM)
627	val = prot_virt_host;
628#endif
629
630	return scnprintf(page, PAGE_SIZE, "%d\n", val);
631}
632
633static struct kobj_attribute uv_prot_virt_guest =
634	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
635
636static struct kobj_attribute uv_prot_virt_host =
637	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
638
639static const struct attribute *uv_prot_virt_attrs[] = {
640	&uv_prot_virt_guest.attr,
641	&uv_prot_virt_host.attr,
642	NULL,
643};
644
645static struct kset *uv_query_kset;
646static struct kobject *uv_kobj;
647
648static int __init uv_info_init(void)
649{
650	int rc = -ENOMEM;
651
652	if (!test_facility(158))
653		return 0;
654
655	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
656	if (!uv_kobj)
657		return -ENOMEM;
658
659	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
660	if (rc)
661		goto out_kobj;
662
663	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
664	if (!uv_query_kset) {
665		rc = -ENOMEM;
666		goto out_ind_files;
667	}
668
669	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
670	if (!rc)
671		return 0;
672
673	kset_unregister(uv_query_kset);
674out_ind_files:
675	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
676out_kobj:
677	kobject_del(uv_kobj);
678	kobject_put(uv_kobj);
679	return rc;
680}
681device_initcall(uv_info_init);
682#endif